Science.gov

Sample records for air system cas

  1. New CRISPR-Cas systems discovered.

    PubMed

    Yang, Hui; Patel, Dinshaw J

    2017-03-01

    In bacteria and archaea, CRISPR-Cas adaptive immune systems utilize RNA-guided endonucleases to defend against invasion by foreign nucleic acids of bacteriophage, virus and plasmid origin. In a recent paper published in Nature, Burstein et al. identified the first Cas9 protein in uncultivated archaea and two novel CRISPR-CasX and CRISPR-CasY systems in uncultivated bacteria by capitalizing on analysis of terabase-scale metagenomic datasets from natural uncultivated organisms.

  2. Scorpion: Close Air Support (CAS) aircraft

    NASA Technical Reports Server (NTRS)

    Allen, Chris; Cheng, Rendy; Koehler, Grant; Lyon, Sean; Paguio, Cecilia

    1991-01-01

    The objective is to outline the results of the preliminary design of the Scorpion, a proposed close air support aircraft. The results obtained include complete preliminary analysis of the aircraft in the areas of aerodynamics, structures, avionics and electronics, stability and control, weight and balance, propulsion systems, and costs. A conventional wing, twin jet, twin-tail aircraft was chosen to maximize the desirable characteristics. The Scorpion will feature low speed maneuverability, high survivability, low cost, and low maintenance. The life cycle cost per aircraft will be 17.5 million dollars. The maximum takeoff weight will be 52,760 pounds. Wing loading will be 90 psf. The thrust to weight will be 0.6 lbs/lb. This aircraft meets the specified mission requirements. Some modifications have been suggested to further optimize the design.

  3. Cas6 specificity and CRISPR RNA loading in a complex CRISPR-Cas system.

    PubMed

    Sokolowski, Richard D; Graham, Shirley; White, Malcolm F

    2014-06-01

    CRISPR-Cas is an adaptive prokaryotic immune system, providing protection against viruses and other mobile genetic elements. In type I and type III CRISPR-Cas systems, CRISPR RNA (crRNA) is generated by cleavage of a primary transcript by the Cas6 endonuclease and loaded into multisubunit surveillance/effector complexes, allowing homology-directed detection and cleavage of invading elements. Highly studied CRISPR-Cas systems such as those in Escherichia coli and Pseudomonas aeruginosa have a single Cas6 enzyme that is an integral subunit of the surveillance complex. By contrast, Sulfolobus solfataricus has a complex CRISPR-Cas system with three types of surveillance complexes (Cascade/type I-A, CSM/type III-A and CMR/type III-B), five Cas6 paralogues and two different CRISPR-repeat families (AB and CD). Here, we investigate the kinetic properties of two different Cas6 paralogues from S. solfataricus. The Cas6-1 subtype is specific for CD-family CRISPR repeats, generating crRNA by multiple turnover catalysis whilst Cas6-3 has a broader specificity and also processes a non-coding RNA with a CRISPR repeat-related sequence. Deep sequencing of crRNA in surveillance complexes reveals a biased distribution of spacers derived from AB and CD loci, suggesting functional coupling between Cas6 paralogues and their downstream effector complexes.

  4. SnapShot: Class 1 CRISPR-Cas Systems.

    PubMed

    Makarova, Kira S; Zhang, Feng; Koonin, Eugene V

    2017-02-23

    Class 1 CRISPR-Cas systems are characterized by effector modules consisting of multiple subunits. Class 1 systems comprise about 90% of all CRISPR-Cas loci identified in bacteria and archaea and can target both DNA and RNA.

  5. Evolution and classification of the CRISPR-Cas systems

    PubMed Central

    S. Makarova, Kira; H. Haft, Daniel; Barrangou, Rodolphe; J. J. Brouns, Stan; Charpentier, Emmanuelle; Horvath, Philippe; Moineau, Sylvain; J. M. Mojica, Francisco; I. Wolf, Yuri; Yakunin, Alexander F.; van der Oost, John; V. Koonin, Eugene

    2012-01-01

    The CRISPR–Cas (clustered regularly interspaced short palindromic repeats–CRISPR-associated proteins) modules are adaptive immunity systems that are present in many archaea and bacteria. These defence systems are encoded by operons that have an extraordinarily diverse architecture and a high rate of evolution for both the cas genes and the unique spacer content. Here, we provide an updated analysis of the evolutionary relationships between CRISPR–Cas systems and Cas proteins. Three major types of CRISPR–Cas system are delineated, with a further division into several subtypes and a few chimeric variants. Given the complexity of the genomic architectures and the extremely dynamic evolution of the CRISPR–Cas systems, a unified classification of these systems should be based on multiple criteria. Accordingly, we propose a `polythetic' classification that integrates the phylogenies of the most common cas genes, the sequence and organization of the CRISPR repeats and the architecture of the CRISPR–cas loci. PMID:21552286

  6. Annotation and Classification of CRISPR-Cas Systems.

    PubMed

    Makarova, Kira S; Koonin, Eugene V

    2015-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) is a prokaryotic adaptive immune system that is represented in most archaea and many bacteria. Among the currently known prokaryotic defense systems, the CRISPR-Cas genomic loci show unprecedented complexity and diversity. Classification of CRISPR-Cas variants that would capture their evolutionary relationships to the maximum possible extent is essential for comparative genomic and functional characterization of this theoretically and practically important system of adaptive immunity. To this end, a multipronged approach has been developed that combines phylogenetic analysis of the conserved Cas proteins with comparison of gene repertoires and arrangements in CRISPR-Cas loci. This approach led to the current classification of CRISPR-Cas systems into three distinct types and ten subtypes for each of which signature genes have been identified. Comparative genomic analysis of the CRISPR-Cas systems in new archaeal and bacterial genomes performed over the 3 years elapsed since the development of this classification makes it clear that new types and subtypes of CRISPR-Cas need to be introduced. Moreover, this classification system captures only part of the complexity of CRISPR-Cas organization and evolution, due to the intrinsic modularity and evolutionary mobility of these immunity systems, resulting in numerous recombinant variants. Moreover, most of the cas genes evolve rapidly, complicating the family assignment for many Cas proteins and the use of family profiles for the recognition of CRISPR-Cas subtype signatures. Further progress in the comparative analysis of CRISPR-Cas systems requires integration of the most sensitive sequence comparison tools, protein structure comparison, and refined approaches for comparison of gene neighborhoods.

  7. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems

    PubMed Central

    Fonfara, Ines; Le Rhun, Anaïs; Chylinski, Krzysztof; Makarova, Kira S.; Lécrivain, Anne-Laure; Bzdrenga, Janek; Koonin, Eugene V.; Charpentier, Emmanuelle

    2014-01-01

    The CRISPR-Cas-derived RNA-guided Cas9 endonuclease is the key element of an emerging promising technology for genome engineering in a broad range of cells and organisms. The DNA-targeting mechanism of the type II CRISPR-Cas system involves maturation of tracrRNA:crRNA duplex (dual-RNA), which directs Cas9 to cleave invading DNA in a sequence-specific manner, dependent on the presence of a Protospacer Adjacent Motif (PAM) on the target. We show that evolution of dual-RNA and Cas9 in bacteria produced remarkable sequence diversity. We selected eight representatives of phylogenetically defined type II CRISPR-Cas groups to analyze possible coevolution of Cas9 and dual-RNA. We demonstrate that these two components are interchangeable only between closely related type II systems when the PAM sequence is adjusted to the investigated Cas9 protein. Comparison of the taxonomy of bacterial species that harbor type II CRISPR-Cas systems with the Cas9 phylogeny corroborates horizontal transfer of the CRISPR-Cas loci. The reported collection of dual-RNA:Cas9 with associated PAMs expands the possibilities for multiplex genome editing and could provide means to improve the specificity of the RNA-programmable Cas9 tool. PMID:24270795

  8. Characterization and Evolution of Salmonella CRISPR-Cas Systems

    DTIC Science & Technology

    2014-01-01

    SECURITY CLASSIFICATION OF: Prokaryotic CRISPR -Cas (clustered regularly interspaced short palindromic repeats and CRISPR -associated genes) systems provide...adaptive immunity from invasive genetic elements and encompass three essential features: (i) cas genes, (ii) a CRISPR array composed of spacers and...direct repeats and (iii) an AT-rich leader sequence upstream of the array. We performed in- depth sequence analysis of the CRISPR -Cas systems in .600

  9. Control of gene expression by CRISPR-Cas systems.

    PubMed

    Bikard, David; Marraffini, Luciano A

    2013-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) loci and their associated cas (CRISPR-associated) genes provide adaptive immunity against viruses (phages) and other mobile genetic elements in bacteria and archaea. While most of the early work has largely been dominated by examples of CRISPR-Cas systems directing the cleavage of phage or plasmid DNA, recent studies have revealed a more complex landscape where CRISPR-Cas loci might be involved in gene regulation. In this review, we summarize the role of these loci in the regulation of gene expression as well as the recent development of synthetic gene regulation using engineered CRISPR-Cas systems.

  10. New CRISPR-Cas systems from uncultivated microbes.

    PubMed

    Burstein, David; Harrington, Lucas B; Strutt, Steven C; Probst, Alexander J; Anantharaman, Karthik; Thomas, Brian C; Doudna, Jennifer A; Banfield, Jillian F

    2017-02-09

    CRISPR-Cas systems provide microbes with adaptive immunity by employing short DNA sequences, termed spacers, that guide Cas proteins to cleave foreign DNA. Class 2 CRISPR-Cas systems are streamlined versions, in which a single RNA-bound Cas protein recognizes and cleaves target sequences. The programmable nature of these minimal systems has enabled researchers to repurpose them into a versatile technology that is broadly revolutionizing biological and clinical research. However, current CRISPR-Cas technologies are based solely on systems from isolated bacteria, leaving the vast majority of enzymes from organisms that have not been cultured untapped. Metagenomics, the sequencing of DNA extracted directly from natural microbial communities, provides access to the genetic material of a huge array of uncultivated organisms. Here, using genome-resolved metagenomics, we identify a number of CRISPR-Cas systems, including the first reported Cas9 in the archaeal domain of life, to our knowledge. This divergent Cas9 protein was found in little-studied nanoarchaea as part of an active CRISPR-Cas system. In bacteria, we discovered two previously unknown systems, CRISPR-CasX and CRISPR-CasY, which are among the most compact systems yet discovered. Notably, all required functional components were identified by metagenomics, enabling validation of robust in vivo RNA-guided DNA interference activity in Escherichia coli. Interrogation of environmental microbial communities combined with in vivo experiments allows us to access an unprecedented diversity of genomes, the content of which will expand the repertoire of microbe-based biotechnologies.

  11. New CRISPR–Cas systems from uncultivated microbes

    NASA Astrophysics Data System (ADS)

    Burstein, David; Harrington, Lucas B.; Strutt, Steven C.; Probst, Alexander J.; Anantharaman, Karthik; Thomas, Brian C.; Doudna, Jennifer A.; Banfield, Jillian F.

    2016-12-01

    CRISPR–Cas systems provide microbes with adaptive immunity by employing short DNA sequences, termed spacers, that guide Cas proteins to cleave foreign DNA. Class 2 CRISPR–Cas systems are streamlined versions, in which a single RNA-bound Cas protein recognizes and cleaves target sequences. The programmable nature of these minimal systems has enabled researchers to repurpose them into a versatile technology that is broadly revolutionizing biological and clinical research. However, current CRISPR–Cas technologies are based solely on systems from isolated bacteria, leaving the vast majority of enzymes from organisms that have not been cultured untapped. Metagenomics, the sequencing of DNA extracted directly from natural microbial communities, provides access to the genetic material of a huge array of uncultivated organisms. Here, using genome-resolved metagenomics, we identify a number of CRISPR–Cas systems, including the first reported Cas9 in the archaeal domain of life, to our knowledge. This divergent Cas9 protein was found in little-studied nanoarchaea as part of an active CRISPR–Cas system. In bacteria, we discovered two previously unknown systems, CRISPR–CasX and CRISPR–CasY, which are among the most compact systems yet discovered. Notably, all required functional components were identified by metagenomics, enabling validation of robust in vivo RNA-guided DNA interference activity in Escherichia coli. Interrogation of environmental microbial communities combined with in vivo experiments allows us to access an unprecedented diversity of genomes, the content of which will expand the repertoire of microbe-based biotechnologies.

  12. Calibrated Ancillary System (CAS) user's guide, volume 8

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Calibrated Ancillary System (CAS) provides real-time calibrated parameters from the orbiter downlink (ancillary data) to the Goddard Space Flight Center (GSFC). This user's guide contains the introduction to the equipment, operation, general procedures, and specific procedures of CAS. Volume 8 describes procedures for invoking checkout software, file maintenance procedures, system manager procedures.

  13. Adaptation in CRISPR-Cas Systems.

    PubMed

    Sternberg, Samuel H; Richter, Hagen; Charpentier, Emmanuelle; Qimron, Udi

    2016-03-17

    Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins constitute an adaptive immune system in prokaryotes. The system preserves memories of prior infections by integrating short segments of foreign DNA, termed spacers, into the CRISPR array in a process termed adaptation. During the past 3 years, significant progress has been made on the genetic requirements and molecular mechanisms of adaptation. Here we review these recent advances, with a focus on the experimental approaches that have been developed, the insights they generated, and a proposed mechanism for self- versus non-self-discrimination during the process of spacer selection. We further describe the regulation of adaptation and the protein players involved in this fascinating process that allows bacteria and archaea to harbor adaptive immunity.

  14. Structural plasticity and in vivo activity of Cas1 from the type I-F CRISPR-Cas system.

    PubMed

    Wilkinson, Max E; Nakatani, Yoshio; Staals, Raymond H J; Kieper, Sebastian N; Opel-Reading, Helen K; McKenzie, Rebecca E; Fineran, Peter C; Krause, Kurt L

    2016-04-15

    CRISPR-Cas systems are adaptive immune systems in prokaryotes that provide protection against viruses and other foreign DNA. In the adaptation stage, foreign DNA is integrated into CRISPR (clustered regularly interspaced short palindromic repeat) arrays as new spacers. These spacers are used in the interference stage to guide effector CRISPR associated (Cas) protein(s) to target complementary foreign invading DNA. Cas1 is the integrase enzyme that is central to the catalysis of spacer integration. There are many diverse types of CRISPR-Cas systems, including type I-F systems, which are typified by a unique Cas1-Cas2-3 adaptation complex. In the present study we characterize the Cas1 protein of the potato phytopathogen Pectobacterium atrosepticum, an important model organism for understanding spacer acquisition in type I-F CRISPR-Cas systems. We demonstrate by mutagenesis that Cas1 is essential for adaptation in vivo and requires a conserved aspartic acid residue. By X-ray crystallography, we show that although P. atrosepticum Cas1 adopts a fold conserved among other Cas1 proteins, it possesses remarkable asymmetry as a result of structural plasticity. In particular, we resolve for the first time a flexible, asymmetric loop that may be unique to type I-F Cas1 proteins, and we discuss the implications of these structural features for DNA binding and enzymatic activity.

  15. Calibrated Ancillary System (CAS) user's guide, volume 1

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Calibrated Ancillary System (CAS) provides real-time calibrated parameters from the orbiter downlink (ancillary data) to the Goddard Space Flight Center (GSFC). This user's guide contains the introduction to the equipment, operation, general procedures, and specific procedures of the CAS. Volume 1 includes a general overview of the CAS relationships with other equipment, physical design, and hardware and software subsystems. In addition, a description of the user levels and tasks, an introduction to CAS operation, and an outline of general operating procedures are included.

  16. Effects of Using a Computer Algebra System (CAS) on Junior College Students' Attitudes towards CAS and Achievement in Mathematics

    ERIC Educational Resources Information Center

    Leng, Ng Wee; Choo, Kwee Tiow; Soon, Lau Hock; Yi-Huak, Koh; Sun, Yap Yew

    2005-01-01

    This study examines the effects of using Texas Instruments' Voyage 200 calculator (V200), a graphing calculator with a built-in computer algebra system (CAS), on attitudes towards CAS and achievement in mathematics of junior college students (17 year olds). Students' attitudes towards CAS were examined using a 40-item Likert-type instrument…

  17. Calibrated Ancillary System (CAS) user's guide, volume 2

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Calibrated Ancillary System (CAS) provides real-time calibrated parameters from the orbiter downlink (ancillary data) to the Goddard Space Flight Center (GSFC). This user's guide contains the introduction to the equipment, operation, general procedures, and specific procedures of CAS. Volume 2 describes the central status and control (CSAC) procedures, supervisor procedures, and logging procedures.

  18. Calibrated Ancillary System (CAS) user's guide, volume 3

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Calibrated Ancillary System (CAS) provides real-time calibrated parameters from the orbiter downlink (ancillary data) to the Goddard Space Flight Center (GSFC). This user's guide contains the introduction to the equipment, operation, general procedures, and specific procedures of the CAS. Volume 3 describes logging and delogging procedures, real-time procedures, and error messages.

  19. Diversity and evolution of class 2 CRISPR-Cas systems.

    PubMed

    Shmakov, Sergey; Smargon, Aaron; Scott, David; Cox, David; Pyzocha, Neena; Yan, Winston; Abudayyeh, Omar O; Gootenberg, Jonathan S; Makarova, Kira S; Wolf, Yuri I; Severinov, Konstantin; Zhang, Feng; Koonin, Eugene V

    2017-03-01

    Class 2 CRISPR-Cas systems are characterized by effector modules that consist of a single multidomain protein, such as Cas9 or Cpf1. We designed a computational pipeline for the discovery of novel class 2 variants and used it to identify six new CRISPR-Cas subtypes. The diverse properties of these new systems provide potential for the development of versatile tools for genome editing and regulation. In this Analysis article, we present a comprehensive census of class 2 types and class 2 subtypes in complete and draft bacterial and archaeal genomes, outline evolutionary scenarios for the independent origin of different class 2 CRISPR-Cas systems from mobile genetic elements, and propose an amended classification and nomenclature of CRISPR-Cas.

  20. Characterization and evolution of Salmonella CRISPR-Cas systems.

    PubMed

    Shariat, Nikki; Timme, Ruth E; Pettengill, James B; Barrangou, Rodolphe; Dudley, Edward G

    2015-02-01

    Prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated genes) systems provide adaptive immunity from invasive genetic elements and encompass three essential features: (i) cas genes, (ii) a CRISPR array composed of spacers and direct repeats and (iii) an AT-rich leader sequence upstream of the array. We performed in-depth sequence analysis of the CRISPR-Cas systems in >600 Salmonella, representing four clinically prevalent serovars. Each CRISPR-Cas feature is extremely conserved in the Salmonella, and the CRISPR1 locus is more highly conserved than CRISPR2. Array composition is serovar-specific, although no convincing evidence of recent spacer acquisition against exogenous nucleic acids exists. Only 12% of spacers match phage and plasmid sequences and self-targeting spacers are associated with direct repeat variants. High nucleotide identity (>99.9%) exists across the cas operon among isolates of a single serovar and in some cases this conservation extends across divergent serovars. These observations reflect historical CRISPR-Cas immune activity, showing that this locus has ceased undergoing adaptive events. Intriguingly, the high level of conservation across divergent serovars shows that the genetic integrity of these inactive loci is maintained over time, contrasting with the canonical view that inactive CRISPR loci degenerate over time. This thorough characterization of Salmonella CRISPR-Cas systems presents new insights into Salmonella CRISPR evolution, particularly with respect to cas gene conservation, leader sequences, organization of direct repeats and protospacer matches. Collectively, our data suggest that Salmonella CRISPR-Cas systems are no longer immunogenic; rather, their impressive conservation indicates they may have an alternative function in Salmonella.

  1. Characterization and evolution of Salmonella CRISPR-Cas systems.

    PubMed

    Shariat, Nikki; Timme, Ruth E; Pettengill, James B; Barrangou, Rodolphe; Dudley, Edward G

    2015-02-01

    Prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated genes) systems provide adaptive immunity from invasive genetic elements and encompass three essential features: (i) cas genes, (ii) a CRISPR array composed of spacers and direct repeats and (iii) an AT-rich leader sequence upstream of the array. We performed in-depth sequence analysis of the CRISPR-Cas systems in >600 Salmonella, representing four clinically prevalent serovars. Each CRISPR-Cas feature is extremely conserved in the Salmonella, and the CRISPR1 locus is more highly conserved than CRISPR2. Array composition is serovar-specific, although no convincing evidence of recent spacer acquisition against exogenous nucleic acids exists. Only 12 % of spacers match phage and plasmid sequences and self-targeting spacers are associated with direct repeat variants. High nucleotide identity (>99.9 %) exists across the cas operon among isolates of a single serovar and in some cases this conservation extends across divergent serovars. These observations reflect historical CRISPR-Cas immune activity, showing that this locus has ceased undergoing adaptive events. Intriguingly, the high level of conservation across divergent serovars shows that the genetic integrity of these inactive loci is maintained over time, contrasting with the canonical view that inactive CRISPR loci degenerate over time. This thorough characterization of Salmonella CRISPR-Cas systems presents new insights into Salmonella CRISPR evolution, particularly with respect to cas gene conservation, leader sequences, organization of direct repeats and protospacer matches. Collectively, our data suggest that Salmonella CRISPR-Cas systems are no longer immunogenic; rather, their impressive conservation indicates they may have an alternative function in Salmonella.

  2. Calibrated Ancillary System (CAS) user's guide, volume 5

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Calibrated Ancillary System (CAS) provides real-time parameters from the orbiter downlink (ancillary data) to the Goddard Space Flight Center (GSFC). This user's guide contains the introduction to the equipment, operation, general procedures, and specific procedures of CAS. Volume 5 describes the testing user mission planning procedures including the bulletin board system and ancillary products procedures. Instructions for viewing the SDT/TDT (shuttle data tape/telemetry descriptor tape) data base and the file management menu are also given.

  3. Calibrated Ancillary System (CAS) user's guide, volume 4

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Calibrated Ancillary System (CAS) provides real-time calibrated parameters from the orbiter downlink (ancillary data) to the Goddard Space Flight Center (GSFC). This user's guide contains the introduction to the equipment, operation, general procedures, and specific procedures of the CAS. Volume 4 presents the GSFC user mission planning procedures covering the mission planning main menu, bulletin board system, ancillary products menu, utility menu procedures, and ancillary support files procedures.

  4. CAS

    SciTech Connect

    Martinez, B.; Pomeroy, G. )

    1989-12-02

    The Security Alarm System is a data acquisition and control system which collects data from intrusion sensors and displays the information in a real-time environment for operators. The Access Control System monitors and controls the movement of personnel with the use of card readers and biometrics hand readers.

  5. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity.

    PubMed

    Barrangou, Rodolphe; Marraffini, Luciano A

    2014-04-24

    Clustered regularly interspaced short palindromic repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing and can be repurposed for numerous DNA targeting applications including transcriptional control.

  6. The structural biology of CRISPR-Cas systems.

    PubMed

    Jiang, Fuguo; Doudna, Jennifer A

    2015-02-01

    Prokaryotic CRISPR-Cas genomic loci encode RNA-mediated adaptive immune systems that bear some functional similarities with eukaryotic RNA interference. Acquired and heritable immunity against bacteriophage and plasmids begins with integration of ∼30 base pair foreign DNA sequences into the host genome. CRISPR-derived transcripts assemble with CRISPR-associated (Cas) proteins to target complementary nucleic acids for degradation. Here we review recent advances in the structural biology of these targeting complexes, with a focus on structural studies of the multisubunit Type I CRISPR RNA-guided surveillance and the Cas9 DNA endonuclease found in Type II CRISPR-Cas systems. These complexes have distinct structures that are each capable of site-specific double-stranded DNA binding and local helix unwinding.

  7. Calibrated Ancillary System (CAS) user's guide, volume 7

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Calibrated Ancillary System (CAS) provides real-time calibrated parameters from the orbiter downlink (ancillary data) to the Goddard Space Flight Center (GSFC). This user's guide contains the introduction to the equipment, operation, general procedures, and specific procedures of CAS. Volume 7 describes the data flow engineer (DFE) user mission planning procedures which include instructions for processing the SDT/TDT (shuttle data tape/telemetry descriptor tape).

  8. Calibrated Ancillary System (CAS) user's guide, volume 6

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Calibrated Ancillary System (CAS) provides real-time calibrated parameters from the orbiter downlink (ancillary data) to the Goddard Space Flight Center (GSFC). This user's guide contains the introduction to the equipment, operation, general procedures, and specific procedures of CAS. Volume 6 describes ancillary products procedures, enhancement menu and processing task procedures for SDT/TDT (shuttle data tape/telemetry descriptor tape), database errors and network data driver (NDD) product menu procedures, and utility menu procedures.

  9. Comparative analysis of CRISPR-Cas systems in Klebsiella genomes.

    PubMed

    Shen, Juntao; Lv, Li; Wang, Xudong; Xiu, Zhilong; Chen, Guoqiang

    2017-02-03

    Prokaryotic CRISPR-Cas system provides adaptive immunity against invasive genetic elements. Bacteria of the genus Klebsiella are important nosocomial opportunistic pathogens. However, information of CRISPR-Cas system in Klebsiella remains largely unknown. Here, we analyzed the CRISPR-Cas systems of 68 complete genomes of Klebsiella representing four species. All the elements for CRISPR-Cas system (cas genes, repeats, leader sequences, and PAMs) were characterized. Besides the typical Type I-E and I-F CRISPR-Cas systems, a new Subtype I system located in the ABC transport system-glyoxalase region was found. The conservation of the new subtype CRISPR system between different species showed new evidence for CRISPR horizontal transfer. CRISPR polymorphism was strongly correlated both with species and multilocus sequence types. Some results indicated the function of adaptive immunity: most spacers (112 of 124) matched to prophages and plasmids and no matching housekeeping genes; new spacer acquisition was observed within the same sequence type (ST) and same clonal complex; the identical spacers were observed only in the ancient position (far from the leader) between different STs and clonal complexes. Interestingly, a high ratio of self-targeting spacers (7.5%, 31 of 416) was found in CRISPR-bearing Klebsiella pneumoniae (61%, 11 of 18). In some strains, there even were multiple full matching self-targeting spacers. Some self-targeting spacers were conserved even between different STs. These results indicated that some unknown mechanisms existed to compromise the function of self-targets of CRISPR-Cas systems in K. pneumoniae.

  10. Interference activity of a minimal Type I CRISPR–Cas system from Shewanella putrefaciens

    PubMed Central

    Dwarakanath, Srivatsa; Brenzinger, Susanne; Gleditzsch, Daniel; Plagens, André; Klingl, Andreas; Thormann, Kai; Randau, Lennart

    2015-01-01

    Type I CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)–Cas (CRISPR-associated) systems exist in bacterial and archaeal organisms and provide immunity against foreign DNA. The Cas protein content of the DNA interference complexes (termed Cascade) varies between different CRISPR-Cas subtypes. A minimal variant of the Type I-F system was identified in proteobacterial species including Shewanella putrefaciens CN-32. This variant lacks a large subunit (Csy1), Csy2 and Csy3 and contains two unclassified cas genes. The genome of S. putrefaciens CN-32 contains only five Cas proteins (Cas1, Cas3, Cas6f, Cas1821 and Cas1822) and a single CRISPR array with 81 spacers. RNA-Seq analyses revealed the transcription of this array and the maturation of crRNAs (CRISPR RNAs). Interference assays based on plasmid conjugation demonstrated that this CRISPR-Cas system is active in vivo and that activity is dependent on the recognition of the dinucleotide GG PAM (Protospacer Adjacent Motif) sequence and crRNA abundance. The deletion of cas1821 and cas1822 reduced the cellular crRNA pool. Recombinant Cas1821 was shown to form helical filaments bound to RNA molecules, which suggests its role as the Cascade backbone protein. A Cascade complex was isolated which contained multiple Cas1821 copies, Cas1822, Cas6f and mature crRNAs. PMID:26350210

  11. Applications of CRISPR-Cas systems in neuroscience

    PubMed Central

    Heidenreich, Matthias; Zhang, Feng

    2016-01-01

    Genome editing tools, and in particular those based on CRISPR-Cas systems, are accelerating the pace of biological research and enabling targeted genetic interrogation in virtually any organism and cell type. These tools have opened the door to the development of new model systems for studying the complexity of the nervous system, including animal and stem cell-derived in vitro models. Precise and efficient gene editing using CRISPR-Cas systems has the potential to advance both basic and translational neuroscience research. PMID:26656253

  12. [CRISPR-Cas system as molecular scissors for gene therapy].

    PubMed

    Heinz, G A; Mashreghi, M-F

    2017-02-01

    Since the discovery of the CRISPR-Cas system as the adaptive immune system of prokaryotes, the underlying mechanism has proven to be a precise molecular tool for the targeted editing of genetic information in various cell types. By using the CRISPR-Cas9 system DNA sequences can be cut out at any site in the genome and changed in a sequence-specific manner. In the long term this provides the opportunity to cure diseases caused by gene mutations.

  13. Genome engineering using CRISPR-Cas9 system.

    PubMed

    Cong, Le; Zhang, Feng

    2015-01-01

    The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 system is an adaptive immune system that exists in a variety of microbes. It could be engineered to function in eukaryotic cells as a fast, low-cost, efficient, and scalable tool for manipulating genomic sequences. In this chapter, detailed protocols are described for harnessing the CRISPR-Cas9 system from Streptococcus pyogenes to enable RNA-guided genome engineering applications in mammalian cells. We present all relevant methods including the initial site selection, molecular cloning, delivery of guide RNAs (gRNAs) and Cas9 into mammalian cells, verification of target cleavage, and assays for detecting genomic modification including indels and homologous recombination. These tools provide researchers with new instruments that accelerate both forward and reverse genetics efforts.

  14. SD-CAS: Spin Dynamics by Computer Algebra System.

    PubMed

    Filip, Xenia; Filip, Claudiu

    2010-11-01

    A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples.

  15. Mouse Genome Editing Using the CRISPR/Cas System.

    PubMed

    Harms, Donald W; Quadros, Rolen M; Seruggia, Davide; Ohtsuka, Masato; Takahashi, Gou; Montoliu, Lluis; Gurumurthy, Channabasavaiah B

    2014-10-01

    The availability of techniques to create desired genetic mutations has enabled the laboratory mouse as an extensively used model organism in biomedical research including human genetics. A new addition to this existing technical repertoire is the CRISPR/Cas system. Specifically, this system allows editing of the mouse genome much more quickly than the previously used techniques, and, more importantly, multiple mutations can be created in a single experiment. Here we provide protocols for preparation of CRISPR/Cas reagents and microinjection into one-cell mouse embryos to create knockout or knock-in mouse models.

  16. Mouse Genome Editing using CRISPR/Cas System

    PubMed Central

    Harms, Donald W; Quadros, Rolen M; Seruggia, Davide; Ohtsuka, Masato; Takahashi, Gou

    2015-01-01

    The availability of techniques to create desired genetic mutations has enabled the laboratory mouse as an extensively used model organism in biomedical research including human genetics. A new addition to this existing technical repertoire is the CRISPR/Cas system. Specifically, this system allows editing of the mouse genome much faster than the previously used techniques and more importantly multiple mutations can be created in a single experiment. Here we provide protocols for preparation of CRISPR/Cas reagents and microinjection into one cell mouse embryos to create knockout or knock-in mouse models. PMID:25271839

  17. Harnessing CRISPR-Cas systems for bacterial genome editing.

    PubMed

    Selle, Kurt; Barrangou, Rodolphe

    2015-04-01

    Manipulation of genomic sequences facilitates the identification and characterization of key genetic determinants in the investigation of biological processes. Genome editing via clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) constitutes a next-generation method for programmable and high-throughput functional genomics. CRISPR-Cas systems are readily reprogrammed to induce sequence-specific DNA breaks at target loci, resulting in fixed mutations via host-dependent DNA repair mechanisms. Although bacterial genome editing is a relatively unexplored and underrepresented application of CRISPR-Cas systems, recent studies provide valuable insights for the widespread future implementation of this technology. This review summarizes recent progress in bacterial genome editing and identifies fundamental genetic and phenotypic outcomes of CRISPR targeting in bacteria, in the context of tool development, genome homeostasis, and DNA repair.

  18. Study of Eclipsing Binary and Multiple Systems in OB Associations IV: Cas OB6 Member DN Cas

    NASA Astrophysics Data System (ADS)

    Bakış, V.; Bakış, H.; Bilir, S.; Eker, Z.

    2016-09-01

    An early-type, massive, short-period (Porb=2d.310951) eclipsing spectroscopic binary DN Cas has been re-visited with new spectral and photometric data. The masses and radii of the components have been obtained as M1=19.04± 0.07 M⊙, M2=13.73± 0.05 M⊙ and R1=7.22± 0.06 R⊙, R2=5.79± 0.06 R⊙, respectively. Both components present synchronous rotation (Vrot1=160 km s-1, Vrot2=130 km s-1) with their orbit. Orbital period analysis yielded a physically bound additional component in the system with a minimum mass of M3=0.88 M⊙ orbiting in an eccentric orbit (e = 0.37 ± 0.2) with an orbital period of P 12 = 42 ± 9 yr. High precision absolute parameters of the system allowed us to derive a distance to DN Cas as 1.7 ± 0.2 kpc which locates the system within the borders of the Cas OB6 association (d = 1.8 kpc). The space velocities and the age of DN Cas are in agreement with those of Cas OB6. The age of DN Cas (τ = 3-5 Myr) is found to be 1-2 Myr older than the embedded clusters (IC 1795, IC 1805, and IC 1848) in the Cas OB6 association, which implies a sequential star formation in the association.

  19. Crystal Structure of Streptococcus pyogenes Cas1 and Its Interaction with Csn2 in the Type II CRISPR-Cas System.

    PubMed

    Ka, Donghyun; Lee, Hasup; Jung, Yi-Deun; Kim, Kyunggon; Seok, Chaok; Suh, Nayoung; Bae, Euiyoung

    2016-01-05

    CRISPRs and Cas proteins constitute an RNA-guided microbial immune system against invading nucleic acids. Cas1 is a universal Cas protein found in all three types of CRISPR-Cas systems, and its role is implicated in new spacer acquisition during CRISPR-mediated adaptive immunity. Here, we report the crystal structure of Streptococcus pyogenes Cas1 (SpCas1) in a type II CRISPR-Cas system and characterize its interaction with S. pyogenes Csn2 (SpCsn2). The SpCas1 structure reveals a unique conformational state distinct from type I Cas1 structures, resulting in a more extensive dimerization interface, a more globular overall structure, and a disruption of potential metal-binding sites for catalysis. We demonstrate that SpCas1 directly interacts with SpCsn2, and identify the binding interface and key residues for Cas complex formation. These results provide structural information for a type II Cas1 protein, and lay a foundation for studying multiprotein Cas complexes functioning in type II CRISPR-Cas systems.

  20. Targeted mutagenesis in chicken using CRISPR/Cas9 system

    PubMed Central

    Oishi, Isao; Yoshii, Kyoko; Miyahara, Daichi; Kagami, Hiroshi; Tagami, Takahiro

    2016-01-01

    The CRISPR/Cas9 system is a simple and powerful tool for genome editing in various organisms including livestock animals. However, the system has not been applied to poultry because of the difficulty in accessing their zygotes. Here we report the implementation of CRISPR/Cas9-mediated gene targeting in chickens. Two egg white genes, ovalbumin and ovomucoid, were efficiently (>90%) mutagenized in cultured chicken primordial germ cells (PGCs) by transfection of circular plasmids encoding Cas9, a single guide RNA, and a gene encoding drug resistance, followed by transient antibiotic selection. We transplanted CRISPR-induced mutant-ovomucoid PGCs into recipient chicken embryos and established three germline chimeric roosters (G0). All of the roosters had donor-derived mutant-ovomucoid spermatozoa, and the two with a high transmission rate of donor-derived gametes produced heterozygous mutant ovomucoid chickens as about half of their donor-derived offspring in the next generation (G1). Furthermore, we generated ovomucoid homozygous mutant offspring (G2) by crossing the G1 mutant chickens. Taken together, these results demonstrate that the CRISPR/Cas9 system is a simple and effective gene-targeting method in chickens. PMID:27050479

  1. A non-inheritable maternal Cas9-based multiple-gene editing system in mice.

    PubMed

    Sakurai, Takayuki; Kamiyoshi, Akiko; Kawate, Hisaka; Mori, Chie; Watanabe, Satoshi; Tanaka, Megumu; Uetake, Ryuichi; Sato, Masahiro; Shindo, Takayuki

    2016-01-28

    The CRISPR/Cas9 system is capable of editing multiple genes through one-step zygote injection. The preexisting method is largely based on the co-injection of Cas9 DNA (or mRNA) and guide RNAs (gRNAs); however, it is unclear how many genes can be simultaneously edited by this method, and a reliable means to generate transgenic (Tg) animals with multiple gene editing has yet to be developed. Here, we employed non-inheritable maternal Cas9 (maCas9) protein derived from Tg mice with systemic Cas9 overexpression (Cas9 mice). The maCas9 protein in zygotes derived from mating or in vitro fertilization of Tg/+ oocytes and +/+ sperm could successfully edit the target genome. The efficiency of such maCas9-based genome editing was comparable to that of zygote microinjection-based genome editing widely used at present. Furthermore, we demonstrated a novel approach to create "Cas9 transgene-free" gene-modified mice using non-Tg (+/+) zygotes carrying maCas9. The maCas9 protein in mouse zygotes edited nine target loci simultaneously after injection with nine different gRNAs alone. Cas9 mouse-derived zygotes have the potential to facilitate the creation of genetically modified animals carrying the Cas9 transgene, enabling repeatable genome engineering and the production of Cas9 transgene-free mice.

  2. Application of CRISPR-Cas system in gene therapy: Pre-clinical progress in animal model.

    PubMed

    Guan, Lihong; Han, Yawei; Zhu, Shaoyi; Lin, Juntang

    2016-10-01

    The clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated proteins (Cas) belong to the crucial adaptive immune system, which exist in archaea and bacteria. Currently, CRISPR-Cas9 system has been modified and widely used to edit genome. In this review, we summarized the discovery, classification and mechanism of CRISPR-Cas system and further discussed the application of CRISPR-Cas9 in gene therapy, mainly in disease models.

  3. CRISPR-Cas systems for editing, regulating and targeting genomes.

    PubMed

    Sander, Jeffry D; Joung, J Keith

    2014-04-01

    Targeted genome editing using engineered nucleases has rapidly gone from being a niche technology to a mainstream method used by many biological researchers. This widespread adoption has been largely fueled by the emergence of the clustered, regularly interspaced, short palindromic repeat (CRISPR) technology, an important new approach for generating RNA-guided nucleases, such as Cas9, with customizable specificities. Genome editing mediated by these nucleases has been used to rapidly, easily and efficiently modify endogenous genes in a wide variety of biomedically important cell types and in organisms that have traditionally been challenging to manipulate genetically. Furthermore, a modified version of the CRISPR-Cas9 system has been developed to recruit heterologous domains that can regulate endogenous gene expression or label specific genomic loci in living cells. Although the genome-wide specificities of CRISPR-Cas9 systems remain to be fully defined, the power of these systems to perform targeted, highly efficient alterations of genome sequence and gene expression will undoubtedly transform biological research and spur the development of novel molecular therapeutics for human disease.

  4. Therapeutic genome engineering via CRISPR-Cas systems.

    PubMed

    Moreno, Ana M; Mali, Prashant

    2017-02-15

    Differences in genomes underlie most organismal diversity, and aberrations in genomes underlie many disease states. With the growing knowledge of the genetic and pathogenic basis of human disease, development of safe and efficient platforms for genome and epigenome engineering will transform our ability to therapeutically target human diseases and also potentially engineer disease resistance. In this regard, the recent advent of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) RNA-guided nuclease systems have transformed our ability to target nucleic acids. Here we review therapeutic genome engineering applications with a specific focus on the CRISPR-Cas toolsets. We summarize past and current work, and also outline key challenges and future directions. For further resources related to this article, please visit the WIREs website.

  5. Efficient mutagenesis by CRISPR/Cas system during meiotic maturation of porcine oocytes

    PubMed Central

    ONUMA, Asuka; FUJII, Wataru; SUGIURA, Koji; NAITO, Kunihiko

    2016-01-01

    Genome editing using the CRISPR/Cas system can induce mutations with high efficiency, and allows easier production of genome-modified animals than that offered by the conventional method where embryonic stem cells are used. However, studies using CRISPR/Cas systems have been mostly limited to proliferating somatic cells and pronuclear-stage fertilized eggs. In contrast, the efficiency of a CRISPR/Cas system in immature and maturing oocytes progressing through meiosis has not yet been assessed. In the present study, we evaluated the genome-modification efficiency of the CRISPR/Cas system during meiotic maturation of porcine oocytes. Additionally, the localization of the Cas9 protein in immature oocytes was analyzed in relation to nuclear transport and mutation induction. The results showed that CRISPR/Cas induced mutation with high efficiency even in maturing oocytes with condensed chromosomes, whereas mutations were not induced in GV-stage oocytes. The localization analysis of enhanced green fluorescent protein (EGFP)-tagged Cas9 (Cas9-EGFP) revealed that the nuclei contained lesser Cas9 than the cytoplasm in immature oocytes. Treatment with leptomycin B, a nuclear export inhibitor, increased the amount of nuclear Cas9 and enabled mutation induction in GV oocytes. Our results suggest that CRISPR/Cas systems can be applied to oocytes during meiotic maturation and be implemented in novel applications targeting female genomes. PMID:27773884

  6. Efficient mutagenesis by CRISPR/Cas system during meiotic maturation of porcine oocytes.

    PubMed

    Onuma, Asuka; Fujii, Wataru; Sugiura, Koji; Naito, Kunihiko

    2017-02-16

    Genome editing using the CRISPR/Cas system can induce mutations with high efficiency, and allows easier production of genome-modified animals than that offered by the conventional method where embryonic stem cells are used. However, studies using CRISPR/Cas systems have been mostly limited to proliferating somatic cells and pronuclear-stage fertilized eggs. In contrast, the efficiency of a CRISPR/Cas system in immature and maturing oocytes progressing through meiosis has not yet been assessed. In the present study, we evaluated the genome-modification efficiency of the CRISPR/Cas system during meiotic maturation of porcine oocytes. Additionally, the localization of the Cas9 protein in immature oocytes was analyzed in relation to nuclear transport and mutation induction. The results showed that CRISPR/Cas induced mutation with high efficiency even in maturing oocytes with condensed chromosomes, whereas mutations were not induced in GV-stage oocytes. The localization analysis of enhanced green fluorescent protein (EGFP)-tagged Cas9 (Cas9-EGFP) revealed that the nuclei contained lesser Cas9 than the cytoplasm in immature oocytes. Treatment with leptomycin B, a nuclear export inhibitor, increased the amount of nuclear Cas9 and enabled mutation induction in GV oocytes. Our results suggest that CRISPR/Cas systems can be applied to oocytes during meiotic maturation and be implemented in novel applications targeting female genomes.

  7. A simplified and efficient germline-specific CRISPR/Cas9 system for Drosophila genomic engineering.

    PubMed

    Sebo, Zachary L; Lee, Han B; Peng, Ying; Guo, Yi

    2014-01-01

    The type II CRISPR/Cas9 system (clustered regularly interspaced short palindromic repeats/CRISPR-associated) has recently emerged as an efficient and simple tool for site-specific engineering of eukaryotic genomes. To improve its applications in Drosophila genome engineering, we simplified the standard two-component CRISPR/Cas9 system by generating a stable transgenic fly line expressing the Cas9 endonuclease in the germline (Vasa-Cas9 line). By injecting vectors expressing engineered target-specific guide RNAs into Vasa-Cas9 fly embryos, mutations were generated from site-specific DNA cleavages and efficiently transmitted into progenies. Because Cas9 endonuclease is the universal component of the type II CRISPR/Cas9 system, site-specific genomic engineering based on this improved platform can be achieved with lower complexity and toxicity, greater consistency, and excellent versatility.

  8. Genome engineering using the CRISPR-Cas9 system.

    PubMed

    Ran, F Ann; Hsu, Patrick D; Wright, Jason; Agarwala, Vineeta; Scott, David A; Zhang, Feng

    2013-11-01

    Targeted nucleases are powerful tools for mediating genome alteration with high precision. The RNA-guided Cas9 nuclease from the microbial clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system can be used to facilitate efficient genome engineering in eukaryotic cells by simply specifying a 20-nt targeting sequence within its guide RNA. Here we describe a set of tools for Cas9-mediated genome editing via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, as well as generation of modified cell lines for downstream functional studies. To minimize off-target cleavage, we further describe a double-nicking strategy using the Cas9 nickase mutant with paired guide RNAs. This protocol provides experimentally derived guidelines for the selection of target sites, evaluation of cleavage efficiency and analysis of off-target activity. Beginning with target design, gene modifications can be achieved within as little as 1-2 weeks, and modified clonal cell lines can be derived within 2-3 weeks.

  9. Air Quality System (AQS)

    EPA Pesticide Factsheets

    The Air Quality System (AQS) database contains measurements of air pollutant concentrations from throughout the United States and its territories. The measurements include both criteria air pollutants and hazardous air pollutants.

  10. The CRISPR-Cas immune system: biology, mechanisms and applications.

    PubMed

    Rath, Devashish; Amlinger, Lina; Rath, Archana; Lundgren, Magnus

    2015-10-01

    Viruses are a common threat to cellular life, not the least to bacteria and archaea who constitute the majority of life on Earth. Consequently, a variety of mechanisms to resist virus infection has evolved. A recent discovery is the adaptive immune system in prokaryotes, a type of system previously thought to be present only in vertebrates. The system, called CRISPR-Cas, provide sequence-specific adaptive immunity and fundamentally affect our understanding of virus-host interaction. CRISPR-based immunity acts by integrating short virus sequences in the cell's CRISPR locus, allowing the cell to remember, recognize and clear infections. There has been rapid advancement in our understanding of this immune system and its applications, but there are many aspects that await elucidation making the field an exciting area of research. This review provides an overview of the field and highlights unresolved issues.

  11. Evidence for the widespread distribution of CRISPR-Cas system in the Phylum Cyanobacteria.

    PubMed

    Cai, Fei; Axen, Seth D; Kerfeld, Cheryl A

    2013-05-01

    Members of the phylum Cyanobacteria inhabit ecologically diverse environments. However, the CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR associated genes), an extremely adaptable defense system, has not been surveyed in this phylum. We analyzed 126 cyanobacterial genomes and, surprisingly, found CRISPR-Cas in the majority except the marine subclade (Synechococcus and Prochlorococcus), in which cyanophages are a known force shaping their evolution. Multiple observations of CRISPR loci in the absence of cas1/cas2 genes may represent an early stage of losing a CRISPR-Cas locus. Our findings reveal the widespread distribution of their role in the phylum Cyanobacteria and provide a first step to systematically understanding CRISPR-Cas systems in cyanobacteria.

  12. Modulating the Cascade architecture of a minimal Type I-F CRISPR-Cas system

    PubMed Central

    Gleditzsch, Daniel; Müller-Esparza, Hanna; Pausch, Patrick; Sharma, Kundan; Dwarakanath, Srivatsa; Urlaub, Henning; Bange, Gert; Randau, Lennart

    2016-01-01

    Shewanella putrefaciens CN-32 contains a single Type I-Fv CRISPR-Cas system which confers adaptive immunity against bacteriophage infection. Three Cas proteins (Cas6f, Cas7fv, Cas5fv) and mature CRISPR RNAs were shown to be required for the assembly of an interference complex termed Cascade. The Cas protein-CRISPR RNA interaction sites within this complex were identified via mass spectrometry. Additional Cas proteins, commonly described as large and small subunits, that are present in all other investigated Cascade structures, were not detected. We introduced this minimal Type I system in Escherichia coli and show that it provides heterologous protection against lambda phage. The absence of a large subunit suggests that the length of the crRNA might not be fixed and recombinant Cascade complexes with drastically shortened and elongated crRNAs were engineered. Size-exclusion chromatography and small-angle X-ray scattering analyses revealed that the number of Cas7fv backbone subunits is adjusted in these shortened and extended Cascade variants. Larger Cascade complexes can still confer immunity against lambda phage infection in E. coli. Minimized Type I CRISPR-Cas systems expand our understanding of the evolution of Cascade assembly and diversity. Their adjustable crRNA length opens the possibility for customizing target DNA specificity. PMID:27216815

  13. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes.

    PubMed

    Koonin, Eugene V; Makarova, Kira S

    2013-05-01

    The CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR-associated genes) is an adaptive immunity system in bacteria and archaea that functions via a distinct self-non-self recognition mechanism that is partially analogous to the mechanism of eukaryotic RNA interference (RNAi). The CRISPR-Cas system incorporates fragments of virus or plasmid DNA into the CRISPR repeat cassettes and employs the processed transcripts of these spacers as guide RNAs to cleave the cognate foreign DNA or RNA. The Cas proteins, however, are not homologous to the proteins involved in RNAi and comprise numerous, highly diverged families. The majority of the Cas proteins contain diverse variants of the RNA recognition motif (RRM), a widespread RNA-binding domain. Despite the fast evolution that is typical of the cas genes, the presence of diverse versions of the RRM in most Cas proteins provides for a simple scenario for the evolution of the three distinct types of CRISPR-cas systems. In addition to several proteins that are directly implicated in the immune response, the cas genes encode a variety of proteins that are homologous to prokaryotic toxins that typically possess nuclease activity. The predicted toxins associated with CRISPR-Cas systems include the essential Cas2 protein, proteins of COG1517 that, in addition to a ligand-binding domain and a helix-turn-helix domain, typically contain different nuclease domains and several other predicted nucleases. The tight association of the CRISPR-Cas immunity systems with predicted toxins that, upon activation, would induce dormancy or cell death suggests that adaptive immunity and dormancy/suicide response are functionally coupled. Such coupling could manifest in the persistence state being induced and potentially providing conditions for more effective action of the immune system or in cell death being triggered when immunity fails.

  14. From Calculus to Dynamical Systems through DGS and CAS

    ERIC Educational Resources Information Center

    García, Jeanett López; Zamudio, Jorge Javier Jiménez

    2015-01-01

    Several factors have motivated the use of CAS or DGS in the teaching-learning process, such as: the development of new technologies, the availability of computers, and the widespread use of the Internet, among others. Even more, the trend to include CAS and DGS in the curricula of some undergraduate studies has resulted in the instruction of the…

  15. Engineering Plants for Geminivirus Resistance with CRISPR/Cas9 System.

    PubMed

    Zaidi, Syed Shan-E-Ali; Mansoor, Shahid; Ali, Zahir; Tashkandi, Manal; Mahfouz, Magdy M

    2016-04-01

    The CRISPR/Cas9 system is an efficient genome-editing platform for diverse eukaryotic species, including plants. Recent work harnessed CRISPR/Cas9 technology to engineer resistance to geminiviruses. Here, we discuss opportunities, emerging developments, and potential pitfalls for using this technology to engineer resistance against single and multiple geminivirus infections in plants.

  16. Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system.

    PubMed

    Kiro, Ruth; Shitrit, Dror; Qimron, Udi

    2014-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system has recently been used to engineer genomes of various organisms, but surprisingly, not those of bacteriophages (phages). Here we present a method to genetically engineer the Escherichia coli phage T7 using the type I-E CRISPR-Cas system. T7 phage genome is edited by homologous recombination with a DNA sequence flanked by sequences homologous to the desired location. Non-edited genomes are targeted by the CRISPR-Cas system, thus enabling isolation of the desired recombinant phages. This method broadens CRISPR Cas-based editing to phages and uses a CRISPR-Cas type other than type II. The method may be adjusted to genetically engineer any bacteriophage genome.

  17. The Neisseria meningitidis CRISPR-Cas9 System Enables Specific Genome Editing in Mammalian Cells

    PubMed Central

    Lee, Ciaran M; Cradick, Thomas J; Bao, Gang

    2016-01-01

    The clustered regularly-interspaced short palindromic repeats (CRISPR)—CRISPR-associated (Cas) system from Streptococcus pyogenes (Spy) has been successfully adapted for RNA-guided genome editing in a wide range of organisms. However, numerous reports have indicated that Spy CRISPR-Cas9 systems may have significant off-target cleavage of genomic DNA sequences differing from the intended on-target site. Here, we report the performance of the Neisseria meningitidis (Nme) CRISPR-Cas9 system that requires a longer protospacer-adjacent motif for site-specific cleavage, and present a comparison between the Spy and Nme CRISPR-Cas9 systems targeting the same protospacer sequence. The results with the native crRNA and tracrRNA as well as a chimeric single guide RNA for the Nme CRISPR-Cas9 system were also compared. Our results suggest that, compared with the Spy system, the Nme CRISPR-Cas9 system has similar or lower on-target cleavage activity but a reduced overall off-target effect on a genomic level when sites containing three or fewer mismatches are considered. Thus, the Nme CRISPR-Cas9 system may represent a safer alternative for precision genome engineering applications. PMID:26782639

  18. Occurrence and activity of a type II CRISPR-Cas system in Lactobacillus gasseri.

    PubMed

    Sanozky-Dawes, Rosemary; Selle, Kurt; O'Flaherty, Sarah; Klaenhammer, Todd; Barrangou, Rodolphe

    2015-09-01

    Bacteria encode clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated genes (cas), which collectively form an RNA-guided adaptive immune system against invasive genetic elements. In silico surveys have revealed that lactic acid bacteria harbour a prolific and diverse set of CRISPR-Cas systems. Thus, the natural evolutionary role of CRISPR-Cas systems may be investigated in these ecologically, industrially, scientifically and medically important microbes. In this study, 17 Lactobacillus gasseri strains were investigated and 6 harboured a type II-A CRISPR-Cas system, with considerable diversity in array size and spacer content. Several of the spacers showed similarity to phage and plasmid sequences, which are typical targets of CRISPR-Cas immune systems. Aligning the protospacers facilitated inference of the protospacer adjacent motif sequence, determined to be 5'-NTAA-3' flanking the 3' end of the protospacer. The system in L. gasseri JV-V03 and NCK 1342 interfered with transforming plasmids containing sequences matching the most recently acquired CRISPR spacers in each strain. We report the distribution and function of a native type II-A CRISPR-Cas system in the commensal species L. gasseri. Collectively, these results open avenues for applications for bacteriophage protection and genome modification in L. gasseri, and contribute to the fundamental understanding of CRISPR-Cas systems in bacteria.

  19. The Neisseria meningitidis CRISPR-Cas9 System Enables Specific Genome Editing in Mammalian Cells.

    PubMed

    Lee, Ciaran M; Cradick, Thomas J; Bao, Gang

    2016-03-01

    The clustered regularly-interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system from Streptococcus pyogenes (Spy) has been successfully adapted for RNA-guided genome editing in a wide range of organisms. However, numerous reports have indicated that Spy CRISPR-Cas9 systems may have significant off-target cleavage of genomic DNA sequences differing from the intended on-target site. Here, we report the performance of the Neisseria meningitidis (Nme) CRISPR-Cas9 system that requires a longer protospacer-adjacent motif for site-specific cleavage, and present a comparison between the Spy and Nme CRISPR-Cas9 systems targeting the same protospacer sequence. The results with the native crRNA and tracrRNA as well as a chimeric single guide RNA for the Nme CRISPR-Cas9 system were also compared. Our results suggest that, compared with the Spy system, the Nme CRISPR-Cas9 system has similar or lower on-target cleavage activity but a reduced overall off-target effect on a genomic level when sites containing three or fewer mismatches are considered. Thus, the Nme CRISPR-Cas9 system may represent a safer alternative for precision genome engineering applications.

  20. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems.

    PubMed

    Mohanraju, Prarthana; Makarova, Kira S; Zetsche, Bernd; Zhang, Feng; Koonin, Eugene V; van der Oost, John

    2016-08-05

    Adaptive immunity had been long thought of as an exclusive feature of animals. However, the discovery of the CRISPR-Cas defense system, present in almost half of prokaryotic genomes, proves otherwise. Because of the everlasting parasite-host arms race, CRISPR-Cas has rapidly evolved through horizontal transfer of complete loci or individual modules, resulting in extreme structural and functional diversity. CRISPR-Cas systems are divided into two distinct classes that each consist of three types and multiple subtypes. We discuss recent advances in CRISPR-Cas research that reveal elaborate molecular mechanisms and provide for a plausible scenario of CRISPR-Cas evolution. We also briefly describe the latest developments of a wide range of CRISPR-based applications.

  1. The CRISPR-Cas system for plant genome editing: advances and opportunities.

    PubMed

    Kumar, Vinay; Jain, Mukesh

    2015-01-01

    Genome editing is an approach in which a specific target DNA sequence of the genome is altered by adding, removing, or replacing DNA bases. Artificially engineered hybrid enzymes, zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), and the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated protein) system are being used for genome editing in various organisms including plants. The CRISPR-Cas system has been developed most recently and seems to be more efficient and less time-consuming compared with ZFNs or TALENs. This system employs an RNA-guided nuclease, Cas9, to induce double-strand breaks. The Cas9-mediated breaks are repaired by cellular DNA repair mechanisms and mediate gene/genome modifications. Here, we provide a detailed overview of the CRISPR-Cas system and its adoption in different organisms, especially plants, for various applications. Important considerations and future opportunities for deployment of the CRISPR-Cas system in plants for numerous applications are also discussed. Recent investigations have revealed the implications of the CRISPR-Cas system as a promising tool for targeted genetic modifications in plants. This technology is likely to be more commonly adopted in plant functional genomics studies and crop improvement in the near future.

  2. Role of the Streptococcus mutans CRISPR-Cas systems in immunity and cell physiology.

    PubMed

    Serbanescu, M A; Cordova, M; Krastel, K; Flick, R; Beloglazova, N; Latos, A; Yakunin, A F; Senadheera, D B; Cvitkovitch, D G

    2015-02-15

    CRISPR-Cas systems provide adaptive microbial immunity against invading viruses and plasmids. The cariogenic bacterium Streptococcus mutans UA159 has two CRISPR-Cas systems: CRISPR1 (type II-A) and CRISPR2 (type I-C) with several spacers from both CRISPR cassettes matching sequences of phage M102 or genomic sequences of other S. mutans. The deletion of the cas genes of CRISPR1 (ΔC1S), CRISPR2 (ΔC2E), or both CRISPR1+2 (ΔC1SC2E) or the removal of spacers 2 and 3 (ΔCR1SP13E) in S. mutans UA159 did not affect phage sensitivity when challenged with virulent phage M102. Using plasmid transformation experiments, we demonstrated that the CRISPR1-Cas system inhibits transformation of S. mutans by the plasmids matching the spacers 2 and 3. Functional analysis of the cas deletion mutants revealed that in addition to a role in plasmid targeting, both CRISPR systems also contribute to the regulation of bacterial physiology in S. mutans. Compared to wild-type cells, the ΔC1S strain displayed diminished growth under cell membrane and oxidative stress, enhanced growth under low pH, and had reduced survival under heat shock and DNA-damaging conditions, whereas the ΔC2E strain exhibited increased sensitivity to heat shock. Transcriptional analysis revealed that the two-component signal transduction system VicR/K differentially modulates expression of cas genes within CRISPR-Cas systems, suggesting that VicR/K might coordinate the expression of two CRISPR-Cas systems. Collectively, we provide in vivo evidence that the type II-A CRISPR-Cas system of S. mutans may be targeted to manipulate its stress response and to influence the host to control the uptake and dissemination of antibiotic resistance genes.

  3. RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing?

    PubMed

    Gasiunas, Giedrius; Siksnys, Virginijus

    2013-11-01

    Tailor-made nucleases for precise genome modification, such as zinc finger or TALE nucleases, currently represent the state-of-the-art for genome editing. These nucleases combine a programmable protein module which guides the enzyme to the target site with a nuclease domain which cuts DNA at the addressed site. Reprogramming of these nucleases to cut genomes at specific locations requires major protein engineering efforts. RNA-guided DNA endonuclease Cas9 of the type II (clustered regularly interspaced short palindromic repeat) CRISPR-Cas system uses CRISPR RNA (crRNA) as a guide to locate the DNA target and the Cas9 protein to cut DNA. Easy programmability of the Cas9 endonuclease using customizable RNAs brings unprecedented flexibility and versatility for targeted genome modification. We highlight the potential of the Cas9 RNA-guided DNA endonuclease as a novel tool for genome surgery, and discuss possible constraints and future prospects.

  4. Surveillance and Processing of Foreign DNA by the Escherichia coli CRISPR-Cas System.

    PubMed

    Redding, Sy; Sternberg, Samuel H; Marshall, Myles; Gibb, Bryan; Bhat, Prashant; Guegler, Chantal K; Wiedenheft, Blake; Doudna, Jennifer A; Greene, Eric C

    2015-11-05

    CRISPR-Cas adaptive immune systems protect bacteria and archaea against foreign genetic elements. In Escherichia coli, Cascade (CRISPR-associated complex for antiviral defense) is an RNA-guided surveillance complex that binds foreign DNA and recruits Cas3, a trans-acting nuclease helicase for target degradation. Here, we use single-molecule imaging to visualize Cascade and Cas3 binding to foreign DNA targets. Our analysis reveals two distinct pathways dictated by the presence or absence of a protospacer-adjacent motif (PAM). Binding to a protospacer flanked by a PAM recruits a nuclease-active Cas3 for degradation of short single-stranded regions of target DNA, whereas PAM mutations elicit an alternative pathway that recruits a nuclease-inactive Cas3 through a mechanism that is dependent on the Cas1 and Cas2 proteins. These findings explain how target recognition by Cascade can elicit distinct outcomes and support a model for acquisition of new spacer sequences through a mechanism involving processive, ATP-dependent Cas3 translocation along foreign DNA.

  5. Surveillance and processing of foreign DNA by the Escherichia coli CRISPR-Cas system

    PubMed Central

    Redding, Sy; Sternberg, Samuel H.; Marshall, Myles; Gibb, Bryan; Bhat, Prashant; Guegler, Chantal K.; Wiedenheft, Blake; Doudna, Jennifer A.; Greene, Eric C.

    2015-01-01

    Summary CRISPR-Cas adaptive immune systems protect bacteria and archaea against foreign genetic elements. In Escherichia coli, Cascade (CRISPR-associated complex for antiviral defense) is an RNA-guided surveillance complex that binds foreign DNA and recruits Cas3, a trans-acting nuclease-helicase for target degradation. Here we use single-molecule imaging to visualize Cascade and Cas3 binding to foreign DNA targets. Our analysis reveals two distinct pathways, dictated by the presence or absence of a protospacer adjacent motif (PAM). Binding to a protospacer flanked by a PAM recruits a nuclease-active Cas3 for degradation of short singlestranded regions of target DNA, whereas PAM mutations elicit an alternative pathway that recruits a nuclease-inactive Cas3 through a mechanism that is dependent upon the Cas1 and Cas2 proteins. These findings explain how target recognition by Cascade can elicit distinct outcomes, and supports a model for acquisition of new spacer sequences through a mechanism involving processive, ATP-dependent Cas3 translocation along foreign DNA. PMID:26522594

  6. [CRISPR/Cas system for genome editing in pluripotent stem cells].

    PubMed

    Vasil'eva, E A; Melino, D; Barlev, N A

    2015-01-01

    Genome editing systems based on site-specific nucleases became very popular for genome editing in modern bioengineering. Human pluripotent stem cells provide a unique platform for genes function study, disease modeling, and drugs testing. Consequently, technology for fast, accurate and well controlled genome manipulation is required. CRISPR/Cas (clustered regularly interspaced short palindromic repeat/CRISPR-associated) system could be employed for these purposes. This system is based on site-specific programmable nuclease Cas9. Numerous advantages of the CRISPR/Cas system and its successful application to human stem cells provide wide opportunities for genome therapy and regeneration medicine. In this publication, we describe and compare the main genome editing systems based on site-specific programmable nucleases and discuss opportunities and perspectives of the CRISPR/Cas system for application to pluripotent stem cells.

  7. A CRISPR-Cas system enhances envelope integrity mediating antibiotic resistance and inflammasome evasion.

    PubMed

    Sampson, Timothy R; Napier, Brooke A; Schroeder, Max R; Louwen, Rogier; Zhao, Jinshi; Chin, Chui-Yoke; Ratner, Hannah K; Llewellyn, Anna C; Jones, Crystal L; Laroui, Hamed; Merlin, Didier; Zhou, Pei; Endtz, Hubert P; Weiss, David S

    2014-07-29

    Clustered, regularly interspaced, short palindromic repeats-CRISPR associated (CRISPR-Cas) systems defend bacteria against foreign nucleic acids, such as during bacteriophage infection and transformation, processes which cause envelope stress. It is unclear if these machineries enhance membrane integrity to combat this stress. Here, we show that the Cas9-dependent CRISPR-Cas system of the intracellular bacterial pathogen Francisella novicida is involved in enhancing envelope integrity through the regulation of a bacterial lipoprotein. This action ultimately provides increased resistance to numerous membrane stressors, including antibiotics. We further find that this previously unappreciated function of Cas9 is critical during infection, as it promotes evasion of the host innate immune absent in melanoma 2/apoptosis associated speck-like protein containing a CARD (AIM2/ASC) inflammasome. Interestingly, the attenuation of the cas9 mutant is complemented only in mice lacking both the AIM2/ASC inflammasome and the bacterial lipoprotein sensor Toll-like receptor 2, but not in single knockout mice, demonstrating that Cas9 is essential for evasion of both pathways. These data represent a paradigm shift in our understanding of the function of CRISPR-Cas systems as regulators of bacterial physiology and provide a framework with which to investigate the roles of these systems in myriad bacteria, including pathogens and commensals.

  8. [Application Progress of CRISPR/Cas9 System for Gene Editing in Tumor Research].

    PubMed

    Liu, Chao; Li, Zhiwei; Zhang, Yanqiao

    2015-09-20

    TCRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-associated nuclease 9) gene editing system is a new type of gene editing technology developed based on the immune mechanism of archaea resisting the invasion of exogenous nucleic acid. Compared with traditional gene editing system, CRISPR/Cas9 system is more efficient, easier operating, and less cytotoxic. Currently, CRISPR/Cas9 gene editing technology has been applied to many aspects of cancer research, including research on cancer genes, constructing animal tumor models, screening tumor resistance-associated and phenotypic-related genes and cancer gene therapy. In this review, the application of the CRISPR/Cas9 system in tumor research were introduced.

  9. Cas5d Protein Processes Pre-crRNA and Assembles into a Cascade-like Interference Complex in Subtype I-C/Dvulg CRISPR-Cas System

    SciTech Connect

    Nam, Ki Hyun; Haitjema, Charles; Liu, Xueqi; Ding, Fran; Wang, Hongwei; DeLisa, Matthew P.; Ke, Ailong

    2012-10-10

    Clustered regularly interspaced short palindromic repeats (CRISPRs), together with an operon of CRISPR-associated (Cas) proteins, form an RNA-based prokaryotic immune system against exogenous genetic elements. Cas5 family proteins are found in several type I CRISPR-Cas systems. Here, we report the molecular function of subtype I-C/Dvulg Cas5d from Bacillus halodurans. We show that Cas5d cleaves pre-crRNA into unit length by recognizing both the hairpin structure and the 3 single stranded sequence in the CRISPR repeat region. Cas5d structure reveals a ferredoxin domain-based architecture and a catalytic triad formed by Y46, K116, and H117 residues. We further show that after pre-crRNA processing, Cas5d assembles with crRNA, Csd1, and Csd2 proteins to form a multi-sub-unit interference complex similar to Escherichia coli Cascade (CRISPR-associated complex for antiviral defense) in architecture. Our results suggest that formation of a crRNA-presenting Cascade-like complex is likely a common theme among type I CRISPR subtypes.

  10. In vivo protein interactions and complex formation in the Pectobacterium atrosepticum subtype I-F CRISPR/Cas System.

    PubMed

    Richter, Corinna; Gristwood, Tamzin; Clulow, James S; Fineran, Peter C

    2012-01-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and their associated proteins (Cas; CRISPR associated) are a bacterial defense mechanism against extra-chromosomal elements. CRISPR/Cas systems are distinct from other known defense mechanisms insofar as they provide acquired and heritable immunity. Resistance is accomplished in multiple stages in which the Cas proteins provide the enzymatic machinery. Importantly, subtype-specific proteins have been shown to form complexes in combination with small RNAs, which enable sequence-specific targeting of foreign nucleic acids. We used Pectobacterium atrosepticum, a plant pathogen that causes soft-rot and blackleg disease in potato, to investigate protein-protein interactions and complex formation in the subtype I-F CRISPR/Cas system. The P. atrosepticum CRISPR/Cas system encodes six proteins: Cas1, Cas3, and the four subtype specific proteins Csy1, Csy2, Csy3 and Cas6f (Csy4). Using co-purification followed by mass spectrometry as well as directed co-immunoprecipitation we have demonstrated complex formation by the Csy1-3 and Cas6f proteins, and determined details about the architecture of that complex. Cas3 was also shown to co-purify all four subtype-specific proteins, consistent with its role in targeting. Furthermore, our results show that the subtype I-F Cas1 and Cas3 (a Cas2-Cas3 hybrid) proteins interact, suggesting a protein complex for adaptation and a role for subtype I-F Cas3 proteins in both the adaptation and interference steps of the CRISPR/Cas mechanism.

  11. Co-Alignment System (CAS) study. Report on task 1-3. [Solar Extreme Ultraviolet Telescope and Spectrometer pointing system

    NASA Technical Reports Server (NTRS)

    Anderson, N. T.

    1980-01-01

    The design of a suitable coalignment system (CAS) for the Solar Extreme Ultraviolet Telescope and Spectrometer (SEUTS) is presented. The CAS provides offset adjustment capabilities to SEUTS which will be mounted on a single large pointing system with other devices. The suitability of existing designs is determined and modifications are suggested.

  12. Streptococcus thermophilus CRISPR-Cas9 Systems Enable Specific Editing of the Human Genome

    PubMed Central

    Müller, Maximilian; Lee, Ciaran M; Gasiunas, Giedrius; Davis, Timothy H; Cradick, Thomas J; Siksnys, Virginijus; Bao, Gang; Cathomen, Toni; Mussolino, Claudio

    2016-01-01

    RNA-guided nucleases (RGNs) based on the type II CRISPR-Cas9 system of Streptococcus pyogenes (Sp) have been widely used for genome editing in experimental models. However, the nontrivial level of off-target activity reported in several human cells may hamper clinical translation. RGN specificity depends on both the guide RNA (gRNA) and the protospacer adjacent motif (PAM) recognized by the Cas9 protein. We hypothesized that more stringent PAM requirements reduce the occurrence of off-target mutagenesis. To test this postulation, we generated RGNs based on two Streptococcus thermophilus (St) Cas9 proteins, which recognize longer PAMs, and performed a side-by-side comparison of the three RGN systems targeted to matching sites in two endogenous human loci, PRKDC and CARD11. Our results demonstrate that in samples with comparable on-target cleavage activities, significantly lower off-target mutagenesis was detected using St-based RGNs as compared to the standard Sp-RGNs. Moreover, similarly to SpCas9, the StCas9 proteins accepted truncated gRNAs, suggesting that the specificities of St-based RGNs can be further improved. In conclusion, our results show that Cas9 proteins with longer or more restrictive PAM requirements provide a safe alternative to SpCas9-based RGNs and hence a valuable option for future human gene therapy applications. PMID:26658966

  13. Air cushion landing system

    NASA Technical Reports Server (NTRS)

    Boghami, K. M.; Captain, K. M.; Fish, R. B.

    1978-01-01

    Static and dynamic performance of air cushion landing system is simulated in computer program that treats four primary ACLS subsystems: fan, feeding system, trunk, and cushion. Configuration of systems is sufficiently general to represent variety of practical designs.

  14. CRISPR-Cas Adaptive Immune Systems of the Sulfolobales: Unravelling Their Complexity and Diversity

    PubMed Central

    Garrett, Roger A.; Shah, Shiraz A.; Erdmann, Susanne; Liu, Guannan; Mousaei, Marzieh; León-Sobrino, Carlos; Peng, Wenfang; Gudbergsdottir, Soley; Deng, Ling; Vestergaard, Gisle; Peng, Xu; She, Qunxin

    2015-01-01

    The Sulfolobales have provided good model organisms for studying CRISPR-Cas systems of the crenarchaeal kingdom of the archaea. These organisms are infected by a wide range of exceptional archaea-specific viruses and conjugative plasmids, and their CRISPR-Cas systems generally exhibit extensive structural and functional diversity. They carry large and multiple CRISPR loci and often multiple copies of diverse Type I and Type III interference modules as well as more homogeneous adaptation modules. These acidothermophilic organisms have recently provided seminal insights into both the adaptation process, the diverse modes of interference, and their modes of regulation. The functions of the adaptation and interference modules tend to be loosely coupled and the stringency of the crRNA-DNA sequence matching during DNA interference is relatively low, in contrast to some more streamlined CRISPR-Cas systems of bacteria. Despite this, there is evidence for a complex and differential regulation of expression of the diverse functional modules in response to viral infection. Recent work also supports critical roles for non-core Cas proteins, especially during Type III-directed interference, and this is consistent with these proteins tending to coevolve with core Cas proteins. Various novel aspects of CRISPR-Cas systems of the Sulfolobales are considered including an alternative spacer acquisition mechanism, reversible spacer acquisition, the formation and significance of antisense CRISPR RNAs, and a novel mechanism for avoidance of CRISPR-Cas defense. Finally, questions regarding the basis for the complexity, diversity, and apparent redundancy, of the intracellular CRISPR-Cas systems are discussed. PMID:25764276

  15. Insert, remove or replace: A highly advanced genome editing system using CRISPR/Cas9.

    PubMed

    Ceasar, S Antony; Rajan, Vinothkumar; Prykhozhij, Sergey V; Berman, Jason N; Ignacimuthu, S

    2016-09-01

    The clustered, regularly interspaced, short palindromic repeat (CRISPR) and CRISPR associated protein 9 (Cas9) system discovered as an adaptive immunity mechanism in prokaryotes has emerged as the most popular tool for the precise alterations of the genomes of diverse species. CRISPR/Cas9 system has taken the world of genome editing by storm in recent years. Its popularity as a tool for altering genomes is due to the ability of Cas9 protein to cause double-stranded breaks in DNA after binding with short guide RNA molecules, which can be produced with dramatically less effort and expense than required for production of transcription-activator like effector nucleases (TALEN) and zinc-finger nucleases (ZFN). This system has been exploited in many species from prokaryotes to higher animals including human cells as evidenced by the literature showing increasing sophistication and ease of CRISPR/Cas9 as well as increasing species variety where it is applicable. This technology is poised to solve several complex molecular biology problems faced in life science research including cancer research. In this review, we highlight the recent advancements in CRISPR/Cas9 system in editing genomes of prokaryotes, fungi, plants and animals and provide details on software tools available for convenient design of CRISPR/Cas9 targeting plasmids. We also discuss the future prospects of this advanced molecular technology.

  16. Using the CRISPR-Cas System to Positively Select Mutants in Genes Essential for Its Function.

    PubMed

    Yosef, Ido; Goren, Moran G; Edgar, Rotem; Qimron, Udi

    2015-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR associated proteins (Cas) comprise a prokaryotic adaptive defense system against foreign nucleic acids. This defense is mediated by Cas proteins, which are guided by sequences flanked by the repeats, called spacers, to target nucleic acids. Spacers designed against the prokaryotic self chromosome are lethal to the prokaryotic cell. This self-killing of the bacterium by its own CRISPR-Cas system can be used to positively select genes that participate in this killing, as their absence will result in viable cells. Here we describe a positive selection assay that uses this feature to identify E. coli mutants encoding an inactive CRISPR-Cas system. The procedure includes establishment of an assay that detects this self-killing, generation of transposon insertion mutants in random genes, and selection of viable mutants, suspected as required for this lethal activity. This procedure enabled us to identify a novel gene, htpG, that is required for the activity of the CRISPR-Cas system. The procedures described here can be adjusted to various organisms to identify genes required for their CRISPR-Cas activity.

  17. High efficiency air cycle air conditioning system

    SciTech Connect

    Rannenberg, G. C.

    1985-11-19

    An air cycle air conditioning system is provided with regenerative heat exchangers upstream and downstream of an expansion turbine. A closedloop liquid circulatory system serially connects the two regenerative heat exchangers for regeneration without the bulk associated with air-to-air heat exchange. The liquid circulatory system may also provide heat transport to a remote sink heat exchanger and from a remote load as well as heat exchange within the sink heat exchanger and load for enhanced compactness and efficiency.

  18. High-throughput screens in mammalian cells using the CRISPR-Cas9 system.

    PubMed

    Peng, Jingyu; Zhou, Yuexin; Zhu, Shiyou; Wei, Wensheng

    2015-06-01

    As a powerful genome-editing tool, the clustered regularly interspaced short palindromic repeats (CRISPR)-clustered regularly interspaced short palindromic repeats-associated protein 9 (Cas9) system has been quickly developed into a large-scale function-based screening strategy in mammalian cells. This new type of genetic library is constructed through the lentiviral delivery of single-guide RNA collections that direct Cas9 or inactive dead Cas9 fused with effectors to interrogate gene function or regulate gene transcription in targeted cells. Compared with RNA interference screening, the CRISPR-Cas9 system demonstrates much higher levels of effectiveness and reliability with respect to both loss-of-function and gain-of-function screening. Unlike the RNA interference strategy, a CRISPR-Cas9 library can target both protein-coding sequences and regulatory elements, including promoters, enhancers and elements transcribing microRNAs and long noncoding RNAs. This powerful genetic tool will undoubtedly accelerate the mechanistic discovery of various biological processes. In this mini review, we summarize the general procedure of CRISPR-Cas9 library mediated functional screening, system optimization strategies and applications of this new genetic toolkit.

  19. CRISPR-Cas9 systems: versatile cancer modelling platforms and promising therapeutic strategies.

    PubMed

    Wen, Wan-Shun; Yuan, Zhi-Min; Ma, Shi-Jie; Xu, Jiang; Yuan, Dong-Tang

    2016-03-15

    The RNA-guided nuclease CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR associated nuclease 9) and its variants such as nickase Cas9, dead Cas9, guide RNA scaffolds and RNA-targeting Cas9 are convenient and versatile platforms for site-specific genome editing and epigenome modulation. They are easy-to-use, simple-to-design and capable of targeting multiple loci simultaneously. Given that cancer develops from cumulative genetic and epigenetic alterations, CRISPR-Cas9 and its variants (hereafter referred to as CRISPR-Cas9 systems) hold extensive application potentials in cancer modeling and therapy. To date, they have already been applied to model oncogenic mutations in cell lines (e.g., Choi and Meyerson, Nat Commun 2014;5:3728) and in adult animals (e.g., Xue et al., Nature 2014;514:380-4), as well as to combat cancer by disabling oncogenic viruses (e.g., Hu et al., Biomed Res Int 2014;2014:612823) or by manipulating cancer genome (e.g., Liu et al., Nat Commun 2014;5:5393). Given the importance of epigenome and transcriptome in tumourigenesis, manipulation of cancer epigenome and transcriptome for cancer modeling and therapy is a promising area in the future. Whereas (epi)genetic modifications of cancer microenvironment with CRISPR-Cas9 systems for therapeutic purposes represent another promising area in cancer research. Herein, we introduce the functions and mechanisms of CRISPR-Cas9 systems in genome editing and epigenome modulation, retrospect their applications in cancer modelling and therapy, discuss limitations and possible solutions and propose future directions, in hope of providing concise and enlightening information for readers interested in this area.

  20. Incidence of Type II CRISPR1-Cas Systems in Enterococcus Is Species-Dependent

    PubMed Central

    Lyons, Casandra; Raustad, Nicole; Bustos, Mario A.; Shiaris, Michael

    2015-01-01

    CRISPR-Cas systems, which obstruct both viral infection and incorporation of mobile genetic elements by horizontal transfer, are a specific immune response common to prokaryotes. Antiviral protection by CRISPR-Cas comes at a cost, as horizontally-acquired genes may increase fitness and provide rapid adaptation to habitat change. To date, investigations into the prevalence of CRISPR have primarily focused on pathogenic and clinical bacteria, while less is known about CRISPR dynamics in commensal and environmental species. We designed PCR primers and coupled these with DNA sequencing of products to detect and characterize the presence of cas1, a universal CRISPR-associated gene and proxy for the Type II CRISPR1-Cas system, in environmental and non-clinical Enterococcus isolates. CRISPR1-cas1 was detected in approximately 33% of the 275 strains examined, and differences in CRISPR1 carriage between species was significant. Incidence of cas1 in E. hirae was 73%, nearly three times that of E. faecalis (23.6%) and 10 times more frequent than in E. durans (7.1%). Also, this is the first report of CRISPR1 presence in E. durans, as well as in the plant-associated species E. casseliflavus and E. sulfureus. Significant differences in CRISPR1-cas1 incidence among Enterococcus species support the hypothesis that there is a tradeoff between protection and adaptability. The differences in the habitats of enterococcal species may exert varying selective pressure that results in a species-dependent distribution of CRISPR-Cas systems. PMID:26600384

  1. Casposon integration shows strong target site preference and recapitulates protospacer integration by CRISPR-Cas systems.

    PubMed

    Béguin, Pierre; Charpin, Nicole; Koonin, Eugene V; Forterre, Patrick; Krupovic, Mart

    2016-12-01

    Casposons are a recently discovered group of large DNA transposons present in diverse bacterial and archaeal genomes. For integration into the host chromosome, casposons employ an endonuclease that is homologous to the Cas1 protein involved in protospacer integration by the CRISPR-Cas adaptive immune system. Here we describe the site-preference of integration by the Cas1 integrase (casposase) encoded by the casposon of the archaeon Aciduliprofundum boonei Oligonucleotide duplexes derived from the terminal inverted repeats (TIR) of the A. boonei casposon as well as mini-casposons flanked by the TIR inserted preferentially at a site reconstituting the original A. boonei target site. As in the A. boonei genome, the insertion was accompanied by a 15-bp direct target site duplication (TSD). The minimal functional target consisted of the 15-bp TSD segment and the adjacent 18-bp sequence which comprises the 3' end of the tRNA-Pro gene corresponding to the TΨC loop. The functional casposase target site bears clear resemblance to the leader sequence-repeat junction which is the target for protospacer integration catalyzed by the Cas1-Cas2 adaptation module of CRISPR-Cas. These findings reinforce the mechanistic similarities and evolutionary connection between the casposons and the adaptation module of the prokaryotic adaptive immunity systems.

  2. Casposon integration shows strong target site preference and recapitulates protospacer integration by CRISPR-Cas systems

    PubMed Central

    Béguin, Pierre; Charpin, Nicole; Koonin, Eugene V.; Forterre, Patrick; Krupovic, Mart

    2016-01-01

    Casposons are a recently discovered group of large DNA transposons present in diverse bacterial and archaeal genomes. For integration into the host chromosome, casposons employ an endonuclease that is homologous to the Cas1 protein involved in protospacer integration by the CRISPR-Cas adaptive immune system. Here we describe the site-preference of integration by the Cas1 integrase (casposase) encoded by the casposon of the archaeon Aciduliprofundum boonei. Oligonucleotide duplexes derived from the terminal inverted repeats (TIR) of the A. boonei casposon as well as mini-casposons flanked by the TIR inserted preferentially at a site reconstituting the original A. boonei target site. As in the A. boonei genome, the insertion was accompanied by a 15-bp direct target site duplication (TSD). The minimal functional target consisted of the 15-bp TSD segment and the adjacent 18-bp sequence which comprises the 3′ end of the tRNA-Pro gene corresponding to the TΨC loop. The functional casposase target site bears clear resemblance to the leader sequence-repeat junction which is the target for protospacer integration catalyzed by the Cas1–Cas2 adaptation module of CRISPR-Cas. These findings reinforce the mechanistic similarities and evolutionary connection between the casposons and the adaptation module of the prokaryotic adaptive immunity systems. PMID:27655632

  3. Collision Avoidance System (CAS): Human Factors Engineering Evaluation.

    DTIC Science & Technology

    1982-12-01

    personnel indicated that the CAS console was much too big for the limited amount of space available on RANGER’s bridge. The console is 40 inches wide...avoidance (C/A) data. > RANGE * 12//2 < (T >~ LOG SPEED 4 10.0 KT < E1 i >~ HEADING 4 270 DEG * < J [ > BRGCRSR * 000 DEG4C/ ADATA < - > TRIAL SPD 4 0 <EJ

  4. Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system.

    PubMed

    Liu, Rui; Chen, Ling; Jiang, Yanping; Zhou, Zhihua; Zou, Gen

    2015-01-01

    Filamentous fungi have wide applications in biotechnology. The CRISPR/Cas9 system is a powerful genome-editing method that facilitates genetic alterations of genomes in a variety of organisms. However, a genome-editing approach has not been reported in filamentous fungi. Here, we demonstrated the establishment of a CRISPR/Cas9 system in the filamentous fungus Trichoderma reesei by specific codon optimization and in vitro RNA transcription. It was shown that the CRISPR/Cas9 system was controllable and conditional through inducible Cas9 expression. This system generated site-specific mutations in target genes through efficient homologous recombination, even using short homology arms. This system also provided an applicable and promising approach to targeting multiple genes simultaneously. Our results illustrate that the CRISPR/Cas9 system is a powerful genome-manipulating tool for T. reesei and most likely for other filamentous fungal species, which may accelerate studies on functional genomics and strain improvement in these filamentous fungi.

  5. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system.

    PubMed

    Xie, Kabin; Minkenberg, Bastian; Yang, Yinong

    2015-03-17

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9) system is being harnessed as a powerful tool for genome engineering in basic research, molecular therapy, and crop improvement. This system uses a small guide RNA (gRNA) to direct Cas9 endonuclease to a specific DNA site; thus, its targeting capability is largely constrained by the gRNA-expressing device. In this study, we developed a general strategy to produce numerous gRNAs from a single polycistronic gene. The endogenous tRNA-processing system, which precisely cleaves both ends of the tRNA precursor, was engineered as a simple and robust platform to boost the targeting and multiplex editing capability of the CRISPR/Cas9 system. We demonstrated that synthetic genes with tandemly arrayed tRNA-gRNA architecture were efficiently and precisely processed into gRNAs with desired 5' targeting sequences in vivo, which directed Cas9 to edit multiple chromosomal targets. Using this strategy, multiplex genome editing and chromosomal-fragment deletion were readily achieved in stable transgenic rice plants with a high efficiency (up to 100%). Because tRNA and its processing system are virtually conserved in all living organisms, this method could be broadly used to boost the targeting capability and editing efficiency of CRISPR/Cas9 toolkits.

  6. The CRISPR-Cas system - from bacterial immunity to genome engineering.

    PubMed

    Czarnek, Maria; Bereta, Joanna

    2016-09-01

    Precise and efficient genome modifications present a great value in attempts to comprehend the roles of particular genes and other genetic elements in biological processes as well as in various pathologies. In recent years novel methods of genome modification known as genome editing, which utilize so called "programmable" nucleases, came into use. A true revolution in genome editing has been brought about by the introduction of the CRISP-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated) system, in which one of such nucleases, i.e. Cas9, plays a major role. This system is based on the elements of the bacterial and archaeal mechanism responsible for acquired immunity against phage infections and transfer of foreign genetic material. Microorganisms incorporate fragments of foreign DNA into CRISPR loci present in their genomes, which enables fast recognition and elimination of future infections. There are several types of CRISPR-Cas systems among prokaryotes but only elements of CRISPR type II are employed in genome engineering. CRISPR-Cas type II utilizes small RNA molecules (crRNA and tracrRNA) to precisely direct the effector nuclease - Cas9 - to a specific site in the genome, i.e. to the sequence complementary to crRNA. Cas9 may be used to: (i) introduce stable changes into genomes e.g. in the process of generation of knock-out and knock-in animals and cell lines, (ii) activate or silence the expression of a gene of interest, and (iii) visualize specific sites in genomes of living cells. The CRISPR-Cas-based tools have been successfully employed for generation of animal and cell models of a number of diseases, e.g. specific types of cancer. In the future, the genome editing by programmable nucleases may find wide application in medicine e.g. in the therapies of certain diseases of genetic origin and in the therapy of HIV-infected patients.

  7. New clues on the regulation of the CRISPR-Cas immune system.

    PubMed

    Lundgren, Magnus

    2015-01-01

    Research into the CRISPR-Cas immune system of prokaryotes is progressing at a tremendous pace given both its important biological function and its role as a source of new genetic tools. However, a few areas of the field have remained largely unaddressed. A recent report provides information on one such overlooked area: how the cell regulates the CRISPR-Cas immune system. The processes, despite their importance, have remained illusive. In Pectobacterium atrosepticum regulation is, perhaps surprisingly, based on metabolic factors responding to glucose levels in the cell. Regulators include both activators and repressors of cas gene expression. It remains an open question why and how this regulatory system have evolved, and if it is a typical example of how CRISPR-as systems are regulated or not.

  8. New clues on the regulation of the CRISPR-Cas immune system

    PubMed Central

    Lundgren, Magnus

    2015-01-01

    Research into the CRISPR-Cas immune system of prokaryotes is progressing at a tremendous pace given both its important biological function and its role as a source of new genetic tools. However, a few areas of the field have remained largely unaddressed. A recent report provides information on one such overlooked area: how the cell regulates the CRISPR-Cas immune system. The processes, despite their importance, have remained illusive. In Pectobacterium atrosepticum regulation is, perhaps surprisingly, based on metabolic factors responding to glucose levels in the cell. Regulators include both activators and repressors of cas gene expression. It remains an open question why and how this regulatory system have evolved, and if it is a typical example of how CRISPR-as systems are regulated or not. PMID:26942048

  9. Friendly Fire: Biological Functions and Consequences of Chromosomal Targeting by CRISPR-Cas Systems

    PubMed Central

    Heussler, Gary E.

    2016-01-01

    Clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) systems in bacteria and archaea target foreign elements, such as bacteriophages and conjugative plasmids, through the incorporation of short sequences (termed spacers) from the foreign element into the CRISPR array, thereby allowing sequence-specific targeting of the invader. Thus, CRISPR-Cas systems are typically considered a microbial adaptive immune system. While many of these incorporated spacers match targets on bacteriophages and plasmids, a noticeable number are derived from chromosomal DNA. While usually lethal to the self-targeting bacteria, in certain circumstances, these self-targeting spacers can have profound effects in regard to microbial biology, including functions beyond adaptive immunity. In this minireview, we discuss recent studies that focus on the functions and consequences of CRISPR-Cas self-targeting, including reshaping of the host population, group behavior modification, and the potential applications of CRISPR-Cas self-targeting as a tool in microbial biotechnology. Understanding the effects of CRISPR-Cas self-targeting is vital to fully understanding the spectrum of function of these systems. PMID:26929301

  10. The CRISPR/Cas9 system for gene editing and its potential application in pain research

    PubMed Central

    Sun, Linlin; Lutz, Brianna Marie; Tao, Yuan-Xiang

    2016-01-01

    The CRISPR/Cas9 system is a research hotspot in genome editing and regulation. Currently, it is used in genomic silencing and knock-in experiments as well as transcriptional activation and repression. This versatile system consists of two components: a guide RNA (gRNA) and a Cas9 nuclease. Recognition of a genomic DNA target is mediated through base pairing with a 20-base gRNA. The latter further recruits the Cas9 endonuclease protein to the target site and creates double-stranded breaks in the target DNA. Compared with traditional genome editing directed by DNA-binding protein domains, this short RNA-directed Cas9 endonuclease system is simple and easily programmable. Although this system may have off-target effects and in vivo delivery and immune challenges, researchers have employed this system in vivo to establish disease models, study specific gene functions under certain disease conditions, and correct genomic information for disease treatment. In regards to pain research, the CRISPR/Cas9 system may act as a novel tool in gene correction therapy for pain-associated hereditary diseases and may be a new approach for RNA-guided transcriptional activation or repression of pain-related genes. In addition, this system is also applied to loss-of-function mutations in pain-related genes and knockin of reporter genes or loxP tags at pain-related genomic loci. The CRISPR/Cas9 system will likely be carried out widely in both bench work and clinical settings in the pain field. PMID:27500183

  11. Culture systems: air quality.

    PubMed

    Thomas, Theodore

    2012-01-01

    Poor laboratory air quality is a known hazard to the culture of human gametes and embryos. Embryologists and chemists have employed analytical methods for identifying and measuring bulk and select air pollutants to assess the risk they pose to the embryo culture system. However, contaminant concentrations that result in gamete or embryotoxicity are poorly defined. Combating the ill effects of poor air quality requires an understanding of how toxicants can infiltrate the laboratory, the incubator, and ultimately the culture media. A further understanding of site-specific air quality can then lead to the consideration of laboratory design and management strategies that can minimize the deleterious effects that air contamination may have on early embryonic development in vitro.

  12. Multiple genome modifications by the CRISPR/Cas9 system in zebrafish.

    PubMed

    Ota, Satoshi; Hisano, Yu; Ikawa, Yoshiya; Kawahara, Atsuo

    2014-07-01

    The type II clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system, which is an adaptive immune system of bacteria, has become a powerful tool for genome editing in various model organisms. Here, we demonstrate multiple genome modifications mediated by CRISPR/Cas9 in zebrafish (Danio rerio). Multiple genes including golden/gol and tyrosinase/tyr, which are involved in pigment formation, and s1pr2 and spns2, which are involved in cardiac development, were disrupted with insertion and/or deletion (indel) mutations introduced by the co-injection of multiple guide RNAs (gRNAs) and the nuclease Cas9 mRNA. We simultaneously observed two distinct phenotypes, such as, the two hearts phenotype and the hypopigmentation of skin melanophores and the retinal pigment epithelium, in the injected F0 embryos. Additionally, we detected the targeted deletion and inversion genes as a 7.1-kb fragment between the two distinct spns2 targeted sites together with indel mutations. Conversely, chromosomal translocations among five target loci were not detected. Therefore, we confirmed that the CRISPR/Cas9-induced indel mutations and a locus-specific deletion were heritable in F1 embryos. To screen founders, we improved heteroduplex mobility assay (HMA) for simultaneously detecting indel mutations in different target loci. The results suggest that the multi-locus HMA is a powerful tool for identification of multiple genome modifications mediated by the CRISPR/Cas9 system.

  13. Using the CRISPR/Cas9 system to eliminate native plasmids of Zymomonas mobilis ZM4.

    PubMed

    Cao, Qing-Hua; Shao, Huan-Huan; Qiu, Hui; Li, Tao; Zhang, Yi-Zheng; Tan, Xue-Mei

    2017-03-01

    The CRISPR/Cas system can be used to simply and efficiently edit the genomes of various species, including animals, plants, and microbes. Zymomonas mobilis ZM4 is a highly efficient, ethanol-producing bacterium that contains five native plasmids. Here, we constructed the pSUZM2a-Cas9 plasmid and a single-guide RNA expression plasmid. The pSUZM2a-Cas9 plasmid was used to express the Cas9 gene cloned from Streptococcus pyogenes CICC 10464. The single-guide RNA expression plasmid pUC-T7sgRNA, with a T7 promoter, can be used for the in vitro synthesis of single-guide RNAs. This system was successfully employed to knockout the upp gene of Escherichia coli and the replicase genes of native Z. mobilis plasmids. This is the first study to apply the CRISPR/Cas9 system of S. pyogenes to eliminate native plasmids in Z. mobilis. It provides a new method for plasmid curing and paves the way for the genomic engineering of Z. mobilis.

  14. Chromosomal targeting by CRISPR-Cas systems can contribute to genome plasticity in bacteria.

    PubMed

    Dy, Ron L; Pitman, Andrew R; Fineran, Peter C

    2013-09-01

    The clustered regularly interspaced short palindromic repeats (CRISPR) and their associated (Cas) proteins form adaptive immune systems in bacteria to combat phage and other foreign genetic elements. Typically, short spacer sequences are acquired from the invader DNA and incorporated into CRISPR arrays in the bacterial genome. Small RNAs are generated that contain these spacer sequences and enable sequence-specific destruction of the foreign nucleic acids. Occasionally, spacers are acquired from the chromosome, which instead leads to targeting of the host genome. Chromosomal targeting is highly toxic to the bacterium, providing a strong selective pressure for a variety of evolutionary routes that enable host cell survival. Mutations that inactivate the CRISPR-Cas functionality, such as within the cas genes, CRISPR repeat, protospacer adjacent motifs (PAM), and target sequence, mediate escape from toxicity. This self-targeting might provide some explanation for the incomplete distribution of CRISPR-Cas systems in less than half of sequenced bacterial genomes. More importantly, self-genome targeting can cause large-scale genomic alterations, including remodeling or deletion of pathogenicity islands and other non-mobile chromosomal regions. While control of horizontal gene transfer is perceived as their main function, our recent work illuminates an alternative role of CRISPR-Cas systems in causing host genomic changes and influencing bacterial evolution.

  15. CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance.

    PubMed

    Dupuis, Marie-Ève; Villion, Manuela; Magadán, Alfonso H; Moineau, Sylvain

    2013-01-01

    Bacteria have developed a set of barriers to protect themselves against invaders such as phage and plasmid nucleic acids. Different prokaryotic defence systems exist and at least two of them directly target the incoming DNA: restriction-modification (R-M) and CRISPR-Cas systems. On their own, they are imperfect barriers to invasion by foreign DNA. Here, we show that R-M and CRISPR-Cas systems are compatible and act together to increase the overall phage resistance of a bacterial cell by cleaving their respective target sites. Furthermore, we show that the specific methylation of phage DNA does not impair CRISPR-Cas acquisition or interference activities. Taken altogether, both mechanisms can be leveraged to decrease phage contaminations in processes relying on bacterial growth and/or fermentation.

  16. Unravelling the structural and mechanistic basis of CRISPR-Cas systems.

    PubMed

    van der Oost, John; Westra, Edze R; Jackson, Ryan N; Wiedenheft, Blake

    2014-07-01

    Bacteria and archaea have evolved sophisticated adaptive immune systems, known as CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) systems, which target and inactivate invading viruses and plasmids. Immunity is acquired by integrating short fragments of foreign DNA into CRISPR loci, and following transcription and processing of these loci, the CRISPR RNAs (crRNAs) guide the Cas proteins to complementary invading nucleic acid, which results in target interference. In this Review, we summarize the recent structural and biochemical insights that have been gained for the three major types of CRISPR-Cas systems, which together provide a detailed molecular understanding of the unique and conserved mechanisms of RNA-guided adaptive immunity in bacteria and archaea.

  17. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems

    PubMed Central

    Burstein, David; Sun, Christine L.; Brown, Christopher T.; Sharon, Itai; Anantharaman, Karthik; Probst, Alexander J.; Thomas, Brian C.; Banfield, Jillian F.

    2016-01-01

    Current understanding of microorganism–virus interactions, which shape the evolution and functioning of Earth's ecosystems, is based primarily on cultivated organisms. Here we investigate thousands of viral and microbial genomes recovered using a cultivation-independent approach to study the frequency, variety and taxonomic distribution of viral defence mechanisms. CRISPR-Cas systems that confer microorganisms with immunity to viruses are present in only 10% of 1,724 sampled microorganisms, compared with previous reports of 40% occurrence in bacteria and 81% in archaea. We attribute this large difference to the lack of CRISPR-Cas systems across major bacterial lineages that have no cultivated representatives. We correlate absence of CRISPR-Cas with lack of nucleotide biosynthesis capacity and a symbiotic lifestyle. Restriction systems are well represented in these lineages and might provide both non-specific viral defence and access to nucleotides. PMID:26837824

  18. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems

    DOE PAGES

    Burstein, David; Sun, Christine L.; Brown, Christopher T.; ...

    2016-02-03

    Here, current understanding of microorganism–virus interactions, which shape the evolution and functioning of Earth’s ecosystems, is based primarily on cultivated organisms. Here we investigate thousands of viral and microbial genomes recovered using a cultivation independent approach to study the frequency, variety and taxonomic distribution of viral defence mechanisms. CRISPR-Cas systems that confer microorganisms with immunity to viruses are present in only 10% of 1,724 sampled microorganisms, compared with previous reports of 40% occurrence in bacteria and 81% in archaea. We attribute this large difference to the lack of CRISPR-Cas systems across major bacterial lineages that have no cultivated representatives. Wemore » correlate absence of CRISPR-Cas with lack of nucleotide biosynthesis capacity and a symbiotic lifestyle. Restriction systems are well represented in these lineages and might provide both non-specific viral defence and access to nucleotides.« less

  19. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems

    SciTech Connect

    Burstein, David; Sun, Christine L.; Brown, Christopher T.; Sharon, Itai; Anantharaman, Karthik; Probst, Alexander J.; Thomas, Brian C.; Banfield, Jillian F.

    2016-02-03

    Here, current understanding of microorganism–virus interactions, which shape the evolution and functioning of Earth’s ecosystems, is based primarily on cultivated organisms. Here we investigate thousands of viral and microbial genomes recovered using a cultivation independent approach to study the frequency, variety and taxonomic distribution of viral defence mechanisms. CRISPR-Cas systems that confer microorganisms with immunity to viruses are present in only 10% of 1,724 sampled microorganisms, compared with previous reports of 40% occurrence in bacteria and 81% in archaea. We attribute this large difference to the lack of CRISPR-Cas systems across major bacterial lineages that have no cultivated representatives. We correlate absence of CRISPR-Cas with lack of nucleotide biosynthesis capacity and a symbiotic lifestyle. Restriction systems are well represented in these lineages and might provide both non-specific viral defence and access to nucleotides.

  20. Air heating system

    DOEpatents

    Primeau, John J.

    1983-03-01

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  1. The system V389 Cas: Algol-type binary with δ -Scuti pulsations

    NASA Astrophysics Data System (ADS)

    Korda, D.; Zasche, P.; Kučáková, H.

    2015-10-01

    New CCD observations of V389 Cas were carried out in the observatories in the Czech Republic from 2010 to 2014. These new data were analysed using the program PHOEBE. V389 Cas was found to be a detached eclipsing binary system with two rather different components moving on a circular orbit. Moreover, there was discovered also a δ -Scuti-type behaviour of the secondary component. These pulsations have the period of about 0.037 day. This result is being compared with the previous findings on similar eclipsing-pulsation systems published by Zhang et al. (2013).

  2. CRISPR-Cas9 System as a Versatile Tool for Genome Engineering in Human Cells

    PubMed Central

    Wang, Xuelian; Huang, Xiumin; Fang, Xiuli; Zhang, Youzhong; Wang, Wanpeng

    2016-01-01

    Targeted nucleases are influential instruments for intervening in genome revision with great accuracy. RNA-guided Cas9 nucleases produced from clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems have noticeably altered the means to modify the genomes of distinct organisms. They can be notably used to facilitate effective genome manipulation in eukaryotic cells by clearly detailing a 20-nt targeting sequence inside its directed RNA. We discuss the most recent advancements in the molecular basis of the type II CRISPR/Cas system and encapsulate applications and elements affecting its use in human cells. We also propose possible applications covering its uses ranging from basic science to implementation in the clinic. PMID:27845770

  3. Air injection system diagnostic

    SciTech Connect

    Kotzan, J.M.; Labus, G.E.

    1992-05-19

    This patent describes a method for diagnosing failures in an air control system that controls a quantity of air admitted into an exhaust path of an internal combustion engine. It comprises sensing the oxygen content of the exhaust gas of the engine at predetermined time intervals at a first predetermined point in the exhaust path of the engine, the oxygen content normally oscillating between a rich oxygen condition and a lean oxygen condition in the absence of air injected into the exhaust path above the first predetermined point; injecting a quantity of air into the exhaust path of the engine at a second predetermined point in the exhaust port, the second predetermined point being above the first predetermined point; counting the number of intervals at which the sensed oxygen content indicates a rich oxygen condition over a predetermined period of time; comparing the counted number of rich oxygen intervals to a predetermined threshold value, the threshold value being greater than a counted number of rich oxygen intervals over the predetermined period of time resulting from the normal oscillations between rich and lean oxygen conditions in the absence of air injected into the exhaust path; indicating the existence of a fault in the air control system when the number of rich oxygen intervals does not exceed the predetermined threshold value.

  4. CRISPR/Cas9 system and its applications in human hematopoietic cells.

    PubMed

    Hu, Xiaotang

    2016-11-01

    Since 2012, the CRISPR-Cas9 system has been quickly and successfully tested in a broad range of organisms and cells including hematopoietic cells. The application of CRISPR-Cas9 in human hematopoietic cells mainly involves the genes responsible for HIV infection, β-thalassemia and sickle cell disease (SCD). The successful disruption of CCR5 and CXCR4 genes in T cells by CRISPR-Cas9 promotes the prospect of the technology in the functional cure of HIV. More recently, eliminating CCR5 and CXCR4 in induced pluripotent stem cells (iPSCs) derived from patients and targeting the HIV genome have been successfully carried out in several laboratories. The outcome from these approaches bring us closer to the goal of eradicating HIV infection. For hemoglobinopathies the ability to produce iPSC-derived from patients with the correction of hemoglobin (HBB) mutations by CRISPR-Cas9 has been tested in a number of laboratories. These corrected iPSCs also show the potential to differentiate into mature erythrocytes expressing high-level and normal HBB. In light of the initial success of CRESPR-Cas9 in target mutated gene(s) in the iPSCs, a combination of genomic editing and autogenetic stem cell transplantation would be the best strategy for root treatment of the diseases, which could replace traditional allogeneic stem cell transplantation.

  5. Mechanism of spacer integration links the CRISPR/Cas system to transposition as a form of mobile DNA.

    PubMed

    Dyda, Fred; Hickman, Alison B

    2015-01-01

    It has recently become clear that many bacterial and archaeal species possess adaptive immune systems. These are typified by multiple copies of DNA sequences known as clustered regularly interspaced short palindromic repeats (CRISPRs). These CRISPR repeats are the sites at which short spacers containing sequences of previously encountered foreign DNA are integrated, and the spacers serve as the molecular memory of previous invaders. In vivo work has demonstrated that two CRISPR-associated proteins - Cas1 and Cas2 - are required for spacer integration, but the mechanism by which this is accomplished remained unclear. Here we review a recent paper describing the in vitro reconstitution of CRISPR spacer integration using purified Cas1 and Cas2 and place the results in context of similar DNA transposition reactions and the crystal structure of the Cas1/Cas2 complex.

  6. RNA-guided genome editing in plants using a CRISPR-Cas system.

    PubMed

    Xie, Kabin; Yang, Yinong

    2013-11-01

    Precise and straightforward methods to edit the plant genome are much needed for functional genomics and crop improvement. Recently, RNA-guided genome editing using bacterial Type II cluster regularly interspaced short palindromic repeats (CRISPR)-associated nuclease (Cas) is emerging as an efficient tool for genome editing in microbial and animal systems. Here, we report the genome editing and targeted gene mutation in plants via the CRISPR-Cas9 system. Three guide RNAs (gRNAs) with a 20-22-nt seed region were designed to pair with distinct rice genomic sites which are followed by the protospacer-adjacent motif (PAM). The engineered gRNAs were shown to direct the Cas9 nuclease for precise cleavage at the desired sites and introduce mutation (insertion or deletion) by error-prone non-homologous end joining DNA repairing. By analyzing the RNA-guided genome-editing events, the mutation efficiency at these target sites was estimated to be 3-8%. In addition, the off-target effect of an engineered gRNA-Cas9 was found on an imperfectly paired genomic site, but it had lower genome-editing efficiency than the perfectly matched site. Further analysis suggests that mismatch position between gRNA seed and target DNA is an important determinant of the gRNA-Cas9 targeting specificity, and specific gRNAs could be designed to target more than 90% of rice genes. Our results demonstrate that the CRISPR-Cas system can be exploited as a powerful tool for gene targeting and precise genome editing in plants.

  7. Application of CRISPR/Cas9 system in breeding of new antiviral plant germplasm.

    PubMed

    Daowei, Zhang; Chaofan, Zhang; Fang, Dong; Yanlan, Huang; Ya, Zhang; Hong, Zhou

    2016-09-01

    With the development and improvement of CRISPR/Cas9 system in genomic editing technology, the system has been applied to the prevention and control of animal viral infectious diseases, which has made considerable achievements. It has also been applied to the study of highly efficient gene targeting editing in plant virus genomes. The CRISPR/Cas9-mediated targeted gene modification has not only achieved the genome editing of plant DNA virus, but also showed the genome editing potential of plant RNA virus. In addition, the CRISPR/Cas9 system functions at the gene transcriptional and post-transcriptional level, indicating that the system could regulate the replication of plant viruses through different ways. Compared with other plant viral disease control strategies, this system is more accurate in genome editing, more stable in gene expression regulation, and has broader spectrum of resistance to virus disease. In this review, we summarized the advantages, main problems and development tendency of CRISPR/cas9 system in breeding of new antiviral plant germplasms.

  8. Dental Compressed Air Systems.

    DTIC Science & Technology

    1992-03-01

    I AL-TR-IWI-0uuu AD-A249 954 DENTAL COMPRESSED AIMYTM R Curtis D. Weyrmuch, Mejor, USAP, D Samuel P.Dvs iueatclpi SF.O N AEROSPACE MwaEDIN mwr~ComA G...FUNDING NUMBERS Dental Compressed Air Systems PE - 87714F PR - 7350 TA - 22 D. Weyrauch WU - XX Samuel P. Davis George W. Gaines 7. PERFORMING...words) The purpose of this report is to update guidelines on dental compressed air systems (DCA). Much of the information was obtained from a survey

  9. A ‘suicide’ CRISPR-Cas9 system to promote gene deletion and restoration by electroporation in Cryptococcus neoformans

    PubMed Central

    Wang, Yu; Wei, Dongsheng; Zhu, Xiangyang; Pan, Jiao; Zhang, Ping; Huo, Liang; Zhu, Xudong

    2016-01-01

    Loss-of-function mutagenesis is an important tool used to characterize gene functions, and the CRISPR-Cas9 system is a powerful method for performing targeted mutagenesis in organisms that present low recombination frequencies, such as the serotype D strains of Cryptococcus neoformans. However, when the CRISPR-Cas9 system persists in the host cells, off-target effects and Cas9 cytotoxicity may occur, which might block subsequent genetic manipulation. Here, we report a method of spontaneously eliminating the CRISPR-Cas9 system without impairing its robust editing function. We successfully expressed single guide RNA under the driver of an endogenous U6 promoter and the human codon-optimized Cas9 endonuclease with an ACT1 promoter. This system can effectively generate an indel mutation and efficiently perform targeted gene disruption via homology-directed repair by electroporation in yeast. We then demonstrated the spontaneous elimination of the system via a cis arrangement of the CRISPR-Cas9 expression cassettes to the recombination construct. After a system-mediated double crossover, the CRISPR-Cas9 cassettes were cleaved and degraded, which was validated by Southern blotting. This ‘suicide’ CRISPR-Cas9 system enables the validation of gene functions by subsequent complementation and has the potential to minimize off-target effects. Thus, this technique has the potential for use in functional genomics studies of C. neoformans. PMID:27503169

  10. Applications of the CRISPR-Cas9 system in cancer biology

    PubMed Central

    Sánchez-Rivera, Francisco J.; Jacks, Tyler

    2015-01-01

    Preface The prokaryotic type II clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system is rapidly revolutionizing the field of genetic engineering, allowing researchers to alter the genomes of a large variety of organisms with relative ease. Experimental approaches based on this versatile technology have the potential to transform the field of cancer genetics. Here we review current approaches based on CRISPR-Cas9 for functional studies of cancer genes, with emphasis on its applicability for the development of the next-generation models of human cancer. PMID:26040603

  11. First indication for a functional CRISPR/Cas system in Francisella tularensis.

    PubMed

    Schunder, Eva; Rydzewski, Kerstin; Grunow, Roland; Heuner, Klaus

    2013-03-01

    Francisella tularensis is a zoonotic agent and the subspecies novicida is proposed to be a water-associated bacterium. The intracellular pathogen F. tularensis causes tularemia in humans and is known for its potential to be used as a biological threat. We analyzed the genome sequence of F. tularensis subsp. novicida U112 in silico for the presence of a putative functional CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system. CRISPR/Cas systems are known to encode an RNA-guided adaptive immunity-like system to protect bacteria against invading genetic elements like bacteriophages and plasmids. In this work, we present a first indication that F. tularensis subsp. novicida encodes a functional CRISPR/Cas defence system. Additionally, we identified various spacer DNAs homologous to a putative phage present within the genome of F. tularensis subsp. novicida-like strain 3523. CRISPR/Cas is also present in F. tularensis subsp. tularensis, holarctica, and mediasiatica, but these systems seem to be non-functional.

  12. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system.

    PubMed

    Liang, Zhen; Zhang, Kang; Chen, Kunling; Gao, Caixia

    2014-02-20

    Transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems have emerged as powerful tools for genome editing in a variety of species. Here, we report, for the first time, targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. We designed five TALENs targeting 4 genes, namely ZmPDS, ZmIPK1A, ZmIPK, ZmMRP4, and obtained targeting efficiencies of up to 23.1% in protoplasts, and about 13.3% to 39.1% of the transgenic plants were somatic mutations. Also, we constructed two gRNAs targeting the ZmIPK gene in maize protoplasts, at frequencies of 16.4% and 19.1%, respectively. In addition, the CRISPR/Cas system induced targeted mutations in Z. mays protoplasts with efficiencies (13.1%) similar to those obtained with TALENs (9.1%). Our results show that both TALENs and the CRISPR/Cas system can be used for genome modification in maize.

  13. Second Line of Defense Virtual Private Network Guidance for Deployed and New CAS Systems

    SciTech Connect

    Singh, Surya V.; Thronas, Aaron I.

    2010-01-01

    This paper discusses the importance of remote access via virtual private network (VPN) for the Second Line of Defense (SLD) Central Alarm System (CAS) sites, the requirements for maintaining secure channels while using VPN and implementation requirements for current and future sites.

  14. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus.

    PubMed

    Ebina, Hirotaka; Misawa, Naoko; Kanemura, Yuka; Koyanagi, Yoshio

    2013-01-01

    Even though highly active anti-retroviral therapy is able to keep HIV-1 replication under control, the virus can lie in a dormant state within the host genome, known as a latent reservoir, and poses a threat to re-emerge at any time. However, novel technologies aimed at disrupting HIV-1 provirus may be capable of eradicating viral genomes from infected individuals. In this study, we showed the potential of the CRISPR/Cas9 system to edit the HIV-1 genome and block its expression. When LTR-targeting CRISPR/Cas9 components were transfected into HIV-1 LTR expression-dormant and -inducible T cells, a significant loss of LTR-driven expression was observed after stimulation. Sequence analysis confirmed that this CRISPR/Cas9 system efficiently cleaved and mutated LTR target sites. More importantly, this system was also able to remove internal viral genes from the host cell chromosome. Our results suggest that the CRISPR/Cas9 system may be a useful tool for curing HIV-1 infection.

  15. Genome editing in rice and wheat using the CRISPR/Cas system.

    PubMed

    Shan, Qiwei; Wang, Yanpeng; Li, Jun; Gao, Caixia

    2014-10-01

    Targeted genome editing nucleases, such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), are powerful tools for understanding gene function and for developing valuable new traits in plants. The clustered regularly interspersed short palindromic repeats (CRISPR)/Cas system has recently emerged as an alternative nuclease-based method for efficient and versatile genome engineering. In this system, only the 20-nt targeting sequence within the single-guide RNA (sgRNA) needs to be changed to target different genes. The simplicity of the cloning strategy and the few limitations on potential target sites make the CRISPR/Cas system very appealing. Here we describe a stepwise protocol for the selection of target sites, as well as the design, construction, verification and use of sgRNAs for sequence-specific CRISPR/Cas-mediated mutagenesis and gene targeting in rice and wheat. The CRISPR/Cas system provides a straightforward method for rapid gene targeting within 1-2 weeks in protoplasts, and mutated rice plants can be generated within 13-17 weeks.

  16. Dual nuclease activity of a Cas2 protein in CRISPR-Cas subtype I-B of Leptospira interrogans.

    PubMed

    Dixit, Bhuvan; Ghosh, Karukriti Kaushik; Fernandes, Gary; Kumar, Pankaj; Gogoi, Prerana; Kumar, Manish

    2016-04-01

    Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 carries a set of cas genes associated with CRISPR-Cas subtype I-B. Herein, we report for the first time active transcription of a set of cas genes (cas1 to cas8) of L. interrogans where cas4, cas1, cas2 and cas6, cas3, cas8, cas7, cas5 are clustered together in two independent operons. As an initial step toward comprehensive understanding of CRISPR-Cas system in spirochete, the biochemical study of one of the core Leptospira Cas2 proteins (Lep_Cas2) showed nuclease activity on both DNA and RNA in a nonspecific manner. Additionally, unlike other known Cas2 proteins, Lep_Cas2 showed metal-independent RNase activity and preferential activity on RNA over DNA. These results provide insight for understanding Cas2 diversity existing in the prokaryotic adaptive immune system.

  17. Generation of site-specific mutant mice using the CRISPR/Cas9 system.

    PubMed

    Min, Bai; Qi, Li; Yanjiao, Shao; Yuanhua, Huang; Dali, Li; Yanlin, Ma

    2015-10-01

    The CRISPR/Cas9 system is a recently developed important technology for genome editing in cellular and animal models. Here we established a CRISPR/Cas9-based system of generating site-specific mutant mice using DNA double-strand breaks (DSBs) induced homologous recombination (HR)-dependent or independent repair mechanism. Through co-microinjection of Cas9 mRNA and single-guide RNA (sgRNA) targeting genomic DNA sequence corresponding to enzyme activity of lysine (K)-specific demethylase 2b (Kdm2b), both a frame-shifted Kdm2b null mutant and a Kdm2b enzyme activity disrupted mouse strain were obtained simultaneously. Moreover, sgRNA targeting flavin containing monooxygenases3 (Fmo3) gene and the corresponding single strand oligonucleotides (ssODN) donor template with point mutation were co-injected into the male pronucleus of one-cell mouse embryos stimulated HR-mediated repair mechanism. Genomic sequence analysis of F0 mice showed that frame-shifted Fmo3 knockout mouse and site-specific Fmo3 knock-in mouse with single base substitution were successfully generated, and these mutations could be stably transmitted to the next generation. Therefore, we successfully generated mouse strains containing site-specific mutations through HR-dependent and -independent DSB repair using the CRISPR/Cas9 system.

  18. The role of CRISPR-Cas systems in virulence of pathogenic bacteria.

    PubMed

    Louwen, Rogier; Staals, Raymond H J; Endtz, Hubert P; van Baarlen, Peter; van der Oost, John

    2014-03-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes are present in many bacterial and archaeal genomes. Since the discovery of the typical CRISPR loci in the 1980s, well before their physiological role was revealed, their variable sequences have been used as a complementary typing tool in diagnostic, epidemiologic, and evolutionary analyses of prokaryotic strains. The discovery that CRISPR spacers are often identical to sequence fragments of mobile genetic elements was a major breakthrough that eventually led to the elucidation of CRISPR-Cas as an adaptive immunity system. Key elements of this unique prokaryotic defense system are small CRISPR RNAs that guide nucleases to complementary target nucleic acids of invading viruses and plasmids, generally followed by the degradation of the invader. In addition, several recent studies have pointed at direct links of CRISPR-Cas to regulation of a range of stress-related phenomena. An interesting example concerns a pathogenic bacterium that possesses a CRISPR-associated ribonucleoprotein complex that may play a dual role in defense and/or virulence. In this review, we describe recently reported cases of potential involvement of CRISPR-Cas systems in bacterial stress responses in general and bacterial virulence in particular.

  19. Efficient and Heritable Targeted Mutagenesis in Mosses Using the CRISPR/Cas9 System.

    PubMed

    Nomura, Toshihisa; Sakurai, Tetsuya; Osakabe, Yuriko; Osakabe, Keishi; Sakakibara, Hitoshi

    2016-12-01

    Targeted genome modification by RNA-guided nucleases derived from the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system has seen rapid development in many organisms, including several plant species. In the present study, we succeeded in introducing the CRISPR/Cas9 system into the non-model organism Scopelophila cataractae, a moss that exhibits heavy metal tolerance, and the model organism Physcomitrella patens Utilizing the process by which moss plants regenerate from protoplasts, we conducted targeted mutagenesis by expression of single-chain guide RNA (sgRNA) and Cas9 in protoplasts. Using this method, the acquisition rate of strains exhibiting phenotypic changes associated with the target genes was approximately 45-69%, and strains with phenotypic changes exhibited various insertion and deletion mutations. In addition, we report that our method is capable of multiplex targeted mutagenesis (two independent genes) and also permits the efficient introduction of large deletions (∼3 kbp). These results demonstrate that the CRISPR/Cas9 system can be used to accelerate investigations of bryology and land plant evolution.

  20. Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system

    PubMed Central

    Chen, Xiugui; Lu, Xuke; Shu, Na; Wang, Shuai; Wang, Junjuan; Wang, Delong; Guo, Lixue; Ye, Wuwei

    2017-01-01

    The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 system has been widely used for genome editing in various plants because of its simplicity, high efficiency and design flexibility. However, to our knowledge, there is no report on the application of CRISPR/Cas9-mediated targeted mutagenesis in cotton. Here, we report the genome editing and targeted mutagenesis in upland cotton (Gossypium hirsutum L., hereafter cotton) using the CRISPR/Cas9 system. We designed two guide RNAs to target distinct sites of the cotton Cloroplastos alterados 1 (GhCLA1) and vacuolar H+-pyrophosphatase (GhVP) genes. Mutations in these two genes were detected in cotton protoplasts. Most of the mutations were nucleotide substitutions, with one nucleotide insertion and one substitution found in GhCLA1 and one deletion found in GhVP in cotton protoplasts. Subsequently, the two vectors were transformed into cotton shoot apexes through Agrobacterium-mediated transformation, resulting in efficient target gene editing. Most of the mutations were nucleotide deletions, and the mutation efficiencies were 47.6–81.8% in transgenic cotton plants. Evaluation using restriction-enzyme-PCR assay and sequence analysis detected no off-target mutations. Our results indicated that the CRISPR/Cas9 system was an efficient and specific tool for targeted mutagenesis of the cotton genome. PMID:28287154

  1. Adapting to new threats: the generation of memory by CRISPR-Cas immune systems.

    PubMed

    Heler, Robert; Marraffini, Luciano A; Bikard, David

    2014-07-01

    Clustered, regularly interspaced, short palindromic repeats (CRISPR) loci and their associated genes (cas) confer bacteria and archaea with adaptive immunity against phages and other invading genetic elements. A fundamental requirement of any immune system is the ability to build a memory of past infections in order to deal more efficiently with recurrent infections. The adaptive feature of CRISPR-Cas immune systems relies on their ability to memorize DNA sequences of invading molecules and integrate them in between the repetitive sequences of the CRISPR array in the form of 'spacers'. The transcription of a spacer generates a small antisense RNA that is used by RNA-guided Cas nucleases to cleave the invading nucleic acid in order to protect the cell from infection. The acquisition of new spacers allows the CRISPR-Cas immune system to rapidly adapt against new threats and is therefore termed 'adaptation'. Recent studies have begun to elucidate the genetic requirements for adaptation and have demonstrated that rather than being a stochastic process, the selection of new spacers is influenced by several factors. We review here our current knowledge of the CRISPR adaptation mechanism.

  2. A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair.

    PubMed

    Babu, Mohan; Beloglazova, Natalia; Flick, Robert; Graham, Chris; Skarina, Tatiana; Nocek, Boguslaw; Gagarinova, Alla; Pogoutse, Oxana; Brown, Greg; Binkowski, Andrew; Phanse, Sadhna; Joachimiak, Andrzej; Koonin, Eugene V; Savchenko, Alexei; Emili, Andrew; Greenblatt, Jack; Edwards, Aled M; Yakunin, Alexander F

    2011-01-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and the associated proteins (Cas) comprise a system of adaptive immunity against viruses and plasmids in prokaryotes. Cas1 is a CRISPR-associated protein that is common to all CRISPR-containing prokaryotes but its function remains obscure. Here we show that the purified Cas1 protein of Escherichia coli (YgbT) exhibits nuclease activity against single-stranded and branched DNAs including Holliday junctions, replication forks and 5'-flaps. The crystal structure of YgbT and site-directed mutagenesis have revealed the potential active site. Genome-wide screens show that YgbT physically and genetically interacts with key components of DNA repair systems, including recB, recC and ruvB. Consistent with these findings, the ygbT deletion strain showed increased sensitivity to DNA damage and impaired chromosomal segregation. Similar phenotypes were observed in strains with deletion of CRISPR clusters, suggesting that the function of YgbT in repair involves interaction with the CRISPRs. These results show that YgbT belongs to a novel, structurally distinct family of nucleases acting on branched DNAs and suggest that, in addition to antiviral immunity, at least some components of the CRISPR-Cas system have a function in DNA repair.

  3. Subtyping of the Legionella pneumophila "Ulm" outbreak strain using the CRISPR-Cas system.

    PubMed

    Lück, Christian; Brzuszkiewicz, Elzbieta; Rydzewski, Kerstin; Koshkolda, Tetyana; Sarnow, Katharina; Essig, Andreas; Heuner, Klaus

    2015-12-01

    In 2009/2010 an outbreak of Legionnaires' disease with 64 cases including four fatalities took place in the city of Ulm/Neu-Ulm in Germany. L. pneumophila serogroup 1, mAb type Knoxville, sequence type (ST) 62 was identified as the epidemic strain. This strain was isolated from eight patients and from a cooling tower in the city of Ulm. Based on whole genome sequencing data from one patient strain, we identified an Lvh type IV secretion system containing a CRISPR-Cas system. The CRISPR sequence contains 38 spacer DNA sequences. We used these variable DNA spacers to further subtype the outbreak strain as well as six epidemiologically unrelated strains of CRISPR-Cas positive ST62 strains isolated at various regions in Germany. The first 12 spacer DNAs of eight patient isolates and three environmental isolates from the suspected source of infection were analyzed and found to be identical. Spacer DNAs were identified in further six epidemiologically unrelated patient isolates of L. pneumophila of ST62 in addition to the 12 "core" spacers. The presence of new spacer DNAs at the 5' site downstream of the first repeat indicates that these CRISPR-Cas systems seem to be functional. PCR analysis revealed that not all L. pneumophila sg1 ST62 strains investigated exhibited a CRISPR-Cas system. In addition, we could demonstrate that the CRISPR-Cas system is localized on a genomic island (LpuGI-Lvh) which can be excised from the chromosome and therefore may be transferable horizontally to other L. pneumophila strains.

  4. Foreign DNA acquisition by the I-F CRISPR–Cas system requires all components of the interference machinery

    PubMed Central

    Vorontsova, Daria; Datsenko, Kirill A.; Medvedeva, Sofia; Bondy-Denomy, Joseph; Savitskaya, Ekaterina E.; Pougach, Ksenia; Logacheva, Maria; Wiedenheft, Blake; Davidson, Alan R.; Severinov, Konstantin; Semenova, Ekaterina

    2015-01-01

    CRISPR immunity depends on acquisition of fragments of foreign DNA into CRISPR arrays. For type I-E CRISPR–Cas systems two modes of spacer acquisition, naïve and primed adaptation, were described. Naïve adaptation requires just two most conserved Cas1 and Cas2 proteins; it leads to spacer acquisition from both foreign and bacterial DNA and results in multiple spacers incapable of immune response. Primed adaptation requires all Cas proteins and a CRISPR RNA recognizing a partially matching target. It leads to selective acquisition of spacers from DNA molecules recognized by priming CRISPR RNA, with most spacers capable of protecting the host. Here, we studied spacer acquisition by a type I-F CRISPR–Cas system. We observe both naïve and primed adaptation. Both processes require not just Cas1 and Cas2, but also intact Csy complex and CRISPR RNA. Primed adaptation shows a gradient of acquisition efficiency as a function of distance from the priming site and a strand bias that is consistent with existence of single-stranded adaption intermediates. The results provide new insights into the mechanism of spacer acquisition and illustrate surprising mechanistic diversity of related CRISPR–Cas systems. PMID:26586803

  5. Foreign DNA acquisition by the I-F CRISPR-Cas system requires all components of the interference machinery.

    PubMed

    Vorontsova, Daria; Datsenko, Kirill A; Medvedeva, Sofia; Bondy-Denomy, Joseph; Savitskaya, Ekaterina E; Pougach, Ksenia; Logacheva, Maria; Wiedenheft, Blake; Davidson, Alan R; Severinov, Konstantin; Semenova, Ekaterina

    2015-12-15

    CRISPR immunity depends on acquisition of fragments of foreign DNA into CRISPR arrays. For type I-E CRISPR-Cas systems two modes of spacer acquisition, naïve and primed adaptation, were described. Naïve adaptation requires just two most conserved Cas1 and Cas2 proteins; it leads to spacer acquisition from both foreign and bacterial DNA and results in multiple spacers incapable of immune response. Primed adaptation requires all Cas proteins and a CRISPR RNA recognizing a partially matching target. It leads to selective acquisition of spacers from DNA molecules recognized by priming CRISPR RNA, with most spacers capable of protecting the host. Here, we studied spacer acquisition by a type I-F CRISPR-Cas system. We observe both naïve and primed adaptation. Both processes require not just Cas1 and Cas2, but also intact Csy complex and CRISPR RNA. Primed adaptation shows a gradient of acquisition efficiency as a function of distance from the priming site and a strand bias that is consistent with existence of single-stranded adaption intermediates. The results provide new insights into the mechanism of spacer acquisition and illustrate surprising mechanistic diversity of related CRISPR-Cas systems.

  6. Air System Information Management

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.

    2004-01-01

    I flew to Washington last week, a trip rich in distributed information management. Buying tickets, at the gate, in flight, landing and at the baggage claim, myriad messages about my reservation, the weather, our flight plans, gates, bags and so forth flew among a variety of travel agency, airline and Federal Aviation Administration (FAA) computers and personnel. By and large, each kind of information ran on a particular application, often specialized to own data formats and communications network. I went to Washington to attend an FAA meeting on System-Wide Information Management (SWIM) for the National Airspace System (NAS) (http://www.nasarchitecture.faa.gov/Tutorials/NAS101.cfm). NAS (and its information infrastructure, SWIM) is an attempt to bring greater regularity, efficiency and uniformity to the collection of stovepipe applications now used to manage air traffic. Current systems hold information about flight plans, flight trajectories, weather, air turbulence, current and forecast weather, radar summaries, hazardous condition warnings, airport and airspace capacity constraints, temporary flight restrictions, and so forth. Information moving among these stovepipe systems is usually mediated by people (for example, air traffic controllers) or single-purpose applications. People, whose intelligence is critical for difficult tasks and unusual circumstances, are not as efficient as computers for tasks that can be automated. Better information sharing can lead to higher system capacity, more efficient utilization and safer operations. Better information sharing through greater automation is possible though not necessarily easy.

  7. Exome sequencing in the knockin mice generated using the CRISPR/Cas system

    PubMed Central

    Nakajima, Kazuo; Kazuno, An-a; Kelsoe, John; Nakanishi, Moe; Takumi, Toru; Kato, Tadafumi

    2016-01-01

    Knockin (KI) mouse carrying a point mutation has been an invaluable tool for disease modeling and analysis. Genome editing technologies using the CRISPR/Cas system has emerged as an alternative way to create KI mice. However, if the mice carry nucleotide insertions and/or deletions (InDels) in other genes, which could have unintentionally occurred during the establishment of the KI mouse line and potentially have larger impact than a point mutation, it would confound phenotyping of the KI mice. In this study, we performed whole exome sequencing of multiple lines of F1 heterozygous Ntrk1 KI mice generated using the CRISPR/Cas system in comparison to that of a wild-type mouse used as a control. We found three InDels in four KI mice but not in a control mouse. In vitro digestion assay suggested that each InDel occurred as a de novo mutation, was carried-over from the parental mice, or was incorporated through the Cas9 nuclease mediated off-target cleavage. These results suggest that frequency of InDels found in KI mice generated by the CRISPR/Cas technology is not high, but cannot be neglected and careful assessment of these mutations is warranted. PMID:27698470

  8. Exploiting the CRISPR/Cas9 System for Targeted Genome Mutagenesis in Petunia

    PubMed Central

    Zhang, Bin; Yang, Xia; Yang, Chunping; Li, Mingyang; Guo, Yulong

    2016-01-01

    Recently, CRISPR/Cas9 technology has emerged as a powerful approach for targeted genome modification in eukaryotic organisms from yeast to human cell lines. Its successful application in several plant species promises enormous potential for basic and applied plant research. However, extensive studies are still needed to assess this system in other important plant species, to broaden its fields of application and to improve methods. Here we showed that the CRISPR/Cas9 system is efficient in petunia (Petunia hybrid), an important ornamental plant and a model for comparative research. When PDS was used as target gene, transgenic shoot lines with albino phenotype accounted for 55.6%–87.5% of the total regenerated T0 Basta-resistant lines. A homozygous deletion close to 1 kb in length can be readily generated and identified in the first generation. A sequential transformation strategy—introducing Cas9 and sgRNA expression cassettes sequentially into petunia—can be used to make targeted mutations with short indels or chromosomal fragment deletions. Our results present a new plant species amenable to CRIPR/Cas9 technology and provide an alternative procedure for its exploitation. PMID:26837606

  9. Enhancing Targeted Genomic DNA Editing in Chicken Cells Using the CRISPR/Cas9 System

    PubMed Central

    Wang, Ling; Yang, Likai; Guo, Yijie; Du, Weili; Yin, Yajun; Zhang, Tao; Lu, Hongzhao

    2017-01-01

    The CRISPR/Cas9 system has enabled highly efficient genome targeted editing for various organisms. However, few studies have focused on CRISPR/Cas9 nuclease-mediated chicken genome editing compared with mammalian genomes. The current study combined CRISPR with yeast Rad52 (yRad52) to enhance targeted genomic DNA editing in chicken DF-1 cells. The efficiency of CRISPR/Cas9 nuclease-induced targeted mutations in the chicken genome was increased to 41.9% via the enrichment of the dual-reporter surrogate system. In addition, the combined effect of CRISPR nuclease and yRad52 dramatically increased the efficiency of the targeted substitution in the myostatin gene using 50-mer oligodeoxynucleotides (ssODN) as the donor DNA, resulting in a 36.7% editing efficiency after puromycin selection. Furthermore, based on the effect of yRad52, the frequency of exogenous gene integration in the chicken genome was more than 3-fold higher than that without yRad52. Collectively, these results suggest that ssODN is an ideal donor DNA for targeted substitution and that CRISPR/Cas9 combined with yRad52 significantly enhances chicken genome editing. These findings could be extensively applied in other organisms. PMID:28068387

  10. Function of the CRISPR-Cas System of the Human Pathogen Clostridium difficile

    PubMed Central

    Boudry, Pierre; Semenova, Ekaterina; Monot, Marc; Datsenko, Kirill A.; Lopatina, Anna; Sekulovic, Ognjen; Ospina-Bedoya, Maicol; Fortier, Louis-Charles; Severinov, Konstantin; Dupuy, Bruno

    2015-01-01

    ABSTRACT Clostridium difficile is the cause of most frequently occurring nosocomial diarrhea worldwide. As an enteropathogen, C. difficile must be exposed to multiple exogenous genetic elements in bacteriophage-rich gut communities. CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems allow bacteria to adapt to foreign genetic invaders. Our recent data revealed active expression and processing of CRISPR RNAs from multiple type I-B CRISPR arrays in C. difficile reference strain 630. Here, we demonstrate active expression of CRISPR arrays in strain R20291, an epidemic C. difficile strain. Through genome sequencing and host range analysis of several new C. difficile phages and plasmid conjugation experiments, we provide evidence of defensive function of the CRISPR-Cas system in both C. difficile strains. We further demonstrate that C. difficile Cas proteins are capable of interference in a heterologous host, Escherichia coli. These data set the stage for mechanistic and physiological analyses of CRISPR-Cas-mediated interactions of important global human pathogen with its genetic parasites. PMID:26330515

  11. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity.

    PubMed

    Nuñez, James K; Kranzusch, Philip J; Noeske, Jonas; Wright, Addison V; Davies, Christopher W; Doudna, Jennifer A

    2014-06-01

    The initial stage of CRISPR-Cas immunity involves the integration of foreign DNA spacer segments into the host genomic CRISPR locus. The nucleases Cas1 and Cas2 are the only proteins conserved among all CRISPR-Cas systems, yet the molecular functions of these proteins during immunity are unknown. Here we show that Cas1 and Cas2 from Escherichia coli form a stable complex that is essential for spacer acquisition and determine the 2.3-Å-resolution crystal structure of the Cas1-Cas2 complex. Mutations that perturb Cas1-Cas2 complex formation disrupt CRISPR DNA recognition and spacer acquisition in vivo. Active site mutants of Cas2, unlike those of Cas1, can still acquire new spacers, thus indicating a nonenzymatic role of Cas2 during immunity. These results reveal the universal roles of Cas1 and Cas2 and suggest a mechanism by which Cas1-Cas2 complexes specify sites of CRISPR spacer integration.

  12. CRISPR-Cas9: from a bacterial immune system to genome-edited human cells in clinical trials.

    PubMed

    Kick, Leonhard; Kirchner, Marion; Schneider, Sabine

    2017-03-13

    The adaptive bacterial immune system CRISPR-Cas is revolutionising all fields of life science and has opened up new frontiers towards personalised medicine. Since the elucidation of the molecular mechanism of Cas9 from Streptococcus pyogenes in 2012 and its development as a genomic engineering tool, genetic modifications in more than 40 species have been carried out, over 290 patents have been filed worldwide and the first clinical trials using CRISPR-Cas-modified T-cells have recently been started in China and in the US. In this review we summarise current design developments, novel Cas systems and their antagonists, present and potential future applications as well as the ongoing debate on ethical issues, which has arisen through the CRISPR-Cas technology.

  13. Air-storage systems

    SciTech Connect

    Doherty, T.J.

    1981-10-01

    The air storage system, the critical component making CAES technically and economically feasible, is described in three of its forms. All have geological containments and reflect economics of scale requiring fairly large plant ratings and storage capacities. All three systems also are based on good precedent experience and there are a number of willing bidders in the engineering and construction field attesting to the readiness of the technology. The salient features of each storage system type are summarized. Hard rock caverns have the widest siting opportunity in a variety of geology, are well within construction capability in good quality rock with maximum control of system design through engineering, have the highest cost of the storage system options study and the potential for longest time to startup, are difficult and expensive to expand for increased storage or plant rating. The salt-solutioned cavern has limited siting opportunities, is a very economical storage system, and storage increase is possible through cavern additions.

  14. CAS77 and CAS7276: A Review.

    ERIC Educational Resources Information Center

    Harrison, Isom, Jr.

    This paper describes the content, organization, specifications, and methods of use of the CAS77 and CAS7276 online files of worldwide chemical literature, databases produced by Chemical Abstracts Service and available from System Development Corporation (SDC). The scope of the databases, their unit record, their data elements, their modes of…

  15. Condition Assessment Survey (CAS) Program. Deficiency standards and inspections methods manual: Volume 11, 0.11 Specialty systems

    SciTech Connect

    Not Available

    1993-05-01

    General information is presented for asset determinant factor/CAS repair codes/CAS cost factors; guide sheet tool & material listing; testing methods; inspection frequency; standard system design life tables; system work breakdown structure; and general system/material data. Deficiency standards and inspection methods are presented for canopies; loading dock systems; tanks; domes (bulk storage, metal framing); louvers & vents; access floors; integrated ceilings; and mezzanine structures.

  16. Air-storage systems

    NASA Astrophysics Data System (ADS)

    Doherty, T. J.

    1981-10-01

    The air storage system, the critical component making compressed air energy storage technically economically feasible, is described in three of its forms. All have geological containments and reflect economics of scale requiring fairly large plant ratings and storage capacities. All three systems also are based on good precedent experience and there are a number of willing bidders in the engineering and construction field attesting to the readiness of the technology. The salient features of each storage system type are summarized. Hard rock caverns have the widest siting opportunity with a variety of geology, are well within construction capability in good quality rock with maximum control of system design through engineering, and have the highest cost of the storage system options study. They have the potential for longest time to startup and are difficult and expensive to expand for increased storage or plant rating. The salt-solutioned cavern has limited siting opportunities, is a very economical storage system, and storage increase is possible through cavern additions.

  17. Identification and functional study of type III-A CRISPR-Cas systems in clinical isolates of Staphylococcus aureus.

    PubMed

    Cao, Linyan; Gao, Chun-Hui; Zhu, Jiade; Zhao, Liping; Wu, Qingfa; Li, Min; Sun, Baolin

    2016-12-01

    The CRISPR-Cas (clustered regularly interspaced short palindromic repeats [CRISPR]-CRISPR associated proteins [Cas]) system can provide prokaryote with immunity against invading mobile genetic elements (MGEs) such as phages and plasmids, which are the main sources of staphylococcal accessory genes. To date, only a few Staphylococcus aureus strains containing CRISPR-Cas systems have been identified, but no functional study in these strains has been reported. In this study, 6 clinical isolates of S. aureus with type III-A CRISPR-Cas systems were identified, and whole-genome sequencing and functional study were conducted subsequently. Genome sequence analysis revealed a close linkage between the CRISPR-Cas system and the staphylococcal cassette chromosome mec (SCCmec) element in five strains. Comparative sequence analysis showed that the type III-A repeats are conserved within staphylococci, despite of the decreased conservation in trailer-end repeats. Highly homologous sequences of some spacers were identified in staphylococcal MGEs, and partially complementary sequences of spacers were mostly found in the coding strand of lytic regions in staphylococcal phages. Transformation experiments showed that S. aureus type III-A CRISPR-Cas system can specifically prevent plasmid transfer in a transcription-dependent manner. Base paring between crRNA and target sequence, the endoribonuclease, and the Csm complex were proved to be necessary for type III-A CRISPR-Cas immunity.

  18. Future Air Force systems.

    PubMed

    Tremaine, S A

    1986-10-01

    Planning for the future is under way in earnest at the Aeronautical Systems Division (ASD) at Wright-Patterson Air Force Base. It has been statistically established that it takes from 14-16 years from the generation of a new system idea to enter into engineering development. With this unpleasing, but realistic, schedule in mind, ASD has, during the last 3 years, been initiating long-term planning projects that are pre-starts for new system ideas. They are generated from throughout the Air Force and are locally managed and funded. Through this process, which spans from 12-14 months, specific and revolutionary new ideas for the systems of the future are generated. This article addresses more than a dozen specific new ideas in work at ASD today. These ideas range from a need to replace the C-130 type aircraft after the year 2000 to planning a follow-on to the B-18 well into the 21st century. Among other specific projects are investigation into an immortal fighter intended to be free of reliability and maintenance demands for an especially long period of operation, a new training system and advanced trainer to replace the T-38, a transatmospheric vehicle that could operate in the 100,000-500,000 foot flight region (30,480-152,400 m), and a new means of defending against hostile cruise missile launchers and cruise missiles. Other ideas are also addressed. The article concludes with emphasis on systems that can operate hypersonically in and out of the known atmosphere and greater use of airbreathing propulsion systems operating between Mach 3 and Mach 6.

  19. Target motifs affecting natural immunity by a constitutive CRISPR-Cas system in Escherichia coli.

    PubMed

    Almendros, Cristóbal; Guzmán, Noemí M; Díez-Villaseñor, César; García-Martínez, Jesús; Mojica, Francisco J M

    2012-01-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR associated (cas) genes conform the CRISPR-Cas systems of various bacteria and archaea and produce degradation of invading nucleic acids containing sequences (protospacers) that are complementary to repeat intervening spacers. It has been demonstrated that the base sequence identity of a protospacer with the cognate spacer and the presence of a protospacer adjacent motif (PAM) influence CRISPR-mediated interference efficiency. By using an original transformation assay with plasmids targeted by a resident spacer here we show that natural CRISPR-mediated immunity against invading DNA occurs in wild type Escherichia coli. Unexpectedly, the strongest activity is observed with protospacer adjoining nucleotides (interference motifs) that differ from the PAM both in sequence and location. Hence, our results document for the first time native CRISPR activity in E. coli and demonstrate that positions next to the PAM in invading DNA influence their recognition and degradation by these prokaryotic immune systems.

  20. A CRISPR-Cas9 System for Genetic Engineering of Filamentous Fungi

    PubMed Central

    Nødvig, Christina S.; Nielsen, Jakob B.; Kogle, Martin E.; Mortensen, Uffe H.

    2015-01-01

    The number of fully sequenced fungal genomes is rapidly increasing. Since genetic tools are poorly developed for most filamentous fungi, it is currently difficult to employ genetic engineering for understanding the biology of these fungi and to fully exploit them industrially. For that reason there is a demand for developing versatile methods that can be used to genetically manipulate non-model filamentous fungi. To facilitate this, we have developed a CRISPR-Cas9 based system adapted for use in filamentous fungi. The system is simple and versatile, as RNA guided mutagenesis can be achieved by transforming a target fungus with a single plasmid. The system currently contains four CRISPR-Cas9 vectors, which are equipped with commonly used fungal markers allowing for selection in a broad range of fungi. Moreover, we have developed a script that allows identification of protospacers that target gene homologs in multiple species to facilitate introduction of common mutations in different filamentous fungi. With these tools we have performed RNA-guided mutagenesis in six species of which one has not previously been genetically engineered. Moreover, for a wild-type Aspergillus aculeatus strain, we have used our CRISPR Cas9 system to generate a strain that contains an AACU_pyrG marker and demonstrated that the resulting strain can be used for iterative gene targeting. PMID:26177455

  1. Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR associated (Cas) systems.

    PubMed

    Richter, Corinna; Chang, James T; Fineran, Peter C

    2012-10-19

    Phages are the most abundant biological entities on earth and pose a constant challenge to their bacterial hosts. Thus, bacteria have evolved numerous 'innate' mechanisms of defense against phage, such as abortive infection or restriction/modification systems. In contrast, the clustered regularly interspaced short palindromic repeats (CRISPR) systems provide acquired, yet heritable, sequence-specific 'adaptive' immunity against phage and other horizontally-acquired elements, such as plasmids. Resistance is acquired following viral infection or plasmid uptake when a short sequence of the foreign genome is added to the CRISPR array. CRISPRs are then transcribed and processed, generally by CRISPR associated (Cas) proteins, into short interfering RNAs (crRNAs), which form part of a ribonucleoprotein complex. This complex guides the crRNA to the complementary invading nucleic acid and targets this for degradation. Recently, there have been rapid advances in our understanding of CRISPR/Cas systems. In this review, we will present the current model(s) of the molecular events involved in both the acquisition of immunity and interference stages and will also address recent progress in our knowledge of the regulation of CRISPR/Cas systems.

  2. A CRISPR-Cas9 System for Genetic Engineering of Filamentous Fungi.

    PubMed

    Nødvig, Christina S; Nielsen, Jakob B; Kogle, Martin E; Mortensen, Uffe H

    2015-01-01

    The number of fully sequenced fungal genomes is rapidly increasing. Since genetic tools are poorly developed for most filamentous fungi, it is currently difficult to employ genetic engineering for understanding the biology of these fungi and to fully exploit them industrially. For that reason there is a demand for developing versatile methods that can be used to genetically manipulate non-model filamentous fungi. To facilitate this, we have developed a CRISPR-Cas9 based system adapted for use in filamentous fungi. The system is simple and versatile, as RNA guided mutagenesis can be achieved by transforming a target fungus with a single plasmid. The system currently contains four CRISPR-Cas9 vectors, which are equipped with commonly used fungal markers allowing for selection in a broad range of fungi. Moreover, we have developed a script that allows identification of protospacers that target gene homologs in multiple species to facilitate introduction of common mutations in different filamentous fungi. With these tools we have performed RNA-guided mutagenesis in six species of which one has not previously been genetically engineered. Moreover, for a wild-type Aspergillus aculeatus strain, we have used our CRISPR Cas9 system to generate a strain that contains an AACU_pyrG marker and demonstrated that the resulting strain can be used for iterative gene targeting.

  3. Efficient Genome Editing in Chicken DF-1 Cells Using the CRISPR/Cas9 System

    PubMed Central

    Bai, Yichun; He, Linjie; Li, Pengcheng; Xu, Kun; Shao, Simin; Ren, Chonghua; Liu, Zhongtian; Wei, Zehui; Zhang, Zhiying

    2016-01-01

    In recent years, genome engineering technology has provided unprecedented opportunities for site-specific modification of biological genomes. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 is one such means that can target a specific genome locus. It has been applied in human cells and many other organisms. Meanwhile, to efficiently enrich targeted cells, several surrogate systems have also been developed. However, very limited information exists on the application of CRISPR/Cas9 in chickens. In this study, we employed the CRISPR/Cas9 system to induce mutations in the peroxisome proliferator-activated receptor-γ (PPAR-γ), ATP synthase epsilon subunit (ATP5E), and ovalbumin (OVA) genes in chicken DF-1 cells. The results of T7E1 assays showed that the mutation rate at the three different loci was 0.75%, 0.5%, and 3.0%, respectively. In order to improve the mutation efficiency, we used the PuroR gene for efficient enrichment of genetically modified cells with the surrogate reporter system. The mutation rate, as assessed via the T7E1 assay, increased to 60.7%, 61.3%, and 47.3%, and subsequent sequence analysis showed that the mutation efficiency increased to 94.7%, 95%, and 95%, respectively. In addition, there were no detectable off-target mutations in three potential off-target sites using the T7E1 assay. As noted above, the CRISPR/Cas9 system is a robust tool for chicken genome editing. PMID:26869617

  4. The molecular mechanism of CRISPR/Cas9 system and its application in gene therapy of human diseases.

    PubMed

    Liang, Qu; Huashan, Li; Yunhan, Jiang; Chunsheng, Dong

    2015-10-01

    CRISPR/Cas system is an adaptive immune system that confers resistance to exogenous virus or plasmid in bacteria and archaea. In recent years, the booming CRISPR/Cas9 genome editing technology modified from type2 CRISPR/Cas adaptive immune system has been widely applied to various research fields of life science and led to revolutionary changes. In this review, we summarize the origin and development of CRISPR/Cas9 genome editing technology as well as its applications in life science research. We focus on the latest application of this system in gene therapy of human diseases and the associated side/off-target effects, which may provide references for researchers in related areas.

  5. DNA targeting by the type I-G and type I-A CRISPR–Cas systems of Pyrococcus furiosus

    PubMed Central

    Elmore, Joshua; Deighan, Trace; Westpheling, Jan; Terns, Rebecca M.; Terns, Michael P.

    2015-01-01

    CRISPR–Cas systems silence plasmids and viruses in prokaryotes. CRISPR–Cas effector complexes contain CRISPR RNAs (crRNAs) that include sequences captured from invaders and direct CRISPR-associated (Cas) proteins to destroy corresponding invader nucleic acids. Pyrococcus furiosus (Pfu) harbors three CRISPR–Cas immune systems: a Cst (Type I-G) system with an associated Cmr (Type III-B) module at one locus, and a partial Csa (Type I-A) module (lacking known invader sequence acquisition and crRNA processing genes) at another locus. The Pfu Cmr complex cleaves complementary target RNAs, and Csa systems have been shown to target DNA, while the mechanism by which Cst complexes silence invaders is unknown. In this study, we investigated the function of the Cst as well as Csa system in Pfu strains harboring a single CRISPR–Cas system. Plasmid transformation assays revealed that the Cst and Csa systems both function by DNA silencing and utilize similar flanking sequence information (PAMs) to identify invader DNA. Silencing by each system specifically requires its associated Cas3 nuclease. crRNAs from the 7 shared CRISPR loci in Pfu are processed for use by all 3 effector complexes, and Northern analysis revealed that individual effector complexes dictate the profile of mature crRNA species that is generated. PMID:26519471

  6. MISSA 2.0: an updated synthetic biology toolbox for assembly of orthogonal CRISPR/Cas systems.

    PubMed

    Zhang, Hai-Yan; Wang, Xing-Hui; Dong, Li; Wang, Zhi-Ping; Liu, Bing; Lv, Jie; Xing, Hui-Li; Han, Chun-Yan; Wang, Xue-Chen; Chen, Qi-Jun

    2017-02-03

    Efficient generation of plants carrying mutations in multiple genes remains a challenge. Using two or more orthogonal CRISPR/Cas systems can generate plants with multi-gene mutations, but assembly of these systems requires a robust, high-capacity toolkit. Here, we describe MISSA 2.0 (multiple-round in vivo site-specific assembly 2.0), an extensively updated toolkit for assembly of two or more CRISPR/Cas systems. We developed a novel suicide donor vector system based on plasmid RK2, which has much higher cloning capacity than the original, plasmid R6K-based system. We validated the utility of MISSA 2.0 by assembling multiple DNA fragments into the E. coli chromosome, and by creating transgenic Arabidopsis thaliana that constitutively or inducibly overexpress multiple genes. We then demonstrated that the higher cloning capacity of the RK2-derived MISSA 2.0 donor vectors facilitated the assembly of two orthogonal CRISPR/Cas systems including SpCas9 and SaCas9, and thus facilitated the creation of transgenic lines harboring these systems. We anticipate that MISSA 2.0 will enable substantial advancements in multiplex genome editing based on two or more orthogonal CRISPR/Cas9 systems, as well as in plant synthetic biology.

  7. MISSA 2.0: an updated synthetic biology toolbox for assembly of orthogonal CRISPR/Cas systems

    PubMed Central

    Zhang, Hai-Yan; Wang, Xing-Hui; Dong, Li; Wang, Zhi-Ping; Liu, Bing; Lv, Jie; Xing, Hui-Li; Han, Chun-Yan; Wang, Xue-Chen; Chen, Qi-Jun

    2017-01-01

    Efficient generation of plants carrying mutations in multiple genes remains a challenge. Using two or more orthogonal CRISPR/Cas systems can generate plants with multi-gene mutations, but assembly of these systems requires a robust, high-capacity toolkit. Here, we describe MISSA 2.0 (multiple-round in vivo site-specific assembly 2.0), an extensively updated toolkit for assembly of two or more CRISPR/Cas systems. We developed a novel suicide donor vector system based on plasmid RK2, which has much higher cloning capacity than the original, plasmid R6K-based system. We validated the utility of MISSA 2.0 by assembling multiple DNA fragments into the E. coli chromosome, and by creating transgenic Arabidopsis thaliana that constitutively or inducibly overexpress multiple genes. We then demonstrated that the higher cloning capacity of the RK2-derived MISSA 2.0 donor vectors facilitated the assembly of two orthogonal CRISPR/Cas systems including SpCas9 and SaCas9, and thus facilitated the creation of transgenic lines harboring these systems. We anticipate that MISSA 2.0 will enable substantial advancements in multiplex genome editing based on two or more orthogonal CRISPR/Cas9 systems, as well as in plant synthetic biology. PMID:28155921

  8. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system.

    PubMed

    Zhang, Kang; Duan, Xuguo; Wu, Jing

    2016-06-16

    Bacillus subtilis ATCC 6051a is an undomesticated strain used in the industrial production of enzymes. Because it is poorly transformable, genetic manipulation in this strain requires a highly efficient genome editing method. In this study, a Streptococcus pyogenes CRISPR/Cas9 system consisting of an all-in-one knockout plasmid containing a target-specific guide RNA, cas9, and a homologous repair template was established for highly efficient gene disruption in B. subtilis ATCC 6051a. With an efficiency of 33% to 53%, this system was used to disrupt the srfC, spoIIAC, nprE, aprE and amyE genes of B. subtilis ATCC 6051a, which hamper its use in industrial fermentation. Compared with B. subtilis ATCC 6051a, the final mutant, BS5 (ΔsrfC, ΔspoIIAC, ΔnprE, ΔaprE, ΔamyE), produces much less foam during fermentation, displays greater resistant to spore formation, and secretes 2.5-fold more β-cyclodextrin glycosyltransferase into the fermentation medium. Thus, the CRISPR/Cas9 system proved to be a powerful tool for targeted genome editing in an industrially relevant, poorly transformable strain.

  9. Targeted HIV-1 Latency Reversal Using CRISPR/Cas9-Derived Transcriptional Activator Systems.

    PubMed

    Bialek, Julia K; Dunay, Gábor A; Voges, Maike; Schäfer, Carola; Spohn, Michael; Stucka, Rolf; Hauber, Joachim; Lange, Ulrike C

    2016-01-01

    CRISPR/Cas9 technology is currently considered the most advanced tool for targeted genome engineering. Its sequence-dependent specificity has been explored for locus-directed transcriptional modulation. Such modulation, in particular transcriptional activation, has been proposed as key approach to overcome silencing of dormant HIV provirus in latently infected cellular reservoirs. Currently available agents for provirus activation, so-called latency reversing agents (LRAs), act indirectly through cellular pathways to induce viral transcription. However, their clinical performance remains suboptimal, possibly because reservoirs have diverse cellular identities and/or proviral DNA is intractable to the induced pathways. We have explored two CRISPR/Cas9-derived activator systems as targeted approaches to induce dormant HIV-1 proviral DNA. These systems recruit multiple transcriptional activation domains to the HIV 5' long terminal repeat (LTR), for which we have identified an optimal target region within the LTR U3 sequence. Using this target region, we demonstrate transcriptional activation of proviral genomes via the synergistic activation mediator complex in various in culture model systems for HIV latency. Observed levels of induction are comparable or indeed higher than treatment with established LRAs. Importantly, activation is complete, leading to production of infective viral particles. Our data demonstrate that CRISPR/Cas9-derived technologies can be applied to counteract HIV latency and may therefore represent promising novel approaches in the quest for HIV elimination.

  10. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system

    PubMed Central

    Zhang, Kang; Duan, Xuguo; Wu, Jing

    2016-01-01

    Bacillus subtilis ATCC 6051a is an undomesticated strain used in the industrial production of enzymes. Because it is poorly transformable, genetic manipulation in this strain requires a highly efficient genome editing method. In this study, a Streptococcus pyogenes CRISPR/Cas9 system consisting of an all-in-one knockout plasmid containing a target-specific guide RNA, cas9, and a homologous repair template was established for highly efficient gene disruption in B. subtilis ATCC 6051a. With an efficiency of 33% to 53%, this system was used to disrupt the srfC, spoIIAC, nprE, aprE and amyE genes of B. subtilis ATCC 6051a, which hamper its use in industrial fermentation. Compared with B. subtilis ATCC 6051a, the final mutant, BS5 (ΔsrfC, ΔspoIIAC, ΔnprE, ΔaprE, ΔamyE), produces much less foam during fermentation, displays greater resistant to spore formation, and secretes 2.5-fold more β-cyclodextrin glycosyltransferase into the fermentation medium. Thus, the CRISPR/Cas9 system proved to be a powerful tool for targeted genome editing in an industrially relevant, poorly transformable strain. PMID:27305971

  11. TALEN and CRISPR/Cas Genome Editing Systems: Tools of Discovery

    PubMed Central

    Nemudryi, A. A.; Valetdinova, K. R.; Medvedev, S. P.; Zakian, S. M.

    2014-01-01

    Precise studies of plant, animal and human genomes enable remarkable opportunities of obtained data application in biotechnology and medicine. However, knowing nucleotide sequences isn’t enough for understanding of particular genomic elements functional relationship and their role in phenotype formation and disease pathogenesis. In post-genomic era methods allowing genomic DNA sequences manipulation, visualization and regulation of gene expression are rapidly evolving. Though, there are few methods, that meet high standards of efficiency, safety and accessibility for a wide range of researchers. In 2011 and 2013 novel methods of genome editing appeared – this are TALEN (Transcription Activator-Like Effector Nucleases) and CRISPR (Clustered Regulatory Interspaced Short Palindromic Repeats)/Cas9 systems. Although TALEN and CRISPR/Cas9 appeared recently, these systems have proved to be effective and reliable tools for genome engineering. Here we generally review application of these systems for genome editing in conventional model objects of current biology, functional genome screening, cell-based human hereditary disease modeling, epigenome studies and visualization of cellular processes. Additionally, we review general strategies for designing TALEN and CRISPR/Cas9 and analyzing their activity. We also discuss some obstacles researcher can face using these genome editing tools. PMID:25349712

  12. Targeted HIV-1 Latency Reversal Using CRISPR/Cas9-Derived Transcriptional Activator Systems

    PubMed Central

    Bialek, Julia K.; Dunay, Gábor A.; Voges, Maike; Schäfer, Carola; Spohn, Michael; Stucka, Rolf; Hauber, Joachim; Lange, Ulrike C.

    2016-01-01

    CRISPR/Cas9 technology is currently considered the most advanced tool for targeted genome engineering. Its sequence-dependent specificity has been explored for locus-directed transcriptional modulation. Such modulation, in particular transcriptional activation, has been proposed as key approach to overcome silencing of dormant HIV provirus in latently infected cellular reservoirs. Currently available agents for provirus activation, so-called latency reversing agents (LRAs), act indirectly through cellular pathways to induce viral transcription. However, their clinical performance remains suboptimal, possibly because reservoirs have diverse cellular identities and/or proviral DNA is intractable to the induced pathways. We have explored two CRISPR/Cas9-derived activator systems as targeted approaches to induce dormant HIV-1 proviral DNA. These systems recruit multiple transcriptional activation domains to the HIV 5’ long terminal repeat (LTR), for which we have identified an optimal target region within the LTR U3 sequence. Using this target region, we demonstrate transcriptional activation of proviral genomes via the synergistic activation mediator complex in various in culture model systems for HIV latency. Observed levels of induction are comparable or indeed higher than treatment with established LRAs. Importantly, activation is complete, leading to production of infective viral particles. Our data demonstrate that CRISPR/Cas9-derived technologies can be applied to counteract HIV latency and may therefore represent promising novel approaches in the quest for HIV elimination. PMID:27341108

  13. Air Mobile Utility Distribution Systems.

    DTIC Science & Technology

    WATER PIPES, AIR TRANSPORTABLE EQUIPMENT, POLYVINYL CHLORIDE, GLASS REINFORCED PLASTICS , FUEL HOSES, HOSES....PIPES, *PIPING SYSTEMS, INSULATION, FABRICATION, CORROSION INHIBITION, FEASIBILITY STUDIES, AIR FORCE FACILITIES, POLYURETHANE RESINS, PLASTICS

  14. The CRISPR/Cas9 system for plant genome editing and beyond.

    PubMed

    Bortesi, Luisa; Fischer, Rainer

    2015-01-01

    Targeted genome editing using artificial nucleases has the potential to accelerate basic research as well as plant breeding by providing the means to modify genomes rapidly in a precise and predictable manner. Here we describe the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system, a recently developed tool for the introduction of site-specific double-stranded DNA breaks. We highlight the strengths and weaknesses of this technology compared with two well-established genome editing platforms: zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). We summarize recent results obtained in plants using CRISPR/Cas9 technology, discuss possible applications in plant breeding and consider potential future developments.

  15. Genome editing in Clostridium saccharoperbutylacetonicum N1-4 using CRISPR-Cas9 system.

    PubMed

    Wang, Shaohua; Dong, Sheng; Wang, Pixiang; Tao, Yong; Wang, Yi

    2017-03-03

    Clostridium saccharoperbutylacetonicum N1-4 is well known as a hyper-butanol-producing strain. However, the lack of genetic engineering tools hinders further elucidation of its solvent production mechanism and development of more robust strains. In this study, we set out to develop an efficient genome engineering system for this microorganism based on the CRISPR-Cas9 system. First, the functionality of the CRISPR-Cas9 system previously customized for C. beijerinckii was evaluated in C. saccharoperbutylacetonicum by targeting on pta and buk, two essential genes for acetate and butyrate production, respectively. The pta, buk single deletion, and the pta and buk double deletion mutants were successfully obtained based on this system. However, the genome engineering efficiency was rather low (the mutation rate is < 20%). Therefore, the efficiency was further optimized by evaluating various promoters for the gRNA expression. With promoter P J23119 , we achieved a mutation rate of 75% for pta deletion without serial subculturing as suggested previously for C. beijerinckii Thus, this developed CRISPR-Cas9 system is highly desirable for efficient genome editing in C. saccharoperbutylacetonicum Batch fermentation results revealed that both the acid and solvent production profiles were altered due to the disruption of acid production pathways, however neither acetate nor butyrate production was eliminated with the deletion of the corresponding gene. The butanol production, yield and selectivity were improved in mutants dependent on the fermentation medium. In the pta-buk double deletion mutant, the butanol production reached 19.0 g/l in P2 medium, which is one of the highest among the ever reported from batch fermentations.IMPORTANCE An efficient CRISPR-Cas9 genome engineering system was developed for C. saccharoperbutylacetonicum N1-4. This paves the way for elucidating the solvent production mechanism in this hyper-butanol-producing microorganism and developing strains

  16. Development of the CRISPR/Cas9 System for Targeted Gene Disruption in Aspergillus fumigatus

    PubMed Central

    Fuller, Kevin K.

    2015-01-01

    Low rates of homologous recombination have broadly encumbered genetic studies in the fungal pathogen Aspergillus fumigatus. The CRISPR/Cas9 system of bacteria has recently been developed for targeted mutagenesis of eukaryotic genomes with high efficiency and, importantly, through a mechanism independent of homologous repair machinery. As this new technology has not been developed for use in A. fumigatus, we sought to test its feasibility for targeted gene disruption in this organism. As a proof of principle, we first demonstrated that CRISPR/Cas9 can indeed be used for high-efficiency (25 to 53%) targeting of the A. fumigatus polyketide synthase gene (pksP), as evidenced by the generation of colorless (albino) mutants harboring the expected genomic alteration. We further demonstrated that the constitutive expression of the Cas9 nuclease by itself is not deleterious to A. fumigatus growth or virulence, thus making the CRISPR system compatible with studies involved in pathogenesis. Taken together, these data demonstrate that CRISPR can be utilized for loss-of-function studies in A. fumigatus and has the potential to bolster the genetic toolbox for this important pathogen. PMID:26318395

  17. Intellectual property education exemplified by the patents on the CRISPR/Cas9 system.

    PubMed

    Fan, Xiangyu; Liao, Guojian; Xie, Jianping

    2014-12-01

    With the accelerated globalization of the world economies, the role of intellectual property in the the competition is increasingly important. The universities are important base to instill the intellectual property awareness to the young generation. However, current model of intellectual property education cannot meet the needs of undergraduates. In this paper, we take the first patent issued for CRISPR/Cas9 system as a teaching example, and together with personal teaching experience in biomedicine related intellectual property, we propose a new way for intellectual property education which consists of two stages: enlightenment stage and in-depth training stage. In the former stage, we integrate the intellectual property education with the basic major courses. In the latter stage, students are encouraged to devote into intellectual property related career. This model can somehow solve the the current shortage of qualified teachers for biotechnology related intellectual property education and will facilitate the popularization of intellectual property in college students. Since genetics plays a pivotal role in biomedicine, this effort is illustrated by the novel genome editing technology based on the CRISPR/Cas9 system, which is one hotspot of recent studies. The trajectory of CRISPR/Cas9 from basic microbial genetics discovery to major tools for genome editing exeplified the essence of biomedicine related intellectual property education.

  18. A CRISPR-Cas9 sex-ratio distortion system for genetic control

    PubMed Central

    Galizi, Roberto; Hammond, Andrew; Kyrou, Kyros; Taxiarchi, Chrysanthi; Bernardini, Federica; O’Loughlin, Samantha M.; Papathanos, Philippos-Aris; Nolan, Tony; Windbichler, Nikolai; Crisanti, Andrea

    2016-01-01

    Genetic control aims to reduce the ability of insect pest populations to cause harm via the release of modified insects. One strategy is to bias the reproductive sex ratio towards males so that a population decreases in size or is eliminated altogether due to a lack of females. We have shown previously that sex ratio distortion can be generated synthetically in the main human malaria vector Anopheles gambiae, by selectively destroying the X-chromosome during spermatogenesis, through the activity of a naturally-occurring endonuclease that targets a repetitive rDNA sequence highly-conserved in a wide range of organisms. Here we describe a CRISPR-Cas9 sex distortion system that targets ribosomal sequences restricted to the member species of the Anopheles gambiae complex. Expression of Cas9 during spermatogenesis resulted in RNA-guided shredding of the X-chromosome during male meiosis and produced extreme male bias among progeny in the absence of any significant reduction in fertility. The flexibility of CRISPR-Cas9 combined with the availability of genomic data for a range of insects renders this strategy broadly applicable for the species-specific control of any pest or vector species with an XY sex-determination system by targeting sequences exclusive to the female sex chromosome. PMID:27484623

  19. CRISPR-Cas systems preferentially target the leading regions of MOBF conjugative plasmids.

    PubMed

    Westra, Edze R; Staals, Raymond H J; Gort, Gerrit; Høgh, Søren; Neumann, Sarah; de la Cruz, Fernando; Fineran, Peter C; Brouns, Stan J J

    2013-05-01

    Most prokaryotes contain CRISPR-Cas immune systems that provide protection against mobile genetic elements. We have focused on the ability of CRISPR-Cas to block plasmid conjugation, and analyzed the position of target sequences (protospacers) on conjugative plasmids. The analysis reveals that protospacers are non-uniformly distributed over plasmid regions in a pattern that is determined by the plasmid's mobilization type (MOB). While MOBP plasmids are most frequently targeted in the region entering the recipient cell last (lagging region), MOBF plasmids are mostly targeted in the region entering the recipient cell first (leading region). To explain this protospacer distribution bias, we propose two mutually non-exclusive hypotheses: (1) spacers are acquired more frequently from either the leading or lagging region depending on the MOB type (2) CRISPR-interference is more efficient when spacers target these preferred regions. To test the latter hypothesis, we analyzed Type I-E CRISPR-interference against MOBF prototype plasmid F in Escherichia coli. Our results show that plasmid conjugation is effectively inhibited, but the level of immunity is not affected by targeting the plasmid in the leading or lagging region. Moreover, CRISPR-immunity levels do not depend on whether the incoming single-stranded plasmid DNA, or the DNA strand synthesized in the recipient is targeted. Our findings indicate that single-stranded DNA may not be a target for Type I-E CRISPR-Cas systems, and suggest that the protospacer distribution bias might be due to spacer acquisition preferences.

  20. Efficient Gene Targeting in Golden Syrian Hamsters by the CRISPR/Cas9 System

    PubMed Central

    Meng, Qinggang; Shi, Bi; Bunch, Thomas D.; White, Kenneth L.; Kong, Il-Keun; Wang, Zhongde

    2014-01-01

    The golden Syrian hamster is the model of choice or the only rodent model for studying many human diseases. However, the lack of gene targeting tools in hamsters severely limits their use in biomedical research. Here, we report the first successful application of the CRISPR/Cas9 system to efficiently conduct gene targeting in hamsters. We designed five synthetic single-guide RNAs (sgRNAs)—three for targeting the coding sequences for different functional domains of the hamster STAT2 protein, one for KCNQ1, and one for PPP1R12C—and demonstrated that the CRISPR/Cas9 system is highly efficient in introducing site-specific mutations in hamster somatic cells. We then developed unique pronuclear (PN) and cytoplasmic injection protocols in hamsters and produced STAT2 knockout (KO) hamsters by injecting the sgRNA/Cas9, either in the form of plasmid or mRNA, targeting exon 4 of hamster STAT2. Among the produced hamsters, 14.3% and 88.9% harbored germline-transmitted STAT2 mutations from plasmid and mRNA injection, respectively. Notably, 10.4% of the animals produced from mRNA injection were biallelically targeted. This is the first success in conducting site-specific gene targeting in hamsters and can serve as the foundation for developing other genetically engineered hamster models for human disease. PMID:25299451

  1. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish

    PubMed Central

    Ablain, Julien; Durand, Ellen M.; Yang, Song; Zhou, Yi; Zon, Leonard I.

    2015-01-01

    Summary CRISPR/Cas9 technology of genome editing has greatly facilitated the targeted inactivation of genes in vitro and in vivo in a wide range of organisms. In zebrafish it allows the rapid generation of knock-out lines by simply injecting a guide RNA (gRNA) and Cas9 mRNA into one-cell stage embryos. Here, we report a simple and scalable CRISPR-based vector system for tissue-specific gene inactivation in zebrafish. As proof of principle, we used our vector with the gata1 promoter driving Cas9 expression to silence the urod gene, implicated in heme biosynthesis, specifically in the erythrocytic lineage. Urod targeting yielded red fluorescent erythrocytes in zebrafish embryos, recapitulating the phenotype observed in the yquem mutant. While F0 embryos displayed mosaic gene disruption, the phenotype appeared very penetrant in stable F1 fish. This vector system constitutes a unique tool to spatially control gene knock-out and greatly broadens the scope of loss-of-function studies in zebrafish. PMID:25752963

  2. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells.

    PubMed

    Liao, Hsin-Kai; Gu, Ying; Diaz, Arturo; Marlett, John; Takahashi, Yuta; Li, Mo; Suzuki, Keiichiro; Xu, Ruo; Hishida, Tomoaki; Chang, Chan-Jung; Esteban, Concepcion Rodriguez; Young, John; Izpisua Belmonte, Juan Carlos

    2015-03-10

    To combat hostile viruses, bacteria and archaea have evolved a unique antiviral defense system composed of clustered regularly interspaced short palindromic repeats (CRISPRs), together with CRISPR-associated genes (Cas). The CRISPR/Cas9 system develops an adaptive immune resistance to foreign plasmids and viruses by creating site-specific DNA double-stranded breaks (DSBs). Here we adapt the CRISPR/Cas9 system to human cells for intracellular defense against foreign DNA and viruses. Using HIV-1 infection as a model, our results demonstrate that the CRISPR/Cas9 system disrupts latently integrated viral genome and provides long-term adaptive defense against new viral infection, expression and replication in human cells. We show that engineered human-induced pluripotent stem cells stably expressing HIV-targeted CRISPR/Cas9 can be efficiently differentiated into HIV reservoir cell types and maintain their resistance to HIV-1 challenge. These results unveil the potential of the CRISPR/Cas9 system as a new therapeutic strategy against viral infections.

  3. CRISPR/Cas9 System as an Agent for Eliminating Polyomavirus JC Infection

    PubMed Central

    Wollebo, Hassen S.; Bellizzi, Anna; Kaminski, Rafal; Hu, Wenhui; White, Martyn K.; Khalili, Kamel

    2015-01-01

    Progressive multifocal leukoencephalopathy (PML) is a fatal demyelinating disease of the central nervous system (CNS) caused by reactivation of the human polyomavirus JCV gene expression and its replication in oligodendrocytes, the myelin producing cells in the brain. Once a rare disease seen in patients with lymphotproliferative and myeloproliferative disorders, PML has been seen more frequently in HIV-1 positive/AIDS patients as well as patients undergoing immunomodulatory therapy due for autoimmune disorders including multiple sclerosis, rheumatoid arthritis, and others. As of now there is no cure for PML and in most cases disease progression leads to death within two years. Similar to other polyomaviruses, the JCV genome is small circular double stranded DNA that includes coding sequences for the viral early protein, T-antigen, which is critical for directing viral reactivation and lytic infection. Here, we employ a newly developed gene editing strategy, CRISPR/Cas9, to introduce mutations in the viral genome and, by inactivating the gene encoding T-antigen, inhibit viral replication. We first used bioinformatics screening and identified several potential targets within the JCV T-antigen gene that can serve as sites for the creation of guide RNAs (gRNAs) for positioning the Cas9 nuclease on the designated area of the viral genome for editing. Results from a series of integrated genetic and functional studies showed that transient or conditional expression of Cas9 and gRNAs specifically targets the DNA sequences corresponding to the N-terminal region of T-antigen, and by introducing mutation, interferes with expression and function of of the viral protein, hence suppressing viral replication in permissive cells. Results from SURVEYOR assay revealed no off-target effects of the JCV-specific CRISPR/Cas9 editing apparatus. These observations provide the first evidence for the employment of a gene editing strategy as a promising tool for the elimination of the JCV

  4. CRISPR/Cas9 System as an Agent for Eliminating Polyomavirus JC Infection.

    PubMed

    Wollebo, Hassen S; Bellizzi, Anna; Kaminski, Rafal; Hu, Wenhui; White, Martyn K; Khalili, Kamel

    2015-01-01

    Progressive multifocal leukoencephalopathy (PML) is a fatal demyelinating disease of the central nervous system (CNS) caused by reactivation of the human polyomavirus JCV gene expression and its replication in oligodendrocytes, the myelin producing cells in the brain. Once a rare disease seen in patients with lymphotproliferative and myeloproliferative disorders, PML has been seen more frequently in HIV-1 positive/AIDS patients as well as patients undergoing immunomodulatory therapy due for autoimmune disorders including multiple sclerosis, rheumatoid arthritis, and others. As of now there is no cure for PML and in most cases disease progression leads to death within two years. Similar to other polyomaviruses, the JCV genome is small circular double stranded DNA that includes coding sequences for the viral early protein, T-antigen, which is critical for directing viral reactivation and lytic infection. Here, we employ a newly developed gene editing strategy, CRISPR/Cas9, to introduce mutations in the viral genome and, by inactivating the gene encoding T-antigen, inhibit viral replication. We first used bioinformatics screening and identified several potential targets within the JCV T-antigen gene that can serve as sites for the creation of guide RNAs (gRNAs) for positioning the Cas9 nuclease on the designated area of the viral genome for editing. Results from a series of integrated genetic and functional studies showed that transient or conditional expression of Cas9 and gRNAs specifically targets the DNA sequences corresponding to the N-terminal region of T-antigen, and by introducing mutation, interferes with expression and function of of the viral protein, hence suppressing viral replication in permissive cells. Results from SURVEYOR assay revealed no off-target effects of the JCV-specific CRISPR/Cas9 editing apparatus. These observations provide the first evidence for the employment of a gene editing strategy as a promising tool for the elimination of the JCV

  5. Efficient Generation of Myostatin Mutations in Pigs Using the CRISPR/Cas9 System

    PubMed Central

    Wang, Kankan; Ouyang, Hongsheng; Xie, Zicong; Yao, Chaogang; Guo, Nannan; Li, Mengjing; Jiao, Huping; Pang, Daxin

    2015-01-01

    Genetically modified pigs are increasingly used for biomedical and agricultural applications. The efficient CRISPR/Cas9 gene editing system holds great promise for the generation of gene-targeting pigs without selection marker genes. In this study, we aimed to disrupt the porcine myostatin (MSTN) gene, which functions as a negative regulator of muscle growth. The transfection efficiency of porcine fetal fibroblasts (PFFs) was improved to facilitate the targeting of Cas9/gRNA. We also demonstrated that Cas9/gRNA can induce non-homologous end-joining (NHEJ), long fragment deletions/inversions and homology-directed repair (HDR) at the MSTN locus of PFFs. Single-cell MSTN knockout colonies were used to generate cloned pigs via somatic cell nuclear transfer (SCNT), which resulted in 8 marker-gene-free cloned pigs with biallelic mutations. Some of the piglets showed obvious intermuscular grooves and enlarged tongues, which are characteristic of the double muscling (DM) phenotype. The protein level of MSTN was decreased in the mutant cloned pigs compared with the wild-type controls, and the mRNA levels of MSTN and related signaling pathway factors were also analyzed. Finally, we carefully assessed off-target mutations in the cloned pigs. The gene editing platform used in this study can efficiently generate genetically modified pigs with biological safety. PMID:26564781

  6. Editing of mouse and human immunoglobulin genes by CRISPR-Cas9 system

    PubMed Central

    Cheong, Taek-Chin; Compagno, Mara; Chiarle, Roberto

    2016-01-01

    Applications of the CRISPR-Cas9 system to edit the genome have widely expanded to include DNA gene knock-out, deletions, chromosomal rearrangements, RNA editing and genome-wide screenings. Here we show the application of CRISPR-Cas9 technology to edit the mouse and human immunoglobulin (Ig) genes. By delivering Cas9 and guide-RNA (gRNA) with retro- or lenti-virus to IgM+ mouse B cells and hybridomas, we induce class-switch recombination (CSR) of the IgH chain to the desired subclass. Similarly, we induce CSR in all human B cell lines tested with high efficiency to targeted IgH subclass. Finally, we engineer mouse hybridomas to secrete Fab′ fragments instead of the whole Ig. Our results indicate that Ig genes in mouse and human cells can be edited to obtain any desired IgH switching helpful to study the biology of normal and lymphoma B cells. We also propose applications that could transform the technology of antibody production. PMID:26956543

  7. Biallelic editing of a lamprey genome using the CRISPR/Cas9 system.

    PubMed

    Zu, Yao; Zhang, Xushuai; Ren, Jianfeng; Dong, Xuehong; Zhu, Zhe; Jia, Liang; Zhang, Qinghua; Li, Weiming

    2016-03-23

    Lampreys are extant representatives of agnathans. Descriptions of lamprey development, physiology and genome have provided critical insights into early evolution of vertebrate traits. However, efficient means for genetic manipulation in agnathan species have not been developed, hindering functional studies of genes in these important Evo-Devo models. Here, we report a CRISPR/Cas system optimized for lamprey genomes and use it to disrupt genomic loci in the Northeast Chinese lamprey (Lethenteron morii) with efficiencies ranging between 84~99%. The frequencies of indels observed in the target loci of golden (gol), kctd10, wee1, soxe2, and wnt7b, estimated from direct sequencing of genomic DNA samples of injected lamprey larvae, were 68/69, 47/56, 38/39, 36/37 and 36/42, respectively. These indels often occurred in both alleles. In the CRISPR/Cas9 treatment for gol or kctd10, 38.6% or 85.3% of the targeted larvae had the respective recessive null-like phenotypes, further confirming the disruption of both loci. The kctd10 gRNA, designed against an essential functional region of Kctd10, resulted in null-like phenotypes and in-frame mutations in alleles. We suggest that the CRISPR/Cas-based approach has the potential for efficient genetic perturbation in organisms less amenable to germ line transmission based approaches.

  8. Efficient Genome Editing in Apple Using a CRISPR/Cas9 system

    PubMed Central

    Nishitani, Chikako; Hirai, Narumi; Komori, Sadao; Wada, Masato; Okada, Kazuma; Osakabe, Keishi; Yamamoto, Toshiya; Osakabe, Yuriko

    2016-01-01

    Genome editing is a powerful technique for genome modification in molecular research and crop breeding, and has the great advantage of imparting novel desired traits to genetic resources. However, the genome editing of fruit tree plantlets remains to be established. In this study, we describe induction of a targeted gene mutation in the endogenous apple phytoene desaturase (PDS) gene using the CRISPR/Cas9 system. Four guide RNAs (gRNAs) were designed and stably transformed with Cas9 separately in apple. Clear and partial albino phenotypes were observed in 31.8% of regenerated plantlets for one gRNA, and bi-allelic mutations in apple PDS were confirmed by DNA sequencing. In addition, an 18-bp gRNA also induced a targeted mutation. These CRIPSR/Cas9 induced-mutations in the apple genome suggest activation of the NHEJ pathway, but with some involvement also of the HR pathway. Our results demonstrate that genome editing can be practically applied to modify the apple genome. PMID:27530958

  9. Detection and characterization of spacer integration intermediates in type I-E CRISPR-Cas system.

    PubMed

    Arslan, Zihni; Hermanns, Veronica; Wurm, Reinhild; Wagner, Rolf; Pul, Ümit

    2014-07-01

    The adaptation against foreign nucleic acids by the CRISPR-Cas system (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins) depends on the insertion of foreign nucleic acid-derived sequences into the CRISPR array as novel spacers by still unknown mechanism. We identified and characterized in Escherichia coli intermediate states of spacer integration and mapped the integration site at the chromosomal CRISPR array in vivo. The results show that the insertion of new spacers occurs by site-specific nicking at both strands of the leader proximal repeat in a staggered way and is accompanied by joining of the resulting 5'-ends of the repeat strands with the 3'-ends of the incoming spacer. This concerted cleavage-ligation reaction depends on the metal-binding center of Cas1 protein and requires the presence of Cas2. By acquisition assays using plasmid-located CRISPR array with mutated repeat sequences, we demonstrate that the primary sequence of the first repeat is crucial for cleavage of the CRISPR array and the ligation of new spacer DNA.

  10. Air Quality System (AQS) Metadata

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency compiles air quality monitoring data in the Air Quality System (AQS). Ambient air concentrations are measured at a national network of more than 4,000 monitoring stations and are reported by state, local, and tribal

  11. Multidisciplinary Aerospace Systems Optimization: Computational AeroSciences (CAS) Project

    NASA Technical Reports Server (NTRS)

    Kodiyalam, S.; Sobieski, Jaroslaw S. (Technical Monitor)

    2001-01-01

    The report describes a method for performing optimization of a system whose analysis is so expensive that it is impractical to let the optimization code invoke it directly because excessive computational cost and elapsed time might result. In such situation it is imperative to have user control the number of times the analysis is invoked. The reported method achieves that by two techniques in the Design of Experiment category: a uniform dispersal of the trial design points over a n-dimensional hypersphere and a response surface fitting, and the technique of krigging. Analyses of all the trial designs whose number may be set by the user are performed before activation of the optimization code and the results are stored as a data base. That code is then executed and referred to the above data base. Two applications, one of the airborne laser system, and one of an aircraft optimization illustrate the method application.

  12. Detecting natural adaptation of the Streptococcus thermophilus CRISPR-Cas systems in research and classroom settings.

    PubMed

    Hynes, Alexander P; Lemay, Marie-Laurence; Trudel, Luc; Deveau, Hélène; Frenette, Michel; Tremblay, Denise M; Moineau, Sylvain

    2017-03-01

    CRISPR (clustered regularly interspaced short palindromic repeats)-Cas systems have been adapted into a powerful genome-editing tool. The basis for the flexibility of the tool lies in the adaptive nature of CRISPR-Cas as a bacterial immune system. Here, we describe a protocol to experimentally demonstrate the adaptive nature of this bacterial immune system by challenging the model organism for the study of CRISPR adaptation, Streptococcus thermophilus, with phages in order to detect natural CRISPR immunization. A bacterial culture is challenged with lytic phages, the surviving cells are screened by PCR for expansion of their CRISPR array and the newly acquired specificities are mapped to the genome of the phage. Furthermore, we offer three variants of the assay to (i) promote adaptation by challenging the system using defective viruses, (ii) challenge the system using plasmids to generate plasmid-resistant strains and (iii) bias the system to obtain natural immunity against a specifically targeted DNA sequence. The core protocol and its variants serve as a means to explore CRISPR adaptation, discover new CRISPR-Cas systems and generate bacterial strains that are resistant to phages or refractory to undesired genes or plasmids. In addition, the core protocol has served in teaching laboratories at the undergraduate level, demonstrating both its robust nature and educational value. Carrying out the core protocol takes 4 h of hands-on time over 7 d. Unlike sequence-based methods for detecting natural CRISPR adaptation, this phage-challenge-based approach results in the isolation of CRISPR-immune bacteria for downstream characterization and use.

  13. Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus

    PubMed Central

    Park, Joo Youn; Moon, Bo Youn; Park, Juw Won; Thornton, Justin A.; Park, Yong Ho; Seo, Keun Seok

    2017-01-01

    Discovery of clustered, regularly interspaced, short palindromic repeats and the Cas9 RNA-guided nuclease (CRISPR/Cas9) system provides a new opportunity to create programmable gene-specific antimicrobials that are far less likely to drive resistance than conventional antibiotics. However, the practical therapeutic use of CRISPR/Cas9 is still questionable due to current shortcomings in phage-based delivery systems such as inefficient delivery, narrow host range, and potential transfer of virulence genes by generalized transduction. In this study, we demonstrate genetic engineering strategies to overcome these shortcomings by integrating CRISPR/Cas9 system into a temperate phage genome, removing major virulence genes from the host chromosome, and expanding host specificity of the phage by complementing tail fiber protein. This significantly improved the efficacy and safety of CRISPR/Cas9 antimicrobials to therapeutic levels in both in vitro and in vivo assays. The genetic engineering tools and resources established in this study are expected to provide an efficacious and safe CRISPR/Cas9 antimicrobial, broadly applicable to Staphylococcus aureus. PMID:28322317

  14. CRISPR/Cas9 system as an innovative genetic engineering tool: Enhancements in sequence specificity and delivery methods.

    PubMed

    Jo, Young-Il; Suresh, Bharathi; Kim, Hyongbum; Ramakrishna, Suresh

    2015-12-01

    While human gene therapy has gained significant attention for its therapeutic promise, CRISPR/Cas9 technology has made a breakthrough as an efficient genome editing tool by emulating prokaryotic immune defense mechanisms. Although many studies have found that CRISPR/Cas9 technology is more efficient, specific and manipulable than previous generations of gene editing tools, it can be further improved by elevating its overall efficiency in a higher frequency of genome modifications and reducing its off-target effects. Here, we review the development of CRISPR/Cas9 technology, focusing on enhancement of its sequence specificity, reduction of off-target effects and delivery systems. Moreover, we describe recent successful applications of CRISPR/Cas9 technology in laboratory and clinical studies.

  15. Anti-CRISPR Proteins: Counterattack of Phages on Bacterial Defense (CRISPR/Cas) System.

    PubMed

    Chaudhary, Kulbhushan; Chattopadhyay, Anirudha; Pratap, Dharmendra

    2017-03-01

    Since the dawn of life there is a never ending strife between bacteria and phages. Both are perpetually changing their strategies to take over each other. CRISPR/Cas is the most widespread defense system used by bacteria against mobile genetic elements (MGEs) such as phages, cojugative palsmids, transoposons and pathogenicity islands. This system utilizes small guide RNA molecules to protect against phages infection and invasion by MGEs. Phages circumvent to these antiviral barriers by point mutation in PAM (protospacer-adjacent motif) sequence, genome rearrangements and by using anti-CRISPR proteins. This article is protected by copyright. All rights reserved.

  16. Functional Analysis of Porphyromonas gingivalis W83 CRISPR-Cas Systems

    PubMed Central

    Burmistrz, Michał; Dudek, Bartosz; Staniec, Dominika; Rodriguez Martinez, Jose Ignacio; Bochtler, Matthias; Potempa, Jan

    2015-01-01

    ABSTRACT The CRISPR-Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated genes) system provides prokaryotic cells with an adaptive and heritable immune response to foreign genetic elements, such as viruses, plasmids, and transposons. It is present in the majority of Archaea and almost half of species of Bacteria. Porphyromonas gingivalis is an important human pathogen that has been proven to be an etiological agent of periodontitis and has been linked to systemic conditions, such as rheumatoid arthritis and cardiovascular disease. At least 95% of clinical strains of P. gingivalis carry CRISPR arrays, suggesting that these arrays play an important function in vivo. Here we show that all four CRISPR arrays present in the P. gingivalis W83 genome are transcribed. For one of the arrays, we demonstrate in vivo activity against double-stranded DNA constructs containing protospacer sequences accompanied at the 3′ end by an NGG protospacer-adjacent motif (PAM). Most of the 44 spacers present in the genome of P. gingivalis W83 share no significant similarity with any known sequences, although 4 spacers are similar to sequences from bacteria found in the oral cavity and the gastrointestinal tract. Four spacers match genomic sequences of the host; however, none of these is flanked at its 3′ terminus by the appropriate PAM element. IMPORTANCE The CRISPR-Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated genes) system is a unique system that provides prokaryotic cells with an adaptive and heritable immunity. In this report, we show that the CRISPR-Cas system of P. gingivalis, an important human pathogen associated with periodontitis and possibly also other conditions, such as rheumatoid arthritis and cardiovascular disease, is active and provides protection from foreign genetic elements. Importantly, the data presented here may be useful for better understanding the communication between cells in larger bacterial

  17. Interference-driven spacer acquisition is dominant over naive and primed adaptation in a native CRISPR–Cas system

    PubMed Central

    Staals, Raymond H. J.; Jackson, Simon A.; Biswas, Ambarish; Brouns, Stan J. J.; Brown, Chris M.; Fineran, Peter C.

    2016-01-01

    CRISPR–Cas systems provide bacteria with adaptive immunity against foreign nucleic acids by acquiring short, invader-derived sequences called spacers. Here, we use high-throughput sequencing to analyse millions of spacer acquisition events in wild-type populations of Pectobacterium atrosepticum. Plasmids not previously encountered, or plasmids that had escaped CRISPR–Cas targeting via point mutation, are used to provoke naive or primed spacer acquisition, respectively. The origin, location and order of spacer acquisition show that spacer selection through priming initiates near the site of CRISPR–Cas recognition (the protospacer), but on the displaced strand, and is consistent with 3′–5′ translocation of the Cas1:Cas2-3 acquisition machinery. Newly acquired spacers determine the location and strand specificity of subsequent spacers and demonstrate that interference-driven spacer acquisition (‘targeted acquisition') is a major contributor to adaptation in type I-F CRISPR–Cas systems. Finally, we show that acquisition of self-targeting spacers is occurring at a constant rate in wild-type cells and can be triggered by foreign DNA with similarity to the bacterial chromosome. PMID:27694798

  18. Regulation of the Type I-F CRISPR-Cas system by CRP-cAMP and GalM controls spacer acquisition and interference.

    PubMed

    Patterson, Adrian G; Chang, James T; Taylor, Corinda; Fineran, Peter C

    2015-07-13

    The CRISPR-Cas prokaryotic 'adaptive immune systems' represent a sophisticated defence strategy providing bacteria and archaea with protection from invading genetic elements, such as bacteriophages or plasmids. Despite intensive research into their mechanism and application, how CRISPR-Cas systems are regulated is less clear, and nothing is known about the regulation of Type I-F systems. We used Pectobacterium atrosepticum, a Gram-negative phytopathogen, to study CRISPR-Cas regulation, since it contains a single Type I-F system. The CRP-cAMP complex activated the cas operon, increasing the expression of the adaptation genes cas1 and cas2-3 in addition to the genes encoding the Csy surveillance complex. Mutation of crp or cyaA (encoding adenylate cyclase) resulted in reductions in both primed spacer acquisition and interference. Furthermore, we identified a galactose mutarotase, GalM, which reduced cas operon expression in a CRP- and CyaA-dependent manner. We propose that the Type I-F system senses metabolic changes, such as sugar availability, and regulates cas genes to initiate an appropriate defence response. Indeed, elevated glucose levels reduced cas expression in a CRP- and CyaA-dependent manner. Taken together, these findings highlight that a metabolite-sensing regulatory pathway controls expression of the Type I-F CRISPR-Cas system to modulate levels of adaptation and interference.

  19. Genome editing in sea urchin embryos by using a CRISPR/Cas9 system.

    PubMed

    Lin, Che-Yi; Su, Yi-Hsien

    2016-01-15

    Sea urchin embryos are a useful model system for investigating early developmental processes and the underlying gene regulatory networks. Most functional studies using sea urchin embryos rely on antisense morpholino oligonucleotides to knockdown gene functions. However, major concerns related to this technique include off-target effects, variations in morpholino efficiency, and potential morpholino toxicity; furthermore, such problems are difficult to discern. Recent advances in genome editing technologies have introduced the prospect of not only generating sequence-specific knockouts, but also providing genome-engineering applications. Two genome editing tools, zinc-finger nuclease (ZFN) and transcription activator-like effector nucleases (TALENs), have been utilized in sea urchin embryos, but the resulting efficiencies are far from satisfactory. The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated nuclease 9) system serves as an easy and efficient method with which to edit the genomes of several established and emerging model organisms in the field of developmental biology. Here, we apply the CRISPR/Cas9 system to the sea urchin embryo. We designed six guide RNAs (gRNAs) against the well-studied nodal gene and discovered that five of the gRNAs induced the expected phenotype in 60-80% of the injected embryos. In addition, we developed a simple method for isolating genomic DNA from individual embryos, enabling phenotype to be precisely linked to genotype, and revealed that the mutation rates were 67-100% among the sequenced clones. Of the two potential off-target sites we examined, no off-target effects were observed. The detailed procedures described herein promise to accelerate the usage of CRISPR/Cas9 system for genome editing in sea urchin embryos.

  20. Requirements for a successful defence reaction by the CRISPR-Cas subtype I-B system.

    PubMed

    Stoll, Britta; Maier, Lisa-Katharina; Lange, Sita J; Brendel, Jutta; Fischer, Susan; Backofen, Rolf; Marchfelder, Anita

    2013-12-01

    Uptake of foreign mobile genetic elements is often detrimental and can result in cell death. For protection against invasion, prokaryotes have developed several defence mechanisms, which take effect at all stages of infection; an example is the recently discovered CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) immune system. This defence system directly degrades invading genetic material and is present in almost all archaea and many bacteria. Current data indicate a large variety of mechanistic molecular approaches. Although almost all archaea carry this defence weapon, only a few archaeal systems have been fully characterized. In the present paper, we summarize the prerequisites for the detection and degradation of invaders in the halophilic archaeon Haloferax volcanii. H. volcanii encodes a subtype I-B CRISPR-Cas system and the defence can be triggered by a plasmid-based invader. Six different target-interference motifs are recognized by the Haloferax defence and a 9-nt non-contiguous seed sequence is essential. The repeat sequence has the potential to fold into a minimal stem-loop structure, which is conserved in haloarchaea and might be recognized by the Cas6 endoribonuclease during the processing of CRISPR loci into mature crRNA (CRISPR RNA). Individual crRNA species were present in very different concentrations according to an RNA-Seq analysis and many were unable to trigger a successful defence reaction. Recognition of the plasmid invader does not depend on its copy number, but instead results indicate a dependency on the type of origin present on the plasmid.

  1. The subtype I-F CRISPR-Cas system influences pathogenicity island retention in Pectobacterium atrosepticum via crRNA generation and Csy complex formation.

    PubMed

    Richter, Corinna; Fineran, Peter C

    2013-12-01

    CRISPR (clustered regularly interspaced short palindromic repeats) arrays and Cas (CRISPR-associated) proteins confer acquired resistance against mobile genetic elements in a wide range of bacteria and archaea. The phytopathogen Pectobacterium atrosepticum SCRI1043 encodes a single subtype I-F CRISPR system, which is composed of three CRISPR arrays and the cas operon encoding Cas1, Cas3 (a Cas2-Cas3 fusion), Csy1, Csy2, Csy3 and Cas6f (Csy4). The CRISPR arrays are transcribed into pre-crRNA (CRISPR RNA) and then processed by Cas6f to generate crRNAs. Furthermore, the formation of Cas protein complexes has been implicated in both the interference and acquisition stages of defence. In the present paper, we discuss the development of tightly controlled 'programmable' CRISPR arrays as tools to investigate CRISPR-Cas function and the effects of chromosomal targeting. Finally, we address how chromosomal targeting by CRISPR-Cas can cause large-scale genome deletions, which can ultimately influence bacterial evolution and pathogenicity.

  2. Creating Genome Modifications in C. elegans Using the CRISPR/Cas9 System.

    PubMed

    Calarco, John A; Friedland, Ari E

    2015-01-01

    The clustered, regularly interspaced, short, palindromic repeat (CRISPR)-associated (CAS) nuclease Cas9 has been used in many organisms to generate specific mutations and transgene insertions. Here we describe a method using the S. pyogenes Cas9 in C. elegans that provides a convenient and effective approach for making heritable changes to the worm genome.

  3. Scarless Cas9 Assisted Recombineering (no-SCAR) in Escherichia coli, an Easy-to-Use System for Genome Editing.

    PubMed

    Reisch, Christopher R; Prather, Kristala L J

    2017-01-05

    The discovery and development of genome editing systems that leverage the site-specific DNA endonuclease system CRISPR/Cas9 has fundamentally changed the ease and speed of genome editing in many organisms. In eukaryotes, the CRISPR/Cas9 system utilizes a "guide" RNA to enable the Cas9 nuclease to make a double-strand break at a particular genome locus, which is repaired by non-homologous end joining (NHEJ) repair enzymes, often generating random mutations in the process. A specific alteration of the target genome can also be generated by supplying a DNA template in vivo with a desired mutation, which is incorporated by homology-directed repair. However, E. coli lacks robust systems for double-strand break repair. Thus, in contrast to eukaryotes, targeting E. coli chromosomal DNA with Cas9 causes cell death. However, Cas9-mediated killing of bacteria can be exploited to select against cells with a specified genotype within a mixed population. In combination with the well described λ-Red system for recombination in E. coli, we created a highly efficient system for marker-free and scarless genome editing. © 2017 by John Wiley & Sons, Inc.

  4. Gene editing in mouse zygotes using the CRISPR/Cas9 system.

    PubMed

    Wefers, Benedikt; Bashir, Sanum; Rossius, Jana; Wurst, Wolfgang; Kühn, Ralf

    2017-03-02

    The generation of targeted mouse mutants is a key technology for biomedical research. Using the CRISPR/Cas9 system for induction of targeted double-strand breaks, gene editing can be performed in a single step directly in mouse zygotes. This article covers the design of knockout and knockin alleles, preparation of reagents, microinjection or electroporation of zygotes and the genotyping of pups derived from gene editing projects. In addition we include a section for the control of experimental settings by targeting the Rosa26 locus and PCR based genotyping of blastocysts.

  5. Detailed Analysis Plan for Validation of Close Air Support (CAS). Phase 2 Results

    DTIC Science & Technology

    1974-06-01

    CONMTL DATA PORN QUESTIONS LftIM/AIR b 1M MDRQUVEST PrASE RD, DIV OR CORPS (ALLOCATED RESOURCE ABORTS, ONLY) 1. Unit 1D No: 2. Location of TACP in UTM...Terminal Area Control (FAC(r) , PiC (A) , or ASRT) Type Control Call Sign Delay Abort CNX N/A Reason Codes Ist Znd 01 Cons Security 07 lnt’rm’t Com 14...NETWORK FOR ATTACK HELICOPTER CAB - DATA PORN QUESTIONS TO ANNEX C[ DATA COLLECTION CIoS CABA D AND CONTROL DATA FOlRM QUESTIONS No. 1-2-3-4-S.-6* ARMY

  6. Air conditioning system

    DOEpatents

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  7. A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants.

    PubMed

    Ma, Xingliang; Zhang, Qunyu; Zhu, Qinlong; Liu, Wei; Chen, Yan; Qiu, Rong; Wang, Bin; Yang, Zhongfang; Li, Heying; Lin, Yuru; Xie, Yongyao; Shen, Rongxin; Chen, Shuifu; Wang, Zhi; Chen, Yuanling; Guo, Jingxin; Chen, Letian; Zhao, Xiucai; Dong, Zhicheng; Liu, Yao-Guang

    2015-08-01

    CRISPR/Cas9 genome targeting systems have been applied to a variety of species. However, most CRISPR/Cas9 systems reported for plants can only modify one or a few target sites. Here, we report a robust CRISPR/Cas9 vector system, utilizing a plant codon optimized Cas9 gene, for convenient and high-efficiency multiplex genome editing in monocot and dicot plants. We designed PCR-based procedures to rapidly generate multiple sgRNA expression cassettes, which can be assembled into the binary CRISPR/Cas9 vectors in one round of cloning by Golden Gate ligation or Gibson Assembly. With this system, we edited 46 target sites in rice with an average 85.4% rate of mutation, mostly in biallelic and homozygous status. We reasoned that about 16% of the homozygous mutations in rice were generated through the non-homologous end-joining mechanism followed by homologous recombination-based repair. We also obtained uniform biallelic, heterozygous, homozygous, and chimeric mutations in Arabidopsis T1 plants. The targeted mutations in both rice and Arabidopsis were heritable. We provide examples of loss-of-function gene mutations in T0 rice and T1 Arabidopsis plants by simultaneous targeting of multiple (up to eight) members of a gene family, multiple genes in a biosynthetic pathway, or multiple sites in a single gene. This system has provided a versatile toolbox for studying functions of multiple genes and gene families in plants for basic research and genetic improvement.

  8. The driving force of prophages and CRISPR-Cas system in the evolution of Cronobacter sakazakii

    PubMed Central

    Zeng, Haiyan; Zhang, Jumei; Li, Chensi; Xie, Tengfei; Ling, Na; Wu, Qingping; Ye, Yingwang

    2017-01-01

    Cronobacter sakazakii is an important foodborne pathogens causing rare but life-threatening diseases in neonates and infants. CRISPR-Cas system is a new prokaryotic defense system that provides adaptive immunity against phages, latter play an vital role on the evolution and pathogenicity of host bacteria. In this study, we found that genome sizes of C. sakazakii strains had a significant positive correlation with total genome sizes of prophages. Prophages contributed to 16.57% of the genetic diversity (pan genome) of C. sakazakii, some of which maybe the potential virulence factors. Subtype I-E CRISPR-Cas system and five types of CRISPR arrays were found in the conserved site of C. sakazakii strains. CRISPR1 and CRISPR2 loci with high variable spacers were active and showed potential protection against phage attacks. The number of spacers from two active CRISPR loci in clinical strains was significant less than that of foodborne strains, it maybe a reason why clinical strains were found to have more prophages than foodborne strains. The frequently gain/loss of prophages and spacers in CRISPR loci is likely to drive the quick evolution of C. sakazakii. Our study provides a new insight into the co-evolution of phages and C. sakazakii. PMID:28057934

  9. Rapid and Efficient Genome Editing in Staphylococcus aureus by Using an Engineered CRISPR/Cas9 System.

    PubMed

    Chen, Weizhong; Zhang, Yifei; Yeo, Won-Sik; Bae, Taeok; Ji, Quanjiang

    2017-03-02

    Staphylococcus aureus, a major human pathogen, has been the cause of serious infectious diseases with a high mortality rate. Although genetics is a key means to study S. aureus physiology, such as drug resistance and pathogenesis, genetic manipulation in S. aureus is always time-consuming and labor-intensive. Here we report a CRISPR/Cas9 system (pCasSA) for rapid and efficient genome editing, including gene deletion, insertion, and single-base substitution mutation in S. aureus. The designed pCasSA system is amenable to the assembly of spacers and repair arms by Golden Gate assembly and Gibson assembly, respectively, enabling rapid construction of the plasmids for editing. We further engineered the pCasSA system to be an efficient transcription inhibition system for gene knockdown and possible genome-wide screening. The development of the CRISPR/Cas9-mediated genome editing and transcription inhibition tools will dramatically accelerate drug-target exploration and drug development.

  10. Advanced air revitalization system testing

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Hallick, T. M.; Schubert, F. H.

    1983-01-01

    A previously developed experimental air revitalization system was tested cyclically and parametrically. One-button startup without manual interventions; extension by 1350 hours of tests with the system; capability for varying process air carbon dioxide partial pressure and humidity and coolant source for simulation of realistic space vehicle interfaces; dynamic system performance response on the interaction of the electrochemical depolarized carbon dioxide concentrator, the Sabatier carbon dioxide reduction subsystem, and the static feed water electrolysis oxygen generation subsystem, the carbon dioxide concentrator module with unitized core technology for the liquid cooled cell; and a preliminary design for a regenerative air revitalization system for the space station are discussed.

  11. Asymmetric positioning of Cas1–2 complex and Integration Host Factor induced DNA bending guide the unidirectional homing of protospacer in CRISPR-Cas type I-E system

    PubMed Central

    Yoganand, K.N.R.; Sivathanu, R.; Nimkar, Siddharth; Anand, B.

    2017-01-01

    CRISPR–Cas system epitomizes prokaryote-specific quintessential adaptive defense machinery that limits the genome invasion of mobile genetic elements. It confers adaptive immunity to bacteria by capturing a protospacer fragment from invading foreign DNA, which is later inserted into the leader proximal end of CRIPSR array and serves as immunological memory to recognize recurrent invasions. The universally conserved Cas1 and Cas2 form an integration complex that is known to mediate the protospacer invasion into the CRISPR array. However, the mechanism by which this protospacer fragment gets integrated in a directional fashion into the leader proximal end is elusive. Here, we employ CRISPR/dCas9 mediated immunoprecipitation and genetic analysis to identify Integration Host Factor (IHF) as an indispensable accessory factor for spacer acquisition in Escherichia coli. Further, we show that the leader region abutting the first CRISPR repeat localizes IHF and Cas1–2 complex. IHF binding to the leader region induces bending by about 120° that in turn engenders the regeneration of the cognate binding site for protospacer bound Cas1–2 complex and brings it in proximity with the first CRISPR repeat. This appears to guide Cas1–2 complex to orient the protospacer invasion towards the leader-repeat junction thus driving the integration in a polarized fashion. PMID:27899566

  12. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  13. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  14. CALM: Complex Adaptive System (CAS)-Based Decision Support for Enabling Organizational Change

    NASA Astrophysics Data System (ADS)

    Adler, Richard M.; Koehn, David J.

    Guiding organizations through transformational changes such as restructuring or adopting new technologies is a daunting task. Such changes generate workforce uncertainty, fear, and resistance, reducing morale, focus and performance. Conventional project management techniques fail to mitigate these disruptive effects, because social and individual changes are non-mechanistic, organic phenomena. CALM (for Change, Adaptation, Learning Model) is an innovative decision support system for enabling change based on CAS principles. CALM provides a low risk method for validating and refining change strategies that combines scenario planning techniques with "what-if" behavioral simulation. In essence, CALM "test drives" change strategies before rolling them out, allowing organizations to practice and learn from virtual rather than actual mistakes. This paper describes the CALM modeling methodology, including our metrics for measuring organizational readiness to respond to change and other major CALM scenario elements: prospective change strategies; alternate futures; and key situational dynamics. We then describe CALM's simulation engine for projecting scenario outcomes and its associated analytics. CALM's simulator unifies diverse behavioral simulation paradigms including: adaptive agents; system dynamics; Monte Carlo; event- and process-based techniques. CALM's embodiment of CAS dynamics helps organizations reduce risk and improve confidence and consistency in critical strategies for enabling transformations.

  15. Survival and Evolution of CRISPR–Cas System in Prokaryotes and Its Applications

    PubMed Central

    Shabbir, Muhammad Abu Bakr; Hao, Haihong; Shabbir, Muhammad Zubair; Hussain, Hafiz Iftikhar; Iqbal, Zahid; Ahmed, Saeed; Sattar, Adeel; Iqbal, Mujahid; Li, Jun; Yuan, Zonghui

    2016-01-01

    Prokaryotes have developed numerous innate immune mechanisms in order to fend off bacteriophage or plasmid attack. One of these immune systems is clustered regularly interspaced short palindromic repeats (CRISPR). CRISPR-associated proteins play a key role in survival of prokaryotes against invaders, as these systems cleave DNA of foreign genetic elements. Beyond providing immunity, these systems have significant impact in altering the bacterial physiology in term of its virulence and pathogenicity, as well as evolution. Also, due to their diverse nature of functionality, cas9 endoribonuclease can be easily reprogrammed with the help of guide RNAs, showing unprecedented potential and significance for gene editing in treating genetic diseases. Here, we also discuss the use of NgAgo–gDNA system in genome editing of human cells. PMID:27725818

  16. Air Pollution Surveillance Systems

    ERIC Educational Resources Information Center

    Morgan, George B.; And Others

    1970-01-01

    Describes atmospheric data monitoring as part of total airpollution control effort. Summarizes types of gaseous, liquid and solid pollutants and their sources; contrast between urban and rural environmental air quality; instrumentation to identify pollutants; and anticipated new non-wet chemical physical and physiochemical techniques tor cetection…

  17. [CRISPR/Cas9-based genome editing systems and the analysis of targeted genome mutations in plants].

    PubMed

    Xingliang, Ma; Yaoguang, Liu

    2016-02-01

    Targeted genomic editing technologies use programmable DNA nucleases to cleave genomic target sites, thus inducing targeted mutations in the genomes. The newly prevailed clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system that consists of the Cas9 nuclease and single guide RNA (sgRNA) has the advantages of simplicity and high efficiency as compared to other programmable DNA nuclease systems such as zinc finger nucleases (ZFNs) and transcription activator like effector nucleases (TALENs). Currently, a number of cases have been reported on the application of the CRISPR/Cas9 genomic editing technology in plants. In this review, we summarize the strategies for preparing the Cas9 and sgRNA expression constructs, the transformation method for obtaining targeted mutations, the efficiency and features of the resulting mutations and the methods for detecting or genotyping of the mutation sites. We also discuss the existing problems and perspectives of CRISPR/Cas9-based genomic editing in plants.

  18. Gene Repression in Haloarchaea Using the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas I-B System*

    PubMed Central

    Stachler, Aris-Edda; Marchfelder, Anita

    2016-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system is used by bacteria and archaea to fend off foreign genetic elements. Since its discovery it has been developed into numerous applications like genome editing and regulation of transcription in eukaryotes and bacteria. For archaea currently no tools for transcriptional repression exist. Because molecular biology analyses in archaea become more and more widespread such a tool is vital for investigating the biological function of essential genes in archaea. Here we use the model archaeon Haloferax volcanii to demonstrate that its endogenous CRISPR-Cas system I-B can be harnessed to repress gene expression in archaea. Deletion of cas3 and cas6b genes results in efficient repression of transcription. crRNAs targeting the promoter region reduced transcript levels down to 8%. crRNAs targeting the reading frame have only slight impact on transcription. crRNAs that target the coding strand repress expression only down to 88%, whereas crRNAs targeting the template strand repress expression down to 8%. Repression of an essential gene results in reduction of transcription levels down to 22%. Targeting efficiencies can be enhanced by expressing a catalytically inactive Cas3 mutant. Genes can be targeted on plasmids or on the chromosome, they can be monocistronic or part of a polycistronic operon. PMID:27226589

  19. Gene Repression in Haloarchaea Using the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas I-B System.

    PubMed

    Stachler, Aris-Edda; Marchfelder, Anita

    2016-07-15

    The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system is used by bacteria and archaea to fend off foreign genetic elements. Since its discovery it has been developed into numerous applications like genome editing and regulation of transcription in eukaryotes and bacteria. For archaea currently no tools for transcriptional repression exist. Because molecular biology analyses in archaea become more and more widespread such a tool is vital for investigating the biological function of essential genes in archaea. Here we use the model archaeon Haloferax volcanii to demonstrate that its endogenous CRISPR-Cas system I-B can be harnessed to repress gene expression in archaea. Deletion of cas3 and cas6b genes results in efficient repression of transcription. crRNAs targeting the promoter region reduced transcript levels down to 8%. crRNAs targeting the reading frame have only slight impact on transcription. crRNAs that target the coding strand repress expression only down to 88%, whereas crRNAs targeting the template strand repress expression down to 8%. Repression of an essential gene results in reduction of transcription levels down to 22%. Targeting efficiencies can be enhanced by expressing a catalytically inactive Cas3 mutant. Genes can be targeted on plasmids or on the chromosome, they can be monocistronic or part of a polycistronic operon.

  20. Fanconi Anemia Gene Editing by the CRISPR/Cas9 System

    PubMed Central

    Osborn, Mark J.; Gabriel, Richard; Webber, Beau R.; DeFeo, Anthony P.; McElroy, Amber N.; Jarjour, Jordan; Starker, Colby G.; Wagner, John E.; Joung, J. Keith; Voytas, Daniel F.; von Kalle, Christof; Schmidt, Manfred; Blazar, Bruce R.

    2015-01-01

    Abstract Genome engineering with designer nucleases is a rapidly progressing field, and the ability to correct human gene mutations in situ is highly desirable. We employed fibroblasts derived from a patient with Fanconi anemia as a model to test the ability of the clustered regularly interspaced short palindromic repeats/Cas9 nuclease system to mediate gene correction. We show that the Cas9 nuclease and nickase each resulted in gene correction, but the nickase, because of its ability to preferentially mediate homology-directed repair, resulted in a higher frequency of corrected clonal isolates. To assess the off-target effects, we used both a predictive software platform to identify intragenic sequences of homology as well as a genome-wide screen utilizing linear amplification-mediated PCR. We observed no off-target activity and show RNA-guided endonuclease candidate sites that do not possess low sequence complexity function in a highly specific manner. Collectively, we provide proof of principle for precision genome editing in Fanconi anemia, a DNA repair-deficient human disorder. PMID:25545896

  1. Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus.

    PubMed

    Tamulaitis, Gintautas; Kazlauskiene, Migle; Manakova, Elena; Venclovas, Česlovas; Nwokeoji, Alison O; Dickman, Mark J; Horvath, Philippe; Siksnys, Virginijus

    2014-11-20

    Immunity against viruses and plasmids provided by CRISPR-Cas systems relies on a ribonucleoprotein effector complex that triggers the degradation of invasive nucleic acids (NA). Effector complexes of type I (Cascade) and II (Cas9-dual RNA) target foreign DNA. Intriguingly, the genetic evidence suggests that the type III-A Csm complex targets DNA, whereas biochemical data show that the type III-B Cmr complex cleaves RNA. Here we aimed to investigate NA specificity and mechanism of CRISPR interference for the Streptococcus thermophilus Csm (III-A) complex (StCsm). When expressed in Escherichia coli, two complexes of different stoichiometry copurified with 40 and 72 nt crRNA species, respectively. Both complexes targeted RNA and generated multiple cuts at 6 nt intervals. The Csm3 protein, present in multiple copies in both Csm complexes, acts as endoribonuclease. In the heterologous E. coli host, StCsm restricts MS2 RNA phage in a Csm3 nuclease-dependent manner. Thus, our results demonstrate that the type III-A StCsm complex guided by crRNA targets RNA and not DNA.

  2. Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives.

    PubMed

    Mahfouz, Magdy M; Piatek, Agnieszka; Stewart, Charles Neal

    2014-10-01

    The ability to precisely modify genome sequence and regulate gene expression patterns in a site-specific manner holds much promise in plant biotechnology. Genome-engineering technologies that enable such highly specific and efficient modification are advancing with unprecedented pace. Transcription activator-like effectors (TALEs) provide customizable DNA-binding modules designed to bind to any sequence of interest. Thus, TALEs have been used as a DNA targeting module fused to functional domains for a variety of targeted genomic and epigenomic modifications. TALE nucleases (TALENs) have been used with much success across eukaryotic species to edit genomes. Recently, clustered regularly interspaced palindromic repeats (CRISPRs) that are used as guide RNAs for Cas9 nuclease-specific digestion has been introduced as a highly efficient DNA-targeting platform for genome editing and regulation. Here, we review the discovery, development and limitations of TALENs and CRIPSR/Cas9 systems as genome-engineering platforms in plants. We discuss the current questions, potential improvements and the development of the next-generation genome-editing platforms with an emphasis on producing designer plants to address the needs of agriculture and basic plant biology.

  3. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system.

    PubMed

    Belhaj, Khaoula; Chaparro-Garcia, Angela; Kamoun, Sophien; Nekrasov, Vladimir

    2013-10-11

    Targeted genome engineering (also known as genome editing) has emerged as an alternative to classical plant breeding and transgenic (GMO) methods to improve crop plants. Until recently, available tools for introducing site-specific double strand DNA breaks were restricted to zinc finger nucleases (ZFNs) and TAL effector nucleases (TALENs). However, these technologies have not been widely adopted by the plant research community due to complicated design and laborious assembly of specific DNA binding proteins for each target gene. Recently, an easier method has emerged based on the bacterial type II CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated) immune system. The CRISPR/Cas system allows targeted cleavage of genomic DNA guided by a customizable small noncoding RNA, resulting in gene modifications by both non-homologous end joining (NHEJ) and homology-directed repair (HDR) mechanisms. In this review we summarize and discuss recent applications of the CRISPR/Cas technology in plants.

  4. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system

    PubMed Central

    2013-01-01

    Targeted genome engineering (also known as genome editing) has emerged as an alternative to classical plant breeding and transgenic (GMO) methods to improve crop plants. Until recently, available tools for introducing site-specific double strand DNA breaks were restricted to zinc finger nucleases (ZFNs) and TAL effector nucleases (TALENs). However, these technologies have not been widely adopted by the plant research community due to complicated design and laborious assembly of specific DNA binding proteins for each target gene. Recently, an easier method has emerged based on the bacterial type II CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated) immune system. The CRISPR/Cas system allows targeted cleavage of genomic DNA guided by a customizable small noncoding RNA, resulting in gene modifications by both non-homologous end joining (NHEJ) and homology-directed repair (HDR) mechanisms. In this review we summarize and discuss recent applications of the CRISPR/Cas technology in plants. PMID:24112467

  5. Cold air systems: Sleeping giant

    SciTech Connect

    MacCracken, C.D. )

    1994-04-01

    This article describes how cold air systems help owners increase the profits from their buildings by reducing electric costs and improving indoor air quality through lower relative humidity levels. Cold air distribution involves energy savings, cost savings, space savings, greater comfort, cleaner air, thermal storage, tighter ducting, coil redesign, lower relative humidities, retrofitting, and improved indoor air quality (IAQ). It opens a door for architects, engineers, owners, builders, environmentalists, retrofitters, designers, occupants, and manufacturers. Three things have held up cold air's usage: multiple fan-powered boxes that ate up the energy savings of primary fans. Cold air room diffusers that provided inadequate comfort. Condensation from ducts, boxes, and diffusers. Such problems have been largely eliminated through research and development by utilities and manufacturers. New cold air diffusers no longer need fan powered boxes. It has also been found that condensation is not a concern so long as the ducts are located in air conditioned space, such as drop ceilings or central risers, where relative humidity falls quickly during morning startup.

  6. Targeted Mutagenesis in Rice Using TALENs and the CRISPR/Cas9 System.

    PubMed

    Endo, Masaki; Nishizawa-Yokoi, Ayako; Toki, Seiichi

    2016-01-01

    Sequence-specific nucleases (SSNs), such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9) system, are powerful tools for understanding gene function and for developing novel traits in plants. In plant species for which transformation and regeneration systems using protoplasts are not yet established, direct delivery to nuclei of SSNs either in the form of RNA or protein is difficult. Thus, Agrobacterium-mediated transformation of SSN expression constructs in cultured cells is a practical means of delivering targeted mutagenesis in some plant species including rice. Because targeted mutagenesis occurs stochastically in transgenic cells and SSN-mediated targeted mutagenesis often leads to no selectable phenotype, identification of highly mutated cell lines is a critical step in obtaining regenerated plants with desired mutations.

  7. CRISPR-Cas: From the Bacterial Adaptive Immune System to a Versatile Tool for Genome Engineering.

    PubMed

    Kirchner, Marion; Schneider, Sabine

    2015-11-09

    The field of biology has been revolutionized by the recent advancement of an adaptive bacterial immune system as a universal genome engineering tool. Bacteria and archaea use repetitive genomic elements termed clustered regularly interspaced short palindromic repeats (CRISPR) in combination with an RNA-guided nuclease (CRISPR-associated nuclease: Cas) to target and destroy invading DNA. By choosing the appropriate sequence of the guide RNA, this two-component system can be used to efficiently modify, target, and edit genomic loci of interest in plants, insects, fungi, mammalian cells, and whole organisms. This has opened up new frontiers in genome engineering, including the potential to treat or cure human genetic disorders. Now the potential risks as well as the ethical, social, and legal implications of this powerful new technique move into the limelight.

  8. Alaskan Air Defense and Early Warning Systems Clear Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Alaskan Air Defense and Early Warning Systems - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  9. Highly efficient targeted mutagenesis in one-cell mouse embryos mediated by the TALEN and CRISPR/Cas systems

    PubMed Central

    Yasue, Akihiro; Mitsui, Silvia Naomi; Watanabe, Takahito; Sakuma, Tetsushi; Oyadomari, Seiichi; Yamamoto, Takashi; Noji, Sumihare; Mito, Taro; Tanaka, Eiji

    2014-01-01

    Since the establishment of embryonic stem (ES) cell lines, the combined use of gene targeting with homologous recombination has aided in elucidating the functions of various genes. However, the ES cell technique is inefficient and time-consuming. Recently, two new gene-targeting technologies have been developed: the transcription activator-like effector nuclease (TALEN) system, and the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system. In addition to aiding researchers in solving conventional problems, these technologies can be used to induce site-specific mutations in various species for which ES cells have not been established. Here, by targeting the Fgf10 gene through RNA microinjection in one-cell mouse embryos with the TALEN and CRISPR/Cas systems, we produced the known limb-defect phenotypes of Fgf10-deficient embryos at the F0 generation. Compared to the TALEN system, the CRISPR/Cas system induced the limb-defect phenotypes with a strikingly higher efficiency. Our results demonstrate that although both gene-targeting technologies are useful, the CRISPR/Cas system more effectively elicits single-step biallelic mutations in mice. PMID:25027812

  10. Highly efficient targeted mutagenesis in one-cell mouse embryos mediated by the TALEN and CRISPR/Cas systems.

    PubMed

    Yasue, Akihiro; Mitsui, Silvia Naomi; Watanabe, Takahito; Sakuma, Tetsushi; Oyadomari, Seiichi; Yamamoto, Takashi; Noji, Sumihare; Mito, Taro; Tanaka, Eiji

    2014-07-16

    Since the establishment of embryonic stem (ES) cell lines, the combined use of gene targeting with homologous recombination has aided in elucidating the functions of various genes. However, the ES cell technique is inefficient and time-consuming. Recently, two new gene-targeting technologies have been developed: the transcription activator-like effector nuclease (TALEN) system, and the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system. In addition to aiding researchers in solving conventional problems, these technologies can be used to induce site-specific mutations in various species for which ES cells have not been established. Here, by targeting the Fgf10 gene through RNA microinjection in one-cell mouse embryos with the TALEN and CRISPR/Cas systems, we produced the known limb-defect phenotypes of Fgf10-deficient embryos at the F0 generation. Compared to the TALEN system, the CRISPR/Cas system induced the limb-defect phenotypes with a strikingly higher efficiency. Our results demonstrate that although both gene-targeting technologies are useful, the CRISPR/Cas system more effectively elicits single-step biallelic mutations in mice.

  11. Differential Distribution of Type II CRISPR-Cas Systems in Agricultural and Nonagricultural Campylobacter coli and Campylobacter jejuni Isolates Correlates with Lack of Shared Environments.

    PubMed

    Pearson, Bruce M; Louwen, Rogier; van Baarlen, Peter; van Vliet, Arnoud H M

    2015-09-02

    CRISPR (clustered regularly interspaced palindromic repeats)-Cas (CRISPR-associated) systems are sequence-specific adaptive defenses against phages and plasmids which are widespread in prokaryotes. Here we have studied whether phylogenetic relatedness or sharing of environmental niches affects the distribution and dissemination of Type II CRISPR-Cas systems, first in 132 bacterial genomes from 15 phylogenetic classes, ranging from Proteobacteria to Actinobacteria. There was clustering of distinct Type II CRISPR-Cas systems in phylogenetically distinct genera with varying G+C%, which share environmental niches. The distribution of CRISPR-Cas within a genus was studied using a large collection of genome sequences of the closely related Campylobacter species Campylobacter jejuni (N = 3,746) and Campylobacter coli (N = 486). The Cas gene cas9 and CRISPR-repeat are almost universally present in C. jejuni genomes (98.0% positive) but relatively rare in C. coli genomes (9.6% positive). Campylobacter jejuni and agricultural C. coli isolates share the C. jejuni CRISPR-Cas system, which is closely related to, but distinct from the C. coli CRISPR-Cas system found in C. coli isolates from nonagricultural sources. Analysis of the genomic position of CRISPR-Cas insertion suggests that the C. jejuni-type CRISPR-Cas has been transferred to agricultural C. coli. Conversely, the absence of the C. coli-type CRISPR-Cas in agricultural C. coli isolates may be due to these isolates not sharing the same environmental niche, and may be affected by farm hygiene and biosecurity practices in the agricultural sector. Finally, many CRISPR spacer alleles were linked with specific multilocus sequence types, suggesting that these can assist molecular epidemiology applications for C. jejuni and C. coli.

  12. Differential Distribution of Type II CRISPR-Cas Systems in Agricultural and Nonagricultural Campylobacter coli and Campylobacter jejuni Isolates Correlates with Lack of Shared Environments

    PubMed Central

    Pearson, Bruce M.; Louwen, Rogier; van Baarlen, Peter; van Vliet, Arnoud H.M.

    2015-01-01

    CRISPR (clustered regularly interspaced palindromic repeats)-Cas (CRISPR-associated) systems are sequence-specific adaptive defenses against phages and plasmids which are widespread in prokaryotes. Here we have studied whether phylogenetic relatedness or sharing of environmental niches affects the distribution and dissemination of Type II CRISPR-Cas systems, first in 132 bacterial genomes from 15 phylogenetic classes, ranging from Proteobacteria to Actinobacteria. There was clustering of distinct Type II CRISPR-Cas systems in phylogenetically distinct genera with varying G+C%, which share environmental niches. The distribution of CRISPR-Cas within a genus was studied using a large collection of genome sequences of the closely related Campylobacter species Campylobacter jejuni (N = 3,746) and Campylobacter coli (N = 486). The Cas gene cas9 and CRISPR-repeat are almost universally present in C. jejuni genomes (98.0% positive) but relatively rare in C. coli genomes (9.6% positive). Campylobacter jejuni and agricultural C. coli isolates share the C. jejuni CRISPR-Cas system, which is closely related to, but distinct from the C. coli CRISPR-Cas system found in C. coli isolates from nonagricultural sources. Analysis of the genomic position of CRISPR-Cas insertion suggests that the C. jejuni-type CRISPR-Cas has been transferred to agricultural C. coli. Conversely, the absence of the C. coli-type CRISPR-Cas in agricultural C. coli isolates may be due to these isolates not sharing the same environmental niche, and may be affected by farm hygiene and biosecurity practices in the agricultural sector. Finally, many CRISPR spacer alleles were linked with specific multilocus sequence types, suggesting that these can assist molecular epidemiology applications for C. jejuni and C. coli. PMID:26338188

  13. Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer.

    PubMed

    Richter, Corinna; Dy, Ron L; McKenzie, Rebecca E; Watson, Bridget N J; Taylor, Corinda; Chang, James T; McNeil, Matthew B; Staals, Raymond H J; Fineran, Peter C

    2014-07-01

    Clustered regularly interspaced short palindromic repeats (CRISPR), in combination with CRISPR associated (cas) genes, constitute CRISPR-Cas bacterial adaptive immune systems. To generate immunity, these systems acquire short sequences of nucleic acids from foreign invaders and incorporate these into their CRISPR arrays as spacers. This adaptation process is the least characterized step in CRISPR-Cas immunity. Here, we used Pectobacterium atrosepticum to investigate adaptation in Type I-F CRISPR-Cas systems. Pre-existing spacers that matched plasmids stimulated hyperactive primed acquisition and resulted in the incorporation of up to nine new spacers across all three native CRISPR arrays. Endogenous expression of the cas genes was sufficient, yet required, for priming. The new spacers inhibited conjugation and transformation, and interference was enhanced with increasing numbers of new spacers. We analyzed ∼ 350 new spacers acquired in priming events and identified a 5'-protospacer-GG-3' protospacer adjacent motif. In contrast to priming in Type I-E systems, new spacers matched either plasmid strand and a biased distribution, including clustering near the primed protospacer, suggested a bi-directional translocation model for the Cas1:Cas2-3 adaptation machinery. Taken together these results indicate priming adaptation occurs in different CRISPR-Cas systems, that it can be highly active in wild-type strains and that the underlying mechanisms vary.

  14. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium.

    PubMed

    Pyne, Michael E; Bruder, Mark R; Moo-Young, Murray; Chung, Duane A; Chou, C Perry

    2016-05-09

    Application of CRISPR-Cas9 systems has revolutionized genome editing across all domains of life. Here we report implementation of the heterologous Type II CRISPR-Cas9 system in Clostridium pasteurianum for markerless genome editing. Since 74% of species harbor CRISPR-Cas loci in Clostridium, we also explored the prospect of co-opting host-encoded CRISPR-Cas machinery for genome editing. Motivation for this work was bolstered from the observation that plasmids expressing heterologous cas9 result in poor transformation of Clostridium. To address this barrier and establish proof-of-concept, we focus on characterization and exploitation of the C. pasteurianum Type I-B CRISPR-Cas system. In silico spacer analysis and in vivo interference assays revealed three protospacer adjacent motif (PAM) sequences required for site-specific nucleolytic attack. Introduction of a synthetic CRISPR array and cpaAIR gene deletion template yielded an editing efficiency of 100%. In contrast, the heterologous Type II CRISPR-Cas9 system generated only 25% of the total yield of edited cells, suggesting that native machinery provides a superior foundation for genome editing by precluding expression of cas9 in trans. To broaden our approach, we also identified putative PAM sequences in three key species of Clostridium. This is the first report of genome editing through harnessing native CRISPR-Cas machinery in Clostridium.

  15. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium

    PubMed Central

    Pyne, Michael E.; Bruder, Mark R.; Moo-Young, Murray; Chung, Duane A.; Chou, C. Perry

    2016-01-01

    Application of CRISPR-Cas9 systems has revolutionized genome editing across all domains of life. Here we report implementation of the heterologous Type II CRISPR-Cas9 system in Clostridium pasteurianum for markerless genome editing. Since 74% of species harbor CRISPR-Cas loci in Clostridium, we also explored the prospect of co-opting host-encoded CRISPR-Cas machinery for genome editing. Motivation for this work was bolstered from the observation that plasmids expressing heterologous cas9 result in poor transformation of Clostridium. To address this barrier and establish proof-of-concept, we focus on characterization and exploitation of the C. pasteurianum Type I-B CRISPR-Cas system. In silico spacer analysis and in vivo interference assays revealed three protospacer adjacent motif (PAM) sequences required for site-specific nucleolytic attack. Introduction of a synthetic CRISPR array and cpaAIR gene deletion template yielded an editing efficiency of 100%. In contrast, the heterologous Type II CRISPR-Cas9 system generated only 25% of the total yield of edited cells, suggesting that native machinery provides a superior foundation for genome editing by precluding expression of cas9 in trans. To broaden our approach, we also identified putative PAM sequences in three key species of Clostridium. This is the first report of genome editing through harnessing native CRISPR-Cas machinery in Clostridium. PMID:27157668

  16. Genetic Modification in Human Pluripotent Stem Cells by Homologous Recombination and CRISPR/Cas9 System.

    PubMed

    Xue, Haipeng; Wu, Jianbo; Li, Shenglan; Rao, Mahendra S; Liu, Ying

    2016-01-01

    Genetic modification is an indispensable tool to study gene function in normal development and disease. The recent breakthrough of creating human induced pluripotent stem cells (iPSCs) by defined factors (Takahashi et al., Cell 131:861-872, 2007) provides a renewable source of patient autologous cells that not only retain identical genetic information but also give rise to many cell types of the body including neurons and glia. Meanwhile, the rapid advancement of genome modification tools such as gene targeting by homologous recombination (Capecchi, Nat Rev Genet 6:507-512, 2005) and genome editing tools such as CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas (CRISPR-associated) system, TALENs (Transcription activator-like effector nucleases), and ZFNs (Zinc finger nucleases) (Wang et al., Cell 153:910-918, 2013; Mali et al., Science 339:823-826, 2013; Hwang et al., Nat Biotechnol 31:227-229, 2013; Friedland et al., Nat Methods 10(8):741-743, 2013; DiCarlo et al., Nucleic Acids Res 41:4336-4343, 2013; Cong et al., Science 339:819-823, 2013) has greatly accelerated the development of human genome manipulation at the molecular level. This chapter describes the protocols for making neural lineage reporter lines using homologous recombination and the CRISPR/Cas system-mediated genome editing, including construction of targeting vectors, guide RNAs, transfection into hPSCs, and selection and verification of successfully targeted clones. This method can be applied to various needs of hPSC genetic engineering at high efficiency and high reliability.

  17. An efficient genotyping method for genome-modified animals and human cells generated with CRISPR/Cas9 system.

    PubMed

    Zhu, Xiaoxiao; Xu, Yajie; Yu, Shanshan; Lu, Lu; Ding, Mingqin; Cheng, Jing; Song, Guoxu; Gao, Xing; Yao, Liangming; Fan, Dongdong; Meng, Shu; Zhang, Xuewen; Hu, Shengdi; Tian, Yong

    2014-09-19

    The rapid generation of various species and strains of laboratory animals using CRISPR/Cas9 technology has dramatically accelerated the interrogation of gene function in vivo. So far, the dominant approach for genotyping of genome-modified animals has been the T7E1 endonuclease cleavage assay. Here, we present a polyacrylamide gel electrophoresis-based (PAGE) method to genotype mice harboring different types of indel mutations. We developed 6 strains of genome-modified mice using CRISPR/Cas9 system, and utilized this approach to genotype mice from F0 to F2 generation, which included single and multiplexed genome-modified mice. We also determined the maximal detection sensitivity for detecting mosaic DNA using PAGE-based assay as 0.5%. We further applied PAGE-based genotyping approach to detect CRISPR/Cas9-mediated on- and off-target effect in human 293T and induced pluripotent stem cells (iPSCs). Thus, PAGE-based genotyping approach meets the rapidly increasing demand for genotyping of the fast-growing number of genome-modified animals and human cell lines created using CRISPR/Cas9 system or other nuclease systems such as TALEN or ZFN.

  18. Anti-HIV-1 potency of the CRISPR/Cas9 system insufficient to fully inhibit viral replication.

    PubMed

    Ueda, Shuhei; Ebina, Hirotaka; Kanemura, Yuka; Misawa, Naoko; Koyanagi, Yoshio

    2016-07-01

    The range of genome-editing tools has recently been expanded. In particular, an RNA-guided genome-editing tool, the clustered regularly interspaced short palindromic repeat (CRISPR)-associated 9 (Cas9) system, has many applications for human diseases. In this study, guide RNA (gRNA) to target gag, pol and a long terminal repeat of HIV-1 was designed and used to generate gRNA-expressing lentiviral vectors. An HIV-1-specific gRNA and Cas9 were stably dually transduced into a highly HIV-1-susceptible human T-cell line and the inhibitory ability of the anti-HIV-1 CRISPR/Cas9 lentiviral vector assessed. Although clear inhibition of the early phase of HIV-1 infection was observed, as evaluated by a VSV-G-pseudotyped HIV-1 reporter system, the anti-HIV-1 potency in multiple rounds of wild type (WT) viral replication was insufficient, either because of generation of resistant viruses or overcoming of the activity of the WT virus. Thus, there are potential difficulties that must be addressed when considering anti-HIV-1 treatment with the CRISPR/Cas9 system alone.

  19. Air support facilities. [interface between air and surface transportation systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Airports are discussed in terms of the interface between the ground and air for transportation systems. The classification systems, design, facilities, administration, and operations of airports are described.

  20. V773 Cas, QS Aql, and BR Ind: Eclipsing Binaries as Parts of Multiple Systems

    NASA Astrophysics Data System (ADS)

    Zasche, P.; Juryšek, J.; Nemravová, J.; Uhlař, R.; Svoboda, P.; Wolf, M.; Hoňková, K.; Mašek, M.; Prouza, M.; Čechura, J.; Korčáková, D.; Šlechta, M.

    2017-01-01

    Eclipsing binaries remain crucial objects for our understanding of the universe. In particular, those that are components of multiple systems can help us solve the problem of the formation of these systems. Analysis of the radial velocities together with the light curve produced for the first time precise physical parameters of the components of the multiple systems V773 Cas, QS Aql, and BR Ind. Their visual orbits were also analyzed, which resulted in slightly improved orbital elements. What is typical for all these systems is that their most dominant source is the third distant component. The system V773 Cas consists of two similar G1-2V stars revolving in a circular orbit and a more distant component of the A3V type. Additionally, the improved value of parallax was calculated to be 17.6 mas. Analysis of QS Aql resulted in the following: the inner eclipsing pair is composed of B6V and F1V stars, and the third component is of about the B6 spectral type. The outer orbit has high eccentricity of about 0.95, and observations near its upcoming periastron passage between the years 2038 and 2040 are of high importance. Also, the parallax of the system was derived to be about 2.89 mas, moving the star much closer to the Sun than originally assumed. The system BR Ind was found to be a quadruple star consisting of two eclipsing K dwarfs orbiting each other with a period of 1.786 days; the distant component is a single-lined spectroscopic binary with an orbital period of about 6 days. Both pairs are moving around each other on their 148 year orbit. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programs 091.D-0122(A), 094.A-9029(D), 095.A-9032(A), and 096.A-9039(A) and also on data from the 2 m telescope at the Ondřejov observatory in the Czech Republic

  1. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation.

    PubMed

    Zhang, Hui; Zhang, Jinshan; Wei, Pengliang; Zhang, Botao; Gou, Feng; Feng, Zhengyan; Mao, Yanfei; Yang, Lan; Zhang, Heng; Xu, Nanfei; Zhu, Jian-Kang

    2014-08-01

    The CRISPR/Cas9 system has been demonstrated to efficiently induce targeted gene editing in a variety of organisms including plants. Recent work showed that CRISPR/Cas9-induced gene mutations in Arabidopsis were mostly somatic mutations in the early generation, although some mutations could be stably inherited in later generations. However, it remains unclear whether this system will work similarly in crops such as rice. In this study, we tested in two rice subspecies 11 target genes for their amenability to CRISPR/Cas9-induced editing and determined the patterns, specificity and heritability of the gene modifications. Analysis of the genotypes and frequency of edited genes in the first generation of transformed plants (T0) showed that the CRISPR/Cas9 system was highly efficient in rice, with target genes edited in nearly half of the transformed embryogenic cells before their first cell division. Homozygotes of edited target genes were readily found in T0 plants. The gene mutations were passed to the next generation (T1) following classic Mendelian law, without any detectable new mutation or reversion. Even with extensive searches including whole genome resequencing, we could not find any evidence of large-scale off-targeting in rice for any of the many targets tested in this study. By specifically sequencing the putative off-target sites of a large number of T0 plants, low-frequency mutations were found in only one off-target site where the sequence had 1-bp difference from the intended target. Overall, the data in this study point to the CRISPR/Cas9 system being a powerful tool in crop genome engineering.

  2. [Advances in molecular mechanisms of adaptive immunity mediated by type I-E CRISPR/Cas system--A review].

    PubMed

    Sun, Dongchang; Qiu, Juanping

    2016-01-04

    To better adapt to the environment, prokaryocyte can take up exogenous genes (from bacteriophages, plasmids or genomes of other species) through horizontal gene transfer. Accompanied by the acquisition of exogenous genes, prokaryocyte is challenged by the invasion of 'selfish genes'. Therefore, to protect against the risk of gene transfer, prokaryocyte needs to establish mechanisms for selectively taking up or degrading exogenous DNA. In recent years, researchers discovered an adaptive immunity, which is mediated by the small RNA guided DNA degradation, prevents the invasion of exogenous genes in prokaryocyte. During the immune process, partial DNA fragments are firstly integrated.to the clustered regularly interspaced short palindromic repeats (CRISPR) located within the genome DNA, and then the mature CRISPR RNA transcript and the CRISPR associated proteins (Cas) form a complex CRISPR/Cas for degrading exogenous DNA. In this review, we will first briefly describe the CRISPR/Cas systems and then mainly focus on the recent advances of the function mechanism and the regulation mechanism of the type I-E CRISPR/Cas system in Escherichia coli.

  3. High-Throughput Silencing Using the CRISPR-Cas9 System: A Review of the Benefits and Challenges.

    PubMed

    Wade, Mark

    2015-09-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system has been seized upon with a fervor enjoyed previously by small interfering RNA (siRNA) and short hairpin RNA (shRNA) technologies and has enormous potential for high-throughput functional genomics studies. The decision to use this approach must be balanced with respect to adoption of existing platforms versus awaiting the development of more "mature" next-generation systems. Here, experience from siRNA and shRNA screening plays an important role, as issues such as targeting efficiency, pooling strategies, and off-target effects with those technologies are already framing debates in the CRISPR field. CRISPR/Cas can be exploited not only to knockout genes but also to up- or down-regulate gene transcription-in some cases in a multiplex fashion. This provides a powerful tool for studying the interaction among multiple signaling cascades in the same genetic background. Furthermore, the documented success of CRISPR/Cas-mediated gene correction (or the corollary, introduction of disease-specific mutations) provides proof of concept for the rapid generation of isogenic cell lines for high-throughput screening. In this review, the advantages and limitations of CRISPR/Cas are discussed and current and future applications are highlighted. It is envisaged that complementarities between CRISPR, siRNA, and shRNA will ensure that all three technologies remain critical to the success of future functional genomics projects.

  4. CRISPR Primer Designer: Design primers for knockout and chromosome imaging CRISPR-Cas system.

    PubMed

    Yan, Meng; Zhou, Shi-Rong; Xue, Hong-Wei

    2015-07-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated system enables biologists to edit genomes precisely and provides a powerful tool for perturbing endogenous gene regulation, modulation of epigenetic markers, and genome architecture. However, there are concerns about the specificity of the system, especially the usages of knocking out a gene. Previous designing tools either were mostly built-in websites or ran as command-line programs, and none of them ran locally and acquired a user-friendly interface. In addition, with the development of CRISPR-derived systems, such as chromosome imaging, there were still no tools helping users to generate specific end-user spacers. We herein present CRISPR Primer Designer for researchers to design primers for CRISPR applications. The program has a user-friendly interface, can analyze the BLAST results by using multiple parameters, score for each candidate spacer, and generate the primers when using a certain plasmid. In addition, CRISPR Primer Designer runs locally and can be used to search spacer clusters, and exports primers for the CRISPR-Cas system-based chromosome imaging system.

  5. Magnus air turbine system

    DOEpatents

    Hanson, Thomas F.

    1982-01-01

    A Magnus effect windmill for generating electrical power is disclosed. A large nacelle-hub mounted pivotally (in Azimuth) atop a support tower carries, in the example disclosed, three elongated barrels arranged in a vertical plane and extending symmetrically radially outwardly from the nacelle. The system provides spin energy to the barrels by internal mechanical coupling in the proper sense to cause, in reaction to an incident wind, a rotational torque of a predetermined sense on the hub. The rotating hub carries a set of power take-off rollers which ride on a stationary circular track in the nacelle. Shafts carry the power, given to the rollers by the wind driven hub, to a central collector or accumulator gear assembly whose output is divided to drive the spin mechanism for the Magnus barrels and the main electric generator. A planetary gear assembly is interposed between the collector gears and the spin mechanism functioning as a differential which is also connected to an auxiliary electric motor whereby power to the spin mechanism may selectively be provided by the motor. Generally, the motor provides initial spin to the barrels for start-up after which the motor is braked and the spin mechanism is driven as though by a fixed ratio coupling from the rotor hub. During high wind or other unusual conditions, the auxiliary motor may be unbraked and excess spin power may be used to operate the motor as a generator of additional electrical output. Interposed between the collector gears of the rotating hub and the main electric generator is a novel variable speed drive-fly wheel system which is driven by the variable speed of the wind driven rotor and which, in turn, drives the main electric generator at constant angular speed. Reference is made to the complete specification for disclosure of other novel aspects of the system such as, for example, the aerodynamic and structural aspects of the novel Magnus barrels as well as novel gearing and other power coupling

  6. Human Induced Pluripotent Stem Cell NEUROG2 Dual Knockin Reporter Lines Generated by the CRISPR/Cas9 System

    PubMed Central

    Li, Shenglan; Xue, Haipeng; Wu, Jianbo; Rao, Mahendra S.; Kim, Dong H.; Deng, Wenbin

    2015-01-01

    Human induced pluripotent stem cell (hiPSC) technologies are powerful tools for modeling development and disease, drug screening, and regenerative medicine. Faithful gene targeting in hiPSCs greatly facilitates these applications. We have developed a fast and precise clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) technology-based method and obtained fluorescent protein and antibiotic resistance dual knockin reporters in hiPSC lines for neurogenin2 (NEUROG2), an important proneural transcription factor. Gene targeting efficiency was greatly improved in CRISPR/Cas9-mediated homology directed recombination (∼33% correctly targeted clones) compared to conventional targeting protocol (∼3%) at the same locus. No off-target events were detected. In addition, taking the advantage of the versatile applications of the CRISPR/Cas9 system, we designed transactivation components to transiently induce NEUROG2 expression, which helps identify transcription factor binding sites and trans-regulation regions of human NEUROG2. The strategy of using CRISPR/Cas9 genome editing coupled with fluorescence-activated cell sorting of neural progenitor cells in a knockin lineage hiPSC reporter platform might be broadly applicable in other stem cell derivatives and subpopulations. PMID:26414932

  7. Human Induced Pluripotent Stem Cell NEUROG2 Dual Knockin Reporter Lines Generated by the CRISPR/Cas9 System.

    PubMed

    Li, Shenglan; Xue, Haipeng; Wu, Jianbo; Rao, Mahendra S; Kim, Dong H; Deng, Wenbin; Liu, Ying

    2015-12-15

    Human induced pluripotent stem cell (hiPSC) technologies are powerful tools for modeling development and disease, drug screening, and regenerative medicine. Faithful gene targeting in hiPSCs greatly facilitates these applications. We have developed a fast and precise clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) technology-based method and obtained fluorescent protein and antibiotic resistance dual knockin reporters in hiPSC lines for neurogenin2 (NEUROG2), an important proneural transcription factor. Gene targeting efficiency was greatly improved in CRISPR/Cas9-mediated homology directed recombination (∼ 33% correctly targeted clones) compared to conventional targeting protocol (∼ 3%) at the same locus. No off-target events were detected. In addition, taking the advantage of the versatile applications of the CRISPR/Cas9 system, we designed transactivation components to transiently induce NEUROG2 expression, which helps identify transcription factor binding sites and trans-regulation regions of human NEUROG2. The strategy of using CRISPR/Cas9 genome editing coupled with fluorescence-activated cell sorting of neural progenitor cells in a knockin lineage hiPSC reporter platform might be broadly applicable in other stem cell derivatives and subpopulations.

  8. Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system

    PubMed Central

    Garcia-Bloj, Benjamin; Moses, Colette; Sgro, Agustin; Plani-Lam, Janice; Arooj, Mahira; Duffy, Ciara; Thiruvengadam, Shreyas; Sorolla, Anabel; Rashwan, Rabab; Mancera, Ricardo L.; Leisewitz, Andrea; Swift-Scanlan, Theresa; Corvalan, Alejandro H.; Blancafort, Pilar

    2016-01-01

    The aberrant epigenetic silencing of tumor suppressor genes (TSGs) plays a major role during carcinogenesis and regaining these dormant functions by engineering of sequence-specific epigenome editing tools offers a unique opportunity for targeted therapies. However, effectively normalizing the expression and regaining tumor suppressive functions of silenced TSGs by artificial transcription factors (ATFs) still remains a major challenge. Herein we describe novel combinatorial strategies for the potent reactivation of two class II TSGs, MASPIN and REPRIMO, in cell lines with varying epigenetic states, using the CRISPR/dCas9 associated system linked to a panel of effector domains (VP64, p300, VPR and SAM complex), as well as with protein-based ATFs, Zinc Fingers and TALEs. We found that co-delivery of multiple effector domains using a combination of CRISPR/dCas9 and TALEs or SAM complex maximized activation in highly methylated promoters. In particular, CRISPR/dCas9 VPR with SAM upregulated MASPIN mRNA (22,145-fold change) in H157 lung cancer cells, with accompanying re-expression of MASPIN protein, which led to a concomitant inhibition of cell proliferation and induction of apoptotic cell death. Consistently, CRISPR/dCas9 VP64 with SAM upregulated REPRIMO (680-fold change), which led to phenotypic reprogramming in AGS gastric cancer cells. Altogether, our results outlined novel sequence-specific, combinatorial epigenome editing approaches to reactivate highly methylated TSGs as a promising therapy for cancer and other diseases. PMID:27528034

  9. Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish.

    PubMed

    Hisano, Yu; Sakuma, Tetsushi; Nakade, Shota; Ohga, Rie; Ota, Satoshi; Okamoto, Hitoshi; Yamamoto, Takashi; Kawahara, Atsuo

    2015-03-05

    The CRISPR/Cas9 system provides a powerful tool for genome editing in various model organisms, including zebrafish. The establishment of targeted gene-disrupted zebrafish (knockouts) is readily achieved by CRISPR/Cas9-mediated genome modification. Recently, exogenous DNA integration into the zebrafish genome via homology-independent DNA repair was reported, but this integration contained various mutations at the junctions of genomic and integrated DNA. Thus, precise genome modification into targeted genomic loci remains to be achieved. Here, we describe efficient, precise CRISPR/Cas9-mediated integration using a donor vector harbouring short homologous sequences (10-40 bp) flanking the genomic target locus. We succeeded in integrating with high efficiency an exogenous mCherry or eGFP gene into targeted genes (tyrosinase and krtt1c19e) in frame. We found the precise in-frame integration of exogenous DNA without backbone vector sequences when Cas9 cleavage sites were introduced at both sides of the left homology arm, the eGFP sequence and the right homology arm. Furthermore, we confirmed that this precise genome modification was heritable. This simple method enables precise targeted gene knock-in in zebrafish.

  10. Air-traffic surveillance systems

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F.

    1979-01-01

    Passive ground-based radio-interferometry systems (RILS) monitor local air traffic by determining aircraft position in planes defined by surveillance area. Similar RILS arrangements are used to determine aircraft positions in three dimensions when combined with azimuth and range information obtained by radar. Information helps determine three-dimensional aircraft position without expensive encoding altimeters.

  11. The AAV-mediated and RNA-guided CRISPR/Cas9 system for gene therapy of DMD and BMD.

    PubMed

    Wang, Jing-Zhang; Wu, Peng; Shi, Zhi-Min; Xu, Yan-Li; Liu, Zhi-Jun

    2017-04-05

    Mutations in the dystrophin gene (Dmd) result in Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD), which afflict many newborn boys. In 2016, Brain and Development published several interesting articles on DMD treatment with antisense oligonucleotide, kinase inhibitor, and prednisolone. Even more strikingly, three articles in the issue 6271 of Science in 2016 provide new insights into gene therapy of DMD and BMD via the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). In brief, adeno-associated virus (AAV) vectors transport guided RNAs (gRNAs) and Cas9 into mdx mouse model, gRNAs recognize the mutated Dmd exon 23 (having a stop codon), and Cas9 cut the mutated exon 23 off the Dmd gene. These manipulations restored expression of truncated but partially functional dystrophin, improved skeletal and cardiac muscle function, and increased survival of mdx mice significantly. This review concisely summarized the related advancements and discussed their primary implications in the future gene therapy of DMD, including AAV-vector selection, gRNA designing, Cas9 optimization, dystrophin-restoration efficiency, administration routes, and systemic and long-term therapeutic efficacy. Future orientations, including off-target effects, safety concerns, immune responses, precision medicine, and Dmd-editing in the brain (potentially blocked by the blood-brain barrier) were also elucidated briefly. Collectively, the AAV-mediated and RNA-guided CRISPR/Cas9 system has major superiorities compared with traditional gene therapy, and might contribute to the treatment of DMD and BMD substantially in the near future.

  12. The potential application and challenge of powerful CRISPR/Cas9 system in cardiovascular research.

    PubMed

    Li, Yangxin; Song, Yao-Hua; Liu, Bin; Yu, Xi-Yong

    2017-01-15

    CRISPR/Cas9 is a precision-guided munition found in bacteria to fight against invading viruses. This technology has enormous potential applications, including altering genes in both somatic and germ cells, as well as generating knockout animals. Compared to other gene editing techniques such as zinc finger nucleases and TALENS, CRISPR/Cas9 is much easier to use and highly efficient. Importantly, the multiplex capacity of this technology allows multiple genes to be edited simultaneously. CRISPR/Cas9 also has the potential to prevent and cure human diseases. In this review, we wish to highlight some key points regarding the future prospect of using CRISPR/Cas9 as a powerful tool for cardiovascular research, and as a novel therapeutic strategy to treat cardiovascular diseases.

  13. Engineering large viral DNA genomes using the CRISPR-Cas9 system.

    PubMed

    Suenaga, Tadahiro; Kohyama, Masako; Hirayasu, Kouyuki; Arase, Hisashi

    2014-09-01

    Manipulation of viral genomes is essential for studying viral gene function and utilizing viruses for therapy. Several techniques for viral genome engineering have been developed. Homologous recombination in virus-infected cells has traditionally been used to edit viral genomes; however, the frequency of the expected recombination is quite low. Alternatively, large viral genomes have been edited using a bacterial artificial chromosome (BAC) plasmid system. However, cloning of large viral genomes into BAC plasmids is both laborious and time-consuming. In addition, because it is possible for insertion into the viral genome of drug selection markers or parts of BAC plasmids to affect viral function, artificial genes sometimes need to be removed from edited viruses. Herpes simplex virus (HSV), a common DNA virus with a genome length of 152 kbp, causes labialis, genital herpes and encephalitis. Mutant HSV is a candidate for oncotherapy, in which HSV is used to kill tumor cells. In this study, the clustered regularly interspaced short palindromic repeat-Cas9 system was used to very efficiently engineer HSV without inserting artificial genes into viral genomes. Not only gene-ablated HSV but also gene knock-in HSV were generated using this method. Furthermore, selection with phenotypes of edited genes promotes the isolation efficiencies of expectedly mutated viral clones. Because our method can be applied to other DNA viruses such as Epstein-Barr virus, cytomegaloviruses, vaccinia virus and baculovirus, our system will be useful for studying various types of viruses, including clinical isolates.

  14. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); O'Brien, Martin J. (Inventor); Weimer, Carl S. (Inventor); Nelson, Loren D. (Inventor)

    2005-01-01

    Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.

  15. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); Tang, Shoou-yu (Inventor); O'Brien, Martin (Inventor)

    2010-01-01

    Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.

  16. CRISPR-Cas and contact dependent secretion systems present on excisable pathogenicity islands with conserved recombination modules.

    PubMed

    Carpenter, Megan R; Kalburge, Sai S; Borowski, Joseph D; Peters, Molly C; Colwell, Rita R; Boyd, E Fidelma

    2017-03-06

    Pathogenicity islands (PAIs) are mobile integrated genetic elements that contain a diverse range of virulence factors. PAIs integrate into the host chromosome at a tRNA locus that contains their specific bacterial attachment site, attB, via integrase mediated site-specific recombination generating attL and attR sites. We identified conserved recombination modules (integrases and att sites) previously described in choleragenic V. cholerae PAIs but with novel cargo genes. Clustered regularly interspaced short palindromic repeat (CRISPR)-associated proteins (Cas proteins) and a type VI secretion system (T6SS) gene cluster were identified at the Vibrio Pathogenicity Island-1 (VPI-1) insertion site in nineteen V. cholerae strains and contained the same recombination module. Two divergent type I-F CRISPR-Cas systems were identified, which differed in Cas protein homology and content. The CRISPR repeat sequence was identical among all V. cholerae strains but the CRISPR spacer sequences and the number of spacers varied. In silico analysis suggests that the CRISPR-Cas systems were active against phages and plasmids. A type III secretion system (T3SS) was present in twelve V. cholerae strains on a 68 kb island inserted at the same tRNA-serine insertion site as VPI-2 and contained the same recombination module. Bioinformatics analysis showed that two divergent T3SSs exist among the strains examined. Both the CRISPR and T3SS islands excised site-specifically from the bacterial chromosome as complete units and the cognate integrases were essential for this excision. These data demonstrated that identical recombination modules that catalyze integration and excision from the chromosome can acquire diverse cargo genes signifying a novel method of acquisition for both CRISPR-Cas systems and T3SSs.Importance This work demonstrated the presence of CRISPR-Cas systems and T3SSs on PAIs. Our work showed that similar recombination modules can associate with different cargo genes and

  17. A CRISPR/Cas9 system adapted for gene editing in marine algae

    PubMed Central

    Nymark, Marianne; Sharma, Amit Kumar; Sparstad, Torfinn; Bones, Atle M.; Winge, Per

    2016-01-01

    Here we report that the CRISPR/Cas9 technology can be used to efficiently generate stable targeted gene mutations in microalgae, using the marine diatom Phaeodactylum tricornutum as a model species. Our vector design opens for rapid and easy adaption of the construct to the target chosen. To screen for CRISPR/Cas9 mutants we employed high resolution melting based PCR assays, mutants were confirmed by sequencing and further validated by functional analyses. PMID:27108533

  18. Predominance of Single Prophage Carrying a CRISPR/cas System in "Candidatus Liberibacter asiaticus" Strains in Southern China.

    PubMed

    Zheng, Zheng; Bao, Minli; Wu, Fengnian; Chen, Jianchi; Deng, Xiaoling

    2016-01-01

    "Candidatus Liberibacter asiaticus" (CLas) is an uncultureable α-proteobacterium associated with citrus Huanglongbing (HLB, yellow shoot disease), a highly destructive disease affecting citrus production worldwide. HLB was observed in Guangdong Province of China over a hundred years ago and remains endemic there. Little is known about CLas biology due to its uncultureable nature. This study began with the genome sequence analysis of CLas Strain A4 from Guangdong in the prophage region. Within the two currently known prophage types, Type 1 (SC1-like) and Type 2 (SC2-like), A4 genome contained only a Type 2 prophage, CGdP2, namely. An analysis on CLas strains collected in Guangdong showed that Type 2 prophage dominated the bacterial population (82.6%, 71/86). An extended survey covering five provinces in southern China also revealed the predominance of single prophage (Type 1 or Type 2) in the CLas population (90.4%, 169/187). CLas strains with two and no prophage types accounted for 7.2% and 2.8%, respectively. In silico analyses on CGdP2 identified a CRISPR (clustered regularly interspaced short palindromic repeats)/cas (CRISPR-associated protein genes) system, consisting of four 22 bp repeats, three 23 bp spacers and 9 predicted cas. Similar CRISPR/cas systems were detected in all 10 published CLas prophages as well as 13 CLas field strains in southern China. Both Type 1 and Type 2 prophages shared almost identical sequences in spacer 1 and 3 but not spacer 2. Considering that the function of a CRISPR/cas system was to destroy invading DNA, it was hypothesized that a pre-established CLas prophage could use its CRISPR/cas system guided by spacer 1 and/or 3 to defeat the invasion of the other phage/prophage. This hypothesis explained the predominance of single prophage type in the CLas population in southern China. This is the first report of CRISPR/cas system in the "Ca. Liberibacter" genera.

  19. Characterization of CRISPR-Cas system in clinical Staphylococcus epidermidis strains revealed its potential association with bacterial infection sites.

    PubMed

    Li, Qiuchun; Xie, Xiaolei; Yin, Kequan; Tang, Yueyuan; Zhou, Xiaohui; Chen, Yun; Xia, Jie; Hu, Yachen; Ingmer, Hanne; Li, Yang; Jiao, Xinan

    2016-12-01

    Staphylococcus epidermidis is considered as a major cause of nosocomial infections, bringing an immense burden to healthcare systems. Virulent phages have been confirmed to be efficient in combating the pathogen, but the prensence of CRISPR-Cas system, which is a bacterial immune system eliminating phages was reported in few S. epidermidis strains. In this study, the CRISPR-Cas system was detected in 12 from almost 300 published genomes in GenBank and by PCR of cas6 gene in 18 strains out of 130 clinical isolates obtained in Copenhagen. Four strains isolated in 1965-1966 harboured CRISPR elements confirming that this immunity system was not recently acquired by S. epidermidis. In these CRISPR-positive strains, 44 and 12 spacers were found to belong to CRISPR1 and CRISPR2 elements, respectively. However, only 15 spacers displayed homology to reported phages and plasmids DNA. Interestingly, 5 different spacers located in the CRISPR1 locus with homolgy to virulent phage 6ec DNA sequences, and 19 strains each carrying 2 or 3 different spacers recognizing this phage, implied that the CRISPR-Cas immunity could be abrogated by nucleotide mismatch between the spacer and its target phage sequence, while new spacers obtained from the evolved phage could recover the CRISPR interference. In addition, phylogenetic analysis of the 29 CRISPR-positive isolates divided them into four lineages, with 81% human blood isolates as a distinct sub-lineage, suggesting that the CRISPR difference is closely related to diverse habitats. Knowledge of CRISPR and its prevalence may ultimately be applied in the understanding of origin and evolution of CRISPR-positive S. epidermidis strains.

  20. Phospholamban Ablation Using CRISPR/Cas9 System Improves Mortality in a Murine Heart Failure Model

    PubMed Central

    Kaneko, Manami; Hashikami, Kentarou; Yamamoto, Satoshi; Matsumoto, Hirokazu; Nishimoto, Tomoyuki

    2016-01-01

    Sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) and its inhibitory protein called phospholamban (PLN) are pivotal for Ca2+ handling in cardiomyocyte and are known that their expression level and activity were changed in the heart failure patients. To examine whether PLN inhibition can improve survival rate as well as cardiac function in heart failure, we performed PLN ablation in calsequestrin overexpressing (CSQ-Tg) mice, a severe heart failure model, using clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system. According this method, generation rate of PLN wild type mice (PLN copy >0.95) and PLN homozygous knockout (KO) mice (PLN copy <0.05) were 39.1% and 10.5%, respectively. While CSQ overexpression causes severe heart failure symptoms and premature death, a significant ameliorating effect on survival rate was observed in PLN homozygous KO/CSQ-Tg mice compared to PLN wild type/CSQ-Tg mice (median survival days are 55 and 50 days, respectively). Measurement of cardiac function with cardiac catheterization at the age of 5 weeks revealed that PLN ablation improved cardiac function in CSQ-Tg mice without affecting heart rate and blood pressure. Furthermore, increases in atrial and lung weight, an index of congestion, were significantly inhibited by PLN ablation. These results suggest that PLN deletion would be a promising approach to improve both mortality and cardiac function in the heart failure. PMID:27992596

  1. Genome engineering in the yeast pathogen Candida glabrata using the CRISPR-Cas9 system

    PubMed Central

    Enkler, Ludovic; Richer, Delphine; Marchand, Anthony L.; Ferrandon, Dominique; Jossinet, Fabrice

    2016-01-01

    Among Candida species, the opportunistic fungal pathogen Candida glabrata has become the second most common causative agent of candidiasis in the world and a major public health concern. Yet, few molecular tools and resources are available to explore the biology of C. glabrata and to better understand its virulence during infection. In this study, we describe a robust experimental strategy to generate loss-of-function mutants in C. glabrata. The procedure is based on the development of three main tools: (i) a recombinant strain of C. glabrata constitutively expressing the CRISPR-Cas9 system, (ii) an online program facilitating the selection of the most efficient guide RNAs for a given C. glabrata gene, and (iii) the identification of mutant strains by the Surveyor technique and sequencing. As a proof-of-concept, we have tested the virulence of some mutants in vivo in a Drosophila melanogaster infection model. Our results suggest that yps11 and a previously uncharacterized serine/threonine kinase are involved, directly or indirectly, in the ability of the pathogenic yeast to infect this model host organism. PMID:27767081

  2. Generation of muscular dystrophy model rats with a CRISPR/Cas system.

    PubMed

    Nakamura, Katsuyuki; Fujii, Wataru; Tsuboi, Masaya; Tanihata, Jun; Teramoto, Naomi; Takeuchi, Shiho; Naito, Kunihiko; Yamanouchi, Keitaro; Nishihara, Masugi

    2014-07-09

    Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disorder caused by mutations in the Dmd gene encoding Dystrophin. DMD model animals, such as mdx mice and canine X-linked muscular dystrophy dogs, have been widely utilized in the development of a treatment for DMD. Here, we demonstrate the generation of Dmd-mutated rats using a clustered interspaced short palindromic repeats (CRISPR)/Cas system, an RNA-based genome engineering technique that is also adaptive to rats. We simultaneously targeted two exons in the rat Dmd gene, which resulted in the absence of Dystrophin expression in the F0 generation. Dmd-mutated rats exhibited a decline in muscle strength, and the emergence of degenerative/regenerative phenotypes in the skeletal muscle, heart, and diaphragm. These mutations were heritable by the next generation, and F1 male rats exhibited similar phenotypes in their skeletal muscles. These model rats should prove to be useful for developing therapeutic methods to treat DMD.

  3. RNA-Guided CRISPR-Cas9 System-Mediated Engineering of Acute Myeloid Leukemia Mutations.

    PubMed

    Brabetz, Oliver; Alla, Vijay; Angenendt, Linus; Schliemann, Christoph; Berdel, Wolfgang E; Arteaga, Maria-Francisca; Mikesch, Jan-Henrik

    2017-03-17

    Current acute myeloid leukemia (AML) disease models face severe limitations because most of them induce un-physiological gene expressions that do not represent conditions in AML patients and/or depend on external promoters for regulation of gene expression/repression. Furthermore, many AML models are based on reciprocal chromosomal translocations that only reflect the minority of AML patients, whereas more than 50% of patients have a normal karyotype. The majority of AML, however, is driven by somatic mutations. Thus, identification as well as a detailed molecular and functional characterization of the role of these driver mutations via improved AML models is required for better approaches toward novel targeted therapies. Using the IDH2 R140Q mutation as a model, we present a new effective methodology here using the RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system to reproduce or remove AML-associated mutations in or from human leukemic cells, respectively, via introduction of a DNA template at the endogenous gene locus via homologous recombination. Our technology represents a precise way for AML modeling to gain insights into AML development and progression and provides a basis for future therapeutic approaches.

  4. Air Sampling System Evaluation Template

    SciTech Connect

    Blunt, Brent

    2000-05-09

    The ASSET1.0 software provides a template with which a user can evaluate an Air Sampling System against the latest version of ANSI N13.1 "Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities". The software uses the ANSI N13.1 PIC levels to establish basic design criteria for the existing or proposed sampling system. The software looks at such criteria as PIC level, type of radionuclide emissions, physical state of the radionuclide, nozzle entrance effects, particulate transmission effects, system and component accuracy and precision evaluations, and basic system operations to provide a detailed look at the subsystems of a monitoring and sampling system/program. A GAP evaluation can then be completed which leads to identification of design and operational flaws in the proposed systems. Corrective measures can then be limited to the GAPs.

  5. Optimization of genome engineering approaches with the CRISPR/Cas9 system.

    PubMed

    Li, Kai; Wang, Gang; Andersen, Troels; Zhou, Pingzhu; Pu, William T

    2014-01-01

    Designer nucleases such as TALENS and Cas9 have opened new opportunities to scarlessly edit the mammalian genome. Here we explored several parameters that influence Cas9-mediated scarless genome editing efficiency in murine embryonic stem cells. Optimization of transfection conditions and enriching for transfected cells are critical for efficiently recovering modified clones. Paired gRNAs and wild-type Cas9 efficiently create programmed deletions, which facilitate identification of targeted clones, while paired gRNAs and the Cas9D10A nickase generated smaller targeted indels with lower chance of off-target mutagenesis. Genome editing is also useful for programmed introduction of exogenous DNA sequences at a target locus. Increasing the length of the homology arms of the homology-directed repair template strongly enhanced targeting efficiency, while increasing the length of the DNA insert reduced it. Together our data provide guidance on optimal design of scarless gene knockout, modification, or knock-in experiments using Cas9 nuclease.

  6. Probing the structural dynamics of the CRISPR-Cas9 RNA-guided DNA-cleavage system by coarse-grained modeling.

    PubMed

    Zheng, Wenjun

    2017-02-01

    In the adaptive immune systems of many bacteria and archaea, the Cas9 endonuclease forms a complex with specific guide/scaffold RNA to identify and cleave complementary target sequences in foreign DNA. This DNA targeting machinery has been exploited in numerous applications of genome editing and transcription control. However, the molecular mechanism of the Cas9 system is still obscure. Recently, high-resolution structures have been solved for Cas9 in different structural forms (e.g., unbound forms, RNA-bound binary complexes, and RNA-DNA-bound tertiary complexes, corresponding to an inactive state, a pre-target-bound state, and a cleavage-competent or product state), which offered key structural insights to the Cas9 mechanism. To further probe the structural dynamics of Cas9 interacting with RNA and DNA at the amino-acid level of details, we have performed systematic coarse-grained modeling using an elastic network model and related analyses. Our normal mode analysis predicted a few key modes of collective motions that capture the observed conformational changes featuring large domain motions triggered by binding of RNA and DNA. Our flexibility analysis identified specific regions with high or low flexibility that coincide with key functional sites (such as DNA/RNA-binding sites, nuclease cleavage sites, and key hinges). We also identified a small set of hotspot residues that control the energetics of functional motions, which overlap with known functional sites and offer promising targets for future mutagenesis efforts to improve the specificity of Cas9. Finally, we modeled the conformational transitions of Cas9 from the unbound form to the binary complex and then the tertiary complex, and predicted a distinct sequence of domain motions. In sum, our findings have offered rich structural and dynamic details relevant to the Cas9 machinery, and will guide future investigation and engineering of the Cas9 systems. Proteins 2017; 85:342-353. © 2016 Wiley Periodicals

  7. CRISPR-Cas system presents multiple transcriptional units including antisense RNAs that are expressed in minimal medium and upregulated by pH in Salmonella enterica serovar Typhi.

    PubMed

    Medina-Aparicio, Liliana; Rebollar-Flores, Javier E; Beltrán-Luviano, América A; Vázquez, Alejandra; Gutiérrez-Ríos, Rosa M; Olvera, Leticia; Calva, Edmundo; Hernández-Lucas, Ismael

    2017-02-01

    The CRISPR-Cas system is involved in bacterial immunity, virulence, gene regulation, biofilm formation and sporulation. In Salmonella enterica serovar Typhi, this system consists of five transcriptional units including antisense RNAs. It was determined that these genetic elements are expressed in minimal medium and are up-regulated by pH. In addition, a transcriptional characterization of cas3 and ascse2-1 is included herein.

  8. An air quality sensing system for cool air storage

    NASA Astrophysics Data System (ADS)

    Ngoy, T. J.; Joubert, T.-H.

    2016-02-01

    Cooling and ventilation systems play an important role in human occupied spaces. However, cooling using reversible air conditioners systems pollutes the environment and consumes a significant amount of energy. With global warming that experiences our environment, the large consumption of electrical energy and the operating instructions for reversible air conditioners, there is a need to find alternatives to those cooling systems. Hence this research project aims to investigate an air storage system, a microsystem reversible ventilation system using natural atmospheric air (renewable energy) for cooling at low consumption of energy. For the variation of the temperature range of comfort due to thermal heat produces by occupants, equipment and environment, an optimal transient automatic regulation of air flow as to be design in order to maintain the temperature of comfort in occupied spaces during peak hours.

  9. Cell Locating with the Image Analysis System of the CAS-LIBB Single-Particle Microbeam Facility

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua; Wang, Shaohu; Yu, Zengliang

    2005-06-01

    A single-particle microbeam facility has been constructed at the Key Laboratory of Ion Beam Bioengineering (LIBB), Chinese Academy of Sciences (CAS). At the CAS-LIBB microbeam facility, we have developed protocols to place exact numbers of charged particles through nuclear centroids of cells, at defined positions in the cytoplasm relative to the nucleus, and through defined fractions of cells in a population. In this paper, we address the methods for nucleus, cytoplasm and bystander (either a single or an exact number of ions is delivered to a certain percentage of cells in a population to study the bystander effects of radiation) irradiation in detail from the precision of target finding and cell locating in the image analysis system. Moreover, for cells touching slightly in an image, a watershed method is used to separate these touching objects; after that, the number of objects in an image is counted accurately and the irradiation points are located precisely.

  10. Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system.

    PubMed

    Torres, R; Martin, M C; Garcia, A; Cigudosa, Juan C; Ramirez, J C; Rodriguez-Perales, S

    2014-06-03

    Cancer-related human chromosomal translocations are generated through the illegitimate joining of two non-homologous chromosomes affected by double-strand breaks (DSB). Effective methodologies to reproduce precise reciprocal tumour-associated chromosomal translocations are required to gain insight into the initiation of leukaemia and sarcomas. Here we present a strategy for generating cancer-related human chromosomal translocations in vitro based on the ability of the RNA-guided CRISPR-Cas9 system to induce DSBs at defined positions. Using this approach we generate human cell lines and primary cells bearing chromosomal translocations resembling those described in acute myeloid leukaemia and Ewing's sarcoma at high frequencies. FISH and molecular analysis at the mRNA and protein levels of the fusion genes involved in these engineered cells reveal the reliability and accuracy of the CRISPR-Cas9 approach, providing a powerful tool for cancer studies.

  11. Applications of Engineered DNA-Binding Molecules Such as TAL Proteins and the CRISPR/Cas System in Biology Research

    PubMed Central

    Fujita, Toshitsugu; Fujii, Hodaka

    2015-01-01

    Engineered DNA-binding molecules such as transcription activator-like effector (TAL or TALE) proteins and the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) (CRISPR/Cas) system have been used extensively for genome editing in cells of various types and species. The sequence-specific DNA-binding activities of these engineered DNA-binding molecules can also be utilized for other purposes, such as transcriptional activation, transcriptional repression, chromatin modification, visualization of genomic regions, and isolation of chromatin in a locus-specific manner. In this review, we describe applications of these engineered DNA-binding molecules for biological purposes other than genome editing. PMID:26404236

  12. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system.

    PubMed

    Wang, Xiaolong; Yu, Honghao; Lei, Anmin; Zhou, Jiankui; Zeng, Wenxian; Zhu, Haijing; Dong, Zhiming; Niu, Yiyuan; Shi, Bingbo; Cai, Bei; Liu, Jinwang; Huang, Shuai; Yan, Hailong; Zhao, Xiaoe; Zhou, Guangxian; He, Xiaoling; Chen, Xiaoxu; Yang, Yuxin; Jiang, Yu; Shi, Lei; Tian, Xiue; Wang, Yongjun; Ma, Baohua; Huang, Xingxu; Qu, Lei; Chen, Yulin

    2015-09-10

    Recent advances in the study of the CRISPR/Cas9 system have provided a precise and versatile approach for genome editing in various species. However, the applicability and efficiency of this method in large animal models, such as the goat, have not been extensively studied. Here, by co-injection of one-cell stage embryos with Cas9 mRNA and sgRNAs targeting two functional genes (MSTN and FGF5), we successfully produced gene-modified goats with either one or both genes disrupted. The targeting efficiency of MSTN and FGF5 in cultured primary fibroblasts was as high as 60%, while the efficiency of disrupting MSTN and FGF5 in 98 tested animals was 15% and 21% respectively, and 10% for double gene modifications. The on- and off-target mutations of the target genes in fibroblasts, as well as in somatic tissues and testis of founder and dead animals, were carefully analyzed. The results showed that simultaneous editing of several sites was achieved in large animals, demonstrating that the CRISPR/Cas9 system has the potential to become a robust and efficient gene engineering tool in farm animals, and therefore will be critically important and applicable for breeding.

  13. CRP represses the CRISPR/Cas system in Escherichia coli: evidence that endogenous CRISPR spacers impede phage P1 replication.

    PubMed

    Yang, Chi-Dung; Chen, Yen-Hua; Huang, Hsi-Yuan; Huang, Hsien-Da; Tseng, Ching-Ping

    2014-06-01

    The CRISPR/Cas system is an important aspect in bacterial immunology. The anti-phage activity of the CRISPR system has been established using synthetic CRISPR spacers, but in vivo studies of endogenous CRISPR spacers are relatively scarce. Here, we showed that bacteriophage P1 titre in Escherichia coli decreased in the glucose-containing medium compared with that in the absence of glucose. This glucose effect of E. coli against phage P1 infection disappeared in cse3 deletion mutants. The effect on the susceptibility to phage P1 was associated with cAMP receptor protein (CRP)-mediated repression of cas genes transcription and crRNA maturation. Analysis of the regulatory element in the cse1 promoter region revealed a novel CRP binding site, which overlapped with a LeuO binding site. Furthermore, the limited sequence identity between endogenous spacers and the phage P1 genome was necessary and sufficient for CRISPR-mediated repression of phage P1 replication. Trans-expression of the third and seventh spacers in the CRISPR I region or third and sixth spacers in the CRISPR II region effectively reduced phage P1 titres in the CRISPR deletion mutants. These results demonstrate a novel regulatory mechanism for cas repression by CRP and provide evidence that endogenous spacers can repress phage P1 replication in E. coli.

  14. Generation of genetically modified mice using CRISPR/Cas9 and haploid embryonic stem cell systems

    PubMed Central

    JIN, Li-Fang; LI, Jin-Song

    2016-01-01

    With the development of high-throughput sequencing technology in the post-genomic era, researchers have concentrated their efforts on elucidating the relationships between genes and their corresponding functions. Recently, important progress has been achieved in the generation of genetically modified mice based on CRISPR/Cas9 and haploid embryonic stem cell (haESC) approaches, which provide new platforms for gene function analysis, human disease modeling, and gene therapy. Here, we review the CRISPR/Cas9 and haESC technology for the generation of genetically modified mice and discuss the key challenges in the application of these approaches. PMID:27469251

  15. CAS-Induced Difficulties in Learning Mathematics?

    ERIC Educational Resources Information Center

    Jankvist, Uffe Thomas; Misfeldt, Morten

    2015-01-01

    In recent years computer algebra systems (CAS) have become an integrated part of the upper secondary school mathematics program. Despite the many positive possibilities of CAS, there also seems to be a flip side of the coin in relation to actual difficulties in learning mathematics, not least because a strong dependence on CAS for mathematical…

  16. The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models.

    PubMed

    Shao, Ming; Xu, Tian-Rui; Chen, Ce-Shi

    2016-07-18

    Targeted genome editing technology has been widely used in biomedical studies. The CRISPR-associated RNA-guided endonuclease Cas9 has become a versatile genome editing tool. The CRISPR/Cas9 system is useful for studying gene function through efficient knock-out, knock-in or chromatin modification of the targeted gene loci in various cell types and organisms. It can be applied in a number of fields, such as genetic breeding, disease treatment and gene functional investigation. In this review, we introduce the most recent developments and applications, the challenges, and future directions of Cas9 in generating disease animal model. Derived from the CRISPR adaptive immune system of bacteria, the development trend of Cas9 will inevitably fuel the vital applications from basic research to biotechnology and bio-medicine.

  17. The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models

    PubMed Central

    SHAO, Ming; XU, Tian-Rui; CHEN, Ce-Shi

    2016-01-01

    Targeted genome editing technology has been widely used in biomedical studies. The CRISPR-associated RNA-guided endonuclease Cas9 has become a versatile genome editing tool. The CRISPR/Cas9 system is useful for studying gene function through efficient knock-out, knock-in or chromatin modification of the targeted gene loci in various cell types and organisms. It can be applied in a number of fields, such as genetic breeding, disease treatment and gene functional investigation. In this review, we introduce the most recent developments and applications, the challenges, and future directions of Cas9 in generating disease animal model. Derived from the CRISPR adaptive immune system of bacteria, the development trend of Cas9 will inevitably fuel the vital applications from basic research to biotechnology and biomedicine. PMID:27469250

  18. A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in Cotton (Gossypium hirsutum L.)

    PubMed Central

    Li, Chao; Unver, Turgay; Zhang, Baohong

    2017-01-01

    The complex allotetraploid genome is one of major challenges in cotton for repressing gene expression. Developing site-specific DNA mutation is the long-term dream for cotton breeding scientists. The clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system is emerging as a robust biotechnology for targeted-DNA mutation. In this study, two sgRNAs, GhMYB25-like-sgRNA1 and GhMYB25-like-sgRNA2, were designed in the identical genomic regions of GhMYB25-like A and GhMYB25-like D, which were encoded by cotton A subgenome and the D subgenome, respectively, was assembled to direct Cas9-mediated allotetraploid cotton genome editing. High proportion (14.2–21.4%) CRISPR/Cas9-induced specific truncation events, either from GhMYB25-like A DNA site or from GhMYB25-like D DNA site, were detected in 50% examined transgenic cotton through PCR amplification assay and sequencing analyses. Sequencing results also demonstrated that 100% and 98.8% mutation frequency were occurred on GhMYB25-like-sgRNA1 and GhMYB25-like-sgRNA2 target site respectively. The off-target effect was evaluated by sequencing two putative off-target sites, which have 3 and 1 mismatched nucleotides with GhMYB25-like-sgRNA1 and GhMYB25-like-sgRNA2, respectively; all the examined samples were not detected any off-target-caused mutation events. Thus, these results demonstrated that CRISPR/Cas9 is qualified for generating DNA level mutations on allotetraploid cotton genome with high-efficiency and high-specificity. PMID:28256588

  19. A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in Cotton (Gossypium hirsutum L.).

    PubMed

    Li, Chao; Unver, Turgay; Zhang, Baohong

    2017-03-03

    The complex allotetraploid genome is one of major challenges in cotton for repressing gene expression. Developing site-specific DNA mutation is the long-term dream for cotton breeding scientists. The clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system is emerging as a robust biotechnology for targeted-DNA mutation. In this study, two sgRNAs, GhMYB25-like-sgRNA1 and GhMYB25-like-sgRNA2, were designed in the identical genomic regions of GhMYB25-like A and GhMYB25-like D, which were encoded by cotton A subgenome and the D subgenome, respectively, was assembled to direct Cas9-mediated allotetraploid cotton genome editing. High proportion (14.2-21.4%) CRISPR/Cas9-induced specific truncation events, either from GhMYB25-like A DNA site or from GhMYB25-like D DNA site, were detected in 50% examined transgenic cotton through PCR amplification assay and sequencing analyses. Sequencing results also demonstrated that 100% and 98.8% mutation frequency were occurred on GhMYB25-like-sgRNA1 and GhMYB25-like-sgRNA2 target site respectively. The off-target effect was evaluated by sequencing two putative off-target sites, which have 3 and 1 mismatched nucleotides with GhMYB25-like-sgRNA1 and GhMYB25-like-sgRNA2, respectively; all the examined samples were not detected any off-target-caused mutation events. Thus, these results demonstrated that CRISPR/Cas9 is qualified for generating DNA level mutations on allotetraploid cotton genome with high-efficiency and high-specificity.

  20. Regulation of Gene Editing Activity Directed by Single-Stranded Oligonucleotides and CRISPR/Cas9 Systems.

    PubMed

    Bialk, Pawel; Rivera-Torres, Natalia; Strouse, Bryan; Kmiec, Eric B

    2015-01-01

    Single-stranded DNA oligonucleotides (ssODNs) can direct the repair of a single base mutation in human genes. While the regulation of this gene editing reaction has been partially elucidated, the low frequency with which repair occurs has hampered development toward clinical application. In this work a CRISPR/Cas9 complex is employed to induce double strand DNA breakage at specific sites surrounding the nucleotide designated for exchange. The result is a significant elevation in ssODN-directed gene repair, validated by a phenotypic readout. By analysing reaction parameters, we have uncovered restrictions on gene editing activity involving CRISPR/Cas9 complexes. First, ssODNs that hybridize to the non-transcribed strand direct a higher level of gene repair than those that hybridize to the transcribed strand. Second, cleavage must be proximal to the targeted mutant base to enable higher levels of gene editing. Third, DNA cleavage enables a higher level of gene editing activity as compared to single-stranded DNA nicks, created by modified Cas9 (Nickases). Fourth, we calculated the hybridization potential and free energy levels of ssODNs that are complementary to the guide RNA sequences of CRISPRs used in this study. We find a correlation between free energy potential and the capacity of single-stranded oligonucleotides to inhibit specific DNA cleavage activity, thereby indirectly reducing gene editing activity. Our data provide novel information that might be taken into consideration in the design and usage of CRISPR/Cas9 systems with ssODNs for gene editing.

  1. [Changes of resistant phenotype and CRISPR/Cas system of four Shigella strains passaged for 90 times without antibiotics].

    PubMed

    Zhang, B; Hong, L J; Duan, G C; Liang, W J; Yang, H Y; Xi, Y L

    2017-02-10

    Objective: To explore the stability of resistant phenotypes and changes of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) gene system on four Shigella strains in the absence of antibiotics. Methods: Four clinical isolated Shigella strains that resistant to different antibiotics were consecutive passaged for 90 times without antibiotics. Agar dilution method was used to determine the minimum inhibitory concentration of Shigella strains. After sequence analysis with PCR, CRISPR Finder and Clustal X 2.1 were applied to identify the changes of CRISPR loci in the Shigella strains. Results: After the consecutive transfer of 90 generations, sensitivity to certain antibiotics of four Shigella strains with different drug resistant spectrums increased. Mel-sf1998024/zz resistance to ampicillin, cephalexin, cefotaxime, chloramphenicol decreased, mel-s2014026/sx resistance to norfloxacin, trimethoprim decreased, mel-sf2004004/sx drug resistance to ampicillin, cefuroxime, cefotaxime, chloramphenicol, trimethoprim decreased and mel-sf2013004/bj resistance to chloramphenicol decreased. The spacer of which matched gene codes Cas and its upstream repeat in 3'end of CRISPR3 got lost in mel-sf1998024/zz and mel-sf2013004/bj. Conclusions:Shigella strains could reduce or lose their resistance to some antibiotics after consecutive transfers, without the interference of antibiotics. CRISPR3 locus had dynamic spacers in Shigella strains while CRISPR3 locus and cas genes might have been co-evolved.

  2. Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae.

    PubMed

    Bao, Zehua; Xiao, Han; Liang, Jing; Zhang, Lu; Xiong, Xiong; Sun, Ning; Si, Tong; Zhao, Huimin

    2015-05-15

    One-step multiple gene disruption in the model organism Saccharomyces cerevisiae is a highly useful tool for both basic and applied research, but it remains a challenge. Here, we report a rapid, efficient, and potentially scalable strategy based on the type II Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR associated proteins (Cas) system to generate multiple gene disruptions simultaneously in S. cerevisiae. A 100 bp dsDNA mutagenizing homologous recombination donor is inserted between two direct repeats for each target gene in a CRISPR array consisting of multiple donor and guide sequence pairs. An ultrahigh copy number plasmid carrying iCas9, a variant of wild-type Cas9, trans-encoded RNA (tracrRNA), and a homology-integrated crRNA cassette is designed to greatly increase the gene disruption efficiency. As proof of concept, three genes, CAN1, ADE2, and LYP1, were simultaneously disrupted in 4 days with an efficiency ranging from 27 to 87%. Another three genes involved in an artificial hydrocortisone biosynthetic pathway, ATF2, GCY1, and YPR1, were simultaneously disrupted in 6 days with 100% efficiency. This homology-integrated CRISPR (HI-CRISPR) strategy represents a powerful tool for creating yeast strains with multiple gene knockouts.

  3. Programmed Self-Assembly of an Active P22-Cas9 Nanocarrier System.

    PubMed

    Qazi, Shefah; Miettinen, Heini M; Wilkinson, Royce A; McCoy, Kimberly; Douglas, Trevor; Wiedenheft, Blake

    2016-03-07

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) RNA-guided endonucleases are powerful new tools for targeted genome engineering. These nucleases provide an efficient and precise method for manipulating eukaryotic genomes; however, delivery of these reagents to specific cell-types remains challenging. Virus-like particles (VLPs) derived from bacteriophage P22, are robust supramolecular protein cage structures with demonstrated utility for cell type-specific delivery of encapsulated cargos. Here, we genetically fuse Cas9 to a truncated form of the P22 scaffold protein, which acts as a template for capsid assembly as well as a specific encapsulation signal for Cas9. Our results indicate that Cas9 and a single-guide RNA are packaged inside the P22 VLP, and activity assays indicate that this RNA-guided endonuclease is functional for sequence-specific cleavage of dsDNA targets. This work demonstrates the potential for developing P22 as a delivery vehicle for cell specific targeting of Cas9.

  4. Repurposing the CRISPR-Cas9 system for targeted DNA methylation

    PubMed Central

    Vojta, Aleksandar; Dobrinić, Paula; Tadić, Vanja; Bočkor, Luka; Korać, Petra; Julg, Boris; Klasić, Marija; Zoldoš, Vlatka

    2016-01-01

    Epigenetic studies relied so far on correlations between epigenetic marks and gene expression pattern. Technologies developed for epigenome editing now enable direct study of functional relevance of precise epigenetic modifications and gene regulation. The reversible nature of epigenetic modifications, including DNA methylation, has been already exploited in cancer therapy for remodeling the aberrant epigenetic landscape. However, this was achieved non-selectively using epigenetic inhibitors. Epigenetic editing at specific loci represents a novel approach that might selectively and heritably alter gene expression. Here, we developed a CRISPR-Cas9-based tool for specific DNA methylation consisting of deactivated Cas9 (dCas9) nuclease and catalytic domain of the DNA methyltransferase DNMT3A targeted by co–expression of a guide RNA to any 20 bp DNA sequence followed by the NGG trinucleotide. We demonstrated targeted CpG methylation in a ∼35 bp wide region by the fusion protein. We also showed that multiple guide RNAs could target the dCas9-DNMT3A construct to multiple adjacent sites, which enabled methylation of a larger part of the promoter. DNA methylation activity was specific for the targeted region and heritable across mitotic divisions. Finally, we demonstrated that directed DNA methylation of a wider promoter region of the target loci IL6ST and BACH2 decreased their expression. PMID:26969735

  5. Repurposing the CRISPR-Cas9 system for targeted DNA methylation.

    PubMed

    Vojta, Aleksandar; Dobrinić, Paula; Tadić, Vanja; Bočkor, Luka; Korać, Petra; Julg, Boris; Klasić, Marija; Zoldoš, Vlatka

    2016-07-08

    Epigenetic studies relied so far on correlations between epigenetic marks and gene expression pattern. Technologies developed for epigenome editing now enable direct study of functional relevance of precise epigenetic modifications and gene regulation. The reversible nature of epigenetic modifications, including DNA methylation, has been already exploited in cancer therapy for remodeling the aberrant epigenetic landscape. However, this was achieved non-selectively using epigenetic inhibitors. Epigenetic editing at specific loci represents a novel approach that might selectively and heritably alter gene expression. Here, we developed a CRISPR-Cas9-based tool for specific DNA methylation consisting of deactivated Cas9 (dCas9) nuclease and catalytic domain of the DNA methyltransferase DNMT3A targeted by co-expression of a guide RNA to any 20 bp DNA sequence followed by the NGG trinucleotide. We demonstrated targeted CpG methylation in a ∼35 bp wide region by the fusion protein. We also showed that multiple guide RNAs could target the dCas9-DNMT3A construct to multiple adjacent sites, which enabled methylation of a larger part of the promoter. DNA methylation activity was specific for the targeted region and heritable across mitotic divisions. Finally, we demonstrated that directed DNA methylation of a wider promoter region of the target loci IL6ST and BACH2 decreased their expression.

  6. Strategy Guideline. Compact Air Distribution Systems

    SciTech Connect

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  7. Compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  8. Compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  9. Strategy Guideline: Compact Air Distribution Systems

    SciTech Connect

    Burdick, A.

    2013-06-01

    This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward the exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  10. The CasKR Two-Component System Is Required for the Growth of Mesophilic and Psychrotolerant Bacillus cereus Strains at Low Temperatures

    PubMed Central

    Diomandé, Sara Esther; Chamot, Stéphanie; Antolinos, Vera; Vasai, Florian; Guinebretière, Marie-Hélène; Bornard, Isabelle; Nguyen-the, Christophe; Broussolle, Véronique

    2014-01-01

    The different strains of Bacillus cereus can grow at temperatures covering a very diverse range. Some B. cereus strains can grow in chilled food and consequently cause food poisoning. We have identified a new sensor/regulator mechanism involved in low-temperature B. cereus growth. Construction of a mutant of this two-component system enabled us to show that this system, called CasKR, is required for growth at the minimal temperature (Tmin). CasKR was also involved in optimal cold growth above Tmin and in cell survival below Tmin. Microscopic observation showed that CasKR plays a key role in cell shape during cold growth. Introducing the casKR genes in a ΔcasKR mutant restored its ability to grow at Tmin. Although it was first identified in the ATCC 14579 model strain, this mechanism has been conserved in most strains of the B. cereus group. We show that the role of CasKR in cold growth is similar in other B. cereus sensu lato strains with different growth temperature ranges, including psychrotolerant strains. PMID:24509924

  11. Generation and Inheritance of Targeted Mutations in Potato (Solanum tuberosum L.) Using the CRISPR/Cas System.

    PubMed

    Butler, Nathaniel M; Atkins, Paul A; Voytas, Daniel F; Douches, David S

    2015-01-01

    Genome editing using sequence-specific nucleases (SSNs) offers an alternative approach to conventional genetic engineering and an opportunity to extend the benefits of genetic engineering in agriculture. Currently available SSN platforms, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR/Cas (clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems (Cas)) have been used in a range of plant species for targeted mutagenesis via non-homologous end joining (NHEJ) are just beginning to be explored in crops such as potato (Solanum tuberosum Group Tuberosum L.). In this study, CRISPR/Cas reagents expressing one of two single-guide RNA (sgRNA) targeting the potato ACETOLACTATE SYNTHASE1 (StALS1) gene were tested for inducing targeted mutations in callus and stable events of diploid and tetraploid potato using Agrobacterium-mediated transformation with either a conventional T-DNA or a modified geminivirus T-DNA. The percentage of primary events with targeted mutations ranged from 3-60% per transformation and from 0-29% above an expected threshold based on the number of ALS alleles. Primary events with targeted mutation frequencies above the expected threshold were used for mutation cloning and inheritance studies using clonal propagation and crosses or selfing. Four of the nine primary events used for mutation cloning had more than one mutation type, and eight primary events contained targeted mutations that were maintained across clonal generations. Somatic mutations were most evident in the diploid background with three of the four primary events having more than two mutation types at a single ALS locus. Conversely, in the tetraploid background, four of the five candidates carried only one mutation type. Single targeted mutations were inherited through the germline of both diploid and tetraploid primary events with transmission percentages ranging from 87-100%. This demonstration

  12. Generation and Inheritance of Targeted Mutations in Potato (Solanum tuberosum L.) Using the CRISPR/Cas System

    PubMed Central

    Butler, Nathaniel M.; Atkins, Paul A.; Voytas, Daniel F.; Douches, David S.

    2015-01-01

    Genome editing using sequence-specific nucleases (SSNs) offers an alternative approach to conventional genetic engineering and an opportunity to extend the benefits of genetic engineering in agriculture. Currently available SSN platforms, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR/Cas (clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems (Cas)) have been used in a range of plant species for targeted mutagenesis via non-homologous end joining (NHEJ) are just beginning to be explored in crops such as potato (Solanum tuberosum Group Tuberosum L.). In this study, CRISPR/Cas reagents expressing one of two single-guide RNA (sgRNA) targeting the potato ACETOLACTATE SYNTHASE1 (StALS1) gene were tested for inducing targeted mutations in callus and stable events of diploid and tetraploid potato using Agrobacterium-mediated transformation with either a conventional T-DNA or a modified geminivirus T-DNA. The percentage of primary events with targeted mutations ranged from 3–60% per transformation and from 0–29% above an expected threshold based on the number of ALS alleles. Primary events with targeted mutation frequencies above the expected threshold were used for mutation cloning and inheritance studies using clonal propagation and crosses or selfing. Four of the nine primary events used for mutation cloning had more than one mutation type, and eight primary events contained targeted mutations that were maintained across clonal generations. Somatic mutations were most evident in the diploid background with three of the four primary events having more than two mutation types at a single ALS locus. Conversely, in the tetraploid background, four of the five candidates carried only one mutation type. Single targeted mutations were inherited through the germline of both diploid and tetraploid primary events with transmission percentages ranging from 87–100%. This

  13. Simulation for close air support

    NASA Astrophysics Data System (ADS)

    Hench, David L.

    2009-05-01

    Close Air Support (CAS) is the use of air power in close proximity to friendly forces against enemy combatants. CAS requires precise and detailed communication between the personnel on the ground and the air vehicles. To be useful, a network simulation should be a superposition on the planning simulations for these activities. In a CAS mission, all of the above activities are critical. A hypothetical CAS mission is modeled as an "as is" solution with stove-piped communications and a "to be" network enabled solution. A co-simulation laboratory using OPNET with SITL (SYSTEM in the Loop, cosim, JFORCES (Joint Force Operational Readiness Combat Effectiveness Simulator), and JSAF (Joint Semi-Automated Forces) simulation system is described.

  14. Practical method for targeted disruption of cilia-related genes by using CRISPR/Cas9-mediated homology-independent knock-in system.

    PubMed

    Katoh, Yohei; Michisaka, Saki; Nozaki, Shohei; Funabashi, Teruki; Hirano, Tomoaki; Takei, Ryota; Nakayama, Kazuhisa

    2017-02-08

    The CRISPR/Cas9 system has revolutionized genome editing in virtually all organisms. Although the CRISPR/Cas9 system enables the targeted cleavage of genomic DNA, its use for gene knock-in remains challenging because levels of homologous recombination activity vary among various cells. In contrast, the efficiency of homology-independent DNA repair is relatively high in most cell types. Therefore, the utilization of a homology-independent repair mechanism is a possible alternative for efficient genome editing. Here, we constructed a donor knock-in vector optimized for the CRISPR/Cas9 system, and developed a practical system that enables efficient disruption of target genes by exploiting homology-independent repair. Using this practical knock-in system, we successfully disrupted genes encoding proteins involved ciliary protein trafficking, including IFT88 and IFT20, in hTERT-RPE1 cells, which have low homologous recombination activity. The most critical concern using the CRISPR/Cas9 system is off-target cleavage. To reduce the off-target cleavage frequency and to increase the versatility of our knock-in system, we further constructed a universal donor vector and an expression vector containing Cas9 with enhanced specificity and tandem sgRNA expression cassettes. We demonstrated that the second version of our system has improved usability.

  15. Industrial Compressed Air System Energy Efficiency Guidebook.

    SciTech Connect

    United States. Bonneville Power Administration.

    1993-12-01

    Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

  16. Velocity Estimate Following Air Data System Failure

    DTIC Science & Technology

    2008-03-01

    12 Figure 2.2. Pitot Tube...that relay pitot -static information from the aircraft’s air data system and inertial measurement information from the Inertial Navigation System...Air data systems receive total and static pressure inputs from a pitot -static system. A typical pitot tube, as shown below, receives total pressure

  17. RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System

    PubMed Central

    Iavarone, Anthony T.; Doudna, Jennifer A.

    2017-01-01

    CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are RNA-guided adaptive immunity pathways used by bacteria and archaea to defend against phages and plasmids. Type III-A systems use a multisubunit interference complex called Csm, containing Cas proteins and a CRISPR RNA (crRNA) to target cognate nucleic acids. The Csm complex is intriguing in that it mediates RNA-guided targeting of both RNA and transcriptionally active DNA, but the mechanism is not well understood. Here, we overexpressed the five components of the Thermus thermophilus (T. thermophilus) Type III-A Csm complex (TthCsm) with a defined crRNA sequence, and purified intact TthCsm complexes from E. coli cells. The complexes were thermophilic, targeting complementary ssRNA more efficiently at 65°C than at 37°C. Sequence-independent, endonucleolytic cleavage of single-stranded DNA (ssDNA) by TthCsm was triggered by recognition of a complementary ssRNA, and required a lack of complementarity between the first 8 nucleotides (5′ tag) of the crRNA and the 3′ flanking region of the ssRNA. Mutation of the histidine-aspartate (HD) nuclease domain of the TthCsm subunit, Cas10/Csm1, abolished DNA cleavage. Activation of DNA cleavage was dependent on RNA binding but not cleavage. This leads to a model in which binding of an ssRNA target to the Csm complex would stimulate cleavage of exposed ssDNA in the cell, such as could occur when the RNA polymerase unwinds double-stranded DNA (dsDNA) during transcription. Our findings establish an amenable, thermostable system for more in-depth investigation of the targeting mechanism using structural biology methods, such as cryo-electron microscopy and x-ray crystallography. PMID:28114398

  18. RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System.

    PubMed

    Liu, Tina Y; Iavarone, Anthony T; Doudna, Jennifer A

    2017-01-01

    CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are RNA-guided adaptive immunity pathways used by bacteria and archaea to defend against phages and plasmids. Type III-A systems use a multisubunit interference complex called Csm, containing Cas proteins and a CRISPR RNA (crRNA) to target cognate nucleic acids. The Csm complex is intriguing in that it mediates RNA-guided targeting of both RNA and transcriptionally active DNA, but the mechanism is not well understood. Here, we overexpressed the five components of the Thermus thermophilus (T. thermophilus) Type III-A Csm complex (TthCsm) with a defined crRNA sequence, and purified intact TthCsm complexes from E. coli cells. The complexes were thermophilic, targeting complementary ssRNA more efficiently at 65°C than at 37°C. Sequence-independent, endonucleolytic cleavage of single-stranded DNA (ssDNA) by TthCsm was triggered by recognition of a complementary ssRNA, and required a lack of complementarity between the first 8 nucleotides (5' tag) of the crRNA and the 3' flanking region of the ssRNA. Mutation of the histidine-aspartate (HD) nuclease domain of the TthCsm subunit, Cas10/Csm1, abolished DNA cleavage. Activation of DNA cleavage was dependent on RNA binding but not cleavage. This leads to a model in which binding of an ssRNA target to the Csm complex would stimulate cleavage of exposed ssDNA in the cell, such as could occur when the RNA polymerase unwinds double-stranded DNA (dsDNA) during transcription. Our findings establish an amenable, thermostable system for more in-depth investigation of the targeting mechanism using structural biology methods, such as cryo-electron microscopy and x-ray crystallography.

  19. Dual gRNAs guided CRISPR/Cas9 system inhibits hepatitis B virus replication

    PubMed Central

    Wang, Jie; Xu, Zhong-Wei; Liu, Shuang; Zhang, Rui-Yang; Ding, Shan-Long; Xie, Xiao-Meng; Long, Lu; Chen, Xiang-Mei; Zhuang, Hui; Lu, Feng-Min

    2015-01-01

    AIM: To screen and investigate the effective gRNAs against hepatitis B virus (HBV) of genotypes A-D. METHODS: A total of 15 gRNAs against HBV of genotypes A-D were designed. Eleven combinations of two above gRNAs (dual-gRNAs) covering the regulatory region of HBV were chosen. The efficiency of each gRNA and 11 dual-gRNAs on the suppression of HBV (genotypes A-D) replication was examined by the measurement of HBV surface antigen (HBsAg) or e antigen (HBeAg) in the culture supernatant. The destruction of HBV-expressing vector was examined in HuH7 cells co-transfected with dual-gRNAs and HBV-expressing vector using polymerase chain reaction (PCR) and sequencing method, and the destruction of cccDNA was examined in HepAD38 cells using KCl precipitation, plasmid-safe ATP-dependent DNase (PSAD) digestion, rolling circle amplification and quantitative PCR combined method. The cytotoxicity of these gRNAs was assessed by a mitochondrial tetrazolium assay. RESULTS: All of gRNAs could significantly reduce HBsAg or HBeAg production in the culture supernatant, which was dependent on the region in which gRNA against. All of dual gRNAs could efficiently suppress HBsAg and/or HBeAg production for HBV of genotypes A-D, and the efficacy of dual gRNAs in suppressing HBsAg and/or HBeAg production was significantly increased when compared to the single gRNA used alone. Furthermore, by PCR direct sequencing we confirmed that these dual gRNAs could specifically destroy HBV expressing template by removing the fragment between the cleavage sites of the two used gRNAs. Most importantly, gRNA-5 and gRNA-12 combination not only could efficiently suppressing HBsAg and/or HBeAg production, but also destroy the cccDNA reservoirs in HepAD38 cells. CONCLUSION: These results suggested that CRISPR/Cas9 system could efficiently destroy HBV expressing templates (genotypes A-D) without apparent cytotoxicity. It may be a potential approach for eradication of persistent HBV cccDNA in chronic HBV

  20. CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems.

    PubMed

    Zhu, Lihua J; Holmes, Benjamin R; Aronin, Neil; Brodsky, Michael H

    2014-01-01

    CRISPR-Cas systems are a diverse family of RNA-protein complexes in bacteria that target foreign DNA sequences for cleavage. Derivatives of these complexes have been engineered to cleave specific target sequences depending on the sequence of a CRISPR-derived guide RNA (gRNA) and the source of the Cas9 protein. Important considerations for the design of gRNAs are to maximize aimed activity at the desired target site while minimizing off-target cleavage. Because of the rapid advances in the understanding of existing CRISPR-Cas9-derived RNA-guided nucleases and the development of novel RNA-guided nuclease systems, it is critical to have computational tools that can accommodate a wide range of different parameters for the design of target-specific RNA-guided nuclease systems. We have developed CRISPRseek, a highly flexible, open source software package to identify gRNAs that target a given input sequence while minimizing off-target cleavage at other sites within any selected genome. CRISPRseek will identify potential gRNAs that target a sequence of interest for CRISPR-Cas9 systems from different bacterial species and generate a cleavage score for potential off-target sequences utilizing published or user-supplied weight matrices with position-specific mismatch penalty scores. Identified gRNAs may be further filtered to only include those that occur in paired orientations for increased specificity and/or those that overlap restriction enzyme sites. For applications where gRNAs are desired to discriminate between two related sequences, CRISPRseek can rank gRNAs based on the difference between predicted cleavage scores in each input sequence. CRISPRseek is implemented as a Bioconductor package within the R statistical programming environment, allowing it to be incorporated into computational pipelines to automate the design of gRNAs for target sequences identified in a wide variety of genome-wide analyses. CRISPRseek is available under the GNU General Public Licence v3

  1. NASA Controller Acceptability Study 1(CAS-1) Experiment Description and Initial Observations

    NASA Technical Reports Server (NTRS)

    Chamberlain, James P.; Consiglio, Maria C.; Comstock, James R., Jr.; Ghatas, Rania W.; Munoz, Cesar

    2015-01-01

    This paper describes the Controller Acceptability Study 1 (CAS-1) experiment that was conducted by NASA Langley Research Center personnel from January through March 2014 and presents partial CAS-1 results. CAS-1 employed 14 air traffic controller volunteers as research subjects to assess the viability of simulated future unmanned aircraft systems (UAS) operating alongside manned aircraft in moderate-density, moderate-complexity Class E airspace. These simulated UAS were equipped with a prototype pilot-in-the-loop (PITL) Detect and Avoid (DAA) system, specifically the Self-Separation (SS) function of such a system based on Stratway+ software to replace the see-and-avoid capabilities of manned aircraft pilots. A quantitative CAS-1 objective was to determine horizontal miss distance (HMD) values for SS encounters that were most acceptable to air traffic controllers, specifically HMD values that were assessed as neither unsafely small nor disruptively large. HMD values between 0.5 and 3.0 nautical miles (nmi) were assessed for a wide array of encounter geometries between UAS and manned aircraft. The paper includes brief introductory material about DAA systems and their SS functions, followed by descriptions of the CAS-1 simulation environment, prototype PITL SS capability, and experiment design, and concludes with presentation and discussion of partial CAS-1 data and results.

  2. Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR–Cas system

    PubMed Central

    Elmore, Joshua R.; Sheppard, Nolan F.; Ramia, Nancy; Deighan, Trace; Li, Hong; Terns, Rebecca M.; Terns, Michael P.

    2016-01-01

    CRISPR–Cas systems eliminate nucleic acid invaders in bacteria and archaea. The effector complex of the Type III-B Cmr system cleaves invader RNAs recognized by the CRISPR RNA (crRNA ) of the complex. Here we show that invader RNAs also activate the Cmr complex to cleave DNA. As has been observed for other Type III systems, Cmr eliminates plasmid invaders in Pyrococcus furiosus by a mechanism that depends on transcription of the crRNA target sequence within the plasmid. Notably, we found that the target RNA per se induces DNA cleavage by the Cmr complex in vitro. DNA cleavage activity does not depend on cleavage of the target RNA but notably does require the presence of a short sequence adjacent to the target sequence within the activating target RNA (rPAM [RNA protospacer-adjacent motif]). The activated complex does not require a target sequence (or a PAM) in the DNA substrate. Plasmid elimination by the P. furiosus Cmr system also does not require the Csx1 (CRISPR-associated Rossman fold [CARF] superfamily) protein. Plasmid silencing depends on the HD nuclease and Palm domains of the Cmr2 (Cas10 superfamily) protein. The results establish the Cmr complex as a novel DNA nuclease activated by invader RNAs containing a crRNA target sequence and a rPAM. PMID:26848045

  3. [Air quality control systems: heating, ventilating, and air conditioning (HVAC)].

    PubMed

    Bellucci Sessa, R; Riccio, G

    2004-01-01

    After a brief illustration of the principal layout schemes of Heating, Ventilating, and Air Conditioning (HVAC), the first part of this paper summarizes the standards, both voluntary and compulsory, regulating HVAC facilities design and installation with regard to the question of Indoor Air Quality (IAQ). The paper then examines the problem of ventilation systems maintenance and the essential hygienistic requirements in whose absence HVAC facilities may become a risk factor for people working or living in the building. Lastly, the paper deals with HVAC design strategies and methods, which aim not only to satisfy comfort and air quality requirements, but also to ensure easy and effective maintenance procedures.

  4. Physical model of the immune response of bacteria against bacteriophage through the adaptive CRISPR-Cas immune system

    NASA Astrophysics Data System (ADS)

    Han, Pu; Niestemski, Liang Ren; Barrick, Jeffrey E.; Deem, Michael W.

    2013-04-01

    Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called ‘spacers’ into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time. We focus on the impact of mutation and recombination on bacteria and phage evolution and evasion. We discuss the effect of different spacer deletion mechanisms on the coevolutionary dynamics. We make predictions about bacteria and phage population growth, spacer diversity within the CRISPR locus, and spacer protection against the phage population.

  5. Generation of murine tumor cell lines deficient in MHC molecule surface expression using the CRISPR/Cas9 system

    PubMed Central

    Lenkl, Clarissa; Goyal, Ashish; Diederichs, Sven; Dickes, Elke; Osen, Wolfram

    2017-01-01

    In this study, the CRISPR/Cas9 technology was used to establish murine tumor cell lines, devoid of MHC I or MHC II surface expression, respectively. The melanoma cell line B16F10 and the murine breast cancer cell line EO-771, the latter stably expressing the tumor antigen NY-BR-1 (EO-NY), were transfected with an expression plasmid encoding a β2m-specific single guide (sg)RNA and Cas9. The resulting MHC I negative cells were sorted by flow cytometry to obtain single cell clones, and loss of susceptibility of peptide pulsed MHC I negative clones to peptide-specific CTL recognition was determined by IFNγ ELISpot assay. The β2m knockout (KO) clones did not give rise to tumors in syngeneic mice (C57BL/6N), unless NK cells were depleted, suggesting that outgrowth of the β2m KO cell lines was controlled by NK cells. Using sgRNAs targeting the β-chain encoding locus of the IAb molecule we also generated several B16F10 MHC II KO clones. Peptide loaded B16F10 MHC II KO cells were insusceptible to recognition by OT-II cells and tumor growth was unaltered compared to parental B16F10 cells. Thus, in our hands the CRISPR/Cas9 system has proven to be an efficient straight forward strategy for the generation of MHC knockout cell lines. Such cell lines could serve as parental cells for co-transfection of compatible HLA alleles together with human tumor antigens of interest, thereby facilitating the generation of HLA matched transplantable tumor models, e.g. in HLAtg mouse strains of the newer generation, lacking cell surface expression of endogenous H2 molecules. In addition, our tumor cell lines established might offer a useful tool to investigate tumor reactive T cell responses that function independently from MHC molecule surface expression by the tumor. PMID:28301575

  6. SpaceX Dragon Air Circulation System

    NASA Technical Reports Server (NTRS)

    Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro

    2011-01-01

    The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.

  7. Expanding CRISPR/Cas9 Genome Editing Capacity in Zebrafish Using SaCas9

    PubMed Central

    Feng, Yan; Chen, Cheng; Han, Yuxiang; Chen, Zelin; Lu, Xiaochan; Liang, Fang; Li, Song; Qin, Wei; Lin, Shuo

    2016-01-01

    The type II CRISPR/Cas9 system has been used widely for genome editing in zebrafish. However, the requirement for the 5′-NGG-3′ protospacer-adjacent motif (PAM) of Cas9 from Streptococcus pyogenes (SpCas9) limits its targeting sequences. Here, we report that a Cas9 ortholog from Staphylococcus aureus (SaCas9), and its KKH variant, successfully induced targeted mutagenesis with high frequency in zebrafish. Confirming previous findings, the SpCas9 variant, VQR, can also induce targeted mutations in zebrafish. Bioinformatics analysis of these new Cas targets suggests that the number of available target sites in the zebrafish genome can be greatly expanded. Collectively, the expanded target repertoire of Cas9 in zebrafish should further facilitate the utility of this organism for genetic studies of vertebrate biology. PMID:27317783

  8. 207 EFFICIENT GENERATION OF MYOSTATIN PROMOTER MUTATIONS IN BOVINE EMBRYOS USING THE CRISPR/Cas9 SYSTEM.

    PubMed

    Pinzon, C A; Snyder, M; Pryor, J; Thompson, B; Golding, M; Long, C

    2016-01-01

    . For this, IVF-derived zygotes were randomly assigned to 3 different treatment groups Set 1, Set 2, or Null (no sgRNA) for microinjections. Each zygote was injected with ~100 pL of trophectoderm buffer containing 50ngµL(-1) of total sgRNA, 10ngµL(-1) of Cas9 mRNA, and 30ngµL(-1) of Cas9 protein with 1mgmL(-1) of fluorescent dextran. Day 7 post-IVF blastocysts were lysed and DNA was extracted for PCR amplification of the target region. In Set 1, 16 of 19 embryos (94.12%) were successfully edited, whereas in Set 2 there were 11 of 17 embryos (64.7%) edited. In both sets of sgRNA there was a high degree of mosaicism, with only 1 embryo demonstrating a homozygous deletion. In conclusion, CRISPR/Cas9 acts over the course of the first few cleavage divisions Further research is necessary to refine the CRISPR/Cas9 system for inducing genetic mutations in bovine embryos.

  9. Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila.

    PubMed

    Ren, Xingjie; Yang, Zhihao; Xu, Jiang; Sun, Jin; Mao, Decai; Hu, Yanhui; Yang, Su-Juan; Qiao, Huan-Huan; Wang, Xia; Hu, Qun; Deng, Patricia; Liu, Lu-Ping; Ji, Jun-Yuan; Li, Jin Billy; Ni, Jian-Quan

    2014-11-06

    The CRISPR/Cas9 system has recently emerged as a powerful tool for functional genomic studies in Drosophila melanogaster. However, single-guide RNA (sgRNA) parameters affecting the specificity and efficiency of the system in flies are still not clear. Here, we found that off-target effects did not occur in regions of genomic DNA with three or more nucleotide mismatches to sgRNAs. Importantly, we document for a strong positive correlation between mutagenesis efficiency and sgRNA GC content of the six protospacer-adjacent motif-proximal nucleotides (PAMPNs). Furthermore, by injecting well-designed sgRNA plasmids at the optimal concentration we determined, we could efficiently generate mutations in four genes in one step. Finally, we generated null alleles of HP1a using optimized parameters through homology-directed repair and achieved an overall mutagenesis rate significantly higher than previously reported. Our work demonstrates a comprehensive optimization of sgRNA and promises to vastly simplify CRISPR/Cas9 experiments in Drosophila.

  10. Air ion exposure system for plants.

    PubMed

    Morrow, R C; Tibbitts, T W

    1987-02-01

    A system was developed for subjecting plants to elevated air ion levels. This system consisted of a rectangular Plexiglas chamber lined with a Faraday cage. Air ions were generated by corona discharge from frayed stainless steel fibers placed at one end of the chamber. This source was capable of producing varying levels of either positive or negative air ions. During plant exposures, environmental conditions were controlled by operating the unit in a growth chamber.

  11. Air ion exposure system for plants

    NASA Technical Reports Server (NTRS)

    Morrow, R. C.; Tibbitts, T. W.

    1987-01-01

    A system was developed for subjecting plants to elevated air ion levels. This system consisted of a rectangular Plexiglas chamber lined with a Faraday cage. Air ions were generated by corona discharge from frayed stainless steel fibers placed at one end of the chamber. This source was capable of producing varying levels of either positive or negative air ions. During plant exposures, environmental conditions were controlled by operating the unit in a growth chamber.

  12. Solar Hot-Air System --Memphis, Tennessee

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Solar collectors using air as collection medium provide space heating for four-building office complex in Memphis. 98 page report furnishes details on installation, including: description of system; system startup and acceptance-test results; technical data on collector; installation manuals for collectors, air handler and heat-storage unit.

  13. Rooftop Unitary Air Conditioner with Integral Dedicated Outdoor Air System

    SciTech Connect

    Tiax Llc

    2006-02-28

    Energy use of rooftop and other unitary air-conditioners in commercial applications accounts for about 1 quad (10{sup 15} Btu) of primary energy use annually in the U.S. [Reference 7]. The realization that this cooling equipment accounts for the majority of commercial building cooled floorspace and the majority also of commercial building energy use has spurred development of improved-efficiency equipment as well as development of stricter standards addressing efficiency levels. Another key market driver affecting design of rooftop air-conditioning equipment has been concern regarding comfort and the control of humidity. Trends for increases in outdoor air ventilation rates in certain applications, and the increasing concern about indoor air quality problems associated with humidity levels and moisture in buildings points to a need for improved dehumidification capability in air-conditioning equipment of all types. In many cases addressing this issue exacerbates energy efficiency, and vice versa. The integrated dedicated outdoor air system configuration developed in this project addresses both energy and comfort/humidity issues.

  14. Generation and evaluation of Myostatin knock-out rabbits and goats using CRISPR/Cas9 system.

    PubMed

    Guo, Rihong; Wan, Yongjie; Xu, Dan; Cui, Libin; Deng, Mingtian; Zhang, Guomin; Jia, Ruoxin; Zhou, Wenjun; Wang, Zhen; Deng, Kaiping; Huang, Mingrui; Wang, Feng; Zhang, Yanli

    2016-07-15

    Myostatin (Mstn) is a conserved negative regulator of skeletal muscle mass in mammals. However, whether precise disruption of Mstn in livestock can be achieved and safely used to improve meat productivity has not been proven. We applied CRISPR/Cas9 system to generate Mstn knock-out (KO) rabbits and goats and then analyzed the changes in their phenotypes to answer this question. We efficiently generated 24 Mstn KO rabbits out of 32 newborn infants after embryo injection with two sgRNAs targeting rabbit Mstn, and found that the Mstn KO rabbits exhibited increased birthweight and a significantly increase in the weight ratios of the quadriceps and biceps muscles to the whole body. Mstn KO also caused high probability of enlarged tongue phenomenon and severe health problems such as stillbirth and early stage death. Using the same method, one out of four goats was generated with edition at Mstn locus. The early stage growth rate of this goat outperformed the control goats. In conclusion, we efficiently generated Mstn KO rabbits and goats using CRISPR/Cas9 technology. However, Mstn KO causes severe health problems and may also have the same effects on other species. This safety issue must be studied further before applied to animal reproduction processes.

  15. Generation and evaluation of Myostatin knock-out rabbits and goats using CRISPR/Cas9 system

    PubMed Central

    Guo, Rihong; Wan, Yongjie; Xu, Dan; Cui, Libin; Deng, Mingtian; Zhang, Guomin; Jia, Ruoxin; Zhou, Wenjun; Wang, Zhen; Deng, Kaiping; Huang, Mingrui; Wang, Feng; Zhang, Yanli

    2016-01-01

    Myostatin (Mstn) is a conserved negative regulator of skeletal muscle mass in mammals. However, whether precise disruption of Mstn in livestock can be achieved and safely used to improve meat productivity has not been proven. We applied CRISPR/Cas9 system to generate Mstn knock-out (KO) rabbits and goats and then analyzed the changes in their phenotypes to answer this question. We efficiently generated 24 Mstn KO rabbits out of 32 newborn infants after embryo injection with two sgRNAs targeting rabbit Mstn, and found that the Mstn KO rabbits exhibited increased birthweight and a significantly increase in the weight ratios of the quadriceps and biceps muscles to the whole body. Mstn KO also caused high probability of enlarged tongue phenomenon and severe health problems such as stillbirth and early stage death. Using the same method, one out of four goats was generated with edition at Mstn locus. The early stage growth rate of this goat outperformed the control goats. In conclusion, we efficiently generated Mstn KO rabbits and goats using CRISPR/Cas9 technology. However, Mstn KO causes severe health problems and may also have the same effects on other species. This safety issue must be studied further before applied to animal reproduction processes. PMID:27417210

  16. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); Tang, Shoou-yu (Inventor); Acott, Phillip E. (Inventor); Spaeth, Lisa G. (Inventor); O'Brien, Martin (Inventor)

    2011-01-01

    Systems and methods for sensing air includes at least one, and in some embodiments three, transceivers for projecting the laser energy as laser radiation to the air. The transceivers are scanned or aligned along several different axes. Each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines air temperatures, wind speeds, and wind directions based on the scattered laser radiation. Applications of the system to wind power site evaluation, wind turbine control, traffic safety, general meteorological monitoring and airport safety are presented.

  17. Tactical Integrated Air Defense System

    DTIC Science & Technology

    1978-06-09

    and integrated. The discussion in %,hapter II sunmmarlies the effective. ness of their integration experiences. 4 Any evaluation of current air...require- ments. Therefore, to serve as a baseline for evaluating the present IAD capabilities of the United States, Chapter III contains an analysis...of the present Soviet tactical air threat. Given the historical background and operational requirements for IAD, an evaluation of the present United

  18. CRISPR-Cas Defense System and Potential Prophages in Cyanobacteria Associated with the Coral Black Band Disease.

    PubMed

    Buerger, Patrick; Wood-Charlson, Elisha M; Weynberg, Karen D; Willis, Bette L; van Oppen, Madeleine J H

    2016-01-01

    Understanding how pathogens maintain their virulence is critical to developing tools to mitigate disease in animal populations. We sequenced and assembled the first draft genome of Roseofilum reptotaenium AO1, the dominant cyanobacterium underlying pathogenicity of the virulent coral black band disease (BBD), and analyzed parts of the BBD-associated Geitlerinema sp. BBD_1991 genome in silico. Both cyanobacteria are equipped with an adaptive, heritable clustered regularly interspaced short palindromic repeats (CRISPR)-Cas defense system type I-D and have potential virulence genes located within several prophage regions. The defense system helps to prevent infection by viruses and mobile genetic elements via identification of short fingerprints of the intruding DNA, which are stored as templates in the bacterial genome, in so-called "CRISPRs." Analysis of CRISPR target sequences (protospacers) revealed an unusually high number of self-targeting spacers in R. reptotaenium AO1 and extraordinary long CRIPSR arrays of up to 260 spacers in Geitlerinema sp. BBD_1991. The self-targeting spacers are unlikely to be a form of autoimmunity; instead these target an incomplete lysogenic bacteriophage. Lysogenic virus induction experiments with mitomycin C and UV light did not reveal an actively replicating virus population in R. reptotaenium AO1 cultures, suggesting that phage functionality is compromised or excision could be blocked by the CRISPR-Cas system. Potential prophages were identified in three regions of R. reptotaenium AO1 and five regions of Geitlerinema sp. BBD_1991, containing putative BBD relevant virulence genes, such as an NAD-dependent epimerase/dehydratase (a homolog in terms of functionality to the third and fourth most expressed gene in BBD), lysozyme/metalloendopeptidases and other lipopolysaccharide modification genes. To date, viruses have not been considered to be a component of the BBD consortium or a contributor to the virulence of R. reptotaenium AO1

  19. CRISPR-Cas Defense System and Potential Prophages in Cyanobacteria Associated with the Coral Black Band Disease

    PubMed Central

    Buerger, Patrick; Wood-Charlson, Elisha M.; Weynberg, Karen D.; Willis, Bette L.; van Oppen, Madeleine J. H.

    2016-01-01

    Understanding how pathogens maintain their virulence is critical to developing tools to mitigate disease in animal populations. We sequenced and assembled the first draft genome of Roseofilum reptotaenium AO1, the dominant cyanobacterium underlying pathogenicity of the virulent coral black band disease (BBD), and analyzed parts of the BBD-associated Geitlerinema sp. BBD_1991 genome in silico. Both cyanobacteria are equipped with an adaptive, heritable clustered regularly interspaced short palindromic repeats (CRISPR)-Cas defense system type I-D and have potential virulence genes located within several prophage regions. The defense system helps to prevent infection by viruses and mobile genetic elements via identification of short fingerprints of the intruding DNA, which are stored as templates in the bacterial genome, in so-called “CRISPRs.” Analysis of CRISPR target sequences (protospacers) revealed an unusually high number of self-targeting spacers in R. reptotaenium AO1 and extraordinary long CRIPSR arrays of up to 260 spacers in Geitlerinema sp. BBD_1991. The self-targeting spacers are unlikely to be a form of autoimmunity; instead these target an incomplete lysogenic bacteriophage. Lysogenic virus induction experiments with mitomycin C and UV light did not reveal an actively replicating virus population in R. reptotaenium AO1 cultures, suggesting that phage functionality is compromised or excision could be blocked by the CRISPR-Cas system. Potential prophages were identified in three regions of R. reptotaenium AO1 and five regions of Geitlerinema sp. BBD_1991, containing putative BBD relevant virulence genes, such as an NAD-dependent epimerase/dehydratase (a homolog in terms of functionality to the third and fourth most expressed gene in BBD), lysozyme/metalloendopeptidases and other lipopolysaccharide modification genes. To date, viruses have not been considered to be a component of the BBD consortium or a contributor to the virulence of R. reptotaenium

  20. Efficiency of compressed-air systems

    NASA Astrophysics Data System (ADS)

    The current state of knowledge in American industry concerning the energy efficient design and operation of industrial compressed air systems and system components is examined. Since there is no standard reference for designers and operators of compressed air systems which provides guidelines for maximizing the energy efficiency of these systems, a major product of this contract was the preparation of a guidebook for this purpose.

  1. The Air Program Information Management System (APIMS)

    DTIC Science & Technology

    2011-11-02

    Technology November 2, 2011 The Air Program Information Management System (APIMS) Frank Castaneda, III, P.E. APIMS Program Manager AFCEE/TDNQ APIMS...NOV 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE The Air Program Information Management System (APIMS... Information   Management   System : Sustainability of  Enterprise air quality management system • Aspects and Impacts to Process • Auditing and Measurement

  2. Advantages of using the CRISPR/Cas9 system of genome editing to investigate male reproductive mechanisms using mouse models

    PubMed Central

    Young, Samantha AM; Aitken, R John; Ikawa, Masahito

    2015-01-01

    Gene disruption technology has long been beneficial for the study of male reproductive biology. However, because of the time and cost involved, this technology was not a viable method except in specialist laboratories. The advent of the CRISPR/Cas9 system of gene disruption has ushered in a new era of genetic investigation. Now, it is possible to generate gene-disrupted mouse models in very little time and at very little cost. This Highlight article discusses the application of this technology to study the genetics of male fertility and looks at some of the future uses of this system that could be used to reveal the essential and nonessential genetic components of male reproductive mechanisms. PMID:25994645

  3. Advantages of using the CRISPR/Cas9 system of genome editing to investigate male reproductive mechanisms using mouse models.

    PubMed

    Young, Samantha A M; Aitken, R John; Ikawa, Masahito

    2015-01-01

    Gene disruption technology has long been beneficial for the study of male reproductive biology. However, because of the time and cost involved, this technology was not a viable method except in specialist laboratories. The advent of the CRISPR/Cas9 system of gene disruption has ushered in a new era of genetic investigation. Now, it is possible to generate gene-disrupted mouse models in very little time and at very little cost. This Highlight article discusses the application of this technology to study the genetics of male fertility and looks at some of the future uses of this system that could be used to reveal the essential and nonessential genetic components of male reproductive mechanisms.

  4. Fluid-bed air-supply system

    DOEpatents

    Atabay, Keramettin

    1979-01-01

    The air-supply system for a fluidized-bed furnace includes two air conduits for the same combustion zone. The conduits feed separate sets of holes in a distributor plate through which fluidizing air flows to reach the bed. During normal operation, only one conduit and set of holes is used, but the second conduit and set of holes is employed during start-up.

  5. The Development of a Viral Mediated CRISPR/Cas9 System with Doxycycline Dependent gRNA Expression for Inducible In vitro and In vivo Genome Editing

    PubMed Central

    de Solis, Christopher A.; Ho, Anthony; Holehonnur, Roopashri; Ploski, Jonathan E.

    2016-01-01

    The RNA-guided Cas9 nuclease, from the type II prokaryotic Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR) adaptive immune system, has been adapted and utilized by scientists to edit the genomes of eukaryotic cells. Here, we report the development of a viral mediated CRISPR/Cas9 system that can be rendered inducible utilizing doxycycline (Dox) and can be delivered to cells in vitro and in vivo utilizing adeno-associated virus (AAV). Specifically, we developed an inducible gRNA (gRNAi) AAV vector that is designed to express the gRNA from a H1/TO promoter. This AAV vector is also designed to express the Tet repressor (TetR) to regulate the expression of the gRNAi in a Dox dependent manner. We show that H1/TO promoters of varying length and a U6/TO promoter can edit DNA with similar efficiency in vitro, in a Dox dependent manner. We also demonstrate that our inducible gRNAi vector can be used to edit the genomes of neurons in vivo within the mouse brain in a Dox dependent manner. Genome editing can be induced in vivo with this system by supplying animals Dox containing food for as little as 1 day. This system might be cross compatible with many existing S. pyogenes Cas9 systems (i.e., Cas9 mouse, CRISPRi, etc.), and therefore it likely can be used to render these systems inducible as well. PMID:27587996

  6. Generation of Genetically Modified Mice using the CRISPR-Cas9 Genome-Editing System

    PubMed Central

    Rongvaux, Anthony; Stein, Judith; Hughes, Cynthia; Flavell, Richard A.

    2016-01-01

    Genetically modified mice are extremely valuable tools for studying gene function and human diseases. Although the generation of mice with specific genetic modifications through traditional methods using homologous recombination in embryonic stem (ES) has been invaluable in the last two decades, it is an extremely costly, time-consuming and in some cases uncertain technology. The recently described CRISPR/Cas9 genome-editing technology significantly reduces the time and the cost that are required to generate genetically engineered mice, allowing scientist to test more precise and bold hypothesis in vivo. Using this revolutionary methodology we have generated more than one hundred novel genetically engineered mouse strains. In the current protocol, we describe in detail the optimal conditions to generate mice carrying point mutations, chromosomal deletions, conditional alleles, fusion tags or endogenous reporters. PMID:26832688

  7. Generation of Genetically Modified Mice Using the CRISPR-Cas9 Genome-Editing System.

    PubMed

    Henao-Mejia, Jorge; Williams, Adam; Rongvaux, Anthony; Stein, Judith; Hughes, Cynthia; Flavell, Richard A

    2016-02-01

    Genetically modified mice are extremely valuable tools for studying gene function and human diseases. Although the generation of mice with specific genetic modifications through traditional methods using homologous recombination in embryonic stem cells has been invaluable in the last two decades, it is an extremely costly, time-consuming, and, in some cases, uncertain technology. The recently described CRISPR-Cas9 genome-editing technology significantly reduces the time and the cost that are required to generate genetically engineered mice, allowing scientists to test more precise and bold hypotheses in vivo. Using this revolutionary methodology we have generated more than 100 novel genetically engineered mouse strains. In the current protocol, we describe in detail the optimal conditions to generate mice carrying point mutations, chromosomal deletions, conditional alleles, fusion tags, or endogenous reporters.

  8. Air-water flow in subsurface systems

    NASA Astrophysics Data System (ADS)

    Hansen, A.; Mishra, P.

    2013-12-01

    Groundwater traces its roots to tackle challenges of safe and reliable drinking water and food production. When the groundwater level rises, air pressure in the unsaturated Vadose zone increases, forcing air to escape from the ground surface. Abnormally high and low subsurface air pressure can be generated when the groundwater system, rainfall, and sea level fluctuation are favorably combined [Jiao and Li, 2004]. Through this process, contamination in the form of volatile gases may diffuse from the ground surface into residential areas, or possibly move into groundwater from industrial waste sites. It is therefore crucial to understand the combined effects of air-water flow in groundwater system. Here we investigate theoretically and experimentally the effects of air and water flow in groundwater system.

  9. A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa.

    PubMed

    Pawluk, April; Bondy-Denomy, Joseph; Cheung, Vivian H W; Maxwell, Karen L; Davidson, Alan R

    2014-04-15

    CRISPR-Cas systems are one of the most widespread phage resistance mechanisms in prokaryotes. Our lab recently identified the first examples of phage-borne anti-CRISPR genes that encode protein inhibitors of the type I-F CRISPR-Cas system of Pseudomonas aeruginosa. A key question arising from this work was whether there are other types of anti-CRISPR genes. In the current work, we address this question by demonstrating that some of the same phages carrying type I-F anti-CRISPR genes also possess genes that mediate inhibition of the type I-E CRISPR-Cas system of P. aeruginosa. We have discovered four distinct families of these type I-E anti-CRISPR genes. These genes do not inhibit the type I-F CRISPR-Cas system of P. aeruginosa or the type I-E system of Escherichia coli. Type I-E and I-F anti-CRISPR genes are located at the same position in the genomes of a large group of related P. aeruginosa phages, yet they are found in a variety of combinations and arrangements. We have also identified functional anti-CRISPR genes within nonprophage Pseudomonas genomic regions that are likely mobile genetic elements. This work emphasizes the potential importance of anti-CRISPR genes in phage evolution and lateral gene transfer and supports the hypothesis that more undiscovered families of anti-CRISPR genes exist. Finally, we provide the first demonstration that the type I-E CRISPR-Cas system of P. aeruginosa is naturally active without genetic manipulation, which contrasts with E. coli and other previously characterized I-E systems. IMPORTANCE The CRISPR-Cas system is an adaptive immune system possessed by the majority of prokaryotic organisms to combat potentially harmful foreign genetic elements. This study reports the discovery of bacteriophage-encoded anti-CRISPR genes that mediate inhibition of a well-studied subtype of CRISPR-Cas system. The four families of anti-CRISPR genes described here, which comprise only the second group of anti-CRISPR genes to be identified, encode

  10. Genome modification by CRISPR/Cas9.

    PubMed

    Ma, Yuanwu; Zhang, Lianfeng; Huang, Xingxu

    2014-12-01

    Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas)9-mediated genome modification enables us to edit the genomes of a variety of organisms rapidly and efficiently. The advantages of the CRISPR-Cas9 system have made it an increasingly popular genetic engineering tool for biological and therapeutic applications. Moreover, CRISPR-Cas9 has been employed to recruit functional domains that repress/activate gene expression or label specific genomic loci in living cells or organisms, in order to explore developmental mechanisms, gene expression regulation, and animal behavior. One major concern about this system is its specificity; although CRISPR-Cas9-mediated off-target mutation has been broadly studied, more efforts are required to further improve the specificity of CRISPR-Cas9. We will also discuss the potential applications of CRISPR-Cas9.

  11. AEROMETRIC INFORMATION RETRIEVAL SYSTEM (AIRS) - GRAPHICS

    EPA Science Inventory

    Aerometric Information Retrieval System (AIRS) is a computer-based repository of information about airborne pollution in the United States and various World Health Organization (WHO) member countries. AIRS is administered by the U.S. Environmental Protection Agency, and runs on t...

  12. Air Systems Provide Life Support to Miners

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Through a Space Act Agreement with Johnson Space Center, Paragon Space Development Corporation, of Tucson, Arizona, developed the Commercial Crew Transport-Air Revitalization System, designed to provide clean air for crewmembers on short-duration space flights. The technology is now being used to help save miners' lives in the event of an underground disaster.

  13. Solar-powered hot-air system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Solar-powered air heater supplies part or all of space heating requirements of residential or commercial buildings and is interfaced with air to water heat exchanger to heat domestic hot water. System has potential application in drying agricultural products such as cotton, lumber, corn, grains, and peanuts.

  14. Microinjection-based generation of mutant mice with a double mutation and a 0.5 Mb deletion in their genome by the CRISPR/Cas9 system

    PubMed Central

    HARA, Satoshi; KATO, Tomoko; GOTO, Yuji; KUBOTA, Souichirou; TAMANO, Moe; TERAO, Miho; TAKADA, Shuji

    2016-01-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system is a useful tool for genome editing. In this study, using a microinjection-based CRISPR/Cas9 system, we efficiently generated mouse lines carrying mutations at the Irx3 and Irx5 loci, which are located in close proximity on a chromosome and are functionally redundant. During the generation of Irx3/Irx5 double mutant mice, a deletion of ~0.5 Mb between the Irx3 and Irx5 loci was unintentionally identified in 6 out of 27 living pups by PCR based genotyping analysis. This deletion was confirmed by DNA fluorescence in situ hybridization analysis of fibroblasts. These results indicate that the mutant mice with a deletion of at least 0.5 Mb in their genome can be generated by the CRISPR/Cas9 system through microinjection into fertilized eggs. Our findings expand the utility of the CRISPR/Cas9 system in production of disease model animals with large deletions. PMID:27396308

  15. An Approach to the Study of Systems of Equations with Geogebra: Learning Opportunities Provided by the Integration of CAS View: Story of a Workshop Experience with Teachers

    ERIC Educational Resources Information Center

    Alejandra, Almirón; Fernando, Bifano; Leonardo, Lupinacci

    2015-01-01

    Solving systems of equations at school, at least in Argentina, is usually a task that students are given as a series of techniques that "allow" them to find a solution. How to overcome educational obstacles that are generated from a fragmented approach of knowledge? What can DGS do, in particular the CAS environment? What epistemic and…

  16. THE STRUCTURE OF THE CRISPR-ASSOCIATED PROTEIN CSA3 PROVIDES INSIGHT INTO REGULATION OF THE CRISPR/CAS SYSTEM

    PubMed Central

    Lintner, Nathanael G.; Frankel, Kenneth A.; Tsutakawa, Susan E.; Alsbury, Donald L.; Copié, Valérie; Young, Mark J.; Tainer, John A.; Lawrence, C. Martin

    2015-01-01

    Adaptive immune systems have recently been recognized in prokaryotic organisms where, in response to viral infection, they incorporate short fragments of invader-derived DNA into loci called Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs). In subsequent infections, the CRISPR loci are transcribed and processed into guide sequences for the neutralization of the invading RNA or DNA. The CRISPR-associated protein machinery (Cas) lies at the heart of this process, yet many of the molecular details of the CRISPR/Cas system remain to be elucidated. Here we report the first structure of Csa3, a CRISPR-associated protein from Sulfolobus solfataricus (Sso1445), which reveals a dimeric two-domain protein. The N-terminal domain is a unique variation on the di-nucleotide binding-domain that orchestrates dimer formation. In addition, it utilizes two conserved sequence motifs (Thr-h-Gly-Phe-(Asn/Asp)-Glu-X4-Arg and Leu-X2-Gly-h-Arg) to construct a 2-fold symmetric pocket on the dimer axis. This pocket is likely to represent a regulatory ligand-binding site. The N-terminal domain is fused to a C-terminal MarR-like winged helix-turn-helix domain that is expected to be involved in DNA recognition. Overall, the unique domain architecture of Csa3 suggests a transcriptional regulator under allosteric control of the N-terminal domain. Alternatively, Csa3 may function in a larger complex, with the conserved cleft participating in protein-protein or protein-nucleic acid interactions. A similar N-terminal domain is also identified in Csx1, a second CRISPR associated protein family of unknown function. PMID:21093452

  17. The effects of air leaks on solar air heating systems

    NASA Technical Reports Server (NTRS)

    Elkin, R.; Cash, M.

    1979-01-01

    This paper presents the results of an investigation to determine the effects of leakages in collector and duct work on the system performance of a typical single-family residence solar air heating system. Positive (leakage out) and negative (leakage in) pressure systems were examined. Collector and duct leakage rates were varied from 10 to 30 percent of the system flow rate. Within the range of leakage rates investigated, solar contribution to heated space and domestic hot water loads was found to be reduced up to 30 percent from the no-leak system contribution with duct leakage equally divided between supply and return duct; with supply duct leakage greater than return leakage a reduction of up to 35 percent was noted. The negative pressure system exhibited a reduction in solar contribution somewhat larger than the positive pressure system for the same leakage rates.

  18. Air quality and future energy system planning

    NASA Astrophysics Data System (ADS)

    Sobral Mourao, Zenaida; Konadu, Dennis; Lupton, Rick

    2016-04-01

    Ambient air pollution has been linked to an increasing number of premature deaths throughout the world. Projected increases in demand for food, energy resources and manufactured products will likely contribute to exacerbate air pollution with an increasing impact on human health, agricultural productivity and climate change. Current events such as tampering emissions tests by VW car manufacturers, failure to comply with EU Air Quality directives and WHO guidelines by many EU countries, the problem of smog in Chinese cities and new industrial emissions regulations represent unique challenges but also opportunities for regulators, local authorities and industry. However current models and practices of energy and resource use do not consider ambient air impacts as an integral part of the planing process. Furthermore the analysis of drivers, sources and impacts of air pollution is often fragmented, difficult to understand and lacks effective visualization tools that bring all of these components together. This work aims to develop a model that links impacts of air quality on human health and ecosystems to current and future developments in the energy system, industrial and agricultural activity and patterns of land use. The model will be added to the ForeseerTM tool, which is an integrated resource analysis platform that has been developed at the University of Cambridge initially with funding from BP and more recently through the EPSRC funded Whole Systems Energy Modeling (WholeSEM) project. The basis of the tool is a set of linked physical models for energy, water and land, including the technologies that are used to transform these resources into final services such as housing, food, transport and household goods. The new air quality model will explore different feedback effects between energy, land and atmospheric systems with the overarching goal of supporting better communication about the drivers of air quality and to incorporate concerns about air quality into

  19. Highly integrated system solutions for air conditioning.

    PubMed

    Bartz, Horst

    2002-08-01

    Starting with the air handling unit, new features concerning energy efficient air treatment in combination with optimisation of required space were presented. Strategic concepts for the supply of one or more operating suites with a modular based air handling system were discussed. The operating theatre ceiling itself, as a major part of the whole integrated system, is no longer a simple air outlet: additional functions have been added in so-called media-bridges, so that it has changed towards a medical apparatus serving as a daily tool for the physicians and the operating staff. Last and not least, the servicing of the whole system has become an integral part of the facility management with remote access to the main functions and controls. The results are understood to be the basis for a discussion with specialists from medical and hygienic disciplines as well as with technically orientated people representing the hospital and building-engineering.

  20. Systemic Analysis Approaches for Air Transportation

    NASA Technical Reports Server (NTRS)

    Conway, Sheila

    2005-01-01

    Air transportation system designers have had only limited success using traditional operations research and parametric modeling approaches in their analyses of innovations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be used with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. However, air transportation has proven itself an extensive, complex system whose behavior is difficult to describe, no less predict. There is a wide range of system analysis techniques available, but some are more appropriate for certain applications than others. Specifically in the area of complex system analysis, the literature suggests that both agent-based models and network analysis techniques may be useful. This paper discusses the theoretical basis for each approach in these applications, and explores their historic and potential further use for air transportation analysis.

  1. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 6 2012-10-01 2012-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic brake subsystem. The following requirements apply to vehicles with air brake and...

  2. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic brake subsystem. The following requirements apply to vehicles with air brake and...

  3. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic brake subsystem. The following requirements apply to vehicles with air brake and...

  4. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic brake subsystem. The following requirements apply to vehicles with air brake and...

  5. Targeted genome editing in the rare actinomycete Actinoplanes sp. SE50/110 by using the CRISPR/Cas9 System.

    PubMed

    Wolf, Timo; Gren, Tetiana; Thieme, Eric; Wibberg, Daniel; Zemke, Till; Pühler, Alfred; Kalinowski, Jörn

    2016-08-10

    The application of genome editing technologies, like CRISPR/Cas9 for industrially relevant microorganisms, is becoming increasingly important. Compared to other methods of genetic engineering the decisive factor is that CRISPR/Cas9 is relatively easy to apply and thus time and effort can be significantly reduced in organisms, which are otherwise genetically difficult to access. Because of its many advantages and opportunities, we adopted the CRISPR/Cas9 technology for Actinoplanes sp. SE50/110, the producer of the diabetes type II drug acarbose. The functionality of genome editing was successfully shown by the scarless and antibiotic marker-free deletion of the gene encoding the tyrosinase MelC, which catalyzes the formation of the dark pigment eumelanin in the wild type strain. The generated ΔmelC2 mutant of Actinoplanes sp. SE50/110 no longer produces this pigment and therefore the supernatant does not darken. Furthermore, it was shown that the plasmid containing the gene for the Cas9 protein was removed by increasing the temperature due to its temperature-sensitive replication. The precision of the intended mutation was proven and possible off-target effects caused by the genome editing system were ruled out by genome sequencing of several mutants.

  6. 14 CFR 23.1109 - Turbocharger bleed air system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbocharger bleed air system. 23.1109... Induction System § 23.1109 Turbocharger bleed air system. The following applies to turbocharged bleed air systems used for cabin pressurization: (a) The cabin air system may not be subject to...

  7. 14 CFR 23.1109 - Turbocharger bleed air system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbocharger bleed air system. 23.1109... Induction System § 23.1109 Turbocharger bleed air system. The following applies to turbocharged bleed air systems used for cabin pressurization: (a) The cabin air system may not be subject to...

  8. CAS as Environments for Implementing Mathematical Microworlds.

    ERIC Educational Resources Information Center

    Alpers, Burkhard

    2002-01-01

    Investigates whether computer algebra systems (CAS) are suitable environments for implementing mathematical microworlds. Recalls what constitutes a microworld and explores how CAS can be used for implementation, stating potentials as well as limitations. Provides as an example the microworld "Formula 1", implemented in Maple Software. (Author/KHR)

  9. Advanced Overfire Air system and design

    SciTech Connect

    Gene berkau

    2004-07-30

    The objective of the proposed project is to design, install and optimize a prototype advanced tangential OFA air system on two mass feed stoker boilers that can burn coal, biomass and a mixture of these fuels. The results will be used to develop a generalized methodology for retrofit designs and optimization of advanced OFA air systems. The advanced OFA system will reduce particulate and NOx emissions and improve overall efficiency by reducing carbon in the ash and excess oxygen. The advanced OFA will also provide capabilities for carrying full load and improved load following and transitional operations.

  10. The Integrated Air Transportation System Evaluation Tool

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Hees, Jing; Villani, James A.; Yackovetsky, Robert E. (Technical Monitor)

    2002-01-01

    Throughout U.S. history, our nation has generally enjoyed exceptional economic growth, driven in part by transportation advancements. Looking forward 25 years, when the national highway and skyway systems are saturated, the nation faces new challenges in creating transportation-driven economic growth and wealth. To meet the national requirement for an improved air traffic management system, NASA developed the goal of tripling throughput over the next 20 years, in all weather conditions while maintaining safety. Analysis of the throughput goal has primarily focused on major airline operations, primarily through the hub and spoke system.However, many suggested concepts to increase throughput may operate outside the hub and spoke system. Examples of such concepts include the Small Aircraft Transportation System, civil tiltrotor, and improved rotorcraft. Proper assessment of the potential contribution of these technologies to the domestic air transportation system requires a modeling capability that includes the country's numerous smaller airports, acting as a fundamental component of the National Air space System, and the demand for such concepts and technologies. Under this task for NASA, the Logistics Management Institute developed higher fidelity demand models that capture the interdependence of short-haul air travel with other transportation modes and explicitly consider the costs of commercial air and other transport modes. To accomplish this work, we generated forecasts of the distribution of general aviation based aircraft and GA itinerant operations at each of nearly 3.000 airport based on changes in economic conditions and demographic trends. We also built modules that estimate the demand for travel by different modes, particularly auto, commercial air, and GA. We examined GA demand from two perspectives: top-down and bottom-up, described in detail.

  11. Air Storage System Energy Transfer (ASSET) plants

    NASA Astrophysics Data System (ADS)

    Stys, Z. S.

    1983-09-01

    The design features and performance capabilities of Air Storage System Energy Transfer (ASSET) plants for transferring off-peak utility electricity to on-peak hours are described. The plant operations involve compressing ambient air with an axial flow compressor and depositing it in an underground reservoir at 70 bar pressure. Released during a peaking cycle, the pressure is reduced to 43 bar, the air is heated to 550 C, passed through an expander after a turbine, and passed through a low pressure combustion chamber to be heated to 850 C. A West German plant built in 1978 to supply over 300 MW continuous power for up to two hours is detailed, noting its availability factor of nearly 98 percent and power delivery cost of $230/kW installed. A plant being constructed in Illinois will use limestone caverns as the air storage tank.

  12. 24 CFR 3280.715 - Circulating air systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Circulating air systems. 3280.715... Systems § 3280.715 Circulating air systems. (a) Supply system. (1) Supply ducts and any dampers contained..., Class 1, or Class 2 air ducts. Class 2 air ducts shall be located at least 3 feet from the...

  13. High-temperature protein G is essential for activity of the Escherichia coli clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system.

    PubMed

    Yosef, Ido; Goren, Moran G; Kiro, Ruth; Edgar, Rotem; Qimron, Udi

    2011-12-13

    Prokaryotic DNA arrays arranged as clustered regularly interspaced short palindromic repeats (CRISPR), along with their associated proteins, provide prokaryotes with adaptive immunity by RNA-mediated targeting of alien DNA or RNA matching the sequences between the repeats. Here, we present a thorough screening system for the identification of bacterial proteins participating in immunity conferred by the Escherichia coli CRISPR system. We describe the identification of one such protein, high-temperature protein G (HtpG), a homolog of the eukaryotic chaperone heat-shock protein 90. We demonstrate that in the absence of htpG, the E. coli CRISPR system loses its suicidal activity against λ prophage and its ability to provide immunity from lysogenization. Transcomplementation of htpG restores CRISPR activity. We further show that inactivity of the CRISPR system attributable to htpG deficiency can be suppressed by expression of Cas3, a protein that is essential for its activity. Accordingly, we also find that the steady-state level of overexpressed Cas3 is significantly enhanced following HtpG expression. We conclude that HtpG is a newly identified positive modulator of the CRISPR system that is essential for maintaining functional levels of Cas3.

  14. Combined air and water pollution control system

    NASA Technical Reports Server (NTRS)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  15. Development of Commercial Thermo-sensitive Genic Male Sterile Rice Accelerates Hybrid Rice Breeding Using the CRISPR/Cas9-mediated TMS5 Editing System

    PubMed Central

    Zhou, Hai; He, Ming; Li, Jing; Chen, Liang; Huang, Zhifeng; Zheng, Shaoyan; Zhu, Liya; Ni, Erdong; Jiang, Dagang; Zhao, Bingran; Zhuang, Chuxiong

    2016-01-01

    Hybrid rice breeding offers an important strategy to improve rice production, in which the cultivation of a male sterile line is the key to the success of cross-breeding. CRISPR/Cas9 systems have been widely used in target-site genome editing, whereas their application for crop genetic improvement has been rarely reported. Here, using the CRISPR/Cas9 system, we induced specific mutations in TMS5, which is the most widely applied thermo-sensitive genic male sterility (TGMS) gene in China, and developed new “transgene clean” TGMS lines. We designed 10 target sites in the coding region of TMS5 for targeted mutagenesis using the CRISPR/Cas9 system and assessed the potential rates of on- and off-target effects. Finally, we established the most efficient construct, the TMS5ab construct, for breeding potentially applicable “transgene clean” TGMS lines. We also discussed factors that affect the editing efficiency according to the characteristics of different target sequences. Notably, using the TMS5ab construct, we developed 11 new “transgene clean” TGMS lines with potential applications in hybrid breeding within only one year in both rice subspecies. The application of our system not only significantly accelerates the breeding of sterile lines but also facilitates the exploitation of heterosis. PMID:27874087

  16. Secondary air injection system and method

    SciTech Connect

    Wu, Ko-Jen; Walter, Darrell J.

    2014-08-19

    According to one embodiment of the invention, a secondary air injection system includes a first conduit in fluid communication with at least one first exhaust passage of the internal combustion engine and a second conduit in fluid communication with at least one second exhaust passage of the internal combustion engine, wherein the at least one first and second exhaust passages are in fluid communication with a turbocharger. The system also includes an air supply in fluid communication with the first and second conduits and a flow control device that controls fluid communication between the air supply and the first conduit and the second conduit and thereby controls fluid communication to the first and second exhaust passages of the internal combustion engine.

  17. Advanced Air Data Systems for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    2006-01-01

    It is possible to get a crude estimate of wind speed and direction while driving a car at night in the rain, with the motion of the raindrop reflections in the headlights providing clues about the wind. The clues are difficult to interpret, though, because of the relative motions of ground, car, air, and raindrops. More subtle interpretation is possible if the rain is replaced by fog, because the tiny droplets would follow the swirling currents of air around an illuminated object, like, for example, a walking pedestrian. Microscopic particles in the air (aerosols) are better for helping make assessments of the wind, and reflective air molecules are best of all, providing the most refined measurements. It takes a bright light to penetrate fog, so it is easy to understand how other factors, like replacing the headlights with the intensity of a searchlight, can be advantageous. This is the basic principle behind a lidar system. While a radar system transmits a pulse of radiofrequency energy and interprets the received reflections, a lidar system works in a similar fashion, substituting a near-optical laser pulse. The technique allows the measurement of relative positions and velocities between the transmitter and the air, which allows measurements of relative wind and of air temperature (because temperature is associated with high-frequency random motions on a molecular level). NASA, as well as the National Oceanic and Atmospheric Administration (NOAA), have interests in this advanced lidar technology, as much of their explorative research requires the ability to measure winds and turbulent regions within the atmosphere. Lidar also shows promise for providing warning of turbulent regions within the National Airspace System to allow commercial aircraft to avoid encounters with turbulence and thereby increase the safety of the traveling public. Both agencies currently employ lidar and optical sensing for a variety of weather-related research projects, such as analyzing

  18. In vivo mutagenesis of miRNA gene families using a scalable multiplexed CRISPR/Cas9 nuclease system

    PubMed Central

    Narayanan, Anand; Hill-Teran, Guillermina; Moro, Albertomaria; Ristori, Emma; Kasper, Dionna M.; A. Roden, Christine; Lu, Jun; Nicoli, Stefania

    2016-01-01

    A large number of microRNAs (miRNAs) are grouped into families derived from the same phylogenetic ancestors. miRNAs within a family often share the same physiological functions despite differences in their primary sequences, secondary structures, or chromosomal locations. Consequently, the generation of animal models to analyze the activity of miRNA families is extremely challenging. Using zebrafish as a model system, we successfully provide experimental evidence that a large number of miRNAs can be simultaneously mutated to abrogate the activity of an entire miRNA family. We show that injection of the Cas9 nuclease and two, four, ten, and up to twenty-four multiplexed single guide RNAs (sgRNAs) can induce mutations in 90% of the miRNA genomic sequences analyzed. We performed a survey of these 45 mutations in 10 miRNA genes, analyzing the impact of our mutagenesis strategy on the processing of each miRNA both computationally and in vivo. Our results offer an effective approach to mutate and study the activity of miRNA families and pave the way for further analysis on the function of complex miRNA families in higher multicellular organisms. PMID:27572667

  19. Targeted mutagenesis in Atlantic salmon (Salmo salar L.) using the CRISPR/Cas9 system induces complete knockout individuals in the F0 generation.

    PubMed

    Edvardsen, Rolf B; Leininger, Sven; Kleppe, Lene; Skaftnesmo, Kai Ove; Wargelius, Anna

    2014-01-01

    Understanding the biological function behind key proteins is of great concern in Atlantic salmon, both due to a high commercial importance and an interesting life history. Until recently, functional studies in salmonids appeared to be difficult. However, the recent discovery of targeted mutagenesis using the CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-associated) system enables performing functional studies in Atlantic salmon to a great extent. We used the CRISPR/Cas9 system to target two genes involved in pigmentation, tyrosinase (tyr) and solute carrier family 45, member 2 (slc45a2). Embryos were assayed for mutation rates at the 17 somite stage, where 40 and 22% of all injected embryos showed a high degree of mutation induction for slc45a2 and tyr, respectively. At hatching this mutation frequency was also visible for both targeted genes, displaying a graded phenotype ranging from complete lack of pigmentation to partial loss and normal pigmentation. CRISPRslc45a2/Cas9 injected embryos showing a complete lack of pigmentation or just a few spots of pigments also lacked wild type sequences when assaying more than 80 (slc45a2) sequence clones from whole embryos. This indicates that CRISPR/Cas9 can induce double-allelic knockout in the F0 generation. However, types and frequency of indels might affect the phenotype. Therefore, the variation of indels was assayed in the graded pigmentation phenotypes produced by CRISPR/Cas9-slc45a2. The results show a tendency for fewer types of indels formed in juveniles completely lacking pigmentation compared to juveniles displaying partial pigmentation. Another interesting observation was a high degree of the same indel type in different juveniles. This study shows for the first time successful use of the CRISPR/Cas9 technology in a marine cold water species. Targeted double-allelic mutations were obtained and, though the level of mosaicism has to be considered, we demonstrate that F0 fish can be used

  20. Targeted Mutagenesis in Atlantic Salmon (Salmo salar L.) Using the CRISPR/Cas9 System Induces Complete Knockout Individuals in the F0 Generation

    PubMed Central

    Edvardsen, Rolf B.; Leininger, Sven; Kleppe, Lene; Skaftnesmo, Kai Ove; Wargelius, Anna

    2014-01-01

    Understanding the biological function behind key proteins is of great concern in Atlantic salmon, both due to a high commercial importance and an interesting life history. Until recently, functional studies in salmonids appeared to be difficult. However, the recent discovery of targeted mutagenesis using the CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-associated) system enables performing functional studies in Atlantic salmon to a great extent. We used the CRISPR/Cas9 system to target two genes involved in pigmentation, tyrosinase (tyr) and solute carrier family 45, member 2 (slc45a2). Embryos were assayed for mutation rates at the 17 somite stage, where 40 and 22% of all injected embryos showed a high degree of mutation induction for slc45a2 and tyr, respectively. At hatching this mutation frequency was also visible for both targeted genes, displaying a graded phenotype ranging from complete lack of pigmentation to partial loss and normal pigmentation. CRISPRslc45a2/Cas9 injected embryos showing a complete lack of pigmentation or just a few spots of pigments also lacked wild type sequences when assaying more than 80 (slc45a2) sequence clones from whole embryos. This indicates that CRISPR/Cas9 can induce double-allelic knockout in the F0 generation. However, types and frequency of indels might affect the phenotype. Therefore, the variation of indels was assayed in the graded pigmentation phenotypes produced by CRISPR/Cas9-slc45a2. The results show a tendency for fewer types of indels formed in juveniles completely lacking pigmentation compared to juveniles displaying partial pigmentation. Another interesting observation was a high degree of the same indel type in different juveniles. This study shows for the first time successful use of the CRISPR/Cas9 technology in a marine cold water species. Targeted double-allelic mutations were obtained and, though the level of mosaicism has to be considered, we demonstrate that F0 fish can be used

  1. Unmanned Aircraft Systems in a Forward Air Controller (Airborne) Role

    DTIC Science & Technology

    2009-04-01

    not the answer. As Troy Caraway stated, “A FAC(A) is not a platform…but a specifically trained and qualified aviator.”39 Lack of maneuverability...The first factor requiring attention is the establishment of a test plan for UASs in the FAC(A) role. Troy Caraway , while serving as the Senior...Jonathan Greene, “Controlling CAS With the Predator: Is it Feasible?” Air Land Sea Bulletin, Issue No. 2006-02 (May 2006), 8. 39 Troy Caraway , Senior

  2. 21. DETAIL OF AIR HANDLER 1 (MST AIRCONDITIONING SYSTEM) INTERIOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. DETAIL OF AIR HANDLER 1 (MST AIR-CONDITIONING SYSTEM) INTERIOR, SOUTHEAST CORNER, STATION 30, SLC-3W MST - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  3. Reassessment of the Four Yield-related Genes Gn1a, DEP1, GS3, and IPA1 in Rice Using a CRISPR/Cas9 System

    PubMed Central

    Li, Meiru; Li, Xiaoxia; Zhou, Zejiao; Wu, Pingzhi; Fang, Maichun; Pan, Xiaoping; Lin, Qiupeng; Luo, Wanbin; Wu, Guojiang; Li, Hongqing

    2016-01-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated (Cas) systems have been successfully used as efficient tools for genome editing in a variety of species. We used the CRISPR/Cas9 system to mutate the Gn1a (Os01g0197700), DEP1 (Os09g0441900), GS3 (Os03g0407400), and IPA1 (Os08g0509600) genes of rice cultivar Zhonghua 11, genes which have been reported to function as regulators of grain number, panicle architecture, grain size and plant architecture, respectively. Analysis of the phenotypes and frequencies of edited genes in the first generation of transformed plants (T0) showed that the CRISPR/Cas9 system was highly efficient in inducing targeted gene editing, with the desired genes being edited in 42.5% (Gn1a), 67.5% (DEP1), 57.5% (GS3), and 27.5% (IPA1) of the transformed plants. The T2 generation of the gn1a, dep1, and gs3 mutants featured enhanced grain number, dense erect panicles, and larger grain size, respectively. Furthermore, semi-dwarf, and grain with long awn, phenotypes were observed in dep1 and gs3 mutants, respectively. The ipa1 mutants showed two contrasting phenotypes, having either fewer tillers or more tillers, depending on the changes induced in the OsmiR156 target region. In addition, we found that mutants with deletions occurred more frequently than previous reports had indicated and that off-targeting had taken place in highly similar target sequences. These results proved that multiple regulators of important traits can be modified in a single cultivar by CRISPR/Cas9, and thus facilitate the dissection of complex gene regulatory networks in the same genomic background and the stacking of important traits in cultivated varieties. PMID:27066031

  4. Air Conditioning System using Rankine Cycle

    NASA Astrophysics Data System (ADS)

    Nagatomo, Shigemi; Yamaguchi, Hiroichi; Hattori, Hitoshi; Futamura, Motonori

    Natural gas is used as the energy source to cope with the recent situation of increasing demand for electricity especially in summer. In this paper, the performance of a Rankine cycle air conditioning system driven by natural gas was studied. The following results were obtained : (1) Basic equations of performance, refrigerant mass flow rate and expander volume were developed by using the values of heating efficiency, regeneration efficiency, expander efficiency and compressor efficiency. (2) R134a refrigerant has been considered to be suitable for the Rankine cycle air conditioning system, compared with other refrigerants. (3)A Rankine cycle cooling system using R134a refrigerant as a single working fluid was developed. System COP of 0.47 was attained at typical operating condition.

  5. [A system of comprehensive assessment of symptoms in chronic prostatitis (CAS-XII)].

    PubMed

    Loran, O B; Segal, A S

    2001-01-01

    The system proposed for overall assessment of symptoms in chronic prostatitis was applied in the assessment of 75 patients. The system facilitates detection and analysis of the complaints, quantitates the disease symptoms, provides overall objective characteristics of all the multiplicity of clinical manifestations of chronic prostatitis in each patient by means of digital order. The system is rather effective for dynamic control of the patients' condition and treatment efficacy.

  6. Fuel-air ratio controlled carburetion system

    SciTech Connect

    Abbey, H. G.

    1980-02-12

    An automatic control system is disclosed supplying a fuel-air mixture to an internal combustion engine including a variable-venturi carburetor. Air is fed into the input of the venturi, the air passing through the throat thereof whose effective area is adjusted by a mechanism operated by a servo motor. Fuel is fed into the input of the venturi from a fuel reservoir through a main path having a fixed orifice and an auxiliary path formed by a metering valve operated by an auxiliary fuel-control motor. The differential air pressure developed between the inlet of the venturi and the throat thereof is sensed to produce an airvelocity command signal that is applied to a controller adapted to compare the command signal with the servo motor set point to produce an output for governing the servo motor to cause it to seek a null point, thereby defining a closed process control loop. The intake manifold vacuum, which varies in degree as a function of load and speed conditions is sensed to govern the auxiliary fuel-control motor accordingly, is at the same time converted into an auxiliary signal which is applied to the controller in the closed loop to modulate the command signal in a manner establishing an optimum air-fuel ratio under the varying conditions of load and speed.

  7. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells.

    PubMed

    Canver, Matthew C; Bauer, Daniel E; Dass, Abhishek; Yien, Yvette Y; Chung, Jacky; Masuda, Takeshi; Maeda, Takahiro; Paw, Barry H; Orkin, Stuart H

    2014-08-01

    The clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 nuclease system has provided a powerful tool for genome engineering. Double strand breaks may trigger nonhomologous end joining repair, leading to frameshift mutations, or homology-directed repair using an extrachromosomal template. Alternatively, genomic deletions may be produced by a pair of double strand breaks. The efficiency of CRISPR/Cas9-mediated genomic deletions has not been systematically explored. Here, we present a methodology for the production of deletions in mammalian cells, ranging from 1.3 kb to greater than 1 Mb. We observed a high frequency of intended genomic deletions. Nondeleted alleles are nonetheless often edited with inversions or small insertion/deletions produced at CRISPR recognition sites. Deleted alleles also typically include small insertion/deletions at predicted deletion junctions. We retrieved cells with biallelic deletion at a frequency exceeding that of probabilistic expectation. We demonstrate an inverse relationship between deletion frequency and deletion size. This work suggests that CRISPR/Cas9 is a robust system to produce a spectrum of genomic deletions to allow investigation of genes and genetic elements.

  8. Characterization of Genomic Deletion Efficiency Mediated by Clustered Regularly Interspaced Palindromic Repeats (CRISPR)/Cas9 Nuclease System in Mammalian Cells*♦

    PubMed Central

    Canver, Matthew C.; Bauer, Daniel E.; Dass, Abhishek; Yien, Yvette Y.; Chung, Jacky; Masuda, Takeshi; Maeda, Takahiro; Paw, Barry H.; Orkin, Stuart H.

    2014-01-01

    The clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 nuclease system has provided a powerful tool for genome engineering. Double strand breaks may trigger nonhomologous end joining repair, leading to frameshift mutations, or homology-directed repair using an extrachromosomal template. Alternatively, genomic deletions may be produced by a pair of double strand breaks. The efficiency of CRISPR/Cas9-mediated genomic deletions has not been systematically explored. Here, we present a methodology for the production of deletions in mammalian cells, ranging from 1.3 kb to greater than 1 Mb. We observed a high frequency of intended genomic deletions. Nondeleted alleles are nonetheless often edited with inversions or small insertion/deletions produced at CRISPR recognition sites. Deleted alleles also typically include small insertion/deletions at predicted deletion junctions. We retrieved cells with biallelic deletion at a frequency exceeding that of probabilistic expectation. We demonstrate an inverse relationship between deletion frequency and deletion size. This work suggests that CRISPR/Cas9 is a robust system to produce a spectrum of genomic deletions to allow investigation of genes and genetic elements. PMID:24907273

  9. A Model to Investigate Single-Strand DNA Responses in G1 Human Cells via a Telomere-Targeted, Nuclease-Deficient CRISPR-Cas9 System

    PubMed Central

    Crefcoeur, Remco P.; Zgheib, Omar; Halazonetis, Thanos D.

    2017-01-01

    DNA replication stress has the potential to compromise genomic stability and, therefore, cells have developed elaborate mechanisms to detect and resolve problems that may arise during DNA replication. The presence of single-stranded DNA (ssDNA) is often associated with DNA replication stress and serves as a signal for both checkpoint and repair responses. In this study, we exploited a CRISPR-Cas9 system to induce regions of ssDNA in the genome. Specifically, single-guide RNAs bearing sequence complementarity to human telomeric repeats, were used to target nuclease-deficient Cas9 (dCas9) to telomeres. Such targeting was associated with the formation of DNA-RNA hybrids, leaving one telomeric DNA strand single-stranded. This ssDNA then recruited DNA repair and checkpoint proteins, such as RPA, ATRIP, BLM and Rad51, at the telomeres. Interestingly, targeting of all these proteins to telomeric ssDNA was observed even in cells that were in the G1 phase of the cell cycle. Therefore, this system has the potential to serve as a platform for further investigation of DNA replication stress responses at specific loci in the human genome and in all phases of the cell cycle. PMID:28046023

  10. Creation of mutant mice with megabase-sized deletions containing custom-designed breakpoints by means of the CRISPR/Cas9 system.

    PubMed

    Kato, Tomoko; Hara, Satoshi; Goto, Yuji; Ogawa, Yuya; Okayasu, Haruka; Kubota, Souichirou; Tamano, Moe; Terao, Miho; Takada, Shuji

    2017-12-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system is a useful tool for creation of mutant mice with mutations mirroring those in human patients. Various methods have been developed for this purpose, including deletions, inversions, and translocations. So far, mutant mice with deletions of up to 1.2 megabases (Mb) have been generated by microinjection of the CRISPR/Cas9 system into fertilized eggs; however, a method for generation of mutant mice with a deletion of more than several Mb size is necessary because such deletions have often been identified as possible causes of human diseases. With an aim to enable the generation of disease models carrying large deletions with a breakpoint in custom-designed sequences, we developed a method for induction of an Mb-sized deletion by microinjection of a pair of sgRNAs, Cas9, and a donor plasmid into fertilized eggs. Using this method, we efficiently and rapidly generated mutant mice carrying deletions up to 5 Mb.

  11. Mixing Microworld and CAS Features in Building Computer Systems that Help Students Learn Algebra

    ERIC Educational Resources Information Center

    Nicaud, Jean-Francois; Bouhineau, Denis; Chaachoua, Hamid

    2004-01-01

    We present the design principles for a new kind of computer system that helps students learn algebra. The fundamental idea is to have a system based on the microworld paradigm that allows students to make their own calculations, as they do with paper and pencil, without being obliged to use commands, and to verify the correctness of these…

  12. Simple generation of albino C57BL/6J mice with G291T mutation in the tyrosinase gene by the CRISPR/Cas9 system.

    PubMed

    Mizuno, Seiya; Dinh, Tra Thi Huong; Kato, Kanako; Mizuno-Iijima, Saori; Tanimoto, Yoko; Daitoku, Yoko; Hoshino, Yoshikazu; Ikawa, Masahito; Takahashi, Satoru; Sugiyama, Fumihiro; Yagami, Ken-ichi

    2014-08-01

    Single nucleotide mutations (SNMs) are associated with a variety of human diseases. The CRISPR/Cas9 genome-editing system is expected to be useful as a genetic modification method for production of SNM-induced mice. To investigate whether SNM-induced mice can be generated by zygote microinjection of CRISPR/Cas9 vector and single-stranded DNA (ssDNA) donor, we attempted to produce albino C57BL/6J mice carrying the Tyr gene SNM (G291T) from pigmented C57BL/6J zygotes. We first designed and constructed a CRISPR/Cas9 expression vector for the Tyr gene (px330-Tyr-M). DNA cleavage activity of px330-Tyr-M at the target site of the Tyr gene was confirmed by the EGxxFP system. We also designed an ssDNA donor for homology-directed repair (HDR)-mediated gene modification. The px330-Tyr-M vector and ssDNA donor were co-microinjected into the pronuclei of 224 one-cell-stage embryos derived from C57BL/6J mice. We obtained 60 neonates, 28 of which showed the ocular albinism and absence of coat pigmentation. Genomic sequencing analysis of the albino mice revealed that the target of SNM, G291T in the Tyr gene, occurred in 11 mice and one founder was homozygously mutated. The remaining albino founders without Tyr G291T mutation also possessed biallelic deletion and insertion mutants adjacent to the target site in the Tyr locus. Simple production of albino C57BL/6J mice was provided by C57BL/6J zygote microinjection with px330-Tyr-M DNA vector and mutant ssDNA (G291T in Tyr) donor. A combination of CRISPR/Cas9 vector and optional mutant ssDNA could be expected to efficiently produce novel SNM-induced mouse models for investigating human diseases.

  13. Heating, Ventilation and Air-Conditioning Systems, Part of Indoor Air Quality Design Tools for Schools

    EPA Pesticide Factsheets

    The main purposes of a Heating, Ventilation, and Air-Conditioning system are to help maintain good indoor air quality through adequate ventilation with filtration and provide thermal comfort. HVAC systems are among the largest energy consumers in schools.

  14. Community Multiscale Air Quality Modeling System (CMAQ)

    EPA Pesticide Factsheets

    CMAQ is a computational tool used for air quality management. It models air pollutants including ozone, particulate matter and other air toxics to help determine optimum air quality management scenarios.

  15. Biallelic insertion of a transcriptional terminator via the CRISPR/Cas9 system efficiently silences expression of protein-coding and non-coding RNA genes.

    PubMed

    Liu, Yangyang; Han, Xiao; Yuan, Junting; Geng, Tuoyu; Chen, Shihao; Hu, Xuming; Cui, Isabelle H; Cui, Hengmi

    2017-04-07

    The type II bacterial CRISPR/Cas9 system is a simple, convenient, and powerful tool for targeted gene editing. Here, we describe a CRISPR/Cas9-based approach for inserting a poly(A) transcriptional terminator into both alleles of a targeted gene to silence protein-coding and non-protein-coding genes, which often play key roles in gene regulation but are difficult to silence via insertion or deletion of short DNA fragments. The integration of 225 bp of bovine growth hormone poly(A) signals into either the first intron or the first exon or behind the promoter of target genes caused efficient termination of expression of PPP1R12C, NSUN2 (protein-coding genes), and MALAT1 (non-protein-coding gene). Both NeoR and PuroR were used as markers in the selection of clonal cell lines with biallelic integration of a poly(A) signal. Genotyping analysis indicated that the cell lines displayed the desired biallelic silencing after a brief selection period. These combined results indicate that this CRISPR/Cas9-based approach offers an easy, convenient, and efficient novel technique for gene silencing in cell lines, especially for those in which gene integration is difficult because of a low efficiency of homology-directed repair.

  16. Exploring Students' Understanding of Ordinary Differential Equations Using Computer Algebraic System (CAS)

    ERIC Educational Resources Information Center

    Maat, Siti Mistima; Zakaria, Effandi

    2011-01-01

    Ordinary differential equations (ODEs) are one of the important topics in engineering mathematics that lead to the understanding of technical concepts among students. This study was conducted to explore the students' understanding of ODEs when they solve ODE questions using a traditional method as well as a computer algebraic system, particularly…

  17. Brain tumor modeling using the CRISPR/Cas9 system: state of the art and view to the future

    PubMed Central

    Mao, Xiao-Yuan; Dai, Jin-Xiang; Zhou, Hong-Hao; Liu, Zhao-Qian; Jin, Wei-Lin

    2016-01-01

    Although brain tumors have been known tremendously over the past decade, there are still many problems to be solved. The etiology of brain tumors is not well understood and the treatment remains modest. There is in great need to develop a suitable brain tumor models that faithfully mirror the etiology of human brain neoplasm and subsequently get more efficient therapeutic approaches for these disorders. In this review, we described the current status of animal models of brain tumors and analyzed their advantages and disadvantages. Additionally, prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), a versatile genome editing technology for investigating the functions of target genes, and its application were also introduced in our present work. We firstly proposed that brain tumor modeling could be well established via CRISPR/Cas9 techniques. And CRISPR/Cas9-mediated brain tumor modeling was likely to be more suitable for figuring out the pathogenesis of brain tumors, as CRISPR/Cas9 platform was a simple and more efficient biological toolbox for implementing mutagenesis of oncogenes or tumor suppressors that were closely linked with brain tumors. PMID:26993776

  18. Brain tumor modeling using the CRISPR/Cas9 system: state of the art and view to the future.

    PubMed

    Mao, Xiao-Yuan; Dai, Jin-Xiang; Zhou, Hong-Hao; Liu, Zhao-Qian; Jin, Wei-Lin

    2016-05-31

    Although brain tumors have been known tremendously over the past decade, there are still many problems to be solved. The etiology of brain tumors is not well understood and the treatment remains modest. There is in great need to develop a suitable brain tumor models that faithfully mirror the etiology of human brain neoplasm and subsequently get more efficient therapeutic approaches for these disorders. In this review, we described the current status of animal models of brain tumors and analyzed their advantages and disadvantages. Additionally, prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), a versatile genome editing technology for investigating the functions of target genes, and its application were also introduced in our present work. We firstly proposed that brain tumor modeling could be well established via CRISPR/Cas9 techniques. And CRISPR/Cas9-mediated brain tumor modeling was likely to be more suitable for figuring out the pathogenesis of brain tumors, as CRISPR/Cas9 platform was a simple and more efficient biological toolbox for implementing mutagenesis of oncogenes or tumor suppressors that were closely linked with brain tumors.

  19. Heating, Ventilating, Air Conditioning and Dehumidifying Systems.

    DTIC Science & Technology

    1980-08-01

    not be connected to other ventilating systems. Duct runs shall be as short as possible to avoid leakage of moisture. I b. Special Considerations. (1...For rectangular duct design, see the SMACNA -Low Pressure Duct Construction Standards. Under jnormal applications, a minimum duct size of 6 by 6 inches...prevent leakage of the moisture-laden discharge air into the intake duct , and the intake and discharge outlets shall be located to prevent any

  20. 14 CFR 23.1091 - Air induction system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Air induction system. 23.1091 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Induction System § 23.1091 Air induction system. (a) The air induction system for each engine and auxiliary power...

  1. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems,...

  2. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems,...

  3. Low Cost Air Combat Training System

    NASA Astrophysics Data System (ADS)

    Flynn, Earl

    1987-10-01

    Air combat training has evolved into a highly sophisticated and expensive process. To effectively train fighter pilots in air-to-air combat, interaction between pilots is essential. This interaction can be accomplished using multiple low cost laser image projections of friend and/or foe aircraft controlled by pilots in a multiple dome configuration. A Laser Target Projector (LTP) produces a calligraphically written aircraft model comprised of up to 200 vectors which are updated at a 60 Hz rate. The resulting wire frame image imparts both position, velocity, distance and altitude information to the pilots. Using a laser light source guarantees high luminance levels and provides large depths of field. This large depth of field allows for unique packaging arrangements and cost saving attributes. The LTP has total dome coverage via a computer-controlled, servo-driven, gimb-alled two-axis assembly that projects the wire frame aircraft image onto the dome surface. To unburden the host computer, all dome-to-dome communication, real world-to-dome coordinate transformations and all geometry corrections are done by a special purpose high-speed computer called a Dome Master. Each dome has one Dome Master that can drive up to six LTP's. This paper will deal with the technical aspects of the design and development of the LTP and Dome Master as a low cost air combat training system.

  4. [CAS General Standards 2012

    ERIC Educational Resources Information Center

    Council for the Advancement of Standards in Higher Education, 2011

    2011-01-01

    The mission of the Council for the Advancement of Standards in Higher Education (CAS) is to promote the improvement of programs and services to enhance the quality of student learning and development. CAS is a consortium of professional associations who work collaboratively to develop and promulgate standards and guidelines and to encourage…

  5. CRISPR/Cas9 Technologies.

    PubMed

    Williams, Bart O; Warman, Matthew L

    2017-02-23

    The Clustered Regularly Interspaced Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) pathway is revolutionizing biological research. Modifications to this primitive prokaryotic immune system now enable scientists to efficiently edit DNA or modulate gene expression in living eukaryotic cells and organisms. Thus, many laboratories can now perform important experiments that previously were considered scientifically risky or too costly. Here, we describe the components of the CRISPR/Cas system that have been engineered for use in eukaryotes. We also explain how this system can be used to genetically modify cell lines and model organisms, or regulate gene expression in order to search for new participants in biological pathways. © 2017 American Society for Bone and Mineral Research.

  6. Roots Air Management System with Integrated Expander

    SciTech Connect

    Stretch, Dale; Wright, Brad; Fortini, Matt; Fink, Neal; Ramadan, Bassem; Eybergen, William

    2016-07-06

    PEM fuel cells remain an emerging technology in the vehicle market with several cost and reliability challenges that must be overcome in order to increase market penetration and acceptance. The DOE has identified the lack of a cost effective, reliable, and efficient air supply system that meets the operational requirements of a pressurized PEM 80kW fuel cell as one of the major technological barriers that must be overcome. This project leveraged Roots positive displacement development advancements and demonstrated an efficient and low cost fuel cell air management system. Eaton built upon its P-Series Roots positive displacement design and shifted the peak efficiency making it ideal for use on an 80kW PEM stack. Advantages to this solution include: • Lower speed of the Roots device eliminates complex air bearings present on other systems. • Broad efficiency map of Roots based systems provides an overall higher drive cycle fuel economy. • Core Roots technology has been developed and validated for other transportation applications. Eaton modified their novel R340 Twin Vortices Series (TVS) Roots-type supercharger for this application. The TVS delivers more power and better fuel economy in a smaller package as compared to other supercharger technologies. By properly matching the helix angle with the rotor’s physical aspect ratio, the supercharger’s peak efficiency can be moved to the operating range where it is most beneficial for the application. The compressor was designed to meet the 90 g/s flow at a pressure ratio of 2.5, similar in design to the P-Series 340. A net shape plastic expander housing with integrated motor and compressor was developed to significantly reduce the cost of the system. This integrated design reduced part count by incorporating an overhung expander and motor rotors into the design such that only four bearings and two shafts were utilized.

  7. Structure and Engineering of Francisella novicida Cas9

    PubMed Central

    Hirano, Hisato; Gootenberg, Jonathan S.; Horii, Takuro; Abudayyeh, Omar O.; Kimura, Mika; Hsu, Patrick D.; Nakane, Takanori; Ishitani, Ryuichiro; Hatada, Izuho; Zhang, Feng; Nishimasu, Hiroshi; Nureki, Osamu

    2016-01-01

    Summary The RNA-guided endonuclease Cas9 cleaves double-stranded DNA targets complementary to the guide RNA, and has been applied to programmable genome editing. Cas9-mediated cleavage requires a protospacer adjacent motif (PAM) juxtaposed with the DNA target sequence, thus constricting the range of targetable sites. Here, we report the 1.7 Å resolution crystal structures of Cas9 from Francisella novicida (FnCas9), one of the largest Cas9 orthologs, in complex with a guide RNA and its PAM-containing DNA targets. A structural comparison of FnCas9 with other Cas9 orthologs revealed striking conserved and divergent features among distantly related CRISPR-Cas9 systems. We found that FnCas9 recognizes the 5′-NGG-3′ PAM, and used the structural information to create a variant that can recognize the more relaxed 5′-YG-3′ PAM. Furthermore, we demonstrated that pre-assembled FnCas9 ribonucleoprotein complexes can be microinjected into mouse zygotes to edit endogenous sites with the 5′-YG-3′ PAMs, thus expanding the target space of the CRISPR-Cas9 toolbox. PMID:26875867

  8. Electrochemical air revitalization system optimization investigation

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Schubert, F. H.; Hallick, T. M.

    1975-01-01

    A program to characterize a Breadboard of an Electrochemical Air Revitalization System (BEARS) was successfully completed. The BEARS is composed of three components: (1) a water vapor electrolysis module (WVEM) for O2 production and partial humidity control, (2) an electrochemical depolarized carbon dioxide concentrator module (EDCM) for CO2 control, and (3) a power-sharing controller, designed to utilize the power produced by the EDCM to partially offset the WVEM power requirements. It is concluded from the results of this work that the concept of electrochemical air revitalization with power-sharing is a viable solution to the problem of providing a localized topping force for O2 generation, CO2 removal and partial humidity control aboard manned spacecraft. Continued development of the EARS concept is recommended, applying the operational experience and limits identified during the BEARS program to testing of a one-man capacity system and toward the development of advanced system controls to optimize EARS operation for given interfaces and requirements. Successful completion of this development will produce timely technology necessary to plan future advanced environmental control and life support system programs and experiments.

  9. CRISPR-Cas: biology, mechanisms and relevance

    PubMed Central

    Hille, Frank

    2016-01-01

    Prokaryotes have evolved several defence mechanisms to protect themselves from viral predators. Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas) display a prokaryotic adaptive immune system that memorizes previous infections by integrating short sequences of invading genomes—termed spacers—into the CRISPR locus. The spacers interspaced with repeats are expressed as small guide CRISPR RNAs (crRNAs) that are employed by Cas proteins to target invaders sequence-specifically upon a reoccurring infection. The ability of the minimal CRISPR-Cas9 system to target DNA sequences using programmable RNAs has opened new avenues in genome editing in a broad range of cells and organisms with high potential in therapeutical applications. While numerous scientific studies have shed light on the biochemical processes behind CRISPR-Cas systems, several aspects of the immunity steps, however, still lack sufficient understanding. This review summarizes major discoveries in the CRISPR-Cas field, discusses the role of CRISPR-Cas in prokaryotic immunity and other physiological properties, and describes applications of the system as a DNA editing technology and antimicrobial agent. This article is part of the themed issue ‘The new bacteriology’. PMID:27672148

  10. The evolutionary history and diagnostic utility of the CRISPR-Cas system within Salmonella enterica ssp. enterica

    PubMed Central

    Timme, Ruth E.; Barrangou, Rodolphe; Toro, Magaly; Allard, Marc W.; Strain, Errol; Musser, Steven M.; Brown, Eric W.

    2014-01-01

    Evolutionary studies of clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (cas) genes can provide insights into host-pathogen co-evolutionary dynamics and the frequency at which different genomic events (e.g., horizontal vs. vertical transmission) occur. Within this study, we used whole genome sequence (WGS) data to determine the evolutionary history and genetic diversity of CRISPR loci and cas genes among a diverse set of 427 Salmonella enterica ssp. enterica isolates representing 64 different serovars. We also evaluated the performance of CRISPR loci for typing when compared to whole genome and multilocus sequence typing (MLST) approaches. We found that there was high diversity in array length within both CRISPR1 (median = 22; min = 3; max = 79) and CRISPR2 (median = 27; min = 2; max = 221). There was also much diversity within serovars (e.g., arrays differed by as many as 50 repeat-spacer units among Salmonella ser. Senftenberg isolates). Interestingly, we found that there are two general cas gene profiles that do not track phylogenetic relationships, which suggests that non-vertical transmission events have occurred frequently throughout the evolutionary history of the sampled isolates. There is also considerable variation among the ranges of pairwise distances estimated within each cas gene, which may be indicative of the strength of natural selection acting on those genes. We developed a novel clustering approach based on CRISPR spacer content, but found that typing based on CRISPRs was less accurate than the MLST-based alternative; typing based on WGS data was the most accurate. Notwithstanding cost and accessibility, we anticipate that draft genome sequencing, due to its greater discriminatory power, will eventually become routine for traceback investigations. PMID:24765574

  11. Comparative genomics reveals diversified CRISPR-Cas systems of globally distributed Microcystis aeruginosa, a freshwater bloom-forming cyanobacterium.

    PubMed

    Yang, Chen; Lin, Feibi; Li, Qi; Li, Tao; Zhao, Jindong

    2015-01-01

    Microcystis aeruginosa is one of the most common and dominant bloom-forming cyanobacteria in freshwater lakes around the world. Microcystis cells can produce toxic secondary metabolites, such as microcystins, which are harmful to human health. Two M. aeruginosa strains were isolated from two highly eutrophic lakes in China and their genomes were sequenced. Comparative genomic analysis was performed with the 12 other available M. aeruginosa genomes and closely related unicellular cyanobacterium. Each genome of M. aeruginosa containing at least one clustered regularly interspaced short palindromic repeat (CRISPR) locus and total 71 loci were identified, suggesting it is ubiquitous in M. aeruginosa genomes. In addition to the previously reported subtype I-D cas gene sets, three CAS subtypes I-A, III-A and III-B were identified and characterized in this study. Seven types of CRISPR direct repeat have close association with CAS subtype, confirming that different and specific secondary structures of CRISPR repeats are important for the recognition, binding and process of corresponding cas gene sets. Homology search of the CRISPR spacer sequences provides a history of not only resistance to bacteriophages and plasmids known to be associated with M. aeruginosa, but also the ability to target much more exogenous genetic material in the natural environment. These adaptive and heritable defense mechanisms play a vital role in keeping genomic stability and self-maintenance by restriction of horizontal gene transfer. Maintaining genomic stability and modulating genomic plasticity are both important evolutionary strategies for M. aeruginosa in adaptation and survival in various habitats.

  12. The promise of air cargo: System aspects and vehicle design

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1976-01-01

    The current operation of the air cargo system is reviewed. An assessment of the future of air cargo is provided by: (1) analyzing statistics and trends, (2) by noting system problems and inefficiencies, (3) by analyzing characteristics of 'air eligible' commodities, and (4) by showing the promise of new technology for future cargo aircraft with significant improvements in costs and efficiency. The following topics are discussed: (1) air cargo demand forecasts; (2) economics of air cargo transport; (3) the integrated air cargo system; (4) evolution of airfreighter design; and (5) the span distributed load concept.

  13. Inhibition of CRISPR-Cas9 with Bacteriophage Proteins.

    PubMed

    Rauch, Benjamin J; Silvis, Melanie R; Hultquist, Judd F; Waters, Christopher S; McGregor, Michael J; Krogan, Nevan J; Bondy-Denomy, Joseph

    2017-01-12

    Bacterial CRISPR-Cas systems utilize sequence-specific RNA-guided nucleases to defend against bacteriophage infection. As a countermeasure, numerous phages are known that produce proteins to block the function of class 1 CRISPR-Cas systems. However, currently no proteins are known to inhibit the widely used class 2 CRISPR-Cas9 system. To find these inhibitors, we searched cas9-containing bacterial genomes for the co-existence of a CRISPR spacer and its target, a potential indicator for CRISPR inhibition. This analysis led to the discovery of four unique type II-A CRISPR-Cas9 inhibitor proteins encoded by Listeria monocytogenes prophages. More than half of L. monocytogenes strains with cas9 contain at least one prophage-encoded inhibitor, suggesting widespread CRISPR-Cas9 inactivation. Two of these inhibitors also blocked the widely used Streptococcus pyogenes Cas9 when assayed in Escherichia coli and human cells. These natural Cas9-specific "anti-CRISPRs" present tools that can be used to regulate the genome engineering activities of CRISPR-Cas9.

  14. Operating systems in the air transportation environment.

    NASA Technical Reports Server (NTRS)

    Cherry, G. W.

    1971-01-01

    Consideration of the problems facing air transport at present, and to be expected in the future. In the Northeast Corridor these problems involve community acceptance, airway and airport congestion and delays, passenger acceptance, noise reduction, and improvements in low-density short-haul economics. In the development of a superior short-haul operating system, terminal-configured vs cruise-configured vehicles are evaluated. CTOL, STOL, and VTOL aircraft of various types are discussed. In the field of noise abatement, it is shown that flight procedural techniques are capable of supplementing ?quiet engine' technology.

  15. 46 CFR 197.310 - Air compressor system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Air compressor system. 197.310 Section 197.310 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A compressor used to supply breathing air to a diver must have— (a) A volume tank that is— (1) Built and stamped...

  16. 14 CFR 23.1091 - Air induction system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... indicate to the flight crew when it is not closed. (c) For turbine engine powered airplanes— (1) There must... § 23.1091 Air induction system. (a) The air induction system for each engine and auxiliary power unit and their accessories must supply the air required by that engine and auxiliary power unit and...

  17. 14 CFR 23.1091 - Air induction system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... indicate to the flight crew when it is not closed. (c) For turbine engine powered airplanes— (1) There must... § 23.1091 Air induction system. (a) The air induction system for each engine and auxiliary power unit and their accessories must supply the air required by that engine and auxiliary power unit and...

  18. 14 CFR 23.1091 - Air induction system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... indicate to the flight crew when it is not closed. (c) For turbine engine powered airplanes— (1) There must... § 23.1091 Air induction system. (a) The air induction system for each engine and auxiliary power unit and their accessories must supply the air required by that engine and auxiliary power unit and...

  19. Protein engineering of Cas9 for enhanced function.

    PubMed

    Oakes, Benjamin L; Nadler, Dana C; Savage, David F

    2014-01-01

    CRISPR/Cas systems act to protect the cell from invading nucleic acids in many bacteria and archaea. The bacterial immune protein Cas9 is a component of one of these CRISPR/Cas systems and has recently been adapted as a tool for genome editing. Cas9 is easily targeted to bind and cleave a DNA sequence via a complementary RNA; this straightforward programmability has gained Cas9 rapid acceptance in the field of genetic engineering. While this technology has developed quickly, a number of challenges regarding Cas9 specificity, efficiency, fusion protein function, and spatiotemporal control within the cell remain. In this work, we develop a platform for constructing novel proteins to address these open questions. We demonstrate methods to either screen or select active Cas9 mutants and use the screening technique to isolate functional Cas9 variants with a heterologous PDZ domain inserted within the protein. As a proof of concept, these methods lay the groundwork for the future construction of diverse Cas9 proteins. Straightforward and accessible techniques for genetic editing are helping to elucidate biology in new and exciting ways; a platform to engineer new functionalities into Cas9 will help forge the next generation of genome-modifying tools.

  20. When 'solutions of yesterday become problems of today': crisis-ridden decision making in a complex adaptive system (CAS)--the Additional Duty Hours Allowance in Ghana.

    PubMed

    Agyepong, Irene Akua; Kodua, Augustina; Adjei, Sam; Adam, Taghreed

    2012-10-01

    Implementation of policies (decisions) in the health sector is sometimes defeated by the system's response to the policy itself. This can lead to counter-intuitive, unanticipated, or more modest effects than expected by those who designed the policy. The health sector fits the characteristics of complex adaptive systems (CAS) and complexity is at the heart of this phenomenon. Anticipating both positive and negative effects of policy decisions, understanding the interests, power and interaction between multiple actors; and planning for the delayed and distal impact of policy decisions are essential for effective decision making in CAS. Failure to appreciate these elements often leads to a series of reductionist approach interventions or 'fixes'. This in turn can initiate a series of negative feedback loops that further complicates the situation over time. In this paper we use a case study of the Additional Duty Hours Allowance (ADHA) policy in Ghana to illustrate these points. Using causal loop diagrams, we unpack the intended and unintended effects of the policy and how these effects evolved over time. The overall goal is to advance our understanding of decision making in complex adaptive systems; and through this process identify some essential elements in formulating, updating and implementing health policy that can help to improve attainment of desired outcomes and minimize negative unintended effects.

  1. 30 CFR 77.412 - Compressed air systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for Mechanical Equipment § 77.412 Compressed air systems. (a) Compressors and compressed-air receivers... used at connections to machines of high-pressure hose lines of 1-inch inside diameter or larger,...

  2. 30 CFR 77.412 - Compressed air systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for Mechanical Equipment § 77.412 Compressed air systems. (a) Compressors and compressed-air receivers... used at connections to machines of high-pressure hose lines of 1-inch inside diameter or larger,...

  3. One man electrochemical air revitalization system

    NASA Technical Reports Server (NTRS)

    Huddleston, J. C.; Aylward, J. R.

    1975-01-01

    An integrated water vapor electrolysis (WVE) hydrogen depolarized CO2 concentrator (HDC) system sized for one man support over a wide range of inlet air conditions was designed, fabricated, and tested. Data obtained during 110 days of testing verified that this system can provide the necessary oxygen, CO2 removal, and partial humidity control to support one man (without exceeding a cabin partial pressure of 3.0 mmHg for CO2 and while maintaining a 20% oxygen level), when operated at a WVE current of 50 amperes and an HDC current of 18 amperes. An evaluation to determine the physical properties of tetramethylammonium bicarbonate (TMAC) and hydroxide was made. This provides the necessary electrolyte information for designing an HDC cell using TMAC.

  4. Precision Targeted Mutagenesis via Cas9 Paired Nickases in Rice

    PubMed Central

    Mikami, Masafumi; Toki, Seiichi; Endo, Masaki

    2016-01-01

    Recent reports of CRISPR- (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) mediated heritable mutagenesis in plants highlight the need for accuracy of the mutagenesis directed by this system. Off-target mutations are an important issue when considering functional gene analysis, as well as the molecular breeding of crop plants with large genome size, i.e. with many duplicated genes, and where the whole-genome sequence is still lacking. In mammals, off-target mutations can be suppressed by using Cas9 paired nickases together with paired guide RNAs (gRNAs). However, the performance of Cas9 paired nickases has not yet been fully assessed in plants. Here, we analyzed on- and off-target mutation frequency in rice calli and regenerated plants using Cas9 nuclease or Cas9 nickase with paired gRNAs. When Cas9 paired nickases were used, off-target mutations were fully suppressed in rice calli and regenerated plants. However, on-target mutation frequency also decreased compared with that induced by the Cas9 paired nucleases system. Since the gRNA sequence determines specific binding of Cas9 protein–gRNA ribonucleoproteins at the targeted sequence, the on-target mutation frequency of Cas9 paired nickases depends on the design of paired gRNAs. Our results suggest that a combination of gRNAs that can induce mutations at high efficiency with Cas9 nuclease should be used together with Cas9 nickase. Furthermore, we confirmed that a combination of gRNAs containing a one nucleotide (1 nt) mismatch toward the target sequence could not induce mutations when expressed with Cas9 nickase. Our results clearly show the effectiveness of Cas9 paired nickases in delivering on-target specific mutations. PMID:26936792

  5. Variable volume combustor with an air bypass system

    DOEpatents

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Ostebee, Heath Michael; Keener, Christopher Paul

    2017-02-07

    The present application provides a combustor for use with flow of fuel and a flow of air in a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles positioned within a liner and an air bypass system position about the liner. The air bypass system variably allows a bypass portion of the flow of air to bypass the micro-mixer fuel nozzles.

  6. Controlling energy in an air-conditioning system

    SciTech Connect

    Lamar, R. H.; Davis, R. A.

    1985-03-26

    A system for minimizing the energy consumption in a central air conditioning unit incorporating a refrigeration unit which is normally in operation to supplement or substitute for the cooling effect of outside air. The system employs sensor to sense the enthalpy of the return air entering the unit from the work space, the outside air entering the unit from the outside, and the washer air discharged into the work space from the unit, and controls the operation of the unit in accordance with the relative levels of enthalpy at these points. The energy content of the discharged washer air may be modified by modulating dampers controlling the proportion of outside and recirculated air, and also by modulating the washer which provides evaporative cooling and, in addition, cooling by refrigeration. The controls keep the outdoor air dampers normally closed when the enthalpy of the outdoor air is higher than the enthalpy of the return air and keep the outdoor air dampers normally opened when the enthalpy of the outside air is less than the enthalpy of the return air. Regulating means provide auxiliary signals to modulate the dampers to avoid adversely affecting the conditioning effect of the washer air in the work area, and also to enable the continued operation of the refrigeration unit without damage when the system would otherwise call for operating the unit at less than the minimum safe operating load.

  7. Harnessing CRISPR-Cas9 immunity for genetic engineering.

    PubMed

    Charpentier, Emmanuelle; Marraffini, Luciano A

    2014-06-01

    CRISPR-Cas encodes an adaptive immune system that defends prokaryotes against infectious viruses and plasmids. Immunity is mediated by Cas nucleases, which use small RNA guides (the crRNAs) to specify a cleavage site within the genome of invading nucleic acids. In type II CRISPR-Cas systems, the DNA-cleaving activity is performed by a single enzyme Cas9 guided by an RNA duplex. Using synthetic single RNA guides, Cas9 can be reprogrammed to create specific double-stranded DNA breaks in the genomes of a variety of organisms, ranging from human cells to bacteria, and thus constitutes a powerful tool for genetic engineering. Here we describe recent advancements in our understanding of type II CRISPR-Cas immunity and how these studies led to revolutionary genome editing applications.

  8. Direct digital control of air washer cooling system

    SciTech Connect

    Elben, T.; Roseblock, R.; Lawler, R.; McCord, J.

    1990-01-01

    The purpose of this project was to make a practical evaluation of using new technology to extend the life of obsolete HVAC mechanical equipment. The specific exercises in this project involved the application of software driven control algorithms to operate and manage open loop air washer cooling systems in the air handling units located in the Municipal Auditorium in Kansas City, Missouri. The specific opportunity evaluated in this project involved eight air handling units at the Municipal Auditorium. The air handling systems utilize outdated air washer cooling systems that provide air conditioning and dehumidification to the areas they serve. We utilized direct digital control to assume total control of the operation of the air handling units. We also found it necessary to upgrade some components of the air handling units in order to allow the new control applications to execute their functions. This report describes the plan used to execute the project and the results. 20 tabs.

  9. A Dual-Reporter System for Real-Time Monitoring and High-throughput CRISPR/Cas9 Library Screening of the Hepatitis C Virus

    PubMed Central

    Ren, Qingpeng; Li, Chan; Yuan, Pengfei; Cai, Changzu; Zhang, Linqi; Luo, Guangxiang George; Wei, Wensheng

    2015-01-01

    The hepatitis C virus (HCV) is one of the leading causes of chronic hepatitis, liver cirrhosis and hepatocellular carcinomas and infects approximately 170 million people worldwide. Although several reporter systems have been developed, many shortcomings limit their use in the assessment of HCV infections. Here, we report a real-time live-cell reporter, termed the NIrD (NS3-4A Inducible rtTA-mediated Dual-reporter) system, which provides an on-off switch specifically in response to an HCV infection. Using the NIrD system and a focused CRISPR/Cas9 library, we identified CLDN1, OCLN and CD81 as essential genes for both the cell-free entry and the cell-to-cell transmission of HCV. The combination of this ultra-sensitive reporter system and the CRISPR knockout screening provides a powerful and high-throughput strategy for the identification of critical host components for HCV infections. PMID:25746010

  10. A Dual-reporter system for real-time monitoring and high-throughput CRISPR/Cas9 library screening of the hepatitis C virus.

    PubMed

    Ren, Qingpeng; Li, Chan; Yuan, Pengfei; Cai, Changzu; Zhang, Linqi; Luo, Guangxiang George; Wei, Wensheng

    2015-03-09

    The hepatitis C virus (HCV) is one of the leading causes of chronic hepatitis, liver cirrhosis and hepatocellular carcinomas and infects approximately 170 million people worldwide. Although several reporter systems have been developed, many shortcomings limit their use in the assessment of HCV infections. Here, we report a real-time live-cell reporter, termed the NIrD (NS3-4A Inducible rtTA-mediated Dual-reporter) system, which provides an on-off switch specifically in response to an HCV infection. Using the NIrD system and a focused CRISPR/Cas9 library, we identified CLDN1, OCLN and CD81 as essential genes for both the cell-free entry and the cell-to-cell transmission of HCV. The combination of this ultra-sensitive reporter system and the CRISPR knockout screening provides a powerful and high-throughput strategy for the identification of critical host components for HCV infections.

  11. HVAC system performance and indoor air quality

    SciTech Connect

    Newman, J.L. )

    1991-01-01

    This paper reports that in the mid-seventies, the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) promulgated ASHRAE Standard 90-75 Energy Conservation in New Building Design, which called for revised minimum ventilation rates and the elimination of energy-wasting HVAC systems. Most building codes which cover energy conservation in the late seventies and eighties referred to this standard. This lowering of ventilation rates, coupled with the tighter building envelope (walls, windows, doors and roof) led to a reduction in outside air, both by engineering design and by minimizing infiltration through the structure. The minimum ventilation rates are based on the assumption that average concentrations of tobacco smoke exist in all enclosed spaces (30 percent of the population being smokers at two cigarettes per hour), rather than having separate rates for smoking and nonsmoking areas, as in the 1981 revision of the Standard. If tobacco smoke is ever declared a carcinogen, it will undoubtedly prompt a review of Standard 62-1989, as well as hasten totally smoke-free buildings.

  12. RAZOR EX anthrax air detection system.

    PubMed

    Spaulding, Usha K; Christensen, Clarissa J; Crisp, Robert J; Vaughn, Michael B; Trauscht, Robert C; Gardner, Jordan R; Thatcher, Stephanie A; Clemens, Kristine M; Teng, David H F; Bird, Abigail; Ota, Irene M; Hadfield, Ted; Ryan, Valorie; Brunelle, Sharon L

    2012-01-01

    The RAZOR EX Anthrax Air Detection System, developed by Idaho Technology, Inc. (ITI), is a qualitative method for the detection of Bacillus anthracis spores collected by air collection devices. This system comprises a DNA extraction kit, a freeze-dried PCR reagent pouch, and the RAZOR EX real-time PCR instrument. Each pouch contains three assays, which distinguish potentially virulent B. anthracis from avirulent B. anthracis and other Bacillus species. These assays target the pXO1 and pXO2 plasmids and chromosomal DNA. When all targets are detected, the instrument makes an "anthrax detected" call, meaning that virulence genes of the anthrax bacillus are present. This report describes results from AOAC Method Developer (MD) and Independent Laboratory Validation (ILV) studies, which include matrix, inclusivity/exclusivity, environmental interference, upper and lower LOD of DNA, robustness, product consistency and stability, and instrument variation testing. In the MD studies, the system met the acceptance criteria for sensitivity and specificity, and the performance was consistent, stable, and robust for all components of the system. For the matrix study, the acceptance criteria of 95/96 expected calls was met for three of four matrixes, clean dry filters being the exception. Ninety-four of the 96 clean dry filter samples tested gave the expected calls. The nucleic acid limit of detection was 5-fold lower than AOAC's acceptable minimum detection limit. The system demonstrated no tendency for false positives when tested with Bacillus cereus. Environmental substances did not inhibit accurate detection of B. anthracis. The ILV studies yielded similar results for the matrix and inclusivity/exclusivity studies. The ILV environmental interference study included environmental substances and environmental organisms. Subsoil at a high concentration was found to negatively interfere with the pXO1 reaction. No interference was observed from the environmental organisms. The

  13. Systems Management of Air Force Standard Communications-Computer systems: There is a Better Way

    DTIC Science & Technology

    1988-04-01

    money into defense in the early 1980s provided the impetus for spending at both ends of the spectrum on new technolgies for tele- communications and...Base Supply System (SBSS) AF/LE Combat Amunition System (CAS) AF/LE Core Automated Maintenance System (CAMs) AF/LE Contingency Operation/ Mobility ...contracting, civil engineering, transportation, security police, base adminis- tration, mobility processing, hospital administration and message

  14. Air Force Officer Evaluation System Project

    DTIC Science & Technology

    1987-01-01

    supervisor-subordinate relationships, and most private sector organizations ti"-n supervisors to give such feedback. AIR FORCE CULTURE o There exists...Alternative OER designs should reflect and sustain the larger Air Force culture ; 0 Within the Air Force, the alternative OER designs should encourage change...given the Air Force history and culture favoring "firewalling*, there is substantial risk that this approach would meet considerable resistance to

  15. Overview of CRISPR-Cas9 Biology.

    PubMed

    Ratner, Hannah K; Sampson, Timothy R; Weiss, David S

    2016-12-01

    Prokaryotes use diverse strategies to improve fitness in the face of different environmental threats and stresses, including those posed by mobile genetic elements (e.g., bacteriophages and plasmids). To defend against these elements, many bacteria and archaea use elegant, RNA-directed, nucleic acid-targeting adaptive restriction machineries called CRISPR -: Cas (CRISPR-associated) systems. While providing an effective defense against foreign genetic elements, these systems have also been observed to play critical roles in regulating bacterial physiology during environmental stress. Increasingly, CRISPR-Cas systems, in particular the Type II systems containing the Cas9 endonuclease, have been exploited for their ability to bind desired nucleic acid sequences, as well as direct sequence-specific cleavage of their targets. Cas9-mediated genome engineering is transcending biological research as a versatile and portable platform for manipulating genetic content in myriad systems. Here, we present a systematic overview of CRISPR-Cas history and biology, highlighting the revolutionary tools derived from these systems, which greatly expand the molecular biologists' toolkit.

  16. Controlling UCAVs by JTACs in CAS missions

    NASA Astrophysics Data System (ADS)

    Kumaş, A. E.

    2014-06-01

    By means of evolving technology, capabilities of UAVs (Unmanned Aerial Vehicle)s are increasing rapidly. This development provides UAVs to be used in many different areas. One of these areas is CAS (Close Air Support) mission. UAVs have several advantages compared to manned aircraft, however there are also some problematic areas. The remote controlling of these vehicles from thousands of nautical miles away via satellite may lead to various problems both ethical and tactical aspects. Therefore, CAS missions require a good level of ALI (Air-Land Integration), a high SA (situational awareness) and precision engagement. In fact, there is an aware friendly element in the target area in CAS missions, unlike the other UAV operations. This element is an Airman called JTAC (Joint Terminal Attack Controller). Unlike the JTAC, UAV operators are too far away from target area and use the limited FOV (Field of View) provided by camera and some other sensor data. In this study, target area situational awareness of a UAV operator and a JTAC, in a high-risk mission for friendly ground forces and civilians such as CAS, are compared. As a result of this comparison, answer to the question who should control the UCAV (Unmanned Combat Aerial Vehicle) in which circumstances is sought. A literature review is made in UAV and CAS fields and recent air operations are examined. The control of UCAV by the JTAC is assessed by SWOT analysis and as a result it is deduced that both control methods can be used in different situations within the framework of the ROE (Rules Of Engagement) is reached.

  17. [sgRNA design for the CRISPR/Cas9 system and evaluation of its off-target effects].

    PubMed

    Shengsong, Xie; Yi, Zhang; Lisheng, Zhang; Guanglei, Li; Changzhi, Zhao; Pan, Ni; Shuhong, Zhao

    2015-11-01

    The third generation of CRISPR/Cas9-mediated genome editing technology has been successfully applied to genome modification of various species including animals, plants and microorganisms. How to improve the efficiency of CRISPR/Cas9 genome editing and reduce its off-target effects has been extensively explored in this field. Using sgRNA (Small guide RNA) with high efficiency and specificity is one of the critical factors for successful genome editing. Several software have been developed for sgRNA design and/or off-target evaluation, which have advantages and disadvantages respectively. In this review, we summarize characters of 16 kinds online and standalone software for sgRNA design and/or off-target evaluation and conduct a comparative analysis of these different kinds of software through developing 38 evaluation indexes. We also summarize 11 experimental approaches for testing genome editing efficiency and off-target effects as well as how to screen highly efficient and specific sgRNA.

  18. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice

    PubMed Central

    Yang, Yang; Wang, Lili; Bell, Peter; McMenamin, Deirdre; He, Zhenning; White, John; Yu, Hongwei; Xu, Chenyu; Morizono, Hiroki; Musunuru, Kiran; Batshaw, Mark L.; Wilson, James M.

    2016-01-01

    Many genetic liver diseases present in newborns with repeated, often lethal, metabolic crises. Gene therapy using non-integrating viruses such as AAV is not optimal in this setting because the non-integrating genome is lost as developing hepatocytes proliferate1,2. We reasoned that newborn liver may be an ideal setting for AAV-mediated gene correction using CRISPR/Cas9. Here we intravenously infuse two AAVs, one expressing Cas9 and the other expressing a guide RNA and the donor DNA, into newborn mice with a partial deficiency in the urea cycle disorder enzyme, ornithine transcarbamylase (OTC). This resulted in reversion of the mutation in 10% (6.7% – 20.1%) of hepatocytes and increased survival in mice challenged with a high-protein diet, which exacerbates disease. Gene correction in adult OTC-deficient mice was lower and accompanied by larger deletions that ablated residual expression from the endogenous OTC gene, leading to diminished protein tolerance and lethal hyperammonemia on a chow diet. PMID:26829317

  19. Mockup Small-Diameter Air Distribution System

    SciTech Connect

    A. Poerschke and A. Rudd

    2016-05-01

    This report investigates the feasibility of using a home-run manifold small-diameter duct system to provide space conditioning air to individual thermal zones in a low-load home. This compact layout allows duct systems to be brought easily within conditioned space via interior partition walls. Centrally locating the air hander unit in the house significantly reduces duct lengths. The plenum box is designed so that each connected duct receives an equal amount of airflow, regardless of the duct position on the box. Furthermore, within a reasonable set of length restrictions, each duct continues to receive similar airflow. The design method uses an additive approach to reach the total needed zonal airflow. Once the cubic feet per minute needed to satisfy the thermal load of a zone has been determined, the total number of duct runs to a zone can be calculated by dividing the required airflow by the standard airflow from each duct. The additive approach greatly simplifies the design effort and reduces the potential for duct design mistakes to be made. Measured results indicate that this plenum design can satisfy the heating load. However, the total airflow falls short of satisfying the cooling load in a hypothetical building. Static pressure inside the plenum box of 51.5 Pa limited the total airflow of the attached mini-split heat pump blower, thus limiting the total thermal capacity. Fan energy consumption is kept to 0.16 to 0.22 watt/CFM by using short duct runs and smooth duct material.

  20. Systems evaluation of low density air transportation concepts

    NASA Technical Reports Server (NTRS)

    Bruce, R. W.; Webb, H. M.

    1972-01-01

    Methods were studied for improving air transportation to low-density population regions in the U.S. through the application of new aeronautical technology. The low-density air service concepts are developed for selected regions, and critical technologies that presently limit the effective application of low-density air transportation systems are identified.

  1. AIR TEMPERATURE DISTRIBUTION IN SEED COTTON DRYING SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ten tests were conducted in the fall of 2007 to measure air temperature variation within various heated air seed cotton drying systems with the purpose of: checking validation of recommendations by a professional engineering society and measuring air temperature variation across the airflow ductwork...

  2. Guide RNA functional modules direct Cas9 activity and orthogonality.

    PubMed

    Briner, Alexandra E; Donohoue, Paul D; Gomaa, Ahmed A; Selle, Kurt; Slorach, Euan M; Nye, Christopher H; Haurwitz, Rachel E; Beisel, Chase L; May, Andrew P; Barrangou, Rodolphe

    2014-10-23

    The RNA-guided Cas9 endonuclease specifically targets and cleaves DNA in a sequence-dependent manner and has been widely used for programmable genome editing. Cas9 activity is dependent on interactions with guide RNAs, and evolutionarily divergent Cas9 nucleases have been shown to work orthogonally. However, the molecular basis of selective Cas9:guide-RNA interactions is poorly understood. Here, we identify and characterize six conserved modules within native crRNA:tracrRNA duplexes and single guide RNAs (sgRNAs) that direct Cas9 endonuclease activity. We show the bulge and nexus are necessary for DNA cleavage and demonstrate that the nexus and hairpins are instrumental in defining orthogonality between systems. In contrast, the crRNA:tracrRNA complementary region can be modified or partially removed. Collectively, our results establish guide RNA features that drive DNA targeting by Cas9 and open new design and engineering avenues for CRISPR technologies.

  3. Closed-loop air cooling system for a turbine engine

    DOEpatents

    North, William Edward

    2000-01-01

    Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.

  4. TATR: A Prototype Expert System for Tactical Air Targeting

    DTIC Science & Technology

    1984-08-01

    TATR: A Prototype Expert System for Tactical Air Targeting Monti Callero , Donald A. Waterman, James R. Kipps Report Documentation Page Form...8217Techniques. Library of Congress Cataloging in Publication Data Callero , Monti. TATR--a prototype expert system for tactical air targeting. "R-3096-ARPA...Prototype Expert System for Tactical Air Targeting Monti Callero , Donald A. Waterman, James R. Kipps August 1984 Prepared for the Defense

  5. Energy savings potential in air conditioners and chiller systems

    SciTech Connect

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment cost and pay back periods were calculated.

  6. Energy savings potential in air conditioners and chiller systems

    DOE PAGES

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment costmore » and pay back periods were calculated.« less

  7. CRISPR-Cas9-guided Genome Engineering in C. elegans

    PubMed Central

    Kim, Hyun-Min; Colaiácovo, Monica P.

    2016-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system is successfully being used for efficient and targeted genome editing in various organisms including the nematode C. elegans. Recent studies developed various CRISPR-Cas9 approaches to enhance genome engineering via two major DNA double-strand break repair pathways: non-homologous end joining and homologous recombination. Here we describe a protocol for Cas9-mediated C. elegans genome editing together with single guide RNA (sgRNA) and repair template cloning and injection methods required for delivering Cas9, sgRNAs and repair template DNA into the C. elegans germline. PMID:27366893

  8. Targeted heritable mutation and gene conversion by Cas9-CRISPR in Caenorhabditis elegans.

    PubMed

    Katic, Iskra; Großhans, Helge

    2013-11-01

    We have achieved targeted heritable genome modification in Caenorhabditis elegans by injecting mRNA of the nuclease Cas9 and Cas9 guide RNAs. This system rapidly creates precise genomic changes, including knockouts and transgene-instructed gene conversion.

  9. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  10. Vertical Navigation Control Laws and Logic for the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.; Khong, Thuan H.

    2013-01-01

    A vertical navigation (VNAV) outer-loop control system was developed to capture and track the vertical path segments of energy-efficient trajectories that are being developed for high-density operations in the evolving Next Generation Air Transportation System (NextGen). The VNAV control system has a speed-on-elevator control mode to pitch the aircraft for tracking a calibrated airspeed (CAS) or Mach number profile and a path control mode for tracking the VNAV altitude profile. Mode control logic was developed for engagement of either the speed or path control modes. The control system will level the aircraft to prevent it from flying through a constraint altitude. A stability analysis was performed that showed that the gain and phase margins of the VNAV control system significantly exceeded the design gain and phase margins. The system performance was assessed using a six-deg-of-freedom non-linear transport aircraft simulation and the performance is illustrated with time-history plots of recorded simulation data.

  11. Cas9 in Genetically Modified Food Is Unlikely to Cause Food Allergy.

    PubMed

    Nakajima, Osamu; Nishimaki-Mogami, Tomoko; Kondo, Kazunari

    2016-01-01

    Genome editing has undergone rapid development during the last three years. It is anticipated that genetically modified organisms (GMOs) for food purposes will be widely produced using the clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR)/Cas9 system in the near future. However, the Cas9 gene may then enter the genomes of GMOs for food if the breeding process is not strictly managed, which could lead to the Cas9 protein or associated peptides being produced within these organisms. A variety of peptides could theoretically be produced from the Cas9 gene by using open reading frames different from that of Cas9 in the GMOs. In this study, Cas9 and the peptides potentially encoded by Cas9 genes were studied regarding their immunogenicity, in terms of the digestibility of Cas9 and the homology of the peptides to food allergens. First, the digestibility and thermal stability of Cas9 were studied. Digestibility was tested with natural or heat-denatured Cas9 in simulated gastric fluid in vitro. The two types of Cas9 were digested rapidly. Cas9 was also gradually degraded during heat treatment. Second, the peptides potentially encoded by Cas9 genes were examined for their homology to food allergens. Specifically, an 8-mer exact match search and a sliding 80-mer window search were performed using allergen databases. One of the peptides was found to have homology with a food allergen.

  12. Study of Synthetic Vision Systems (SVS) and Velocity-vector Based Command Augmentation System (V-CAS) on Pilot Performance

    NASA Technical Reports Server (NTRS)

    Liu, Dahai; Goodric, Ken; Peak, Bob

    2006-01-01

    This study investigated the effects of synthetic vision system (SVS) concepts and advanced flight controls on single pilot performance (SPP). Specifically, we evaluated the benefits and interactions of two levels of terrain portrayal, guidance symbology, and control-system response type on SPP in the context of lower-landing minima (LLM) approaches. Performance measures consisted of flight technical error (FTE) and pilot perceived workload. In this study, pilot rating, control type, and guidance symbology were not found to significantly affect FTE or workload. It is likely that transfer from prior experience, limited scope of the evaluation task, specific implementation limitations, and limited sample size were major factors in obtaining these results.

  13. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect

    Rudd, A.; Bergey, D.

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  14. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect

    Rudd, Armin; Bergey, Daniel

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  15. Recent Advances in Genome Editing Using CRISPR/Cas9

    PubMed Central

    Ding, Yuduan; Li, Hong; Chen, Ling-Ling; Xie, Kabin

    2016-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated nuclease 9) system is a versatile tool for genome engineering that uses a guide RNA (gRNA) to target Cas9 to a specific sequence. This simple RNA-guided genome-editing technology has become a revolutionary tool in biology and has many innovative applications in different fields. In this review, we briefly introduce the Cas9-mediated genome-editing method, summarize the recent advances in CRISPR/Cas9 technology, and discuss their implications for plant research. To date, targeted gene knockout using the Cas9/gRNA system has been established in many plant species, and the targeting efficiency and capacity of Cas9 has been improved by optimizing its expression and that of its gRNA. The CRISPR/Cas9 system can also be used for sequence-specific mutagenesis/integration and transcriptional control of target genes. We also discuss off-target effects and the constraint that the protospacer-adjacent motif (PAM) puts on CRISPR/Cas9 genome engineering. To address these problems, a number of bioinformatic tools are available to help design specific gRNAs, and new Cas9 variants and orthologs with high fidelity and alternative PAM specificities have been engineered. Owing to these recent efforts, the CRISPR/Cas9 system is becoming a revolutionary and flexible tool for genome engineering. Adoption of the CRISPR/Cas9 technology in plant research would enable the investigation of plant biology at an unprecedented depth and create innovative applications in precise crop breeding. PMID:27252719

  16. The air transportation/energy system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The changing pattern of transportation is discussed, and the energy intensiveness of various modes of transportation is also analyzed. Sociopsychological data affecting why people travel by air are presented, along with governmental regulation and air transportation economics. The aviation user tax structure is shown in tabular form.

  17. Rapid and tunable method to temporally control gene editing based on conditional Cas9 stabilization.

    PubMed

    Senturk, Serif; Shirole, Nitin H; Nowak, Dawid G; Corbo, Vincenzo; Pal, Debjani; Vaughan, Alexander; Tuveson, David A; Trotman, Lloyd C; Kinney, Justin B; Sordella, Raffaella

    2017-02-22

    The CRISPR/Cas9 system is a powerful tool for studying gene function. Here, we describe a method that allows temporal control of CRISPR/Cas9 activity based on conditional Cas9 destabilization. We demonstrate that fusing an FKBP12-derived destabilizing domain to Cas9 (DD-Cas9) enables conditional Cas9 expression and temporal control of gene editing in the presence of an FKBP12 synthetic ligand. This system can be easily adapted to co-express, from the same promoter, DD-Cas9 with any other gene of interest without co-modulation of the latter. In particular, when co-expressed with inducible Cre-ER(T2), our system enables parallel, independent manipulation of alleles targeted by Cas9 and traditional recombinase with single-cell specificity. We anticipate this platform will be used for the systematic characterization and identification of essential genes, as well as the investigation of the interactions between functional genes.

  18. Cas9 Functionally Opens Chromatin

    PubMed Central

    Barkal, Amira A.; Srinivasan, Sharanya; Hashimoto, Tatsunori; Gifford, David K.; Sherwood, Richard I.

    2016-01-01

    Using a nuclease-dead Cas9 mutant, we show that Cas9 reproducibly induces chromatin accessibility at previously inaccessible genomic loci. Cas9 chromatin opening is sufficient to enable adjacent binding and transcriptional activation by the settler transcription factor retinoic acid receptor at previously unbound motifs. Thus, we demonstrate a new use for Cas9 in increasing surrounding chromatin accessibility to alter local transcription factor binding. PMID:27031353

  19. GOSAT Air Pollution Watch - Rapid Response System for Local Air Pollution

    NASA Astrophysics Data System (ADS)

    Matsunaga, T.; Sawada, Y.; Kamei, A.; Uchiyama, A.

    2015-12-01

    GOSAT (Greenhouse Gases Observing Satellite) launched in 2009 and its successor, GOSAT-2, to be launched in FY 2017, have push-broom imaging systems with more than one UV band with higher spatial resolution than OMI, MODIS, and VIIRS. Such imaging systems are useful for mapping the spatial extent of the optically thick air mass with particulate matters. GOSAT Air Pollution Watch, a rapid response system mainly using GOSAT CAI (Cloud and Aerosol Imager) data for local air pollution issues is being developed in NIES (National Institute for Environmental Studies) GOSAT-2 Project. The current design of GOSAT Air Pollution Watch has three data processing steps as follows: Step 1) Making a cloud mask Step 2) Estimating AOT (Aerosol Optical Thickness) in the UV region (380 nm for CAI) Step 3) Converting AOT to atmospheric pollution parameters such as PM2.5 concentration Data processing algorithms in GOSAT Air Pollution Watch are based on GOSAT/GOSAT-2 algorithms for aerosol product generation with some modification for faster and timely data processing. Data from GOSAT Air Pollution Watch will be used to inform the general public the current distribution of the polluted air. In addition, they will contribute to short term prediction of the spatial extent of the polluted air using atmospheric transport models. In this presentation, the background, the current status, and the future prospect of GOSAT Air Pollution Watch will be reported together with the development status of GOSAT-2.

  20. Air conditioning system with supplemental ice storing and cooling capacity

    DOEpatents

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  1. Operations Research in a New Spanish Air Force Planning System

    DTIC Science & Technology

    1991-06-01

    Until nowadays, when any Air Force felt that a weapon system was obsolete, they studied the potential market , or they built up a system that fulfilled...for a new weapons system which will cover all the requirements. If the weapon system already exists in the national or foreign market , then the system...medium transport. This can be an important factor to be considered but, sometimes, the Spanish Air Force has to look at the for- eign markets for the

  2. Expanding the CRISPR Toolbox: Targeting RNA with Cas13b.

    PubMed

    Barrangou, Rodolphe; Gersbach, Charles A

    2017-02-16

    In this issue of Molecular Cell, Smargon et al. (2017) unearth Cas13b from type VI-B CRISPR-Cas immune systems and characterize its RNA-guided, RNA-targeting activity, including regulation by the novel co-factors Csx27 and Csx28, as well as non-specific collateral RNA damage.

  3. Using CAS to Solve a Mathematics Task: A Deconstruction

    ERIC Educational Resources Information Center

    Berger, Margot

    2010-01-01

    I investigate how and whether a heterogeneous group of first-year university mathematics students in South Africa harness the potential power of a computer algebra system (CAS) when doing a specific mathematics task. In order to do this, I develop a framework for deconstructing a mathematics task requiring the use of CAS, into its primary…

  4. Reaction to Indispensable Manual Calculation Skills in a CAS Environment.

    ERIC Educational Resources Information Center

    Monaghan, John

    2001-01-01

    Reacts to an article published in a previous issue of this journal on the effects of graphing calculators and computer algebra systems (CAS) on students' manual calculation and algebraic manipulation skills. Considers the contribution made by Jean-Baptiste Lagrange to thinking about the role of CAS in teaching algebra. (ASK)

  5. EMISSIONS PROCESSING FOR THE ETA/ CMAQ AIR QUALITY FORECAST SYSTEM

    EPA Science Inventory

    NOAA and EPA have created an Air Quality Forecast (AQF) system. This AQF system links an adaptation of the EPA's Community Multiscale Air Quality Model with the 12 kilometer ETA model running operationally at NOAA's National Center for Environmental Predication (NCEP). One of the...

  6. 14 CFR 33.66 - Bleed air system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Bleed air system. 33.66 Section 33.66 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.66 Bleed air system....

  7. 14 CFR 33.66 - Bleed air system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Bleed air system. 33.66 Section 33.66 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.66 Bleed air system....

  8. Modeling activities in air traffic control systems: antecedents and consequences of a mid-air collision.

    PubMed

    de Carvalho, Paulo Victor R; Ferreira, Bemildo

    2012-01-01

    In this article we present a model of some functions and activities of the Brazilian Air traffic Control System (ATS) in the period in which occurred a mid-air collision between flight GLO1907, a commercial aircraft Boeing 737-800, and flight N600XL, an executive jet EMBRAER E-145, to investigate key resilience characteristics of the ATM. Modeling in some detail activities during the collision and related them to overall behavior and antecedents that stress the organization uncover some drift into failure mechanisms that erode safety defenses provided by the Air Navigation Service Provider (ANSP), enabling a mid-air collision to be happen.

  9. Cas9-mediated targeting of viral RNA in eukaryotic cells.

    PubMed

    Price, Aryn A; Sampson, Timothy R; Ratner, Hannah K; Grakoui, Arash; Weiss, David S

    2015-05-12

    Clustered, regularly interspaced, short palindromic repeats-CRISPR associated (CRISPR-Cas) systems are prokaryotic RNA-directed endonuclease machineries that act as an adaptive immune system against foreign genetic elements. Using small CRISPR RNAs that provide specificity, Cas proteins recognize and degrade nucleic acids. Our previous work demonstrated that the Cas9 endonuclease from Francisella novicida (FnCas9) is capable of targeting endogenous bacterial RNA. Here, we show that FnCas9 can be directed by an engineered RNA-targeting guide RNA to target and inhibit a human +ssRNA virus, hepatitis C virus, within eukaryotic cells. This work reveals a versatile and portable RNA-targeting system that can effectively function in eukaryotic cells and be programmed as an antiviral defense.

  10. Cas9-mediated targeting of viral RNA in eukaryotic cells

    PubMed Central

    Price, Aryn A.; Sampson, Timothy R.; Ratner, Hannah K.; Grakoui, Arash; Weiss, David S.

    2015-01-01

    Clustered, regularly interspaced, short palindromic repeats–CRISPR associated (CRISPR-Cas) systems are prokaryotic RNA-directed endonuclease machineries that act as an adaptive immune system against foreign genetic elements. Using small CRISPR RNAs that provide specificity, Cas proteins recognize and degrade nucleic acids. Our previous work demonstrated that the Cas9 endonuclease from Francisella novicida (FnCas9) is capable of targeting endogenous bacterial RNA. Here, we show that FnCas9 can be directed by an engineered RNA-targeting guide RNA to target and inhibit a human +ssRNA virus, hepatitis C virus, within eukaryotic cells. This work reveals a versatile and portable RNA-targeting system that can effectively function in eukaryotic cells and be programmed as an antiviral defense. PMID:25918406

  11. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); Tang, Shoou-Yu (Inventor); O'Brien, Martin J. (Inventor)

    2011-01-01

    A method for remotely sensing air outside a moving aircraft includes generating laser radiation within a swept frequency range. A portion of the laser radiation is projected from the aircraft into the air to induce scattered laser radiation. Filtered scattered laser radiation, filtered laser radiation, and unfiltered laser radiation are detected. At least one actual ratio is determined from data corresponding to the filtered scattered laser radiation and the unfiltered laser radiation. One or more air parameters are determined by correlating the actual ratio to at least one reference ratio.

  12. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); Tang, Shoou-Yu (Inventor); O'Brien, Martin J. (Inventor)

    2009-01-01

    A method for remotely sensing air outside a moving aircraft includes generating laser radiation within a swept frequency range. A portion of the laser radiation is projected from the aircraft into the air to induce scattered laser radiation. Filtered scattered laser radiation, filtered laser radiation, and unfiltered laser radiation are detected. At least one actual ratio is determined from data corresponding to the filtered scattered laser radiation and the unfiltered laser radiation. One or more air parameters are determined by correlating the actual ratio to at least one reference ratio.

  13. Pulmonary surfactant synthesis in miRNA-26a-1/miRNA-26a-2 double knockout mice generated using the CRISPR/Cas9 system

    PubMed Central

    Zhang, Ying-Hui; Wu, Li-Zhi; Liang, Hong-Lu; Yang, Yang; Qiu, Jie; Kan, Qing; Zhu, Wen; Ma, Cheng-Ling; Zhou, Xiao-Yu

    2017-01-01

    Pulmonary surfactant (PS), which is synthesized by type II alveolar epithelial cells (AECIIs), maintains alveolar integrity by reducing surface tension. Many premature neonates who lack adequate PS are predisposed to developing respiratory distress syndrome (RDS), one of the leading causes of neonatal morbidity and mortality. PS synthesis is influenced and regulated by various factors, including microRNAs. Previous in vitro studies have shown that PS synthesis is regulated by miR-26a in fetal rat AECIIs. This study aimed to investigate the role of miR-26a in PS synthesis in vivo. To obtain a miR-26a-1/miR-26a-2 double knockout mouse model, we used the clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9 (CRISPR/Cas9) system, an important genome editing technology. Real-time PCR was performed to determine the miR-26a levels in various organs, as well as the mRNA levels of surfactant-associated proteins. Moreover, AECIIs and surfactant-associated proteins in lung tissues were analyzed by hematoxylin-eosin staining and immunohistochemistry. Homozygous offspring of miR-26a-1/miR-26a-2 double knockout mice generated using the CRISPR/Cas9 system were successfully obtained, and PS synthesis and the number of AECIIs were significantly increased in the miR-26a knockout mice. These results indicate that miR-26a plays an important role in PS synthesis in AECIIs. PMID:28337265

  14. Air quality early-warning system for cities in China

    NASA Astrophysics Data System (ADS)

    Xu, Yunzhen; Yang, Wendong; Wang, Jianzhou

    2017-01-01

    Air pollution has become a serious issue in many developing countries, especially in China, and could generate adverse effects on human beings. Air quality early-warning systems play an increasingly significant role in regulatory plans that reduce and control emissions of air pollutants and inform the public in advance when harmful air pollution is foreseen. However, building a robust early-warning system that will improve the ability of early-warning is not only a challenge but also a critical issue for the entire society. Relevant research is still poor in China and cannot always satisfy the growing requirements of regulatory planning, despite the issue's significance. Therefore, in this paper, a hybrid air quality early-warning system was successfully developed, composed of forecasting and evaluation. First, a hybrid forecasting model was proposed as an important part of this system based on the theory of "decomposition and ensemble" and combined with the advanced data processing technique, support vector machine, the latest bio-inspired optimization algorithm and the leave-one-out strategy for deciding weights. Afterwards, to intensify the research, fuzzy evaluation was performed, which also plays an indispensable role in the early-warning system. The forecasting model and fuzzy evaluation approaches are complementary. Case studies using daily air pollution concentrations of six air pollutants from three cities in China (i.e., Taiyuan, Harbin and Chongqing) are used as examples to evaluate the efficiency and effectiveness of the developed air quality early-warning system. Experimental results demonstrate that both the accuracy and the effectiveness of the developed system are greatly superior for air quality early warning. Furthermore, the application of forecasting and evaluation enables the informative and effective quantification of future air quality, offering a significant advantage, and can be employed to develop rapid air quality early-warning systems.

  15. Improving Compressed Air System Performance: A Sourcebook for Industry

    SciTech Connect

    2003-11-01

    NREL will produce this sourcebook for DOE's Industrial Technologies Office as part of a series of documents on industrial energy equipment. The sourcebook is a reference for industrial compressed air system users, outlining opportunities to improve system efficiency.

  16. Acceptance Test Report for 241-U compressed air system

    SciTech Connect

    Freeman, R.D.

    1994-10-20

    This Acceptance Test Report (ATR) documents the results of acceptance testing of a newly upgraded compressed air system at 241-U Farm. The system was installed and the test successfully performed under work package 2W-92-01027.

  17. Air Pollution Information System, Increasing Usability Through Automation

    ERIC Educational Resources Information Center

    Renner, Fred; And Others

    1971-01-01

    The conversion of an information system containing air pollution related documents from manual to automatic computer-based operation is outlined with emphasis on the increased services to system users which resulted from the conversion. (Author)

  18. Ballistic Missile Early Warning System Clear Air Force Station, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Ballistic Missile Early Warning System - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  19. Comparing U.S. Army Systems with Foreign Counterparts: Identifying Possible Capability Gaps and Insights from Other Armies

    DTIC Science & Technology

    2015-01-01

    CA ,90407-2138 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11...Intelligence CAAS Cockpit Avionics Architecture System CAIC Changhe Aircraft Industries Corporation CAS close air support CCD-TV Charge-Coupled Devices...support ( CAS ) asset controlled and allocated in a manner similar to fixed-wing CAS aircraft. The Army, on the other hand, doctrinally views attack

  20. Turboprop aircraft against terrorism: a SWOT analysis of turboprop aircraft in CAS operations

    NASA Astrophysics Data System (ADS)

    Yavuz, Murat; Akkas, Ali; Aslan, Yavuz

    2012-06-01

    Today, the threat perception is changing. Not only for countries but also for defence organisations like NATO, new threat perception is pointing terrorism. Many countries' air forces become responsible of fighting against terorism or Counter-Insurgency (COIN) Operations. Different from conventional warfare, alternative weapon or weapon systems are required for such operatioins. In counter-terrorism operations modern fighter jets are used as well as helicopters, subsonic jets, Unmanned Aircraft Systems (UAS), turboprop aircraft, baloons and similar platforms. Succes and efficiency of the use of these platforms can be determined by evaluating the conditions, the threats and the area together. Obviously, each platform has advantages and disadvantages for different cases. In this research, examples of turboprop aircraft usage against terrorism and with a more general approach, turboprop aircraft for Close Air Support (CAS) missions from all around the world are reviewed. In this effort, a closer look is taken at the countries using turboprop aircraft in CAS missions while observing the fields these aircraft are used in, type of operations, specifications of the aircraft, cost and the maintenance factors. Thus, an idea about the convenience of using these aircraft in such operations can be obtained. A SWOT analysis of turboprop aircraft in CAS operations is performed. This study shows that turboprop aircraft are suitable to be used in counter-terrorism and COIN operations in low threat environment and is cost benefical compared to jets.

  1. CAS or Pen-and-Paper: Factors That Influence Students' Choices

    ERIC Educational Resources Information Center

    Cameron, Scott; Ball, Lynda

    2015-01-01

    This paper reports on a study of choices about the use of a computer algebra system (CAS) or pen-and-paper (p&p) by a class of seven Year 11 Mathematical Methods (CAS) students as they completed a calculus worksheet. Factors that influenced students' choices are highlighted by comparing and contrasting the use of CAS and p&p between…

  2. An AANAT/ASMT transgenic animal model constructed with CRISPR/Cas9 system serving as the mammary gland bioreactor to produce melatonin-enrich milk in sheep.

    PubMed

    Ma, Teng; Tao, Jingli; Yang, Minghui; He, Changjiu; Tian, Xiuzhi; Zhang, Xiaosheng; Zhang, Jinlong; Deng, Shoulong; Feng, Jianzhong; Zhang, Zhenzhen; Wang, Jing; Ji, Pengyun; Song, Yukun; He, Pingli; Han, Hongbing; Fu, Juncai; Lian, Zhengxing; Liu, Guoshi

    2017-03-08

    Melatonin as a potent antioxidant exhibits important nutritional and medicinal values. To produce melatonin-enriching milk will benefit to the consumers. In this study, a sheep bioreactor which generates melatonin-enriching milk has been successfully developed by the technology that combined CRISPR/Cas9 system and microinjection. The AANAT and ASMT were cloned from pineal gland of Dorper sheep (Ovis aries). The in vitro studies found that AANAT and ASMT were successfully transferred to the mammary epithelial cell lines and significantly increased melatonin production in the culture medium compared to the non-transgenic cell lines. In addition, the Cas9 mRNA, sgRNA and the linearized vectors pBC1-AANAT and pBC1-ASMT were co-injected into the cytoplasm of pronuclear embryos which were implanted into ewes by oviducts transferring. Thirty four transgenic sheep were generated with the transgenic positive rate being roughly 35% which were identified by southern-blot and sequencing. Seven carried transgenic AANAT, two carried ASMT and 25 carried both of AANAT and ASMT genes. RT-PCR and western-blot demonstrated that the lambs expressed these genes in their mammary epithelial cells and these animals produced melatonin-enriched milk. This is the first report to show a functional AANAT and ASMT transgenic animal model which produce significantly high levels of melatonin milk compared to their wild type counterparts. The advanced technologies used in the study laid a foundation for generating large transgenic livestock, for example the cows, which can produce high level of melatonin milk. This article is protected by copyright. All rights reserved.

  3. Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system.

    PubMed

    Song, Bing; Fan, Yong; He, Wenyin; Zhu, Detu; Niu, Xiaohua; Wang, Ding; Ou, Zhanhui; Luo, Min; Sun, Xiaofang

    2015-05-01

    The generation of beta-thalassemia (β-Thal) patient-specific induced pluripotent stem cells (iPSCs), subsequent homologous recombination-based gene correction of disease-causing mutations/deletions in the β-globin gene (HBB), and their derived hematopoietic stem cell (HSC) transplantation offers an ideal therapeutic solution for treating this disease. However, the hematopoietic differentiation efficiency of gene-corrected β-Thal iPSCs has not been well evaluated in the previous studies. In this study, we used the latest gene-editing tool, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), to correct β-Thal iPSCs; gene-corrected cells exhibit normal karyotypes and full pluripotency as human embryonic stem cells (hESCs) showed no off-targeting effects. Then, we evaluated the differentiation efficiency of the gene-corrected β-Thal iPSCs. We found that during hematopoietic differentiation, gene-corrected β-Thal iPSCs showed an increased embryoid body ratio and various hematopoietic progenitor cell percentages. More importantly, the gene-corrected β-Thal iPSC lines restored HBB expression and reduced reactive oxygen species production compared with the uncorrected group. Our study suggested that hematopoietic differentiation efficiency of β-Thal iPSCs was greatly improved once corrected by the CRISPR/Cas9 system, and the information gained from our study would greatly promote the clinical application of β-Thal iPSC-derived HSCs in transplantation.

  4. CasHRA (Cas9-facilitated Homologous Recombination Assembly) method of constructing megabase-sized DNA

    PubMed Central

    Zhou, Jianting; Wu, Ronghai; Xue, Xiaoli; Qin, Zhongjun

    2016-01-01

    Current DNA assembly methods for preparing highly purified linear subassemblies require complex and time-consuming in vitro manipulations that hinder their ability to construct megabase-sized DNAs (e.g. synthetic genomes). We have developed a new method designated ‘CasHRA (Cas9-facilitated Homologous Recombination Assembly)’ that directly uses large circular DNAs in a one-step in vivo assembly process. The large circular DNAs are co-introduced into Saccharomyces cerevisiae by protoplast fusion, and they are cleaved by RNA-guided Cas9 nuclease to release the linear DNA segments for subsequent assembly by the endogenous homologous recombination system. The CasHRA method allows efficient assembly of multiple large DNA segments in vivo; thus, this approach should be useful in the last stage of genome construction. As a proof of concept, we combined CasHRA with an upstream assembly method (Gibson procedure of genome assembly) and successfully constructed a 1.03 Mb MGE-syn1.0 (Minimal Genome of Escherichia coli) that contained 449 essential genes and 267 important growth genes. We expect that CasHRA will be widely used in megabase-sized genome constructions. PMID:27220470

  5. CRISPR-Cas Technologies and Applications in Food Bacteria.

    PubMed

    Stout, Emily; Klaenhammer, Todd; Barrangou, Rodolphe

    2017-02-28

    Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins form adaptive immune systems that occur in many bacteria and most archaea. In addition to protecting bacteria from phages and other invasive mobile genetic elements, CRISPR-Cas molecular machines can be repurposed as tool kits for applications relevant to the food industry. A primary concern of the food industry has long been the proper management of food-related bacteria, with a focus on both enhancing the outcomes of beneficial microorganisms such as starter cultures and probiotics and limiting the presence of detrimental organisms such as pathogens and spoilage microorganisms. This review introduces CRISPR-Cas as a novel set of technologies to manage food bacteria and offers insights into CRISPR-Cas biology. It primarily focuses on the applications of CRISPR-Cas systems and tools in starter cultures and probiotics, encompassing strain-typing, phage resistance, plasmid vaccination, genome editing, and antimicrobial activity.

  6. A Probabilistic Assessment of Failure for Air Force Building Systems

    DTIC Science & Technology

    2015-03-26

    desired end state for the community is an enterprise-wide asset management framework which can objectively assess an asset’s condition state and lead to...Department of Systems and Engineering Management Graduate School of Engineering and Management Air Force Institute of Technology Air University Air...Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering Management

  7. Air cycle machine for an aircraft environmental control system

    NASA Technical Reports Server (NTRS)

    Decrisantis, Angelo A. (Inventor); O'Coin, James R. (Inventor); Taddey, Edmund P. (Inventor)

    2010-01-01

    An ECS system includes an ACM mounted adjacent an air-liquid heat exchanger through a diffuser that contains a diffuser plate. The diffuser plate receives airflow from the ACM which strikes the diffuser plate and flows radially outward and around the diffuser plate and into the air-liquid heat exchanger to provide minimal pressure loss and proper flow distribution into the air-liquid heat exchanger with significantly less packaging space.

  8. Target Acquisition Involving Multiple Unmanned Air Vehicles: Interfaces for Small Unmanned Air Systems (ISUS) Program

    DTIC Science & Technology

    2009-03-01

    03/12/09; 88ABW-09-0990. 14. ABSTRACT The use of small unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs) in military reconnaissance...unmanned aerial systems. 15. SUBJECT TERMS Target acquisition, reconnaissance/surveillance, micro air vehicles 16. SECURITY CLASSIFICATION OF...more than doubled its use of drones between January and October 2007 while the number of unmanned flight hours for DoD systems soared to over

  9. CRISPR-Cas immunity in prokaryotes.

    PubMed

    Marraffini, Luciano A

    2015-10-01

    Prokaryotic organisms are threatened by a large array of viruses and have developed numerous defence strategies. Among these, only clustered, regularly interspaced short palindromic repeat (CRISPR)-Cas systems provide adaptive immunity against foreign elements. Upon viral injection, a small sequence of the viral genome, known as a spacer, is integrated into the CRISPR locus to immunize the host cell. Spacers are transcribed into small RNA guides that direct the cleavage of the viral DNA by Cas nucleases. Immunization through spacer acquisition enables a unique form of evolution whereby a population not only rapidly acquires resistance to its predators but also passes this resistance mechanism vertically to its progeny.

  10. Position paper -- Tank ventilation system design air flow rates

    SciTech Connect

    Goolsby, G.K.

    1995-01-04

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems.

  11. The role of Cas8 in type I CRISPR interference.

    PubMed

    Cass, Simon D B; Haas, Karina A; Stoll, Britta; Alkhnbashi, Omer S; Sharma, Kundan; Urlaub, Henning; Backofen, Rolf; Marchfelder, Anita; Bolt, Edward L

    2015-05-05

    CRISPR (clustered regularly interspaced short palindromic repeat) systems provide bacteria and archaea with adaptive immunity to repel invasive genetic elements. Type I systems use 'cascade' [CRISPR-associated (Cas) complex for antiviral defence] ribonucleoprotein complexes to target invader DNA, by base pairing CRISPR RNA (crRNA) to protospacers. Cascade identifies PAMs (protospacer adjacent motifs) on invader DNA, triggering R-loop formation and subsequent DNA degradation by Cas3. Cas8 is a candidate PAM recognition factor in some cascades. We analysed Cas8 homologues from type IB CRISPR systems in archaea Haloferax volcanii (Hvo) and Methanothermobacter thermautotrophicus (Mth). Cas8 was essential for CRISPR interference in Hvo and purified Mth Cas8 protein responded to PAM sequence when binding to nucleic acids. Cas8 interacted physically with Cas5-Cas7-crRNA complex, stimulating binding to PAM containing substrates. Mutation of conserved Cas8 amino acid residues abolished interference in vivo and altered catalytic activity of Cas8 protein in vitro. This is experimental evidence that Cas8 is important for targeting Cascade to invader DNA.

  12. Primary processing of CRISPR RNA by the endonuclease Cas6 in Staphylococcus epidermidis.

    PubMed

    Wakefield, Noelle; Rajan, Rakhi; Sontheimer, Erik J

    2015-10-07

    In many bacteria and archaea, an adaptive immune system (CRISPR-Cas) provides immunity against foreign genetic elements. This system uses CRISPR RNAs (crRNAs) derived from the CRISPR array, along with CRISPR-associated (Cas) proteins, to target foreign nucleic acids. In most CRISPR systems, endonucleolytic processing of crRNA precursors (pre-crRNAs) is essential for the pathway. Here we study the Cas6 endonuclease responsible for crRNA processing in the Type III-A CRISPR-Cas system from Staphylococcus epidermidis RP62a, a model for Type III-A CRISPR-Cas systems, and define substrate requirements for SeCas6 activity. We find that SeCas6 is necessary and sufficient for full-length crRNA biogenesis in vitro, and that it relies on both sequence and stem-loop structure in the 3' half of the CRISPR repeat for recognition and processing.

  13. Compressed air systems. A guidebook on energy and cost savings

    SciTech Connect

    Not Available

    1984-03-30

    This guidebook shows how energy can be saved in compressed air systems. It discusses basic compressed air systems which are typical of those found in industry and describes them and the engineering practices behind them. Energy conservation recommendations follow. These recommendations cover equipment selection, design, maintenance, and operation. Included is information which will help the reader to make economic evaluations of various engineering and equipment alternatives as they affect operations and costs. The appendices include some modern computer based approaches to predicting pressure drop for designing compressed air distribution systems. Also included is a bibliography providing leads for further and more detailed technical information on these and related subjects.

  14. Designing Forced-Air HVAC Systems

    SciTech Connect

    2010-08-31

    This guide explains proper calculation of heating and cooling design loads for homes.used to calculated for the home using the protocols set forth in the latest edition of the Air Conditioning Contractors of America’s (ACCA) Manual J (currently the 8th edition), ASHRAE 2009 Handbook of Fundamentals, or an equivalent computation procedure.

  15. Prevention and management of air in an IV infusion system.

    PubMed

    von Jürgensonn, Silke

    When air enters the circulatory system of the human body it can cause an air embolism. Air in the venous circulation will enter the right side of the heart where it may cause right ventricular outflow tract obstruction and acute pulmonary hypertension from pulmonary vasoconstriction. This compromises the pulmonary venous return to the left side of the heart, resulting in significant reduction in cardiac output and cardiovascular collapse. Air can pass into the left side of the heart via a patent foramen ovale or a septal defect. From the left side of the heart air will then enter the arterial circulation where it may embolize cerebral or coronary arteries with fatal consequences. Prevention of air embolism is therefore of utmost importance.

  16. Investigation of a hybrid PVT air collector system

    NASA Astrophysics Data System (ADS)

    Haddad, S.; Touafek, K.; Mordjaoui, M.; Khelifa, A.; Tabet, I.

    2017-02-01

    The photovoltaic thermal hybrid (PVT) collectors, which simultaneously produce electricity and heat, are an alternative to photovoltaic modules and thermal collectors installed separately. Indeed, the heat extracted from the solar cell is used to heat water or air, thereby cooling the cell, and thus increasing its energy efficiency. This paper deals with a hybrid PVT air collector in which a new design has been proposed and tested. Its principle is based on the return of the preheating air to a second heating. The air thus passes twice under the solar cells before being evacuated to the outside of the collector (for space heating). The system is modular and expandable to cover large spaces to be heated. The experimental results of this novel design are presented and discussed under both normal and forced circulation. This technique of air return shows favorable results in terms of the quality of the heated air and electric power generation.

  17. Guide RNA engineering for versatile Cas9 functionality

    PubMed Central

    Nowak, Chance M.; Lawson, Seth; Zerez, Megan; Bleris, Leonidas

    2016-01-01

    The Clustered Regularly Interspaced Short Palindromic Repeats system allows a single guide RNA (sgRNA) to direct a protein with combined helicase and nuclease activity to the DNA. Streptococcus pyogenes Cas9 (SpCas9), a CRISPR-associated protein, has revolutionized our ability to probe and edit the human genome in vitro and in vivo. Arguably, the true modularity of the Cas9 platform is conferred through the ease of sgRNA programmability as well as the degree of modifications the sgRNA can tolerate without compromising its association with SpCas9 and function. In this review, we focus on the properties and recent engineering advances of the sgRNA component in Cas9-mediated genome targeting. PMID:27733506

  18. Combined air stripper/membrane vapor separation systems. Final report

    SciTech Connect

    Wijmans, J.G.; Baker, R.W.; Kamaruddin, H.D.; Kaschemekat, J.; Olsen, R.P.; Rose, M.E.; Segelke, S.V.

    1992-11-01

    Air stripping is an economical and efficient method of removing dissolved volatile organic compounds (VOCs) from contaminated groundwater. Air strippers, however, produce a vent air stream, which must meet the local air quality limits. If the VOC content exceeds the limits, direct discharge is not possible; therefore, a carbon adsorption VOC capture system is used to treat the vent air. This treatment step adds a cost of at least $50/lb of VOC captured. In this program, a combined air stripper/membrane vapor separation system was constructed and demonstrated in the laboratory. The membrane system captures VOCs from the stripper vent stream at a projected cost of $15/lb VOC for a water VOC content of 5 ppmw, and $75/lb VOC for a water VOC content of 1 ppmw. The VOCs are recovered as a small, concentrated liquid fraction for disposal or solvent recycling. The concept has been demonstrated in experiments with a system capable of handling up to 150,000 gpd of water. The existing demonstration system is available for field tests at a DOE facility or remediation site. Replacement of the current short air stripping tower (effective height 3 m) with a taller tower is recommended to improve VOC removal.

  19. The Adverse Effects of Air Pollution on the Nervous System

    PubMed Central

    Genc, Sermin; Zadeoglulari, Zeynep; Fuss, Stefan H.; Genc, Kursad

    2012-01-01

    Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer's disease, Parkinson's disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health. PMID:22523490

  20. A Rule-Based System for Shipboard Air Defense

    DTIC Science & Technology

    1989-12-01

    EXPERT SYSTEM ....................... 24 C. WHO IS INVOLVED IN EXPERT SYSTEM CONSTRUCTION ?... 25 D. STAGES OF EXPERT SYSTEM BUILDING...supersonic speed. Expert systems have been successfully constructed for applications to a wide range of problems such as medical diagnosis, industrial...process control, and air traffic control. It is desirable that one be constructed to advise the Officer in Tactical Commend (OTC) in critical

  1. 14 CFR 25.1103 - Induction system ducts and air duct systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Induction system ducts and air duct systems... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25.1103 Induction system ducts and air duct systems. (a) Each induction system duct upstream of the...

  2. Prototype air cleaning system for a firing range

    SciTech Connect

    Glissmeyer, J.A.; Mishima, J.; Bamberger, J.A.

    1985-01-01

    This report recommends air cleaning system components for the US Army Ballistics Research Laboratory's new large-caliber firing range, which is used for testing depleted uranium (DU) penetrators. The new air cleaning system has lower operating costs during the life of the system compared to that anticipated for the existing air cleaning system. The existing system consists of three banks of filters in series; the first two banks are prefilters and the last are high-efficiency particulate air (HEPA) filters. The principal disadvantage of the existing filters is that they are not cleanable and reusable. Pacific Northwest Laboratory focused the search for alternate air cleaning equipment on devices that do not employ liquids as part of the particle collection mechanism. Collected dry particles were assumed preferable to a liquid waste stream. The dry particle collection devices identified included electrostatic precipitators; inertial separators using turning vanes or cyclones; and several devices employing a filter medium such as baghouses, cartridge houses, cleanable filters, and noncleanable filters similar to those in the existing system. The economics of practical air cleaning systems employing the dry particle collection devices were evaluated in 294 different combinations. 7 references, 21 figures, 78 tables.

  3. The Air Operations Simulation Centre Audio System.

    DTIC Science & Technology

    1998-04-01

    The Enable Retrigger feature enables the user to specify whether the selected sound is to be treated as a one-shot edge- triggered sound which plays...to completion once triggered , or a level-sensitive sound which restarts and plays only while its control variable is non-zero. See Appendix B...mock-up are well advanced. Aircraft noises are modelled and include engine turbine whine, afterburner roar, air- conditioning and wind noises

  4. View of building 11070 showing vents and forced air system ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of building 11070 showing vents and forced air system on east side, looking southwest. - Naval Ordnance Test Station Inyokern, China Lake Pilot Plant, Maintenance Shop, C Street, China Lake, Kern County, CA

  5. An Air Quality Data Analysis System for Interrelating Effects, Standards and Needed Source Reductions

    ERIC Educational Resources Information Center

    Larsen, Ralph I.

    1973-01-01

    Makes recommendations for a single air quality data system (using average time) for interrelating air pollution effects, air quality standards, air quality monitoring, diffusion calculations, source-reduction calculations, and emission standards. (JR)

  6. Chemical and Biophysical Modulation of Cas9 for Tunable Genome Engineering.

    PubMed

    Nuñez, James K; Harrington, Lucas B; Doudna, Jennifer A

    2016-03-18

    The application of the CRISPR-Cas9 system for genome engineering has revolutionized the ability to interrogate genomes of mammalian cells. Programming the Cas9 endonuclease to induce DNA breaks at specified sites is achieved by simply modifying the sequence of its cognate guide RNA. Although Cas9-mediated genome editing has been shown to be highly specific, cleavage events at off-target sites have also been reported. Minimizing, and eventually abolishing, unwanted off-target cleavage remains a major goal of the CRISPR-Cas9 technology before its implementation for therapeutic use. Recent efforts have turned to chemical biology and biophysical approaches to engineer inducible genome editing systems for controlling Cas9 activity at the transcriptional and protein levels. Here, we review recent advancements to modulate Cas9-mediated genome editing by engineering split-Cas9 constructs, inteins, small molecules, protein-based dimerizing domains, and light-inducible systems.

  7. Implementing Automated Information Systems in the Air Force

    DTIC Science & Technology

    1984-04-01

    phased development approach. V. Recommendations: The new Air Staff organization must exert creative leadership so the rest of the Air Force can benefit...ment - System design strategy, strike a new balance between machine efficiency and system effectiveness - Management control strategy. control the...cost- effectiveness (2s2-11 - 2-12). Viewing information as a resource has caused Federal agencies to reassess the way they have managed information in

  8. 9. Water Purification System and Instrument Air Receiver Tank, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Water Purification System and Instrument Air Receiver Tank, view to the south. The water purification system is visible in the right foreground of the photograph and the instrument air receiver tank is visible in the right background of the photograph. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  9. Air data system optimization using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Deshpande, Samir M.; Kumar, Renjith R.; Seywald, Hans; Siemers, Paul M., III

    1992-01-01

    An optimization method for flush-orifice air data system design has been developed using the Genetic Algorithm approach. The optimization of the orifice array minimizes the effect of normally distributed random noise in the pressure readings on the calculation of air data parameters, namely, angle of attack, sideslip angle and freestream dynamic pressure. The optimization method is applied to the design of Pressure Distribution/Air Data System experiment (PD/ADS) proposed for inclusion in the Aeroassist Flight Experiment (AFE). Results obtained by the Genetic Algorithm method are compared to the results obtained by conventional gradient search method.

  10. Application of CRISPR/Cas9 for biomedical discoveries.

    PubMed

    Riordan, Sean M; Heruth, Daniel P; Zhang, Li Q; Ye, Shui Qing

    2015-01-01

    The Clustered Regions of Interspersed Palindromic Repeats-Cas9 (CRISPR/Cas9), a viral defense system found in bacteria and archaea, has emerged as a tour de force genome editing tool. The CRISPR/Cas9 system is much easier to customize and optimize because the site selection for DNA cleavage is guided by a short sequence of RNA rather than an engineered protein as in the systems of zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN), and meganucleases. Although it still suffers from some off-target effects, the CRISPR/Cas9 system has been broadly and successfully applied for biomedical discoveries in a number of areas. In this review, we present a brief history and development of the CRISPR system and focus on the application of this genome editing technology for biomedical discoveries. We then present concise concluding remarks and future directions for this fast moving field.

  11. Transformations in Air Transportation Systems For the 21st Century

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    2004-01-01

    Globally, our transportation systems face increasingly discomforting realities: certain of the legacy air and ground infrastructures of the 20th century will not satisfy our 21st century mobility needs. The consequence of inaction is diminished quality of life and economic opportunity for those nations unable to transform from the 20th to 21st century systems. Clearly, new thinking is required regarding business models that cater to consumers value of time, airspace architectures that enable those new business models, and technology strategies for innovating at the system-of-networks level. This lecture proposes a structured way of thinking about transformation from the legacy systems of the 20th century toward new systems for the 21st century. The comparison and contrast between the legacy systems of the 20th century and the transformed systems of the 21st century provides insights into the structure of transformation of air transportation. Where the legacy systems tend to be analog (versus digital), centralized (versus distributed), and scheduled (versus on-demand) for example, transformed 21st century systems become capable of scalability through technological, business, and policy innovations. Where air mobility in our legacy systems of the 20th century brought economic opportunity and quality of life to large service markets, transformed air mobility of the 21st century becomes more equitable available to ever-thinner and widely distributed populations. Several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems create new foundations for 21st thinking about air transportation. One of the technological developments of importance arises from complexity science and modern network theory. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of robustness

  12. Investigation on wind energy-compressed air power system.

    PubMed

    Jia, Guang-Zheng; Wang, Xuan-Yin; Wu, Gen-Mao

    2004-03-01

    Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and characteristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving.

  13. 14 CFR 29.1103 - Induction systems ducts and air duct systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Induction systems ducts and air duct... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1103 Induction systems ducts and air duct systems. (a) Each induction system duct upstream of the...

  14. Air cushion landing system stability study

    NASA Astrophysics Data System (ADS)

    Burton, T. D.

    1981-02-01

    An analysis of an inelastic ACLS plunge mode dynamic model is presented. The ACLS has unrestrained side elements and frozen end elements. The model exhibits unstable behavior at certain operating conditions for which the side elements are in contact with the ground. A linear analysis showed this instability to be due mainly to the altitude sensitivities of the cushion to atmosphere airflows and the attendant influence on the dynamic pressure forces on the vehicle. The model instability can be alleviated by isolating side and end elements so that they are all unrestrained and by simultaneously venting the air cushion directly to atmosphere.

  15. Air Force Environmental Management System Overview

    DTIC Science & Technology

    2011-05-01

    Key to ~:ning the environn ental portion of lbiJ vi ’lion i3 copcrot:oll41iling cnvirorunentlll monagcmcnt Air Force-wide. Operotiooa:tzl.o...approach for addressing environmental aspects of internal agency operations and activities”  For the AF, “appropriate facilities” equates to “major...y y y Authority 7. Communication y y y 16. Internal EMS Audit y y y 8. Documentation & y y y 17. Management Review y y y Doc Control 9

  16. Autonomous Integrated Receive System (AIRS) requirements definition. Volume 4: Functional specification for the prototype Automated Integrated Receive System (AIRS)

    NASA Technical Reports Server (NTRS)

    Chie, C. M.

    1984-01-01

    The functional requirements for the performance, design, and testing for the prototype Automated Integrated Receive System (AIRS) to be demonstrated for the TDRSS S-Band Single Access Return Link are presented.

  17. Prefeasibility study on compressed air energy storage systems

    NASA Astrophysics Data System (ADS)

    Elmahgary, Yehia; Peltola, Esa; Sipila, Kari; Vaatainen, Anne

    1991-08-01

    A prefeasibility study on Compressed Air Energy Storage (CAES) systems is presented. The costs of excavating rock caverns for compressed air storage and those for forming suitable storage caverns in existing mines were estimated, and this information was used to calculate the economics of CAES. An analysis of the different possible systems is given following a review of literature on CAES. This was followed by an economic analysis which comprised two separate systems. The first consisted of conventional oil fueled gas turbine plants provided with CAES system. In the second system wind turbines were used to run the compressors which are used in charging the compressed air storage cavern. The results of the current prefeasibility study confirmed the economic attractiveness of the CAES in the first system. Wind turbines still seem, however, to be too expensive to compete with coal power plants. More accurate and straightforward results could be obtained only in a more comprehensive study.

  18. CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein.

    PubMed

    Tang, Lichun; Zeng, Yanting; Du, Hongzi; Gong, Mengmeng; Peng, Jin; Zhang, Buxi; Lei, Ming; Zhao, Fang; Wang, Weihua; Li, Xiaowei; Liu, Jianqiao

    2017-03-01

    Previous works using human tripronuclear zygotes suggested that the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system could be a tool in correcting disease-causing mutations. However, whether this system was applicable in normal human (dual pronuclear, 2PN) zygotes was unclear. Here we demonstrate that CRISPR/Cas9 is also effective as a gene-editing tool in human 2PN zygotes. By injection of Cas9 protein complexed with the appropriate sgRNAs and homology donors into one-cell human embryos, we demonstrated efficient homologous recombination-mediated correction of point mutations in HBB and G6PD. However, our results also reveal limitations of this correction procedure and highlight the need for further research.

  19. Register Closing Effects on Forced Air Heating System Performance

    SciTech Connect

    Walker, Iain S.

    2003-11-01

    Closing registers in forced air heating systems and leaving some rooms in a house unconditioned has been suggested as a method of quickly saving energy for California consumers. This study combined laboratory measurements of the changes in duct leakage as registers are closed together with modeling techniques to estimate the changes in energy use attributed to closing registers. The results of this study showed that register closing led to increased energy use for a typical California house over a wide combination of climate, duct leakage and number of closed registers. The reduction in building thermal loads due to conditioning only a part of the house was offset by increased duct system losses; mostly due to increased duct leakage. Therefore, the register closing technique is not recommended as a viable energy saving strategy for California houses with ducts located outside conditioned space. The energy penalty associated with the register closing technique was found to be minimized if registers furthest from the air handler are closed first because this tends to only affect the pressures and air leakage for the closed off branch. Closing registers nearer the air handler tends to increase the pressures and air leakage for the whole system. Closing too many registers (more than 60%) is not recommended because the added flow resistance severely restricts the air flow though the system leading to safety concerns. For example, furnaces may operate on the high-limit switch and cooling systems may suffer from frozen coils.

  20. Ultrasonic system for accurate distance measurement in the air.

    PubMed

    Licznerski, Tomasz J; Jaroński, Jarosław; Kosz, Dariusz

    2011-12-01

    This paper presents a system that accurately measures the distance travelled by ultrasound waves through the air. The simple design of the system and its obtained accuracy provide a tool for non-contact distance measurements required in the laser's optical system that investigates the surface of the eyeball.

  1. Continuing Studies of Air Traffic Control System Capacity

    DTIC Science & Technology

    The goals of the work are: To define the capacity of an ATC system and its major elements; To find quantitative relations between capacity and the...overall performance of the air transportation system; and To find quantitative relations between capacity and the specifications, operating parameters, and environment of the ATC system.

  2. Retrofitting Air Conditioning and Duct Systems in Hot, Dry Climates

    SciTech Connect

    Shapiro, C.; Aldrich, R.; Arena, L.

    2012-07-01

    This technical report describes CARB's work with Clark County Community Resources Division in Las Vegas, Nevada, to optimize procedures for upgrading cooling systems on existing homes in the area to implement health, safety, and energy improvements. Detailed monitoring of five AC systems showed that three of the five systems met or exceeded air flow rate goals.

  3. Performance of a photovoltaically powered air-conditioning system

    SciTech Connect

    Kern, Jr, E. C.; Millner, A. R.

    1980-01-01

    A vapor-compression air conditioner coupled directly to a photovoltaic array is discussed. Previous analyses of such a system are reviewed, and a development system designed to test the concept is described. Preliminary experiments indicate that the performance of this initial system falls considerably short of analytic expectations.

  4. Airborne Collision Avoidance Systems and Air Traffic Management Safety

    NASA Astrophysics Data System (ADS)

    Brooker, Peter

    2005-01-01

    A new ICAO Policy on Airborne Collision Avoidance Systems is needed, which recognizes it to be an integrated part of the air traffic management system's safety defences; and that should be fully included in hazard analyses for the total system's design safety targets.

  5. Type I-E CRISPR-cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition.

    PubMed

    Westra, Edze R; Semenova, Ekaterina; Datsenko, Kirill A; Jackson, Ryan N; Wiedenheft, Blake; Severinov, Konstantin; Brouns, Stan J J

    2013-01-01

    Discriminating self and non-self is a universal requirement of immune systems. Adaptive immune systems in prokaryotes are centered around repetitive loci called CRISPRs (clustered regularly interspaced short palindromic repeat), into which invader DNA fragments are incorporated. CRISPR transcripts are processed into small RNAs that guide CRISPR-associated (Cas) proteins to invading nucleic acids by complementary base pairing. However, to avoid autoimmunity it is essential that these RNA-guides exclusively target invading DNA and not complementary DNA sequences (i.e., self-sequences) located in the host's own CRISPR locus. Previous work on the Type III-A CRISPR system from Staphylococcus epidermidis has demonstrated that a portion of the CRISPR RNA-guide sequence is involved in self versus non-self discrimination. This self-avoidance mechanism relies on sensing base pairing between the RNA-guide and sequences flanking the target DNA. To determine if the RNA-guide participates in self versus non-self discrimination in the Type I-E system from Escherichia coli we altered base pairing potential between the RNA-guide and the flanks of DNA targets. Here we demonstrate that Type I-E systems discriminate self from non-self through a base pairing-independent mechanism that strictly relies on the recognition of four unchangeable PAM sequences. In addition, this work reveals that the first base pair between the guide RNA and the PAM nucleotide immediately flanking the target sequence can be disrupted without affecting the interference phenotype. Remarkably, this indicates that base pairing at this position is not involved in foreign DNA recognition. Results in this paper reveal that the Type I-E mechanism of avoiding self sequences and preventing autoimmunity is fundamentally different from that employed by Type III-A systems. We propose the exclusive targeting of PAM-flanked sequences to be termed a target versus non-target discrimination mechanism.

  6. Combining the auxin-inducible degradation system with CRISPR/Cas9-based genome editing for the conditional depletion of endogenous Drosophila melanogaster proteins.

    PubMed

    Bence, Melinda; Jankovics, Ferenc; Lukácsovich, Tamás; Erdélyi, Miklós

    2017-02-16

    Inducible protein degradation techniques have considerable advantages over classical genetic approaches, which generate loss-of-function phenotypes at the gene or mRNA level. The plant-derived auxin-inducible degradation system (AID) is a promising technique which enables the degradation of target proteins tagged with the AID motif in non-plant cells. Here, we present a detailed characterization of this method employed during the adult oogenesis of Drosophila. Furthermore, with the help of CRISPR/Cas9-based genome editing, we improve the utility of the AID system in the conditional elimination of endogenously expressed proteins. We demonstrate that the AID system induces efficient and reversible protein depletion of maternally provided proteins both in the ovary and the early embryo. Moreover, the AID system provides a fine spatiotemporal control of protein degradation and allows for the generation of different levels of protein knockdown in a well-regulated manner. These features of the AID system enable the unravelling of the discrete phenotypes of genes with highly complex functions. We utilized this system to generate a conditional loss-of-function allele which allows for the specific degradation of the Vasa protein without affecting its alternative splice variant (solo) and the vasa intronic gene (vig). With the help of this special allele, we demonstrate that dramatic decrease of Vasa protein in the vitellarium does not influence the completion of oogenesis as well as the establishment of proper anteroposterior and dorsoventral polarity in the developing oocyte. Our study suggests that both the localization and the translation of gurken mRNA in the vitellarium is independent from Vasa. This article is protected by copyright. All rights reserved.

  7. HMMCAS: a web tool for the identification and domain annotations of Cas proteins.

    PubMed

    Chai, Guoshi; Yu, Min; Jiang, Lixu; Duan, Yaocong; Huang, Jian

    2017-02-07

    The CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) adaptive immune systems are discovered in many bacteria and most archaea. These systems are encoded by cas (CRISPR-associated) operons that have an extremely diverse architecture. The most crucial step in the depiction of cas operons composition is the identification of cas genes or Cas proteins. With the continuous increase of the newly sequenced archaeal and bacterial genomes, the recognition of new Cas proteins is becoming possible, which not only provides candidates for novel genome editing tools but also helps to understand the prokaryotic immune system better. Here we describe HMMCAS, a web service for the detection of CRISPR-associated structural and functional domains in protein sequences. HMMCAS uses hmmscan similarity search algorithm in HMMER3.1 to provide a fast, interactive service based on a comprehensive collection of hidden Markov models of Cas protein family. It can accurately identify the Cas proteins including those fusion proteins, for example the Cas1-Cas4 fusion protein in Candidatus Chloracidobacterium thermophilum B (Cab. thermophilum B). HMMCAS can also find putative cas operon and determine which type it belongs to. HMMCAS is freely available at http://i.uestc.edu.cn/hmmcas.

  8. Air-flow regulation system for a coal gasifier

    DOEpatents

    Fasching, George E.

    1984-01-01

    An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.

  9. Nucleosome breathing and remodeling constrain CRISPR-Cas9 function

    PubMed Central

    Isaac, R Stefan; Jiang, Fuguo; Doudna, Jennifer A; Lim, Wendell A; Narlikar, Geeta J; Almeida, Ricardo

    2016-01-01

    The CRISPR-Cas9 bacterial surveillance system has become a versatile tool for genome editing and gene regulation in eukaryotic cells, yet how CRISPR-Cas9 contends with the barriers presented by eukaryotic chromatin is poorly understood. Here we investigate how the smallest unit of chromatin, a nucleosome, constrains the activity of the CRISPR-Cas9 system. We find that nucleosomes assembled on native DNA sequences are permissive to Cas9 action. However, the accessibility of nucleosomal DNA to Cas9 is variable over several orders of magnitude depending on dynamic properties of the DNA sequence and the distance of the PAM site from the nucleosome dyad. We further find that chromatin remodeling enzymes stimulate Cas9 activity on nucleosomal templates. Our findings imply that the spontaneous breathing of nucleosomal DNA together with the action of chromatin remodelers allow Cas9 to effectively act on chromatin in vivo. DOI: http://dx.doi.org/10.7554/eLife.13450.001 PMID:27130520

  10. CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani

    PubMed Central

    Zhang, Wen-Wei

    2015-01-01

    ABSTRACT The prokaryotic CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9, an RNA-guided endonuclease, has been shown to mediate efficient genome editing in a wide variety of organisms. In the present study, the CRISPR-Cas9 system has been adapted to Leishmania donovani, a protozoan parasite that causes fatal human visceral leishmaniasis. We introduced the Cas9 nuclease into L. donovani and generated guide RNA (gRNA) expression vectors by using the L. donovani rRNA promoter and the hepatitis delta virus (HDV) ribozyme. It is demonstrated within that L. donovani mainly used homology-directed repair (HDR) and microhomology-mediated end joining (MMEJ) to repair the Cas9 nuclease-created double-strand DNA break (DSB). The nonhomologous end-joining (NHEJ) pathway appears to be absent in L. donovani. With this CRISPR-Cas9 system, it was possible to generate knockouts without selection by insertion of an oligonucleotide donor with stop codons and 25-nucleotide homology arms into the Cas9 cleavage site. Likewise, we disrupted and precisely tagged endogenous genes by inserting a bleomycin drug selection marker and GFP gene into the Cas9 cleavage site. With the use of Hammerhead and HDV ribozymes, a double-gRNA expression vector that further improved gene-targeting efficiency was developed, and it was used to make precise deletion of the 3-kb miltefosine transporter gene (LdMT). In addition, this study identified a novel single point mutation caused by CRISPR-Cas9 in LdMT (M381T) that led to miltefosine resistance, a concern for the only available oral antileishmanial drug. Together, these results demonstrate that the CRISPR-Cas9 system represents an effective genome engineering tool for L. donovani. PMID:26199327

  11. 205 PRODUCTION OF Cas9-EXPRESSING CATTLE USING DNA TRANSPOSON.

    PubMed

    Hahn, S-E; Yum, S-Y; Lee, S-J; Lee, C-I; Kim, H-S; Kim, H-J; Choi, W-J; Lee, J-H; Jang, G

    2016-01-01

    A genome-editing technology, CRISPR/Cas9 system is proved to be a powerful tool for knockout and knock-in in various species. When 2 components [Cas9 and single guide (sg) RNA] are delivered into cells or embryos, the events of gene editing occur. Because Cas9 is essential for every gene editing based on the CRISPR/Cas9 system, some studies reported that efficiency of gene editing would be increased as Cas9 was integrated into cells or animals. Accordingly, if the Cas9-expressing cattle is born, it would be broadly used for gene editing in cattle. For this study, the Cas9 and RFP genes were cloned into the PiggyBac transposon system. PiggyBac-Cas9-RFP and transposase were microinjected into 1436 IVF embryos and 241 blastocysts were formed. Blastocysts with RFP expression accounted for 14.1% of total formed blastocysts. Five blastocysts were selected and transferred into 5 recipient cow (1 embryo per recipient). After gestation periods, 4 transgenic cattle were delivered without any veterinary assistance. From transgenic cattle, ear skin tissue was collected for primary culture. On those primary cells, sgRNA in DNA form for various genes such as PRNP, RB1, and BLG were transfected with 2μg of sgRNA per 5×10(5) cells using electroporation. As expected, every group of each sgRNA delivered was confirmed to be mutated by T7E1 assay. The data demonstrated that, for the first time, transgenic cattle with Cas9 expression were born, grown up to date (age=5 months) and will be a valuable resource for genome editing in cattle.

  12. Integration of air separation membrane and coalescing filter for use on an inlet air system of an engine

    DOEpatents

    Moncelle, Michael E.

    2003-01-01

    An intake air separation system suitable for combustion air of an internal combustion engine. An air separation device of the system includes a plurality of fibers, each fiber having a tube with a permeation barrier layer on the outer surface thereof and a coalescing layer on the inner surface thereof, to restrict fluid droplets from contacting the permeation barrier layer.

  13. Future Air Transportation System Breakout Series Report

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This presentation discusses: AvSTAR Future System Effort Critically important; Investment in the future; Need to follow a systems engineering process; and Efforts need to be worked in worldwide context

  14. ge-CRISPR - An integrated pipeline for the prediction and analysis of sgRNAs genome editing efficiency for CRISPR/Cas system

    PubMed Central

    Kaur, Karambir; Gupta, Amit Kumar; Rajput, Akanksha; Kumar, Manoj

    2016-01-01

    Genome editing by sgRNA a component of CRISPR/Cas system emerged as a preferred technology for genome editing in recent years. However, activity and stability of sgRNA in genome targeting is greatly influenced by its sequence features. In this endeavor, a few prediction tools have been developed to design effective sgRNAs but these methods have their own limitations. Therefore, we have developed “ge-CRISPR” using high throughput data for the prediction and analysis of sgRNAs genome editing efficiency. Predictive models were employed using SVM for developing pipeline-1 (classification) and pipeline-2 (regression) using 2090 and 4139 experimentally verified sgRNAs respectively from Homo sapiens, Mus musculus, Danio rerio and Xenopus tropicalis. During 10-fold cross validation we have achieved accuracy and Matthew’s correlation coefficient of 87.70% and 0.75 for pipeline-1 on training dataset (T1840) while it performed equally well on independent dataset (V250). In pipeline-2 we attained Pearson correlation coefficient of 0.68 and 0.69 using best models on training (T3169) and independent dataset (V520) correspondingly. ge-CRISPR (http://bioinfo.imtech.res.in/manojk/gecrispr/) for a given genomic region will identify potent sgRNAs, their qualitative as well as quantitative efficiencies along with potential off-targets. It will be useful to scientific community engaged in CRISPR research and therapeutics development. PMID:27581337

  15. ge-CRISPR - An integrated pipeline for the prediction and analysis of sgRNAs genome editing efficiency for CRISPR/Cas system.

    PubMed

    Kaur, Karambir; Gupta, Amit Kumar; Rajput, Akanksha; Kumar, Manoj

    2016-09-01

    Genome editing by sgRNA a component of CRISPR/Cas system emerged as a preferred technology for genome editing in recent years. However, activity and stability of sgRNA in genome targeting is greatly influenced by its sequence features. In this endeavor, a few prediction tools have been developed to design effective sgRNAs but these methods have their own limitations. Therefore, we have developed "ge-CRISPR" using high throughput data for the prediction and analysis of sgRNAs genome editing efficiency. Predictive models were employed using SVM for developing pipeline-1 (classification) and pipeline-2 (regression) using 2090 and 4139 experimentally verified sgRNAs respectively from Homo sapiens, Mus musculus, Danio rerio and Xenopus tropicalis. During 10-fold cross validation we have achieved accuracy and Matthew's correlation coefficient of 87.70% and 0.75 for pipeline-1 on training dataset (T(1840)) while it performed equally well on independent dataset (V(250)). In pipeline-2 we attained Pearson correlation coefficient of 0.68 and 0.69 using best models on training (T(3169)) and independent dataset (V(520)) correspondingly. ge-CRISPR (http://bioinfo.imtech.res.in/manojk/gecrispr/) for a given genomic region will identify potent sgRNAs, their qualitative as well as quantitative efficiencies along with potential off-targets. It will be useful to scientific community engaged in CRISPR research and therapeutics development.

  16. Hyperlipidemia and hepatitis in liver-specific CREB3L3 knockout mice generated using a one-step CRISPR/Cas9 system

    PubMed Central

    Nakagawa, Yoshimi; Oikawa, Fusaka; Mizuno, Seiya; Ohno, Hiroshi; Yagishita, Yuka; Satoh, Aoi; Osaki, Yoshinori; Takei, Kenta; Kikuchi, Takuya; Han, Song-iee; Matsuzaka, Takashi; Iwasaki, Hitoshi; Kobayashi, Kazuto; Yatoh, Shigeru; Yahagi, Naoya; Isaka, Masaaki; Suzuki, Hiroaki; Sone, Hirohito; Takahashi, Satoru; Yamada, Nobuhiro; Shimano, Hitoshi

    2016-01-01

    cAMP responsive element binding protein 3-like 3 (CREB3L3), a transcription factor expressed in the liver and small intestine, governs fasting-response energy homeostasis. Tissue-specific CREB3L3 knockout mice have not been generated till date. To our knowledge, this is the first study using the one-step CRISPR/Cas9 system to generate CREB3L3 floxed mice and subsequently obtain liver- and small intestine-specific Creb3l3 knockout (LKO and IKO, respectively) mice. While LKO mice as well as global KO mice developed hypertriglyceridemia, LKO mice exhibited hypercholesterolemia in contrast to hypocholesterolemia in global KO mice. LKO mice demonstrated up-regulation of hepatic Srebf2 and its corresponding target genes. No phenotypic differences were observed between IKO and floxed mice. Severe liver injury was observed in LKO mice fed a methionine-choline deficient diet, a model for non-alcoholic steatohepatitis. These results provide new evidence regarding the hepatic CREB3L3 role in plasma triglyceride metabolism and hepatic and intestinal CREB3L3 contributions to cholesterol metabolism. PMID:27291420

  17. Measurement results obtained from air quality monitoring system

    SciTech Connect

    Turzanski, P.K.; Beres, R.

    1995-12-31

    An automatic system of air pollution monitoring operates in Cracow since 1991. The organization, assembling and start-up of the network is a result of joint efforts of the US Environmental Protection Agency and the Cracow environmental protection service. At present the automatic monitoring network is operated by the Provincial Inspection of Environmental Protection. There are in total seven stationary stations situated in Cracow to measure air pollution. These stations are supported continuously by one semi-mobile (transportable) station. It allows to modify periodically the area under investigation and therefore the 3-dimensional picture of creation and distribution of air pollutants within Cracow area could be more intelligible.

  18. Application of solar energy to air conditioning systems

    NASA Technical Reports Server (NTRS)

    Nash, J. M.; Harstad, A. J.

    1976-01-01

    The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.

  19. Fan Electricity Consumption for Variable-Air-Volume Systems.

    DTIC Science & Technology

    1986-09-01

    Be Reduced in Air Handling Systems," .- Specifying Engineer (March 1981); R. Haines, "Fan Energy - P vs. PI Control ," Heating - Piping - Air...much higher humidity. Minneapolis has the highest heating requirements of all sites studied. 1.0 i. - P CONTROL OF ACINV PI CONTROL OF ACINV...load performance data. 15115 :. .- ’-- .... . .. .... .. .. ....---.- .-.-. -. .’"o , 1.0 I I I I - P CONTROL OF ACINV,- PI CONTROL OF ACINV 0.8

  20. Application of CRISPR/Cas9 to Autophagy Research.

    PubMed

    O'Prey, J; Sakamaki, J; Baudot, A D; New, M; Van Acker, T; Tooze, S A; Long, J S; Ryan, K M

    2017-01-01

    The ability to efficiently modulate autophagy activity is paramount in the study of the field. Conventional broad-range autophagy inhibitors and genetic manipulation using RNA interference (RNAi), although widely used in autophagy research, are often limited in specificity or efficacy. In this chapter, we address the problems of conventional autophagy-modulating tools by exploring the use of three different CRISPR/Cas9 systems to abrogate autophagy in numerous human and mouse cell lines. The first system generates cell lines constitutively deleted of ATG5 or ATG7 whereas the second and third systems express a Tet-On inducible-Cas9 that enables regulated deletion of ATG5 or ATG7. We observed the efficiency of autophagy inhibition using the CRISPR/Cas9 strategy to surpass that of RNAi, and successfully generated cells with complete and sustained autophagy disruption through the CRISPR/Cas9 technology.