Sample records for air temperature cloud

  1. Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS

    NASA Astrophysics Data System (ADS)

    Irion, Fredrick W.; Kahn, Brian H.; Schreier, Mathias M.; Fetzer, Eric J.; Fishbein, Evan; Fu, Dejian; Kalmus, Peter; Wilson, R. Chris; Wong, Sun; Yue, Qing

    2018-02-01

    Single-footprint Atmospheric Infrared Sounder spectra are used in an optimal estimation-based algorithm (AIRS-OE) for simultaneous retrieval of atmospheric temperature, water vapor, surface temperature, cloud-top temperature, effective cloud optical depth and effective cloud particle radius. In a departure from currently operational AIRS retrievals (AIRS V6), cloud scattering and absorption are in the radiative transfer forward model and AIRS single-footprint thermal infrared data are used directly rather than cloud-cleared spectra (which are calculated using nine adjacent AIRS infrared footprints). Coincident MODIS cloud data are used for cloud a priori data. Using single-footprint spectra improves the horizontal resolution of the AIRS retrieval from ˜ 45 to ˜ 13.5 km at nadir, but as microwave data are not used, the retrieval is not made at altitudes below thick clouds. An outline of the AIRS-OE retrieval procedure and information content analysis is presented. Initial comparisons of AIRS-OE to AIRS V6 results show increased horizontal detail in the water vapor and relative humidity fields in the free troposphere above the clouds. Initial comparisons of temperature, water vapor and relative humidity profiles with coincident radiosondes show good agreement. Future improvements to the retrieval algorithm, and to the forward model in particular, are discussed.

  2. NASA AIRS Examines Hurricane Matthew Cloud Top Temperatures

    NASA Image and Video Library

    2016-10-07

    At 11:29 p.m. PDT on Oct. 6 (2:29 a.m. EDT on Oct. 7), NASA's Atmospheric Infrared Sounder (AIRS) instrument on NASA's Aqua satellite produced this false-color infrared image of Matthew as the storm moved up Florida's central coast. The image shows the temperature of Matthew's cloud tops or the surface of Earth in cloud-free regions, with the most intense thunderstorms shown in purples and blues. http://photojournal.jpl.nasa.gov/catalog/PIA21097

  3. Temporal Changes in the Observed Relationship between Cloud Cover and Surface Air Temperature.

    NASA Astrophysics Data System (ADS)

    Sun, Bomin; Groisman, Pavel Ya.; Bradley, Raymond S.; Keimig, Frank T.

    2000-12-01

    The relationship between cloud cover and near-surface air temperature and its decadal changes are examined using the hourly synoptic data for the past four to six decades from five regions of the Northern Hemisphere: Canada, the United States, the former Soviet Union, China, and tropical islands of the western Pacific. The authors define the normalized cloud cover-surface air temperature relationship, NOCET or dT/dCL, as a temperature anomaly with a unit (one-tenth) deviation of total cloud cover from its average value. Then mean monthly NOCET time series (night- and daytime, separately) are area-averaged and parameterized as functions of surface air humidity and snow cover. The day- and nighttime NOCET variations are strongly anticorrelated with changes in surface humidity. Furthermore, the daytime NOCET changes are positively correlated to changes in snow cover extent. The regionally averaged nighttime NOCET varies from 0.05 K tenth1 in the wet Tropics to 1.0 K tenth1 at midlatitudes in winter. The daytime regional NOCET ranges from 0.4 K tenth1 in the Tropics to 0.7 K tenth1 at midlatitudes in winter.The authors found a general strengthening of a daytime surface cooling during the post-World War II period associated with cloud cover over the United States and China, but a minor reduction of this cooling in higher latitudes. Furthermore, since the 1970s, a prominent increase in atmospheric humidity has significantly weakened the effectiveness of the surface warming (best seen at nighttime) associated with cloud cover.The authors apportion the spatiotemporal field of interactions between total cloud cover and surface air temperature into a bivariate relationship (described by two equations, one for daytime and one for nighttime) with surface air humidity and snow cover and two constant factors. These factors are invariant in space and time domains. It is speculated that they may represent empirical estimates of the overall cloud cover effect on the surface air

  4. Temperature uniformity in the CERN CLOUD chamber

    NASA Astrophysics Data System (ADS)

    Dias, António; Ehrhart, Sebastian; Vogel, Alexander; Williamson, Christina; Almeida, João; Kirkby, Jasper; Mathot, Serge; Mumford, Samuel; Onnela, Antti

    2017-12-01

    The CLOUD (Cosmics Leaving OUtdoor Droplets) experiment at CERN (European Council for Nuclear Research) investigates the nucleation and growth of aerosol particles under atmospheric conditions and their activation into cloud droplets. A key feature of the CLOUD experiment is precise control of the experimental parameters. Temperature uniformity and stability in the chamber are important since many of the processes under study are sensitive to temperature and also to contaminants that can be released from the stainless steel walls by upward temperature fluctuations. The air enclosed within the 26 m3 CLOUD chamber is equipped with several arrays (strings) of high precision, fast-response thermometers to measure its temperature. Here we present a study of the air temperature uniformity inside the CLOUD chamber under various experimental conditions. Measurements were performed under calibration conditions and run conditions, which are distinguished by the flow rate of fresh air and trace gases entering the chamber at 20 and up to 210 L min-1, respectively. During steady-state calibration runs between -70 and +20 °C, the air temperature uniformity is better than ±0.06 °C in the radial direction and ±0.1 °C in the vertical direction. Larger non-uniformities are present during experimental runs, depending on the temperature control of the make-up air and trace gases (since some trace gases require elevated temperatures until injection into the chamber). The temperature stability is ±0.04 °C over periods of several hours during either calibration or steady-state run conditions. During rapid adiabatic expansions to activate cloud droplets and ice particles, the chamber walls are up to 10 °C warmer than the enclosed air. This results in temperature differences of ±1.5 °C in the vertical direction and ±1 °C in the horizontal direction, while the air returns to its equilibrium temperature with a time constant of about 200 s.

  5. [Retrieval of the Optical Thickness and Cloud Top Height of Cirrus Clouds Based on AIRS IR High Spectral Resolution Data].

    PubMed

    Cao, Ya-nan; Wei, He-li; Dai, Cong-ming; Zhang, Xue-hai

    2015-05-01

    A study was carried out to retrieve optical thickness and cloud top height of cirrus clouds from the Atmospheric Infrared Sounder (AIRS) high spectral resolution data in 1070~1135 cm-1 IR band using a Combined Atmospheric Radiative Transfer model (CART) by brightness temperature difference between model simulation and AIRS observation. The research is based on AIRS LIB high spectral infrared observation data combined with Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product data. Brightness temperature spectra based, on the retrieved cirrus optical thickness and cloud top height were simulated and compared with brightness temperature spectra of AIRS observation in the 650~1150 cm-1 band. The cirrus optical thickness and cloud top height retrieved were compared with brightness temperature of AIRS for channel 760 (900.56 cm-1, 11. 1 µm) and cirrus reflectance of MODIS cloud product. And cloud top height retrieved was compared with cloud top height from MODIS. Results show that the brightness temperature spectra simulated were basically consistent with AIRS observation under the condition of retrieval in the 650~1150 cm-1 band. It means that CART can be used to simulate AIRS brightness temperature spectra. The retrieved cirrus parameters are consistent with brightness temperature of AIRS for channel 11. 1 µm with low brightness temperature corresponding to large cirrus optical thickness and high cloud top height. And the retrieved cirrus parameters are consistent with cirrus reflectance of MODIS cloud product with high cirrus reflectance corresponding to large cirrus optical thickness and high cloud top height. Correlation coefficient of brightness temperature between retrieved cloud top height and MODIS cloud top height was relatively high. They are mostly located in the range of 8. 5~11.5 km, and their probability distribution trend is approximately identical. CART model is feasible to retrieve cirrus properties, and the retrieval is reliable.

  6. Spectral Longwave Cloud Radiative Forcing as Observed by AIRS

    NASA Technical Reports Server (NTRS)

    Blaisdell, John M.; Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2016-01-01

    AIRS V6 products contain the spectral contributions to Outgoing Longwave Radiation (OLR), clear-sky OLR (OLR(sub CLR)), and Longwave Cloud Radiative Forcing (LWCRF) in 16 bands from 100 cm(exp -1) to 3260 cm(exp -1). We show climatologies of selected spectrally resolved AIRS V6 products over the period of September 2002 through August 2016. Spectrally resolved LWCRF can better describe the response of the Earth system to cloud and cloud feedback processes. The spectral LWCRF enables us to estimate the fraction of each contributing factor to cloud forcing, i.e.: surface temperature, mid to upper tropospheric water vapor, and tropospheric temperature. This presentation also compares the spatial characteristics of LWCRF from AIRS, CERES_EBAF Edition-2.8, and MERRA-2. AIRS and CERES LWCRF products show good agreement. The OLR bias between AIRS and CERES is very close to that of OLR(sub CLR). This implies that both AIRS and CERES OLR products accurately account for the effect of clouds on OLR.

  7. Volcanic explosion clouds - Density, temperature, and particle content estimates from cloud motion

    NASA Technical Reports Server (NTRS)

    Wilson, L.; Self, S.

    1980-01-01

    Photographic records of 10 vulcanian eruption clouds produced during the 1978 eruption of Fuego Volcano in Guatemala have been analyzed to determine cloud velocity and acceleration at successive stages of expansion. Cloud motion is controlled by air drag (dominant during early, high-speed motion) and buoyancy (dominant during late motion when the cloud is convecting slowly). Cloud densities in the range 0.6 to 1.2 times that of the surrounding atmosphere were obtained by fitting equations of motion for two common cloud shapes (spheres and vertical cylinders) to the observed motions. Analysis of the heat budget of a cloud permits an estimate of cloud temperature and particle weight fraction to be made from the density. Model results suggest that clouds generally reached temperatures within 10 K of that of the surrounding air within 10 seconds of formation and that dense particle weight fractions were less than 2% by this time. The maximum sizes of dense particles supported by motion in the convecting clouds range from 140 to 1700 microns.

  8. Diagnosing AIRS Sampling with CloudSat Cloud Classes

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric; Yue, Qing; Guillaume, Alexandre; Kahn, Brian

    2011-01-01

    AIRS yield and sampling vary with cloud state. Careful utilization of collocated multiple satellite sensors is necessary. Profile differences between AIRS and ECMWF model analyses indicate that AIRS has high sampling and excellent accuracy for certain meteorological conditions. Cloud-dependent sampling biases may have large impact on AIRS L2 and L3 data in climate research. MBL clouds / lower tropospheric stability relationship is one example. AIRS and CloudSat reveal a reasonable climatology in the MBL cloud regime despite limited sampling in stratocumulus. Thermodynamic parameters such as EIS derived from AIRS data map these cloud conditions successfully. We are working on characterizing AIRS scenes with mixed cloud types.

  9. Temperature characterisation of the CLOUD chamber at CERN

    NASA Astrophysics Data System (ADS)

    Dias, A. M.; Almeida, J.; Kirkby, J.; Mathot, S.; Onnela, A.; Vogel, A.; Ehrhart, S.

    2014-12-01

    Temperature stability, uniformity and absolute scale inside the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN are important for experiments on aerosol particle nucleation and ice/liquid cloud formation. In order to measure the air temperature, a comprehensive set of arrays ("strings") of platinum resistance thermometers, thermocouples and optical sensors have been installed inside the 26 m3 chamber. The thermal sensors must meet several challenging design requirements: ultra-clean materials, 0.01 K measurement sensitivity, high absolute precision (<0.1 K), 200 K - 373 K range, ability to operate in high electric fields (20 kV/m), and fast response in air (~1 s) in order to measure rapid changes of temperature during ice/liquid cloud formation in the chamber by adiabatic pressure reductions. This presentation will focus on the design of the thermometer strings and the thermal performance of the chamber during the CLOUD8 and CLOUD9 campaigns, 2013-2014, together with the planned upgrades of the CLOUD thermal system.

  10. Spatial and Temporal Inter-Relationships Between Anomalies of Temperature, Moisture, Cloud Cover, and OLR as Observed by AIRS/AMSU on Aqua

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2008-01-01

    AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU include surface skin temperature and atmospheric temperature profiles; atmospheric humidity profiles, percent cloud cover and cloud top pressure, and OLR. Near real time products, stating with September 2002, have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. Results in this paper included products through April 2008. The time period studied is marked by a substantial warming trend of Northern Hemisphere Extropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear Sky and All Sky OLR The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, are shown below, with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. The ability to match this data represents a good test of a model's response to El Nino.

  11. A Cloud Mask for AIRS

    NASA Technical Reports Server (NTRS)

    Brubaker, N.; Jedlovec, G. J.

    2004-01-01

    With the preliminary release of AIRS Level 1 and 2 data to the scientific community, there is a growing need for an accurate AIRS cloud mask for data assimilation studies and in producing products derived from cloud free radiances. Current cloud information provided with the AIRS data are limited or based on simplified threshold tests. A multispectral cloud detection approach has been developed for AIRS that utilizes the hyper-spectral capabilities to detect clouds based on specific cloud signatures across the short wave and long wave infrared window regions. This new AIRS cloud mask has been validated against the existing AIRS Level 2 cloud product and cloud information derived from MODIS. Preliminary results for both day and night applications over the continental U.S. are encouraging. Details of the cloud detection approach and validation results will be presented at the conference.

  12. Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming.

    PubMed

    Cronin, Timothy W; Tziperman, Eli

    2015-09-15

    High-latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. We use an idealized single-column atmospheric model across a range of conditions to study the polar night process of air mass transformation from high-latitude maritime air, with a prescribed initial temperature profile, to much colder high-latitude continental air. We find that a low-cloud feedback--consisting of a robust increase in the duration of optically thick liquid clouds with warming of the initial state--slows radiative cooling of the surface and amplifies continental warming. This low-cloud feedback increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature, effectively suppressing Arctic air formation. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ∼ 10 d for initial maritime surface air temperatures of 20 °C. These results, supplemented by an analysis of Coupled Model Intercomparison Project phase 5 climate model runs that shows large increases in cloud water path and surface cloud longwave forcing in warmer climates, suggest that the "lapse rate feedback" in simulations of anthropogenic climate change may be related to the influence of low clouds on the stratification of the lower troposphere. The results also indicate that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates.

  13. AIRS Subpixel Cloud Characterization Using MODIS Cloud Products.

    NASA Astrophysics Data System (ADS)

    Li, Jun; Menzel, W. Paul; Sun, Fengying; Schmit, Timothy J.; Gurka, James

    2004-08-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS's) Aqua satellite enable improved global monitoring of the distribution of clouds. MODIS is able to provide, at high spatial resolution (1 5 km), a cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), and cloud optical thickness (COT). AIRS is able to provide CTP, ECA, CPS, and COT at coarser spatial resolution (13.5 km at nadir) but with much better accuracy using its high-spectral-resolution measurements. The combined MODIS AIRS system offers the opportunity for improved cloud products over those possible from either system alone. The key steps for synergistic use of imager and sounder radiance measurements are 1) collocation in space and time and 2) imager cloud amount, type, and phase determination within the sounder pixel. The MODIS and AIRS measurements from the EOS Aqua satellite provide the opportunity to study the synergistic use of advanced imager and sounder measurements. As the first step, the MODIS classification procedure is applied to identify various surface and cloud types within an AIRS footprint. Cloud-layer information (lower, midlevel, or high clouds) and phase information (water, ice, or mixed-phase clouds) within the AIRS footprint are sorted and characterized using MODIS 1-km-spatial-resolution data. The combined MODIS and AIRS data for various scenes are analyzed to study the utility of the synergistic use of high-spatial-resolution imager products and high-spectral-resolution sounder radiance measurements. There is relevance to the optimal use of data from the Advanced Baseline Imager (ABI) and Hyperspectral Environmental Suite (HES) systems, which are to fly on the Geostationary Operational Environmental Satellite (GOES)-R.


  14. Atmospheric Soundings from AIRS/AMSU in Partial Cloud Cover

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Atlas, Robert

    2005-01-01

    Simultaneous use of AIRS/AMSU-A observations allow for the determination of accurate atmospheric soundings under partial cloud cover conditions. The methodology involves the determination of the radiances AIRS would have seen if the AIRS fields of view were clear, called clear column radiances, and use of these radiances to infer the atmospheric and surface conditions giving rise to these clear column radiances. Susskind et al. demonstrate via simulation that accurate temperature soundings and clear column radiances can be derived from AIRS/AMSU-A observations in cases of up to 80% partial cloud cover, with only a small degradation in accuracy compared to that obtained in clear scenes. Susskind and Atlas show that these findings hold for real AIRS/AMSU-A soundings as well. For data assimilation purposes, this small degradation in accuracy is more than offset by a significant increase in spatial coverage (roughly 50% of global cases were accepted, compared to 3.6% of the global cases being diagnosed as clear), and assimilation of AIRS temperature soundings in partially cloudy conditions resulted in a larger improvement in forecast skill than when AIRS soundings were assimilated only under clear conditions. Alternatively, derived AIRS clear column radiances under partial cloud cover could also be used for data assimilation purposes. Further improvements in AIRS sounding methodology have been made since the results shown in Susskind and Atlas . A new version of the AIRS/AMSU-A retrieval algorithm, Version 4.0, was delivered to the Goddard DAAC in February 2005 for production of AIRS derived products, including clear column radiances. The major improvement in the Version 4.0 retrieval algorithm is with regard to a more flexible, parameter dependent, quality control. Results are shown of the accuracy and spatial distribution of temperature-moisture profiles and clear column radiances derived from AIRS/AMSU-A as a function of fractional cloud cover using the Version 4

  15. Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming

    PubMed Central

    Cronin, Timothy W.; Tziperman, Eli

    2015-01-01

    High-latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. We use an idealized single-column atmospheric model across a range of conditions to study the polar night process of air mass transformation from high-latitude maritime air, with a prescribed initial temperature profile, to much colder high-latitude continental air. We find that a low-cloud feedback—consisting of a robust increase in the duration of optically thick liquid clouds with warming of the initial state—slows radiative cooling of the surface and amplifies continental warming. This low-cloud feedback increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature, effectively suppressing Arctic air formation. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ∼10 d for initial maritime surface air temperatures of 20 °C. These results, supplemented by an analysis of Coupled Model Intercomparison Project phase 5 climate model runs that shows large increases in cloud water path and surface cloud longwave forcing in warmer climates, suggest that the “lapse rate feedback” in simulations of anthropogenic climate change may be related to the influence of low clouds on the stratification of the lower troposphere. The results also indicate that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates. PMID:26324919

  16. High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to

  17. Spatial and Temporal Inter-Relationships between Anomalies and Trends of Temperature, Moisture, Cloud Cover, and OLR as Observed by AIRS/AMSU on Aqua

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2008-01-01

    AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU by the AIRS Science Team include surface skin temperature and atmospheric temperature profiles; atmospheric humidity profiles, fractional cloud cover and cloud top pressure, and OLR. Products covering the period September 2002 through the present have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. In this paper, we will show results covering the time period September 2006 - November 2008. This time period is marked by a substantial warming trend of Northern Hemisphere Extratropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear sky and All Sky OLR. The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, will be shown, with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. Results will also be shown to validate the anomalies and trends of temperature profiles and OLR as determined from analysis of AIRS/AMSU data. Global and regional trends during the 6 1/3 year period are not necessarily indicative of what has happened in the past, or what may happen in the future. Nevertheless, the inter-relationships of spatial and temporal anomalies of atmospheric geophysical parameters with those of surface skin temperature are indicative of climate processes, and can be used to test the performance of climate models when driven by changes in surface temperatures.

  18. Spatial and Temporal Inter-Relationship between Anomalies and Trends of Temperature, Moisture, Cloud Cover and OLR as Observed by AIRS/AMSU on Aqua

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula

    2009-01-01

    AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU by the AIRS Science Team include surface skin temperature and atmospheric temperature profiled; atmospheric humidity profiles, fractional cloud clover and cloud top pressure, and OLR. Products covering the period September 2002 through the present have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. In this paper, we will show results covering the time period September 2006 - November 2008. This time period is marked by a substantial warming trend of Northern Hemisphere Extra-tropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear Sky and All Sky OLR. The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, will be shown with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. Results will also be shown to evaluate the anomalies and trends of temperature profiles and OLR as determined from analysis of AIRS/AMSU data. Global and regional trends during the 6 1/3 year time period are not necessarily indicative of what has happened in the past, or what may happen in the future. Nevertheless, the inter-relationships of spatial and temporal anomalies of atmospheric geophysical parameters with those of surface skin temperature are indicative of climate processes, and can be used to test the performance of climate models when driven by changes in surface temperatures.

  19. Evaluation and Assimilation of Cloud Cleared Radiances for AIRS in GEOS-5

    NASA Technical Reports Server (NTRS)

    Liu, Hui-chun

    2008-01-01

    -cleared radiance data, the errors of the cloud-cleared radiances need to be addressed. The details of convolving AIRS radiances with MODIS spectral response function and comparison with MODIS-measured cloud-free radiance will be presented. The range of errors of cloud-cleared radiances for AIRS using collocated MODIS clear and near-by AIRS clear data will be shown. The NASA. global data assimilation model, GEOS-5, is used to evaluate and assimilate the cloud-cleared radiance for AIRS. The residues between the cloud-cleared brightness temperature and the simulated brightness temperature from background (i.e., OMFs) will be investigated. The quality control procedures will be documented based on error estimation and the OMFs. Finally, the impacts between assimilation of clear channel radiances and cloud-cleared radiances will be addressed.

  20. Validation of AIRS/AMSU Cloud Retrievals Using MODIS Cloud Analyses

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula I.; Susskind, Joel

    2005-01-01

    The AIRS/AMSU (flying on the EOS-AQUA satellite) sounding retrieval methodology allows for the retrieval of key atmospheric/surface parameters under partially cloudy conditions (Susskind et al.). In addition, cloud parameters are also derived from the AIRS/AMSU observations. Within each AIRS footprint, cloud parameters at up to 2 cloud layers are determined with differing cloud top pressures and effective (product of infrared emissivity at 11 microns and physical cloud fraction) cloud fractions. However, so far the AIRS cloud product has not been rigorously evaluated/validated. Fortunately, collocated/coincident radiances measured by MODIS/AQUA (at a much lower spectral resolution but roughly an order of-magnitude higher spatial resolution than that of AIRS) are used to determine analogous cloud products from MODIS. This allows us for a rather rare and interesting possibility: the intercomparisons and mutual validation of imager vs. sounder-based cloud products obtained from the same satellite positions. First, we present results of small-scale (granules) instantaneous intercomparisons. Next, we will evaluate differences of temporally averaged (monthly) means as well as the representation of inter-annual variability of cloud parameters as presented by the two cloud data sets. In particular, we present statistical differences in the retrieved parameters of cloud fraction and cloud top pressure. We will investigate what type of cloud systems are retrieved most consistently (if any) with both retrieval schemes, and attempt to assess reasons behind statistically significant differences.

  1. The Radiative Effects of Martian Water Ice Clouds on the Local Atmospheric Temperature Profile

    NASA Technical Reports Server (NTRS)

    Colaprete, Anthony; Toon, Owen B.

    2000-01-01

    Mars Pathfinder made numerous discoveries, one of which was a deep temperature inversion that extended from about 15 km down to 8 km above the surface. It has been suggested by Haberle et al. (1999. J. Geophys. Res. 104, 8957-8974.) that radiative cooling by a water ice cloud may generate such an inversion. Clouds can strongly affect the local air temperature due to their ability to radiate efficiently in the infrared and due to the low air mass of the martian atmosphere, which allows the temperature to change during the relatively short lifetime of a cloud. We utilize a time-dependent microphysical aerosol model coupled to a radiative--convective model to explore the effects water ice clouds have on the local martian temperature profile. We constrain the dust and water vapor abundance using data from the Viking Missions and Mars Pathfinder. Water t ice clouds with visible optical depths of r > 0.1 form readily in these simulations. These clouds alter the local air temperature directly, through infrared cooling, and indirectly, by redistributing atmospheric dust. With this model we are able to reproduce the temperature inversions observed by Mars Pathfinder and Mars Global t Surveyor 2000 Academic Press

  2. Apperception of Clouds in AIRS Data

    NASA Technical Reports Server (NTRS)

    Huang, Hung-Lung; Smith, William L.

    2005-01-01

    Our capacity to simulate the radiative characteristics of the Earth system has advanced greatly over the past decade. However, new space based measurements show that idealized simulations might not adequately represent the complexity of nature. For example, AIRS simulated multi-layer cloud clearing research provides an excellent groundwork for early Atmospheric Infra-Red Sounder (AIRS) operational cloud clearing and atmospheric profile retrieval. However, it doesn't reflect the complicated reality of clouds over land and coastal areas. Thus far, operational AIRS/AMSU (Advanced Microwave Sounding Unit) cloud clearing is not only of low yield but also of unsatisfying quality. This is not an argument for avoiding this challenging task, rather a powerful argument for exploring other synergistic approaches, and for adapting these strategies toward improving both indirect and direct use of cloudy infrared sounding data. Ample evidence is shown in this paper that the indirect use of cloudy sounding data by way of cloud clearing is sub-optimal for data assimilation. Improvements are needed in quality control, retrieval yield, and overall cloud clearing retrieval performance. For example, cloud clearing over land, especially over the desert surface, has led to much degraded retrieval quality and often a very low yield of quality controlled cloud cleared radiances. If these indirect cloud cleared radiances are instead to be directly assimilated into NWP models, great caution must be used. Our limited and preliminary cloud clearing results from AIRS/AMSU (with the use of MODIS data) and an AIRS/MODIS synergistic approach have, however, shown that higher spatial resolution multispectral imagery data can provide much needed quality control of the AIRS/AMSU cloud clearing retrieval. When AIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) are used synergistically, a higher spatial resolution over difficult terrain (especially desert areas) can be achieved and with a

  3. TEMPERATURE DISTRIBUTION IN A DIFFUSION CLOUD CHAMBER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slavic, I.; Szymakowski, J.; Stachorska, D.

    1961-03-01

    A diffusion cloud chamber with working conditions within a pressure range from 10 mm Hg to 2 atmospheres and at variable boundary surface temperatures in a wide interval is described. A simple procedure is described for cooling and thermoregulating the bottom of the chamber by means of vapor flow of liquid air which makes possible the achievement of temperature up to -120 deg C with stability better that plus or minus 1 deg C. A method for the measurement of temperature distribution by means of a thermistor is described, and a number of curves of the observed temperature gradient, dependentmore » on the boundary surface temperature is given. Analysis of other factors influencing the stable work of the diffusion cloud chamber was made. (auth)« less

  4. Evaluation of AIRS cloud properties using MPACE data

    NASA Astrophysics Data System (ADS)

    Wu, Xuebao; Li, Jun; Menzel, W. Paul; Huang, Allen; Baggett, Kevin; Revercomb, Henry

    2005-12-01

    Retrieval of cloud properties from the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite has been investigated. The cloud products from the collocated MODerate resolution Imaging Spectroradiometer (MODIS) data are used to characterize the AIRS sub-pixel cloud information such as cloud phase, cloud coverage, and cloud layer information. A Minimum Residual (MR) approach is used to retrieve cloud microphysical properties once the cloud top pressure (CTP) and effective cloud amount (ECA) are determined from AIRS CO2 absorption channels between 720 and 790 cm-1. The cloud microphysical properties can be retrieved by minimizing the differences between the observations and the calculations using AIRS longwave window channels between 790 and 1130 cm-1. AIRS is used to derive cloud properties during the Mixed Phase Arctic Cloud Experiment (MPACE) field campaign. Comparison with measurements obtained from lidar data is made for a test day, showing that AIRS cloud property retrievals agree with in situ lidar observations. Due to the large solar zenith angle, the MODIS operational retrieval approach is not able to provide cloud microphysics north of Barrow, Alaska; however, AIRS provides cloud microphysical properties with its high spectral resolution IR measurements.

  5. A High-Latitude Winter Continental Low Cloud Feedback Suppresses Arctic Air Formation in Warmer Climates

    NASA Astrophysics Data System (ADS)

    Cronin, T.; Tziperman, E.; Li, H.

    2015-12-01

    High latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. It has also been found that the high-latitude lapse rate feedback plays an important role in Arctic amplification of climate change in climate model simulations, but we have little understanding of why lapse rates at high latitudes change so strongly with warming. To better understand these problems, we study Arctic air formation - the process by which a high-latitude maritime air mass is advected over a continent during polar night, cooled at the surface by radiation, and transformed into a much colder continental polar air mass - and its sensitivity to climate warming. We use a single-column version of the WRF model to conduct two-week simulations of the cooling process across a wide range of initial temperature profiles and microphysics schemes, and find that a low cloud feedback suppresses Arctic air formation in warmer climates. This cloud feedback consists of an increase in low cloud amount with warming, which shields the surface from radiative cooling, and increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ~10 days for initial maritime surface air temperatures of 20 oC. Given that this is about the time it takes an air mass starting over the Pacific to traverse the north American continent, this suggests that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates. We find that CMIP5 climate model runs show large increases in cloud water path and surface cloud longwave forcing in warmer climates, consistent with the proposed low-cloud feedback

  6. Accuracy of Geophysical Parameters Derived from AIRS/AMSU as a Function of Fractional Cloud Cover

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Barnet, Chris; Blaisdell, John; Iredell, Lena; Keita, Fricky; Kouvaris, Lou; Molnar, Gyula; Chahine, Moustafa

    2006-01-01

    AIRS was launched on EOS Aqua on May 4,2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of lK, and layer precipitable water with an rms error of 20 percent, in cases with up to 80 percent effective cloud cover. The basic theory used to analyze Atmospheric InfraRed Sounder/Advanced Microwave Sounding Unit/Humidity Sounder Brazil (AIRS/AMSU/HSB) data in the presence of clouds, called the at-launch algorithm, was described previously. Pre-launch simulation studies using this algorithm indicated that these results should be achievable. Some modifications have been made to the at-launch retrieval algorithm as described in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and validated as a function of retrieved fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small and the RMS accuracy of lower tropospheric temperature retrieved with 80 percent cloud cover is about 0.5 K poorer than for clear cases. HSB failed in February 2003, and consequently HSB channel radiances are not used in the results shown in this paper. The AIRS/AMSU retrieval algorithm described in this paper, called Version 4, become operational at the Goddard DAAC (Distributed Active Archive Center) in April 2003 and is being used to analyze near-real time AIRS/AMSU data. Historical AIRS/AMSU data, going backwards from March 2005 through September 2002, is also being analyzed by the DAAC using the Version 4 algorithm.

  7. Sea surface temperature measurements with AIRS

    NASA Technical Reports Server (NTRS)

    Aumann, H.

    2003-01-01

    The comparison of global sea surface skin temperature derived from cloud-free AIRS super window channel at 2616 cm-1 (sst2616) with the Real-Time Global Sea Surface Temperature for September 2002 shows surprisingly small standard deviation of 0.44K.

  8. The Influence of Microphysical Cloud Parameterization on Microwave Brightness Temperatures

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail M.; Gasiewski, Albin J.; Wang, James R.; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    The microphysical parameterization of clouds and rain-cells plays a central role in atmospheric forward radiative transfer models used in calculating passive microwave brightness temperatures. The absorption and scattering properties of a hydrometeor-laden atmosphere are governed by particle phase, size distribution, aggregate density., shape, and dielectric constant. This study identifies the sensitivity of brightness temperatures with respect to the microphysical cloud parameterization. Cloud parameterizations for wideband (6-410 GHz observations of baseline brightness temperatures were studied for four evolutionary stages of an oceanic convective storm using a five-phase hydrometeor model in a planar-stratified scattering-based radiative transfer model. Five other microphysical cloud parameterizations were compared to the baseline calculations to evaluate brightness temperature sensitivity to gross changes in the hydrometeor size distributions and the ice-air-water ratios in the frozen or partly frozen phase. The comparison shows that, enlarging the rain drop size or adding water to the partly Frozen hydrometeor mix warms brightness temperatures by up to .55 K at 6 GHz. The cooling signature caused by ice scattering intensifies with increasing ice concentrations and at higher frequencies. An additional comparison to measured Convection and Moisture LA Experiment (CAMEX 3) brightness temperatures shows that in general all but, two parameterizations produce calculated T(sub B)'s that fall within the observed clear-air minima and maxima. The exceptions are for parameterizations that, enhance the scattering characteristics of frozen hydrometeors.

  9. Synergistic use of MODIS cloud products and AIRS radiance measurements for retrieval of cloud parameters

    NASA Astrophysics Data System (ADS)

    Li, J.; Menzel, W.; Sun, F.; Schmit, T.

    2003-12-01

    The Moderate-Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS) Aqua satellite will enable global monitoring of the distribution of clouds. MODIS is able to provide at high spatial resolution (1 ~ 5km) the cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), and cloud water path (CWP). AIRS is able to provide CTP, ECA, CPS, and CWP within the AIRS footprint with much better accuracy using its greatly enhanced hyperspectral remote sensing capability. The combined MODIS / AIRS system offers the opportunity for cloud products improved over those possible from either system alone. The algorithm developed was applied to process the AIRS longwave cloudy radiance measurements; results are compared with MODIS cloud products, as well as with the Geostationary Operational Environmental Satellite (GOES) sounder cloud products, to demonstrate the advantage of synergistic use of high spatial resolution MODIS cloud products and high spectral resolution AIRS sounder radiance measurements for optimal cloud retrieval. Data from ground-based instrumentation at the Atmospheric Radiation Measurement (ARM) Program Cloud and Radiation Test Bed (CART) in Oklahoma were used for the validation; results show that AIRS improves the MODIS cloud products in certain cases such as low-level clouds.

  10. Accuracy of Geophysical Parameters Derived from AIRS/AMSU as a Function of Fractional Cloud Cover

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Barnet, Chris; Blaisdell, John; Iredell, Lena; Keita, Fricky; Kouvaris, Lou; Molnar, Gyula; Chahine, Moustafa

    2005-01-01

    AIRS was launched on EOS Aqua on May 4,2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1K, and layer precipitable water with an rms error of 20%, in cases with up to 80% effective cloud cover. The basic theory used to analyze AIRS/AMSU/HSB data in the presence of clouds, called the at-launch algorithm, was described previously. Pre-launch simulation studies using this algorithm indicated that these results should be achievable. Some modifications have been made to the at-launch retrieval algorithm as described in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and validated as a function of retrieved fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small. HSB failed in February 2005, and consequently HSB channel radiances are not used in the results shown in this paper. The AIRS/AMSU retrieval algorithm described in this paper, called Version 4, become operational at the Goddard DAAC in April 2005 and is being used to analyze near-real time AIRS/AMSU data. Historical AIRS/AMSU data, going backwards from March 2005 through September 2002, is also being analyzed by the DAAC using the Version 4 algorithm.

  11. Relationships between nocturnal winter road slipperiness, cloud cover and surface temperature

    NASA Astrophysics Data System (ADS)

    Grimbacher, T.; Schmid, W.

    2003-04-01

    Ice and Snow are important risks for road traffic. In this study we show several events of slipperiness in Switzerland, mainly caused by rain or snow falling on a frozen surface. Other reasons for slippery conditions are frost or freezing dew in clear nights and nocturnal clearing after precipitation, which goes along with radiative cooling. The main parameters of road weather forecasts are precipitation, cloudiness and surface temperature. Precipitation is well predictable with weather radars and radar nowcasting algorithms. Temperatures are often taken from numerical weather prediction models, but because of changes in cloud cover these model values are inaccurate in terms of predicting the onset of freezing. Cloudiness, especially the advection, formation and dissipation of clouds and their interaction with surface temperatures, is one of the major unsolved problems of road weather forecasts. Cloud cover and the temperature difference between air and surface temperature are important parameters of the radiation balance. In this contribution, we show the relationship between them, proved at several stations all over Switzerland. We found a quadratic correlation coefficient of typically 60% and improved it considering other meteorological parameters like wind speed and surface water. The acquired relationship may vary from one station to another, but we conclude that temperature difference is a signature for nocturnal cloudiness. We investigated nocturnal cloudiness for two cases from winters 2002 and 2003 in the canton of Lucerne in central Switzerland. There, an ultra-dense combination of two networks with together 55 stations within 50x50 km^2 is operated, measuring air and surface temperature, wind and other road weather parameters. With the aid of our equations, temperature differences detected from this network were converted into cloud maps. A comparison between precipitation seen by radar, cloud maps and surface temperatures shows that there are similar

  12. Further evidence for particle nucleation in clear air adjacent to marine cumulus clouds

    NASA Astrophysics Data System (ADS)

    Perry, Kevin D.; Hobbs, Peter V.

    1994-11-01

    Observational evidence is presented for the nucleation of condensation nuclei (CN) in the clear air adjacent to an isolated, marine, cumulus cloud. Two separate regions of particle nucleation are identified: one located above the cloud top, and the second located downwind of the cloud near the level of the anvil outflow. The regions of high CN concentrations were located in extremely clean marine air, with unactivated aerosol surface area (excluding the nucleation mode) less than 2 sq micrometers/cu cm, air temperature -31 C, and higher relative humidities than the undisturbed environment. Vertical profile measurements downwind of the cloud showed that CN concentrations at the level of the anvil outflow (4.9 km) were 8 times greater than at any other level between the surface and 5.3 km. A conceptual model is formulated in which aerosol particles, sulfur dioxide (SO2), sulfuric acid vapor (H2SO4), dimethyl sulfide (DMS), and ozone (O3) from the boundary layer are entrained into the cumulus cloud. Total aerosol number concentrations and unactivated aerosol surface area decrease with height in the cloud due to Brownian diffusion and diffusiophoresis of cloud interstitial aerosol to hydrometeors, coalescence scavenging by cloud droplets, collisional scavenging by ice particles, and subsequent removal by precipitation. The air that is detrained from the cloud raises the relative humidity and vents the clean air, SO2, H2SO4, DMS, and O3 to the near-cloud environment. Hydroxyl radicals then oxidize the SO2 and DMS to H2SO4. Under the conditions of high relative humidity, low total aerosol surface area, low temperatures, and high SO2 concentrations near cloud top, significant concentrations of new particles can be produced by homogeneous-bimolecular nucleation of sulfuric acid solution droplets from H2SO4 and H2O vapor molecules. The concentration of CN as a function of time is calculated for the case described in this paper using a bimodal integral nucleation model. The

  13. Data Assimilation Experiments using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    SUsskind, Joel

    2008-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 pm C02 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 pm C02 observations are now used primarily in the generation of cloud cleared radiances Ri. This approach allows for the generation of accurate values of Ri and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by- channel error estimates for Ri. These error estimates are used for quality control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of quality control using the NASA GEOS-5 data assimilation system. Assimilation of quality controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done Operationally by ECMWF and NCEP. Forecasts resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.

  14. AirMSPI ORACLES Cloud Droplet Data V001

    Atmospheric Science Data Center

    2018-05-05

    AirMSPI_ORACLES_Cloud_Droplet_Size_and_Cloud_Optical_Depth L2 Derived Geophysical Parameters ... Order: Earthdata Search Parameters:  Cloud Optical Depth Cloud Droplet Effective Radius Cloud Droplet ...

  15. On the response of MODIS cloud coverage to global mean surface air temperature

    NASA Astrophysics Data System (ADS)

    Yue, Qing; Kahn, Brian H.; Fetzer, Eric J.; Wong, Sun; Frey, Richard; Meyer, Kerry G.

    2017-01-01

    The global surface temperature change (ΔTs) mediated cloud cover response is directly related to cloud-climate feedback. Using satellite remote sensing data to relate cloud and climate requires a well-calibrated, stable, and consistent long-term cloud data record. The Collection 5.1 (C5) Moderate Resolution Imaging Spectroradiometer (MODIS) cloud observations have been widely used for this purpose. However, the MODIS data quality varies greatly with the surface type, spectral region, cloud type, and time periods of study, which calls for additional caution when applying such data to studies on cloud cover temporal trends and variability. Using 15 years of cloud observations made by Terra and Aqua MODIS, we analyze the ΔTs-mediated cloud cover response for different cloud types by linearly regressing the monthly anomaly of cloud cover (ΔC) with the monthly anomaly of global Ts. The Collection 6 (C6) Aqua data exhibit a similar cloud response to the long-term counterpart simulated by advanced climate models. A robust increase in altitude with increasing ΔTs is found for high clouds, while a robust decrease of ΔC is noticed for optically thick low clouds. The large differences between C5 and C6 results are from improvements in calibration and cloud retrieval algorithms. The large positive cloud cover responses with data after 2010 and the strong sensitivity to time period obtained from the Terra (C5 and C6) data are likely due to calibration drift that has not been corrected, suggesting that the previous estimate of the short-term cloud cover response from the these data should be revisited.

  16. The variability of California summertime marine stratus: impacts on surface air temperatures

    USGS Publications Warehouse

    Iacobellis, Sam F.; Cayan, Daniel R.

    2013-01-01

    This study investigates the variability of clouds, primarily marine stratus clouds, and how they are associated with surface temperature anomalies over California, especially along the coastal margin. We focus on the summer months of June to September when marine stratus are the dominant cloud type. Data used include satellite cloud reflectivity (cloud albedo) measurements, hourly surface observations of cloud cover and air temperature at coastal airports, and observed values of daily surface temperature at stations throughout California and Nevada. Much of the anomalous variability of summer clouds is organized over regional patterns that affect considerable portions of the coast, often extend hundreds of kilometers to the west and southwest over the North Pacific, and are bounded to the east by coastal mountains. The occurrence of marine stratus is positively correlated with both the strength and height of the thermal inversion that caps the marine boundary layer, with inversion base height being a key factor in determining their inland penetration. Cloud cover is strongly associated with surface temperature variations. In general, increased presence of cloud (higher cloud albedo) produces cooler daytime temperatures and warmer nighttime temperatures. Summer daytime temperature fluctuations associated with cloud cover variations typically exceed 1°C. The inversion-cloud albedo-temperature associations that occur at daily timescales are also found at seasonal timescales.

  17. Hurricane Irma's Cloud Structure as Seen by NASA's AIRS

    NASA Image and Video Library

    2017-09-08

    The large-scale structure of clouds in and around Hurricane Irma is seen in this animation and still image created with data from the Atmospheric Infrared Sounder (AIRS) instrument on NASA's Aqua satellite. The clouds are typical of tropical areas both nearby and away from tropical cyclones. Observations were taken at 1 p.m. EDT (5 p.m. UTC) on Tuesday, Sept. 5, 2017, as Irma approached the Caribbean islands and was just becoming a powerful Category 5 storm. Each cylinder represents a volume of cloud detected by AIRS. The oval cylinder ends represent a region viewed by AIRS, with the oval sizes adjusted to reflect the proportion of clouds filling the area viewed. The largest ovals are about 30 miles (45 kilometers) across. The height of the cylinders indicates the cloud thickness, with thickest clouds reaching down to the surface. The vertical scale is exaggerated 15 times. Colors represent temperatures at the tops of the clouds. The perspective views the storm diagonally from above with an initial view toward the north-northwest, with the perspective rotating clockwise for a full circle. The area depicted is about 1,000 miles by 800 miles across (1,600 by 1,300 kilometers). At the start of the loop, North America is seen at the top of the image, and coastal Venezuela at the lower right. In the initial perspective, cirrus clouds (thin and blue), associated with flow outward from the top of the hurricane, overlie warmer (pink and red) shallow clouds. About five seconds into the loop, the deep clouds in the middle of Irma are easily seen. The most dangerous parts of Irma are within the region of high and cold (blue), thick clouds surrounding the central eye. The clouds are cold because they are carried to high, cold altitudes by vigorous thunderstorms within the hurricane. The eye itself is nearly cloud free, but the few clouds within it are low and warm. As the perspective shift toward the south-southeast around seven seconds into the loop, another storm system well

  18. Spectral Cloud-Filtering of AIRS Data: Non-Polar Ocean

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Gregorich, David; Barron, Diana

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) is a grating array spectrometer which covers the thermal infrared spectral range between 640 and 1700/cm. In order to retain the maximum radiometric accuracy of the AIRS data, the effects of cloud contamination have to be minimized. We discuss cloud filtering which uses the high spectral resolution of AIRS to identify about 100,000 of 500,000 non-polar ocean spectra per day as relatively "cloud-free". Based on the comparison of surface channels with the NCEP provided global real time sst (rtg.sst), AIRS surface sensitive channels have a cold bias ranging from O.5K during the day to 0.8K during the night. Day and night spatial coherence tests show that the cold bias is due to cloud contamination. During the day the cloud contamination is due to a 2-3% broken cloud cover at the 1-2 km altitude, characteristic of low stratus clouds. The cloud-contamination effects surface sensitive channels only. Cloud contamination can be reduced to 0.2K by combining the spectral filter with a spatial coherence threshold, but the yield drops to 16,000 spectra per day. AIRS was launched in May 2002 on the Earth Observing System (EOS) Aqua satellite. Since September 2002 it has returned 4 million spectra of the globe each day.

  19. Low-latitude variability of ice cloud properties and cloud thermodynamic phase observed by the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Kahn, B. H.; Yue, Q.; Davis, S. M.; Fetzer, E. J.; Schreier, M. M.; Tian, B.; Wong, S.

    2016-12-01

    We will quantify the time and space dependence of ice cloud effective radius (CER), optical thickness (COT), cloud top temperature (CTT), effective cloud fraction (ECF), and cloud thermodynamic phase (ice, liquid, or unknown) with the Version 6 Atmospheric Infrared Sounder (AIRS) satellite observational data set from September 2002 until present. We show that cloud frequency, CTT, COT, and ECF have substantially different responses to ENSO variations. Large-scale changes in ice CER are also observed with a several micron tropics-wide increase during the 2015-2016 El Niño and similar decreases during the La Niña phase. We show that the ice CER variations reflect fundamental changes in the spatial distributions and relative frequencies of different ice cloud types. Lastly, the high spatial and temporal resolution variability of the cloud fields are explored and we show that these data capture a multitude of convectively coupled tropical waves such as Kelvin, westward and eastward intertio-gravity, equatorial Rossby, and mixed Rossby-gravity waves.

  20. Preliminary results of radiometric measurements of clear air and cloud brightness (antenna) temperatures at 37GHz

    NASA Astrophysics Data System (ADS)

    Arakelyan, A. K.; Hambaryan, A. K.; Arakelyan, A. A.

    2012-05-01

    In this paper the results of polarization measurements of clear air and clouds brightness temperatures at 37GHz are presented. The results were obtained during the measurements carried out in Armenia from the measuring complex built under the framework of ISTC Projects A-872 and A-1524. The measurements were carried out at vertical and horizontal polarizations, under various angles of sensing by Ka-band combined scatterometric-radiometric system (ArtAr-37) developed and built by ECOSERV Remote Observation Centre Co.Ltd. under the framework of the above Projects. In the paper structural and operational features of the utilized system and the whole measuring complex will be considered and discussed as well.

  1. Improving Forecast Skill by Assimilation of Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2009-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of cloud cleared radiances R(sub i). This approach allows for the generation of accurate values of R(sub i) and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel error estimates for R(sub i). These error estimates are used for Quality Control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of Quality Control using the NASA GEOS-5 data assimilation system. Assimilation of Quality Controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done operationally by ECMWF and NCEP. Forecast resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.

  2. Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels

    NASA Technical Reports Server (NTRS)

    Susskind,Joel

    2009-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. AIRS is a grating spectrometer with a number of linear arrays of detectors with each detector sensitive to outgoing radiation in a characteristic frequency v(sub i) with a spectral band pass delta v(sub i) of roughly v(sub i) /1200. AIRS contains 2378 spectral channels covering portions of the spectral region 650 cm(exp -1) (15.38 gm) - 2665 cm(exp -1)' (3.752 micrometers). These spectral regions contain significant absorption features from two CO2 absorption bands, the 15 micrometer (longwave) CO2 band, and the 4.3 micrometer (shortwave) CO, absorption band. There are also two atmospheric window regions, the 12 micrometerm - 8 micrometer (longwave) window, and the 4.17 micrometer - 3.75 micrometer (shortwave) window. Historically, determination of surface and atmospheric temperatures from satellite observations was performed using primarily observations in the longwave window and CO2 absorption regions. One reason for this was concerns about the effects, during the day, of reflected sunlight and non-Local Thermodynamic Equilibrium (non-LTE) on the observed radiances in the shortwave portion of the spectrum. According to cloud clearing theory, more accurate soundings of both surface skin and atmospheric temperatures can be obtained under partial cloud cover conditions if one uses the longwave channels to determine cloud cleared radiances R(sub i) for all channels, and uses R(sub i) only from shortwave channels in the determination of surface and atmospheric temperatures. This procedure is now being used by the AIRS Science Team in preparation for the AIRS Version 6 Retrieval Algorithm. This paper describes how the effects on the radiances of solar radiation reflected by clouds and the Earth's surface, and also of non-LTE, are accounted for in the analysis of the data. Results are presented for both

  3. Synergistic Use of MODIS and AIRS in a Variational Retrieval of Cloud Parameters.

    NASA Astrophysics Data System (ADS)

    Li, Jun; Menzel, W. Paul; Zhang, Wenjian; Sun, Fengying; Schmit, Timothy J.; Gurka, James J.; Weisz, Elisabeth

    2004-11-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS's) Aqua satellite enable global monitoring of the distribution of clouds. MODIS is able to provide a cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size, and cloud optical thickness at high spatial resolution (1 5 km). The combined MODIS AIRS system offers the opportunity for improved cloud products, better than from either system alone; this improvement is demonstrated in this paper with both simulated and real radiances. A one-dimensional variational (1DVAR) methodology is used to retrieve the CTP and ECA from AIRS longwave (650 790 cm-1 or 15.38 12.65 μm) cloudy radiance measurements (hereinafter referred to as MODIS AIRS 1DVAR). The MODIS AIRS 1DVAR cloud properties show significant improvement over the MODIS-alone cloud properties and slight improvement over AIRS-alone cloud properties in a simulation study, while MODIS AIRS 1DVAR is much more computationally efficient than the AIRS-alone 1DVAR; comparisons with radiosonde observations show that CTPs improve by 10 40 hPa for MODIS AIRS CTPs over those from MODIS alone. The 1DVAR approach is applied to process the AIRS longwave cloudy radiance measurements; results are compared with MODIS and Geostationary Operational Environmental Satellite sounder cloud products. Data from ground-based instrumentation at the Atmospheric Radiation Measurement Program Cloud and Radiation Test Bed in Oklahoma are used for validation; results show that MODIS AIRS improves the MODIS CTP, especially in low-level clouds. The operational use of a high-spatial-resolution imager, along with information from a high-spectral-resolution sounder will be possible with instruments planned for the next-generation geostationary operational instruments.


  4. Improving Forecast Skill by Assimilation of Quality-controlled AIRS Temperature Retrievals under Partially Cloudy Conditions

    NASA Technical Reports Server (NTRS)

    Reale, O.; Susskind, J.; Rosenberg, R.; Brin, E.; Riishojgaard, L.; Liu, E.; Terry, J.; Jusem, J. C.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite has been long recognized as an important contributor towards the improvement of weather forecasts. At this time only a small fraction of the total data produced by AIRS is being used by operational weather systems. In fact, in addition to effects of thinning and quality control, the only AIRS data assimilated are radiance observations of channels unaffected by clouds. Observations in mid-lower tropospheric sounding AIRS channels are assimilated primarily under completely clear-sky conditions, thus imposing a very severe limitation on the horizontal distribution of the AIRS-derived information. In this work it is shown that the ability to derive accurate temperature profiles from AIRS observations in partially cloud-contaminated areas can be utilized to further improve the impact of AIRS observations in a global model and forecasting system. The analyses produced by assimilating AIRS temperature profiles obtained under partial cloud cover result in a substantially colder representation of the northern hemisphere lower midtroposphere at higher latitudes. This temperature difference has a strong impact, through hydrostatic adjustment, in the midtropospheric geopotential heights, which causes a different representation of the polar vortex especially over northeastern Siberia and Alaska. The AIRS-induced anomaly propagates through the model's dynamics producing improved 5-day forecasts.

  5. Geo-spatial distribution of cloud cover and influence of cloud induced attenuation and noise temperature on satellite signal propagation over Nigeria

    NASA Astrophysics Data System (ADS)

    Ojo, Joseph Sunday

    2017-05-01

    The study of the influence of cloud cover on satellite propagation links is becoming more demanding due to the requirement of larger bandwidth for different satellite applications. Cloud attenuation is one of the major factors to consider for optimum performance of Ka/V and other higher frequency bands. In this paper, the geo-spatial distribution of cloud coverage over some chosen stations in Nigeria has been considered. The substantial scale spatial dispersion of cloud cover based on synoptic meteorological data and the possible impact on satellite communication links at higher frequency bands was also investigated. The investigation was based on 5 years (2008-2012) achieved cloud cover data collected by the Nigerian Meteorological Agency (NIMET) Federal Ministry of Aviation, Oshodi Lagos over four synoptic hours of the day covering day and night. The performances of satellite signals as they traverse through the cloud and cloud noise temperature at different seasons and over different hours of days at Ku/W-bands frequency are also examined. The overall result shows that the additional total atmospheric noise temperature due to the clear air effect and the noise temperature from the cloud reduces the signal-to-noise ratio of the satellite receiver systems, leading to more signal loss and if not adequately taken care of may lead to significant outage. The present results will be useful for Earth-space link budgeting, especially for the proposed multi-sensors communication satellite systems in Nigeria.

  6. Cloudy Sounding and Cloud-Top Height Retrieval From AIRS Alone Single Field-of-View Radiance Measurements

    NASA Technical Reports Server (NTRS)

    Weisz, Elisabeth; Li, Jun; Li, Jinlong; Zhou, Daniel K.; Huang, Hung-Lung; Goldberg, Mitchell D.; Yang, Ping

    2007-01-01

    High-spectral resolution measurements from the Atmospheric Infrared Sounder (AIRS) onboard the EOS (Earth Observing System) Aqua satellite provide unique information about atmospheric state, surface and cloud properties. This paper presents an AIRS alone single field-of-view (SFOV) retrieval algorithm to simultaneously retrieve temperature, humidity and ozone profiles under all weather conditions, as well as cloud top pressure (CTP) and cloud optical thickness (COT) under cloudy skies. For optically thick cloud conditions the above-cloud soundings are derived, whereas for clear skies and optically thin cloud conditions the profiles are retrieved from 0.005 hPa down to the earth's surface. Initial validation has been conducted by using the operational MODIS (Moderate Resolution Imaging Spectroradiometer) product, ECMWF (European Center of Medium range Weather Forecasts) analysis fields and radiosonde observations (RAOBs). These inter-comparisons clearly demonstrate the potential of this algorithm to process data from 38 high-spectral infrared (IR) sounder instruments.

  7. Data Assimilation Experiments using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2008-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AlRS data. Version 5 contains accurate case-by-case error estimates for most derived products, which are also used for quality control. We have conducted forecast impact experiments assimilating AlRS quality controlled temperature profiles using the NASA GEOS-5 data assimilation system, consisting of the NCEP GSI analysis coupled with the NASA FVGCM. Assimilation of quality controlled temperature profiles resulted in significantly improved forecast skill in both the Northern Hemisphere and Southern Hemisphere Extra-Tropics, compared to that obtained from analyses obtained when all data used operationally by NCEP except for AlRS data is assimilated. Experiments using different Quality Control thresholds for assimilation of AlRS temperature retrievals showed that a medium quality control threshold performed better than a tighter threshold, which provided better overall sounding accuracy; or a looser threshold, which provided better spatial coverage of accepted soundings. We are conducting more experiments to further optimize this balance of spatial coverage and sounding accuracy from the data assimilation perspective. In all cases, temperature soundings were assimilated well below cloud level in partially cloudy cases. The positive impact of assimilating AlRS derived atmospheric temperatures all but vanished when only AIRS stratospheric temperatures were assimilated. Forecast skill resulting from assimilation of AlRS radiances uncontaminated by clouds, instead of AlRS temperature soundings, was only slightly better than that resulting from assimilation of only stratospheric AlRS temperatures. This reduction in forecast skill is most likely the result of significant loss of tropospheric information when only AIRS radiances unaffected by clouds are used in the data assimilation process.

  8. Satellite Data Analysis of Impact of Anthropogenic Air Pollution on Ice Clouds

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Liou, K. N.; Zhao, B.; Jiang, J. H.; Su, H.

    2017-12-01

    Despite numerous studies about the impact of aerosols on ice clouds, the role of anthropogenic aerosols in ice processes, especially over pollution regions, remains unclear and controversial, and has not been considered in a regional model. The objective of this study is to improve our understanding of the ice process associated with anthropogenic aerosols, and provide a comprehensive assessment of the contribution of anthropogenic aerosols to ice nucleation, ice cloud properties, and the consequent regional radiative forcing. As the first attempt, we evaluate the effects of different aerosol types (mineral dust, air pollution, polluted dust, and smoke) on ice cloud micro- and macro-physical properties using satellite data. We identify cases with collocated CloudSat, CALIPSO, and Aqua observations of vertically resolved aerosol and cloud properties, and process these observations into the same spatial resolution. The CALIPSO's aerosol classification algorithm determines aerosol layers as one of six defined aerosol types by taking into account the lidar depolarization ratio, integrated attenuated backscattering, surface type, and layer elevation. We categorize the cases identified above according to aerosol types, collect relevant aerosol and ice cloud variables, and determine the correlation between column/layer AOD and ice cloud properties for each aerosol type. Specifically, we investigate the correlation between aerosol loading (indicated by the column AOD and layer AOD) and ice cloud microphysical properties (ice water content, ice crystal number concentration, and ice crystal effective radius) and macro-physical properties (ice water path, ice cloud fraction, cloud top temperature, and cloud thickness). By comparing the responses of ice cloud properties to aerosol loadings for different aerosol types, we infer the role of different aerosol types in ice nucleation and the evolution of ice clouds. Our preliminary study shows that changes in the ice crystal

  9. Satellite Sounder-Based OLR-, Cloud- and Atmospheric Temperature Climatologies for Climate Analyses

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula I.; Susskind, Joel

    2006-01-01

    Global energy balance of the Earth-atmosphere system may change due to natural and man-made climate variations. For example, changes in the outgoing longwave radiation (OLR) can be regarded as a crucial indicator of climate variations. Clouds play an important role -still insufficiently assessed in the global energy balance on all spatial and temporal scales, and satellites provide an ideal platform to measure cloud and large-scale atmospheric variables simultaneously. The TOVS series of satellites were the first to provide this type of information since 1979. OLR [Mehta and Susskind], cloud cover and cloud top pressure [Susskind et al] are among the key climatic parameters computed by the TOVS Pathfinder Path-A algorithm using mainly the retrieved temperature and moisture profiles. AIRS, regarded as the new and improved TOVS , has a much higher spectral resolution and greater S/N ratio, retrieving climatic parameters with higher accuracy. First we present encouraging agreements between MODIS and AIRS cloud top pressure (C(sub tp) and effective (A(sub eff), a product of infrared emissivity at 11 microns and physical cloud cover or A(sub c)) cloud fraction seasonal and interannual variabilities for selected months. Next we present validation efforts and preliminary trend analyses of TOVS-retrieved C(sub tp) and A(sub eff). For example, decadal global trends of the TOVS Path-A and ISCCP-D2 P(sub c), and A(sub eff)/A(sub c), values are similar. Furthermore, the TOVS Path-A and ISCCP-AVHRR [available since 19831 cloud fractions correlate even more strongly, including regional trends. We also present TOVS and AIRS OLR validation effort results and (for the longer-term TOVS Pathfinder Path-A dataset) trend analyses. OLR interannual spatial variabilities from the available state-of-the-art CERES measurements and both from the AIRS [Susskind et al] and TOVS OLR computations are in remarkably good agreement. Global monthly mean CERES and TOVS OLR time series show very good

  10. Characterization of AIRS temperature and water vapor measurement capability using correlative observations

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Eldering, Annmarie; Lee, Sung-Yung

    2005-01-01

    In this presentation we address several fundamental issues in the measurement of temperature and water vapor by AIRS: accuracy, precision, vertical resolution and biases as a function of cloud amount. We use two correlative data sources. First we compare AIRS total water vapor with that from the Advanced microwave Sounding Radiometer for EOS (AMSR-E) instrument, also onboard the Aqua spacecraft. AMSRE uses a mature methodology with a heritage including the operational Special Sensor Microwave Imager (SSM/I) instruments. AIRS and AMSR-E observations are collocated and simultaneous, providing a very large data set for comparison: about 200,000 over-ocean matches daily. We show small cloud-dependent biases between AIRS and AMSR-E total water vapor for several oceanic regions. Our second correlative data source is several hundred dedicated radiosondes launched during AIRS overpasses.

  11. Spatial Correlations of Anomaly Time Series of AIRS Version-6 Land Surface Skin Temperatures with the Nino-4 Index

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2013-01-01

    The AIRS Science Team Version-6 data set is a valuable resource for meteorological studies. Quality Controlled earth's surface skin temperatures are produced on a 45 km x 45 km spatial scale under most cloud cover conditions. The same retrieval algorithm is used for all surface types under all conditions. This study used eleven years of AIRS monthly mean surface skin temperature and cloud cover products to show that land surface skin temperatures have decreased significantly in some areas and increased significantly in other areas over the period September 2002 through August 2013. These changes occurred primarily at 1:30 PM but not at 1:30 AM. Cooling land areas contained corresponding increases in cloud cover over this time period, with the reverse being true for warming land areas. The cloud cover anomaly patterns for a given month are affected significantly by El Nino/La Nina activity, and anomalies in cloud cover are a driving force behind anomalies in land surface skin temperature.

  12. A physically based algorithm for non-blackbody correction of the cloud top temperature for the convective clouds

    NASA Astrophysics Data System (ADS)

    Wang, C.; Luo, Z. J.; Chen, X.; Zeng, X.; Tao, W.; Huang, X.

    2012-12-01

    Cloud top temperature is a key parameter to retrieval in the remote sensing of convective clouds. Passive remote sensing cannot directly measure the temperature at the cloud tops. Here we explore a synergistic way of estimating cloud top temperature by making use of the simultaneous passive and active remote sensing of clouds (in this case, CloudSat and MODIS). Weighting function of the MODIS 11μm band is explicitly calculated by feeding cloud hydrometer profiles from CloudSat retrievals and temperature and humidity profiles based on ECMWF ERA-interim reanalysis into a radiation transfer model. Among 19,699 tropical deep convective clouds observed by the CloudSat in 2008, the averaged effective emission level (EEL, where the weighting function attains its maximum) is at optical depth 0.91 with a standard deviation of 0.33. Furthermore, the vertical gradient of CloudSat radar reflectivity, an indicator of the fuzziness of convective cloud top, is linearly proportional to, d_{CTH-EEL}, the distance between the EEL of 11μm channel and cloud top height (CTH) determined by the CloudSat when d_{CTH-EEL}<0.6km. Beyond 0.6km, the distance has little sensitivity to the vertical gradient of CloudSat radar reflectivity. Based on these findings, we derive a formula between the fuzziness in the cloud top region, which is measurable by CloudSat, and the MODIS 11μm brightness temperature assuming that the difference between effective emission temperature and the 11μm brightness temperature is proportional to the cloud top fuzziness. This formula is verified using the simulated deep convective cloud profiles by the Goddard Cumulus Ensemble model. We further discuss the application of this formula in estimating cloud top buoyancy as well as the error characteristics of the radiative calculation within such deep-convective clouds.

  13. Comparison of MODIS-derived land surface temperature with air temperature measurements

    NASA Astrophysics Data System (ADS)

    Georgiou, Andreas; Akçit, Nuhcan

    2017-09-01

    Air surface temperature is an important parameter for a wide range of applications such as agriculture, hydrology and climate change studies. Air temperature data is usually obtained from measurements made in meteorological stations, providing only limited information about spatial patterns over wide areas. The use of remote sensing data can help overcome this problem, particularly in areas with low station density, having the potential to improve the estimation of air surface temperature at both regional and global scales. Land Surface (skin) Temperatures (LST) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra and Aqua satellite platforms provide spatial estimates of near-surface temperature values. In this study, LST values from MODIS are compared to groundbased near surface air (Tair) measurements obtained from 14 observational stations during 2011 to 2015, covering coastal, mountainous and urban areas over Cyprus. Combining Terra and Aqua LST-8 Day and Night acquisitions into a mean monthly value, provide a large number of LST observations and a better overall agreement with Tair. Comparison between mean monthly LSTs and mean monthly Tair for all sites and all seasons pooled together yields a very high correlation and biases. In addition, the presented high standard deviation can be explained by the influence of surface heterogeneity within MODIS 1km2 grid cells, the presence of undetected clouds and the inherent difference between LST and Tair. However, MODIS LST data proved to be a reliable proxy for surface temperature and mostly for studies requiring temperature reconstruction in areas with lack of observational stations.

  14. Characteristics of vertical air motion in isolated convective clouds

    DOE PAGES

    Yang, Jing; Wang, Zhien; Heymsfield, Andrew J.; ...

    2016-08-11

    The vertical velocity and air mass flux in isolated convective clouds are statistically analyzed using aircraft in situ data collected from three field campaigns: High-Plains Cumulus (HiCu) conducted over the midlatitude High Plains, COnvective Precipitation Experiment (COPE) conducted in a midlatitude coastal area, and Ice in Clouds Experiment-Tropical (ICE-T) conducted over a tropical ocean. The results show that small-scale updrafts and downdrafts (<  500 m in diameter) are frequently observed in the three field campaigns, and they make important contributions to the total air mass flux. The probability density functions (PDFs) and profiles of the observed vertical velocity are provided. The PDFsmore » are exponentially distributed. The updrafts generally strengthen with height. Relatively strong updrafts (>  20 m s −1) were sampled in COPE and ICE-T. The observed downdrafts are stronger in HiCu and COPE than in ICE-T. The PDFs of the air mass flux are exponentially distributed as well. The observed maximum air mass flux in updrafts is of the order 10 4 kg m −1 s −1. The observed air mass flux in the downdrafts is typically a few times smaller in magnitude than that in the updrafts. Since this study only deals with isolated convective clouds, and there are many limitations and sampling issues in aircraft in situ measurements, more observations are needed to better explore the vertical air motion in convective clouds.« less

  15. A Study of Global Cirrus Cloud Morphology with AIRS Cloud-clear Radiances (CCRs)

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.; Gong, Jie

    2012-01-01

    Version 6 (V6) AIRS cloud-clear radiances (CCR) are used to derive cloud-induced radiance (Tcir=Tb-CCR) at the infrared frequencies of weighting functions peaked in the middle troposphere. The significantly improved V 6 CCR product allows a more accurate estimation of the expected clear-sky radiance as if clouds are absent. In the case where strong cloud scattering is present, the CCR becomes unreliable, which is reflected by its estimated uncertainty, and interpolation is employed to replace this CCR value. We find that Tcir derived from this CCR method are much better than other methods and detect more clouds in the upper and lower troposphere as well as in the polar regions where cloud detection is particularly challenging. The cloud morphology derived from the V6 test month, as well as some artifacts, will be shown.

  16. Role of persistent low-level clouds in mitigating air quality impacts of wintertime cold pool conditions

    NASA Astrophysics Data System (ADS)

    VanReken, Timothy M.; Dhammapala, Ranil S.; Jobson, B. Thomas; Bottenus, Courtney L.; VanderSchelden, Graham S.; Kaspari, Susan D.; Gao, Zhongming; Zhu, Qiurui; Lamb, Brian K.; Liu, Heping; Johnston, Jeff

    2017-04-01

    The Yakima Air Wintertime Nitrate Study (YAWNS) was conducted in January 2013 to investigate the drivers of elevated levels of fine particulate matter (PM2.5) frequently present in the region during winter stagnation periods. An extended stagnation period occurred during the study. For the first four days of the event, skies were clear and the strong diel variation in air pollution patterns were consistent with the expected effects of strong low-level nighttime temperature inversions with moderate mixing during daylight hours. Later in the event a low-level cloud layer formed that persisted over the Yakima Valley for the next seven days while regional conditions remained stagnant. Coincident with the onset of cloud, the levels of all measured primary pollutants, including CO2, CO, NOx, particle number concentration, and black carbon, dropped dramatically and remained low with negligible diel variation for as long as the cloud layer was present. The observed patterns for these air pollutants are consistent with decreased stability and enhanced mixing associated with the cloud-topped boundary layer. Interestingly, levels of secondary pollutants, most notably particulate ammonium nitrate, did not exhibit the same decline. This difference may be due to shifts in the chemical production of secondary pollutants during cloudy conditions, or may merely reflect a further influence of mixing. The results imply that the best strategies for managing wintertime air quality during episodes of persistent cloud are likely different from those needed during clear-sky stagnation events.

  17. Calibrating the HISA temperature: Measuring the temperature of the Riegel-Crutcher cloud

    NASA Astrophysics Data System (ADS)

    Dénes, H.; McClure-Griffiths, N. M.; Dickey, J. M.; Dawson, J. R.; Murray, C. E.

    2018-06-01

    H I self absorption (HISA) clouds are clumps of cold neutral hydrogen (H I) visible in front of warm background gas, which makes them ideal places to study the properties of the cold atomic component of the interstellar medium (ISM). The Riegel-Crutcher (R-C) cloud is the most striking HISA feature in the Galaxy. It is one of the closest HISA clouds to us and is located in the direction of the Galactic Centre, which provides a bright background. High-resolution interferometric measurements have revealed the filamentary structure of this cloud, however it is difficult to accurately determine the temperature and the density of the gas without optical depth measurements. In this paper we present new H I absorption observations with the Australia Telescope Compact Array (ATCA) against 46 continuum sources behind the Riegel-Crutcher cloud to directly measure the optical depth of the cloud. We decompose the complex H I absorption spectra into Gaussian components using an automated machine learning algorithm. We find 300 Gaussian components, from which 67 are associated with the R-C cloud (0 < vLSR < 10 km s-1, FWHM <10 km s-1). Combining the new H I absorption data with H I emission data from previous surveys we calculate the spin temperature and find it to be between 20 and 80 K. Our measurements uncover a temperature gradient across the cloud with spin temperatures decreasing towards positive Galactic latitudes. We also find three new OH absorption lines associated with the cloud, which support the presence of molecular gas.

  18. Reconciling biases and uncertainties of AIRS and MODIS ice cloud properties

    NASA Astrophysics Data System (ADS)

    Kahn, B. H.; Gettelman, A.

    2015-12-01

    We will discuss comparisons of collocated Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS) ice cloud optical thickness (COT), effective radius (CER), and cloud thermodynamic phase retrievals. The ice cloud comparisons are stratified by retrieval uncertainty estimates, horizontal inhomogeneity at the pixel-scale, vertical cloud structure, and other key parameters. Although an estimated 27% globally of all AIRS pixels contain ice cloud, only 7% of them are spatially uniform ice according to MODIS. We find that the correlations of COT and CER between the two instruments are strong functions of horizontal cloud heterogeneity and vertical cloud structure. The best correlations are found in single-layer, horizontally homogeneous clouds over the low-latitude tropical oceans with biases and scatter that increase with scene complexity. While the COT comparisons are unbiased in homogeneous ice clouds, a bias of 5-10 microns remains in CER within the most homogeneous scenes identified. This behavior is entirely consistent with known sensitivity differences in the visible and infrared bands. We will use AIRS and MODIS ice cloud properties to evaluate ice hydrometeor output from climate model output, such as the CAM5, with comparisons sorted into different dynamical regimes. The results of the regime-dependent comparisons will be described and implications for model evaluation and future satellite observational needs will be discussed.

  19. Improved Surface and Tropospheric Temperatures Determined Using Only Shortwave Channels: The AIRS Science Team Version-6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2011-01-01

    The Goddard DISC has generated products derived from AIRS/AMSU-A observations, starting from September 2002 when the AIRS instrument became stable, using the AIRS Science Team Version-5 retrieval algorithm. The AIRS Science Team Version-6 retrieval algorithm will be finalized in September 2011. This paper describes some of the significant improvements contained in the Version-6 retrieval algorithm, compared to that used in Version-5, with an emphasis on the improvement of atmospheric temperature profiles, ocean and land surface skin temperatures, and ocean and land surface spectral emissivities. AIRS contains 2378 spectral channels covering portions of the spectral region 650 cm(sup -1) (15.38 micrometers) - 2665 cm(sup -1) (3.752 micrometers). These spectral regions contain significant absorption features from two CO2 absorption bands, the 15 micrometers (longwave) CO2 band, and the 4.3 micrometers (shortwave) CO2 absorption band. There are also two atmospheric window regions, the 12 micrometer - 8 micrometer (longwave) window, and the 4.17 micrometer - 3.75 micrometer (shortwave) window. Historically, determination of surface and atmospheric temperatures from satellite observations was performed using primarily observations in the longwave window and CO2 absorption regions. According to cloud clearing theory, more accurate soundings of both surface skin and atmospheric temperatures can be obtained under partial cloud cover conditions if one uses observations in longwave channels to determine coefficients which generate cloud cleared radiances R(sup ^)(sub i) for all channels, and uses R(sup ^)(sub i) only from shortwave channels in the determination of surface and atmospheric temperatures. This procedure is now being used in the AIRS Version-6 Retrieval Algorithm. Results are presented for both daytime and nighttime conditions showing improved Version-6 surface and atmospheric soundings under partial cloud cover.

  20. Southeast Atlantic Cloud Properties in a Multivariate Statistical Model - How Relevant is Air Mass History for Local Cloud Properties?

    NASA Astrophysics Data System (ADS)

    Fuchs, Julia; Cermak, Jan; Andersen, Hendrik

    2017-04-01

    This study aims at untangling the impacts of external dynamics and local conditions on cloud properties in the Southeast Atlantic (SEA) by combining satellite and reanalysis data using multivariate statistics. The understanding of clouds and their determinants at different scales is important for constraining the Earth's radiative budget, and thus prominent in climate-system research. In this study, SEA stratocumulus cloud properties are observed not only as the result of local environmental conditions but also as affected by external dynamics and spatial origins of air masses entering the study area. In order to assess to what extent cloud properties are impacted by aerosol concentration, air mass history, and meteorology, a multivariate approach is conducted using satellite observations of aerosol and cloud properties (MODIS, SEVIRI), information on aerosol species composition (MACC) and meteorological context (ERA-Interim reanalysis). To account for the often-neglected but important role of air mass origin, information on air mass history based on HYSPLIT modeling is included in the statistical model. This multivariate approach is intended to lead to a better understanding of the physical processes behind observed stratocumulus cloud properties in the SEA.

  1. Improving Forecast Skill by Assimilation of AIRS Cloud Cleared Radiances RiCC

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Rosenberg, Robert I.; Iredell, Lena

    2015-01-01

    ECMWF, NCEP, and GMAO routinely assimilate radiosonde and other in-situ observations along with satellite IR and MW Sounder radiance observations. NCEP and GMAO use the NCEP GSI Data Assimilation System (DAS).GSI DAS assimilates AIRS, CrIS, IASI channel radiances Ri on a channel-by-channel, case-by-case basis, only for those channels i thought to be unaffected by cloud cover. This test excludes Ri for most tropospheric sounding channels under partial cloud cover conditions. AIRS Version-6 RiCC is a derived quantity representative of what AIRS channel i would have seen if the AIRS FOR were cloud free. All values of RiCC have case-by-case error estimates RiCC associated with them. Our experiments present to the GSI QCd values of AIRS RiCC in place of AIRS Ri observations. GSI DAS assimilates only those values of RiCC it thinks are cloud free. This potentially allows for better coverage of assimilated QCd values of RiCC as compared to Ri.

  2. Coupled retrieval of water cloud and above-cloud aerosol properties using the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI)

    NASA Astrophysics Data System (ADS)

    Xu, F.; van Harten, G.; Diner, D. J.; Rheingans, B. E.; Tosca, M.; Seidel, F. C.; Bull, M. A.; Tkatcheva, I. N.; McDuffie, J. L.; Garay, M. J.; Davis, A. B.; Jovanovic, V. M.; Brian, C.; Alexandrov, M. D.; Hostetler, C. A.; Ferrare, R. A.; Burton, S. P.

    2017-12-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. AirMSPI acquires radiance and polarization data in bands centered at 355, 380, 445, 470*, 555, 660*, 865*, and 935 nm (*denotes polarimetric bands). In sweep mode, georectified images cover an area of 80-100 km (along track) by 10-25 km (across track) between ±66° off nadir, with a map-projected spatial resolution of 25 meters. An efficient and flexible retrieval algorithm has been developed using AirMSPI polarimetric bands for simultaneous retrieval of cloud and above-cloud aerosol microphysical properties. We design a three-step retrieval approach, namely 1) estimating effective droplet size distribution using polarimetric cloudbow observations and using it as initial guess for Step 2; 2) combining water cloud and aerosol above cloud retrieval by fitting polarimetric signals at all scattering angles (e.g. from 80° to 180°); and 3) constructing a lookup table of radiance for a set of cloud optical depth grids using aerosol and cloud information retrieved from Step 2 and then estimating pixel-scale cloud optical depth based on 1D radiative transfer (RT) theory by fitting the AirMSPI radiance. Retrieval uncertainty is formulated by accounting for instrumental errors and constraints imposed on spectral variations of aerosol and cloud droplet optical properties. As the forward RT model, a hybrid approach is developed to combine the computational strengths of Markov-chain and adding-doubling methods to model polarized RT in a coupled aerosol, Rayleigh and cloud system. Our retrieval approach is tested using 134 AirMSPI datasets acquired during NASA ORACLES field campaign in 09/2016, with low to high aerosol loadings. For validation, the retrieved aerosol optical depths and cloud-top heights are compared to coincident High Spectral Resolution Lidar-2 (HSRL-2) data, and the droplet size parameters including effective radius and

  3. Cloud Masking and Surface Temperature Distribution in the Polar Regions Using AVHRR and other Satellite Data

    NASA Technical Reports Server (NTRS)

    Comiso, Joey C.

    1995-01-01

    Surface temperature is one of the key variables associated with weather and climate. Accurate measurements of surface air temperatures are routinely made in meteorological stations around the world. Also, satellite data have been used to produce synoptic global temperature distributions. However, not much attention has been paid on temperature distributions in the polar regions. In the polar regions, the number of stations is very sparse. Because of adverse weather conditions and general inaccessibility, surface field measurements are also limited. Furthermore, accurate retrievals from satellite data in the region have been difficult to make because of persistent cloudiness and ambiguities in the discrimination of clouds from snow or ice. Surface temperature observations are required in the polar regions for air-sea-ice interaction studies, especially in the calculation of heat, salinity, and humidity fluxes. They are also useful in identifying areas of melt or meltponding within the sea ice pack and the ice sheets and in the calculation of emissivities of these surfaces. Moreover, the polar regions are unique in that they are the sites of temperature extremes, the location of which is difficult to identify without a global monitoring system. Furthermore, the regions may provide an early signal to a potential climate change because such signal is expected to be amplified in the region due to feedback effects. In cloud free areas, the thermal channels from infrared systems provide surface temperatures at relatively good accuracies. Previous capabilities include the use of the Temperature Humidity Infrared Radiometer (THIR) onboard the Nimbus-7 satellite which was launched in 1978. Current capabilities include the use of the Advance Very High Resolution Radiometer (AVHRR) aboard NOAA satellites. Together, these two systems cover a span of 16 years of thermal infrared data. Techniques for retrieving surface temperatures with these sensors in the polar regions have

  4. Improving GEOS-5 seven day forecast skill by assimilation of quality controlled AIRS temperature profiles

    NASA Astrophysics Data System (ADS)

    Susskind, J.; Rosenberg, R. I.

    2016-12-01

    The GEOS-5 Data Assimilation System (DAS) generates a global analysis every six hours by combining the previous six hour forecast for that time period with contemporaneous observations. These observations include in-situ observations as well as those taken by satellite borne instruments, such as AIRS/AMSU on EOS Aqua and CrIS/ATMS on S-NPP. Operational data assimilation methodology assimilates observed channel radiances Ri for IR sounding instruments such as AIRS and CrIS, but only for those channels i in a given scene whose radiances are thought to be unaffected by clouds. A limitation of this approach is that radiances in most tropospheric sounding channels are affected by clouds under partial cloud cover conditions, which occurs most of the time. The AIRS Science Team Version-6 retrieval algorithm generates cloud cleared radiances (CCR's) for each channel in a given scene, which represent the radiances AIRS would have observed if the scene were cloud free, and then uses them to determine quality controlled (QC'd) temperature profiles T(p) under all cloud conditions. There are potential advantages to assimilate either AIRS QC'd CCR's or QC'd T(p) instead of Ri in that the spatial coverage of observations is greater under partial cloud cover. We tested these two alternate data assimilation approaches by running three parallel data assimilation experiments over different time periods using GEOS-5. Experiment 1 assimilated all observations as done operationally, Experiment 2 assimilated QC'd values of AIRS CCRs in place of AIRS radiances, and Experiment 3 assimilated QC'd values of T(p) in place of observed radiances. Assimilation of QC'd AIRS T(p) resulted in significant improvement in seven day forecast skill compared to assimilation of CCR's or assimilation of observed radiances, especially in the Southern Hemisphere Extra-tropics.

  5. Cloud layer thicknesses from a combination of surface and upper-air observations

    NASA Technical Reports Server (NTRS)

    Poore, Kirk D.; Wang, Junhong; Rossow, William B.

    1995-01-01

    Cloud layer thicknesses are derived from base and top altitudes by combining 14 years (1975-1988) of surface and upper-air observations at 63 sites in the Northern Hemisphere. Rawinsonde observations are employed to determine the locations of cloud-layer top and base by testing for dewpoint temperature depressions below some threshold value. Surface observations serve as quality checks on the rawinsonde-determined cloud properties and provide cloud amount and cloud-type information. The dataset provides layer-cloud amount, cloud type, high, middle, or low height classes, cloud-top heights, base heights and layer thicknesses, covering a range of latitudes from 0 deg to 80 deg N. All data comes from land sites: 34 are located in continental interiors, 14 are near coasts, and 15 are on islands. The uncertainties in the derived cloud properties are discussed. For clouds classified by low-, mid-, and high-top altitudes, there are strong latitudinal and seasonal variations in the layer thickness only for high clouds. High-cloud layer thickness increases with latitude and exhibits different seasonal variations in different latitude zones: in summer, high-cloud layer thickness is a maximum in the Tropics but a minimum at high latitudes. For clouds classified into three types by base altitude or into six standard morphological types, latitudinal and seasonal variations in layer thickness are very small. The thickness of the clear surface layer decreases with latitude and reaches a summer minimum in the Tropics and summer maximum at higher latitudes over land, but does not vary much over the ocean. Tropical clouds occur in three base-altitude groups and the layer thickness of each group increases linearly with top altitude. Extratropical clouds exhibit two groups, one with layer thickness proportional to their cloud-top altitude and one with small (less than or equal to 1000 m) layer thickness independent of cloud-top altitude.

  6. Relationship Between Cirrus Particle Size and Cloud Top Temperature

    NASA Technical Reports Server (NTRS)

    Han, Qingyuan; Chou, Joyce; Welch, Ronald M.

    1997-01-01

    The relationship between cirrus particle size and cloud top temperature is surveyed on a near-global scale. The cirrus particle size is retrieved assuming ice crystals are hexagonal columns and the cloud top temperature and the radiances in channel 1 and 3 of AVHRR used to retrieve ice particle sizes are from ISCCP product. The results show that for thick clouds over North America, the relation between particle size and cloud top temperature is consistent with a summary of this relationship based on aircraft measurement over that region for thick clouds. However, this relationship is not universal for other regions especially for for tropical zone, which has been found by other in situ measurements.

  7. Cloud Impacts on Pavement Temperature in Energy Balance Models

    NASA Astrophysics Data System (ADS)

    Walker, C. L.

    2013-12-01

    Forecast systems provide decision support for end-users ranging from the solar energy industry to municipalities concerned with road safety. Pavement temperature is an important variable when considering vehicle response to various weather conditions. A complex, yet direct relationship exists between tire and pavement temperatures. Literature has shown that as tire temperature increases, friction decreases which affects vehicle performance. Many forecast systems suffer from inaccurate radiation forecasts resulting in part from the inability to model different types of clouds and their influence on radiation. This research focused on forecast improvement by determining how cloud type impacts the amount of shortwave radiation reaching the surface and subsequent pavement temperatures. The study region was the Great Plains where surface solar radiation data were obtained from the High Plains Regional Climate Center's Automated Weather Data Network stations. Road pavement temperature data were obtained from the Meteorological Assimilation Data Ingest System. Cloud properties and radiative transfer quantities were obtained from the Clouds and Earth's Radiant Energy System mission via Aqua and Terra Moderate Resolution Imaging Spectroradiometer satellite products. An additional cloud data set was incorporated from the Naval Research Laboratory Cloud Classification algorithm. Statistical analyses using a modified nearest neighbor approach were first performed relating shortwave radiation variability with road pavement temperature fluctuations. Then statistical associations were determined between the shortwave radiation and cloud property data sets. Preliminary results suggest that substantial pavement forecasting improvement is possible with the inclusion of cloud-specific information. Future model sensitivity testing seeks to quantify the magnitude of forecast improvement.

  8. Improving Forecast Skill by Assimilation of AIRS Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The AIRS Version 5 retrieval algorithm, is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates delta T(p) for retrieved quantities and the use of these error estimates for Quality Control. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 deg. latitude X 0.67 deg longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates delta (p) were used as the uncertainty for each measurement in the data assimilation process. We compared forecasts analyses generated from the analyses done by assimilation of AIRS temperature profiles with three different sets of thresholds; Standard, Medium, and Tight. Assimilation of Quality Controlled AIRS temperature profiles significantly improve 5-7 day forecast skill compared to that obtained without the benefit of AIRS data in all of the cases studied. In addition, assimilation of Quality Controlled AIRS temperature soundings performs better than assimilation of AIRS observed radiances. Based on the experiments shown, Tight Quality Control of AIRS temperature profile performs best

  9. Winter Cloud Streets, North Atlantic

    NASA Image and Video Library

    2017-12-08

    NASA image acquired January 24, 2011 What do you get when you mix below-freezing air temperatures, frigid northwest winds from Canada, and ocean temperatures hovering around 39 to 40 degrees Fahrenheit (4 to 5 degrees Celsius)? Paved highways of clouds across the skies of the North Atlantic. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite collected this natural-color view of New England, the Canadian Maritimes, and coastal waters at 10:25 a.m. U.S. Eastern Standard Time on January 24, 2011. Lines of clouds stretch from northwest to southeast over the North Atlantic, while the relatively cloudless skies over land afford a peek at the snow that blanketed the Northeast just a few days earlier. Cloud streets form when cold air blows over warmer waters, while a warmer air layer—or temperature inversion—rests over top of both. The comparatively warm water of the ocean gives up heat and moisture to the cold air mass above, and columns of heated air—thermals—naturally rise through the atmosphere. As they hit the temperature inversion like a lid, the air rolls over like the circulation in a pot of boiling water. The water in the warm air cools and condenses into flat-bottomed, fluffy-topped cumulus clouds that line up parallel to the wind. Though they are easy to explain in a broad sense, cloud streets have a lot of mysteries on the micro scale. A NASA-funded researcher from the University of Wisconsin recently observed an unusual pattern in cloud streets over the Great Lakes. Cloud droplets that should have picked up moisture from the atmosphere and grown in size were instead shrinking as they moved over Lake Superior. Read more in an interview at What on Earth? NASA image by Jeff Schmaltz, MODIS Rapid Response Team, Goddard Space Flight Center. Caption by Michael Carlowicz. Instrument: Terra - MODIS Credit: NASA Earth Observatory NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth

  10. Cloud Streets over the Atlantic Ocean

    NASA Image and Video Library

    2017-12-08

    In the midst of a cold snap that sent temperatures 20–40°F (11–22°C) below normal across much of the United States, the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite captured this image of cloud streets over the Atlantic Ocean on January 7, 2014. Cloud streets—long parallel bands of cumulus clouds—form when cold air blows over warmer waters and a warmer air layer (or temperature inversion) rests over the top of both. The comparatively warm water gives up heat and moisture to the cold air above, and columns of heated air called thermals naturally rise through the atmosphere. The temperature inversion acts like a lid, so when the rising thermals hit it, they roll over and loop back on themselves, creating parallel cylinders of rotating air. As this happens, the moisture cools and condenses into flat-bottomed, fluffy-topped cumulus clouds that line up parallel to the direction of the prevailing wind. On January 7, the winds were predominantly out of the northwest. Cloud streets can stretch for hundreds of kilometers if the land or water surface underneath is uniform. Sea surface temperature need to be at least 40°F (22°C) warmer than the air for cloud streets to form. More info: earthobservatory.nasa.gov/NaturalHazards/view.php?id=82800 NASA Earth Observatory image courtesy Jeff Schmaltz LANCE/EOSDIS MODIS Rapid Response Team, GSFC. Caption by Adam Voiland. Instrument: Terra - MODIS Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Coupled Retrieval of Liquid Water Cloud and Above-Cloud Aerosol Properties Using the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI)

    NASA Astrophysics Data System (ADS)

    Xu, Feng; van Harten, Gerard; Diner, David J.; Davis, Anthony B.; Seidel, Felix C.; Rheingans, Brian; Tosca, Mika; Alexandrov, Mikhail D.; Cairns, Brian; Ferrare, Richard A.; Burton, Sharon P.; Fenn, Marta A.; Hostetler, Chris A.; Wood, Robert; Redemann, Jens

    2018-03-01

    An optimization algorithm is developed to retrieve liquid water cloud properties including cloud optical depth (COD), droplet size distribution and cloud top height (CTH), and above-cloud aerosol properties including aerosol optical depth (AOD), single-scattering albedo, and microphysical properties from sweep-mode observations by Jet Propulsion Laboratory's Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) instrument. The retrieval is composed of three major steps: (1) initial estimate of the mean droplet size distribution across the entire image of 80-100 km along track by 10-25 km across track from polarimetric cloudbow observations, (2) coupled retrieval of image-scale cloud and above-cloud aerosol properties by fitting the polarimetric data at all observation angles, and (3) iterative retrieval of 1-D radiative transfer-based COD and droplet size distribution at pixel scale (25 m) by establishing relationships between COD and droplet size and fitting the total radiance measurements. Our retrieval is tested using 134 AirMSPI data sets acquired during the National Aeronautics and Space Administration (NASA) field campaign ObseRvations of Aerosols above CLouds and their intEractionS. The retrieved above-cloud AOD and CTH are compared to coincident HSRL-2 (HSRL-2, NASA Langley Research Center) data, and COD and droplet size distribution parameters (effective radius reff and effective variance veff) are compared to coincident Research Scanning Polarimeter (RSP) (NASA Goddard Institute for Space Studies) data. Mean absolute differences between AirMSPI and HSRL-2 retrievals of above-cloud AOD at 532 nm and CTH are 0.03 and <0.5 km, respectively. At RSP's footprint scale ( 323 m), mean absolute differences between RSP and AirMSPI retrievals of COD, reff, and veff in the cloudbow area are 2.33, 0.69 μm, and 0.020, respectively. Neglect of smoke aerosols above cloud leads to an underestimate of image-averaged COD by 15%.

  12. Improving Indoor Air Quality in St. Cloud Schools.

    ERIC Educational Resources Information Center

    Forer, Mike; Haus, El

    2000-01-01

    Describes how the St. Cloud Area School District (Minnesota), using Tools for Schools provided by the U.S. Environmental Protection Agency, managed the improvement of their school building indoor air quality (IAQ). The district goals of the IAQ Management Committee and the policy elements used to maintain high classroom air quality are…

  13. On the Influence of Air Mass Origin on Low-Cloud Properties in the Southeast Atlantic

    NASA Astrophysics Data System (ADS)

    Fuchs, Julia; Cermak, Jan; Andersen, Hendrik; Hollmann, Rainer; Schwarz, Katharina

    2017-10-01

    This study investigates the impact of air mass origin and dynamics on cloud property changes in the Southeast Atlantic (SEA) during the biomass burning season. The understanding of clouds and their determinants at different scales is important for constraining the Earth's radiative budget and thus prominent in climate system research. In this study, the thermodynamically stable SEA stratocumulus cover is observed not only as the result of local environmental conditions but also as connected to large-scale meteorology by the often neglected but important role of spatial origins of air masses entering this region. In order to assess to what extent cloud properties are impacted by aerosol concentration, air mass history, and meteorology, a Hybrid Single-Particle Lagrangian Integrated Trajectory cluster analysis is conducted linking satellite observations of cloud properties (Spinning-Enhanced Visible and Infrared Imager), information on aerosol species (Monitoring Atmospheric Composition and Climate), and meteorological context (ERA-Interim reanalysis) to air mass clusters. It is found that a characteristic pattern of air mass origins connected to distinct synoptical conditions leads to marked cloud property changes in the southern part of the study area. Long-distance air masses are related to midlatitude weather disturbances that affect the cloud microphysics, especially in the southwestern subdomain of the study area. Changes in cloud effective radius are consistent with a boundary layer deepening and changes in lower tropospheric stability (LTS). In the southeastern subdomain cloud cover is controlled by a generally higher LTS, while air mass origin plays a minor role. This study leads to a better understanding of the dynamical drivers behind observed stratocumulus cloud properties in the SEA and frames potentially interesting conditions for aerosol-cloud interactions.

  14. Deep convective clouds at the tropopause

    NASA Astrophysics Data System (ADS)

    Aumann, H. H.; Desouza-Machado, S. G.

    2010-07-01

    Data from the Advanced Infrared Sounder (AIRS) on the EOS Aqua spacecraft identify thousands of cloud tops colder than 225 K, loosely referred to as Deep Convective Clouds (DCC). Many of these cloud tops have "inverted" spectra, i.e. areas of strong water vapor, CO2 and ozone opacity, normally seen in absorption, are now seen in emission. We refer to these inverted spectra as DCCi. They are found in about 0.4% of all spectra from the tropical oceans excluding the Western Tropical Pacific (WTP), 1.1% in the WTP. The cold clouds are the anvils capping thunderstorms and consist of optically thick cirrus ice clouds. The precipitation rate associated with DCCi suggests that imbedded in these clouds, protruding above them, and not spatially resolved by the AIRS 15 km FOV, are even colder bubbles, where strong convection pushes clouds to within 5 hPa of the pressure level of the tropopause cold point. Associated with DCCi is a local upward displacement of the tropopause, a cold "bulge", which can be seen directly in the brightness temperatures of AIRS and AMSU channels with weighting function peaking between 40 and 2 hPa, without the need for a formal temperature retrieval. The bulge is not resolved by the analysis in numerical weather prediction models. The locally cold cloud tops relative to the analysis give the appearance (in the sense of an "illusion") of clouds overshooting the tropopause and penetrating into the stratosphere. Based on a simple model of optically thick cirrus clouds, the spectral inversions seen in the AIRS data do not require these clouds to penetrate into the stratosphere. However, the contents of the cold bulge may be left in the lower stratosphere as soon as the strong convection subsides. The heavy precipitation and the distortion of the temperature structure near the tropopause indicate that DCCi are associated with intense storms. Significant long-term trends in the statistical properties of DCCi could be interesting indicators of climate

  15. Variability of Winter Air Temperature in Mid-Latitude Europe

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Ardizzone, J.; Atlas, R.; Bungato, D.; Cierniewski, J.; Jusem, J. C.; Przybylak, R.; Schubert, S.; Starr, D.; Walczewski, J.

    2002-01-01

    The aim of this paper is to report extreme winter/early-spring air temperature (hereinafter temperature) anomalies in mid-latitude Europe, and to discuss the underlying forcing to these interannual fluctuations. Warm advection from the North Atlantic in late winter controls the surface-air temperature, as indicated by the substantial correlation between the speed of the surface southwesterlies over the eastern North Atlantic (quantified by a specific Index Ina) and the 2-meter level air temperatures (hereinafter Ts) over Europe, 45-60 deg N, in winter. In mid-March and subsequently, the correlation drops drastically (quite often it is negative). This change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature: absorption of insolation replaces the warm advection as the dominant control. This forcing by maritime-air advection in winter was demonstrated in a previous publication, and is re-examined here in conjunction with extreme fluctuations of temperatures in Europe. We analyze here the interannual variability at its extreme by comparing warm-winter/early-spring of 1989/90 with the opposite scenario in 1995/96. For these two December-to-March periods the differences in the monthly mean temperature in Warsaw and Torun, Poland, range above 10 C. Short-term (shorter than a month) fluctuations of the temperature are likewise very strong. We conduct pentad-by-pentad analysis of the surface-maximum air temperature (hereinafter Tmax), in a selected location, examining the dependence on Ina. The increased cloudiness and higher amounts of total precipitable water, corollary effects to the warm low-level advection. in the 1989/90 winter, enhance the positive temperature anomalies. The analysis of the ocean surface winds is based on the Special Sensor Microwave/Imager (SSM/I) dataset; ascent rates, and over land wind data are from the European Centre for Medium-Range Weather Forecasts (ECMWF); maps of 2-m temperature, cloud

  16. CloudSat Preps for Launch at Vandenberg Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The CloudSat spacecraft sits encapsulated within its Boeing Delta launch vehicle dual payload attach fitting at Vandenberg Air Force Base, Calif. CloudSat will share its ride to orbit late next month with NASA's CALIPSO spacecraft. The two spacecraft are designed to reveal the secrets of clouds and aerosols.

  17. Ice Cloud Formation and Dehydration in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Stratospheric water vapor is important not only for its greenhouse forcing, but also because it plays a significant role in stratospheric chemistry. Several recent studies have focused on the potential for dehydration due to ice cloud formation in air rising slowly through the tropical tropopause layer (TTL). Holton and Gettelman showed that temperature variations associated with horizontal transport of air in the TTL can drive ice cloud formation and dehydration, and Gettelman et al. recently examined the cloud formation and dehydration along kinematic trajectories using simple assumptions about the cloud properties. In this study, a Lagrangian, one-dimensional cloud model has been used to further investigate cloud formation and dehydration as air is transported horizontally and vertically through the TTL. Time-height curtains of temperature are extracted from meteorological analyses. The model tracks the growth, advection, and sedimentation of individual cloud particles. The regional distribution of clouds simulated in the model is comparable to the subvisible cirrus distribution indicated by SAGE II. The simulated cloud properties and cloud frequencies depend strongly on the assumed supersaturation threshold for ice nucleation. The clouds typically do not dehydrate the air along trajectories down to the temperature minimum saturation mixing ratio. Rather the water vapor mixing ratio crossing the tropopause along trajectories is 10-50% larger than the saturation mixing ratio. I will also discuss the impacts of Kelvin waves and gravity waves on cloud properties and dehydration efficiency. These simulations can be used to determine whether observed lower stratospheric water vapor mixing ratios can be explained by dehydration associated with in situ TTL cloud formation alone.

  18. A study of surface temperatures, clouds and net radiation

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans

    1994-01-01

    The study is continuing and it is focused on examining seasonal relationships between climate parameters such as the surface temperatures, the net radiation and cloud types and amount on a global basis for the period February 1985 to January 1987. The study consists of an analysis of the combined Earth Radiation Budget Experiment (ERBE) and International Satellite Cloud Climatology Program (ISCCP) products. The main emphasis is on obtaining the information about the interactions and relationships of Earth Radiation Budget parameters, cloud and temperature information. The purpose is to gain additional qualitative and quantitative insight into the cloud climate relationship.

  19. Temperature Control of the Variability of Tropical Tropopause Layer Cirrus Clouds

    NASA Astrophysics Data System (ADS)

    Tseng, Hsiu-Hui; Fu, Qiang

    2017-10-01

    This study examines the temperature control of variability of tropical tropopause layer (TTL) cirrus clouds (i.e., clouds with bases higher than 14.5 km) by using 8 years (2006-2014) of observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC). It is found that the temporal variability of vertical structure of TTL cirrus cloud fraction averaged between 15°N and 15°S can be well explained by the vertical temperature gradient below 17.5 km but by the local temperature above for both seasonal and interannual time scales. It is also found that the TTL cirrus cloud fraction at a given altitude is best correlated with the temperature at a higher altitude and this vertical displacement increases with a decrease of the cirrus altitude. It is shown that the TTL cirrus cloud fractions at all altitudes are significantly correlated with tropical cold point tropopause (CPT) temperature. The plausible mechanisms that might be responsible for the observed relations between TTL cirrus fraction and temperature-based variables are discussed, which include ice particle sediments, cooling associated with wave propagations, change of atmospheric stability, and vertical gradient of water vapor mixing ratio. We further examine the spatial covariability of TTL total cirrus cloud fraction and CPT temperature for the interannual time scale. It is found that the El Niño-Southern Oscillation and quasi-biennial oscillation are the leading factors in controlling the spatial variability of the TTL cirrus clouds and temperatures.

  20. Arctic PBL Cloud Height and Motion Retrievals from MISR and MINX

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.

    2012-01-01

    How Arctic clouds respond and feedback to sea ice loss is key to understanding of the rapid climate change seen in the polar region. As more open water becomes available in the Arctic Ocean, cold air outbreaks (aka. off-ice flow from polar lows) produce a vast sheet of roll clouds in the planetary boundary layer (PBl). The cold air temperature and wind velocity are the critical parameters to determine and understand the PBl structure formed under these roll clouds. It has been challenging for nadir visible/IR sensors to detect Arctic clouds due to lack of contrast between clouds and snowy/icy surfaces. In addition) PBl temperature inversion creates a further problem for IR sensors to relate cloud top temperature to cloud top height. Here we explore a new method with the Multiangle Imaging Spectro-Radiometer (MISR) instrument to measure cloud height and motion over the Arctic Ocean. Employing a stereoscopic-technique, MISR is able to measure cloud top height accurately and distinguish between clouds and snowy/icy surfaces with the measured height. We will use the MISR INteractive eXplorer (MINX) to quantify roll cloud dynamics during cold-air outbreak events and characterize PBl structures over water and over sea ice.

  1. Satellite-based estimation of cloud-base updrafts for convective clouds and stratocumulus

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Rosenfeld, D.; Li, Z.

    2017-12-01

    Updraft speeds of thermals have always been notoriously difficult to measure, despite significant roles they play in transporting pollutants and in cloud formation and precipitation. To our knowledge, no attempt to date has been made to estimate updraft speed from satellite information. In this study, we introduce three methods of retrieving updraft speeds at cloud base () for convective clouds and marine stratocumulus with VIIRS onboard Suomi-NPP satellite. The first method uses ground-air temperature difference to characterize the surface sensible heat flux, which is found to be correlated with updraft speeds measured by the Doppler lidar over the Southern Great Plains (SGP). Based on the relationship, we use the satellite-retrieved surface skin temperature and reanalysis surface air temperature to estimate the updrafts. The second method is based on a good linear correlation between cloud base height and updrafts, which was found over the SGP, the central Amazon, and on board a ship sailing between Honolulu and Los Angeles. We found a universal relationship for both land and ocean. The third method is for marine stratocumulus. A statistically significant relationship between Wb and cloud-top radiative cooling rate (CTRC) is found from measurements over northeastern Pacific and Atlantic. Based on this relation, satellite- and reanalysis-derived CTRC is utilized to infer the Wb of stratocumulus clouds. Evaluations against ground-based Doppler lidar measurements show estimation errors of 24%, 21% and 22% for the three methods, respectively.

  2. Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels: The AIRS Version 6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002 together with ASMU-A and HSB to form a next generation polar orbiting infrared and microwave atmosphere sounding system (Pagano et al 2003). The theoretical approach used to analyze AIRS/AMSU/HSB data in the presence of clouds in the AIRS Science Team Version 3 at-launch algorithm, and that used in the Version 4 post-launch algorithm, have been published previously. Significant theoretical and practical improvements have been made in the analysis of AIRS/AMSU data since the Version 4 algorithm. Most of these have already been incorporated in the AIRS Science Team Version 5 algorithm (Susskind et al 2010), now being used operationally at the Goddard DISC. The AIRS Version 5 retrieval algorithm contains three significant improvements over Version 4. Improved physics in Version 5 allowed for use of AIRS clear column radiances (R(sub i)) in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations were used primarily in the generation of clear column radiances (R(sub i)) for all channels. This new approach allowed for the generation of accurate Quality Controlled values of R(sub i) and T(p) under more stressing cloud conditions. Secondly, Version 5 contained a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 contained for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Susskind et al 2010 shows that Version 5 AIRS Only sounding are only slightly degraded from the AIRS/AMSU soundings, even at large fractional cloud

  3. Radiative consequences of low-temperature infrared refractive indices for supercooled water clouds

    NASA Astrophysics Data System (ADS)

    Rowe, P. M.; Neshyba, S.; Walden, V. P.

    2013-07-01

    Simulations of cloud radiative properties for climate modeling and remote sensing rely on accurate knowledge of the complex refractive index (CRI) of water. Although conventional algorithms employ a temperature independent assumption (TIA), recent infrared measurements of supercooled water have demonstrated that the CRI becomes increasingly ice-like at lower temperatures. Here, we assess biases that result from ignoring this temperature dependence. We show that TIA-based cloud retrievals introduce spurious ice into pure, supercooled clouds, or underestimate cloud thickness and droplet size. TIA-based downwelling radiative fluxes are lower than those for the temperature-dependent CRI by as much as 1.7 W m-2 (in cold regions), while top-of-atmosphere fluxes are higher by as much as 3.4 W m-2 (in warm regions). Proper accounting of the temperature dependence of the CRI, therefore, leads to significantly greater local greenhouse warming due to supercooled clouds than previously predicted. The current experimental uncertainty in the CRI at low temperatures must be reduced to properly account for supercooled clouds in both climate models and cloud property retrievals.

  4. Radiative consequences of low-temperature infrared refractive indices for supercooled water clouds

    NASA Astrophysics Data System (ADS)

    Rowe, P. M.; Neshyba, S.; Walden, V. P.

    2013-12-01

    Simulations of cloud radiative properties for climate modeling and remote sensing rely on accurate knowledge of the complex refractive index (CRI) of water. Although conventional algorithms employ a temperature-independent assumption (TIA), recent infrared measurements of supercooled water have demonstrated that the CRI becomes increasingly ice-like at lower temperatures. Here, we assess biases that result from ignoring this temperature dependence. We show that TIA-based cloud retrievals introduce spurious ice into pure, supercooled clouds, or underestimate cloud optical thickness and droplet size. TIA-based downwelling radiative fluxes are lower than those for the temperature-dependent CRI by as much as 1.7 W m-2 (in cold regions), while top-of-atmosphere fluxes are higher by as much as 3.4 W m-2 (in warm regions). Proper accounting of the temperature dependence of the CRI, therefore, leads to significantly greater local greenhouse warming due to supercooled clouds than previously predicted. The current experimental uncertainty in the CRI at low temperatures must be reduced to account for supercooled clouds properly in both climate models and cloud-property retrievals.

  5. Climatic Implications of the Observed Temperature Dependence of the Liquid Water Path of Low Clouds in the Southern Great Plains

    NASA Technical Reports Server (NTRS)

    DelGenio, Anthony

    1999-01-01

    Satellite observations of low-level clouds have challenged the assumption that adiabatic liquid water content combined with constant physical thickness will lead to a negative cloud optics feedback in a decadal climate change. We explore the reasons for the satellite results using four years of surface remote sensing data from the Atmospheric Radiation Measurement Program Cloud and Radiation Testbed site in the Southern Great Plains of the United States. We find that low cloud liquid water path is approximately invariant with temperature in winter but decreases strongly with temperature in summer, consistent with the satellite inferences at this latitude. This behavior occurs because liquid water content shows no detectable temperature dependence while cloud physical thickness decreases with warming. Thinning of clouds with warming is observed on seasonal, synoptic, and diurnal time scales; it is most obvious in the warm sectors of baroclinic waves. Although cloud top is observed to slightly descend with warming, the primary cause of thinning, is the ascent of cloud base due to the reduction in surface relative humidity and the concomitant increase in the lifting condensation level of surface air. Low cloud liquid water path is not observed to be a continuous function of temperature. Rather, the behavior we observe is best explained as a transition in the frequency of occurrence of different boundary layer types. At cold temperatures, a mixture of stratified and convective boundary layers is observed, leading to a broad distribution of liquid water path values, while at warm temperatures, only convective boundary layers with small liquid water paths, some of them decoupled, are observed. Our results, combined with the earlier satellite inferences, imply that the commonly quoted 1.5C lower limit for the equilibrium global climate sensitivity to a doubling of CO2 which is based on models with near-adiabatic liquid water behavior and constant physical thickness

  6. Climatic Implications of the Observed Temperature Dependence of the Liquid Water Path of Low Clouds in the Southern Great Plains

    NASA Technical Reports Server (NTRS)

    DelGenio, Anthony D.; Wolf, Audrey B.

    1999-01-01

    Satellite observations of low-level clouds have challenged the assumption that adiabatic liquid water content combined with constant physical thickness will lead to a negative cloud optics feedback in a decadal climate change. We explore the reasons for the satellite results using four years of surface remote sensing data from the Atmospheric Radiation Measurement Program Cloud and Radiation Testbed site in the Southern Great Plains of the United States. We find that low cloud liquid water path is approximately invariant with temperature in winter but decreases strongly with temperature in summer, consistent with the satellite inferences at this latitude. This behavior occurs because liquid water content shows no detectable temperature dependence while cloud physical thickness decreases with warming. Thinning of clouds with warming is observed on seasonal, synoptic, and diurnal time scales; it is most obvious in the warm sectors of baroclinic waves. Although cloud top is observed to slightly descend with warming, the primary cause of thinning is the ascent of cloud base due to the reduction in surface relative humidity and the concomitant increase in the lifting condensation level of surface air. Low cloud liquid water path is not observed to be a continuous function of temperature. Rather, the behavior we observe is best explained as a transition in the frequency of occurrence of different boundary layer types: At cold temperatures, a mixture of stratified and convective boundary layers is observed, leading to a broad distribution of liquid water path values, while at warm temperatures, only convective boundary layers with small liquid water paths, some of them decoupled, are observed. Our results, combined with the earlier satellite inferences, imply that the commonly quoted 1.50 C lower limit for the equilibrium global climate sensitivity to a doubling of CO2, which is based on models with near-adiabatic liquid water behavior and constant physical thickness

  7. Ice Cloud Formation and Dehydration in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Pfister, Leonhard; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Stratospheric water vapor is important not only for its greenhouse forcing, but also because it plays a significant role in stratospheric chemistry. several recent studies have focused on the potential for dehydration due to ice cloud formation in air rising slowly through the tropical tropopause layer. Holton and Gettelman showed that temperature variations associated with horizontal transport of air in the tropopause layer can drive ice cloud formation and dehydration, and Gettelman et al. recently examined the cloud formation and dehydration along kinematic trajectories using simple assumptions about the cloud properties. In this study, we use a Lagrangian, one-dimensional cloud model to further investigate cloud formation and dehydration as air is transported horizontally and vertically through the tropical tropopause layer. Time-height curtains of temperature are extracted from meteorological analyses. The model tracks the growth and sedimentation of individual cloud particles. The regional distribution of clouds simulated in the model is comparable to the subvisible cirrus distribution indicated by SAGE II. The simulated cloud properties depend strongly on the assumed ice supersaturation threshold for ice nucleation. with effective nuclei present (low supersaturation threshold), ice number densities are high (0.1--10 cm(circumflex)-3), and ice crystals do not grow large enough to fall very far, resulting in limited dehydration. With higher supersaturation thresholds, ice number densities are much lower (less than 0.01 cm(circumflex)-3), and ice crystals grow large enough to fall substantially; however, supersaturated air often crosses the tropopause without cloud formation. The clouds typically do not dehydrate the air along trajectories down to the temperature minimum saturation mixing ratio. Rather the water vapor mixing ratio crossing the tropopause along trajectories is typically 10-50% larger than the saturation mixing ratio.

  8. Studying the influence of temperature and pressure on microphysical properties of mixed-phase clouds using airborne measurements

    NASA Astrophysics Data System (ADS)

    Andreea, Boscornea; Sabina, Stefan; Sorin-Nicolae, Vajaiac; Mihai, Cimpuieru

    2015-04-01

    One cloud type for which the formation and evolution process is not well-understood is the mixed-phase type. In general mixed-phase clouds consist of liquid droplets and ice crystals. The temperature interval within both liquid droplets and ice crystals can potentially coexist is limited to 0 °C and - 40 °C. Mixed-phase clouds account for 20% to 30% of the global cloud coverage. The need to understand the microphysical characteristics of mixed-phase clouds to improve numerical forecast modeling and radiative transfer calculation is of major interest in the atmospheric community. In the past, studies of cloud phase composition have been significantly limited by a lack of aircraft instruments capable of discriminating between the ice and liquid phase for a wide range of particle sizes. Presently, in situ airborne measurements provide the most accurate information about cloud microphysical characteristics. This information can be used for verification of both numerical models and cloud remote-sensing techniques. The knowledge of the temperature and pressure variation during the airborne measurements is crucial in order to understand their influence on the cloud dynamics and also their role in the cloud formation processes like accretion and coalescence. Therefore, in this paper is presented a comprehensive study of cloud microphysical properties in mixed-phase clouds in focus of the influence of temperature and pressure variation on both, cloud dynamics and the cloud formation processes, using measurements performed with the ATMOSLAB - Airborne Laboratory for Environmental Atmospheric Research in property of the National Institute for Aerospace Research "Elie Carafoli" (INCAS). The airborne laboratory equipped for special research missions is based on a Hawker Beechcraft - King Air C90 GTx aircraft and is equipped with a sensors system CAPS - Cloud, Aerosol and Precipitation Spectrometer (30 bins, 0.51-50 µm) and a HAWKEYE cloud probe. The analyzed data in this

  9. Comparisons of cirrus cloud microphysical properties between polluted and pristine air

    NASA Astrophysics Data System (ADS)

    Diao, Minghui; Schumann, Ulrich; Minikin, Andreas; Jensen, Jorgen

    2015-04-01

    Cirrus clouds occur in the upper troposphere at altitudes where atmospheric radiative forcing is most sensitive to perturbations of water vapor concentration and water phase. The formation of cirrus clouds influences the distributions of water in both vapor and ice forms. The radiative properties of cirrus depend strongly on particle sizes. Currently it is still unclear how the formation of cirrus clouds and their microphysical properties are influenced by anthropogenic emissions (e.g., industrial emission and biomass burning). If anthropogenic emissions influence cirrus formation in a significant manner, then one should expect a systematic difference in cirrus properties between pristine (clean) air and polluted air. Because of the pollution contrasts between the Southern (SH) and Northern Hemispheres (NH), cirrus properties could have hemispheric differences as well. Therefore, we study high-resolution (~200 m), in-situ observations from two global flight campaigns: 1) the HIAPER Pole-to-Pole Observations (HIPPO) global campaign in 2009-2011 funded by the US National Science Foundation (NSF), and 2) the Interhemispheric Differences In Cirrus Properties from Anthropogenic Emissions (INCA) campaign in 2000 funded by the European Union and participating research institutions. To investigate the changes of cirrus clouds by anthropogenic emissions, we compare ice crystal distributions in polluted and pristine air, in terms of their frequency occurrence, number concentration (Nc) and mean diameter (i.e., effective-mean Deff and volume-mean Dc). Total aerosol concentration is used to represent the combined influence of natural and anthropogenic aerosols. In addition, measured carbon monoxide (CO) mixing ratio is used to discriminate between polluted and pristine air masses. All analyses are restricted to temperatures ≤ -40°C to exclude mixed-phased clouds. The HIPPO campaign observations were obtained over the North America continent and the central Pacific Ocean

  10. First experimental evidence for carbon starvation at warm temperatures in epiphytic orchids of tropical cloud forests

    NASA Astrophysics Data System (ADS)

    Hoch, Guenter; Roemer, Helena; Fioroni, Tiffany; Olmedo, Inayat; Kahmen, Ansgar

    2017-04-01

    Tropical cloud forests are among the most climate sensitive ecosystems world-wide. The lack of a strong seasonality and the additional dampening of temperature fluctuations by the omnipresence of clouds and fog produce year-round constant climatic conditions. With climate change the presence of clouds and fog is, however, predicted to be reduced. The disappearance of the cooling fog cover will have dramatic consequences for air temperatures, that are predicted to increase locally well over 5 °C by the end of the 21st century. Especially the large number of endemic epiphytic orchids in tropical cloud forests that contribute substantially to the biological diversity of these ecosystems, but are typically adapted to a very narrow climate envelope, are speculated to be very sensitive to the anticipated rise in temperature. In a phytotron experiment we investigated the effect of increasing temperatures on the carbon balance (gas-exchange and the carbon reserve household) of 10 epiphytic orchid species from the genera Dracula, native to tropical, South-American cloud forests. The orchids were exposed to three temperature treatments: i) a constant temperature treatment (23°C/13°C, day/night) simulating natural conditions, ii) a slow temperature ramp of +0.75 K every 10 days, and iii) a fast temperature ramp of +1.5 K every 10 days. CO2 leaf gas-exchanges was determined every 10 days, and concentrations of low molecular weight sugars and starch were analyses from leaf samples throughout the experiment. We found that increasing temperatures had only minor effects on day-time leaf respiration, but led to a moderate increase of respiration during night-time. In contrast to the rather minor effects of higher temperatures on respiration, there was a dramatic decline of net-photosynthesis above day-time temperatures of 29°C, and a complete stop of net-carbon uptake at 33°C in all investigated species. This high sensitivity of photosynthesis to warming was independent of the

  11. Evolution of Fuel-Air and Contaminant Clouds Resulting from a Cruise Missile Explosion Scenario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossman, A S; Kul, A L

    2005-06-22

    A low-mach-number hydrodynamics model has been used to simulate the evolution of a fuel-air mixture and contaminant cloud resulting from the detonation of a cruise missile. The detonation has been assumed to be non-nuclear. The cloud evolution has been carried out to a time of 5.5 seconds. At this time the contaminant has completely permeated the initial fuel-air mixture cloud.

  12. Classification of Arctic, midlatitude and tropical clouds in the mixed-phase temperature regime

    NASA Astrophysics Data System (ADS)

    Costa, Anja; Meyer, Jessica; Afchine, Armin; Luebke, Anna; Günther, Gebhard; Dorsey, James R.; Gallagher, Martin W.; Ehrlich, Andre; Wendisch, Manfred; Baumgardner, Darrel; Wex, Heike; Krämer, Martina

    2017-10-01

    The degree of glaciation of mixed-phase clouds constitutes one of the largest uncertainties in climate prediction. In order to better understand cloud glaciation, cloud spectrometer observations are presented in this paper, which were made in the mixed-phase temperature regime between 0 and -38 °C (273 to 235 K), where cloud particles can either be frozen or liquid. The extensive data set covers four airborne field campaigns providing a total of 139 000 1 Hz data points (38.6 h within clouds) over Arctic, midlatitude and tropical regions. We develop algorithms, combining the information on number concentration, size and asphericity of the observed cloud particles to classify four cloud types: liquid clouds, clouds in which liquid droplets and ice crystals coexist, fully glaciated clouds after the Wegener-Bergeron-Findeisen process and clouds where secondary ice formation occurred. We quantify the occurrence of these cloud groups depending on the geographical region and temperature and find that liquid clouds dominate our measurements during the Arctic spring, while clouds dominated by the Wegener-Bergeron-Findeisen process are most common in midlatitude spring. The coexistence of liquid water and ice crystals is found over the whole mixed-phase temperature range in tropical convective towers in the dry season. Secondary ice is found at midlatitudes at -5 to -10 °C (268 to 263 K) and at higher altitudes, i.e. lower temperatures in the tropics. The distribution of the cloud types with decreasing temperature is shown to be consistent with the theory of evolution of mixed-phase clouds. With this study, we aim to contribute to a large statistical database on cloud types in the mixed-phase temperature regime.

  13. Relating rainfall characteristics to cloud top temperatures at different scales

    NASA Astrophysics Data System (ADS)

    Klein, Cornelia; Belušić, Danijel; Taylor, Christopher

    2017-04-01

    Extreme rainfall from mesoscale convective systems (MCS) poses a threat to lives and livelihoods of the West African population through increasingly frequent devastating flooding and loss of crops. However, despite the significant impact of such extreme events, the dominant processes favouring their occurrence are still under debate. In the data-sparse West African region, rainfall radar data from the Tropical Rainfall Measuring Mission (TRMM) gives invaluable information on the distribution and frequency of extreme rainfall. The TRMM 2A25 product provides a 15-year dataset of snapshots of surface rainfall from 2-4 overpasses per day. Whilst this sampling captures the overall rainfall characteristics, it is neither long nor frequent enough to diagnose changes in MCS properties, which may be linked to the trend towards rainfall intensification in the region. On the other hand, Meteosat geostationary satellites provide long-term sub-hourly records of cloud top temperatures, raising the possibility of combining these with the high-quality rainfall data from TRMM. In this study, we relate TRMM 2A25 rainfall to Meteosat Second Generation (MSG) cloud top temperatures, which are available from 2004 at 15 minutes intervals, to get a more detailed picture of the structure of intense rainfall within the life cycle of MCS. We find TRMM rainfall intensities within an MCS to be strongly coupled with MSG cloud top temperatures: the probability for extreme rainfall increases from <10% for minimum temperatures warmer than -40°C to over 70% when temperatures drop below -70°C, confirming the potential in analysing cloud-top temperatures as a proxy for extreme rain. The sheer size of MCS raises the question which scales of sub-cloud structures are more likely to be associated with extreme rain than others. In the end, this information could help to associate scale changes in cloud top temperatures with processes that affect the probability of extreme rain. We use 2D continuous

  14. Use of MODIS Cloud Top Pressure to Improve Assimilation Yields of AIRS Radiances in GSI

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi

    2014-01-01

    Radiances from hyperspectral sounders such as the Atmospheric Infrared Sounder (AIRS) are routinely assimilated both globally and regionally in operational numerical weather prediction (NWP) systems using the Gridpoint Statistical Interpolation (GSI) data assimilation system. However, only thinned, cloud-free radiances from a 281-channel subset are used, so the overall percentage of these observations that are assimilated is somewhere on the order of 5%. Cloud checks are performed within GSI to determine which channels peak above cloud top; inaccuracies may lead to less assimilated radiances or introduction of biases from cloud-contaminated radiances.Relatively large footprint from AIRS may not optimally represent small-scale cloud features that might be better resolved by higher-resolution imagers like the Moderate Resolution Imaging Spectroradiometer (MODIS). Objective of this project is to "swap" the MODIS-derived cloud top pressure (CTP) for that designated by the AIRS-only quality control within GSI to test the hypothesis that better representation of cloud features will result in higher assimilated radiance yields and improved forecasts.

  15. Validation of AIRS V6 Surface Temperature over Greenland with GCN and NOAA Stations

    NASA Technical Reports Server (NTRS)

    Lee, Jae N.; Hearty, Thomas; Cullather, Richard; Nowicki, Sophie; Susskind, Joel

    2016-01-01

    This work compares the temporal and spatial characteristics of the AIRSAMSU (Atmospheric Infrared Sounder Advanced Microwave Sounding Unit A) Version 6 and MODIS (Moderate resolution Imaging Spectroradiometer) Collection 5 derived surface temperatures over Greenland. To estimate uncertainties in space-based surface temperature measurements, we re-projected the MODIS Ice Surface Temperature (IST) to 0.5 by 0.5 degree spatial resolution. We also re-gridded AIRS Skin Temperature (Ts) into the same grid but classified with different cloud conditions and surface types. These co-located data sets make intercomparison between the two instruments relatively straightforward. Using this approach, the spatial comparison between the monthly mean AIRS Ts and MODIS IST is in good agreement with RMS 2K for May 2012. This approach also allows the detection of any long-term calibration drift and the careful examination of calibration consistency in the MODIS and AIRS temperature data record. The temporal correlations between temperature data are also compared with those from in-situ measurements from GC-Net (GCN) and NOAA stations. The coherent time series of surface temperature evident in the correlation between AIRS Ts and GCN temperatures suggest that at monthly time scales both observations capture the same climate signal over Greenland. It is also suggested that AIRS surface air temperature (Ta) can be used to estimate the boundary layer inversion.

  16. Effects of open-air temperature on air temperature inside biological safety cabinet.

    PubMed

    Umemura, Masayuki; Shigeno, Katsuro; Yamamura, Keiko; Osada, Takashi; Soda, Midori; Yamada, Kiyofumi; Ando, Yuichi; Wakiya, Yoshifumi

    2011-02-14

    In Japan, biological safety cabinets (BSCs) are normally used by medical staff while handling antineoplastic agents. We have also set up a class II B2 BSC at the Division of Chemotherapy for Outpatients. The air temperature inside this BSC, however, decreases in winter. We assumed that this decrease is caused by the intake of open-air. Therefore, we investigated the effects of low open-air temperature on the BSC temperature and the time of admixtures of antineoplastic agents. The studies were conducted from January 1 to March 31, 2008. The outdoor air temperature was measured in the shade near the intake nozzle of the BSC and was compared with the BSC temperature. The correlation between the outdoor air temperature and the BSC temperature, the dissolution time of cyclophosphamide (CPA) and gemcitabine (GEM), and accurate weight measurement of epirubicin (EPI) solution were investigated for low and normal BSC temperatures. The BSC temperature was correlated with the open-air temperature for open-air temperatures of 5-20°C (p < 0.0001). The dissolution of CPA and GEM at these temperatures was significantly delayed as compared to that at 25°C (p < 0.01 and p < 0.0001, respectively). The weight measurement of EPI solution using a syringe method lacks accuracy because of its high coefficient of viscosity at low temperatures (p < 0.01). These results suggest that the BSC temperature decreases below room temperature in winter when air is drawn from outdoors. We showed that the BSC temperature affects the dissolution rate of antineoplastic agents. Further, we suggested that the BSC temperature drop might delay the affair of the admixtures of antineoplastic agents and increase the waiting time of outpatients for chemotherapy.

  17. Use of Quality Controlled AIRS Temperature Soundings to Improve Forecast Skill

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste; Iredell, Lena

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. Also included are the clear column radiances used to derive these products which are representative of the radiances AIRS would have seen if there were no clouds in the field of view. All products also have error estimates. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1K, and layer precipitable water with an rms error of 20 percent, in cases with up to 90 percent effective cloud cover. The products are designed for data assimilation purposes for the improvement of numerical weather prediction, as well as for the study of climate and meteorological processes. With regard to data assimilation, one can use either the products themselves or the clear column radiances from which the products were derived. The AIRS Version 5 retrieval algorithm is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates for retrieved quantities and clear column radiances, and the use of these error estimates for Quality Control. The temperature profile error estimates are used to determine a case-by-case characteristic pressure pbest, down to which the profile is considered acceptable for data assimilation purposes. The characteristic pressure p(sub best) is determined by comparing the case dependent error estimate (delta)T(p) to the threshold values (Delta)T(p). The AIRS Version 5 data set provides error estimates of T(p) at all levels, and also profile dependent values of pbest based

  18. The temperature of large dust grains in molecular clouds

    NASA Technical Reports Server (NTRS)

    Clark, F. O.; Laureijs, R. J.; Prusti, T.

    1991-01-01

    The temperature of the large dust grains is calculated from three molecular clouds ranging in visual extinction from 2.5 to 8 mag, by comparing maps of either extinction derived from star counts or gas column density derived from molecular observations to I(100). Both techniques show the dust temperature declining into clouds. The two techniques do not agree in absolute scale.

  19. Atmospheric Soundings from AIRS/AMSU/HSB

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Atlas, Robert

    2004-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU/HSB are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of lK, and 1 km tropospheric layer precipitable water with an rms error of 20%, in cases with up to 80% effective cloud cover. Pre-launch simulation studies indicated that these results should be achievable. Minor modifications have been made to the pre-launch retrieval algorithm as alluded to in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and temperature profiles are validated as a function of retrieved effective fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small. Select fields are also compared to those contained in the ECMWF analysis, done without the benefit of AIRS data, to demonstrate information that AIRS can add to that already contained in the ECMWF analysis. Assimilation of AIRS temperature soundings in up to 80% cloud cover for the month of January 2003 into the GSFC FVSSI data assimilation system resulted in improved 5 day forecasts globally, both with regard to anomaly correlation coefficients and the prediction of location and intensity of cyclones.

  20. Temperature histories in liquid and solid polar stratospheric cloud formation

    NASA Astrophysics Data System (ADS)

    Larsen, Niels; Knudsen, Bjørn M.; Rosen, James M.; Kjome, Norman T.; Neuber, Roland; Kyrö, Esko

    1997-10-01

    Polar stratospheric clouds (PSCs) have been observed by balloonborne backscatter sondes from Alert, Thule, Heiss Island, Scoresbysund, Sodankylä, Søndre Strømfjord, and Ny Ȧlesund during winters 1989, 1990, 1995, and 1996 in 30 flights. The observations can be categorized into two main groups: type 1a and type 1b PSC particles. Type 1b PSCs show the characteristics expected from liquid ternary solution (HNO3/H2SO4/H2O) particles, consistent with model simulations. Type 1a PSCs are observed at all temperatures below the condensation temperature TNAT of nitric acid trihydrate (NAT), consistent with solid NAT composition. Air parcel trajectories have been calculated for all observations to provide synoptic temperature histories of the observed particles. A number of cases have been identified, where the particles have experienced temperatures close to or above the sulfuric acid tetrahydrate melting temperatures within 20 days prior to observation. This assures a knowledge of the physical phase (liquid) of the particles at this time, prior to observation. The subsequent synoptic temperature histories, between melting and the time of observation, show pronounced differences for type 1a and type 1b PSC particles, indicating the qualitative temperature conditions, necessary to generate solid type 1a PSCs. The temperature histories of type 1b particles show smoothly, in most cases monotonic, decreasing temperatures. The temperature can apparently decrease to the frost point without causing the particles to freeze. The type 1b PSC particles are mostly observed shortly after entering a cold region. The observed type 1a particles have spent several days at temperatures close to or below TNAT prior to observation, often associated with several synoptic temperature oscillations around TNAT, and the particles are observed in aged clouds. It appears that the PSC particles may freeze, if they experience synoptic temperatures below TNAT with a duration of at least 1 day

  1. An Evaluation of Northern Hemisphere Merged Cloud Analyses from the United States Air Force Cloud Depiction Forecasting System II

    DTIC Science & Technology

    2013-03-01

    layering and typing to provide a vertical stratification of the cloud-filled pixels detected in Level 2. Level 3 output is remapped to the standard AFWA...analyses are compared to one another to see if the most recent analysis also has the lowest estimated error. Optimum interpolation (OI) occurs when...NORTHERN HEMISPHERE MERGED CLOUD ANALYSES FROM THE UNITED STATES AIR FORCE CLOUD DEPICTION FORECASTING SYSTEM II by Chandra M. Pasillas March

  2. Classification of Arctic, Mid-Latitude and Tropical Clouds in the Mixed-Phase Temperature Regime

    NASA Astrophysics Data System (ADS)

    Costa, Anja; Afchine, Armin; Luebke, Anna; Meyer, Jessica; Dorsey, James R.; Gallagher, Martin W.; Ehrlich, André; Wendisch, Manfred; Krämer, Martina

    2016-04-01

    The degree of glaciation and the sizes and habits of ice particles formed in mixed-phase clouds remain not fully understood. However, these properties define the mixed clouds' radiative impact on the Earth's climate and thus a correct representation of this cloud type in global climate models is of importance for an improved certainty of climate predictions. This study focuses on the occurrence and characteristics of two types of clouds in the mixed-phase temperature regime (238-275K): coexistence clouds (Coex), in which both liquid drops and ice crystals exist, and fully glaciated clouds that develop in the Wegener-Bergeron-Findeisen regime (WBF clouds). We present an extensive dataset obtained by the Cloud and Aerosol Particle Spectrometer NIXE-CAPS, covering Arctic, mid-latitude and tropical regions. In total, we spent 45.2 hours within clouds in the mixed-phase temperature regime during five field campaigns (Arctic: VERDI, 2012 and RACEPAC, 2014 - Northern Canada; mid-latitude: COALESC, 2011 - UK and ML-Cirrus, 2014 - central Europe; tropics: ACRIDICON, 2014 - Brazil). We show that WBF and Coex clouds can be identified via cloud particle size distributions. The classified datasets are used to analyse temperature dependences of both cloud types as well as range and frequencies of cloud particle concentrations and sizes. One result is that Coex clouds containing supercooled liquid drops are found down to temperatures of -40 deg C only in tropical mixed clouds, while in the Arctic and mid-latitudes no liquid drops are observed below about -20 deg C. In addition, we show that the cloud particles' aspherical fractions - derived from polarization signatures of particles with diameters between 20 and 50 micrometers - differ significantly between WBF and Coex clouds. In Coex clouds, the aspherical fraction of cloud particles is generally very low, but increases with decreasing temperature. In WBF clouds, where all cloud particles are ice, about 20-40% of the cloud

  3. Hole punch clouds over the Bahamas

    NASA Image and Video Library

    2017-12-08

    In elementary school, students learn that water freezes at 0 degrees Celsius (32 degrees Fahrenheit). That is true most of the time, but there are exceptions to the rule. For instance, water with very few impurities (such as dust or pollution particles, fungal spores, bacteria) can be chilled to much cooler temperatures and still remain liquid—a process known as supercooling. Supercooling may sound exotic, but it occurs pretty routinely in Earth’s atmosphere. Altocumulus clouds, a common type of mid-altitude cloud, are mostly composed of water droplets supercooled to a temperature of about -15 degrees C. Altocumulus clouds with supercooled tops cover about 8 percent of Earth’s surface at any given time. Supercooled water droplets play a key role in the formation of hole-punch and canal clouds, the distinctive clouds shown in these satellite images. Hole-punch clouds usually appear as circular gaps in decks of altocumulus clouds; canal clouds look similar but the gaps are longer and thinner. This true-color image shows hole-punch and canal clouds off the coast of Florida, as observed on December 12, 2014, by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite. Both types of cloud form when aircraft fly through cloud decks rich with supercooled water droplets and produce aerodynamic contrails. Air expands and cools as it moves around the wings and past the propeller, a process known as adiabatic cooling. Air temperatures over jet wings often cool by as much as 20 degrees Celsius, pushing supercooled water droplets to the point of freezing. As ice crystals form, they absorb nearby water droplets. Since ice crystals are relatively heavy, they tend to sink. This triggers tiny bursts of snow or rain that leave gaps in the cloud cover. Whether a cloud formation becomes a hole-punch or canal depends on the thickness of the cloud layer, the air temperature, and the degree of horizontal wind shear. Both descending and ascending

  4. The Radiative Consistency of Atmospheric Infrared Sounder and Moderate Resolution Imaging Spectroradiometer Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Kahn, Brian H.; Fishbein, Evan; Nasiri, Shaima L.; Eldering, Annmarie; Fetzer, Eric J.; Garay, Michael J.; Lee, Sung-Yung

    2007-01-01

    The consistency of cloud top temperature (Tc) and effective cloud fraction (f) retrieved by the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU) observation suite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on the EOS-Aqua platform are investigated. Collocated AIRS and MODIS TC and f are compared via an 'effective scene brightness temperature' (Tb,e). Tb,e is calculated with partial field of view (FOV) contributions from TC and surface temperature (TS), weighted by f and 1-f, respectively. AIRS reports up to two cloud layers while MODIS reports up to one. However, MODIS reports TC, TS, and f at a higher spatial resolution than AIRS. As a result, pixel-scale comparisons of TC and f are difficult to interpret, demonstrating the need for alternatives such as Tb,e. AIRS-MODIS Tb,e differences ((Delta)Tb,e) for identical observing scenes are useful as a diagnostic for cloud quantity comparisons. The smallest values of DTb,e are for high and opaque clouds, with increasing scatter in (Delta)Tb,e for clouds of smaller opacity and lower altitude. A persistent positive bias in DTb,e is observed in warmer and low-latitude scenes, characterized by a mixture of MODIS CO2 slicing and 11-mm window retrievals. These scenes contain heterogeneous cloud cover, including mixtures of multilayered cloudiness and misplaced MODIS cloud top pressure. The spatial patterns of (Delta)Tb,e are systematic and do not correlate well with collocated AIRS-MODIS radiance differences, which are more random in nature and smaller in magnitude than (Delta)Tb,e. This suggests that the observed inconsistencies in AIRS and MODIS cloud fields are dominated by retrieval algorithm differences, instead of differences in the observed radiances. The results presented here have implications for the validation of cloudy satellite retrieval algorithms, and use of cloud products in quantitative analyses.

  5. Validation of Nimbus-7 cloud and SMMR data

    NASA Technical Reports Server (NTRS)

    Hwang, P. H.; Yeh, H. Y. M.; Macmillan, D. S.; Long, C. S.

    1986-01-01

    The relationship between cloud amount, water content (WC), and liquid water content (LWC) is studied. Nimbus-7 cloud data and LWC and WC data derived from the SMMR for July 1979 are analyzed and compared. The SMMR sea surface temperature (SST) data are also compared to Air Force SST data. The comparisons reveal that Nimbus-7 cloud data and the SMMR WC and LWC data correlate well, and there is also good agreement between the SMMR SST and the Air Force data. The data demonstrate that there is a relation between the WC, LWC, and cloud amount data.

  6. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James C. R.; Leijnse, Hidde; Steeneveld, Gert-Jan; Horn, Berthold K. P.; Uijlenhoet, Remko

    2014-05-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. It has been shown that a straightforward heat transfer model can be employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. The methodology has been applied to Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree

  7. Relationship between clouds and sea surface temperatures in the western tropical Pacific

    NASA Technical Reports Server (NTRS)

    Arking, Albert; Ziskin, Daniel

    1994-01-01

    Analysis of four years of earth radiation budget, cloud, and sea surface temperature data confirms that cloud parameters change dramatically when and where sea surface temperatures increase above approximately 300K. These results are based upon monthly mean values within 2.5 deg x 2.5 deg grid points over the 'warm pool' region of the western tropical Pacific. The question of whether sea surface temperatures are influenced, in turn, by the radiative effects of these clouds (Ramanathan and Collins) is less clear. Such a feedback, if it exists, is weak. The reason why clouds might have so little influence, despite large changes in their longwave and shortwave radiative effects, might be that the sea surface responds to both the longwave heating and the shortwave cooling effects of clouds, and the two effects nearly cancel. There are strong correlations between the rate of change of sea surface temperature and any of the radiation budget parameters that are highly correlated with the incident solar flux-implying that season and latitude are the critical factors determining sea surface temperatures. With the seasonal or both seasonal and latitudinal variations removed, the rate of change of sea surface temperature shows no correlation with cloud-related parameters in the western tropical Pacific.

  8. Effect of Clouds on Apertures of Space-based Air Fluorescence Detectors

    NASA Technical Reports Server (NTRS)

    Sokolsky, P.; Krizmanic, J.

    2003-01-01

    Space-based ultra-high-energy cosmic ray detectors observe fluorescence light from extensive air showers produced by these particles in the troposphere. Clouds can scatter and absorb this light and produce systematic errors in energy determination and spectrum normalization. We study the possibility of using IR remote sensing data from MODIS and GOES satellites to delimit clear areas of the atmosphere. The efficiency for detecting ultra-high-energy cosmic rays whose showers do not intersect clouds is determined for real, night-time cloud scenes. We use the MODIS SST cloud mask product to define clear pixels for cloud scenes along the equator and use the OWL Monte Carlo to generate showers in the cloud scenes. We find the efficiency for cloud-free showers with closest approach of three pixels to a cloudy pixel is 6.5% exclusive of other factors. We conclude that defining a totally cloud-free aperture reduces the sensitivity of space-based fluorescence detectors to unacceptably small levels.

  9. The Atmospheric Infrared Sounder Version 6 Cloud Products

    NASA Technical Reports Server (NTRS)

    Kahn, B. H.; Irion, F. W.; Dang, V. T.; Manning, E. M.; Nasiri, S. L.; Naud, C. M.; Blaisdell, J. M.; Schreier, M. M..; Yue, Q.; Bowman, K. W.; hide

    2014-01-01

    The version 6 cloud products of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) instrument suite are described. The cloud top temperature, pressure, and height and effective cloud fraction are now reported at the AIRS field-of-view (FOV) resolution. Significant improvements in cloud height assignment over version 5 are shown with FOV-scale comparisons to cloud vertical structure observed by the CloudSat 94 GHz radar and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP). Cloud thermodynamic phase (ice, liquid, and unknown phase), ice cloud effective diameter D(sub e), and ice cloud optical thickness (t) are derived using an optimal estimation methodology for AIRS FOVs, and global distributions for 2007 are presented. The largest values of tau are found in the storm tracks and near convection in the tropics, while D(sub e) is largest on the equatorial side of the midlatitude storm tracks in both hemispheres, and lowest in tropical thin cirrus and the winter polar atmosphere. Over the Maritime Continent the diurnal variability of tau is significantly larger than for the total cloud fraction, ice cloud frequency, and D(sub e), and is anchored to the island archipelago morphology. Important differences are described between northern and southern hemispheric midlatitude cyclones using storm center composites. The infrared-based cloud retrievals of AIRS provide unique, decadal-scale and global observations of clouds over portions of the diurnal and annual cycles, and capture variability within the mesoscale and synoptic scales at all latitudes.

  10. Impact of cloud timing on surface temperature and related hydroclimatic dynamics

    NASA Astrophysics Data System (ADS)

    Porporato, A. M.; Yin, J.

    2015-12-01

    Cloud feedbacks have long been identified as one of the largest source of uncertainty in climate change predictions. Differences in the spatial distribution of clouds and the related impact on surface temperature and climate dynamics have been recently emphasized in quasi-equilibrium General Circulation Models (GCM). However, much less attention has been paid to the temporal variation of cloud presence and thickness. Clouds in fact shade the solar radiation during the daytime, but also acts as greenhouse gas to reduce the emission of longwave radiation to the outer space anytime of the day. Thus it is logical to expect that even small differences in timing and thickness of clouds could result in very different predictions in GCMs. In this study, these two effects of cloud dynamics are analyzed by tracking the cloud impacts on longwave and shortwave radiation in a minimalist transient thermal balance model of the land surface. The marked changes in surface temperature due to alterations in the timing of onset of clouds demonstrate that capturing temporal variation of cloud at sub-daily scale should be a priority in cloud parameterization schemes in GCMs.

  11. Data Assimilation Experiments Using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2009-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains a number of significant improvements over Version 4. Two very significant improvements are described briefly below. 1) The AIRS Science Team Radiative Transfer Algorithm (RTA) has now been upgraded to accurately account for effects of non-local thermodynamic equilibrium on the AIRS observations. This allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval algorithm during both day and night. Following theoretical considerations, tropospheric temperature profile information is obtained almost exclusively from clear column radiances in the 4.3 micron CO2 band in the AIRS Version 5 temperature profile retrieval step. These clear column radiances are a derived product that are indicative of radiances AIRS channels would have seen if the field of view were completely clear. Clear column radiances for all channels are determined using tropospheric sounding 15 micron CO2 observations. This approach allows for the generation of accurate values of clear column radiances and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel clear column radiances. These error estimates are used for quality control of the retrieved products. Based on error estimate thresholds, each temperature profiles is assigned a characteristic pressure, pg, down to which the profile is characterized as good for use for data assimilation purposes. We have conducted forecast impact experiments assimilating AIRS quality controlled temperature profiles using the NASA GEOS-5 data assimilation system, consisting of the NCEP GSI analysis coupled with the

  12. Impact of Arctic sea-ice retreat on the recent change in cloud-base height during autumn

    NASA Astrophysics Data System (ADS)

    Sato, K.; Inoue, J.; Kodama, Y.; Overland, J. E.

    2012-12-01

    Cloud-base observations over the ice-free Chukchi and Beaufort Seas in autumn were conducted using a shipboard ceilometer and radiosondes during the 1999-2010 cruises of the Japanese R/V Mirai. To understand the recent change in cloud base height over the Arctic Ocean, these cloud-base height data were compared with the observation data under ice-covered situation during SHEBA (the Surface Heat Budget of the Arctic Ocean project in 1998). Our ice-free results showed a 30 % decrease (increase) in the frequency of low clouds with a ceiling below (above) 500 m. Temperature profiles revealed that the boundary layer was well developed over the ice-free ocean in the 2000s, whereas a stable layer dominated during the ice-covered period in 1998. The change in surface boundary conditions likely resulted in the difference in cloud-base height, although it had little impact on air temperatures in the mid- and upper troposphere. Data from the 2010 R/V Mirai cruise were investigated in detail in terms of air-sea temperature difference. This suggests that stratus cloud over the sea ice has been replaced as stratocumulus clouds with low cloud fraction due to the decrease in static stability induced by the sea-ice retreat. The relationship between cloud-base height and air-sea temperature difference (SST-Ts) was analyzed in detail using special section data during 2010 cruise data. Stratus clouds near the sea surface were predominant under a warm advection situation, whereas stratocumulus clouds with a cloud-free layer were significant under a cold advection situation. The threshold temperature difference between sea surface and air temperatures for distinguishing the dominant cloud types was 3 K. Anomalous upward turbulent heat fluxes associated with the sea-ice retreat have likely contributed to warming of the lower troposphere. Frequency distribution of the cloud-base height (km) detected by a ceilometer/lidar (black bars) and radiosondes (gray bars), and profiles of potential

  13. ENSO shifts and their link to Southern Africa surface air temperature in summer

    NASA Astrophysics Data System (ADS)

    Manatsa, D.; Mukwada, G.; Makaba, L.

    2018-05-01

    ENSO has been known to influence the trends of summer warming over Southern Africa. In this work, we used observational and reanalysis data to analyze the relationship between ENSO and maximum surface air temperature (SATmax) trends during the three epochs created by the ENSO phase shifts around 1977 and 1997 for the period 1960 to 2014. We observed that while ENSO and cloud cover remains the dominant factor controlling SATmax variability, the first two epochs had the predominant La Niña (El Niño)-like events connected to robust positive (negative) trends in cloud fraction. However, this established relationship reversed in the post-1997 La Niña-like dominated epoch which coincided with a falling cloud cover trend. It is established that this deviation from the previously established link within the previous epochs could be due to the post-1998 era in which SATmin was suppressed while SATmax was enhanced. The resulting increase in diurnal temperature range (DTR) could have discouraged the formation of low-level clouds which have relatively more extensive areal coverage and hence allowing more solar energy to reach the surface to boost daytime SATmax. It is noted that these relationships are more pronounced from December to March.

  14. Verifying Air Force Weather Passive Satellite Derived Cloud Analysis Products

    NASA Astrophysics Data System (ADS)

    Nobis, T. E.

    2017-12-01

    Air Force Weather (AFW) has developed an hourly World-Wide Merged Cloud Analysis (WWMCA) using imager data from 16 geostationary and polar-orbiting satellites. The analysis product contains information on cloud fraction, height, type and various optical properties including optical depth and integrated water path. All of these products are derived using a suite of algorithms which rely exclusively on passively sensed data from short, mid and long wave imager data. The system integrates satellites with a wide-range of capabilities, from the relatively simple two-channel OLS imager to the 16 channel ABI/AHI to create a seamless global analysis in real time. Over the last couple of years, AFW has started utilizing independent verification data from active sensed cloud measurements to better understand the performance limitations of the WWMCA. Sources utilized include space based lidars (CALIPSO, CATS) and radar (CloudSat) as well as ground based lidars from the Department of Energy ARM sites and several European cloud radars. This work will present findings from our efforts to compare active and passive sensed cloud information including comparison techniques/limitations as well as performance of the passive derived cloud information against the active.

  15. Remote Sensing the Vertical Profile of Cloud Droplet Effective Radius, Thermodynamic Phase, and Temperature

    NASA Technical Reports Server (NTRS)

    Martins, J. V.; Marshak, A.; Remer, L. A.; Rosenfeld, D.; Kaufman, Y. J.; Fernandez-Borda, R.; Koren, I.; Correia, A. L.; Zubko, V.; Artaxo, P.

    2011-01-01

    Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil.

  16. Six years of surface remote sensing of stratiform warm clouds in marine and continental air over Mace Head, Ireland

    NASA Astrophysics Data System (ADS)

    Preißler, Jana; Martucci, Giovanni; Saponaro, Giulia; Ovadnevaite, Jurgita; Vaishya, Aditya; Kolmonen, Pekka; Ceburnis, Darius; Sogacheva, Larisa; de Leeuw, Gerrit; O'Dowd, Colin

    2016-12-01

    A total of 118 stratiform water clouds were observed by ground-based remote sensing instruments at the Mace Head Atmospheric Research Station on the west coast of Ireland from 2009 to 2015. Microphysical and optical characteristics of these clouds were studied as well as the impact of aerosols on these properties. Microphysical and optical cloud properties were derived using the algorithm SYRSOC (SYnergistic Remote Sensing Of Clouds). Ground-based in situ measurements of aerosol concentrations and the transport path of air masses at cloud level were investigated as well. The cloud properties were studied in dependence of the prevailing air mass at cloud level and season. We found higher cloud droplet number concentrations (CDNC) and smaller effective radii (reff) with greater pollution. Median CDNC ranged from 60 cm-3 in marine air masses to 160 cm-3 in continental air. Median reff ranged from 8 μm in polluted conditions to 10 μm in marine air. Effective droplet size distributions were broader in marine than in continental cases. Cloud optical thickness (COT) and albedo were lower in cleaner air masses and higher in more polluted conditions, with medians ranging from 2.1 to 4.9 and 0.22 to 0.39, respectively. However, calculation of COT and albedo was strongly affected by liquid water path (LWP) and departure from adiabatic conditions. A comparison of SYRSOC results with MODIS (Moderate-Resolution Imaging Spectroradiometer) observations showed large differences for LWP and COT but good agreement for reff with a linear fit with slope near 1 and offset of -1 μm.

  17. Satellite Imagery Analysis for Nighttime Temperature Inversion Clouds

    NASA Technical Reports Server (NTRS)

    Kawamoto, K.; Minnis, P.; Arduini, R.; Smith, W., Jr.

    2001-01-01

    Clouds play important roles in the climate system. Their optical and microphysical properties, which largely determine their radiative property, need to be investigated. Among several measurement means, satellite remote sensing seems to be the most promising. Since most of the cloud algorithms proposed so far are daytime use which utilizes solar radiation, Minnis et al. (1998) developed a nighttime use one using 3.7-, 11 - and 12-microns channels. Their algorithm, however, has a drawback that is not able to treat temperature inversion cases. We update their algorithm, incorporating new parameterization by Arduini et al. (1999) which is valid for temperature inversion cases. This updated algorithm has been applied to GOES satellite data and reasonable retrieval results were obtained.

  18. Wave clouds over the Central African Republic

    NASA Image and Video Library

    2016-02-04

    On January 27, 2016, the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite passed over the Central African Republic and captured a true-color image of wave clouds rippling over a fire-speckled landscape. Wave clouds typically form when a mountain, island, or even another mass of air forces an air mass to rise, then fall again, in a wave pattern. The air cools as it rises, and if there is moisture in the air, the water condenses into clouds at the top of the wave. As the air begins to sink, the air warms and the cloud dissipates. The result is a line of clouds marking the crests of the wave separated by clear areas in the troughs of the wave. In addition to the long lines of clouds stretching across the central section of the country, clouds appear to line up in parallel rows near the border of the Democratic Republic of the Congo. In this area, small sets of grayish cloud appear to be lined up with the prevailing wind, judging by the plumes of smoke rising from red hotspots near each set of clouds. Clouds like this, that line in parallel rows parallel with the prevailing wind, are known as “cloud streets”. Each red “hotspot” marks an area where the thermal sensors on the MODIS instrument detected high temperatures. When accompanied by typical smoke, such hotspots are diagnostic for actively burning fires. Given the time of the year, the widespread nature, and the location of the fires, they are almost certainly agricultural fires that have been deliberately set to manage land. Image Credit: Jeff Schmaltz, MODIS Land Rapid Response Team, NASA GSFC NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on

  19. Validation of a weather forecast model at radiance level against satellite observations allowing quantification of temperature, humidity, and cloud-related biases

    NASA Astrophysics Data System (ADS)

    Bani Shahabadi, Maziar; Huang, Yi; Garand, Louis; Heilliette, Sylvain; Yang, Ping

    2016-09-01

    An established radiative transfer model (RTM) is adapted for simulating all-sky infrared radiance spectra from the Canadian Global Environmental Multiscale (GEM) model in order to validate its forecasts at the radiance level against Atmospheric InfraRed Sounder (AIRS) observations. Synthetic spectra are generated for 2 months from short-term (3-9 h) GEM forecasts. The RTM uses a monthly climatological land surface emissivity/reflectivity atlas. An updated ice particle optical property library was introduced for cloudy radiance calculations. Forward model brightness temperature (BT) biases are assessed to be of the order of ˜1 K for both clear-sky and overcast conditions. To quantify GEM forecast meteorological variables biases, spectral sensitivity kernels are generated and used to attribute radiance biases to surface and atmospheric temperatures, atmospheric humidity, and clouds biases. The kernel method, supplemented with retrieved profiles based on AIRS observations in collocation with a microwave sounder, achieves good closure in explaining clear-sky radiance biases, which are attributed mostly to surface temperature and upper tropospheric water vapor biases. Cloudy-sky radiance biases are dominated by cloud-induced radiance biases. Prominent GEM biases are identified as: (1) too low surface temperature over land, causing about -5 K bias in the atmospheric window region; (2) too high upper tropospheric water vapor, inducing about -3 K bias in the water vapor absorption band; (3) too few high clouds in the convective regions, generating about +10 K bias in window band and about +6 K bias in the water vapor band.

  20. A Study of Surface Temperatures, Clouds and Net Radiation

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans

    1996-01-01

    This study focused on the seasonal relationships and interactions of climate parameters such as the surface temperatures, net radiation, long wave flux, short wave flux, and clouds on a global basis. Five years of observations (December 1984 to November 1989) from the Earth Radiation Budget Experiment (ERBE) and the International Satellite Cloud Climatology Program (ISCCP) were used to study both seasonal variations and interannual variations by use of a basic radiation budget equation. In addition, the study was extended to include an analysis of the cloud forcing due El-Nino's impact on the ERBE parameters.

  1. The Impact of Cloud Properties on Young Sea Ice during Three Winter Storms at N-ICE2015

    NASA Astrophysics Data System (ADS)

    Murphy, S. Y.; Walden, V. P.; Cohen, L.; Hudson, S. R.

    2017-12-01

    The impact of clouds on sea ice varies significantly as cloud properties change. Instruments deployed during the Norwegian Young Sea Ice field campaign (N-ICE2015) are used to study how differing cloud properties influence the cloud radiative forcing at the sea ice surface. N-ICE2015 was the first campaign in the Arctic winter since SHEBA (1997/1998) to study the surface energy budget of sea ice and the associated effects of cloud properties. Cloud characteristics, surface radiative and turbulent fluxes, and meteorological properties were measured throughout the field campaign. Here we explore how cloud macrophysical and microphysical properties affect young, thin sea ice during three winter storms from 31 January to 15 February 2015. This time period is of interest due to the varying surface and atmospheric conditions, which showcase the variety of conditions the newly-formed sea ice can experience during the winter. This period was characterized by large variations in the ice surface and near-surface air temperatures, with highs near 0°C when warm, moist air was advected into the area and lows reaching -40°C during clear, calm periods between storms. The advection of warm, moist air into the area influenced the cloud properties and enhanced the downwelling longwave flux. For most of the period, downwelling longwave flux correlates closely with the air temperature. However, at the end of the first storm, a drop in downwelling longwave flux of about 50 Wm-2 was observed, independent of any change in surface or air temperature or cloud fraction, indicating a change in cloud properties. Lidar data show an increase in cloud height during this period and a potential shift in cloud phase from ice to mixed-phase. This study will describe the cloud properties during the three winter storms and discuss their impacts on surface energy budget.

  2. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, A.; Robinson, J. C. R.; Leijnse, H.; Steeneveld, G. J.; Horn, B. K. P.; Uijlenhoet, R.

    2013-08-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. A straightforward heat transfer model is employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas.

  3. Transitions of cloud-topped marine boundary layers characterized by AIRS, MODIS, and a large eddy simulation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Qing; Kahn, Brian; Xiao, Heng

    2013-08-16

    Cloud top entrainment instability (CTEI) is a hypothesized positive feedback between entrainment mixing and evaporative cooling near the cloud top. Previous theoretical and numerical modeling studies have shown that the persistence or breakup of marine boundary layer (MBL) clouds may be sensitive to the CTEI parameter. Collocated thermodynamic profile and cloud observations obtained from the Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments are used to quantify the relationship between the CTEI parameter and the cloud-topped MBL transition from stratocumulus to trade cumulus in the northeastern Pacific Ocean. Results derived from AIRS and MODIS are compared withmore » numerical results from the UCLA large eddy simulation (LES) model for both well-mixed and decoupled MBLs. The satellite and model results both demonstrate a clear correlation between the CTEI parameter and MBL cloud fraction. Despite fundamental differences between LES steady state results and the instantaneous snapshot type of observations from satellites, significant correlations for both the instantaneous pixel-scale observations and the long-term averaged spatial patterns between the CTEI parameter and MBL cloud fraction are found from the satellite observations and are consistent with LES results. This suggests the potential of using AIRS and MODIS to quantify global and temporal characteristics of the cloud-topped MBL transition.« less

  4. A Study of the Role of Clouds in the Relationship Between Land Use/Land Cover and the Climate and Air Quality of the Atlanta Area

    NASA Technical Reports Server (NTRS)

    Kidder, Stanley Q.; Hafner, Jan

    1997-01-01

    The goal of Project ATLANTA is to derive a better scientific understanding of how land cover changes associated with urbanization affect local and regional climate and air quality. Clouds play a significant role in this relationship. Using GOES images, we found that in a 63-day period (5 July-5 September 1996) there were zero days which were clear for the entire daylight period. Days which are cloud-free in the morning become partly cloudy with small cumulus clouds in the afternoon in response to solar heating. This result casts doubt on the applicability of California-style air quality models which run in perpetual clear skies. Days which are clear in the morning have higher ozone than those which are cloudy in the morning. Using the RAMS model, we found that urbanization increases the skin surface temperature by about 1.0-1.5 C on average under cloudy conditions, with an extreme of +3.5 C. Clouds cool the surface due to their shading effect by 1.5-2.0 C on average, with an extreme of 5.0 C. RAMS simulates well the building stage of the cumulus cloud field, but does poorly in the decaying phase. Next year's work: doing a detailed cloud climatology and developing improved RAMS cloud simulations.

  5. Air Modeling - Observational Meteorological Data

    EPA Pesticide Factsheets

    Observed meteorological data for use in air quality modeling consist of physical parameters that are measured directly by instrumentation, and include temperature, dew point, wind direction, wind speed, cloud cover, cloud layer(s), ceiling height,

  6. Aerosols in polluted versus nonpolluted air masses Long-range transport and effects on clouds

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Van Valin, C. C.; Castillo, R. C.; Kadlecek, J. A.; Ganor, E.

    1986-01-01

    To assess the influence of anthropogenic aerosols on the physics and chemistry of clouds in the northeastern United States, aerosol and cloud-drop size distributions, elemental composition of aerosols as a function of size, and ionic content of cloud water were measured on Whiteface Mountain, NY, during the summers of 1981 and 1982. In several case studies, the data were cross-correlated with different air mass types - background continental, polluted continental, and maritime - that were advected to the sampling site. The results are the following: (1) Anthropogenic sources hundreds of kilometers upwind cause the small-particle (accumulation) mode number to increase from hundreds of thousands per cubic centimeter and the mass loading to increase from a few to several tens of micrograms per cubic meter, mostly in the form of sulfur aerosols. (2) A significant fraction of anthropogenic sulfur appears to act as cloud condensation nuclei (CCN) to affect the cloud drop concentration. (3) Clouds in Atlantic maritime air masses have cloud drop spectra that are markedly different from those measured in continental clouds. The drop concentration is significantly lower, and the drop size spectra are heavily skewed toward large drops. (4) Effects of anthropogenic pollutants on cloud water ionic composition are an increase of nitrate by a factor of 50, an increase of sulfate by more than one order of magnitude, and an increase of ammonium ion by a factor of 7. The net effect of the changes in ionic concentrations is an increase in cloud water acidity. An anion deficit even in maritime clouds suggests an unknown, possibly biogenic, source that could be responsible for a pH below neutral, which is frequently observed in nonpolluted clouds.

  7. Sahara Dust Cloud

    NASA Technical Reports Server (NTRS)

    2005-01-01

    AIRS retrieved total water vapor product as a region of depressed water vapor (brown in the images) migrating slowly Westward toward the Caribbean. The SAL phenomenon inhibits the formation of tropical cyclones and thus has given the West Indies and the East Coast of the US a respite from hurricanes.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  8. Climatic Implications of the Observed Temperature Dependence of the Liquid Water Path of Low Clouds

    NASA Technical Reports Server (NTRS)

    DelGenio, Anthony

    1999-01-01

    The uncertainty in the global climate sensitivity to an equilibrium doubling of carbon dioxide is often stated to be 1.5-4.5 K, largely due to uncertainties in cloud feedbacks. The lower end of this range is based on the assumption or prediction in some GCMs that cloud liquid water behaves adiabatically, thus implying that cloud optical thickness will increase in a warming climate if the physical thickness of clouds is invariant. Satellite observations of low-level cloud optical thickness and liquid water path have challenged this assumption, however, at low and middle latitudes. We attempt to explain the satellite results using four years of surface remote sensing data from the Atmospheric Radiation Measurements (ARM) Cloud And Radiation Testbed (CART) site in the Southern Great Plains. We find that low cloud liquid water path is insensitive to temperature in winter but strongly decreases with temperature in summer. The latter occurs because surface relative humidity decreases with warming, causing cloud base to rise and clouds to geometrically thin. Meanwhile, inferred liquid water contents hardly vary with temperature, suggesting entrainment depletion. Physically, the temperature dependence appears to represent a transition from higher probabilities of stratified boundary layers at cold temperatures to a higher incidence of convective boundary layers at warm temperatures. The combination of our results and the earlier satellite findings imply that the minimum climate sensitivity should be revised upward from 1.5 K.

  9. A single field of view method for retrieving tropospheric temperature profiles from cloud-contaminated radiance data

    NASA Technical Reports Server (NTRS)

    Hodges, D. B.

    1976-01-01

    An iterative method is presented to retrieve single field of view (FOV) tropospheric temperature profiles directly from cloud-contaminated radiance data. A well-defined temperature profile may be calculated from the radiative transfer equation (RTE) for a partly cloudy atmosphere when the average fractional cloud amount and cloud-top height for the FOV are known. A cloud model is formulated to calculate the fractional cloud amount from an estimated cloud-top height. The method is then examined through use of simulated radiance data calculated through vertical integration of the RTE for a partly cloudy atmosphere using known values of cloud-top height(s) and fractional cloud amount(s). Temperature profiles are retrieved from the simulated data assuming various errors in the cloud parameters. Temperature profiles are retrieved from NOAA-4 satellite-measured radiance data obtained over an area dominated by an active cold front and with considerable cloud cover and compared with radiosonde data. The effects of using various guessed profiles and the number of iterations are considered.

  10. Comparison of Satellite and Aircraft Measurements of Cloud Microphysical Properties in Icing Conditions During ATREC/AIRS-II

    NASA Technical Reports Server (NTRS)

    Nguyen, Louis; Minnis, Patrick; Spangenberg, Douglas A.; Nordeen, Michele L.; Palikonda, Rabindra; Khaiyer, Mandana M.; Gultepe, Ismail; Reehorst, Andrew L.

    2004-01-01

    Satellites are ideal for continuous monitoring of aircraft icing conditions in many situations over extensive areas. The satellite imager data are used to diagnose a number of cloud properties that can be used to develop icing intensity indices. Developing and validating these indices requires comparison with objective "cloud truth" data in addition to conventional pilot reports (PIREPS) of icing conditions. Minnis et al. examined the relationships between PIREPS icing and satellite-derived cloud properties. The Atlantic-THORPEX Regional Campaign (ATReC) and the second Alliance Icing Research Study (AIRS-II) field programs were conducted over the northeastern USA and southeastern Canada during late 2003 and early 2004. The aircraft and surface measurements are concerned primarily with the icing characteristics of clouds and, thus, are ideal for providing some validation information for the satellite remote sensing product. This paper starts the process of comparing cloud properties and icing indices derived from the Geostationary Operational Environmental Satellite (GOES) with the aircraft in situ measurements of several cloud properties during campaigns and some of the The comparisons include cloud phase, particle size, icing intensity, base and top altitudes, temperatures, and liquid water path. The results of this study are crucial for developing a more reliable and objective icing product from satellite data. This icing product, currently being derived from GOES data over the USA, is an important complement to more conventional products based on forecasts, and PIREPS.

  11. Estimating Cloud optical thickness from SEVIRI, for air quality research, by implementing a semi-analytical cloud retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Pandey, Praveen; De Ridder, Koen; van Looy, Stijn; van Lipzig, Nicole

    2010-05-01

    Clouds play an important role in Earth's climate system. As they affect radiation hence photolysis rate coefficients (ozone formation),they also affect the air quality at the surface of the earth. Thus, a satellite remote sensing technique is used to retrieve the cloud properties for air quality research. The geostationary satellite, Meteosat Second Generation (MSG) has onboard, the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The channels in the wavelength 0.6 µm and 1.64 µm are used to retrieve cloud optical thickness (COT). The study domain is over Europe covering a region between 35°N-70°N and 5°W-30°E, centred over Belgium. The steps involved in pre-processing the EUMETSAT level 1.5 images are described, which includes, acquisition of digital count number, radiometric conversion using offsets and slopes, estimation of radiance and calculation of reflectance. The Sun-earth-satellite geometry also plays an important role. A semi-analytical cloud retrieval algorithm (Kokhanovsky et al., 2003) is implemented for the estimation of COT. This approach doesn't involve the conventional look-up table approach, hence it makes the retrieval independent of numerical radiative transfer solutions. The semi-analytical algorithm is implemented on a monthly dataset of SEVIRI level 1.5 images. Minimum reflectance in the visible channel, at each pixel, during the month is accounted as the surface albedo of the pixel. Thus, monthly variation of COT over the study domain is prepared. The result so obtained, is compared with the COT products of Satellite Application Facility on Climate Monitoring (CM SAF). Henceforth, an approach to assimilate the COT for air quality research is presented. Address of corresponding author: Praveen Pandey, VITO- Flemish Institute for Technological Research, Boeretang 200, B 2400, Mol, Belgium E-mail: praveen.pandey@vito.be

  12. Validation of Local-Cloud Model Outputs With the GOES Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Malek, E.

    2005-05-01

    Clouds (visible aggregations of minute droplets of water or tiny crystals of ice suspended in the air) affect the radiation budget of our planet by reflecting, absorbing and scattering solar radiation, and the re-emission of terrestrial radiation. They affect the weather and climate by positive or negative feedbacks. Many researchers have worked on the parameterization of clouds and their effects on the radiation budget. There is little information about ground-based approaches for continuous evaluation of cloud, such as cloud base height, cloud base temperature, and cloud coverage, at local and regional scales. This present article deals with the development of an algorithm for continuous (day and night) evaluation of cloud base temperature, cloud base height and percent of skies covered by cloud at local scale throughout the year. The Vaisala model CT-12K laser beam ceilometer is used at the Automated Surface Observing Systems (ASOS) to measure the cloud base height and report the sky conditions on an hourly basis or at shorter intervals. This laser ceilometer is a fixed-type whose transmitter and receiver point straight up at the cloud (if any) base. It is unable to measure clouds that are not above the sensor. To report cloudiness at the local scale, many of these type of ceilometers are needed. This is not a perfect method for cloud measurement. A single cloud hanging overhead the sensor will cause overcast readings, whereas, a hole in the clouds could cause a clear reading to be reported. To overcome this problem, we have set up a ventilated radiation station at Logan-Cache airport, Utah, U.S.A., since 1995, which is equipped with one of the above-mentioned ceilometers. This radiation station (composed of pyranometers, pyrgeometers and net radiometer) provides continuous measurements of incoming and outgoing shortwave and longwave radiation and the net radiation throughout the year. We have also measured the surface temperature and pressure, the 2-m air

  13. Cloud streets in Davis Strait

    NASA Image and Video Library

    2017-12-08

    The late winter sun shone brightly on a stunning scene of clouds and ice in the Davis Strait in late February, 2013. The Moderate Resolution Imaging Spectroradiometer aboard NASA’s Aqua satellite captured this true-color image on February 22 at 1625 UTC. The Davis Strait connects the Labrador Sea (part of the Atlantic Ocean) in the south with Baffin Bay to the north, and separates Canada, to the west, from Greenland to the east. Strong, steady winds frequently blow southward from the colder Baffin Bay to the warmer waters of the Labrador Sea. Over ice, the air is dry and no clouds form. However, as the Arctic air moves over the warmer, open water the rising moist air and the temperature differential gives rise to lines of clouds. In this image, the clouds are aligned in a beautiful, parallel pattern. Known as “cloud streets”, this pattern is formed in a low-level wind, with the clouds aligning in the direction of the wind. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Cloud and boundary layer interactions over the Arctic sea ice in late summer

    NASA Astrophysics Data System (ADS)

    Shupe, M. D.; Persson, P. O. G.; Brooks, I. M.; Tjernström, M.; Sedlar, J.; Mauritsen, T.; Sjogren, S.; Leck, C.

    2013-09-01

    Observations from the Arctic Summer Cloud Ocean Study (ASCOS), in the central Arctic sea-ice pack in late summer 2008, provide a detailed view of cloud-atmosphere-surface interactions and vertical mixing processes over the sea-ice environment. Measurements from a suite of ground-based remote sensors, near-surface meteorological and aerosol instruments, and profiles from radiosondes and a helicopter are combined to characterize a week-long period dominated by low-level, mixed-phase, stratocumulus clouds. Detailed case studies and statistical analyses are used to develop a conceptual model for the cloud and atmosphere structure and their interactions in this environment. Clouds were persistent during the period of study, having qualities that suggest they were sustained through a combination of advective influences and in-cloud processes, with little contribution from the surface. Radiative cooling near cloud top produced buoyancy-driven, turbulent eddies that contributed to cloud formation and created a cloud-driven mixed layer. The depth of this mixed layer was related to the amount of turbulence and condensed cloud water. Coupling of this cloud-driven mixed layer to the surface boundary layer was primarily determined by proximity. For 75% of the period of study, the primary stratocumulus cloud-driven mixed layer was decoupled from the surface and typically at a warmer potential temperature. Since the near-surface temperature was constrained by the ocean-ice mixture, warm temperatures aloft suggest that these air masses had not significantly interacted with the sea-ice surface. Instead, back-trajectory analyses suggest that these warm air masses advected into the central Arctic Basin from lower latitudes. Moisture and aerosol particles likely accompanied these air masses, providing necessary support for cloud formation. On the occasions when cloud-surface coupling did occur, back trajectories indicated that these air masses advected at low levels, while mixing

  15. HCMM/soil moisture experiment. [relationship between surface minus air temperature differential and available water according to crop type in Canada

    NASA Technical Reports Server (NTRS)

    Cihlar, J. (Principal Investigator)

    1980-01-01

    Progress in the compilation and analysis of airborne and ground data to determine the relationship between the maximum surface minus maximum air temperature differential (delta Tsa) and available water (PAW) is reported. Also, results of an analysis of HCMM images to determine the effect of cloud cover on the availability of HCMM-type data are presented. An inverse relationship between delta Tsa and PAW is indicated along with stable delta Tsa vs. PAW distributions for fully developed canopies. Large variations, both geographical and diurnal, in the cloud cover images are reported. The average monthly daytime cloud cover fluctuated between 40 and 60 percent.

  16. Single-footprint retrievals for AIRS using a fast TwoSlab cloud-representation model and the SARTA all-sky infrared radiative transfer algorithm

    NASA Astrophysics Data System (ADS)

    DeSouza-Machado, Sergio; Larrabee Strow, L.; Tangborn, Andrew; Huang, Xianglei; Chen, Xiuhong; Liu, Xu; Wu, Wan; Yang, Qiguang

    2018-01-01

    One-dimensional variational retrievals of temperature and moisture fields from hyperspectral infrared (IR) satellite sounders use cloud-cleared radiances (CCRs) as their observation. These derived observations allow the use of clear-sky-only radiative transfer in the inversion for geophysical variables but at reduced spatial resolution compared to the native sounder observations. Cloud clearing can introduce various errors, although scenes with large errors can be identified and ignored. Information content studies show that, when using multilayer cloud liquid and ice profiles in infrared hyperspectral radiative transfer codes, there are typically only 2-4 degrees of freedom (DOFs) of cloud signal. This implies a simplified cloud representation is sufficient for some applications which need accurate radiative transfer. Here we describe a single-footprint retrieval approach for clear and cloudy conditions, which uses the thermodynamic and cloud fields from numerical weather prediction (NWP) models as a first guess, together with a simple cloud-representation model coupled to a fast scattering radiative transfer algorithm (RTA). The NWP model thermodynamic and cloud profiles are first co-located to the observations, after which the N-level cloud profiles are converted to two slab clouds (TwoSlab; typically one for ice and one for water clouds). From these, one run of our fast cloud-representation model allows an improvement of the a priori cloud state by comparing the observed and model-simulated radiances in the thermal window channels. The retrieval yield is over 90 %, while the degrees of freedom correlate with the observed window channel brightness temperature (BT) which itself depends on the cloud optical depth. The cloud-representation and scattering package is benchmarked against radiances computed using a maximum random overlap (RMO) cloud scheme. All-sky infrared radiances measured by NASA's Atmospheric Infrared Sounder (AIRS) and NWP thermodynamic and cloud

  17. A Novel Method making direct use of AIRS and IASI Calibrated Radiances for Measuring Trends in Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Aumann, H. H.; Ruzmaikin, A.

    2014-12-01

    Making unbiased measurements of trends in the surface temperatures, particularly on a gobal scale, is challenging: While the non-frozen oceans temperature measurements are plentiful and accurate, land and polar areas are much less accurately or fairly sampled. Surface temperature deduced from infrared radiometers on polar orbiting satellites (e.g. the Atmospheric Infrared Sounder (AIRS) at 1:30PM, the Interferometer Atmosphere Sounding Interferometer (IASI) at 9:30 AM and the MODerate resolution Imaging Spectro-radiometer (MODIS) at 1:30PM), can produce what appear to be well sampled data, but dealing with clouds either by cloud filtering (MODIS, IASI) or cloud-clearing (AIRS) can create sampling bias. We use a novel method: Random Nadir Sampling (RNS) combined with Probability Density Function (PDF) analysis. We analyze the trend in the PDF of st1231, the water vapor absorption corrected brightness temperatures measured in the 1231 cm-1 atmospheric window channel. The advantage of this method is that trends can be directly traced to the known, less than 3 mK/yr trend for AIRS, in st1231. For this study we created PDFs from 22,000 daily RNS from the AIRS and IASI data. We characterized the PDFs by its daily 90%tile value, st1231p90, and analysed the statistical properties of the this time series between 2002 and 2014. The method was validated using the daily NOAA SST (RTGSST) from the non-frozen oceans: The mean, seasonal variability and anomaly trend of st1231p90 agree with the corrsponding values from the RTGSST and the anomaly correlation is larger than 0.9. Preliminary results (August 2014) confirm the global hiatus in the increase of the globally averaged surface temperatures between 2002 and 2014, with a change of less than 10 mK/yr. This uncertainty is dominated by the large interannual variability related to El Niño events. Further insite is gained by analyzing land/ocean, day/night, artic and antarctic trends. We observe a massive warming trend in the

  18. Implementing a warm cloud microphysics parameterization for convective clouds in NCAR CESM

    NASA Astrophysics Data System (ADS)

    Shiu, C.; Chen, Y.; Chen, W.; Li, J. F.; Tsai, I.; Chen, J.; Hsu, H.

    2013-12-01

    Most of cumulus convection schemes use simple empirical approaches to convert cloud liquid mass to rain water or cloud ice to snow e.g. using a constant autoconversion rate and dividing cloud liquid mass into cloud water and ice as function of air temperature (e.g. Zhang and McFarlane scheme in NCAR CAM model). There are few studies trying to use cloud microphysical schemes to better simulate such precipitation processes in the convective schemes of global models (e.g. Lohmann [2008] and Song, Zhang, and Li [2012]). A two-moment warm cloud parameterization (i.e. Chen and Liu [2004]) is implemented into the deep convection scheme of CAM5.2 of CESM model for treatment of conversion of cloud liquid water to rain water. Short-term AMIP type global simulations are conducted to evaluate the possible impacts from the modification of this physical parameterization. Simulated results are further compared to observational results from AMWG diagnostic package and CloudSAT data sets. Several sensitivity tests regarding to changes in cloud top droplet concentration (here as a rough testing for aerosol indirect effects) and changes in detrained cloud size of convective cloud ice are also carried out to understand their possible impacts on the cloud and precipitation simulations.

  19. Impact of decadal cloud variations on the Earth's energy budget

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Zelinka, Mark D.; Klein, Stephen A.

    2016-12-01

    Feedbacks of clouds on climate change strongly influence the magnitude of global warming. Cloud feedbacks, in turn, depend on the spatial patterns of surface warming, which vary on decadal timescales. Therefore, the magnitude of the decadal cloud feedback could deviate from the long-term cloud feedback. Here we present climate model simulations to show that the global mean cloud feedback in response to decadal temperature fluctuations varies dramatically due to time variations in the spatial pattern of sea surface temperature. We find that cloud anomalies associated with these patterns significantly modify the Earth's energy budget. Specifically, the decadal cloud feedback between the 1980s and 2000s is substantially more negative than the long-term cloud feedback. This is a result of cooling in tropical regions where air descends, relative to warming in tropical ascent regions, which strengthens low-level atmospheric stability. Under these conditions, low-level cloud cover and its reflection of solar radiation increase, despite an increase in global mean surface temperature. These results suggest that sea surface temperature pattern-induced low cloud anomalies could have contributed to the period of reduced warming between 1998 and 2013, and offer a physical explanation of why climate sensitivities estimated from recently observed trends are probably biased low.

  20. Cloud Arcs in the Western Pacific

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Small cumulus clouds in this natural-color view from the Multi-angle Imaging SpectroRadiometer have formed a distinctive series of quasi-circular arcs. Clues regarding the formation of these arcs can be found by noting that larger clouds exist in the interior of each arc.

    The interior clouds are thicker and likely to be more convectively active than the other clouds, causing much of the air near the centers of the arcs to rise. This air spreads out horizontally in all directions as it rises and continues to spread out as it begins to sink back to the surface. This pushes any existing small cumulus clouds away from the central region of convection.

    As the air sinks, it also warms, preventing other small clouds from forming, so that the regions just inside the arcs are kept clear. At the arcs, the horizontal flow of sinking air is now quite weak and on meeting the undisturbed air it can rise again slightly -- possibly assisting in the formation of new small cumulus clouds. Although examples of the continuity of air, in which every rising air motion must be compensated by a sinking motion elsewhere, are very common, the degree of organization exhibited here is relatively rare, as the wind field at different altitudes usually disrupts such patterns. The degree of self organization of this cloud image, whereby three or four such circular events form a quasi-periodic pattern, probably also requires a relatively uncommon combination of wind, temperature and humidity conditions for it to occur.

    The image was acquired by MISR's nadir camera on March 11, 2002, and is centered west of the Marshall Islands. Enewetak Atoll is discernible through thin cloud as the turquoise band near the right-hand edge of the image.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and views almost the entire globe every 9 days. This image is a portion of the data acquired during Terra orbit 11863, and covers an area of about 380

  1. Air temperature recordings in infant incubators.

    PubMed Central

    Aynsley-Green, A; Roberton, N R; Rolfe, P

    1975-01-01

    Air temperatures were continuously recorded inside four incubators with proportional heating control and six incubators with on/off heating cycles, during routine use. The air temperatures in the former were constant throughout, with a gradient between the roof and above-mattress air temperature not exceeding 1 degree C. In contrast, the recordings from the latter models showed a regular cyclical oscillation, the duration of the cycle varying from 14 to 44 minutes. Each incubator had a characteristic profile. The roof air temperature could vary by as much as 7-1 degrees C and the above-mattress air temperature by as much as 2-6 degrees C during the cycle. The oscillation persisted in the air temperatures recorded inside an open-ended hemicylindrical heat shield when used inside these incubators, but was markedly reduced inside a closed-ended heat shield, Carbon dioxide concentration did not increase significantly inside the latter. Images FIG. 1 FIG. 2 PMID:1147654

  2. Cloud Tolerance of Remote-Sensing Technologies to Measure Land Surface Temperature

    NASA Technical Reports Server (NTRS)

    Holmes, Thomas R. H.; Hain, Christopher R.; Anderson, Martha C.; Crow, Wade T.

    2016-01-01

    Conventional methods to estimate land surface temperature (LST) from space rely on the thermal infrared(TIR) spectral window and is limited to cloud-free scenes. To also provide LST estimates during periods with clouds, a new method was developed to estimate LST based on passive microwave(MW) observations. The MW-LST product is informed by six polar-orbiting satellites to create a global record with up to eight observations per day for each 0.25resolution grid box. For days with sufficient observations, a continuous diurnal temperature cycle (DTC) was fitted. The main characteristics of the DTC were scaled to match those of a geostationary TIR-LST product. This paper tests the cloud tolerance of the MW-LST product. In particular, we demonstrate its stable performance with respect to flux tower observation sites (four in Europe and nine in the United States), over a range of cloudiness conditions up to heavily overcast skies. The results show that TIR based LST has slightly better performance than MW-LST for clear-sky observations but suffers an increasing negative bias as cloud cover increases. This negative bias is caused by incomplete masking of cloud-covered areas within the TIR scene that affects many applications of TIR-LST. In contrast, for MW-LST we find no direct impact of clouds on its accuracy and bias. MW-LST can therefore be used to improve TIR cloud screening. Moreover, the ability to provide LST estimates for cloud-covered surfaces can help expand current clear-sky-only satellite retrieval products to all-weather applications.

  3. Cloud tolerance of remote sensing technologies to measure land surface temperature

    USDA-ARS?s Scientific Manuscript database

    Conventional means to estimate land surface temperature (LST) from space relies on the thermal infrared (TIR) spectral window and is limited to cloud-free scenes. To also provide LST estimates during periods with clouds, a new method was developed to estimate LST based on passive microwave (MW) obse...

  4. Water Ice Cloud Opacities and Temperatures Derived from the Viking IRTM Data Set

    NASA Technical Reports Server (NTRS)

    TamppariL. K.; Zurek, R. W.; Paige, D. A.

    1999-01-01

    The degree to which water ice clouds play a role in the Mars climate is unknown. Latent heating of water ice clouds is small and since most hazes appeared to be thin (tau less than or = 1) their radiative effects have been neglected. Condensation likely limits the vertical extent of water vapor in the water column and a lowering of the condensation altitude, as seen in the northern spring and summer, could increase the seasonal exchange of water between the atmosphere and the surface. It has been suggested that water ice cloud formation is more frequent and widespread in the aphelic hemisphere (currently the northern). This may limit water to the northern hemisphere through greater exchange with the regolith and through restricted southward transport of water vapor by the Mars Hadley circulation. In addition, it has been suggested that water ice cloud formation also controls the vertical distribution of atmospheric dust in some seasons. This scavenging of dust may Continuing from the IRTM cloud maps, derived cloud opacities and cloud temperatures for several locations and seasons will be presented. Sensitivities to cloud particle sizes, surface temperature, and dust opacity will be discussed.

  5. Measuring the Temperature of the Ithaca College MOT Cloud using a CMOS Camera

    NASA Astrophysics Data System (ADS)

    Smucker, Jonathan; Thompson, Bruce

    2015-03-01

    We present our work on measuring the temperature of Rubidium atoms cooled using a magneto-optical trap (MOT). The MOT uses laser trapping methods and Doppler cooling to trap and cool Rubidium atoms to form a cloud that is visible to a CMOS Camera. The Rubidium atoms are cooled further using optical molasses cooling after they are released from the trap (by removing the magnetic field). In order to measure the temperature of the MOT we take pictures of the cloud using a CMOS camera as it expands and calculate the temperature based on the free expansion of the cloud. Results from the experiment will be presented along with a summary of the method used.

  6. Comparison of modern icing cloud instruments

    NASA Technical Reports Server (NTRS)

    Takeuchi, D. M.; Jahnsen, L. J.; Callander, S. M.; Humbert, M. C.

    1983-01-01

    Intercomparison tests with Particle Measuring Systems (PMS) were conducted. Cloud liquid water content (LWC) measurements were also taken with a Johnson and Williams (JW) hot-wire device and an icing rate device (Leigh IDS). Tests include varying cloud LWC (0.5 to 5 au gm), cloud median volume diameter (MVD) (15 to 26 microns), temperature (-29 to 20 C), and air speeds (50 to 285 mph). Comparisons were based upon evaluating probe estimates of cloud LWC and median volume diameter for given tunnel settings. Variations of plus or minus 10% and plus or minus 5% in LWC and MVD, respectively, were determined of spray clouds between test made at given tunnel settings (fixed LWC, MVD, and air speed) indicating cloud conditions were highly reproducible. Although LWC measurements from JW and Leigh devices were consistent with tunnel values, individual probe measurements either consistently over or underestimated tunnel values by factors ranging from about 0.2 to 2. Range amounted to a factor of 6 differences between LWC estimates of probes for given cloud conditions. For given cloud conditions, estimates of cloud MVD between probes were within plus or minus 3 microns and 93% of the test cases. Measurements overestimated tunnel values in the range between 10 to 20 microns. The need for improving currently used calibration procedures was indicated. Establishment of test facility (or facilities) such as an icing tunnel where instruments can be calibrated against known cloud standards would be a logical choice.

  7. Merging of OMI and AIRS Ozone Data

    NASA Technical Reports Server (NTRS)

    Labow, Gordon J.; Fisher, Bradford; Susskind, Joel

    2014-01-01

    The OMI Instrument measures ozone using the backscattered light in the UV part of the spectrum. In polar night there are no OMI measurements so we hope to incorporate the AIRS ozone data to fill in these missing regions. AIRS is on the Aqua platform and has been operating since May 2002. AIRS is a multi-detector array grating spectrometer containing 2378 IR channels between 650 per centimeter and 2760 per centimeter which measures atmospheric temperature, precipitable water, water vapor, CO, CH4, CO2 and ozone profiles and column amount. It can also measure effective cloud fraction and cloud top pressure for up to two cloud layers and sea-land skin temperature. Since 2008, OMI has had part of its aperture occulted with a piece of the thermal blanket resulting in several scan positions being unusable. We hope to use the AIRS data to fill in the missing ozone values for those missing scan positions.

  8. Spherical combustion clouds in explosions

    NASA Astrophysics Data System (ADS)

    Kuhl, A. L.; Bell, J. B.; Beckner, V. E.; Balakrishnan, K.; Aspden, A. J.

    2013-05-01

    This study explores the properties of spherical combustion clouds in explosions. Two cases are investigated: (1) detonation of a TNT charge and combustion of its detonation products with air, and (2) shock dispersion of aluminum powder and its combustion with air. The evolution of the blast wave and ensuing combustion cloud dynamics are studied via numerical simulations with our adaptive mesh refinement combustion code. The code solves the multi-phase conservation laws for a dilute heterogeneous continuum as formulated by Nigmatulin. Single-phase combustion (e.g., TNT with air) is modeled in the fast-chemistry limit. Two-phase combustion (e.g., Al powder with air) uses an induction time model based on Arrhenius fits to Boiko's shock tube data, along with an ignition temperature criterion based on fits to Gurevich's data, and an ignition probability model that accounts for multi-particle effects on cloud ignition. Equations of state are based on polynomial fits to thermodynamic calculations with the Cheetah code, assuming frozen reactants and equilibrium products. Adaptive mesh refinement is used to resolve thin reaction zones and capture the energy-bearing scales of turbulence on the computational mesh (ILES approach). Taking advantage of the symmetry of the problem, azimuthal averaging was used to extract the mean and rms fluctuations from the numerical solution, including: thermodynamic profiles, kinematic profiles, and reaction-zone profiles across the combustion cloud. Fuel consumption was limited to ˜ 60-70 %, due to the limited amount of air a spherical combustion cloud can entrain before the turbulent velocity field decays away. Turbulent kinetic energy spectra of the solution were found to have both rotational and dilatational components, due to compressibility effects. The dilatational component was typically about 1 % of the rotational component; both seemed to preserve their spectra as they decayed. Kinetic energy of the blast wave decayed due to the

  9. Impact of decadal cloud variations on the Earth’s energy budget

    DOE PAGES

    Zhou, Chen; Zelinka, Mark D.; Klein, Stephen A.

    2016-10-31

    Feedbacks of clouds on climate change strongly influence the magnitude of global warming. Cloud feedbacks, in turn, depend on the spatial patterns of surface warming, which vary on decadal timescales. Therefore, the magnitude of the decadal cloud feedback could deviate from the long-term cloud feedback. We present climate model simulations to show that the global mean cloud feedback in response to decadal temperature fluctuations varies dramatically due to time variations in the spatial pattern of sea surface temperature. Here, we find that cloud anomalies associated with these patterns significantly modify the Earth’s energy budget. Specifically, the decadal cloud feedback betweenmore » the 1980s and 2000s is substantially more negative than the long-term cloud feedback. This is a result of cooling in tropical regions where air descends, relative to warming in tropical ascent regions, which strengthens low-level atmospheric stability. Under these conditions, low-level cloud cover and its reflection of solar radiation increase, despite an increase in global mean surface temperature. Our results suggest that sea surface temperature pattern-induced low cloud anomalies could have contributed to the period of reduced warming between 1998 and 2013, and o er a physical explanation of why climate sensitivities estimated from recently observed trends are probably biased low.« less

  10. Impact of decadal cloud variations on the Earth’s energy budget

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Chen; Zelinka, Mark D.; Klein, Stephen A.

    Feedbacks of clouds on climate change strongly influence the magnitude of global warming. Cloud feedbacks, in turn, depend on the spatial patterns of surface warming, which vary on decadal timescales. Therefore, the magnitude of the decadal cloud feedback could deviate from the long-term cloud feedback. We present climate model simulations to show that the global mean cloud feedback in response to decadal temperature fluctuations varies dramatically due to time variations in the spatial pattern of sea surface temperature. Here, we find that cloud anomalies associated with these patterns significantly modify the Earth’s energy budget. Specifically, the decadal cloud feedback betweenmore » the 1980s and 2000s is substantially more negative than the long-term cloud feedback. This is a result of cooling in tropical regions where air descends, relative to warming in tropical ascent regions, which strengthens low-level atmospheric stability. Under these conditions, low-level cloud cover and its reflection of solar radiation increase, despite an increase in global mean surface temperature. Our results suggest that sea surface temperature pattern-induced low cloud anomalies could have contributed to the period of reduced warming between 1998 and 2013, and o er a physical explanation of why climate sensitivities estimated from recently observed trends are probably biased low.« less

  11. First Results of AirMSPI Imaging Polarimetry at ORACLES 2016: Aerosol and Water Cloud Retrievals

    NASA Astrophysics Data System (ADS)

    van Harten, G.; Xu, F.; Diner, D. J.; Rheingans, B. E.; Tosca, M.; Seidel, F.; Bull, M. A.; Tkatcheva, I. N.; McDuffie, J. L.; Garay, M. J.; Jovanovic, V. M.; Cairns, B.; Alexandrov, M. D.; Hostetler, C. A.; Ferrare, R. A.; Burton, S. P.

    2017-12-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) is a remote sensing instrument for the characterization of atmospheric aerosols and clouds. We will report on the successful deployment and resulting data products of AirMSPI in the 2016 field campaign as part of NASA's ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES). The goal of this five-year investigation is to study the impacts of African biomass burning aerosols on the radiative properties of the subtropical stratocumulus cloud deck over the southeast Atlantic Ocean. On board the NASA ER-2 high-altitude aircraft, AirMSPI collected over 4000 high-resolution images on 16 days. The observations are performed in two different modes: step-and-stare mode, in which a 10x10 km target is observed from 9 view angles at 10 m resolution, and sweep mode, where a 80-100 km along-track by 10-25 km across-track target is observed with continuously changing view angle between ±67° at 25 m resolution. This Level 1B2 calibrated and georectified imagery is publically available at the NASA Langley Atmospheric Science Data Center (ASDC)*. We will then describe the Level 2 water cloud products that will be made publically available, viz. optical depth and droplet size distribution, which are retrieved using a polarimetric algorithm. Finally, we will present the results of a recently developed research algorithm for the simultaneous retrieval of these cloud properties and above-cloud aerosols, and validations using collocated High Spectral Resolution Lidar-2 (HSRL-2) and Research Scanning Polarimeter (RSP) products. * https://eosweb.larc.nasa.gov/project/airmspi/airmspi_table

  12. Controlled-Temperature Hot-Air Gun

    NASA Technical Reports Server (NTRS)

    Munoz, M. C.

    1986-01-01

    Materials that find applications in wind tunnels first tested in laboratory. Hot-Air Gun differs from commercial units in that flow rate and temperature monitored and controlled. With typical compressed-airsupply pressure of 25 to 38 psi (170 to 260 kPa), flow rate and maximum temperature are 34 stdft3/min (0.96 stdm3/min) and 1,090 degrees F (590 degrees C), respectively. Resembling elaborate but carefully regulated hot-air gun, setup used to apply blasts of air temperatures above 1,500 degrees F (815 degrees C) to test specimens.

  13. Validation of satellite-retrieved MBL cloud properties using DOE ARM AMF measurements at the Azores

    NASA Astrophysics Data System (ADS)

    Xi, B.; Dong, X.; Minnis, P.; Sun-Mack, S.

    2013-05-01

    Marine Boundary Layer (MBL) cloud properties derived for the Clouds and the Earth's Radiant Energy System (CERES) Project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Atmospheric Radiation Measurement (ARM) AMF AZORES site from June 2009 through December 2010. Retrievals from ARM surface-based data were averaged over a 1-hour interval centered at the time of each satellite overpass, and the CERES-MODIS Ed4 cloud properties were averaged within a 30-km x 30-km box centered on the ARM AZORES site. Two datasets were analyzed: all of the single-layered unbroken decks (SL) and those cases without temperature inversions. The CERES-MODIS cloud top/base heights were determined from cloud top/base temperature by using a lapse rate method normalized to the 24-h mean surface air temperature. The preliminary results show: for all SL MBL at daytime, they are, on average, 0.148 km (cloud top) and 0.087 km (cloud base) higher than the ARM radar-lidar observed cloud top and base, respectively. At nighttime, they are 0.446 km (cloud top) and 0.334 km (cloud base). For those cases without temperature inversions, the comparisons are close to their SL counterparts. For cloud temperatures, the MODIS-derived cloud-top and -base temperatures are 1.6 K lower and 0.4 K higher than the surface values with correlations of 0.92 during daytime. At nighttime, the differences are slightly larger and correlations are lower than daytime comparisons. Variations in the height difference are mainly caused by uncertainties in the surface air temperatures and lapse rates. Based on a total of 61 daytime and 87 nighttime samples (ALL SL cases), the temperature inversion layers occur about 72% during daytime and 83% during nighttime. The difference of surface-observed lapse rate and the satellite derived lapse rate can be 1.6 K/km for daytime and 3.3K/km for nighttime. From these lapse rates, we can further analyze the surface

  14. Contributions of Heterogeneous Ice Nucleation, Large-Scale Circulation, and Shallow Cumulus Detrainment to Cloud Phase Transition in Mixed-Phase Clouds with NCAR CAM5

    NASA Astrophysics Data System (ADS)

    Liu, X.; Wang, Y.; Zhang, D.; Wang, Z.

    2016-12-01

    Mixed-phase clouds consisting of both liquid and ice water occur frequently at high-latitudes and in mid-latitude storm track regions. This type of clouds has been shown to play a critical role in the surface energy balance, surface air temperature, and sea ice melting in the Arctic. Cloud phase partitioning between liquid and ice water determines the cloud optical depth of mixed-phase clouds because of distinct optical properties of liquid and ice hydrometeors. The representation and simulation of cloud phase partitioning in state-of-the-art global climate models (GCMs) are associated with large biases. In this study, the cloud phase partition in mixed-phase clouds simulated from the NCAR Community Atmosphere Model version 5 (CAM5) is evaluated against satellite observations. Observation-based supercooled liquid fraction (SLF) is calculated from CloudSat, MODIS and CPR radar detected liquid and ice water paths for clouds with cloud-top temperatures between -40 and 0°C. Sensitivity tests with CAM5 are conducted for different heterogeneous ice nucleation parameterizations with respect to aerosol influence (Wang et al., 2014), different phase transition temperatures for detrained cloud water from shallow convection (Kay et al., 2016), and different CAM5 model configurations (free-run versus nudged winds and temperature, Zhang et al., 2015). A classical nucleation theory-based ice nucleation parameterization in mixed-phase clouds increases the SLF especially at temperatures colder than -20°C, and significantly improves the model agreement with observations in the Arctic. The change of transition temperature for detrained cloud water increases the SLF at higher temperatures and improves the SLF mostly over the Southern Ocean. Even with the improved SLF from the ice nucleation and shallow cumulus detrainment, the low SLF biases in some regions can only be improved through the improved circulation with the nudging technique. Our study highlights the challenges of

  15. CLOUDS, AEROSOLS, RADIATION AND THE AIR-SEA INTERFACE OF THE SOUTHERN OCEAN: ESTABLISHING DIRECTIONS FOR FUTURE RESEARCH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Robert; Bretherton, Chris; McFarquhar, Greg

    2014-09-29

    A workshop sponsored by the Department of Energy was convened at the University of Washington to discuss the state of knowledge of clouds, aerosols and air-sea interaction over the Southern Ocean and to identify strategies for reducing uncertainties in their representation in global and regional models. The Southern Ocean plays a critical role in the global climate system and is a unique pristine environment, yet other than from satellite, there have been sparse observations of clouds, aerosols, radiation and the air-sea interface in this region. Consequently, much is unknown about atmospheric and oceanographic processes and their linkage in this region.more » Approximately 60 scientists, including graduate students, postdoctoral fellows and senior researchers working in atmospheric and oceanic sciences at U.S. and foreign universities and government laboratories, attended the Southern Ocean Workshop. It began with a day of scientific talks, partly in plenary and partly in two parallel sessions, discussing the current state of the science for clouds, aerosols and air-sea interaction in the Southern Ocean. After the talks, attendees broke into two working groups; one focused on clouds and meteorology, and one focused on aerosols and their interactions with clouds. This was followed by more plenary discussion to synthesize the two working group discussions and to consider possible plans for organized activities to study clouds, aerosols and the air-sea interface in the Southern Ocean. The agenda and talk slides, including short summaries of the highlights of the parallel session talks developed by the session chars, are available at http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/.« less

  16. Retrieval of air temperatures from crowd-sourced battery temperatures of cell phones

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James; Leijnse, Hidde; Uijlenhoet, Remko; Steeneveld, Gert-Jan; Horn, Berthold K. P.

    2013-04-01

    Accurate air temperature observations are important for urban meteorology, for example to study the urban heat island and adverse effects of high temperatures on human health. The number of available temperature observations is often relatively limited. A new development is presented to derive temperature information for the urban canopy from an alternative source: cell phones. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. Results are presented for Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree Celsius. This shows that monitoring air temperatures employing an Android application holds great promise. Since 75% of the world's population has a cell phone, 20% of the land surface of the earth has cellular telephone coverage, and 500 million devices use the Android operating system, there is a huge potential for measuring air temperatures employing cell phones. This could eventually lead to real-time world-wide temperature maps.

  17. Influence of Solar Wind on the Global Electric Circuit, and Inferred Effects on Cloud Microphysics, Temperature, and Dynamics in the Troposphere

    NASA Astrophysics Data System (ADS)

    Tinsley, Brian A.

    2000-11-01

    clouds droplet freezing can occur by contact ice nucleation, as the evaporation nuclei are electroscavenged. Although quantitative models for the all the cloud microphysical processes that may be involved have not yet been produced, we show that for many clouds, especially those with broad droplet size distributions, relatively high droplet concentrations, and cloud top temperatures just below freezing, this process is likely to dominate over other primary ice nucleation processes. In these cases there are likely to be effects on cloud albedo and rates of sedimentation of ice, and these will depend on J_z. For an increase in ice production in thin clouds such as altocumulus or stratocumulus the main effect is a decrease in albedo to incoming solar radiation, and in opacity to outgoing longwave radiation. At low latitudes the surface and troposphere heat, and at high latitudes in winter they cool. The change in meridional temperature gradient affects the rate of cyclogenesis, and the amplitude of planetary waves. For storm clouds, as in winter cyclones, the effect of increased ice formation is mainly to increase the rate of glaciation of lower level clouds by the seeder-feeder process. The increase in precipitation efficiency increases the rate of transfer of latent heat between the air mass and the surface. In most cyclones this is likely to result in intensification, producing changes in the vorticity area index as observed. Cyclone intensification also increases the amplitude of planetary waves, and shifts storm tracks, as observed. In this paper we first describe the production of space charge and the way in which it may influence the rate of ice nucleation. Then we review theory and observations of the solar wind modulation of J_z, and the correlated changes in atmospheric temperature and dynamics in the troposphere. The correlations are present for each input, (A, B, and C), and the detailed patterns of responses provide support for the inferred electrical effects

  18. A Physically Based Algorithm for Non-Blackbody Correction of Cloud-Top Temperature and Application to Convection Study

    NASA Technical Reports Server (NTRS)

    Wang, Chunpeng; Lou, Zhengzhao Johnny; Chen, Xiuhong; Zeng, Xiping; Tao, Wei-Kuo; Huang, Xianglei

    2014-01-01

    Cloud-top temperature (CTT) is an important parameter for convective clouds and is usually different from the 11-micrometers brightness temperature due to non-blackbody effects. This paper presents an algorithm for estimating convective CTT by using simultaneous passive [Moderate Resolution Imaging Spectroradiometer (MODIS)] and active [CloudSat 1 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)] measurements of clouds to correct for the non-blackbody effect. To do this, a weighting function of the MODIS 11-micrometers band is explicitly calculated by feeding cloud hydrometer profiles from CloudSat and CALIPSO retrievals and temperature and humidity profiles based on ECMWF analyses into a radiation transfer model.Among 16 837 tropical deep convective clouds observed by CloudSat in 2008, the averaged effective emission level (EEL) of the 11-mm channel is located at optical depth; approximately 0.72, with a standard deviation of 0.3. The distance between the EEL and cloud-top height determined by CloudSat is shown to be related to a parameter called cloud-top fuzziness (CTF), defined as the vertical separation between 230 and 10 dBZ of CloudSat radar reflectivity. On the basis of these findings a relationship is then developed between the CTF and the difference between MODIS 11-micrometers brightness temperature and physical CTT, the latter being the non-blackbody correction of CTT. Correction of the non-blackbody effect of CTT is applied to analyze convective cloud-top buoyancy. With this correction, about 70% of the convective cores observed by CloudSat in the height range of 6-10 km have positive buoyancy near cloud top, meaning clouds are still growing vertically, although their final fate cannot be determined by snapshot observations.

  19. The Relationship Between Surface Temperature Anomaly Time Series and those of OLR, Water Vapor, and Cloud Cover as Observed Using Nine Years of AIRS Version-5 Level-3 Products

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena

    2011-01-01

    Outline: (1) Comparison of AIRS and CERES anomaly time series of outgoing longwave radiation (OLR) and OLR(sub CLR), i.e. Clear Sky OLR (2) Explanation of recent decreases in global and tropical mean values of OLR (3) AIRS "Short-term" Longwave Cloud Radiative Feedback -- A new product

  20. Electron temperatures within magnetic clouds between 2 and 4 AU: Voyager 2 observations

    NASA Astrophysics Data System (ADS)

    Sittler, E. C.; Burlaga, L. F.

    1998-08-01

    We have performed an analysis of Voyager 2 plasma electron observations within magnetic clouds between 2 and 4 AU identified by Burlaga and Behannon [1982]. The analysis has been confined to three of the magnetic clouds identified by Burlaga and Behannon that had high-quality data. The general properties of the plasma electrons within a magnetic cloud are that (1) the moment electron temperature anticorrelates with the electron density within the cloud, (2) the ratio Te/Tp tends to be >1, and (3) on average, Te/Tp~7.0. All three results are consistent with previous electron observations within magnetic clouds. Detailed analyses of the core and halo populations within the magnetic clouds show no evidence of either an anticorrelation between the core temperature TC and the electron density Ne or an anticorrelation between the halo temperature TH and the electron density. Within the magnetic clouds the halo component can contribute more than 50% of the electron pressure. The anticorrelation of Te relative to Ne can be traced to the density of the halo component relative to the density of the core component. The core electrons dominate the electron density. When the density goes up, the halo electrons contribute less to the electron pressure, so we get a lower Te. When the electron density goes down, the halo electrons contribute more to the electron pressure, and Te goes up. We find a relation between the electron pressure and density of the form Pe=αNeγ with γ~0.5.

  1. The effect of temperature mixing on the observable (T, β)-relation of interstellar dust clouds

    NASA Astrophysics Data System (ADS)

    Juvela, M.; Ysard, N.

    2012-03-01

    Context. Detailed studies of the shape of dust emission spectra are possible thanks to the current instruments capable of simultaneous observations in several sub-millimetre bands (e.g., Herschel and Planck). The relationship between the observed spectra and the intrinsic dust grain properties is known to be affected by the noise and the line-of-sight temperature variations. However, some controversy remains even on the basic effects resulting from the mixing of temperatures along the line-of-sight or within the instrument beam. Aims: Regarding the effect of temperature variations, previous studies have suggested either a positive or a negative correlation between the colour temperature TC and the observed spectral index βObs. Our aim is to show that both cases are possible and to determine the principal factors leading to either behaviour. Methods: We start by studying the behaviour of the sum of two or three modified black bodies at different temperatures. Then, with radiative transfer models of spherical clouds, we examine the probability distributions of the dust mass as a function of the physical dust temperature. With these results as a guideline, we examine the (TC, βobs) relations for different sets of clouds. Results: Even in the simple case of models consisting of two blackbodies at temperatures T0 and T0 + ΔT0, the correlation between TC and βobs can be either positive or negative. If one compares models where the temperature difference ΔT0 between the two blackbodies is varied, the correlation is negative. If the models differ in their mean temperature T0 rather than in ΔT0, the correlation remains positive. Radiative transfer models show that externally heated clouds have different mean temperatures but the widths of their temperature distributions are rather similar. Thus, in observations of samples of such clouds the correlation between TC and βObs is expected to be positive. The same result applies to clouds illuminated by external radiation

  2. Senstitivity analysis of horizontal heat and vapor transfer coefficients for a cloud-topped marine boundary layer during cold-air outbreaks. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Chang, Y. V.

    1986-01-01

    The effects of external parameters on the surface heat and vapor fluxes into the marine atmospheric boundary layer (MABL) during cold-air outbreaks are investigated using the numerical model of Stage and Businger (1981a). These fluxes are nondimensionalized using the horizontal heat (g1) and vapor (g2) transfer coefficient method first suggested by Chou and Atlas (1982) and further formulated by Stage (1983a). In order to simplify the problem, the boundary layer is assumed to be well mixed and horizontally homogeneous, and to have linear shoreline soundings of equivalent potential temperature and mixing ratio. Modifications of initial surface flux estimates, time step limitation, and termination conditions are made to the MABL model to obtain accurate computations. The dependence of g1 and g2 in the cloud topped boundary layer on the external parameters (wind speed, divergence, sea surface temperature, radiative sky temperature, cloud top radiation cooling, and initial shoreline soundings of temperature, and mixing ratio) is studied by a sensitivity analysis, which shows that the uncertainties of horizontal transfer coefficients caused by changes in the parameters are reasonably small.

  3. Turbulent Mixing at the Edge of a Cloud

    NASA Astrophysics Data System (ADS)

    Shaw, Raymond; Beals, Matthew; Fugal, Jacob; Kumar, Bipin; Lu, Jiang; Schumacher, Joerg; Stith, Jeffrey

    2013-11-01

    Numerical and field experiments have been brought to bear on the question of how atmospheric clouds respond when they experience turbulent mixing with their environment. Simply put, we ask when a cloud is diluted, do all droplets evaporate uniformly (homogeneous mixing) or does a subset of droplets evaporate completely, leaving the remaining droplets unaffected (inhomogeneous mixing)? First, the entrainment of clear air and its subsequent mixing with a filament of cloudy air is studied in DNS that combine the Eulerian description of the turbulent velocity, temperature and vapor fields with a Lagrangian cloud droplet ensemble. The simulations provide guidance on the proper definition of the thermodynamic response time for the Damkoehler number, and demonstrate the transition from inhomogeneous to homogeneous mixing as mixing progresses within the inertial subrange. Second, an airborne digital holographic instrument (Holodec) shows that cloud edges are inhomogeneous at the centimeter scales. In local cloud volumes the droplet size distribution fluctuates strongly in number density but with a nearly unchanging mean droplet diameter, until the fluctuations finally cascade to the centimeter scale, when the droplet diameter begins to respond.

  4. Synchronous NDVI and Surface Air Temperature Trends in Newfoundland: 1982 to 2003

    NASA Technical Reports Server (NTRS)

    Neigh, C. S. R.; Tucker, C. J.; Townshend, J. R. G.

    2007-01-01

    The northern regions of the earth are currently experiencing rapid change in temperature and precipitation. This region contains -40% of carbon stored in the world's soil which has accumulated from the last ice age (over 10,000 years ago). The carbon has remained to this point due to reduced decomposition from the short growing seasons and subfreezing temperatures. The influence of climate upon plant growth can have significant consequences to the carbon cycle balance in this region and could potentially alter and release this long term store of carbon to the atmosphere, resulting in a negative feedback enhancing climate warming. These changes have the potential to alter ecosystems processes, which impact human well being. This paper investigated a global satellite record of increases in vegetation growth from 1982 to 2003 developed at GSFC. It was found that, Newfoundland's vegetation growth during the 1990s exceeded global measurements. A number of potential causes were investigated to understand the mechanistic environmental drivers that could alter the productivity of this ecosystem. Possible drivers of change included: human influence of land use change on vegetation cover; changes in precipitation; temperature; cloud cover; snow cover; and growing season length. We found that humans had a minimal influence on vegetation growth in Newfoundland. Less than 6% of the island was logged during the investigation. We found a strong correlation of vegetation growth to a lengthening of the growing season of -9 and -17 days from 1982-1990 and 1991-1999. A distinct drop in plant growth and air temperature was found in 1990 to 1991 from the volcanic eruption of Mt. Pinatubo that reduced global surface air temperatures. These results document the influences of air temperature upon northern forest plant growth and the cooling effects of major volcanic eruptions in this ecological system.

  5. Microwave Imager Measures Sea Surface Temperature Through Clouds

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image was acquired over Tropical Atlantic and U.S. East Coast regions on Aug. 22 - Sept. 23, 1998. Cloud data were collected by the Geostationary Operational Environmental Satellite (GOES). Sea Surface Temperature (SST) data were collected aboard the NASA/NASDA Tropical Rainfall Measuring Mission (TRMM) satellite by The TRMM Microwave Imager (TMI). TMI is the first satellite microwave sensor capable of accurately measuring sea surface temperature through clouds, as shown in this scene. For years scientists have known there is a strong correlation between sea surface temperature and the intensity of hurricanes. But one of the major stumbling blocks for forecasters has been the precise measurement of those temperatures when a storm begins to form. In this scene, clouds have been made translucent to allow an unobstructed view of the surface. Notice Hurricane Bonnie approaching the Carolina Coast (upper left) and Hurricane Danielle following roughly in its path (lower right). The ocean surface has been falsely colored to show a map of water temperature--dark blues are around 75oF, light blues are about 80oF, greens are about 85oF, and yellows are roughly 90oF. A hurricane gathers energy from warm waters found at tropical latitudes. In this image we see Hurricane Bonnie cross the Atlantic, leaving a cooler trail of water in its wake. As Hurricane Danielle followed in Bonnie's path, the wind speed of the second storm dropped markedly, as available energy to fuel the storm dropped off. But when Danielle left Bonnie's wake, wind speeds increased due to temperature increases in surface water around the storm. As a hurricane churns up the ocean, it's central vortex draws surface heat and water into the storm. That suction at the surface causes an upwelling of deep water. At depth, tropical ocean waters are significantly colder than water found near the surface. As they're pulled up to meet the storm, those colder waters essentially leave a footprint in the storm's wake

  6. AirLab: a cloud-based platform to manage and share antibody-based single-cell research.

    PubMed

    Catena, Raúl; Özcan, Alaz; Jacobs, Andrea; Chevrier, Stephane; Bodenmiller, Bernd

    2016-06-29

    Single-cell analysis technologies are essential tools in research and clinical diagnostics. These methods include flow cytometry, mass cytometry, and other microfluidics-based technologies. Most laboratories that employ these methods maintain large repositories of antibodies. These ever-growing collections of antibodies, their multiple conjugates, and the large amounts of data generated in assays using specific antibodies and conditions makes a dedicated software solution necessary. We have developed AirLab, a cloud-based tool with web and mobile interfaces, for the organization of these data. AirLab streamlines the processes of antibody purchase, organization, and storage, antibody panel creation, results logging, and antibody validation data sharing and distribution. Furthermore, AirLab enables inventory of other laboratory stocks, such as primers or clinical samples, through user-controlled customization. Thus, AirLab is a mobile-powered and flexible tool that harnesses the capabilities of mobile tools and cloud-based technology to facilitate inventory and sharing of antibody and sample collections and associated validation data.

  7. AIRS First Light Data: Eastern Mediterranean, June 14, 2002

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2Figure 3

    Four images of the Mediterranean obtained concurrently on June 14, 2002 from the three instruments that make up the Atmospheric Infrared Sounder experiment system aboard NASA's Aqua spacecraft. The system features thousands of individual channels that observe Earth in the visible, infrared and microwave spectral regions. Each channel has a unique sensitivity to temperature, moisture, surface conditions and clouds.

    This visible light image from the AIRS instrument shows a band of white clouds extending from the Adriatic Sea over Greece to the Black Sea.

    The AIRS image (figure 1) at 900 cm-1 (11 micrometers) measures actual surface or cloud top temperatures. In it, land and ocean boundaries are well defined, with land appearing as warmer (darker red) than the ocean. The band of cold high cumulus clouds appears blue, with the darkest blue most likely a large thunderstorm.

    The 150 gigahertz channel from the Humidity Sounder for Brazil instrument (figure 2) is sensitive to moisture, ice particles and precipitation. The dry land temperature is comparable to the 11 micrometer temperatures, but over ocean this channel measures the temperature of moisture in the mid troposphere. The cold, blue areas off Sicily and in the Aegean Sea represent unusually dry areas over the ocean. There, clouds appear as green filaments--likely areas of precipitation.

    The 31.4 gigahertz channel from the Advanced Microwave Sounding Unit instrument (figure 3) is not affected by clouds.

    NASA's Atmospheric Infrared Sounder (AIRS) onboard NASA's Aqua spacecraft, began sending high quality data on June 12, 2002. This 'first light' data is exceeding the expectations of scientists, confirming that the AIRS experiment is well on its way to meeting its goals of improving weather forecasting, establishing the connection between severe weather and

  8. Radiative-dynamical and microphysical processes of thin cirrus clouds controlling humidity of air entering the stratosphere

    NASA Astrophysics Data System (ADS)

    Dinh, Tra; Fueglistaler, Stephan

    2016-04-01

    Thin cirrus clouds in the tropical tropopause layer (TTL) are of great interest due to their role in the control of water vapor and temperature in the TTL. Previous research on TTL cirrus clouds has focussed mainly on microphysical processes, specifically the ice nucleation mechanism and dehydration efficiency. Here, we use a cloud resolving model to analyse the sensitivity of TTL cirrus characteristics and impacts with respect to microphysical and radiative processes. A steady-state TTL cirrus cloud field is obtained in the model forced with dynamical conditions typical for the TTL (2-dimensional setup with a Kelvin-wave temperature perturbation). Our model results show that the dehydration efficiency (as given by the domain average relative humidity in the layer of cloud occurrence) is relatively insensitive to the ice nucleation mechanism, i.e. homogeneous versus heterogeneous nucleation. Rather, TTL cirrus affect the water vapor entering the stratosphere via an indirect effect associated with the cloud radiative heating and dynamics. Resolving the cloud radiative heating and the radiatively induced circulations approximately doubles the domain average ice mass. The cloud radiative heating is proportional to the domain average ice mass, and the observed increase in domain average ice mass induces a domain average temperature increase of a few Kelvin. The corresponding increase in water vapor entering the stratosphere is estimated to be about 30 to 40%.

  9. Cloud processing of gases and aerosols in the Community Multiscale Air Quality (CMAQ) model: Impacts of extended chemistry

    EPA Science Inventory

    Clouds and fogs can significantly impact the concentration and distribution of atmospheric gases and aerosols through chemistry, scavenging, and transport. This presentation summarizes the representation of cloud processes in the Community Multiscale Air Quality (CMAQ) modeling ...

  10. Multilevel Cloud Structures above Svalbard

    NASA Astrophysics Data System (ADS)

    Dörnbrack, Andreas; Pitts, Micheal; Poole, Lamont; Gisinger, Sonja; Maturlli, Marion

    2017-04-01

    The presentation focusses on the reslts recently published by the authors under the heading "picture of the month" in Monthly Weather Review. The presented picture of the month is a superposition of space-borne lidar observations and high-resolution temperature fields of the ECMWF integrated forecast system (IFS). It displays complex tropospheric and stratospheric clouds in the Arctic winter 2015/16. Near the end of December 2015, the unusual northeastward propagation of warm and humid subtropical air masses as far north as 80°N lifted the tropopause by more than 3 km in 24 h and cooled the stratosphere on a large scale. A widespread formation of thick cirrus clouds near the tropopause and of synoptic-scale polar stratospheric clouds (PSCs) occurred as the temperature dropped below the thresholds for the existence of cloud particles. Additionally, mountain waves were excited by the strong flow at the western edge of the ridge across Svalbard, leading to the formation of mesoscale ice PSCs. The most recent IFS cycle using a horizontal resolution of 8 km globally reproduces the large-scale and mesoscale flow features and leads to a remarkable agreement with the wave structure revealed by the space-borne observations.

  11. Effects of air temperature and discharge on Upper Mississippi River summer water temperatures

    USGS Publications Warehouse

    Gray, Brian R.; Robertson, Dale M.; Rogala, James T.

    2018-01-01

    Recent interest in the potential effects of climate change has prompted studies of air temperature and precipitation associations with water temperatures in rivers and streams. We examined associations between summer surface water temperatures and both air temperature and discharge for 5 reaches of the Upper Mississippi River during 1994–2011. Water–air temperature associations at a given reach approximated 1:1 when estimated under an assumption of reach independence but declined to approximately 1:2 when water temperatures were permitted to covary among reaches and were also adjusted for upstream air temperatures. Estimated water temperature–discharge associations were weak. An apparently novel feature of this study is that of addressing changes in associations between water and air temperatures when both are correlated among reaches.

  12. Study of the transport parameters of cloud lightning plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Z. S.; Yuan, P.; Zhao, N.

    2010-11-15

    Three spectra of cloud lightning have been acquired in Tibet (China) using a slitless grating spectrograph. The electrical conductivity, the electron thermal conductivity, and the electron thermal diffusivity of the cloud lightning, for the first time, are calculated by applying the transport theory of air plasma. In addition, we investigate the change behaviors of parameters (the temperature, the electron density, the electrical conductivity, the electron thermal conductivity, and the electron thermal diffusivity) in one of the cloud lightning channels. The result shows that these parameters decrease slightly along developing direction of the cloud lightning channel. Moreover, they represent similar suddenmore » change behavior in tortuous positions and the branch of the cloud lightning channel.« less

  13. Variability of Aerosol and its Impact on Cloud Properties Over Different Cities of Pakistan

    NASA Astrophysics Data System (ADS)

    Alam, Khan

    Interaction between aerosols and clouds is the subject of considerable scientific research, due to the importance of clouds in controlling climate. Aerosols vary in time in space and can lead to variations in cloud microphysics. This paper is a pilot study to examine the temporal and spatial variation of aerosol particles and their impact on different cloud optical properties in the territory of Pakistan using the Moderate resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra satellite data and Multi-angle Imaging Spectroradiometer (MISR) data. We also use Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model for trajectory analysis to obtain origin of air masses in order to understand the spatial and temporal variability of aerosol concentrations. We validate data of MODIS and MISR by using linear correlation and regression analysis, which shows that there is an excellent agreement between data of these instruments. Seasonal study of Aerosol Optical Depth (AOD) shows that maximum value is found in monsoon season (June-August) over all study areas. We analyze the relationships between aerosol optical depth (AOD) and some cloud parameters like water vapor (WV), cloud fraction (CF), cloud top temperature (CTT) and cloud top pressure (CTP). We construct the regional correlation maps and time series plots for aerosol and cloud parameters mandatory for the better understanding of aerosol-cloud interaction. Our analyses show that there is a strong positive correlation between AOD and water vapor in all cities. The correlation between AOD and CF is positive for the cities where the air masses are moist while the correlation is negative for cities where air masses are relatively dry and with lower aerosol abundance. It shows that these correlations depend on meteorological conditions. Similarly as AOD increases Cloud Top Pressure (CTP) is decreasing while Cloud Top Temperature (CTT) is increasing. Key Words: MODIS, MISR, HYSPLIT, AOD, CF, CTP

  14. Convective Formation of Pileus Cloud Near the Tropopause

    NASA Technical Reports Server (NTRS)

    Garrett, Timothy J.; Dean-Day, Jonathan; Liu, Chuntao; Barnett, Brian K.; Mace, Gerald G.; Baumgardner, Darrel G.; Webster, Christopher R.; Bui, T. Paul; Read, William G.; Minnis, Patrick

    2005-01-01

    Pileus clouds form where humid, stably stratified air is mechanically displaced vertically ahead of rising convection. This paper describes convective formation of pileus cloud in the tropopause transition layer (TTL), and explores a possible link to the formation of long-lasting cirrus at cold temperatures. In-situ measurements from off the coast of Honduras during the July 2002 CRYSTALFACE experiment show an example of TTL cirrus associated with, and penetrated by, deep convection. The cirrus was enriched with total water compared to its surroundings, but composed of extremely small ice crystals with effective radii between 2 and 4 m. Through gravity wave analysis, and intercomparison of measured and simulated cloud microphysics, it is argued that the TTL cirrus in this case originated neither from convectively-forced gravity wave motions nor environmental mixing alone. Rather, it is hypothesized that some combination was involved in which, first, convection forced pileus cloud to form from TTL air; second, it punctured the pileus layer, contributing larger ice crystals through interfacial mixing; third, the addition of condensate inhibited evaporation of the original pileus ice crystals in the warm phase of the ensuing gravity wave; fourth, through successive pulses, deep convection formed the observed layer of TTL cirrus. While the general incidence and longevity of pileus cloud remains unknown, in-situ measurements, and satellite-based Microwave Limb Sounder retrievals, suggest that much of the tropical TTL is sufficiently humid to be susceptible to its formation. Where these clouds form and persist, there is potential for an irreversible repartition from water vapor to ice at cold temperatures.

  15. Clouds, surface temperature, and the tropical and subtropical radiation budget

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans L.; Kyle, H. Lee

    1980-01-01

    Solar energy drives both the Earth's climate and biosphere, but the absorbed energy is unevenly distributed over the Earth. The tropical regions receive excess energy which is then transported by atmospheric and ocean currents to the higher latitudes. All regions at a given latitude receive the same top of the atmosphere solar irradiance (insolation). However, the net radiation received from the Sun in the tropics and subtropics varies greatly from one region to another depending on local conditions. Over land, variations in surface albedo are important. Over both land and ocean, surface temperature, cloud amount, and cloud type are also important. The Nimbus-7 cloud and Earth radiation budget (ERB) data sets are used to examine the affect of these parameters.

  16. The dust cloud of the century

    NASA Astrophysics Data System (ADS)

    Robock, A.

    1983-02-01

    The structure and composition of the dust cloud from the 4 April 1982 eruption of the El Chichon volcano in Chiapas state, Mexico, is examined and the possible effects of the dust cloud on the world's weather patterns are discussed. Observations of the cloud using a variety of methods are evaluated, including data from the GOES and NOAA-7 weather satellites, vertically pointing lidar measurements, the SME satellite, and the Nimbus-7 satellite. Studies of the gaseous and particulate composition of the cloud reveal the presence of large amounts of sulfuric acid particles, which have a long mean residence time in the atmosphere and have a large effect on the amount of solar radiation received at the earth's surface by scattering several percent of the radiation back to space. Estimates of the effect of this cloud on surface air temperature changes are presented based on findings from climate models.

  17. Air temperature gradient in large industrial hall

    NASA Astrophysics Data System (ADS)

    Karpuk, Michał; Pełech, Aleksander; Przydróżny, Edward; Walaszczyk, Juliusz; Szczęśniak, Sylwia

    2017-11-01

    In the rooms with dominant sensible heat load, volume airflow depends on many factors incl. pre-established temperature difference between exhaust and supply airflow. As the temperature difference is getting higher, airflow volume drops down, consequently, the cost of AHU is reduced. In high industrial halls with air exhaust grids located under the ceiling additional temperature gradient above working zone should be taken into consideration. In this regard, experimental research of the vertical air temperature gradient in high industrial halls were carried out for the case of mixing ventilation system The paper presents the results of air temperature distribution measurements in high technological hall (mechanically ventilated) under significant sensible heat load conditions. The supply airflow was delivered to the hall with the help of the swirl diffusers while exhaust grids were located under the hall ceiling. Basing on the air temperature distribution measurements performed on the seven pre-established levels, air temperature gradient in the area between 2.0 and 7.0 m above the floor was calculated and analysed.

  18. Saharan Dust as a Causal Factor of Significant Cloud Cover Along the Saharan Air Layer in the Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Kishcha, Pavel; Da Silva, Arlindo M.; Starobinet, Boris; Alpert, Pinhas

    2016-01-01

    The tropical Atlantic is frequently affected by Saharan dust intrusions. Based on MODIS cloud fraction (CF) data during the ten-year study period, we found that these dust intrusions contribute to significant cloud cover along the Saharan Air Layer (SAL). Below the temperature inversion at the SAL's base, the presence of large amounts of settling dust particles, together with marine aerosols, produces meteorological conditions suitable for the formation of shallow stratocumulus clouds. The significant cloud fraction along the SAL together with clouds over the Atlantic Inter-tropical Convergence Zone contributes to the 20% hemispheric CF asymmetry between the tropical North and South Atlantic. This leads to the imbalance in strong solar radiation, which reaches the sea surface between the tropical North and South Atlantic, and, consequently, affects climate formation in the tropical Atlantic. Therefore, despite the fact that, over the global ocean, there is no noticeable hemispheric asymmetry in cloud fraction, over the significant area such as the tropical Atlantic the hemispheric asymmetry in CF takes place. Saharan dust is also the major contributor to hemispheric aerosol asymmetry over the tropical Atlantic. The NASA GEOS-5 model with aerosol data assimilation was used to extend the MERRA reanalysis with five atmospheric aerosol species (desert dust, sulfates, organic carbon, black carbon, and sea-salt). The obtained ten-year (2002 - 2012) MERRA-driven aerosol reanalysis dataset (aka MERRAero) showed that, over the tropical Atlantic, dust and carbonaceous aerosols were distributed asymmetrically relative to the equator, while other aerosol species were distributed more symmetrically.

  19. Wave Clouds over Ireland

    NASA Image and Video Library

    2017-12-08

    Visualization Date 2003-12-18 Clouds ripple over Ireland and Scotland in a wave pattern, similar to the pattern of waves along a seashore. The similarity is not coincidental — the atmosphere behaves like a fluid, so when it encounters an obstacle, it must move around it. This movement forms a wave, and the wave movement can continue for long distances. In this case, the waves were caused by the air moving over and around the mountains of Scotland and Ireland. As the air crested a wave, it cooled, and clouds formed. Then, as the air sank into the trough, the air warmed, and clouds did not form. This pattern repeated itself, with clouds appearing at the peak of every wave. Other types of clouds are also visible in the scene. Along the northwestern and southwestern edges of this true-color image from December 17, 2003, are normal mid-altitude clouds with fairly uniform appearances. High altitude cirrus-clouds float over these, casting their shadows on the lower clouds. Open- and closed-cell clouds formed off the coast of northwestern France, and thin contrail clouds are visible just east of these. Contrail clouds form around the particles carried in airplane exhaust. Fog is also visible in the valleys east of the Cambrian Mountains, along the border between northern/central Wales and England. This is an Aqua MODIS image. Sensor Aqua/MODIS Credit Jacques Descloitres, MODIS Rapid Response Team, NASA/GSFC For more information go to: visibleearth.nasa.gov/view_rec.php?id=6146

  20. The Impact of a Laki-style Eruption on Cloud Drops, Indirect Radiative Forcing and Air Quality

    NASA Astrophysics Data System (ADS)

    Carslaw, K.; Schmidt, A.; Mann, G.; Pringle, K. J.; Forster, P.; Wilson, M.; Thordarson, T.

    2010-12-01

    We assess the impact of 1783-1784 Laki eruption on changes in cloud drop number concentrations and the aerosol indirect (cloud) radiative forcing using an advanced global aerosol microphysics model. We further extend these simulations to quantify the impact of a modern-day Laki on air quality. Our results suggest that the first aerosol indirect effect is of similar magnitude as the direct forcing calculated in previous assessments of the Laki eruption, but has a different spatial pattern. We estimate that northern hemisphere mean cloud drop concentrations in low-level clouds increased by a factor 2.7 in the 3 months after the onset of the eruption, with peak changes exceeding a factor 10. The calculated northern hemisphere mean aerosol indirect effect peaks at -5.2 W/m2 in the month after the eruption and remains larger than -2 W/m2 for 6 months. From our understanding of anthropogenic aerosol effects on modern-day clouds, the calculated changes in cloud drop concentrations after Laki are likely to have caused substantial changes in pecipitation and cloud dynamics. Our results also show that a modern-day Laki-style volcanic air pollution event would be a severe health hazard, increasing excess mortality in Europe on a scale that is at least comparable with excess mortality due to seasonal flu. Investigating the potential impact of such an eruption is crucial in order to inform policy makers and society about the potential impact of such an event so that precautionary measures can be taken.

  1. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine. ...

  2. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine. ...

  3. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine. ...

  4. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine. ...

  5. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine. ...

  6. Improved Soundings and Error Estimates using AIRS/AMSU Data

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2006-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1 K, and layer precipitable water with an rms error of 20 percent, in cases with up to 80 percent effective cloud cover. The basic theory used to analyze AIRS/AMSU/HSB data in the presence of clouds, called the at-launch algorithm, and a post-launch algorithm which differed only in the minor details from the at-launch algorithm, have been described previously. The post-launch algorithm, referred to as AIRS Version 4.0, has been used by the Goddard DAAC to analyze and distribute AIRS retrieval products. In this paper we show progress made toward the AIRS Version 5.0 algorithm which will be used by the Goddard DAAC starting late in 2006. A new methodology has been developed to provide accurate case by case error estimates for retrieved geophysical parameters and for the channel by channel cloud cleared radiances used to derive the geophysical parameters from the AIRS/AMSU observations. These error estimates are in turn used for quality control of the derived geophysical parameters and clear column radiances. Improvements made to the retrieval algorithm since Version 4.0 are described as well as results comparing Version 5.0 retrieval accuracy and spatial coverage with those obtained using Version 4.0.

  7. Simulations of the Vertical Redistribution of HNO3 by NAT or NAD PSCs: The Sensitivity to the Number of Cloud Particles Formed and the Cloud Lifetime

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.; Tabazadeh, Azadeh; Drdla, Katja; Toon, Owen B.; Gore, Warren J. (Technical Monitor)

    2000-01-01

    Recent satellite and in situ measurements have indicated that limited denitrification can occur in the Arctic stratosphere. In situ measurements from the SOLVE campaign indicate polar stratospheric clouds (PSCs) composed of small numbers (about 3 x 10^ -4 cm^-3) of 10-20 micron particles (probably NAT or NAD). These observations raise the issue of whether low number density NAT PSCs can substantially denitrify the air with reasonable cloud lifetimes. In this study, we use a one dimensional cloud model to investigate the verticle redistribution of HNO3 by NAT/NAD PSCs. The cloud formation is driven by a temperature oscillation which drops the temperature below the NAT/NAD formation threshold (about 195 K) for a few days. We assume that a small fraction of the available aerosols act as NAT nuclei when the saturation ratio of HNO3 over NAT(NAD) exceeds 10(l.5). The result is a cloud between about 16 and 20 km in the model, with NAT/NAD particle effective radii as large as about 10 microns (in agreement with the SOLVE data). We find that for typical cloud lifetimes of 2-3 days or less, the net depletion of HNO3 is no more than 1-2 ppbv, regardless of the NAT or NAD particle number density. Repeated passes of the air column through the cold pool build up the denitrification to 3-4 ppbv, and the cloud altitude steadily decreases due to the downward transport of nitric acid. Increasing the cloud lifetime results in considerably more effective denitrification, even with very low cloud particle number densities. As expected, the degree of denitrification by NAT clouds is much larger than that by NAD Clouds. Significant denitrification by NAD Clouds is only possible if the cloud lifetime is several days or more. The clouds also cause a local maximum HNO3 mixing ratio at cloud base where the cloud particles sublimate.

  8. Homogeneous ice nucleation and supercooled liquid water in orographic wave clouds

    NASA Technical Reports Server (NTRS)

    Heymsfield, Andrew J.; Miloshevich, Larry M.

    1993-01-01

    This study investigates ice nucleation mechanisms in cold lenticular wave clouds, a cloud type characterized by quasi-steady-state air motions and microphysical properties. It is concluded that homogeneous ice nucleation is responsible for the ice production in these clouds at temperatures below about -33 C. The lack of ice nucleation observed above -33 C indicates a dearth of ice-forming nuclei, and hence heterogeneous ice nucleation, in these clouds. Aircraft measurements in the temperature range -31 to -41 C show the following complement of simultaneous and abrupt changes in cloud properties that indicate a transition from the liquid phase to ice: disappearance of liquid water; decrease in relative humidity from near water saturation to ice saturation; increase in mean particle size; change in particle concentration; and change in temperature due to the release of latent heat. A numerical model of cloud particle growth and homogeneous ice nucleation is used to aid in interpretation of our in situ measurements. The abrupt changes in observed cloud properties compare favorably, both qualitatively and quantitatively, with results from the homogeneous ice nucleation model. It is shown that the homogeneous ice nucleation rates from the measurements are consistent with the temperature-dependent rates employed by the model (within a factor of 100, corresponding to about 1 C in temperature) in the temperature range -35 deg to -38 C. Given the theoretical basis of the modeled rates, it may be reasonable to apply them throughout the -30 to -50 C temperature range considered by the theory.

  9. AIRS First Light Data: Typhoon Ramasun, July 3, 2002

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2Figure 3

    Four images of Tropical Cyclone Ramasun were obtained July 3, 2002 by the Atmospheric Infrared Sounder experiment system onboard NASA's Aqua spacecraft. The AIRS experiment, with its wide spectral coverage in four diverse bands, provides the ability to obtain complete 3-D observations of severe weather, from the surface, through clouds to the top of the atmosphere with unprecedented accuracy. This accuracy is the key to understanding weather patterns and improving weather predictions.

    Viewed separately, none of these images can provide accurate 3-D descriptions of the state of the atmosphere because of interference from clouds. However, the ability to make simultaneous observations at a wide range of wavelengths allows the AIRS experiment to 'see' through clouds.

    This visible light picture from the AIRS instrument provides important information about the location of the cyclone, cloud structure and distribution.

    The AIRS instrument image at 900 cm-1 (Figure 1) is from a 10 micron transparent 'window channel' that is little affected by water vapor but still cannot see through clouds. In clear areas (like the eye of the cyclone and over northwest Australia) it measures a surface temperature of about 300K (color encoded red). In cloudy areas it measures the cloud top temperature, about 200K for the cyclone, which translates to a cloud top height of about 50,000 feet.

    On the other hand, most clouds are relatively transparent in microwave, and the Advanced Microwave Sounding Instrument channel image (Figure 2) can see through all but the densest clouds. For example, Taiwan, which is covered by clouds, is clearly visible.

    The Humidity Sounder for Brazil instrument channel (Figure 3), also in the microwave, is more sensitive to both clouds and humidity. Only in clear, dry regions, such as the eye of the cyclone or the

  10. Cloud-Top Entrainment in Stratocumulus Clouds

    NASA Astrophysics Data System (ADS)

    Mellado, Juan Pedro

    2017-01-01

    Cloud entrainment, the mixing between cloudy and clear air at the boundary of clouds, constitutes one paradigm for the relevance of small scales in the Earth system: By regulating cloud lifetimes, meter- and submeter-scale processes at cloud boundaries can influence planetary-scale properties. Understanding cloud entrainment is difficult given the complexity and diversity of the associated phenomena, which include turbulence entrainment within a stratified medium, convective instabilities driven by radiative and evaporative cooling, shear instabilities, and cloud microphysics. Obtaining accurate data at the required small scales is also challenging, for both simulations and measurements. During the past few decades, however, high-resolution simulations and measurements have greatly advanced our understanding of the main mechanisms controlling cloud entrainment. This article reviews some of these advances, focusing on stratocumulus clouds, and indicates remaining challenges.

  11. Enhanced PM2.5 pollution in China due to aerosol-cloud interactions.

    PubMed

    Zhao, Bin; Liou, Kuo-Nan; Gu, Yu; Li, Qinbin; Jiang, Jonathan H; Su, Hui; He, Cenlin; Tseng, Hsien-Liang R; Wang, Shuxiao; Liu, Run; Qi, Ling; Lee, Wei-Liang; Hao, Jiming

    2017-06-30

    Aerosol-cloud interactions (aerosol indirect effects) play an important role in regional meteorological variations, which could further induce feedback on regional air quality. While the impact of aerosol-cloud interactions on meteorology and climate has been extensively studied, their feedback on air quality remains unclear. Using a fully coupled meteorology-chemistry model, we find that increased aerosol loading due to anthropogenic activities in China substantially increases column cloud droplet number concentration and liquid water path (LWP), which further leads to a reduction in the downward shortwave radiation at surface, surface air temperature and planetary boundary layer (PBL) height. The shallower PBL and accelerated cloud chemistry due to larger LWP in turn enhance the concentrations of particulate matter with diameter less than 2.5 μm (PM 2.5 ) by up to 33.2 μg m -3 (25.1%) and 11.0 μg m -3 (12.5%) in January and July, respectively. Such a positive feedback amplifies the changes in PM 2.5 concentrations, indicating an additional air quality benefit under effective pollution control policies but a penalty for a region with a deterioration in PM 2.5 pollution. Additionally, we show that the cloud processing of aerosols, including wet scavenging and cloud chemistry, could also have substantial effects on PM 2.5 concentrations.

  12. Statistical Analyses of Satellite Cloud Object Data from CERES. Part II; Tropical Convective Cloud Objects During 1998 El Nino and Validation of the Fixed Anvil Temperature Hypothesis

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man; Wong, Takmeng; Wielicki, Bruce a.; Parker, Lindsay; Lin, Bing; Eitzen, Zachary A.; Branson, Mark

    2006-01-01

    Characteristics of tropical deep convective cloud objects observed over the tropical Pacific during January-August 1998 are examined using the Tropical Rainfall Measuring Mission/ Clouds and the Earth s Radiant Energy System single scanner footprint (SSF) data. These characteristics include the frequencies of occurrence and statistical distributions of cloud physical properties. Their variations with cloud-object size, sea surface temperature (SST), and satellite precessing cycle are analyzed in detail. A cloud object is defined as a contiguous patch of the Earth composed of satellite footprints within a single dominant cloud-system type. It is found that statistical distributions of cloud physical properties are significantly different among three size categories of cloud objects with equivalent diameters of 100 - 150 km (small), 150 - 300 km (medium), and > 300 km (large), respectively, except for the distributions of ice particle size. The distributions for the larger-size category of cloud objects are more skewed towards high SSTs, high cloud tops, low cloud-top temperature, large ice water path, high cloud optical depth, low outgoing longwave (LW) radiation, and high albedo than the smaller-size category. As SST varied from one satellite precessing cycle to another, the changes in macrophysical properties of cloud objects over the entire tropical Pacific were small for the large-size category of cloud objects, relative to those of the small- and medium-size categories. This result suggests that the fixed anvil temperature hypothesis of Hartmann and Larson may be valid for the large-size category. Combining with the result that a higher percentage of the large-size category of cloud objects occurs during higher SST subperiods, this implies that macrophysical properties of cloud objects would be less sensitive to further warming of the climate. On the other hand, when cloud objects are classified according to SSTs where large-scale dynamics plays important roles

  13. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must be...

  14. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must be...

  15. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must be...

  16. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must be...

  17. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature...

  18. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature...

  19. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature...

  20. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature...

  1. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 29... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature...

  2. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 25... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature...

  3. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature...

  4. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature...

  5. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature...

  6. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature...

  7. Intraseasonal Variations in Tropical Deep Convection, Tropospheric Mean Temperature and Cloud-Induced Radiative Fluxes

    NASA Technical Reports Server (NTRS)

    Ramey, Holly S.; Robertson, Franklin R.

    2009-01-01

    Intraseasonal variability of deep convection represents a fundamental mode of variability in the organization of tropical convection. While most studies of intraseasonal oscillations (ISOs) have focused on the spatial propagation and dynamics of convectively coupled circulations, we examine the projection of ISOs on the tropically-averaged temperature and energy budget. The area of interest is the global oceans between 20oN/S. Our analysis then focuses on these questions: (i) How is tropospheric temperature related to tropical deep convection and the associated ice cloud fractional amount (ICF) and ice water path (IWP)? (ii) What is the source of moisture sustaining the convection and what role does deep convection play in mediating the PBL - free atmospheric temperature equilibration? (iii) What affect do convectively generated upper-tropospheric clouds have on the TOA radiation budget? Our methodology is similar to that of Spencer et al., (2007) with some modifications and some additional diagnostics of both clouds and boundary layer thermodynamics. A composite ISO time series of cloud, precipitation and radiation quantities built from nearly 40 events during a six-year period is referenced to the atmospheric temperature signal. The increase of convective precipitation cannot be sustained by evaporation within the domain, implying strong moisture transports into the tropical ocean area. While there is a decrease in net TOA radiation that develops after the peak in deep convective rainfall, there seems little evidence that an "Infrared Iris"- like mechanism is dominant. Rather, the cloud-induced OLR increase seems largely produced by weakened convection with warmer cloud tops. Tropical ISO events offer an accessible target for studying ISOs not just in terms of propagation mechanisms, but on their global signals of heat, moisture and radiative flux feedback processes.

  8. High Temperature Planetary Nebulae in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Maran, Stephen P.

    Following up on our recent discovery that a very hot planetary in the Small Magellanic Cloud has an extraordinary underabundance of carbon, we propose to observe two similar hot planetaries in the Clouds with IUE as part of an optical/UV investigation. The objectives are (1) to test the suggestion that high nebular electron temperatures can result from a strong deficiency of carbon that deprives the nebula of an important cooling channel; and (2) to determine accurate chemical abundances to constrain limits on the efficiency of "hot bottom burning" in massive progenitors of planetary nebulae. The targets are SMC 25 (Te = 34,000 K) and LMC 88 (= 25,500 K). These UV observations of targets not previously observed with IUE will be combined, for analysis, with visible wavelength spectra of both targets from the Anglo-Australian Telescope and the 2-3-m Siding Spring reflector. The objects will also be compared in the analysis stage with previous IUE observations (and consequent modeling) of type I planetaries in the Clouds. Model nebulae will be calculated, and physical parameters of the central stars will be inferred.

  9. Entrainment, Drizzle, and Cloud Albedo

    NASA Technical Reports Server (NTRS)

    Ackerman, A. S.; Kirkpatrick, J. P.; Stevens, D. E.; Toon, O. B.

    2004-01-01

    Increased aerosol and hence droplet concentrations in polluted clouds are expected to inhibit precipitation and thereby increase cloud water, leading to more reflective clouds that partially offset global warming. Yet polluted clouds are not generally observed to hold more water. Much of the uncertainty regarding the indirect aerosol effect stems from inadequate understanding of such changes in cloud water. Detailed simulations show that the relative humidity of air overlying stratocumulus is a leading factor determining whether cloud water increases or decreases when precipitation is suppressed. When the overlying air is dry, cloud water can decrease as droplet concentrations increase.

  10. Temperature Calculations in the Coastal Modeling System

    DTIC Science & Technology

    2017-04-01

    tide) and river discharge at model boundaries, wave radiation stress, and wind forcing over a model computational domain. Physical processes calculated...calculated in the CMS using the following meteorological parameters: solar radiation, cloud cover, air temperature, wind speed, and surface water temperature...during a clear (i.e., cloudless) sky (Wm-2); CLDC is the cloud cover fraction (0-1.0); SWR is the surface reflection coefficient; and SHDf is the

  11. Use of MODIS Cloud Top Pressure to Improve Assimilation Yields of AIRS Radiances in GSI

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi

    2014-01-01

    Improvements to global and regional numerical weather prediction have been demonstrated through assimilation of data from NASA's Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Previously, it has been shown that cloud top designation associated with quality control procedures within the Gridpoint Statistical Interpolation (GSI) system used operationally by a number of Joint Center for Satellite Data Assimilation (JCSDA) partners may not provide the best representation of cloud top pressure (CTP). Because this designated CTP determines which channels are cloud-free and, thus, available for assimilation, ensuring the most accurate representation of this value is imperative to obtaining the greatest impact from satellite radiances. This paper examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing analysis increments and numerical forecasts generated using operational techniques with a research technique that swaps CTP from the Moderate-resolution Imaging Spectroradiometer (MODIS) for the value of CTP calculated from the radiances within GSI.

  12. Observations of Subvisible Cirrus Clouds and Gravity Waves at the Tropical Tropopause

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Browell, E. V.; Hipskind, R. Stephen (Technical Monitor)

    1998-01-01

    Thin, subvisible cirrus (SVC) clouds at the tropical tropopause have been observed by a number of methods in a variety of observational programs, including in situ sampling and aircraft and space-based lidar. Modeling studies suggest that these clouds play an important role in dehydrating tropospheric air as it enters the stratosphere. This is because particles large enough to have significant fall speeds can form under the conditions of slow cooling that are implied by the large horizontal extent of the SVC sheets. The IR radiation that these clouds absorb, and the upward vertical motion this implies, also makes them candidates for a tropical troposphere-to-stratosphere mass transfer mechanism. They may also play a role in the earth's radiation budget. These sheets were observed on five flights during the Tropical Ozone Transport Experiment (TOTE) by the NASA Langley DIAL lidar aboard NASA's DC-8 research aircraft operating during December 1995 and February 1996 south of Hawaii. The relationship of the SVC's observed during TOTE to convection was not a simple one. One class of SVC's are within 1000 km of the persistent strong convection near 15S (the SPCZ). Trajectory analyses indicated that the SVC air masses have in fact passed through the SPCZ within a few days of observation. These clouds are very close to the tropopause, with maximum potential temperatures not much higher than 370K, consistent with in situ water and total water measurements near the tropopause made during the Stratosphere Troposphere Exchange Project in January 1987 at Darwin, Australia. A second class of SVC's are not immediately downstream of convection. These clouds tend to be higher, reaching potential temperatures of 390K or more. Trajectory analyses indicate that the air in these SVC's originates either in the equatorial western Pacific or along the subtropical jet. In any case, the warm temperatures the SVC air masses encounter just prior to the observation time along the back

  13. A Study of the Role of Clouds in the Relationship Between Land Use/Land Cover and the Climate and Air Quality of the Atlanta Area

    NASA Technical Reports Server (NTRS)

    Kidder, Stanley Q.; Hafner, Jan

    2001-01-01

    The goal of Project ATLANTA is to derive a better scientific understanding of how land cover changes associated with urbanization affect climate and air quality. In this project the role that clouds play in this relationship was studied. Through GOES satellite observations and RAMS modeling of the Atlanta area, we found that in Atlanta (1) clouds are more frequent than in the surrounding rural areas; (2) clouds cool the surface by shading and thus tend to counteract the warming effect of urbanization; (3) clouds reflect sunlight, which might other wise be used to produce ozone; and (4) clouds decrease biogenic emission of ozone precursors, and they probably decrease ozone concentration. We also found that mesoscale modeling of clouds, especially of small, summertime clouds, needs to be improved and that coupled mesoscale and air quality models are needed to completely understand the mediating role that clouds play in the relationship between land use/land cover change and the climate and air quality of Atlanta. It is strongly recommended that more cities be studied to strengthen and extend these results.

  14. Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pistone, Kristina; Praveen, Puppala S.; Thomas, Rick M.

    There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric vertical structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season.In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements were made of atmospheric precipitable water vapor (PWV)more » and the liquid water path (LWP) of trade cumulus clouds, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol from instrumentation at a ground observatory and on small unmanned aircraft. We present observations which indicate a positive correlation between aerosol and cloud LWP only when considering cases with low atmospheric water vapor (PWV < 40 kg m –2), a criterion which acts to filter the data to control for the natural meteorological variability in the region.We then use the aircraft and ground-based measurements to explore possible mechanisms behind this observed aerosol–LWP correlation. The increase in cloud liquid water is found to coincide with a lowering of the cloud base, which is itself attributable to increased boundary layer humidity in polluted conditions. High pollution is found to correlate with both higher temperatures and higher humidity measured throughout the boundary layer. A large-scale analysis, using satellite observations and meteorological reanalysis, corroborates these covariations: high-pollution cases are shown to originate as a highly polluted boundary layer air mass approaching the observatory from a

  15. Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime

    NASA Astrophysics Data System (ADS)

    Pistone, Kristina; Praveen, Puppala S.; Thomas, Rick M.; Ramanathan, Veerabhadran; Wilcox, Eric M.; Bender, Frida A.-M.

    2016-04-01

    There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric vertical structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season.In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements were made of atmospheric precipitable water vapor (PWV) and the liquid water path (LWP) of trade cumulus clouds, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol from instrumentation at a ground observatory and on small unmanned aircraft. We present observations which indicate a positive correlation between aerosol and cloud LWP only when considering cases with low atmospheric water vapor (PWV < 40 kg m-2), a criterion which acts to filter the data to control for the natural meteorological variability in the region.We then use the aircraft and ground-based measurements to explore possible mechanisms behind this observed aerosol-LWP correlation. The increase in cloud liquid water is found to coincide with a lowering of the cloud base, which is itself attributable to increased boundary layer humidity in polluted conditions. High pollution is found to correlate with both higher temperatures and higher humidity measured throughout the boundary layer. A large-scale analysis, using satellite observations and meteorological reanalysis, corroborates these covariations: high-pollution cases are shown to originate as a highly polluted boundary layer air mass approaching the observatory from a northwesterly

  16. Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime

    DOE PAGES

    Pistone, Kristina; Praveen, Puppala S.; Thomas, Rick M.; ...

    2016-04-27

    There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric vertical structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season.In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements were made of atmospheric precipitable water vapor (PWV)more » and the liquid water path (LWP) of trade cumulus clouds, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol from instrumentation at a ground observatory and on small unmanned aircraft. We present observations which indicate a positive correlation between aerosol and cloud LWP only when considering cases with low atmospheric water vapor (PWV < 40 kg m –2), a criterion which acts to filter the data to control for the natural meteorological variability in the region.We then use the aircraft and ground-based measurements to explore possible mechanisms behind this observed aerosol–LWP correlation. The increase in cloud liquid water is found to coincide with a lowering of the cloud base, which is itself attributable to increased boundary layer humidity in polluted conditions. High pollution is found to correlate with both higher temperatures and higher humidity measured throughout the boundary layer. A large-scale analysis, using satellite observations and meteorological reanalysis, corroborates these covariations: high-pollution cases are shown to originate as a highly polluted boundary layer air mass approaching the observatory from a

  17. Atmospheric cloud physics laboratory project study

    NASA Technical Reports Server (NTRS)

    Schultz, W. E.; Stephen, L. A.; Usher, L. H.

    1976-01-01

    Engineering studies were performed for the Zero-G Cloud Physics Experiment liquid cooling and air pressure control systems. A total of four concepts for the liquid cooling system was evaluated, two of which were found to closely approach the systems requirements. Thermal insulation requirements, system hardware, and control sensor locations were established. The reservoir sizes and initial temperatures were defined as well as system power requirements. In the study of the pressure control system, fluid analyses by the Atmospheric Cloud Physics Laboratory were performed to determine flow characteristics of various orifice sizes, vacuum pump adequacy, and control systems performance. System parameters predicted in these analyses as a function of time include the following for various orifice sizes: (1) chamber and vacuum pump mass flow rates, (2) the number of valve openings or closures, (3) the maximum cloud chamber pressure deviation from the allowable, and (4) cloud chamber and accumulator pressure.

  18. Water ice clouds observations with PFS on Mars Express

    NASA Astrophysics Data System (ADS)

    Moroz, V. I.; Zasova, L. V.; Formisano, V.; Grassi, D.; Ignatiev, N. I.; Giuranna, M.; Maturilli, A.; Pfs Team

    The water ice cloud observation is one of the scientific goals of PFS. Presence and properties of the ice particles are identified from absorption features, observed in both spectral ranges of PFS. Being in the near perihelion condition, the temperature of the Martian atmosphere is pretty high and ice clouds exist only in some places, for example, related to topography or at north high latitudes et etc. The ice clouds are observed often above the tops of the volcanoes. We have found the ice clouds above Olympus (orbit 37) and Ascraeus Mons (orbit 68). Effective radius of particles according to the thermal IR is preliminary estimated of 1 μ m, which leads to the visual opacity of 0.2 -0.3 above Olympus and of maximum of 0.6 above Ascraeus Mons. In the case of Ascraeus Mons the ice clouds are observed on the south slope near the top of the volcano. The maximum surface temperature, observed there, results in the upward flux of warm air, which, cooling, provides the condensation of H2O. We will present a detailed analysis of the ice clouds, observed over the planet in the IR spectral range.

  19. Improved Temperature Sounding and Quality Control Methodology Using AIRS/AMSU Data: The AIRS Science Team Version 5 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John M.; Iredell, Lena; Keita, Fricky

    2009-01-01

    This paper describes the AIRS Science Team Version 5 retrieval algorithm in terms of its three most significant improvements over the methodology used in the AIRS Science Team Version 4 retrieval algorithm. Improved physics in Version 5 allows for use of AIRS clear column radiances in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of clear column radiances .R(sub i) for all channels. This new approach allows for the generation of more accurate values of .R(sub i) and T(p) under most cloud conditions. Secondly, Version 5 contains a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 also contains for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology, referred to as AIRS Version 5 AO, was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Results are shown comparing the relative performance of the AIRS Version 4, Version 5, and Version 5 AO for the single day, January 25, 2003. The Goddard DISC is now generating and distributing products derived using the AIRS Science Team Version 5 retrieval algorithm. This paper also described the Quality Control flags contained in the DISC AIRS/AMSU retrieval products and their intended use for scientific research purposes.

  20. The Diversity of Cloud Responses to Twentieth Century Sea Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Silvers, Levi G.; Paynter, David; Zhao, Ming

    2018-01-01

    Low-level clouds are shown to be the conduit between the observed sea surface temperatures (SST) and large decadal fluctuations of the top of the atmosphere radiative imbalance. The influence of low-level clouds on the climate feedback is shown for global mean time series as well as particular geographic regions. The changes of clouds are found to be important for a midcentury period of high sensitivity and a late century period of low sensitivity. These conclusions are drawn from analysis of amip-piForcing simulations using three atmospheric general circulation models (AM2.1, AM3, and AM4.0). All three models confirm the importance of the relationship between the global climate sensitivity and the eastern Pacific trends of SST and low-level clouds. However, this work argues that the variability of the climate feedback parameter is not driven by stratocumulus-dominated regions in the eastern ocean basins, but rather by the cloudy response in the rest of the tropics.

  1. Low-temperature forced-air drying of Appalachian hardwoods

    Treesearch

    Donald G. Cuppett; E. Paul Craft

    1975-01-01

    Low-temperature forced-air drying involves drying green lumber in heated buildings with forced-air circulation and partial control of temperature and humidity conditions. The lumber is dried to about 20 percent moisture content at dry-bulb temperatures of 70º to 110ºF and with air velocities of 300 to 600 feet per minute. Equipment, methods, and...

  2. The relationships among cloud microphysics, chemistry, and precipitation rate in cold mountain clouds

    NASA Astrophysics Data System (ADS)

    Borys, Randolph D.; Lowenthal, Douglas H.; Mitchell, David L.

    A study was conducted to examine the relationships among air pollutant loadings, cloud microphysics, and snowfall rates in cold mountain clouds. It was hypothesized that variations in pollutant loadings would be reflected in shifts in the cloud droplet size distribution. A field program was conducted at Storm Peak Laboratory (SPL) at an elevation of 3210 m MSL in northwestern Colorado. Cold precipitating clouds were sampled during January, 1995. Cloud water was collected and analyzed for major ion and trace element chemistry. Cloud droplet concentrations and size were measured continuously using a PMS FSSP-100. The results indicate a direct relationship between clear-air equivalent (CAE) sulfate concentrations in cloud water and cloud droplet concentrations, an indirect relationship between droplet number and droplet size, a direct relationship between droplet size and snowfall rate, and an indirect relationship between CAE sulfate concentration and snowfall rate.

  3. Using regime analysis to identify the contribution of clouds to surface temperature errors in weather and climate models

    DOE PAGES

    Van Weverberg, Kwinten; Morcrette, Cyril J.; Ma, Hsi -Yen; ...

    2015-06-17

    Many global circulation models (GCMs) exhibit a persistent bias in the 2 m temperature over the midlatitude continents, present in short-range forecasts as well as long-term climate simulations. A number of hypotheses have been proposed, revolving around deficiencies in the soil–vegetation–atmosphere energy exchange, poorly resolved low-level boundary-layer clouds or misrepresentations of deep-convective storms. A common approach to evaluating model biases focuses on the model-mean state. However, this makes difficult an unambiguous interpretation of the origins of a bias, given that biases are the result of the superposition of impacts of clouds and land-surface deficiencies over multiple time steps. This articlemore » presents a new methodology to objectively detect the role of clouds in the creation of a surface warm bias. A unique feature of this study is its focus on temperature-error growth at the time-step level. It is shown that compositing the temperature-error growth by the coinciding bias in total downwelling radiation provides unambiguous evidence for the role that clouds play in the creation of the surface warm bias during certain portions of the day. Furthermore, the application of an objective cloud-regime classification allows for the detection of the specific cloud regimes that matter most for the creation of the bias. We applied this method to two state-of-the-art GCMs that exhibit a distinct warm bias over the Southern Great Plains of the USA. Our analysis highlights that, in one GCM, biases in deep-convective and low-level clouds contribute most to the temperature-error growth in the afternoon and evening respectively. In the second GCM, deep clouds persist too long in the evening, leading to a growth of the temperature bias. In conclusion, the reduction of the temperature bias in both models in the morning and the growth of the bias in the second GCM in the afternoon could not be assigned to a cloud issue, but are more likely caused by a

  4. Comparison of MODIS Land Surface Temperature and Air Temperature over the Continental USA Meteorological Stations

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Bounoua, Lahouari; Imhoff, Marc L.; Wolfe, Robert E.; Thome, Kurtis

    2014-01-01

    The National Land Cover Database (NLCD) Impervious Surface Area (ISA) and MODIS Land Surface Temperature (LST) are used in a spatial analysis to assess the surface-temperature-based urban heat island's (UHIS) signature on LST amplitude over the continental USA and to make comparisons to local air temperatures. Air-temperature-based UHIs (UHIA), calculated using the Global Historical Climatology Network (GHCN) daily air temperatures, are compared with UHIS for urban areas in different biomes during different seasons. NLCD ISA is used to define urban and rural temperatures and to stratify the sampling for LST and air temperatures. We find that the MODIS LST agrees well with observed air temperature during the nighttime, but tends to overestimate it during the daytime, especially during summer and in nonforested areas. The minimum air temperature analyses show that UHIs in forests have an average UHIA of 1 C during the summer. The UHIS, calculated from nighttime LST, has similar magnitude of 1-2 C. By contrast, the LSTs show a midday summer UHIS of 3-4 C for cities in forests, whereas the average summer UHIA calculated from maximum air temperature is close to 0 C. In addition, the LSTs and air temperatures difference between 2006 and 2011 are in agreement, albeit with different magnitude.

  5. Sulfur dioxide-hydrogen peroxide relationships in clean air, clouds, and precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, S.E.; Daum, P.H.

    1988-01-01

    In-cloud oxidation by H/sub 2/O/sub 2/ is a major route for conversion of atmospheric SO/sub 2/ to sulfate, as indicated by kinetic calculations for representative H/sub 2/O/sub 2/ concentrations and supported by the observation of mutual exclusivity of gaseous SO/sub 2/ and aqueous H/sub 2/O/sub 2/ in non-precipitating liquid-water stratiform clouds, which generally persist sufficiently for reaction to proceed to completion. Measurements reported here indicate the aqueous S(IV) and H/sub 2/O/sub 2/ are also mutually exclusive in surface precipitation samples, but that SO/sub 2/ and aqueous H/sub 2/O/sub 2/ often coexist in precipitating clouds. Gaseous SO/sub 2/ and H/sub 2/O/submore » 2/ are also commonly simultaneously present in clear air; in the mixed layer either species maybe in excess, but H/sub 2/O/sub 2/ present with SO/sub 2/ in precipitating clouds is attributed to material dissolved in falling hydrometeors which has not had time to react with SO/sub 2/. This supported by model calculations evaluating the characteristic time and distance for reaction of aqueous H/sub 2/O/sub 2/ in droplets falling through an SO/sub 2/-containing layer. 29 refs., 6 figs.« less

  6. Tropical cloud buoyancy is the same in a world with or without ice

    NASA Astrophysics Data System (ADS)

    Seeley, Jacob T.; Romps, David M.

    2016-04-01

    When convective clouds grow above the melting line, where temperatures fall below 0°C, condensed water begins to freeze and water vapor is deposited. These processes release the latent heat of fusion, which warms cloud air, and many previous studies have suggested that this heating from fusion increases cloud buoyancy in the upper troposphere. Here we use numerical simulations of radiative-convective equilibrium with and without ice processes to argue that tropical cloud buoyancy is not systematically higher in a world with fusion than in a world without it. This insensitivity results from the fact that the environmental temperature profile encountered by developing tropical clouds is itself determined by convection. We also offer a simple explanation for the large reservoir of convective available potential energy in the tropical upper troposphere that does not invoke ice.

  7. Clouds not important for control of short-term surface temperatures

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-01-01

    In two recent papers, R. W. Spencer and W. D. Braswell (Remote Sens., 3(8), 1603- 1613, doi:10.3390/rs3081603, 2011) (SB) and R. S. Lindzen and Y.-S. Choi (Asia Pac. J. Atmos. Sci., 47(4), 377-390, doi:10.1007/s13143-011-0023-x, 2011) (LC) argue that clouds act as a primary initiator of surface temperature changes in Earth's climate system. The two sets of authors reached this conclusion by developing a method that tries to determine the Earth's surface temperature by calculating how much energy is stored in the ocean's upper layers, how much of this heat is transferred to the rest of the climate system, how clouds affect the rate at which energy escapes Earth's atmosphere, and how the surface's energy flux changes with temperature. Both studies spurred substantial debate within the media and the public, with the research by SB causing the editor of the journal in which it was published to resign, claiming it should not have been accepted by the journal. Assessing the two studies, Dessler found what he suggests are a number of methodological errors.

  8. Rocket exhaust ground cloud/atmospheric interactions

    NASA Technical Reports Server (NTRS)

    Hwang, B.; Gould, R. K.

    1978-01-01

    An attempt to identify and minimize the uncertainties and potential inaccuracies of the NASA Multilayer Diffusion Model (MDM) is performed using data from selected Titan 3 launches. The study is based on detailed parametric calculations using the MDM code and a comparative study of several other diffusion models, the NASA measurements, and the MDM. The results are discussed and evaluated. In addition, the physical/chemical processes taking place during the rocket cloud rise are analyzed. The exhaust properties and the deluge water effects are evaluated. A time-dependent model for two aerosol coagulations is developed and documented. Calculations using this model for dry deposition during cloud rise are made. A simple model for calculating physical properties such as temperature and air mass entrainment during cloud rise is also developed and incorporated with the aerosol model.

  9. Cloud and boundary layer interactions over the Arctic sea-ice in late summer

    NASA Astrophysics Data System (ADS)

    Shupe, M. D.; Persson, P. O. G.; Brooks, I. M.; Tjernström, M.; Sedlar, J.; Mauritsen, T.; Sjogren, S.; Leck, C.

    2013-05-01

    Observations from the Arctic Summer Cloud Ocean Study (ASCOS), in the central Arctic sea-ice pack in late summer 2008, provide a detailed view of cloud-atmosphere-surface interactions and vertical mixing processes over the sea-ice environment. Measurements from a suite of ground-based remote sensors, near surface meteorological and aerosol instruments, and profiles from radiosondes and a helicopter are combined to characterize a week-long period dominated by low-level, mixed-phase, stratocumulus clouds. Detailed case studies and statistical analyses are used to develop a conceptual model for the cloud and atmosphere structure and their interactions in this environment. Clouds were persistent during the period of study, having qualities that suggest they were sustained through a combination of advective influences and in-cloud processes, with little contribution from the surface. Radiative cooling near cloud top produced buoyancy-driven, turbulent eddies that contributed to cloud formation and created a cloud-driven mixed layer. The depth of this mixed layer was related to the amount of turbulence and condensed cloud water. Coupling of this cloud-driven mixed layer to the surface boundary layer was primarily determined by proximity. For 75% of the period of study, the primary stratocumulus cloud-driven mixed layer was decoupled from the surface and typically at a warmer potential temperature. Since the near-surface temperature was constrained by the ocean-ice mixture, warm temperatures aloft suggest that these air masses had not significantly interacted with the sea-ice surface. Instead, back trajectory analyses suggest that these warm airmasses advected into the central Arctic Basin from lower latitudes. Moisture and aerosol particles likely accompanied these airmasses, providing necessary support for cloud formation. On the occasions when cloud-surface coupling did occur, back trajectories indicated that these air masses advected at low levels, while mixing

  10. Cloud-edge mixing: Direct numerical simulation and observations in Indian Monsoon clouds

    NASA Astrophysics Data System (ADS)

    Kumar, Bipin; Bera, Sudarsan; Prabha, Thara V.; Grabowski, Wojceich W.

    2017-03-01

    A direct numerical simulation (DNS) with the decaying turbulence setup has been carried out to study cloud-edge mixing and its impact on the droplet size distribution (DSD) applying thermodynamic conditions observed in monsoon convective clouds over Indian subcontinent during the Cloud Aerosol Interaction and Precipitation Enhancement EXperiment (CAIPEEX). Evaporation at the cloud-edges initiates mixing at small scale and gradually introduces larger-scale fluctuations of the temperature, moisture, and vertical velocity due to droplet evaporation. Our focus is on early evolution of simulated fields that show intriguing similarities to the CAIPEEX cloud observations. A strong dilution at the cloud edge, accompanied by significant spatial variations of the droplet concentration, mean radius, and spectral width, are found in both the DNS and in observations. In DNS, fluctuations of the mean radius and spectral width come from the impact of small-scale turbulence on the motion and evaporation of inertial droplets. These fluctuations decrease with the increase of the volume over which DNS data are averaged, as one might expect. In cloud observations, these fluctuations also come from other processes, such as entrainment/mixing below the observation level, secondary CCN activation, or variations of CCN activation at the cloud base. Despite large differences in the spatial and temporal scales, the mixing diagram often used in entrainment/mixing studies with aircraft data is remarkably similar for both DNS and cloud observations. We argue that the similarity questions applicability of heuristic ideas based on mixing between two air parcels (that the mixing diagram is designed to properly represent) to the evolution of microphysical properties during turbulent mixing between a cloud and its environment.

  11. Experimental study on the minimum ignition temperature of coal dust clouds in oxy-fuel combustion atmospheres.

    PubMed

    Wu, Dejian; Norman, Frederik; Verplaetsen, Filip; Van den Bulck, Eric

    2016-04-15

    BAM furnace apparatus tests were conducted to investigate the minimum ignition temperature of coal dusts (MITC) in O2/CO2 atmospheres with an O2 mole fraction from 20 to 50%. Three coal dusts: Indonesian Sebuku coal, Pittsburgh No.8 coal and South African coal were tested. Experimental results showed that the dust explosion risk increases significantly with increasing O2 mole fraction by reducing the minimum ignition temperature for the three tested coal dust clouds dramatically (even by 100°C). Compared with conventional combustion, the inhibiting effect of CO2 was found to be comparatively large in dust clouds, particularly for the coal dusts with high volatile content. The retardation effect of the moisture content on the ignition of dust clouds was also found to be pronounced. In addition, a modified steady-state mathematical model based on heterogeneous reaction was proposed to interpret the observed experimental phenomena and to estimate the ignition mechanism of coal dust clouds under minimum ignition temperature conditions. The analysis revealed that heterogeneous ignition dominates the ignition mechanism for sub-/bituminous coal dusts under minimum ignition temperature conditions, but the decrease of coal maturity facilitates homogeneous ignition. These results improve our understanding of the ignition behaviour and the explosion risk of coal dust clouds in oxy-fuel combustion atmospheres. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A Quantitative Investigation of Entrainment and Detrainment in Numerically Simulated Convective Clouds. Pt. 2; Simulations of Cumulonimbus Clouds

    NASA Technical Reports Server (NTRS)

    Cohen, Charles

    1998-01-01

    Deep cumulonimbus clouds are simulated using a model that makes accurate diagnoses of entrainment and detrainment rates and of the properties of entrained and detrained air. Clouds generated by a variety of initial thermodynamic soundings are compared. In the simulations, updraft entrainment rates are large near and above cloud base, through the entire depth of the conditionally unstable layer. Stronger updrafts in a more unstable environment are better able to entrain relatively undisturbed environmental air, while weaker updrafts can entrain only air that has been modified by the clouds. When the maximum buoyancy is large, the updraft includes parcels with a wide range of buoyancies, while weaker clouds are more horizontally uniform. Strong downdrafts originate from levels at which updrafts detrain, and their mass flux depends on the mass flux of the updraft. The magnitude of mixing between cloud and environment, not the entrainment rate, varies inversely with the cloud radius. How much of the mixed air is entrained depends on the buoyancy.

  13. A comparison of measured radiances from AIRS and HIRS across different cloud types

    NASA Astrophysics Data System (ADS)

    Schreier, M. M.; Kahn, B. H.; Staten, P.

    2015-12-01

    The observation of Earth's atmosphere with passive remote sensing instruments is ongoing for decades and resulting in a long-term global dataset. Two prominent examples are operational satellite platforms from the National Oceanic and Atmospheric Administration (NOAA) or research platforms like NASA's Earth Observing System (EOS). The observed spectral ranges of these observations are often similar among the different platforms, but have large differences when it comes to resolution, accuracy and quality control. Our approach is to combine different kinds of instruments at the pixel-scale to improve the characterization of infrared radiances. We focus on data from the High-resolution Infrared Radiation Sounder (HIRS) and compare the observations to radiances from the Atmospheric Infrared Sounder (AIRS) on Aqua. The high spectral resolution of AIRS is used to characterize and possibly recalibrate the observed radiances from HIRS. Our approach is unique in that we use additional information from other passive instruments on the same platforms including the Advanced Very High Resolution Radiometer (AVHRR) and the MODerate resolution Imaging Spectroradiometer (MODIS). We will present comparisons of radiances from HIRS and AIRS within different types of clouds that are determined from the imagers. In this way, we can analyze and select the most homogeneous conditions for radiance comparisons and a possible re-calibration of HIRS. We hope to achieve a cloud-type-dependent calibration and quality control for HIRS, which can be extrapolated into the past via inter-calibration of the different HIRS instruments beyond the time of AIRS.

  14. Abundance of fluorescent biological aerosol particles at temperatures conducive to the formation of mixed-phase and cirrus clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Twohy, Cynthia H.; McMeeking, Gavin R.; DeMott, Paul J.

    Some types of biological particles are known to nucleate ice at warmer temperatures than mineral dust, with the potential to influence cloud microphysical properties and climate. However, the prevalence of these particle types above the atmospheric boundary layer is not well known. Many types of biological particles fluoresce when exposed to ultraviolet light, and the Wideband Integrated Bioaerosol Sensor takes advantage of this characteristic to perform real-time measurements of fluorescent biological aerosol particles (FBAPs). This instrument was flown on the National Center for Atmospheric Research Gulfstream V aircraft to measure concentrations of fluorescent biological particles from different potential sources andmore » at various altitudes over the US western plains in early autumn. Clear-air number concentrations of FBAPs between 0.8 and 12 µm diameter usually decreased with height and generally were about 10–100 L -1 in the continental boundary layer but always much lower at temperatures colder than 255 K in the free troposphere. At intermediate temperatures where biological ice-nucleating particles may influence mixed-phase cloud formation (255 K ≤ T ≤ 270 K), concentrations of fluorescent particles were the most variable and were occasionally near boundary-layer concentrations. Predicted vertical distributions of ice-nucleating particle concentrations based on FBAP measurements in this temperature regime sometimes reached typical concentrations of primary ice in clouds but were often much lower. If convection was assumed to lift boundary-layer FBAPs without losses to the free troposphere, better agreement between predicted ice-nucleating particle concentrations and typical ice crystal concentrations was achieved. Ice-nucleating particle concentrations were also measured during one flight and showed a decrease with height, and concentrations were consistent with a relationship to FBAPs established previously at the forested surface site below

  15. Abundance of fluorescent biological aerosol particles at temperatures conducive to the formation of mixed-phase and cirrus clouds

    NASA Astrophysics Data System (ADS)

    Twohy, Cynthia H.; McMeeking, Gavin R.; DeMott, Paul J.; McCluskey, Christina S.; Hill, Thomas C. J.; Burrows, Susannah M.; Kulkarni, Gourihar R.; Tanarhte, Meryem; Kafle, Durga N.; Toohey, Darin W.

    2016-07-01

    Some types of biological particles are known to nucleate ice at warmer temperatures than mineral dust, with the potential to influence cloud microphysical properties and climate. However, the prevalence of these particle types above the atmospheric boundary layer is not well known. Many types of biological particles fluoresce when exposed to ultraviolet light, and the Wideband Integrated Bioaerosol Sensor takes advantage of this characteristic to perform real-time measurements of fluorescent biological aerosol particles (FBAPs). This instrument was flown on the National Center for Atmospheric Research Gulfstream V aircraft to measure concentrations of fluorescent biological particles from different potential sources and at various altitudes over the US western plains in early autumn. Clear-air number concentrations of FBAPs between 0.8 and 12 µm diameter usually decreased with height and generally were about 10-100 L-1 in the continental boundary layer but always much lower at temperatures colder than 255 K in the free troposphere. At intermediate temperatures where biological ice-nucleating particles may influence mixed-phase cloud formation (255 K ≤ T ≤ 270 K), concentrations of fluorescent particles were the most variable and were occasionally near boundary-layer concentrations. Predicted vertical distributions of ice-nucleating particle concentrations based on FBAP measurements in this temperature regime sometimes reached typical concentrations of primary ice in clouds but were often much lower. If convection was assumed to lift boundary-layer FBAPs without losses to the free troposphere, better agreement between predicted ice-nucleating particle concentrations and typical ice crystal concentrations was achieved. Ice-nucleating particle concentrations were also measured during one flight and showed a decrease with height, and concentrations were consistent with a relationship to FBAPs established previously at the forested surface site below. The vertical

  16. A comparison between CloudSat and aircraft data for a multilayer, mixed phase cloud system during the Canadian CloudSat-CALIPSO Validation Project

    NASA Astrophysics Data System (ADS)

    Barker, H. W.; Korolev, A. V.; Hudak, D. R.; Strapp, J. W.; Strawbridge, K. B.; Wolde, M.

    2008-04-01

    Reflectivities recorded by the W-band Cloud Profiling Radar (CPR) aboard NASA's CloudSat satellite and some of CloudSat's retrieval products are compared to Ka-band radar reflectivities and in situ cloud properties gathered by instrumentation on the NRC's Convair-580 aircraft. On 20 February 2007, the Convair flew several transects along a 60 nautical mile stretch of CloudSat's afternoon ground track over southern Quebec. On one of the transects it was well within CloudSat's radar's footprint while in situ sampling a mixed phase boundary layer cloud. A cirrus cloud was also sampled before and after overpass. Air temperature and humidity profiles from ECMWF reanalyses, as employed in CloudSat's retrieval stream, agree very well with those measured by the Convair. The boundary layer cloud was clearly visible, to the eye and lidar, and dominated the region's solar radiation budget. It was, however, often below or near the Ka-band's distance-dependent minimum detectable signal. In situ samples at overpass revealed it to be composed primarily of small, supercooled droplets at the south end and increasingly intermixed with ice northward. Convair and CloudSat CPR reflectivities for the low cloud agree well, but while CloudSat properly ascribed it as overcast, mixed phase, and mostly liquid near the south end, its estimates of liquid water content LWC (and visible extinction coefficient κ) and droplet effective radii are too small and large, respectively. The cirrus consisted largely of irregular crystals with typical effective radii ˜150 μm. While both CPR reflectivities agree nicely, CloudSat's estimates of crystal number concentrations are too large by a factor of 5. Nevertheless, distributions of ice water content and κ deduced from in situ data agree quite well with values retrieved from CloudSat algorithms.

  17. Temperature and Humidity Profiles in the TqJoint Data Group of AIRS Version 6 Product for the Climate Model Evaluation

    NASA Technical Reports Server (NTRS)

    Ding, Feng; Fang, Fan; Hearty, Thomas J.; Theobald, Michael; Vollmer, Bruce; Lynnes, Christopher

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) mission is entering its 13th year of global observations of the atmospheric state, including temperature and humidity profiles, outgoing long-wave radiation, cloud properties, and trace gases. Thus AIRS data have been widely used, among other things, for short-term climate research and observational component for model evaluation. One instance is the fifth phase of the Coupled Model Intercomparison Project (CMIP5) which uses AIRS version 5 data in the climate model evaluation. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the home of processing, archiving, and distribution services for data from the AIRS mission. The GES DISC, in collaboration with the AIRS Project, released data from the version 6 algorithm in early 2013. The new algorithm represents a significant improvement over previous versions in terms of greater stability, yield, and quality of products. The ongoing Earth System Grid for next generation climate model research project, a collaborative effort of GES DISC and NASA JPL, will bring temperature and humidity profiles from AIRS version 6. The AIRS version 6 product adds a new "TqJoint" data group, which contains data for a common set of observations across water vapor and temperature at all atmospheric levels and is suitable for climate process studies. How different may the monthly temperature and humidity profiles in "TqJoint" group be from the "Standard" group where temperature and water vapor are not always valid at the same time? This study aims to answer the question by comprehensively comparing the temperature and humidity profiles from the "TqJoint" group and the "Standard" group. The comparison includes mean differences at different levels globally and over land and ocean. We are also working on examining the sampling differences between the "TqJoint" and "Standard" group using MERRA data.

  18. On the relationship between the Madden-Julian Oscillation and 2 m air temperature over central Asia in boreal winter

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Lu, Youyu; Yang, Ben; Jiang, Jing; Huang, Anning; Zhao, Yong; La, Mengke; Yang, Qing

    2016-11-01

    Linear regression is used to explore the relationship between the Madden-Julian oscillation (MJO) and 2 m air temperature (T2M) over central Asia in boreal winter during 1979-2012. During MJO phases 3 and 4 (7 and 8), T2M anomalies exhibit a significantly strong, negative (positive) response to the MJO from the Arabian Sea to northwestern China. The anomalies of T2M are essentially influenced by surface net downward long (Ldown) and shortwave radiations, which are caused by the changes in total cloud cover (TCC) and low-level tropospheric air temperature. The anomalies of Ldown that are caused by TCC account for 20-65% of total Ldown. The remaining anomalies of total Ldown are explained by low-level air temperature changes. The 850 hPa air temperature (T850) tendency is mainly affected by the vertical motion over central Asia during MJO phases 1, 2, 4-6, and 8, as well as over northern India during phases 3 and 7. Over Saudi Arabia, Afghanistan, Pakistan, Kazakhstan, and northwestern China, the anomalies of T850 tendency are mainly explained by the temperature advection during phases 3 and 7. TCC and vertical motion are affected by the evolution of the MJO event. The cyclonic (anticyclonic) circulation related to the MJO over central Asia during phases 3 and 4 (7 and 8) causes the transport of cold (warm) air over central Asia. The MJO can be a useful intraseasonal signal to predict winter T2M over central Asia, where temperatures would be colder (warmer) than normal during MJO phases 3 and 4 (7 and 8).

  19. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

  20. Airborne lidar/radiometric measurements of cirrus cloud parameters and their application to LOWTRAN radiance evaluations

    NASA Technical Reports Server (NTRS)

    Uthe, Edward E.

    1990-01-01

    SRI has assembled an airborne lidar/radiometric instrumentation suite for mapping cirrus cloud distribution and analyzing cirrus cloud optical properties. Operation of upward viewing infrared radiometers from an airborne platform provides the optimum method of measuring high altitude cold cloud radiative properties with minimum interference from the thermal emission by the earth's surface and lower atmospheric components. Airborne installed sensors can also operate over large regional areas including water, urban, and mountain surfaces and above lower atmospheric convective clouds and haze layers. Currently available sensors installed on the SRI Queen Air aircraft are illustrated. Lidar and radiometric data records are processed for real time viewing on a color video screen. A cirrus cloud data example is presented as a black and white reproduction of a color display of data at the aircraft altitude of 12,000 ft, the 8 to 14 micron atmospheric radiation background was equivalent to a blackbody temperature of about -60 C and, therefore, the radiometer did not respond strongly to low density cirrus cloud concentrations detected by the lidar. Cloud blackbody temperatures (observed by radiometer) are shown plotted against midcloud temperatures (derived from lidar observed cloud heights and supporting temperature profiles) for data collected on 30 June and 28 July.

  1. Noctilucent cloud formation and the effects of water vapor variability on temperatures in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.

    1985-01-01

    To investigate the occurrence of low temperatures and the formation of noctilucent clouds in the summer mesosphere, a one-dimensional time-dependent photochemical-thermal numerical model of the atmosphere between 50 and 120 km has been constructed. The model self-consistently solves the coupled photochemical and thermal equations as perturbation equations from a reference state assumed to be in equilibrium and is used to consider the effect of variability in water vapor in the lower mesosphere on the temperature in the region of noctilucent cloud formation. It is found that change in water vapor from an equilibrium value of 5 ppm at 50 km to a value of 10 ppm, a variation consistent with observations, can produce a roughly 15 K drop in temperature at 82 km. It is suggested that this process may produce weeks of cold temperatures and influence noctilucent cloud formation.

  2. Cloud/climate sensitivity experiments

    NASA Technical Reports Server (NTRS)

    Roads, J. O.; Vallis, G. K.; Remer, L.

    1982-01-01

    A study of the relationships between large-scale cloud fields and large scale circulation patterns is presented. The basic tool is a multi-level numerical model comprising conservation equations for temperature, water vapor and cloud water and appropriate parameterizations for evaporation, condensation, precipitation and radiative feedbacks. Incorporating an equation for cloud water in a large-scale model is somewhat novel and allows the formation and advection of clouds to be treated explicitly. The model is run on a two-dimensional, vertical-horizontal grid with constant winds. It is shown that cloud cover increases with decreased eddy vertical velocity, decreased horizontal advection, decreased atmospheric temperature, increased surface temperature, and decreased precipitation efficiency. The cloud field is found to be well correlated with the relative humidity field except at the highest levels. When radiative feedbacks are incorporated and the temperature increased by increasing CO2 content, cloud amounts decrease at upper-levels or equivalently cloud top height falls. This reduces the temperature response, especially at upper levels, compared with an experiment in which cloud cover is fixed.

  3. Effects of ice crystal surface roughness and air bubble inclusions on cirrus cloud radiative properties from remote sensing perspective

    NASA Astrophysics Data System (ADS)

    Tang, Guanglin; Panetta, R. Lee; Yang, Ping; Kattawar, George W.; Zhai, Peng-Wang

    2017-07-01

    We study the combined effects of surface roughness and inhomogeneity on the optical scattering properties of ice crystals and explore the consequent implications to remote sensing of cirrus cloud properties. Specifically, surface roughness and inhomogeneity are added to the Moderate Resolution Imaging Spectroradiometer (MODIS) collection 6 (MC6) cirrus cloud particle habit model. Light scattering properties of the new habit model are simulated using a modified version of the Improved Geometric Optics Method (IGOM). Both inhomogeneity and surface roughness affect the single scattering properties significantly. In visible bands, inhomogeneity and surface roughness both tend to smooth the phase function and eliminate halos and the backscattering peak. The asymmetry parameter varies with the degree of surface roughness following a U shape - decreases and then increases - with a minimum at around 0.15, whereas it decreases monotonically with the air bubble volume fraction. Air bubble inclusions significantly increase phase matrix element -P12 for scattering angles between 20°-120°, whereas surface roughness has a much weaker effect, increasing -P12 slightly from 60°-120°. Radiative transfer simulations and cirrus cloud property retrievals are conducted by including both the factors. In terms of surface roughness and air bubble volume fraction, retrievals of cirrus cloud optical thickness or the asymmetry parameter using solar bands show similar patterns of variation. Polarimetric simulations using the MC6 cirrus cloud particle habit model are shown to be more consistent with observations when both surface roughness and inhomogeneity are simultaneously considered.

  4. The initial giant umbrella cloud of the May 18th, 1980, explosive eruption of Mount St. Helens

    USGS Publications Warehouse

    Sparks, R.S.J.; Moore, J.G.; Rice, C.J.

    1986-01-01

    The initial eruption column of May 18th, 1980 reached nearly 30 km altitude and released 1017 joules of thermal energy into the atmosphere in only a few minutes. Ascent of the cloud resulted in forced intrusion of a giant umbrella-shaped cloud between altitudes of 10 and 20 km at radial horizontal velocities initially in excess of 50 m/s. The mushroom cloud expanded 15 km upwind, forming a stagnation point where the radial expansion velocity and wind velocity were equal. The cloud was initiated when the pyroclastic blast flow became buoyant. The flow reduced its density as it moved away from the volcano by decompression, by sedimentation, and by mixing with and heating the surrounding air. Observations indicate that much of the flow, covering an area of 600 km2, became buoyant within 1.5 minutes and abruptly ascended to form the giant cloud. Calculations are presented for the amount of air that must have been entrained into the flow to make it buoyant. Assuming an initial temperature of 450??C and a magmatic origin for the explosion, these calculations indicate that the flow became buoyant when its temperature was approximately 150??C and the flow consisted of a mixture of 3.25 ?? 1011 kg of pyroclasts and 5.0 ?? 1011 kg of air. If sedimentation is considered, these figures reduce to 1.1 ?? 1011 kg of pyroclasts and 1.0 ?? 1011 kg of air. ?? 1986.

  5. Modelling the Effects of Temperature and Cloud Cover Change on Mountain Permafrost Distribution, Northwest Canada

    NASA Astrophysics Data System (ADS)

    Bonnaventure, P. P.; Lewkowicz, A. G.

    2008-12-01

    Spatial models of permafrost probability for three study areas in northwest Canada between 59°N and 61°N were perturbed to investigate climate change impacts. The models are empirical-statistical in nature, based on basal temperature of snow (BTS) measurements in winter, and summer ground-truthing of the presence or absence of frozen ground. Predictions of BTS values are made using independent variables of elevation and potential incoming solar radiation (PISR), both derived from a 30 m DEM. These are then transformed into the probability of the presence or absence of permafrost through logistic regression. Under present climate conditions, permafrost percentages in the study areas are 44% for Haines Summit, British Columbia, 38% for Wolf Creek, Yukon, and 69% for part of the Ruby Range, Yukon (Bonnaventure and Lewkowicz, 2008; Lewkowicz and Bonaventure, 2008). Scenarios of air temperature change from -2K (approximating Neoglacial conditions) to +5K (possible within the next century according to the IPCC) were examined for the three sites. Manipulations were carried out by lowering or raising the terrain within the DEM assuming a mean environmental lapse rate of 6.5K/km. Under a -2K scenario, permafrost extent increased by 22-43% in the three study areas. Under a +5K warming, permafrost essentially disappeared in Haines Summit and Wolf Creek, while in the Ruby Range less than 12% of the area remained perennially frozen. It should be emphasized that these model predictions are for equilibrium conditions which might not be attained for several decades or longer in areas of cold permafrost. Cloud cover changes of -10% to +10% were examined through adjusting the partitioning of direct beam and diffuse radiation in the PISR input field. Changes to permafrost extent were small, ranging from -2% to -4% for greater cloudiness with changes of the opposite magnitude for less cloud. The results show that air temperature change has a much greater potential to affect mountain

  6. AIRS Retrieved Temperature Isotherms over Southern Europe

    NASA Image and Video Library

    2002-09-08

    AIRS Retrieved Temperature Isotherms over Southern Europe viewed from the west, September 8, 2002. The isotherms in this map made from AIRS onboard NASA Aqua satellite data show regions of the same temperature in the atmosphere. http://photojournal.jpl.nasa.gov/catalog/PIA00513

  7. AIRS First Light Data: Northern Europe, July 20, 2002

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2Figure 3

    These images, taken over northern Europe on July 20, 2002, depict a few of the different views of Earth and its atmosphere that are produced by the Atmospheric Infrared Sounder experiment system operating on NASA's Aqua spacecraft.

    The image in Figure 1 is from an infrared channel from the AIRS instrument that measures the surface temperature in clear areas and cloud top temperatures in cloudy areas. The image reveals very warm conditions in France and a storm off the east coast of the United Kingdom.

    The image in Figure 2 represents a microwave channel from the Advanced Microwave Sounding Unit instrument that sees through most clouds and observes surface conditions everywhere.

    The image in Figure 3 is a microwave channel from the Humidity Sounder for Brazil instrument that is very sensitive to humidity and does not see the surface at all, but instead reveals the structure of moisture streams in the troposphere.

    The infrared and microwave data from the AIRS experiment are integrated to retrieve a single set of temperature, moisture, and cloud values. These three channels represent only a small portion of the 2,400-channel multispectral experiment, whose primary objectives are to improve the accuracy of weather forecasts and to study climate change.

    The AIRS experiment system also takes pictures of the Earth at four visible and near-infrared wavelengths that can be combined into a color picture. This image shows a swirling low-pressure system over England, clear skies over much of France, and frontal systems in the North Atlantic. Because AIRS is sensitive to different wavelengths than your eye, the colors shown are different from what you would see. For example, plants appear very red to AIRS. There are also subtle color differences in the clouds that relate to their altitude and thickness (compare the white

  8. Odd cloud in the Ross Sea, Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On January 28, 2002, MODIS captured this image of an interesting cloud formation in the boundary waters between Antarctica's Ross Sea and the Southern Ocean. A dragon? A snake? A fish? No, but it is an interesting example of the atmospheric physics of convection. The 'eye' of this dragon-looking cloud is likely a small spot of convection, the process by which hot moist air rises up into the atmosphere, often producing big, fluffy clouds as moisture in the air condenses as rises into the colder parts of the atmosphere. A false color analysis that shows different kinds of clouds in different colors reveals that the eye is composed of ice crystals while the 'body' is a liquid water cloud. This suggests that the eye is higher up in the atmosphere than the body. The most likely explanation for the eye feature is that the warm, rising air mass had enough buoyancy to punch through the liquid water cloud. As a convective parcel of air rises into the atmosphere, it pushes the colder air that is higher up out of its way. That cold air spills down over the sides of the convective air mass, and in this case has cleared away part of the liquid cloud layer below in the process. This spilling over of cold air from higher up in the atmosphere is the reason why thunderstorms are often accompanied by a cool breeze. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  9. Comparison of AIRS Version-6 OLR Climatologies and Anomaly Time Series with Those of CERES and MERRA-2

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Lee, Jae; Iredell, Lena

    2016-01-01

    RCs of AIRS and MERRA-2 500 mb specific humidity agree very well in terms of spatial patterns, but MERRA-2 ARCs are larger in magnitude and show a spurious moistening globally and over Central Africa. AIRS and MERRA-2 fractional cloud cover ARCs agree less well with each other. MERRA-2 shows a spurious global mean increase in cloud cover that is not found in AIRS, including a large spurious cloud increase in Central Africa. AIRS and MERRA-2 ARCs of surface skin and surface air temperatures are all similar to each other in patterns. AIRS shows a small global warming over the 13 year period, while MERRA-2 shows a small global cooling. This difference results primarily from spurious MERRA-2 temperature trends at high latitudes and over Central Africa. These differences all contribute to the spurious negative global MERRA-2 OLR trend. AIRS Version-6 confirms that 2015 is the warmest year on record and that the Earth's surface is continuing to warm.

  10. Hurricane Frances as Observed by NASA Spaceborne Atmospheric Infrared Sounder AIRS and SeaWinds Scatterometer

    NASA Image and Video Library

    2004-08-30

    This image shows Hurricane Frances in August 2004 as captured by instruments onboard two different NASA satellites: the AIRS infrared instrument onboard Aqua, and the SeaWinds scatterometer onboard QuikSCAT. Both are JPL-managed instruments. AIRS data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction over the ocean. The red vectors in the image show Frances' surface winds as measured by SeaWinds on QuikSCAT. The background colors show the temperature of clouds and surface as viewed in the infrared by AIRS, with cooler areas pushing to purple and warmer areas are pushing to red. The color scale on the right gives the temperatures in degrees Kelvin. (The top of the scale, 320 degrees Kelvin, corresponds to 117 degrees Fahrenheit, and the bottom, 180 degrees K is -135 degrees F.) The powerful circulation of this storm is evident from the combined data as well as the development of a clearly-defined central "eye." The infrared signal does not penetrate through clouds, so the light blue areas reveal the cold clouds tops associated with strong thunderstorms embedded within the storm. In cloud-free areas the infrared signal comes from Earth's surface, revealing warmer temperatures. http://photojournal.jpl.nasa.gov/catalog/PIA00435

  11. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made either...

  12. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made either...

  13. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made either...

  14. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made either...

  15. Pyrophoric sulfides influence over the minimum ignition temperature of dust cloud

    NASA Astrophysics Data System (ADS)

    Prodan, Maria; Lupu, Leonard Andrei; Ghicioi, Emilian; Nalboc, Irina; Szollosi-Mota, Andrei

    2017-12-01

    The dust cloud is the main form of existence of combustible dust in the production area and together with the existence of effective ignition sources are the main causes of dust explosions in production processes. The minimum ignition temperature has an important role in the process of selecting the explosion-protected electrical equipment when performing the explosion risk assessment of combustible dusts. The heated surfaces are able to ignite the dust clouds that can form in process industry. The oil products usually contain hydrogen sulfide and thus on the pipe walls iron sulfides can form, which can be very dangerous from health and safety point of view. In order to study the influence of the pyrophoric sulfide over the minimum ignition temperature of combustible dusts for this work were performed several experiments on a residue collected from the oil pipes contaminated with commercially iron sulfide.

  16. Contrasting cloud composition between coupled and decoupled marine boundary layer clouds

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Mora Ramirez, Marco; Dadashazar, Hossein; MacDonald, Alex B.; Crosbie, Ewan; Bates, Kelvin H.; Coggon, Matthew M.; Craven, Jill S.; Lynch, Peng; Campbell, James R.; Azadi Aghdam, Mojtaba; Woods, Roy K.; Jonsson, Haflidi; Flagan, Richard C.; Seinfeld, John H.; Sorooshian, Armin

    2016-10-01

    Marine stratocumulus clouds often become decoupled from the vertical layer immediately above the ocean surface. This study contrasts cloud chemical composition between coupled and decoupled marine stratocumulus clouds for dissolved nonwater substances. Cloud water and droplet residual particle composition were measured in clouds off the California coast during three airborne experiments in July-August of separate years (Eastern Pacific Emitted Aerosol Cloud Experiment 2011, Nucleation in California Experiment 2013, and Biological and Oceanic Atmospheric Study 2015). Decoupled clouds exhibited significantly lower air-equivalent mass concentrations in both cloud water and droplet residual particles, consistent with reduced cloud droplet number concentration and subcloud aerosol (Dp > 100 nm) number concentration, owing to detachment from surface sources. Nonrefractory submicrometer aerosol measurements show that coupled clouds exhibit higher sulfate mass fractions in droplet residual particles, owing to more abundant precursor emissions from the ocean and ships. Consequently, decoupled clouds exhibited higher mass fractions of organics, nitrate, and ammonium in droplet residual particles, owing to effects of long-range transport from more distant sources. Sodium and chloride dominated in terms of air-equivalent concentration in cloud water for coupled clouds, and their mass fractions and concentrations exceeded those in decoupled clouds. Conversely, with the exception of sea-salt constituents (e.g., Cl, Na, Mg, and K), cloud water mass fractions of all species examined were higher in decoupled clouds relative to coupled clouds. Satellite and Navy Aerosol Analysis and Prediction System-based reanalysis data are compared with each other, and the airborne data to conclude that limitations in resolving boundary layer processes in a global model prevent it from accurately quantifying observed differences between coupled and decoupled cloud composition.

  17. Satellite-Surface Perspectives of Air Quality and Aerosol-Cloud Effects on the Environment: An Overview of 7-SEAS BASELInE

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Maring, Hal B.; Lin, Neng-Huei; Buntoung, Sumaman; Chantara, Somporn; Chuang, Hsiao-Chi; Gabriel, Philip M.; Goodloe, Colby S.; Holben, Brent N.; Hsiao, Ta-Chih; hide

    2016-01-01

    The objectives of 7-SEASBASELInE (Seven SouthEast Asian Studies Biomass-burning Aerosols and Stratocumulus Environment: Lifecycles and Interactions Experiment) campaigns in spring 2013-2015 were to synergize measurements from uniquely distributed ground-based networks (e.g., AERONET (AErosol RObotic NETwork)), MPLNET ( NASA Micro-Pulse Lidar Network)) and sophisticated platforms (e.g.,SMARTLabs (Surface-based Mobile Atmospheric Research and Testbed Laboratories), regional contributing instruments), along with satellite observations retrievals and regional atmospheric transport chemical models to establish a critically needed database, and to advance our understanding of biomass-burning aerosols and trace gases in Southeast Asia (SEA). We present a satellite-surface perspective of 7-SEASBASELInE and highlight scientific findings concerning: (1) regional meteorology of moisture fields conducive to the production and maintenance of low-level stratiform clouds over land; (2) atmospheric composition in a biomass-burning environment, particularly tracers-markers to serve as important indicators for assessing the state and evolution of atmospheric constituents; (3) applications of remote sensing to air quality and impact on radiative energetics, examining the effect of diurnal variability of boundary-layer height on aerosol loading; (4) aerosol hygroscopicity and ground-based cloud radar measurements in aerosol-cloud processes by advanced cloud ensemble models; and (5) implications of air quality, in terms of toxicity of nanoparticles and trace gases, to human health. This volume is the third 7-SEAS special issue (after Atmospheric Research, vol. 122, 2013; and Atmospheric Environment, vol. 78, 2013) and includes 27 papers published, with emphasis on air quality and aerosol-cloud effects on the environment. BASELInE observations of stratiform clouds over SEA are unique, such clouds are embedded in a heavy aerosol-laden environment and feature characteristically greater

  18. Lightning channels emerging from the top of thunderstorm clouds

    NASA Astrophysics Data System (ADS)

    van der Velde, Oscar; Montanyà, Joan; Soula, Serge; Pineda, Nicolau

    2013-04-01

    In recent years, research of transient luminous events is shifting from the rather common elves and sprites high above thunderclouds to the much less frequently observed phenomena issued by the storm cloud itself: gigantic jets (GJ) connecting to the ionosphere, and high-energy terrestrial gamma-ray flashes (TGFs) recorded at spacecraft. These phenomena both are observed more often at tropical latitudes, and a link may or may not exist between the two. It is likely that both share the requirement of high-altitude leaders of negative polarity, which in the case of a GJ escapes from the cloud top and transforms into a long streamer discharge. While this should be easier at lower air densities (higher altitude), previous studies showed that GJs need not be produced by storms with the highest tops. TGFs have still unclear origins, but may be related to production in negative leaders or other regions with strong vertically directed electric fields by runaway electron mechnisms. In December 2009, a gigantic jet was observed in the Mediterranean Sea region. During the same night, a nearby storm produced repeatedly multiple leaders piercing through the cloud top, without any sign of streamers reaching higher altitudes (unlike jets or starters). Similar observations of upward cloud-to-air lightning have been obtained recently by low-light cameras over storms near the Catalonian coast in different seasons. The production conditions are currently being investigated, with a focus on optically determined altitudes of lightning and evolution of storm tops (and their temperature level). The initial impression is that cloud flashes escape into the air above during stages when the growing convective cloud top is very close to the main charge production region. Upward cloud-to-air lightning has also been mapped by the Ebro Lightning Mapping Array, exhibiting inverse bolt-from-the blue characteristics, and as a by-product of a bolt-from-the-blue lightning strike to ground, recorded

  19. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature measurement. 89.325 Section 89.325 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air...

  20. HCl in rocket exhaust clouds - Atmospheric dispersion, acid aerosol characteristics, and acid rain deposition

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Sebacher, D. I.; Bendura, R. J.; Wornom, D. E.

    1983-01-01

    Both measurements and model calculations of the temporal dispersion of peak HCl (g + aq) concentration in Titan III exhaust clouds are found to be well characterized by one-term power-law decay expressions. The respective coefficients and decay exponents, however, are found to vary widely with meteorology. The HCl (g), HCl (g + aq), dewpoint, and temperature-pressure-altitude data for Titan III exhaust clouds are consistent with accurately calculated HCl/H2O vapor-liquid compositions for a model quasi-equilibrated flat surface aqueous aerosol. Some cloud evolution characteristics are also defined. Rapid and extensive condensation of aqueous acid clearly occurs during the first three min of cloud rise. Condensation is found to be intensified by the initial entrainment of relatively moist ambient air from lower levels, that is, from levels below eventual cloud stabilization. It is pointed out that if subsequent dilution air at stabilization altitude is significantly drier, a state of maximum condensation soon occurs, followed by an aerosol evaporation phase.

  1. Comparison between AVHRR surface temperature data and in-situ weather station temperatures over the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Rezvanbehbahani, S.; Csatho, B. M.; Comiso, J. C.; Babonis, G. S.

    2011-12-01

    atmospheric inversion. The large negative bias of 2.8°K at the low altitude Swiss Camp (surface colder than the air) could be caused by a combination of different factors including local effects such as more windy circumstances above the snow surface and biases introduced by the cloud-masking applied on the AVHRR images. Usually only satellite images acquired in clear-sky conditions are used for deriving monthly AVHRR average temperatures. Since cloud-free days are usually warmer, satellite derived temperatures tend to underestimate the real average temperatures, especially regions with frequent cloud cover, such as Swiss Camp. Therefore, cautions must be exercised while using ice surface temperatures derived from satellite imagery for glaciological applications. Eliminating the cloudy day's' temperature from the in-situ data prior to the comparison with AVHRR derived temperatures will provide a better assessment of AVHRR surface temperature measurement accuracy.

  2. Response of mixed-phase boundary layer clouds with rapid and slow ice nucleation processes to cloud-top temperature trend

    NASA Astrophysics Data System (ADS)

    Fridlind, A. M.; Avramov, A.; Ackerman, A. S.; Alpert, P. A.; Knopf, D. A.; DeMott, P. J.; Brooks, S. D.; Glen, A.

    2015-12-01

    It has been argued on the basis of some laboratory data sets, observed mixed-phase cloud systems, and numerical modeling studies that weakly active or slowly consumed ice forming nuclei (IFN) may be important to natural cloud systems. It has also been argued on the basis of field measurements that ice nucleation under mixed-phase conditions appears to occur predominantly via a liquid-phase mechanism, requiring the presence of liquid droplets prior to substantial ice nucleation. Here we analyze the response of quasi-Lagrangian large-eddy simulations of mixed-phase cloud layers to IFN operating via a liquid-phase mode using assumptions that result in either slow or rapid depletion of IFN from the cloudy boundary layer. Using several generalized case studies that do not exhibit riming or drizzle, based loosely on field campaign data, we vary environmental conditions such that the cloud-top temperature trend varies. One objective of this work is to identify differing patterns in ice formation intensity that may be distinguishable from ground-based or satellite platforms.

  3. On The Cloud Processing of Aerosol Particles: An Entraining Air Parcel Model With Two-dimensional Spectral Cloud Microphysics and A New Formulation of The Collection Kernel

    NASA Astrophysics Data System (ADS)

    Bott, Andreas; Kerkweg, Astrid; Wurzler, Sabine

    A study has been made of the modification of aerosol spectra due to cloud pro- cesses and the impact of the modified aerosols on the microphysical structure of future clouds. For this purpose an entraining air parcel model with two-dimensional spectral cloud microphysics has been used. In order to treat collision/coalescence processes in the two-dimensional microphysical module, a new realistic and continuous formu- lation of the collection kernel has been developed. Based on experimental data, the kernel covers the entire investigated size range of aerosols, cloud and rain drops, that is the kernel combines all important coalescence processes such as the collision of cloud drops as well as the impaction scavenging of small aerosols by big raindrops. Since chemical reactions in the gas phase and in cloud drops have an important impact on the physico-chemical properties of aerosol particles, the parcel model has been extended by a chemical module describing gas phase and aqueous phase chemical reactions. However, it will be shown that in the numerical case studies presented in this paper the modification of aerosols by chemical reactions has a minor influence on the microphysical structure of future clouds. The major process yielding in a second cloud event an enhanced formation of rain is the production of large aerosol particles by collision/coalescence processes in the first cloud.

  4. BlueSky Cloud - rapid infrastructure capacity using Amazon's Cloud for wildfire emergency response

    NASA Astrophysics Data System (ADS)

    Haderman, M.; Larkin, N. K.; Beach, M.; Cavallaro, A. M.; Stilley, J. C.; DeWinter, J. L.; Craig, K. J.; Raffuse, S. M.

    2013-12-01

    During peak fire season in the United States, many large wildfires often burn simultaneously across the country. Smoke from these fires can produce air quality emergencies. It is vital that incident commanders, air quality agencies, and public health officials have smoke impact information at their fingertips for evaluating where fires and smoke are and where the smoke will go next. To address the need for this kind of information, the U.S. Forest Service AirFire Team created the BlueSky Framework, a modeling system that predicts concentrations of particle pollution from wildfires. During emergency response, decision makers use BlueSky predictions to make public outreach and evacuation decisions. The models used in BlueSky predictions are computationally intensive, and the peak fire season requires significantly more computer resources than off-peak times. Purchasing enough hardware to run the number of BlueSky Framework runs that are needed during fire season is expensive and leaves idle servers running the majority of the year. The AirFire Team and STI developed BlueSky Cloud to take advantage of Amazon's virtual servers hosted in the cloud. With BlueSky Cloud, as demand increases and decreases, servers can be easily spun up and spun down at a minimal cost. Moving standard BlueSky Framework runs into the Amazon Cloud made it possible for the AirFire Team to rapidly increase the number of BlueSky Framework instances that could be run simultaneously without the costs associated with purchasing and managing servers. In this presentation, we provide an overview of the features of BlueSky Cloud, describe how the system uses Amazon Cloud, and discuss the costs and benefits of moving from privately hosted servers to a cloud-based infrastructure.

  5. Validation and Refinement of the DELFIC Cloud Rise Module

    DTIC Science & Technology

    1977-01-15

    Explosion Energy Fraction in the Cloud, f 13 2.4.2 Temper&ture of Condensed-Phase Matter 13 2.4.3 Altitude 14 2.4.4 Rise V0elociy 14 2.4.5 Mass and Volume 15...2.4.1 Explosion Energy Fraction in the Cloud. f. The original NRDL water-surface burst model used an energy fraction of 33%. For the first DELFIC...of explosion energy) is used to heat soil and air to their respective initial tempera- tures. The soil mans and both initial temperatures are

  6. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... measurement. 91.309 Section 91.309 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 100 cm of the air-intake of the engine. The measurement location must be either in...

  7. North Pacific Cloud Feedbacks Inferred from Synoptic-Scale Dynamic and Thermodynamic Relationships

    NASA Technical Reports Server (NTRS)

    Norris, Joel R.; Iacobellis, Sam F.

    2005-01-01

    This study analyzed daily satellite cloud observations and reanalysis dynamical parameters to determine how mid-tropospheric vertical velocity and advection over the sea surface temperature gradient control midlatitude North Pacific cloud properties. Optically thick clouds with high tops are generated by synoptic ascent, but two different cloud regimes occur under synoptic descent. When vertical motion is downward during summer, extensive stratocumulus cloudiness is associated with near surface northerly wind, while frequent cloudless pixels occur with southerly wind. Examinations of ship-reported cloud types indicates that midlatitude stratocumulus breaks up as the the boundary level decouples when it is advected equatorward over warmer water. Cumulus is prevalent under conditions of synoptic descent and cold advection during winter. Poleward advection of subtropical air over colder water causes stratification of the near-surface layer that inhibits upward mixing of moisture and suppresses cloudiness until a fog eventually forms. Averaging of cloud and radiation data into intervals of 500-hPa vertical velocity and advection over the SST gradient enables the cloud response to changes in temperature and the stratification of the lower troposphere to be investigated independent of the dynamics.

  8. The impact of draught related to air velocity, air temperature and workload.

    PubMed

    Griefahn, B; Künemund, C; Gehring, U

    2001-08-01

    This experimental study was designed to test the hypotheses that the effects of draught increase with higher air velocity, with lower air temperature, and with lower workload. Thirty healthy young males were exposed to horizontal draught during 55 min while they operated an arm ergometer in a standing posture. Air velocity, air temperature, and workload were varied in 3 steps each, between 11 and 23 degrees C, 0.1 and 0.3 m/s, and 104 to 156 W/m2, respectively. The 27 combinations were distributed over subjects in a fractional factorial 3(3)-design. The participants were clothed for thermal neutrality. Workload was measured at the end of the sessions by respirometry. Draught-induced annoyance was determined every 5 min, separately for 10 body sites. Corresponding skin temperature was also recorded. The hypotheses were verified for the influence of air velocity and air temperature. Regarding workload, local heat production is probably decisive, meaning that draft-induced local annoyance is inversely related to workload in active but independent from workload in non-active body areas. To improve the situation for the workers concerned it is suggested to apply protective gloves that cover an as great area of the forearms as possible and to limit airflows to mean velocities of less than 0.2 m/s (with turbulence intensities of 50%).

  9. Characteristics of tropical clouds using A-train information and their relationships with sea surface temperature

    NASA Astrophysics Data System (ADS)

    Behrangi, A.; Kubar, T. L.; Lambrigtsen, B.

    2011-12-01

    Different cloud types have substantially different characteristics in terms of radiative forcing and microphysical properties, both important components of Earth's climate system. Relationships between tropical cloud type characteristics and sea surface temperature (SST) using two-years of A-train data are investigated in this presentation. Stratocumulus clouds are the dominant cloud type over SSTs less than 301K, and in fact their fraction is strongly inversely related to SST. This is physically logical as both static stability and large-scale subsidence scale well with decreasing SST. At SSTs greater than 301K, high clouds are the most abundant cloud type. All cloud types (except nimbostratus and stratocumulus) become sharply more abundant for SSTs greater than a window between 299K and 300.5K, depending on cloud type. The fraction of high, deep convective, altostratus, and altocumulus clouds peak at an SST close to 303K, while cumulus clouds have a broad cloud fraction peak centered near 301K. Deep convective and other high cloud types decrease sharply above SSTs of 303K. While overall early morning clouds are 10% (4%) more frequent than afternoon clouds as indicated by CloudSat (lidar-radar), certain cloud types occur more frequently in the early afternoon, such as high clouds. We also show that a large amount of warm precipitation mainly from stratocumulus clouds is missed or significantly underestimated by the current suite of satellite-based global precipitation measuring sensors. However, the operational sensitivity of Cloudsat cloud profiling radar permits to capture significant fraction of light drizzle and warm rain.

  10. Nitric acid in polar stratospheric clouds - Similar temperature of nitric acid condensation and cloud formation

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F.; Snetsinger, Kenneth G.; Hamill, Patrick; Goodman, Jindra K.; Mccormick, M. Patrick

    1990-01-01

    As shown independently by two different techniques, nitric acid aerosols and polar stratospheric clouds (PSCs) both form below similar threshold temperatures. This supports the idea that the PSC particles involved in chlorine activation and ozone depletion in the winter polar stratosphere are composed of nitric acid. One technique used to show this is the inertial impaction of nitric acid aerosols using an Er-2 aircraft; the other method is remote sensing of PSCs by the Stratospheric Aerosol Measurement (SAM II) satellite borne optical sensor. Both procedures were in operation during the Arctic Airborne Stratospheric Expedition in 1989, and the Airborne Antarctic Ozone Experiment in 1987. Analysis of Arctic particles gathered in situ indicates the presence of nitric acid below a 'first appearance' temperature Tfa = 202 K. This is the same highest temperature at which PSCs are seen by the SAM II satellite. In comparison, a 'first appearance' temperature Tfa = 198 K as found for the Antarctic samples.

  11. Lidar cirrus cloud retrieval - methodology and applications

    NASA Astrophysics Data System (ADS)

    Larroza, Eliane; Keckhut, Philippe; Nakaema, Walter; Brogniez, Gérard; Dubuisson, Philippe; Pelon, Jacques; Duflot, Valentin; Marquestaut, Nicolas; Payen, Guillaume

    2016-04-01

    In the last decades numerical modeling has experimented sensitive improvements on accuracy and capability for climate predictions. In the same time it has demanded the reduction of uncertainties related with the respective input parameters. In this context, high altitude clouds (cirrus) have attracted special attention for their role as radiative forcing. Also such clouds are associated with the vertical transport of water vapor from the surface to upper troposphere/lower stratosphere (URLS) in form of ice crystals with variability of concentration and morphology. Still cirrus formation can occur spatially and temporally in great part of the globe due to horizontal motion of air masses and circulations. Determining accurately the physical properties of cirrus clouds still represents a challenge. Especially the so-called subvisible cirrus clouds (optical depth inferior to 0.03) are invisible for space-based passive observations. On the other hand, ground based active remote sensing as lidar can be used to suppress such deficiency. Lidar signal can provide spatial and temporal high resolution to characterize physically (height, geometric thickness, mean temperature) and optically (optical depth, extinction-to-scattering ratio or lidar ratio, depolarization ratio) the cirrus clouds. This report describes the evolution of the methodology initially adopted to retrieval systematically the lidar ratio and the subsequent application on case studies and climatology on the tropical sites of the globe - São Paulo, Brazil (23.33 S, 46.44 W) and OPAR observatory at Ille de La Réunion (21.07 S, 55.38 W). Also is attempting a synergy between different instrumentations and lidar measurements: a infrared radiometer to estimate the kind of ice crystals compounding the clouds; CALIPSO satellite observations and trajectory model (HYSPLIT) for tracking air masses potentially responsible for the horizontal displacement of cirrus. This last approach is particularly interesting to

  12. Near-surface temperature inversion during summer at Summit, Greenland, and its relation to MODIS-derived surface temperatures

    NASA Astrophysics Data System (ADS)

    Adolph, Alden C.; Albert, Mary R.; Hall, Dorothy K.

    2018-03-01

    As rapid warming of the Arctic occurs, it is imperative that climate indicators such as temperature be monitored over large areas to understand and predict the effects of climate changes. Temperatures are traditionally tracked using in situ 2 m air temperatures and can also be assessed using remote sensing techniques. Remote sensing is especially valuable over the Greenland Ice Sheet, where few ground-based air temperature measurements exist. Because of the presence of surface-based temperature inversions in ice-covered areas, differences between 2 m air temperature and the temperature of the actual snow surface (referred to as skin temperature) can be significant and are particularly relevant when considering validation and application of remote sensing temperature data. We present results from a field campaign extending from 8 June to 18 July 2015, near Summit Station in Greenland, to study surface temperature using the following measurements: skin temperature measured by an infrared (IR) sensor, 2 m air temperature measured by a National Oceanic and Atmospheric Administration (NOAA) meteorological station, and a Moderate Resolution Imaging Spectroradiometer (MODIS) surface temperature product. Our data indicate that 2 m air temperature is often significantly higher than snow skin temperature measured in situ, and this finding may account for apparent biases in previous studies of MODIS products that used 2 m air temperature for validation. This inversion is present during our study period when incoming solar radiation and wind speed are both low. As compared to our in situ IR skin temperature measurements, after additional cloud masking, the MOD/MYD11 Collection 6 surface temperature standard product has an RMSE of 1.0 °C and a mean bias of -0.4 °C, spanning a range of temperatures from -35 to -5 °C (RMSE = 1.6 °C and mean bias = -0.7 °C prior to cloud masking). For our study area and time series, MODIS surface temperature products agree with skin

  13. Hurricane Katrina as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: click on image for larger AIRS microwave image

    At 1:30 a.m. local time this morning, the remnants of (now Tropical Depression) Katrina were centered on the Mississippi-Tennessee border. This microwave image from the Atmospheric Infrared Sounder instrument on NASA's Aqua spacecrat shows that the area of most intense precipitation was concentrated to the north of the center of activity.

    The infrared image shows how the storms look through an AIRS Infrared window channel. Window channels measure the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds, so the purple color indicates the cool cloud tops of the storm. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Cooler areas are pushing to purple and warmer areas are pushing to red.

    The microwave image (figure 1) reveals where the heaviest precipitation in the hurricane is taking place. The blue areas within the storm show the location of this heavy precipitation. Blue areas outside of the storm where there are moderate or no clouds are where the cold (in the microwave sense) sea surface shines through.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard

  14. Can air temperatures be used to project influences of climate change on stream temperatures?

    NASA Astrophysics Data System (ADS)

    Arismendi, I.; Safeeq, M.; Dunham, J.; Johnson, S. L.

    2013-12-01

    The lack of available in situ stream temperature records at broad spatiotemporal scales have been recognized as a major limiting factor in the understanding of thermal behavior of stream and river systems. This has motivated the promotion of a wide variety of models that use surrogates for stream temperatures including a regression approach that uses air temperature as the predictor variable. We investigate the long-term performance of widely used linear and non-linear regression models between air and stream temperatures to project the latter in future climate scenarios. Specifically, we examine the temporal variability of the parameters that define each of these models in long-term stream and air temperature datasets representing relatively natural and highly human-influenced streams. We selected 25 sites with long-term records that monitored year-round daily measurements of stream temperature (daily mean) in the western United States (California, Oregon, Idaho, Washington, and Alaska). Surface air temperature data from each site was not available. Therefore, we calculated daily mean surface air temperature for each site in contiguous US from a 1/16-degree resolution gridded surface temperature data. Our findings highlight several limitations that are endemic to linear or nonlinear regressions that have been applied in many recent attempts to project future stream temperatures based on air temperature. Our results also show that applications over longer time periods, as well as extrapolation of model predictions to project future stream temperatures are unlikely to be reliable. Although we did not analyze a broad range of stream types at a continental or global extent, our analysis of stream temperatures within the set of streams considered herein was more than sufficient to illustrate a number of specific limitations associated with statistical projections of stream temperature based on air temperature. Radar plots of Nash-Sutcliffe efficiency (NSE) values for

  15. Visualizing Volcanic Clouds in the Atmosphere and Their Impact on Air Traffic.

    PubMed

    Gunther, Tobias; Schulze, Maik; Friederici, Anke; Theisel, Holger

    2016-01-01

    Volcanic eruptions are not only hazardous in the direct vicinity of a volcano, but they also affect the climate and air travel for great distances. This article sheds light on the Grímsvötn, Puyehue-Cordón Caulle, and Nabro eruptions in 2011. The authors study the agreement of the complementary satellite data, reconstruct sulfate aerosol and volcanic ash clouds, visualize endangered flight routes, minimize occlusion in particle trajectory visualizations, and focus on the main pathways of Nabro's sulfate aerosol into the stratosphere. The results here were developed for the 2014 IEEE Scientific Visualization Contest, which centers around the fusion of multiple satellite data modalities to reconstruct and assess the movement of volcanic ash and sulfate aerosol emissions. Using data from three volcanic eruptions that occurred in the span of approximately three weeks, the authors study the agreement of the complementary satellite data, reconstruct sulfate aerosol and volcanic ash clouds, visualize endangered flight routes, minimize occlusion in particle trajectory visualizations, and focus on the main pathways of sulfate aerosol into the stratosphere. This video provides animations of the reconstructed ash clouds. https://youtu.be/D9DvJ5AvZAs.

  16. Laser-based air data system for aircraft control using Raman and elastic backscatter for the measurement of temperature, density, pressure, moisture, and particle backscatter coefficient.

    PubMed

    Fraczek, Michael; Behrendt, Andreas; Schmitt, Nikolaus

    2012-01-10

    Flight safety in all weather conditions demands exact and reliable determination of flight-critical air parameters. Air speed, temperature, density, and pressure are essential for aircraft control. Conventional air data systems can be impacted by probe failure caused by mechanical damage from hail, volcanic ash, and icing. While optical air speed measurement methods have been discussed elsewhere, in this paper, a new concept for optically measuring the air temperature, density, pressure, moisture, and particle backscatter is presented, being independent on assumptions on the atmospheric state and eliminating the drawbacks of conventional aircraft probes by providing a different measurement principle. The concept is based on a laser emitting laser pulses into the atmosphere through a window and detecting the signals backscattered from a fixed region just outside the disturbed area of the fuselage flows. With four receiver channels, different spectral portions of the backscattered light are extracted. The measurement principle of air temperature and density is based on extracting two signals out of the rotational Raman (RR) backscatter signal of air molecules. For measuring the water vapor mixing ratio-and thus the density of the moist air-a water vapor Raman channel is included. The fourth channel serves to detect the elastic backscatter signal, which is essential for extending the measurements into clouds. This channel contributes to the detection of aerosols, which is interesting for developing a future volcanic ash warning system for aircraft. Detailed and realistic optimization and performance calculations have been performed based on the parameters of a first prototype of such a measurement system. The impact and correction of systematic error sources, such as solar background at daytime and elastic signal cross talk appearing in optically dense clouds, have been investigated. The results of the simulations show the high potential of the proposed system for

  17. Soil and air temperatures for different habitats in Mount Rainier National Park.

    Treesearch

    Sarah E. Greene; Mark Klopsch

    1985-01-01

    This paper reports air and soil temperature data from 10 sites in Mount Rainier National Park in Washington State for 2- to 5-year periods. Data provided are monthly summaries for day and night mean air temperatures, mean minimum and maximum air temperatures, absolute minimum and maximum air temperatures, range of air temperatures, mean soil temperature, and absolute...

  18. The effects of cloud inhomogeneities upon radiative fluxes, and the supply of a cloud truth validation dataset

    NASA Technical Reports Server (NTRS)

    Welch, Ronald M.

    1993-01-01

    A series of cloud and sea ice retrieval algorithms are being developed in support of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team objectives. These retrievals include the following: cloud fractional area, cloud optical thickness, cloud phase (water or ice), cloud particle effective radius, cloud top heights, cloud base height, cloud top temperature, cloud emissivity, cloud 3-D structure, cloud field scales of organization, sea ice fractional area, sea ice temperature, sea ice albedo, and sea surface temperature. Due to the problems of accurately retrieving cloud properties over bright surfaces, an advanced cloud classification method was developed which is based upon spectral and textural features and artificial intelligence classifiers.

  19. Influence of Meteorological Regimes on Cloud Microphysics Over Ross Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Glennon, C.; Wang, S. H.; Scott, R. C.; Bromwich, D. H.; Lubin, D.

    2017-12-01

    The Antarctic provides a sharp contrast in cloud microphysics from the high Arctic, due to orographic lifting and resulting strong vertical motions induced by mountain ranges and other varying terrain on several spatial scales. The Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE) deployed advanced cloud remote sensing equipment to Ross Island, Antarctica, from December 2015 until January 2016. This equipment included scanning and zenith radars operating in the Ka and X bands, a high spectral resolution lidar (HSRL), and a polarized micropulse lidar (MPL). A major AWARE objective is to provide state-of-the-art data for improving cloud microphysical parameterizations in climate models. To further this objective we have organized and classified the local Ross Island meteorology into distinct regimes using k-means clustering on ERA-Interim reanalysis data. We identify synoptic categories producing unique regimes of cloud cover and cloud microphysical properties over Ross Island. Each day of observations can then be associated with a specific meteorological regime, thus assisting modelers with identifying case studies. High-resolution (1 km) weather forecasts from the Antarctic Mesoscale Prediction System (AMPS) are sorted into these categories. AMPS-simulated anomalies of cloud fraction, near-surface air temperature, and vertical velocity at 500-mb are composited and compared with ground-based radar and lidar-derived cloud properties to identify mesoscale meteorological processes driving Antarctic cloud formation. Synoptic lows over the Ross and Amundsen Seas drive anomalously warm conditions at Ross Island by injecting marine air masses inland over the West Antarctic Ice Sheet (WAIS). This results in ice and mixed-phase orographic cloud systems arriving at Ross Island from the south to southeast along the Transantarctic Mountains. In contrast, blocking over the Amundsen Sea region brings classical liquid-dominated mixed-phase and

  20. Effect of Initial Mixture Temperature on Flame Speed of Methane-Air, Propane-Air, and Ethylene-Air Mixtures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L

    1952-01-01

    Flame speeds based on the outer edge of the shadow cast by the laminar Bunsen cone were determined as functions of composition for methane-air mixtures at initial mixture temperatures ranging from -132 degrees to 342 degrees c and for propane-air and ethylene-air mixtures at initial mixture temperatures ranging from -73 degrees to 344 degrees c. The data showed that maximum flame speed increased with temperature at an increasing rate. The percentage change in flame speed with change in initial temperature for the three fuels followed the decreasing order, methane, propane, and ethylene. Empirical equations were determined for maximum flame speed as a function of initial temperature over the temperature range covered for each fuel. The observed effect of temperature on flame speed for each of the fuels was reasonably well predicted by either the thermal theory as presented by Semenov or the square-root law of Tanford and Pease.

  1. Crowdsourcing urban air temperatures through smartphone battery temperatures in São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Droste, Arjan; Pape, Jan-Jaap; Overeem, Aart; Leijnse, Hidde; Steeneveld, Gert-Jan; Van Delden, Aarnout; Uijlenhoet, Remko

    2017-04-01

    Crowdsourcing as a method to obtain and apply vast datasets is rapidly becoming prominent in meteorology, especially for urban areas where traditional measurements are scarce. Earlier studies showed that smartphone battery temperature readings allow for estimating the daily and city-wide air temperature via a straightforward heat transfer model. This study advances these model estimations by studying spatially and temporally smaller scales. The accuracy of temperature retrievals as a function of the number of battery readings is also studied. An extensive dataset of over 10 million battery temperature readings is available for São Paulo (Brazil), for estimating hourly and daily air temperatures. The air temperature estimates are validated with air temperature measurements from a WMO station, an Urban Fluxnet site, and crowdsourced data from 7 hobby meteorologists' private weather stations. On a daily basis temperature estimates are good, and we show they improve by optimizing model parameters for neighbourhood scales as categorized in Local Climate Zones. Temperature differences between Local Climate Zones can be distinguished from smartphone battery temperatures. When validating the model for hourly temperature estimates, initial results are poor, but are vastly improved by using a diurnally varying parameter function in the heat transfer model rather than one fixed value for the entire day. The obtained results show the potential of large crowdsourced datasets in meteorological studies, and the value of smartphones as a measuring platform when routine observations are lacking.

  2. AIRS Version 6 Products and Data Services at NASA GES DISC

    NASA Astrophysics Data System (ADS)

    Ding, F.; Savtchenko, A. K.; Hearty, T. J.; Theobald, M. L.; Vollmer, B.; Esfandiari, E.

    2013-12-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the home of processing, archiving, and distribution services for data from the Atmospheric Infrared Sounder (AIRS) mission. The AIRS mission is entering its 11th year of global observations of the atmospheric state, including temperature and humidity profiles, outgoing longwave radiation, cloud properties, and trace gases. The GES DISC, in collaboration with the AIRS Project, released data from the Version 6 algorithm in early 2013. The new algorithm represents a significant improvement over previous versions in terms of greater stability, yield, and quality of products. Among the most substantial advances are: improved soundings of Tropospheric and Sea Surface Temperatures; larger improvements with increasing cloud cover; improved retrievals of surface spectral emissivity; near-complete removal of spurious temperature bias trends seen in earlier versions; substantially improved retrieval yield (i.e., number of soundings accepted for output) for climate studies; AIRS-Only retrievals with comparable accuracy to AIRS+AMSU (Advanced Microwave Sounding Unit) retrievals; and more realistic hemispheric seasonal variability and global distribution of carbon monoxide. The GES DISC is working to bring the distribution services up-to-date with these new developments. Our focus is on popular services, like variable subsetting and quality screening, which are impacted by the new elements in Version 6. Other developments in visualization services, such as Giovanni, Near-Real Time imagery, and a granule-map viewer, are progressing along with the introduction of the new data; each service presents its own challenge. This presentation will demonstrate the most significant improvements in Version 6 AIRS products, such as newly added variables (higher resolution outgoing longwave radiation, new cloud property products, etc.), the new quality control schema, and improved retrieval yields. We will also

  3. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature measurement. 90.309 Section 90.309 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...

  4. Estimating ocean-air heat fluxes during cold air outbreaks by satellite

    NASA Technical Reports Server (NTRS)

    Chou, S. H.; Atlas, D.

    1981-01-01

    Nomograms of mean column heating due to surface sensible and latent heat fluxes were developed. Mean sensible heating of the cloud free region is related to the cloud free path (CFP, the distance from the shore to the first cloud formation) and the difference between land air and sea surface temperatures, theta sub 1 and theta sub 0, respectively. Mean latent heating is related to the CFP and the difference between land air and sea surface humidities q sub 1 and q sub 0 respectively. Results are also applicable to any path within the cloud free region. Corresponding heat fluxes may be obtained by multiplying the mean heating by the mean wind speed in the boundary layer. The sensible heating estimated by the present method is found to be in good agreement with that computed from the bulk transfer formula. The sensitivity of the solutions to the variations in the initial coastal soundings and large scale subsidence is also investigated. The results are not sensitive to divergence but are affected by the initial lapse rate of potential temperature; the greater the stability, the smaller the heating, other things being equal. Unless one knows the lapse rate at the shore, this requires another independent measurement. For this purpose the downwind slope of the square of the boundary layer height is used, the mean value of which is also directly proportional to the mean sensible heating. The height of the boundary layer should be measurable by future spaceborn lidar systems.

  5. Low temperature air with high IAQ for dry climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scofield, C.M.; Des Champs, N.H.

    1995-01-01

    This article describes how low temperature supply air and air-to-air heat exchangers can furnish 100% outdoor air with reduced peak energy demands. The use of low temperature supply air systems in arid climates greatly simplifies the air-conditioning design. Risks associated with moisture migration and sweating of duct and terminal equipment are reduced. Insulation and vapor barrier design requirements are not nearly as critical as they are in the humid, ambient conditions that exist in the eastern United States. The introduction of outdoor air to meet ASHRAE Standard 62-1989 becomes far less taxing on the mechanical cooling equipment because of themore » lower enthalpy levels of the dry western climate. Energy costs to assure indoor air quality (IAQ) are lower than for more tropical climates. In arid regions, maintaining acceptable indoor relative humidity (RH) levels becomes a major IAQ concern. For the western United States, coupling an air-to-air heat exchanger to direct (adiabatic) evaporative coolers can greatly reduce low temperature supply air refrigeration energy requirements and winter humidification costs while ensuring proper ventilation.« less

  6. Thermal structure of the Venus atmosphere in the middle cloud layer

    NASA Technical Reports Server (NTRS)

    Linkin, V. M.; Seiff, A.; Ragent, B.; Young, R. E.; Elson, L. S.; Preston, A.

    1986-01-01

    Thermal structure measurements obtained by the two VEGA balloons show the Venus middle cloud layer to be generally adiabatic. Temperatures measured by the two balloons at locations roughly symmetric about the equator differed by about 6.5 kelvins at a given pressure. The VEGA-2 temperatures were about 2.5 kelvins cooler and those of VEGA-1 about 4 kelvins warmer than temperatures measured by the Pioneer Venus Large Probe at these levels. Data taken by the VEGA-2 lander as it passed through the middle cloud agreed with those of the VEGA-2 balloon. Study of individual frames of the balloon data suggests the presence of multiple discrete air masses that are internally adiabatic but lie on slightly different adiabats. These adiabats, for a given balloon, can differ in temperature by as much as 1 kelvin at a given pressure.

  7. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited by...

  8. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited by...

  9. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited by...

  10. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited by...

  11. Multimodel evaluation of cloud phase transition using satellite and reanalysis data

    NASA Astrophysics Data System (ADS)

    Cesana, G.; Waliser, D. E.; Jiang, X.; Li, J.-L. F.

    2015-08-01

    We take advantage of climate simulations from two multimodel experiments to characterize and evaluate the cloud phase partitioning in 16 general circulation models (GCMs), specifically the vertical structure of the transition between liquid and ice in clouds. We base our analysis on the ratio of ice condensates to the total condensates (phase ratio, PR). Its transition at 90% (PR90) and its links with other relevant variables are evaluated using the GCM-Oriented Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation Cloud Product climatology, reanalysis data, and other satellite observations. In 13 of 16 models, the PR90 transition height occurs too low (6 km to 8.4 km) and at temperatures too warm (-13.9°C to -32.5°C) compared to observations (8.6 km, -33.7°C); features consistent with a lack of supercooled liquid with respect to ice above 6.5 km. However, this bias would be slightly reduced by using the lidar simulator. In convective regimes (more humid air and precipitation), the observed cloud phase transition occurs at a warmer temperature than for subsidence regimes (less humid air and precipitation). Only few models manage to roughly replicate the observed correlations with humidity (5/16), vertical velocity (5/16), and precipitation (4/16); 3/16 perform well for all these parameters (MPI-ESM, NCAR-CAM5, and NCHU). Using an observation-based Clausius-Clapeyron phase diagram, we illustrate that the Bergeron-Findeisen process is a necessary condition for models to represent the observed features. Finally, the best models are those that include more complex microphysics.

  12. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C. ...

  13. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C. ...

  14. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C. ...

  15. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C. ...

  16. Satellite remote sensing of particulate matter air quality: the cloud-cover problem.

    PubMed

    Christopher, Sundar A; Gupta, Pawan

    2010-05-01

    Satellite assessments of particulate matter (PM) air quality that use solar reflectance methods are dependent on availability of clear sky; in other words, mass concentrations of PM less than 2.5 microm in aerodynamic diameter (PM2.5) cannot be estimated from satellite observations under cloudy conditions or bright surfaces such as snow/ice. Whereas most ground monitors measure PM2.5 concentrations on an hourly basis regardless of cloud conditions, space-borne sensors can only estimate daytime PM2.5 in cloud-free conditions, therefore introducing a bias. In this study, an estimate of this clear-sky bias is provided from monthly to yearly time scales over the continental United States. One year of the Moderate Resolution Imaging Spectroradiometer (MODIS) 550-nm aerosol optical depth (AOD) retrievals from Terra and Aqua satellites, collocated with 371 U.S. Environmental Protection Agency (EPA) ground monitors, have been analyzed. The results indicate that the mean differences between PM2.5 reported by ground monitors and PM2.5 calculated from ground monitors during the satellite overpass times during cloud-free conditions are less than +/- 2.5 microg m(-3), although this value varies by season and location. The mean differences are not significant as calculated by t tests (alpha = 0.05). On the basis of this analysis, it is concluded that for the continental United States, cloud cover is not a major problem for inferring monthly to yearly PM2.5 from space-borne sensors.

  17. Dehydration of the Upper Troposphere and Lower Stratosphere by Subvisible Cirrus Clouds Near the Tropical Tropopause

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.; Toon, Owen B.; Pfister, Leonhard; Selkirk, Henry B.

    1996-01-01

    The extreme dryness of the lower stratosphere is believed to be caused by freeze-drying of air as it enters the stratosphere through the cold tropical tropopause. Previous investigations have been focused on dehydration occurring at the tops of deep convective cloud systems, However, recent observations of a ubiquitous stratiform cirrus cloud layer near the tropical tropopause suggest the possibility of dehydration as air is slowly lifted by large-scale motions, In this study, we have evaluated this possibility using a detailed ice cloud model. Simulations of ice cloud formation in the temperature minima of gravity waves (wave periods of 1 - 2 hours) indicate that large numbers of ice crystals will likely form due to the low temperatures and rapid cooling. As a result, the crystals do not grow larger than about 10 microns, fallspeeds are no greater than a few cm/s, and little or no precipitation or dehydration occurs. However, ice cloud's formed by large-scale vertical motions (with lifetimes of a day or more) should have,fever crystals and more time for crystal sedimentation to occur, resulting in water vapor depletions as large as 1 ppmv near the tropopause. We suggest that gradual lifting near the tropical tropopause, accompanied by formation of thin cirrus, may account for the dehydration.

  18. Simulations of the effects of water vapor, cloud liquid water, and ice on AMSU moisture channel brightness temperatures

    NASA Technical Reports Server (NTRS)

    Muller, Bradley M.; Fuelberg, Henry E.; Xiang, Xuwu

    1994-01-01

    Radiative transfer simulations are performed to determine how water vapor and nonprecipitating cloud liquid water and ice particles within typical midlatitude atmospheres affect brightness temperatures T(sub B)'s of moisture sounding channels used in the Advanced Microwave Sounding Unit (AMSU) and AMSU-like instruments. The purpose is to promote a general understanding of passive top-of-atmosphere T(sub B)'s for window frequencies at 23.8, 89.0, and 157.0 GHz, and water vapor frequencies at 176.31, 180.31, and 182.31 GHz by documenting specific examples. This is accomplished through detailed analyses of T(sub B)'s for idealized atmospheres, mostly representing temperate conditions over land. Cloud effects are considered in terms of five basic properties: droplet size distribution, phase, liquid or ice water content, altitude, and thickness. Effects on T(sub B) of changing surface emissivity also are addressed. The brightness temperature contribution functions are presented as an aid to physically interpreting AMSU T(sub B)'s. Both liquid and ice clouds impact the T(sub B)'s in a variety of ways. The T(sub B)'s at 23.8 and 89 GHz are more strongly affected by altostratus liquid clouds than by cirrus clouds for equivalent water paths. In contrast, channels near 157 and 183 GHz are more strongly affected by ice clouds. Higher clouds have a greater impact on 157- and 183-GHz T(sub B)'s than do lower clouds. Clouds depress T(sub B)'s of the higher-frequency channels by suppressing, but not necessarily obscuring, radiance contributions from below. Thus, T(sub B)'s are less closely associated with cloud-top temperatures than are IR radiometric temperatures. Water vapor alone accounts for up to 89% of the total attenuation by a midtropospheric liquid cloud for channels near 183 GHz. The Rayleigh approximation is found to be adequate for typical droplet size distributions; however, Mie scattering effects from liquid droplets become important for droplet size distribution

  19. Looking Down Through the Clouds – Optical Attenuation through Real-Time Clouds

    NASA Astrophysics Data System (ADS)

    Burley, J.; Lazarewicz, A.; Dean, D.; Heath, N.

    Detecting and identifying nuclear explosions in the atmosphere and on the surface of the Earth is critical for the Air Force Technical Applications Center (AFTAC) treaty monitoring mission. Optical signals, from surface or atmospheric nuclear explosions detected by satellite sensors, are attenuated by the atmosphere and clouds. Clouds present a particularly complex challenge as they cover up to seventy percent of the earth's surface. Moreover, their highly variable and diverse nature requires physics-based modeling. Determining the attenuation for each optical ray-path is uniquely dependent on the source geolocation, the specific optical transmission characteristics along that ray path, and sensor detection capabilities. This research details a collaborative AFTAC and AFIT effort to fuse worldwide weather data, from a variety of sources, to provide near-real-time profiles of atmospheric and cloud conditions and the resulting radiative transfer analysis for virtually any wavelength(s) of interest from source to satellite. AFIT has developed a means to model global clouds using the U.S. Air Force’s World Wide Merged Cloud Analysis (WWMCA) cloud data in a new toolset that enables radiance calculations through clouds from UV to RF wavelengths.

  20. Air pollution and clouds in southern China: preliminary results from the observations in spring 2009 at Mt. Heng

    NASA Astrophysics Data System (ADS)

    Wang, T.; Xue, L.; Gao, X.; Nie, W.; Wang, X.; Wang, Y.; Sun, M.; Ding, A.; Fan, S.; Zhang, Q.; Wang, W.

    2009-12-01

    Aerosols and clouds play a key role in climate change, and the interaction between them also affect the chemical transformation and removal of air pollutants. As a part of China's National Basic Research Project (National '973 Project) on acid deposition, trace gases, aerosols, and cloud water composition were measured in March-May 2009 at the summit of Mount Heng in southern China (Long: 112° 42’ E, Lat: 27 ° 18’ N, 1269 m a.s.l.). The preliminary results from this study are presented. Frequent clouds/fogs occurred at this site. Despite its southern location, the impact of a dust storm from northern China was observed in late April during which the PM10 concentration exceeded 800 ug/m3. Moderate levels of pollution were observed. Formation and growth of new particles frequently occurred on clear days as indicated from the measurement of particle number and size distributions. Cloud water was mostly acidic with a mean acidity of 3.75 (range: 2.51-6.91). The chemical data from this study are compared with those from Mt Tai to show the difference in southern and northern China. The sources of air pollution at this mountain site and the implications of the results will be discussed.

  1. Relationships Between Tropical Deep Convection, Tropospheric Mean Temperature and Cloud-Induced Radiative Fluxes on Intraseasonal Time Scales

    NASA Technical Reports Server (NTRS)

    Ramey, Holly S.; Robertson, Franklin R.

    2009-01-01

    Intraseasonal variability of deep convection represents a fundamental mode of variability in the organization of tropical convection. While most studies of intraseasonal oscillations (ISOs) have focused on the spatial propagation and dynamics of convectively coupled circulations, we examine the projection of ISOs on the tropically-averaged temperature and energy budget. The area of interest is the global oceans between 20oN/S. Our analysis then focuses on these questions: (i) How is tropospheric temperature related to tropical deep convection and the associated ice cloud fractional amount (ICF) and ice water path (IWP)? (ii) What is the source of moisture sustaining the convection and what role does deep convection play in mediating the PBL - free atmospheric temperature equilibration? (iii) What affect do convectively generated upper-tropospheric clouds have on the TOA radiation budget? Our methodology is similar to that of Spencer et al., (2007) with some modifications and some additional diagnostics of both clouds and boundary layer thermodynamics. A composite ISO time series of cloud, precipitation and radiation quantities built from nearly 40 events during a six-year period is referenced to the atmospheric temperature signal. The increase of convective precipitation cannot be sustained by evaporation within the domain, implying strong moisture transports into the tropical ocean area. While there is a decrease in net TOA radiation that develops after the peak in deep convective rainfall, there seems little evidence that an "Infrared Iris"- like mechanism is dominant. Rather, the cloud-induced OLR increase seems largely produced by weakened convection with warmer cloud tops. Tropical ISO events offer an accessible target for studying ISOs not just in terms of propagation mechanisms, but on their global signals of heat, moisture and radiative flux feedback processes.

  2. Relationships Between Tropical Deep Convection, Tropospheric Mean Temperature and Cloud-Induced Radiative Fluxes on Intraseasonal Time Scales

    NASA Technical Reports Server (NTRS)

    Ramey, Holly S.; Robertson, Franklin R.

    2010-01-01

    Intraseasonal variability of deep convection represents a fundamental mode of variability in the organization of tropical convection. While most studies of intraseasonal oscillations (ISOs) have focused on the spatial propagation and dynamics of convectively coupled circulations, we examine the projection of ISOs on the tropically-averaged temperature and energy budget. The area of interest is the global oceans between 20degN/S. Our analysis then focuses on these questions: (i) How is tropospheric temperature related to tropical deep convection and the associated ice cloud fractional amount (ICF) and ice water path (IWP)? (ii) What is the source of moisture sustaining the convection and what role does deep convection play in mediating the PBL - free atmospheric temperature equilibration? (iii) What affect do convectively generated upper-tropospheric clouds have on the TOA radiation budget? Our methodology is similar to that of Spencer et al., (2007) with some modifications and some additional diagnostics of both clouds and boundary layer thermodynamics. A composite ISO time series of cloud, precipitation and radiation quantities built from nearly 40 events during a six-year period is referenced to the atmospheric temperature signal. The increase of convective precipitation cannot be sustained by evaporation within the domain, implying strong moisture transports into the tropical ocean area. While there is a decrease in net TOA radiation that develops after the peak in deep convective rainfall, there seems little evidence that an "Infrared Iris"- like mechanism is dominant. Rather, the cloud-induced OLR increase seems largely produced by weakened convection with warmer cloud tops. Tropical ISO events offer an accessible target for studying ISOs not just in terms of propagation mechanisms, but on their global signals of heat, moisture and radiative flux feedback processes.

  3. Possible Economies in Air-Conditioning by Accepting Temperature Swings.

    ERIC Educational Resources Information Center

    Loudon, A. G.; Petherbridge, P.

    Public building air conditioning systems, which use constant and varying heat and cooling loads, are compared and investigated. Experiments indicated that constant temperature controls based on outside air temperature alone were inefficient. Ventilating a building with outside air and the methods of doing so are cited as being the most economical…

  4. On Cirrus Cloud Fields Measured by the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Kahn, Brian H.; Eldering, Annmarie; Liou, Kuo Nan

    2006-01-01

    A viewgraph presentation showing trends in clouds measured by the Atmospheric Infrared Sounder (AIRS) is given. The topics include: 1) Trends in clouds measured by AIRS: Are they reasonable? 2) Single and multilayered cloud trends; 3) Retrievals of thin cirrus D(sub e) and tau: Single-layered cloud only; 4) Relationships between ECF, D(sub e), tau, and T(sub CLD); and 5) MODIS vs. AIRS retrievals.

  5. Comparison of monthly nighttime cloud fraction products from MODIS and AIRS and ground-based camera over Manila Observatory (14.64N, 121.07E)

    NASA Astrophysics Data System (ADS)

    Gacal, G. F. B.; Lagrosas, N.

    2017-12-01

    Cloud detection nowadays is primarily achieved by the utilization of various sensors aboard satellites. These include MODIS Aqua, MODIS Terra, and AIRS with products that include nighttime cloud fraction. Ground-based instruments are, however, only secondary to these satellites when it comes to cloud detection. Nonetheless, these ground-based instruments (e.g., LIDARs, ceilometers, and sky-cameras) offer significant datasets about a particular region's cloud cover values. For nighttime operations of cloud detection instruments, satellite-based instruments are more reliably and prominently used than ground-based ones. Therefore if a ground-based instrument for nighttime operations is operated, it ought to produce reliable scientific datasets. The objective of this study is to do a comparison between the results of a nighttime ground-based instrument (sky-camera) and that of MODIS Aqua and MODIS Terra. A Canon Powershot A2300 is placed ontop of Manila Observatory (14.64N, 121.07E) and is configured to take images of the night sky at 5min intervals. To detect pixels with clouds, the pictures are converted to grayscale format. Thresholding technique is used to screen pixels with cloud and pixels without clouds. If the pixel value is greater than 17, it is considered as a cloud; otherwise, a noncloud (Gacal et al., 2016). This algorithm is applied to the data gathered from Oct 2015 to Oct 2016. A scatter plot between satellite cloud fraction in the area covering the area 14.2877N, 120.9869E, 14.7711N and 121.4539E and ground cloud cover is graphed to find the monthly correlation. During wet season (June - November), the satellite nighttime cloud fraction vs ground measured cloud cover produce an acceptable R2 (Aqua= 0.74, Terra= 0.71, AIRS= 0.76). However, during dry season, poor R2 values are obtained (AIRS= 0.39, Aqua & Terra = 0.01). The high correlation during wet season can be attributed to a high probability that the camera and satellite see the same clouds

  6. Microwave measurements of temperature profiles, integrated water vapour, and liquid water path at Thule Air Base, Greenland.

    NASA Astrophysics Data System (ADS)

    Pace, Giandomenico; Di Iorio, Tatiana; di Sarra, Alcide; Iaccarino, Antonio; Meloni, Daniela; Mevi, Gabriele; Muscari, Giovanni; Cacciani, Marco

    2017-04-01

    A RPG Humidity And Temperature PROfiler (HATPRO-G2 ) radiometer was installed at Thule Air Base (76.5° N, 68.8° W), Greenland, in June 2016 in the framework of the Study of the water VApour in the polar AtmosPhere (SVAAP) project. The Danish Meteorological Institute started measurements of atmospheric properties at Thule Air Base in early '90s. The Thule High Arctic Atmospheric Observatory (THAAO) has grown in size and observing capabilities during the last three decades through the international effort of United States (NCAR and University of Alaska Fairbanks) and Italian (ENEA, INGV, University of Roma and Firenze) institutions (http://www.thuleatmos-it.it). Within this context, the intensive field campaign of the SVAAP project was aimed at the investigation of the surface radiation budget and took place from 5 to 28 July, 2016. After the summer campaign the HATPRO has continued to operate in order to monitor the annual variability of the temperature profile and integrated water vapour as well as the presence and characteristics of liquid clouds in the Artic environment. The combined use of the HATPRO together with other automatic instruments, such as a new microwave spectrometer (the water Vapour Emission Spectrometer for Polar Atmosphere VESPA-22), upward- and downward-looking pyranometers and pyrgeometers, a zenith-looking pyrometer operating in the 9.6-11.5 µm spectral range, an all sky camera, and a meteorological station, allows to investigate the clouds' physical and optical properties, as well as their impact on the surface radiation budget. This study will present and discuss the first few months of HATPRO observations; the effectiveness of the statistical retrieval used to derive the physical parameters from the HATPRO brightness temperatures will also be investigated through the comparison of the temperature and humidity profiles, and integrated water vapour, with data from radiosondes launched during the summer campaign and in winter time.

  7. Sensitivity of Great Lakes Ice Cover to Air Temperature

    NASA Astrophysics Data System (ADS)

    Austin, J. A.; Titze, D.

    2016-12-01

    Ice cover is shown to exhibit a strong linear sensitivity to air temperature. Upwards of 70% of ice cover variability on all of the Great Lakes can be explained in terms of air temperature, alone, and nearly 90% of ice cover variability can be explained in some lakes. Ice cover sensitivity to air temperature is high, and a difference in seasonally-averaged (Dec-May) air temperature on the order of 1°C to 2°C can be the difference between a low-ice year and a moderate- to high- ice year. The total amount of seasonal ice cover is most influenced by air temperatures during the meteorological winter, contemporaneous with the time of ice formation. Air temperature conditions during the pre-winter conditioning period and during the spring melting period were found to have less of an impact on seasonal ice cover. This is likely due to the fact that there is a negative feedback mechanism when heat loss goes toward cooling the lake, but a positive feedback mechanism when heat loss goes toward ice formation. Ice cover sensitivity relationships were compared between shallow coastal regions of the Great Lakes and similarly shallow smaller, inland lakes. It was found that the sensitivity to air temperature is similar between these coastal regions and smaller lakes, but that the absolute amount of ice that forms varies significantly between small lakes and the Great Lakes, and amongst the Great Lakes themselves. The Lake Superior application of the ROMS three-dimensional hydrodynamic numerical model verifies a deterministic linear relationship between air temperature and ice cover, which is also strongest around the period of ice formation. When the Lake Superior bathymetry is experimentally adjusted by a constant vertical multiplier, average lake depth is shown to have a nonlinear relationship with seasonal ice cover, and this nonlinearity may be associated with a nonlinear increase in the lake-wide volume of the surface mixed layer.

  8. Low-Cloud Feedbacks from Cloud-Controlling Factors: A Review

    DOE PAGES

    Klein, Stephen A.; Hall, Alex; Norris, Joel R.; ...

    2017-10-24

    Here, the response to warming of tropical low-level clouds including both marine stratocumulus and trade cumulus is a major source of uncertainty in projections of future climate. Climate model simulations of the response vary widely, reflecting the difficulty the models have in simulating these clouds. These inadequacies have led to alternative approaches to predict low-cloud feedbacks. Here, we review an observational approach that relies on the assumption that observed relationships between low clouds and the “cloud-controlling factors” of the large-scale environment are invariant across time-scales. With this assumption, and given predictions of how the cloud-controlling factors change with climate warming,more » one can predict low-cloud feedbacks without using any model simulation of low clouds. We discuss both fundamental and implementation issues with this approach and suggest steps that could reduce uncertainty in the predicted low-cloud feedback. Recent studies using this approach predict that the tropical low-cloud feedback is positive mainly due to the observation that reflection of solar radiation by low clouds decreases as temperature increases, holding all other cloud-controlling factors fixed. The positive feedback from temperature is partially offset by a negative feedback from the tendency for the inversion strength to increase in a warming world, with other cloud-controlling factors playing a smaller role. A consensus estimate from these studies for the contribution of tropical low clouds to the global mean cloud feedback is 0.25 ± 0.18 W m –2 K –1 (90% confidence interval), suggesting it is very unlikely that tropical low clouds reduce total global cloud feedback. Because the prediction of positive tropical low-cloud feedback with this approach is consistent with independent evidence from low-cloud feedback studies using high-resolution cloud models, progress is being made in reducing this key climate uncertainty.« less

  9. Low-Cloud Feedbacks from Cloud-Controlling Factors: A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Stephen A.; Hall, Alex; Norris, Joel R.

    Here, the response to warming of tropical low-level clouds including both marine stratocumulus and trade cumulus is a major source of uncertainty in projections of future climate. Climate model simulations of the response vary widely, reflecting the difficulty the models have in simulating these clouds. These inadequacies have led to alternative approaches to predict low-cloud feedbacks. Here, we review an observational approach that relies on the assumption that observed relationships between low clouds and the “cloud-controlling factors” of the large-scale environment are invariant across time-scales. With this assumption, and given predictions of how the cloud-controlling factors change with climate warming,more » one can predict low-cloud feedbacks without using any model simulation of low clouds. We discuss both fundamental and implementation issues with this approach and suggest steps that could reduce uncertainty in the predicted low-cloud feedback. Recent studies using this approach predict that the tropical low-cloud feedback is positive mainly due to the observation that reflection of solar radiation by low clouds decreases as temperature increases, holding all other cloud-controlling factors fixed. The positive feedback from temperature is partially offset by a negative feedback from the tendency for the inversion strength to increase in a warming world, with other cloud-controlling factors playing a smaller role. A consensus estimate from these studies for the contribution of tropical low clouds to the global mean cloud feedback is 0.25 ± 0.18 W m –2 K –1 (90% confidence interval), suggesting it is very unlikely that tropical low clouds reduce total global cloud feedback. Because the prediction of positive tropical low-cloud feedback with this approach is consistent with independent evidence from low-cloud feedback studies using high-resolution cloud models, progress is being made in reducing this key climate uncertainty.« less

  10. Microwave noise temperature and attenuation of clouds - Statistics of these effects at various sites in the United States, Alaska, and Hawaii

    NASA Technical Reports Server (NTRS)

    Slobin, S. D.

    1982-01-01

    The microwave attenuation and noise temperature effects of clouds can result in serious degradation of telecommunications link performance, especially for low-noise systems presently used in deep-space communications. Although cloud effects are generally less than rain effects, the frequent presence of clouds will cause some amount of link degradation a large portion of the time. This paper presents a general review of cloud types and their water particle densities, attenuation and noise temperature calculations, and basic link signal-to-noise ratio calculations. Tabular results of calculations for 12 different cloud models are presented for frequencies in the range 10-50 GHz. Curves of average-year attenuation and noise temperature statistics at frequencies ranging from 10 to 90 GHz, calculated from actual surface and radiosonde observations, are given for 15 climatologically distinct regions in the contiguous United States, Alaska, and Hawaii. Nonuniform sky cover is considered in these calculations.

  11. Usefulness of AIRS-Derived OLR, Temperature, Water Vapor and Cloudiness Anomaly Trends for GCM Validation

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula I.; Susskind, Joel; Iredell, Lena F.

    2010-01-01

    climate variability] at the common 1x1 degree GCM grid-scale by creating spatial anomaly "trends" based on the first 7+ years of AIRS Version 5 Leve13 data. We suggest that modelers should compare these with their (coupled) GCM's performance covering the same period. We evaluate temporal variability and interrelations of climatic anomalies on global to regional e.g., deep Tropical Hovmoller diagrams, El-Nino-related variability scales, and show the effects of El-Nino-La Nina activity on tropical anomalies and trends of water vapor cloud cover and OLR. For GCMs to be trusted highly for long-term climate change predictions, they should be able to reproduce findings similar to these. In summary, the AIRS-based climate variability analyses provide high quality, informative and physically plausible interrelationships among OLR, temperature, humidity and cloud cover both on the spatial and temporal scales. GCM validations can use these results even directly, e. g., by creating 1x1 degree trendmaps for the same period in coupled climate simulations.

  12. Cloud cameras at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Winnick, Michael G.

    2010-06-01

    This thesis presents the results of measurements made by infrared cloud cameras installed at the Pierre Auger Observatory in Argentina. These cameras were used to record cloud conditions during operation of the observatory's fluorescence detectors. As cloud may affect the measurement of fluorescence from cosmic ray extensive air showers, the cloud cameras provide a record of which measurements have been interfered with by cloud. Several image processing algorithms were developed, along with a methodology for the detection of cloud within infrared images taken by the cloud cameras. A graphical user interface (GUI) was developed to expediate this, as a large number of images need to be checked for cloud. A cross-check between images recorded by three of the observatory's cloud cameras is presented, along with a comparison with independent cloud measurements made by LIDAR. Despite the cloud cameras and LIDAR observing different areas of the sky, a good agreement is observed in the measured cloud fraction between the two instruments, particularly on very clear and overcast nights. Cloud information recorded by the cloud cameras, with cloud height information measured by the LIDAR, was used to identify those extensive air showers that were obscured by cloud. These events were used to study the effectiveness of standard quality cuts at removing cloud afflicted events. Of all of the standard quality cuts studied in this thesis, the LIDAR cloud fraction cut was the most effective at preferentially removing cloud obscured events. A 'cloudy pixel' veto is also presented, whereby cloud obscured measurements are excluded during the standard hybrid analysis, and new extensive air shower reconstructed parameters determined. The application of such a veto would provide a slight increase to the number of events available for higher level analysis.

  13. Sahara Dust Cloud

    NASA Image and Video Library

    2005-07-15

    In July of 2005, a continent-sized cloud of hot air and dust originating from the Sahara Desert crossed the Atlantic Ocean and headed towards Florida and the Caribbean, captured by the Atmospheric Infrared Sounder onboard NASA Aqua satellite. A Saharan Air Layer, or SAL, forms when dry air and dust rise from Africa's west coast and ride the trade winds above the Atlantic Ocean. These dust clouds are not uncommon, especially during the months of July and August. They start when weather patterns called tropical waves pick up dust from the desert in North Africa, carry it a couple of miles into the atmosphere and drift westward. http://photojournal.jpl.nasa.gov/catalog/PIA00448

  14. Development of methods for inferring cloud thickness and cloud-base height from satellite radiance data

    NASA Technical Reports Server (NTRS)

    Smith, William L., Jr.; Minnis, Patrick; Alvarez, Joseph M.; Uttal, Taneil; Intrieri, Janet M.; Ackerman, Thomas P.; Clothiaux, Eugene

    1993-01-01

    Cloud-top height is a major factor determining the outgoing longwave flux at the top of the atmosphere. The downwelling radiation from the cloud strongly affects the cooling rate within the atmosphere and the longwave radiation incident at the surface. Thus, determination of cloud-base temperature is important for proper calculation of fluxes below the cloud. Cloud-base altitude is also an important factor in aircraft operations. Cloud-top height or temperature can be derived in a straightforward manner using satellite-based infrared data. Cloud-base temperature, however, is not observable from the satellite, but is related to the height, phase, and optical depth of the cloud in addition to other variables. This study uses surface and satellite data taken during the First ISCCP Regional Experiment (FIRE) Phase-2 Intensive Field Observation (IFO) period (13 Nov. - 7 Dec. 1991, to improve techniques for deriving cloud-base height from conventional satellite data.

  15. Detection of Ice Polar Stratospheric Clouds from Assimilation of Atmospheric Infrared Sounder Data

    NASA Technical Reports Server (NTRS)

    Stajner, Ivanka; Benson, Craig; Liu, Hui-Chun; Pawson, Steven; Chang, Ping; Riishojgaard, Lars Peter

    2006-01-01

    A novel technique is presented for detection of ice polar stratospheric clouds (PSCs) that form at extremely low temperatures in the lower polar stratosphere during winter. Temperature is a major factor in determining abundance of PSCs, which in turn provide surfaces for heterogeneous chemical reactions leading to ozone loss and radiative cooling. The technique infers the presence of ice PSCs using radiances from the Atmospheric Infrared Sounder (AIRS) in the Goddard Earth Observing System version 5 (GEOS-5) data assimilation system. Brightness temperatures are computed from short-term GEOS-5 forecasts for several hundred AIRS channels, using a radiation transfer module. The differences between collocated AIRS observations and these computed values are the observed-minus-forecast (O-F) residuals in the assimilation system. Because the radiation model assumes clear-sky conditions, we hypothesize that these O-F residuals contain quantitative information about PSCs. This is confirmed using sparse data from the Polar Ozone and Aerosol Measurement (POAM) III occultation instrument. The analysis focuses on 0-F residuals for the 6.79pm AIRS moisture channel. At coincident locations, when POAM III detects ice clouds, the AIRS O-F residuals for this channel are lower than -2K. When no ice PSCs are evident in POAM III data, the AIRS 0-F residuals are larger. Given this relationship, the high spatial density of AIRS data is used to construct maps of regions where 0-F residuals are lower than -2K, as a proxy for ice PSCs. The spatial scales and spatio-temporal variations of these PSCs in the Antarctic and Arctic are discussed on the basis of these maps.

  16. Observational estimation of radiative feedback to surface air temperature over Northern High Latitudes

    NASA Astrophysics Data System (ADS)

    Hwang, Jiwon; Choi, Yong-Sang; Kim, WonMoo; Su, Hui; Jiang, Jonathan H.

    2018-01-01

    The high-latitude climate system contains complicated, but largely veiled physical feedback processes. Climate predictions remain uncertain, especially for the Northern High Latitudes (NHL; north of 60°N), and observational constraint on climate modeling is vital. This study estimates local radiative feedbacks for NHL based on the CERES/Terra satellite observations during March 2000-November 2014. The local shortwave (SW) and longwave (LW) radiative feedback parameters are calculated from linear regression of radiative fluxes at the top of the atmosphere on surface air temperatures. These parameters are estimated by the de-seasonalization and 12-month moving average of the radiative fluxes over NHL. The estimated magnitudes of the SW and the LW radiative feedbacks in NHL are 1.88 ± 0.73 and 2.38 ± 0.59 W m-2 K-1, respectively. The parameters are further decomposed into individual feedback components associated with surface albedo, water vapor, lapse rate, and clouds, as a product of the change in climate variables from ERA-Interim reanalysis estimates and their pre-calculated radiative kernels. The results reveal the significant role of clouds in reducing the surface albedo feedback (1.13 ± 0.44 W m-2 K-1 in the cloud-free condition, and 0.49 ± 0.30 W m-2 K-1 in the all-sky condition), while the lapse rate feedback is predominant in LW radiation (1.33 ± 0.18 W m-2 K-1). However, a large portion of the local SW and LW radiative feedbacks were not simply explained by the sum of these individual feedbacks.

  17. Role of clouds, aerosols, and aerosol-cloud interaction in 20th century simulations with GISS ModelE2

    NASA Astrophysics Data System (ADS)

    Nazarenko, L.; Rind, D. H.; Bauer, S.; Del Genio, A. D.

    2015-12-01

    Simulations of aerosols, clouds and their interaction contribute to the major source of uncertainty in predicting the changing Earth's energy and in estimating future climate. Anthropogenic contribution of aerosols affects the properties of clouds through aerosol indirect effects. Three different versions of NASA GISS global climate model are presented for simulation of the twentieth century climate change. All versions have fully interactive tracers of aerosols and chemistry in both the troposphere and stratosphere. All chemical species are simulated prognostically consistent with atmospheric physics in the model and the emissions of short-lived precursors [Shindell et al., 2006]. One version does not include the aerosol indirect effect on clouds. The other two versions include a parameterization of the interactive first indirect aerosol effect on clouds following Menon et al. [2010]. One of these two models has the Multiconfiguration Aerosol Tracker of Mixing state (MATRIX) that permits detailed treatment of aerosol mixing state, size, and aerosol-cloud activation. The main purpose of this study is evaluation of aerosol-clouds interactions and feedbacks, as well as cloud and aerosol radiative forcings, for the twentieth century climate under different assumptions and parameterizations for aerosol, clouds and their interactions in the climate models. The change of global surface air temperature based on linear trend ranges from +0.8°C to +1.2°C between 1850 and 2012. Water cloud optical thickness increases with increasing temperature in all versions with the largest increase in models with interactive indirect effect of aerosols on clouds, which leads to the total (shortwave and longwave) cloud radiative cooling trend at the top of the atmosphere. Menon, S., D. Koch, G. Beig, S. Sahu, J. Fasullo, and D. Orlikowski (2010), Black carbon aerosols and the third polar ice cap, Atmos. Chem. Phys., 10,4559-4571, doi:10.5194/acp-10-4559-2010. Shindell, D., G. Faluvegi

  18. Temporal evolution of stable water isotopologues in cloud droplets in a hill cap cloud in central Europe (HCCT-2010)

    USGS Publications Warehouse

    Spiegel, J.K.; Aemisegger, F.; Scholl, M.; Wienhold, F.G.; Collett, J.L.; Lee, T.; van Pinxteren, D.; Mertes, S.; Tilgner, A.; Herrmann, H.; Werner, Roland A.; Buchmann, N.; Eugster, W.

    2012-01-01

    In this work, we present the first study resolving the temporal evolution of δ2H and δ18O values in cloud droplets during 13 different cloud events. The cloud events were probed on a 937 m high mountain chain in Germany in the framework of the Hill Cap Cloud Thuringia 2010 campaign (HCCT-2010) in September and October 2010. The δ values of cloud droplets ranged from −77‰ to −15‰ (δ2H) and from −12.1‰ to −3.9‰ (δ18O) over the whole campaign. The cloud water line of the measured δ values was δ2H=7.8×δ18O+13×10−3, which is of similar slope, but with higher deuterium excess than other Central European Meteoric Water Lines. Decreasing δ values in the course of the campaign agree with seasonal trends observed in rain in central Europe. The deuterium excess was higher in clouds developing after recent precipitation revealing episodes of regional moisture recycling. The variations in δ values during one cloud event could either result from changes in meteorological conditions during condensation or from variations in the δ values of the water vapor feeding the cloud. To test which of both aspects dominated during the investigated cloud events, we modeled the variation in δ values in cloud water using a closed box model. We could show that the variation in δ values of two cloud events was mainly due to changes in local temperature conditions. For the other eleven cloud events, the variation was most likely caused by changes in the isotopic composition of the advected and entrained vapor. Frontal passages during two of the latter cloud events led to the strongest temporal changes in both δ2H (≈ 6‰ per hour) and δ18O (≈ 0.6‰ per hour). Moreover, a detailed trajectory analysis for the two longest cloud events revealed that variations in the entrained vapor were most likely related to rain out or changes in relative humidity and temperature at the moisture source region or both. This study illustrates the sensitivity of stable isotope

  19. Comparison of Gravity Wave Temperature Variances from Ray-Based Spectral Parameterization of Convective Gravity Wave Drag with AIRS Observations

    NASA Technical Reports Server (NTRS)

    Choi, Hyun-Joo; Chun, Hye-Yeong; Gong, Jie; Wu, Dong L.

    2012-01-01

    The realism of ray-based spectral parameterization of convective gravity wave drag, which considers the updated moving speed of the convective source and multiple wave propagation directions, is tested against the Atmospheric Infrared Sounder (AIRS) onboard the Aqua satellite. Offline parameterization calculations are performed using the global reanalysis data for January and July 2005, and gravity wave temperature variances (GWTVs) are calculated at z = 2.5 hPa (unfiltered GWTV). AIRS-filtered GWTV, which is directly compared with AIRS, is calculated by applying the AIRS visibility function to the unfiltered GWTV. A comparison between the parameterization calculations and AIRS observations shows that the spatial distribution of the AIRS-filtered GWTV agrees well with that of the AIRS GWTV. However, the magnitude of the AIRS-filtered GWTV is smaller than that of the AIRS GWTV. When an additional cloud top gravity wave momentum flux spectrum with longer horizontal wavelength components that were obtained from the mesoscale simulations is included in the parameterization, both the magnitude and spatial distribution of the AIRS-filtered GWTVs from the parameterization are in good agreement with those of the AIRS GWTVs. The AIRS GWTV can be reproduced reasonably well by the parameterization not only with multiple wave propagation directions but also with two wave propagation directions of 45 degrees (northeast-southwest) and 135 degrees (northwest-southeast), which are optimally chosen for computational efficiency.

  20. Ice in Volcanic Clouds

    NASA Astrophysics Data System (ADS)

    Few, A. A.

    2010-12-01

    It is widely recognized that lightning activity in thunderstorm clouds is associated with ice in the clouds. In volcanic plumes the lower electrical discharges near the vent are clearly not associated with ice; however, the electrical discharges from the upper volcanic clouds very likely are associated with ice. There is ample water in volcanic plumes and clouds. The explosive volcanic eruption is produced by volatile components in the rising magma. Researchers estimate that the water content of the volatiles is up to 99% by mole; other gases are mainly sulfur and chlorine species. These volatiles carry with them a wide range of hot magma melts and solids, importantly silicate particles and tephra. The more massive components fall out near the vent carrying with them much of the heat from the plume; these large components are not in thermodynamic equilibrium with the gases, ash, and lapilli; thus the heat removed does not lower the temperature of the materials carried aloft in the plume. Upward motion is initially provided by the thrust from the volcanic eruption, then by buoyancy of the hot plume. The rising plume is cooled by entrainment of environmental air, which contains water, and by adiabatic expansion; the plume transitions into a volcanic cloud. Further lifting and cooling produces supercooled water droplets (T ~ -5 C) in a limited zone (z ~ 9 km) before the fast updraft (~ 60 m/s) rapidly transforms them into ice. Computer models of volcanic clouds that include water and ice microphysics indicate that the latent heat of condensation is not significant in cloud dynamics because it occurs in a region where buoyancy is provided by the original hot plume material. The latent heat of ice formation occurs at higher and colder levels and seems to contribute to the final lifting of the cloud top by ~1.5km. Laboratory results indicate that the fine silicate ash particles, which are abundant, are good ice nuclei, IN. Because of the abundance of the silicate ash

  1. Femtosecond laser filament induced condensation and precipitation in a cloud chamber

    PubMed Central

    Ju, Jingjing; Liu, Jiansheng; Liang, Hong; Chen, Yu; Sun, Haiyi; Liu, Yonghong; Wang, Jingwei; Wang, Cheng; Wang, Tiejun; Li, Ruxin; Xu, Zhizhan; Chin, See Leang

    2016-01-01

    A unified picture of femtosecond laser induced precipitation in a cloud chamber is proposed. Among the three principal consequences of filamentation from the point of view of thermodynamics, namely, generation of chemicals, shock waves and thermal air flow motion (due to convection), the last one turns out to be the principal cause. Much of the filament induced chemicals would stick onto the existing background CCN’s (Cloud Condensation Nuclei) through collision making the latter more active. Strong mixing of air having a large temperature gradient would result in supersaturation in which the background CCN’s would grow efficiently into water/ice/snow. This conclusion was supported by two independent experiments using pure heating or a fan to imitate the laser-induced thermal effect or the strong air flow motion, respectively. Without the assistance of any shock wave and chemical CCN’s arising from laser filament, condensation and precipitation occurred. Meanwhile we believe that latent heat release during condensation /precipitation would enhance the air flow for mixing. PMID:27143227

  2. Estimating Sampling Biases and Measurement Uncertainties of AIRS-AMSU-A Temperature and Water Vapor Observations Using MERRA Reanalysis

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas J.; Savtchenko, Andrey K.; Tian, Baijun; Fetzer, Eric; Yung, Yuk L.; Theobald, Michael; Vollmer, Bruce; Fishbein, Evan; Won, Young-In

    2014-01-01

    We use MERRA (Modern Era Retrospective-Analysis for Research Applications) temperature and water vapor data to estimate the sampling biases of climatologies derived from the AIRS/AMSU-A (Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A) suite of instruments. We separate the total sampling bias into temporal and instrumental components. The temporal component is caused by the AIRS/AMSU-A orbit and swath that are not able to sample all of time and space. The instrumental component is caused by scenes that prevent successful retrievals. The temporal sampling biases are generally smaller than the instrumental sampling biases except in regions with large diurnal variations, such as the boundary layer, where the temporal sampling biases of temperature can be +/- 2 K and water vapor can be 10% wet. The instrumental sampling biases are the main contributor to the total sampling biases and are mainly caused by clouds. They are up to 2 K cold and greater than 30% dry over mid-latitude storm tracks and tropical deep convective cloudy regions and up to 20% wet over stratus regions. However, other factors such as surface emissivity and temperature can also influence the instrumental sampling bias over deserts where the biases can be up to 1 K cold and 10% wet. Some instrumental sampling biases can vary seasonally and/or diurnally. We also estimate the combined measurement uncertainties of temperature and water vapor from AIRS/AMSU-A and MERRA by comparing similarly sampled climatologies from both data sets. The measurement differences are often larger than the sampling biases and have longitudinal variations.

  3. Daily Cycle of Air Temperature and Surface Temperature in Stone Forest

    NASA Astrophysics Data System (ADS)

    Wang, K.; Li, Y.; Wang, X.; Yuan, M.

    2013-12-01

    Urbanization is one of the most profound human activities that impact on climate change. In cities, where are highly artificial areas, the conflict between human activity and natural climate is particularly prominent. Urban areas always have the larger area of impervious land, the higher consumption of greenhouse gases, more emissions of anthropogenic heat and air pollution, all contribute to the urban warming phenomena. Understanding the mechanisms causing a variety of phenomena involved in the urban warming is critical to distinguish the anthropogenic effect and natural variation in the climate change. However, the exact dynamics of urban warming were poorly understood, and effective control strategies are not available. Here we present a study of the daily cycle of air temperature and surface temperature in Stone Forest. The specific heat of the stones in the Stone Forest and concrete of the man-made structures within the cities are approximate. Besides, the height of the Stone Forest and the height of buildings within the city are also similar. As a scenic area, the Stone Forest is being preserved and only opened for sightseeing. There is no anthropogenic heat, as well air pollution within the Stone Forest. The thermal environment in Stone Forest can be considered to be a simulation of thermal environment in the city, which can reveal the effect of man-made structures on urban thermal environment. We conducted the field studies and numerical analysis in the Stone Forest for 4 typical urban morphology and environment scenarios, including high-rise compact cities, low-rise sparse cities, garden cities and isolated single stone. Air temperature and relative humidity were measured every half an hour in 15 different locations, which within different spatial distribution of stones and can represent the four urban scenarios respectively. At the same time, an infrared camera was used to take thermal images and get the hourly surface temperatures of stones and

  4. 10 CFR Appendix C to Part 835 - Derived Air Concentration (DAC) for Workers From External Exposure During Immersion in a Cloud of...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Exposure During Immersion in a Cloud of Airborne Radioactive Material C Appendix C to Part 835 Energy... Concentration (DAC) for Workers From External Exposure During Immersion in a Cloud of Airborne Radioactive... identifying the need for posting of airborne radioactivity areas in accordance with § 835.603(d). b. The air...

  5. Design, fabrication, and evaluation of a partially melted ice particle cloud facility

    NASA Astrophysics Data System (ADS)

    Soltis, Jared T.

    High altitude ice crystal clouds created by highly convective storm cells are dangerous to jet transport aircraft because the crystals are ingested into the compressor section, partially melt, accrete, and cause roll back or flame out. Current facilities to test engine particle icing are not ideal for fundamental mixed-phase ice accretion experiments or do not generate frozen droplet clouds under representative conditions. The goal of this research was to develop a novel facility capable of testing fundamental partially melted ice particle icing physics and to collect ice accretion data related to mixed-phase ice accretion. The Penn State Icing Tunnel (PSIT) has been designed and fabricated to conduct partially melted ice particle cloud accretion. The PSIT generated a cloud with air assisted atomizing nozzles. The water droplets cool from the 60psi pressure drop as the water exited the nozzle and fully glaciate while flowing in the -11.0°C tunnel air flow. The glaciated cloud flowed through a duct in the center of the tunnel where hot air was introduced. The temperature of the duct was regulated from 3.3°C to 24°C which melted particle the frozen particle from 0% to 90%. The partially melted particle cloud impinged on a temperature controlled flat plate. Ice accretion data was taken for a range of duct temperature from 3.3°C to 24°C and plate temperature from -4.5°C to 7.0°C. The particle median volumetric diameter was 23mum, the total water content was 4.5 g/m 3, the specific humidity was 1.12g/kg, and the wet bulb temperature ranged from 1.0°C to 7.0°C depending on the duct temperature. The boundaries between ice particle bounce off, ice accretion, and water run off were determined. When the particle were totally frozen and the plate surface was below freezing, the ice particle bounced off as expected. Ice accretion was seen for all percent melts tested, but the plate temperature boundary between water runoff and ice accretion increased from 0°C at 8

  6. The implications of dust ice nuclei effect on cloud top temperature in a complex mesoscale convective system.

    PubMed

    Li, Rui; Dong, Xue; Guo, Jingchao; Fu, Yunfei; Zhao, Chun; Wang, Yu; Min, Qilong

    2017-10-23

    Mineral dust is the most important natural source of atmospheric ice nuclei (IN) which may significantly mediate the properties of ice cloud through heterogeneous nucleation and lead to crucial impacts on hydrological and energy cycle. The potential dust IN effect on cloud top temperature (CTT) in a well-developed mesoscale convective system (MCS) was studied using both satellite observations and cloud resolving model (CRM) simulations. We combined satellite observations from passive spectrometer, active cloud radar, lidar, and wind field simulations from CRM to identify the place where ice cloud mixed with dust particles. For given ice water path, the CTT of dust-mixed cloud is warmer than that in relatively pristine cloud. The probability distribution function (PDF) of CTT for dust-mixed clouds shifted to the warmer end and showed two peaks at about -45 °C and -25 °C. The PDF for relatively pristine cloud only show one peak at -55 °C. Cloud simulations with different microphysical schemes agreed well with each other and showed better agreement with satellite observations in pristine clouds, but they showed large discrepancies in dust-mixed clouds. Some microphysical schemes failed to predict the warm peak of CTT related to heterogeneous ice formation.

  7. Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime

    NASA Astrophysics Data System (ADS)

    Pistone, K.; Praveen, P. S.; Thomas, R. M.; Ramanathan, V.; Wilcox, E.; Bender, F. A.-M.

    2015-10-01

    There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood, as changes in atmospheric conditions due to aerosol may change the expected magnitude of indirect effects by altering cloud properties in unexpected ways. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season. In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements of atmospheric precipitable water vapor and the liquid water path (LWP) of trade cumulus clouds were made, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol. Here we present evidence of a positive correlation between aerosol and cloud LWP which becomes clear after the data are filtered to control for the natural meteorological variability in the region. We then use the aircraft and ground observatory measurements to explore the mechanisms behind the observed aerosol-LWP correlation. We determine that increased boundary-layer humidity lowering the cloud base is responsible for the observed increase in cloud liquid water. Large-scale analysis indicates that high pollution cases originate with a highly-polluted boundary layer air mass approaching the observatory from a northwesterly direction. This polluted mass exhibits higher temperatures and humidity than the clean case, the former of which may be attributable to heating due to aerosol absorption of solar radiation over the subcontinent. While high temperature conditions dispersed along with the high

  8. TEMPERATURE SPECTRA OF INTERSTELLAR DUST GRAINS HEATED BY COSMIC RAYS. I. TRANSLUCENT CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalvāns, Juris, E-mail: juris.kalvans@venta.lv

    Heating of whole interstellar dust grains by cosmic-ray (CR) particles affects the gas–grain chemistry in molecular clouds by promoting molecule desorption, diffusion, and chemical reactions on grain surfaces. The frequency of such heating, f{sub T}, s{sup −1}, determines how often a certain temperature T{sub CR}, K, is reached for grains hit by CR particles. This study aims to provide astrochemists with a comprehensive and updated data set on CR-induced whole-grain heating. We present calculations of f{sub T} and T{sub CR} spectra for bare olivine grains with radius a of 0.05, 0.1, and 0.2 μ m and such grains covered withmore » ice mantles of thickness 0.1 a and 0.3 a . Grain shape and structure effects are considered, as well as 30 CR elemental constituents with an updated energy spectrum corresponding to a translucent cloud with A{sub V} = 2 mag. Energy deposition by CRs in grain material was calculated with the srim program. We report full T{sub CR} spectra for all nine grain types and consider initial grain temperatures of 10 K and 20 K. We also provide frequencies for a range of minimum T{sub CR} values. The calculated data set can be simply and flexibly implemented in astrochemical models. The results show that, in the case of translucent clouds, the currently adopted rate for heating of whole grains to temperatures in excess of 70 K is underestimated by approximately two orders of magnitude in astrochemical numerical simulations. Additionally, grains are heated by CRs to modest temperatures (20–30 K) with intervals of a few years, which reduces the possibility of ice chemical explosions.« less

  9. The EUSTACE project: delivering global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Ghent, D.; Rayner, N. A.

    2017-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, in the EUSTACE project (2015-2018, https://www.eustaceproject.eu) we have developed an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals is used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. This includes developing new "Big Data" analysis methods as the data volumes involved are considerable. We will present recent progress along this road in the EUSTACE project, i.e.: • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  10. Can air temperature be used to project influences of climate change on stream temperature?

    USGS Publications Warehouse

    Arismendi, Ivan; Safeeq, Mohammad; Dunham, Jason B.; Johnson, Sherri L.

    2014-01-01

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To address this knowledge gap, we examined the performance of two widely used linear and nonlinear regression models that predict stream temperatures based on air temperatures. We evaluated model performance and temporal stability of model parameters in a suite of regulated and unregulated streams with 11–44 years of stream temperature data. Although such models may have validity when predicting stream temperatures within the span of time that corresponds to the data used to develop them, model predictions did not transfer well to other time periods. Validation of model predictions of most recent stream temperatures, based on air temperature–stream temperature relationships from previous time periods often showed poor performance when compared with observed stream temperatures. Overall, model predictions were less robust in regulated streams and they frequently failed in detecting the coldest and warmest temperatures within all sites. In many cases, the magnitude of errors in these predictions falls within a range that equals or exceeds the magnitude of future projections of climate-related changes in stream temperatures reported for the region we studied (between 0.5 and 3.0 °C by 2080). The limited ability of regression-based statistical models to accurately project stream temperatures over time likely stems from the fact that underlying processes at play, namely the heat budgets of air and water, are distinctive in each medium and vary among localities and through time.

  11. Antiparticle cloud temperatures for antihydrogen experiments

    NASA Astrophysics Data System (ADS)

    Bianconi, A.; Charlton, M.; Lodi Rizzini, E.; Mascagna, V.; Venturelli, L.

    2017-07-01

    A simple rate-equation description of the heating and cooling of antiparticle clouds under conditions typical of those found in antihydrogen formation experiments is developed and analyzed. We include single-particle collisional, radiative, and cloud expansion effects and, from the modeling calculations, identify typical cooling phenomena and trends and relate these to the underlying physics. Some general rules of thumb of use to experimenters are derived.

  12. The Relationship between Relative Humidity and the Dewpoint Temperature in Moist Air: A Simple Conversion and Applications.

    NASA Astrophysics Data System (ADS)

    Lawrence, Mark G.

    2005-02-01

    The relative humidity (RH) and the dewpoint temperature (td) are two widely used indicators of the amount of moisture in air. The exact conversion from RH to td, as well as highly accurate approximations, are too complex to be done easily without the help of a calculator or computer. However, there is a very simple rule of thumb that can be very useful for approximating the conversion for moist air (RH > 50%) which does not appear to be widely known by the meteorological community: td decreases by about 1°C for every 5% decrease in RH (starting at td = t, the dry bulb temperature, when RH = 100%). This article examines the mathematical basis and accuracy of this and other relationships between the dewpoint and relative humidity. Several useful applications of the simple conversion are presented, in particular the computation of the cumulus cloud-base level (or lifting condensation level) as zLCL (20 + t/5) (100 - RH), where zLCL is in meters when t is in degrees Celcius and RH in percent. Finally, a historical perspective is given with anecdotes about some of the early work in this field.

  13. Effects of Ambient Temperature and Forced-air Warming on Intraoperative Core Temperature: A Factorial Randomized Trial.

    PubMed

    Pei, Lijian; Huang, Yuguang; Xu, Yiyao; Zheng, Yongchang; Sang, Xinting; Zhou, Xiaoyun; Li, Shanqing; Mao, Guangmei; Mascha, Edward J; Sessler, Daniel I

    2018-05-01

    The effect of ambient temperature, with and without active warming, on intraoperative core temperature remains poorly characterized. The authors determined the effect of ambient temperature on core temperature changes with and without forced-air warming. In this unblinded three-by-two factorial trial, 292 adults were randomized to ambient temperatures 19°, 21°, or 23°C, and to passive insulation or forced-air warming. The primary outcome was core temperature change between 1 and 3 h after induction. Linear mixed-effects models assessed the effects of ambient temperature, warming method, and their interaction. A 1°C increase in ambient temperature attenuated the negative slope of core temperature change 1 to 3 h after anesthesia induction by 0.03 (98.3% CI, 0.01 to 0.06) °Ccore/(h°Cambient) (P < 0.001), for patients who received passive insulation, but not for those warmed with forced-air (-0.01 [98.3% CI, -0.03 to 0.01] °Ccore/[h°Cambient]; P = 0.40). Final core temperature at the end of surgery increased 0.13°C (98.3% CI, 0.07 to 0.20; P < 0.01) per degree increase in ambient temperature with passive insulation, but was unaffected by ambient temperature during forced-air warming (0.02 [98.3% CI, -0.04 to 0.09] °Ccore/°Cambient; P = 0.40). After an average of 3.4 h of surgery, core temperature was 36.3° ± 0.5°C in each of the forced-air groups, and ranged from 35.6° to 36.1°C in passively insulated patients. Ambient intraoperative temperature has a negligible effect on core temperature when patients are warmed with forced air. The effect is larger when patients are passively insulated, but the magnitude remains small. Ambient temperature can thus be set to comfortable levels for staff in patients who are actively warmed.

  14. Intensification of convective extremes driven by cloud-cloud interaction

    NASA Astrophysics Data System (ADS)

    Moseley, Christopher; Hohenegger, Cathy; Berg, Peter; Haerter, Jan O.

    2016-10-01

    In a changing climate, a key role may be played by the response of convective-type cloud and precipitation to temperature changes. Yet, it is unclear if convective precipitation intensities will increase mainly due to thermodynamic or dynamical processes. Here we perform large eddy simulations of convection by imposing a realistic diurnal cycle of surface temperature. We find convective events to gradually self-organize into larger cloud clusters and those events occurring late in the day to produce the highest precipitation intensities. Tracking rain cells throughout their life cycles, we show that events which result from collisions respond strongly to changes in boundary conditions, such as temperature changes. Conversely, events not resulting from collisions remain largely unaffected by the boundary conditions. Increased surface temperature indeed leads to more interaction between events and stronger precipitation extremes. However, comparable intensification occurs when leaving temperature unchanged but simply granting more time for self-organization. These findings imply that the convective field as a whole acquires a memory of past precipitation and inter-cloud dynamics, driving extremes. For global climate model projections, our results suggest that the interaction between convective clouds must be incorporated to simulate convective extremes and the diurnal cycle more realistically.

  15. The EUSTACE project: delivering global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Rayner, Nick

    2017-04-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, in the EUSTACE project (2015-June 2018, https://www.eustaceproject.eu) we are developing an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals is used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. As the data volumes involved are considerable, such work needs to include development of new "Big Data" analysis methods. We will present recent progress along this road in the EUSTACE project: 1. providing new, consistent, multi-component estimates of uncertainty in surface skin temperature retrievals from satellites; 2. identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; 3. estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; 4. using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  16. The EUSTACE project: delivering global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Ghent, D.; Rayner, N. A.

    2016-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, in the EUSTACE project (2015-June 2018, https://www.eustaceproject.eu) we are developing an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals is used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. As the data volumes involved are considerable, such work needs to include development of new "Big Data" analysis methods. We will present recent progress along this road in the EUSTACE project, i.e.: • providing new, consistent, multi-component estimates of uncertainty in surface skin temperature retrievals from satellites; • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  17. Entrainment and cloud evaporation deduced from the stable isotope chemistry of clouds during ORACLES

    NASA Astrophysics Data System (ADS)

    Noone, D.; Henze, D.; Rainwater, B.; Toohey, D. W.

    2017-12-01

    The magnitude of the influence of biomass burning aerosols on cloud and rain processes is controlled by a series of processes which are difficult to measure directly. A consequence of this limitation is the emergence of significant uncertainty in the representation of cloud-aerosol interactions in models and the resulting cloud radiative forcing. Interaction between cloud and the regional atmosphere causes evaporation, and the rate of evaporation at cloud top is controlled in part by entrainment of air from above which exposes saturated cloud air to drier conditions. Similarly, the size of cloud droplets also controls evaporation rates, which in turn is linked to the abundance of condensation nuclei. To quantify the dependence of cloud properties on biomass burning aerosols the dynamic relationship between evaporation, drop size and entrainment on aerosol state, is evaluated for stratiform clouds in the southeast Atlantic Ocean. These clouds are seasonally exposed to biomass burning plumes from agricultural fires in southern Africa. Measurements of the stable isotope ratios of cloud water and total water are used to deduce the disequilibrium responsible for evaporation within clouds. Disequilibrium is identified by the relationship between hydrogen and oxygen isotope ratios of water vapor and cloud water in and near clouds. To obtain the needed information, a custom-built, dual inlet system was deployed alongside isotopic gas analyzers on the NASA Orion aircraft as part of the Observations of Aerosols above Clouds and their Interactions (ORACLES) campaign. The sampling system obtains both total water and cloud liquid content for the population of droplets above 7 micrometer diameter. The thermodynamic modeling required to convert the observed equilibrium and kinetic isotopic is linked to evaporation and entrainment is described, and the performance of the measurement system is discussed.

  18. Aerosol-cloud interactions in Arctic mixed-phase stratocumulus

    NASA Astrophysics Data System (ADS)

    Solomon, A.

    2017-12-01

    Reliable climate projections require realistic simulations of Arctic cloud feedbacks. Of particular importance is accurately simulating Arctic mixed-phase stratocumuli (AMPS), which are ubiquitous and play an important role in regional climate due to their impact on the surface energy budget and atmospheric boundary layer structure through cloud-driven turbulence, radiative forcing, and precipitation. AMPS are challenging to model due to uncertainties in ice microphysical processes that determine phase partitioning between ice and radiatively important cloud liquid water. Since temperatures in AMPS are too warm for homogenous ice nucleation, ice must form through heterogeneous nucleation. In this presentation we discuss a relatively unexplored source of ice production-recycling of ice nuclei in regions of ice subsaturation. AMPS frequently have ice-subsaturated air near the cloud-driven mixed-layer base where falling ice crystals can sublimate, leaving behind IN. This study provides an idealized framework to understand feedbacks between dynamics and microphysics that maintain phase-partitioning in AMPS. In addition, the results of this study provide insight into the mechanisms and feedbacks that may maintain cloud ice in AMPS even when entrainment of IN at the mixed-layer boundaries is weak.

  19. Hurricane Isabel, AIRS Infrared and SeaWinds Scatterometer Data Combined

    NASA Image and Video Library

    2003-09-20

    These two images show Hurricane Isabel as viewed by AIRS and SeaWinds scatterometers on NASA ADEOS-2 and QuikScat satellites in September, 2003. AIRS data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction. http://photojournal.jpl.nasa.gov/catalog/PIA00429

  20. Sensitivity of New England Stream Temperatures to Air Temperature and Precipitation Under Projected Climate

    NASA Astrophysics Data System (ADS)

    Huang, T.; Samal, N. R.; Wollheim, W. M.; Stewart, R. J.; Zuidema, S.; Prousevitch, A.; Glidden, S.

    2015-12-01

    The thermal response of streams and rivers to changing climate will influence aquatic habitat. This study examines the impact that changing climate has on stream temperatures in the Merrimack River, NH/MA USA using the Framework for Aquatic Modeling in the Earth System (FrAMES), a spatially distributed river network model driven by air temperature, air humidity, wind speed, precipitation, and solar radiation. Streamflow and water temperatures are simulated at a 45-second (latitude x longitude) river grid resolution for 135 years under historical and projected climate variability. Contemporary streamflow (Nash-Sutcliffe Coefficient = 0.77) and river temperatures (Nash-Sutcliffe Coefficient = 0.89) matched at downstream USGS gauge data well. A suite of model runs were made in combination with uniformly increased daily summer air temperatures by 2oC, 4 oC and 6 oC as well as adjusted precipitation by -40%, -30%, -20%, -10% and +10% as a sensitivity analysis to explore a broad range of potential future climates. We analyzed the summer stream temperatures and the percent of river length unsuitable for cold to warm water fish habitats. Impacts are greatest in large rivers due to the accumulation of river temperature warming throughout the entire river network. Cold water fish (i.e. brook trout) are most strongly affected while, warm water fish (i.e. largemouth bass) aren't expected to be impacted. The changes in stream temperatures under various potential climate scenarios will provide a better understanding of the specific impact that air temperature and precipitation have on aquatic thermal regimes and habitat.

  1. Characterization of air temperature in modern ion chambers due to phantom geometry and ambient temperature changes.

    PubMed

    Saenz, Daniel L; Kirby, Neil; Gutiérrez, Alonso N

    2016-07-01

    Temperature and pressure corrections are necessary to account for the varying mass of air in the sensitive volume of a vented ionization chamber (IC) when performing absolute dose measurements. Locations commonly used to measure the presumed IC air temperature may not accurately represent the chamber cavity air temperature, and phantoms undergoing temperature changes further compound the problem. Prior studies have characterized thermal equilibrium in separate phantoms for Farmer chambers alone. However, the purpose of this study was to characterize the cavity air temperature dependence on changes in the ambient temperature and phantom geometry configuration for a wider and more modern variety of chambers to determine if previously published wait times apply to these chambers as well. Thermal conduction properties were experimentally investigated by modifying a PTW 0.3 cm(3) Semiflex IC with a thermocouple replacing the central electrode. Air cavity temperature versus time was recorded in three phantom geometries characteristic of common absolute dose measurements. The phantoms were (15 ± 1) °C before measurement with an IC at the treatment vault temperature of (21 ± 1) °C. Simulations were conducted to provide a theoretical basis for the measurements and to simulate temperature response of a PTW PinPoint® and Farmer chamber. The simulation methods were first validated by comparison with measured Semiflex chamber thermal response curves before extension to the other chambers. Two thermal equilibria curves were recorded on different time scales. IC temperature initially dropped to the colder phantom temperature but subsequently increased as the phantom itself equilibrated with the warmer room temperature. In a large phantom of dimensions (25.5 × 25.5 × 23.4) cm(3), 3 min was required before the IC temperature reached within 0.5 °C of its equilibrium within the phantom. Similarly, wait times of 2 min were needed for 7.5 and 2 cm slab phantoms. Recording

  2. Effect of water temperature and air stream velocity on performance of direct evaporative air cooler for thermal comfort

    NASA Astrophysics Data System (ADS)

    Aziz, Azridjal; Mainil, Rahmat Iman; Mainil, Afdhal Kurniawan; Listiono, Hendra

    2017-01-01

    The aim of this work was to determine the effects of water temperature and air stream velocity on the performance of direct evaporative air cooler (DEAC) for thermal comfort. DEAC system requires the lower cost than using vapor compression refrigeration system (VCRS), because VCRS use a compressor to circulate refrigerant while DEAC uses a pump for circulating water in the cooling process to achieve thermal comfort. The study was conducted by varying the water temperature (10°C, 20°C, 30°C, 40°C, and 50°C) at different air stream velocity (2,93 m/s, 3.9 m/s and 4,57 m/s). The results show that the relative humidity (RH) in test room tends to increase with the increasing of water temperature, while on the variation of air stream velocity, RH remains constant at the same water temperature, because the amount of water that evaporates increase with the increasing water temperature. The cooling effectiveness (CE) increase with the increasing of air stream velocity where the higher CE was obtained at lower water temperature (10°C) with high air velocity (4,57m/s). The lower room temperature (26°C) was achieved at water temperature 10°C and air stream velocity 4.57 m/s with the relative humidity 85,87%. DEAC can be successfully used in rooms that have smoothly air circulation to fulfill the indoor thermal comfort.

  3. Improved Surface Parameter Retrievals using AIRS/AMSU Data

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John

    2008-01-01

    The AIRS Science Team Version 5.0 retrieval algorithm became operational at the Goddard DAAC in July 2007 generating near real-time products from analysis of AIRS/AMSU sounding data. This algorithm contains many significant theoretical advances over the AIRS Science Team Version 4.0 retrieval algorithm used previously. Two very significant developments of Version 5 are: 1) the development and implementation of an improved Radiative Transfer Algorithm (RTA) which allows for accurate treatment of non-Local Thermodynamic Equilibrium (non-LTE) effects on shortwave sounding channels; and 2) the development of methodology to obtain very accurate case by case product error estimates which are in turn used for quality control. These theoretical improvements taken together enabled a new methodology to be developed which further improves soundings in partially cloudy conditions. In this methodology, longwave C02 channel observations in the spectral region 700 cm(exp -1) to 750 cm(exp -1) are used exclusively for cloud clearing purposes, while shortwave C02 channels in the spectral region 2195 cm(exp -1) 2395 cm(exp -1) are used for temperature sounding purposes. This allows for accurate temperature soundings under more difficult cloud conditions. This paper further improves on the methodology used in Version 5 to derive surface skin temperature and surface spectral emissivity from AIRS/AMSU observations. Now, following the approach used to improve tropospheric temperature profiles, surface skin temperature is also derived using only shortwave window channels. This produces improved surface parameters, both day and night, compared to what was obtained in Version 5. These in turn result in improved boundary layer temperatures and retrieved total O3 burden.

  4. The Continuation of Cloud Statistics for NASA Climate Change Studies

    NASA Technical Reports Server (NTRS)

    Wylie, Donald P.

    2001-01-01

    The weather systems, cyclones, and anticyclones, along with air trajectories and cloud forms, are compared to past studies of the Arctic to assess compatibility of the four month study of the Arctic Cloud Experiment flights of the First ISCCP Regional Experiment (FIRE/ACE) with past climatologies. The frequency and movement of cyclones (lows) and anticyclones (highs) followed the general eastward and northeastward directions indicated by past studies. Most cyclones (lows) came from eastern Siberia and the Bering Sea to the south and moved north across the Bering Straight or Alaska into the Arctic Ocean. They generally weakened in central pressure as they moved poleward. Anticyclones (highs) were most common in the eastern Beaufort Sea near Canada in June and July as predicted from previous studies. However, many cyclones and anticyclones moved in westward directions which is rare in other latitudes. Erratic changes in shape and intensity on a daily basis also were observed. The National Center for Environmental Prediction (NCEP) analysis generally reflected the Surface Heat Budget in the Arctic (SHEBA) Ship World Meteorological Organization (WMO) observations which it used. However, NCEP temperatures were biased warm by 1.0 to 1.5 C in April and early May. In July when the surface temperature were at the freezing/thawing point, the NCEP analysis changed to a cold bias of -1.0 C. Dew points had smaller biases except for July where they were biased cold by -1.4 C. Wind speeds had a -2 m/s low bias for the six windiest days. Surface barometric pressures had consistently low biases from -1.2 to -2.8 hPa in all four months. Air parcel historical trajectories were mainly from the south or from local anticyclonic gyres in the Beaufort Sea. Most air came to the SHEBA Ship from the north Pacific Ocean or from Alaska and Canada and occasionally from eastern Siberia. Very few trajectories traced back across the pole to Europe and Central Asia. Cloud cover was high, as

  5. CAUSES: On the Role of Surface Energy Budget Errors to the Warm Surface Air Temperature Error Over the Central United States

    NASA Astrophysics Data System (ADS)

    Ma, H.-Y.; Klein, S. A.; Xie, S.; Zhang, C.; Tang, S.; Tang, Q.; Morcrette, C. J.; Van Weverberg, K.; Petch, J.; Ahlgrimm, M.; Berg, L. K.; Cheruy, F.; Cole, J.; Forbes, R.; Gustafson, W. I.; Huang, M.; Liu, Y.; Merryfield, W.; Qian, Y.; Roehrig, R.; Wang, Y.-C.

    2018-03-01

    Many weather forecast and climate models simulate warm surface air temperature (T2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions of surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.

  6. Characteristics of bacterial community in cloud water at Mt Tai: similarity and disparity under polluted and non-polluted cloud episodes

    NASA Astrophysics Data System (ADS)

    Wei, Min; Xu, Caihong; Chen, Jianmin; Zhu, Chao; Li, Jiarong; Lv, Ganglin

    2017-04-01

    Bacteria are widely distributed in atmospheric aerosols and are indispensable components of clouds, playing an important role in the atmospheric hydrological cycle. However, limited information is available about the bacterial community structure and function, especially for the increasing air pollution in the North China Plain. Here, we present a comprehensive characterization of bacterial community composition, function, variation, and environmental influence for cloud water collected at Mt Tai from 24 July to 23 August 2014. Using Miseq 16S rRNA gene sequencing, the highly diverse bacterial community in cloud water and the predominant phyla of Proteobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes were investigated. Bacteria that survive at low temperature, radiation, and poor nutrient conditions were found in cloud water, suggesting adaption to an extreme environment. The bacterial gene functions predicted from the 16S rRNA gene using the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) suggested that the pathways related to metabolism and disease infections were significantly correlated with the predominant genera. The abundant genera Acinetobacter, Stenotrophomonas, Pseudomonas, and Empedobacter originated from a wide range of habitats including cloud condensation nuclei and ice nuclei active species, opportunistic pathogens, and functional species, demonstrating the importance of ecology and health in cloud water. Cluster analysis including hierarchical cluster (Hcluster) and principal coordinate analysis (PCoA) indicated a significant disparity between polluted and non-polluted samples. Linear discriminant analysis effect size (LEfSe) demonstrated that potential pathogens were enriched in the polluted cloud samples, whereas the diverse ecological function groups were significant in the non-polluted samples. Discrepant community structure determined by redundancy analysis (RDA) indicated that the major ions in

  7. A study on the entrainment and mixing process in the continental stratocumulus clouds measured during the RACORO campaign

    DOE PAGES

    Yeom, Jae Min; Yum, Seong Soo; Liu, Yangang; ...

    2017-04-20

    Entrainment and mixing processes and their effects on cloud microphysics in the continental stratocumulus clouds observed in Oklahoma during the RACORO campaign are analyzed in the frame of homogeneous and inhomogeneous mixing concepts by combining the approaches of microphysical correlation, mixing diagram, and transition scale (number). A total of 110 horizontally penetrated cloud segments is analyzed in this paper. Mixing diagram and cloud microphysical relationship analyses show homogeneous mixing trait of positive relationship between liquid water content (L) and mean volume of droplets (V) (i.e., smaller droplets in more diluted parcel) in most cloud segments. Relatively small temperature and humiditymore » differences between the entraining air from above the cloud top and cloudy air and relatively large turbulent dissipation rate are found to be responsible for this finding. The related scale parameters (i.e., transition length and transition scale number) are relatively large, which also indicates high likelihood of homogeneous mixing. Finally, clear positive relationship between L and vertical velocity (W) for some cloud segments is suggested to be evidence of vertical circulation mixing, which may further enhance the positive relationship between L and V created by homogeneous mixing.« less

  8. A study on the entrainment and mixing process in the continental stratocumulus clouds measured during the RACORO campaign

    NASA Astrophysics Data System (ADS)

    Yeom, Jae Min; Yum, Seong Soo; Liu, Yangang; Lu, Chunsong

    2017-09-01

    Entrainment and mixing processes and their effects on cloud microphysics in the continental stratocumulus clouds observed in Oklahoma during the RACORO campaign are analyzed in the frame of homogeneous and inhomogeneous mixing concepts by combining the approaches of microphysical correlation, mixing diagram, and transition scale (number). A total of 110 horizontally penetrated cloud segments is analyzed. Mixing diagram and cloud microphysical relationship analyses show homogeneous mixing trait of positive relationship between liquid water content (L) and mean volume of droplets (V) (i.e., smaller droplets in more diluted parcel) in most cloud segments. Relatively small temperature and humidity differences between the entraining air from above the cloud top and cloudy air and relatively large turbulent dissipation rate are found to be responsible for this finding. The related scale parameters (i.e., transition length and transition scale number) are relatively large, which also indicates high likelihood of homogeneous mixing. Clear positive relationship between L and vertical velocity (W) for some cloud segments is suggested to be evidence of vertical circulation mixing, which may further enhance the positive relationship between L and V created by homogeneous mixing.

  9. A study on the entrainment and mixing process in the continental stratocumulus clouds measured during the RACORO campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeom, Jae Min; Yum, Seong Soo; Liu, Yangang

    Entrainment and mixing processes and their effects on cloud microphysics in the continental stratocumulus clouds observed in Oklahoma during the RACORO campaign are analyzed in the frame of homogeneous and inhomogeneous mixing concepts by combining the approaches of microphysical correlation, mixing diagram, and transition scale (number). A total of 110 horizontally penetrated cloud segments is analyzed in this paper. Mixing diagram and cloud microphysical relationship analyses show homogeneous mixing trait of positive relationship between liquid water content (L) and mean volume of droplets (V) (i.e., smaller droplets in more diluted parcel) in most cloud segments. Relatively small temperature and humiditymore » differences between the entraining air from above the cloud top and cloudy air and relatively large turbulent dissipation rate are found to be responsible for this finding. The related scale parameters (i.e., transition length and transition scale number) are relatively large, which also indicates high likelihood of homogeneous mixing. Finally, clear positive relationship between L and vertical velocity (W) for some cloud segments is suggested to be evidence of vertical circulation mixing, which may further enhance the positive relationship between L and V created by homogeneous mixing.« less

  10. Ice Surface Temperature Variability in the Polar Regions and the Relationships to 2 Meter Air Temperatures

    NASA Astrophysics Data System (ADS)

    Hoyer, J.; Madsen, K. S.; Englyst, P. N.

    2017-12-01

    Determining the surface and near surface air temperature from models or observations in the Polar Regions is challenging due to the extreme conditions and the lack of in situ observations. The errors in near surface temperature products are typically larger than for other regions of the world, and the potential for using Earth Observations is large. As part of the EU project, EUSTACE, we have developed empirical models for the relationship between the satellite observed skin ice temperatures and 2m air temperatures. We use the Arctic and Antarctic Sea and sea ice Surface Temperatures from thermal Infrared satellite sensors (AASTI) reanalysis to estimate daily surface air temperature over land ice and sea ice for the Arctic and the Antarctic. Large efforts have been put into collecting and quality controlling in situ observations from various data portals and research projects. The reconstruction is independent of numerical weather prediction models and thus provides an important alternative to modelled air temperature estimates. The new surface air temperature data record has been validated against more than 58.000 independent in situ measurements for the four surface types: Arctic sea ice, Greenland ice sheet, Antarctic sea ice and Antarctic ice sheet. The average correlations are 92-97% and average root mean square errors are 3.1-3.6°C for the four surface types. The root mean square error includes the uncertainty of the in-situ measurement, which ranges from 0.5 to 2°C. A comparison with ERA-Interim shows a consistently better performance of the satellite based air temperatures than the ERA-Interim for the Greenland ice sheet, when compared against observations not used in any of the two estimates. This is encouraging and demonstrates the values of these products. In addition, the procedure presented here works on satellite observations that are available in near real time and this opens up for a near real time estimation of the surface air temperature over

  11. Study of mesoscale phenomena, winter monsoon clouds and snow area based on LANDSAT data

    NASA Technical Reports Server (NTRS)

    Tsuchiya, K. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. Most longitudinal clouds which appear as continuous linear clouds are composed of small transversal clouds. There are mountain waves of different wavelength in a comparatively narrow area indicating complicated orographical effects on wind and temperature distribution or on both dynamical and static stability condition. There is a particular shape of cirrus cloud suggestive of turbulence in the vicinity of CAT in the upper troposphere near jet stream level and its cold air side. Thin cirrus of overcast condition can be distinguished by MSS; however, extremely thin cirrus of partly cloudy condition cannot be detected even in LANDSAT data. This presents a serious problem in the interpretation of satellite thermal infrared radiation data since they affect the value.

  12. Cloud Streets over the Bering Sea

    NASA Image and Video Library

    2017-12-08

    NASA image captured January 4, 2012 Most of us prefer our winter roads free of ice, but one kind of road depends on it: a cloud street. Such streets formed over the Bering Sea in early January 2012, thanks to snow and ice blanketing the nearby land, and sea ice clinging to the shore. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this natural-color image of the cloud streets on January 4, 2012. Air blowing over frigid ice then warmer ocean water can lead to the development of parallel cylinders of spinning air. Above the upward cycle of these cylinders (rising air), small clouds form. Along the downward cycle (descending air), skies are clear. The resulting cloud formations resemble streets. This image shows that some of the cloud streets begin over the sea ice, but most of the clouds hover over the open ocean water. These streets are not perfectly straight, but curve to the east and west after passing over the sea ice. By lining up along the prevailing wind direction, the tiny clouds comprising the streets indicate the wind patterns around the time of their formation. NASA images courtesy LANCE/EOSDIS MODIS Rapid Response Team at NASA GSFC. Caption by Michon Scott. Instrument: Terra - MODIS Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Startup of air-cooled condensers and dry cooling towers at low temperatures of the cooling air

    NASA Astrophysics Data System (ADS)

    Milman, O. O.; Ptakhin, A. V.; Kondratev, A. V.; Shifrin, B. A.; Yankov, G. G.

    2016-05-01

    The problems of startup and performance of air-cooled condensers (ACC) and dry cooling towers (DCT) at low cooling air temperatures are considered. Effects of the startup of the ACC at sub-zero temperatures are described. Different options of the ACC heating up are analyzed, and examples of existing technologies are presented (electric heating, heating up with hot air or steam, and internal and external heating). The use of additional heat exchanging sections, steam tracers, in the DCT design is described. The need for high power in cases of electric heating and heating up with hot air is noted. An experimental stand for research and testing of the ACC startup at low temperatures is described. The design of the three-pass ACC unit is given, and its advantages over classical single-pass design at low temperatures are listed. The formation of ice plugs inside the heat exchanging tubes during the start-up of ACC and DCT at low cooling air temperatures is analyzed. Experimental data on the effect of the steam flow rate, steam nozzle distance from the heat-exchange surface, and their orientation in space on the metal temperature were collected, and test results are analyzed. It is noted that the surface temperature at the end of the heat up is almost independent from its initial temperature. Recommendations for the safe start-up of ACCs and DCTs are given. The heating flow necessary to sufficiently heat up heat-exchange surfaces of ACCs and DCTs for the safe startup is estimated. The technology and the process of the heat up of the ACC with the heating steam external supply are described by the example of the startup of the full-scale section of the ACC at sub-zero temperatures of the cooling air, and the advantages of the proposed start-up technology are confirmed.

  14. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Ferrare, Richard A.; Browell, Edward V.; Kooi, Susan A.; Dunion, Jason P.; Heymsfield, Gerry; Notari, Anthony; Butler, Carolyn F.; Burton, Sharon; Fenn, Marta; hide

    2010-01-01

    LASE (Lidar Atmospheric Sensing Experiment) on-board the NASA DC-8 measured high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan Air Layer(s) (SAL). Interactions between the SAL and tropical air were observed during the early stages of the TC development. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on AEWs and TCs. Examples of profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in SAL, convection, and clear air regions. LASE data suggest that the SAL suppresses low-altitude convection at the convection-SAL interface region. Mid-level convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on August 20, 2008. This interaction is responsible for the transfer of about 7 x 10(exp 15) J latent heat energy within a day to the SAL. Measurements of lidar extinction-to-backscatter ratios in the range 36+/-5 to 45+/-5 are within the range of measurements from other lidar measurements of dust. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings, respectively.

  15. The sensitivity of tropospheric chemistry to cloud interactions

    NASA Technical Reports Server (NTRS)

    Jonson, Jan E.; Isaksen, Ivar S. A.

    1994-01-01

    Clouds, although only occupying a relatively small fraction of the troposphere volume, can have a substantial impact on the chemistry of the troposphere. In newly formed clouds, or in clouds with air rapidly flowing through, the chemistry is expected to be far more active than in aged clouds with stagnant air. Thus, frequent cycling of air through shortlived clouds, i.e. cumulus clouds, is likely to be a much more efficient media for altering the composition of the atmosphere than an extensive cloud cover i.e. frontal cloud systems. The impact of clouds is tested out in a 2-D channel model encircling the globe in a latitudinal belt from 30 to 60 deg N. The model contains a detailed gas phase chemistry. In addition physiochemical interactions between the gas and aqueous phases are included. For species as H2O2, CH2O, O3, and SO2, Henry's law equilibria are assumed, whereas HNO3 and H2SO4 are regarded as completed dissolved in the aqueous phase. Absorption of HO2 and OH is assumed to be mass-transport limited. The chemistry of the aqueous phase is characterized by rapid cycling of odd hydrogen, (H2O2, HO2, and OH). O2(-) (produced through dissociation of HO2) reacting with dissolved O3 is a major source of OH in the aqueous phase. This reaction can be a significant sink for O3 in the troposphere. In the interstitial cloud air, odd hydrogen is depleted, whereas NO(x) remains in the gas phase, thus reducing ozone production due to the reaction between NO and HO2. Our calculations give markedly lower ozone levels when cloud interactions are included. This may in part explain the overpredictions of ozone levels often experienced in models neglecting cloud chemical interactions. In the present study, the existence of clouds, cloud types, and their lifetimes are modeled as pseudo random variables. Such pseudo random sequences are in reality deterministic and may, given the same starting values, be reproduced. The effects of cloud interactions on the overall chemistry of

  16. Low Clouds and Fog Characterization over Iberian Peninsula using Meteosat Second Generation Images

    NASA Astrophysics Data System (ADS)

    Sánchez, Beatriz; Maqueda, Gregorio

    2014-05-01

    Fog is defined as a collection of suspended water droplets or ice crystals in the air near the Earth's surface that lead to a reduction of horizontal visibility below 1 km (National Oceanic and Atmospheric Administration, 1995). Fog is a stratiform cloud with similar radiative characteristics, for this reason the difference between fog and low stratus clouds is of little importance for remote sensing applications. Fog and low clouds are important atmospheric phenomena, mainly because of their impact on traffic safety and air quality, acting as an obstruction to traffic at land, sea and in the air. The purpose of this work is to develop the method of fog/low clouds detection and analysis on nighttime using Meteosat Second Generation data. This study is focused on the characterization of these atmospheric phenomena in different study cases over the Iberian Peninsula with distinct orography. Firstly, fog/low clouds detection is implemented as a composition of three infrared channels 12.0, 10.8 and 3.9 µm from SEVIRI radiometer on board European geostationary satellite Meteosat (Meteosat-9). The algorithm of detection makes use of a combination of these channels and their differences by creating RGB composites images. On this way, it displays the spatial coverage and location of fog entities. Secondly, this technique allows separating pixels which are indicated as fog/low clouds from clear pixels, assessing the properties of individual pixels using appropriated thresholds of brightness temperature. Thus, it achieves a full analysis of the extent and distribution of fog and its evolution over time. The results of this study have been checked by using ground-based point measurements available as METAR data. Despite the flaws in this sort of inter-comparison approach, the outcome produces to accurate fog/low clouds detection. This work encompasses the way to obtain spatial information from this atmospheric phenomenon by means of satellite imagery.

  17. Aerosols, clouds, and precipitation in the North Atlantic trades observed during the Barbados aerosol cloud experiment - Part 1: Distributions and variability

    NASA Astrophysics Data System (ADS)

    Jung, Eunsil; Albrecht, Bruce A.; Feingold, Graham; Jonsson, Haflidi H.; Chuang, Patrick; Donaher, Shaunna L.

    2016-07-01

    Shallow marine cumulus clouds are by far the most frequently observed cloud type over the Earth's oceans; but they are poorly understood and have not been investigated as extensively as stratocumulus clouds. This study describes and discusses the properties and variations of aerosol, cloud, and precipitation associated with shallow marine cumulus clouds observed in the North Atlantic trades during a field campaign (Barbados Aerosol Cloud Experiment- BACEX, March-April 2010), which took place off Barbados where African dust periodically affects the region. The principal observing platform was the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter (TO) research aircraft, which was equipped with standard meteorological instruments, a zenith pointing cloud radar and probes that measured aerosol, cloud, and precipitation characteristics.The temporal variation and vertical distribution of aerosols observed from the 15 flights, which included the most intense African dust event during all of 2010 in Barbados, showed a wide range of aerosol conditions. During dusty periods, aerosol concentrations increased substantially in the size range between 0.5 and 10 µm (diameter), particles that are large enough to be effective giant cloud condensation nuclei (CCN). The 10-day back trajectories showed three distinct air masses with distinct vertical structures associated with air masses originating in the Atlantic (typical maritime air mass with relatively low aerosol concentrations in the marine boundary layer), Africa (Saharan air layer), and mid-latitudes (continental pollution plumes). Despite the large differences in the total mass loading and the origin of the aerosols, the overall shapes of the aerosol particle size distributions were consistent, with the exception of the transition period.The TO was able to sample many clouds at various phases of growth. Maximum cloud depth observed was less than ˜ 3 km, while most clouds were less than 1 km

  18. Temperature Tunable Air-Gap Etalon Filter

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Stephen, Mark A.; Lunt, David L.

    1998-01-01

    We report on experimental measurements of a temperature tuned air-gap etalon filter. The filter exhibits temperature dependent wavelength tuning of 54 pm/C. It has a nominal center wavelength of 532 nm. The etalon filter has a 27 pm optical bandpass and 600 pm free spectral range (finesse approximately 22). The experimental results are in close agreement with etalon theory.

  19. Apparatus for supplying conditioned air at a substantially constant temperature and humidity

    NASA Technical Reports Server (NTRS)

    Obler, H. D. (Inventor)

    1980-01-01

    The apparatus includes a supply duct coupled to a source of supply air for carrying the supply air therethrough. A return duct is coupled to the supply duct for carrying return conditioned air therethrough. A temperature reducing device is coupled to the supply duct for decreasing the temperature of the supply and return conditioned air. A by-pass duct is coupled to the supply duct for selectively directing portions of the supply and return conditioned air around the temperature reducing device. Another by-pass duct is coupled to the return duct for selectively directing portions of the return conditioned air around the supply duct and the temperature reduction device. Controller devices selectively control the flow and amount of mixing of the supply and return conditioned air.

  20. Crowdsourcing urban air temperature measurements using smartphones

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-10-01

    Crowdsourced data from cell phone battery temperature sensors could be used to contribute to improved real-time, high-resolution air temperature estimates in urban areas, a new study shows. Temperature observations in cities are in some cases currently limited to a few weather stations, but there are millions of smartphone users in many cities. The batteries in cell phones have temperature sensors to avoid damage to the phone.

  1. Weekly Oscillation of Daily Climatology of Air Temperature: Implication for Anthropogenic Attribution

    NASA Astrophysics Data System (ADS)

    Jiang, S.; Wang, K.

    2016-12-01

    During national holiday and weekend, human activity and anthropogenic emission are expected to be much less than those during workday. Therefore, the contrast of environmental factors (i.e., air temperature and air quality) between national holiday (or weekend) and workday has been attributed to anthropogenic impact. For example, daily maximum (Tmax), minimum (Tmin) and mean (Tmean) air temperatures during the Chinese Spring Festival holiday were found to be 0. 6°C less than those of nearby workdays. We evaluated the contrasts using daily meteorological observations collected at 2479 stations in China from 1961 to 2015. The contrasts were evaluated with two methods. The first directly compared air temperatures between Chinese Spring Festival holiday and nearby workdays. The second first composited a daily climatology of air temperatures centered on the first day of Chinese Spring Festival holiday, and the seasonal cycles of air temperatures were then removed using polynomial regressions. The average of the derived daily deviation of air temperatures can be regarded as anthropogenic impact of Chinese Spring Festival holiday. We found that these two methods obtained nearly the same results. However, we found that the so-called anthropogenic impact during Chinese Spring Festival was not unique because the daily deviations of air temperatures had obvious weekly oscillations. The daily deviations of air temperature had periods of 7 days and 9 days, which explain 60% of the variance of daily deviations of Tmax, Tmin, and Tmean. These results indicate that the so-called anthropogenic impacts are primarily caused by natural variability, i.e., weekly oscillations of the air temperatures. This study also has great implication for the studies on weekend effect of the environmental factors.

  2. Relationship between cloud-to-ground discharge and penetrative clouds: A multi-channel satellite application

    NASA Astrophysics Data System (ADS)

    Machado, Luiz A. T.; Lima, Wagner F. A.; Pinto, Osmar; Morales, Carlos A.

    This work presents a relationship between atmospheric cloud-to-ground discharges and penetrative convective clouds. It combines Infrared and Water Vapor channels from the GOES-12 geostationary satellite with cloud-to-ground discharge data from the Brazilian Integrated Lightning Detection Network (RINDAT) during the period from January to February 2005. The difference between water vapor and infrared brightness temperature is a tracer penetrating clouds. Due to the water vapor channel's strong absorption, this difference is positive only during overshooting cases, when convective clouds penetrate the stratosphere. From this difference and the cloud-to-ground, discharge measured on the ground by RINDAT, it was possible to adjust exponential curves that relate the brightness temperature difference from these two channels to the probability of occurrence of cloud-to-ground discharges, with a very large coefficient of determination. If WV-IR brightness temperature difference is greater than - 15 K there is a large potential for cloud-to-ground discharge activity. As this difference increases the cloud-to-ground discharge probably increases, for example: if this difference is equal to zero, the probability of having at least one cloud-to-ground discharge is 10.9%, 7.0% for two, 4.4% for four, 2.7% for eight and 1.5% for sixteen cloud-to-ground discharges. Through this process, was developed a scheme that estimates the probability of occurrence of cloud-to-ground discharge over all the continental region of South America.

  3. Statistical modeling of urban air temperature distributions under different synoptic conditions

    NASA Astrophysics Data System (ADS)

    Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Hald, Cornelius; Hartz, Uwe; Jacobeit, Jucundus; Richter, Katja; Schneider, Alexandra; Wolf, Kathrin

    2015-04-01

    Within urban areas air temperature may vary distinctly between different locations. These intra-urban air temperature variations partly reach magnitudes that are relevant with respect to human thermal comfort. Therefore and furthermore taking into account potential interrelations with other health related environmental factors (e.g. air quality) it is important to estimate spatial patterns of intra-urban air temperature distributions that may be incorporated into urban planning processes. In this contribution we present an approach to estimate spatial temperature distributions in the urban area of Augsburg (Germany) by means of statistical modeling. At 36 locations in the urban area of Augsburg air temperatures are measured with high temporal resolution (4 min.) since December 2012. These 36 locations represent different typical urban land use characteristics in terms of varying percentage coverages of different land cover categories (e.g. impervious, built-up, vegetated). Percentage coverages of these land cover categories have been extracted from different sources (Open Street Map, European Urban Atlas, Urban Morphological Zones) for regular grids of varying size (50, 100, 200 meter horizonal resolution) for the urban area of Augsburg. It is well known from numerous studies that land use characteristics have a distinct influence on air temperature and as well other climatic variables at a certain location. Therefore air temperatures at the 36 locations are modeled utilizing land use characteristics (percentage coverages of land cover categories) as predictor variables in Stepwise Multiple Regression models and in Random Forest based model approaches. After model evaluation via cross-validation appropriate statistical models are applied to gridded land use data to derive spatial urban air temperature distributions. Varying models are tested and applied for different seasons and times of the day and also for different synoptic conditions (e.g. clear and calm

  4. The validation of AIRS retrievals

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Olsen, Edward T.; Chen, Luke L.; Hagan, Denise E.; Fishbein, Evan; McMillin, Larry; Zhou, Jiang; McMillan, Wallace W.

    2003-01-01

    The initial validation of Atmospheric Infrared Sounder (SIRS) experiment retrievals were completed in August 2003 as part of public release of version 3.0 data. The associated analyses are reported at http://daac.gsfc.nasa.gov/atmodyn/airs/, where data may be accessed. Here we describe some of those analyses, with an emphasis on cloud cleared radiances, atmospheric temperature profiles, sea surface temperature, total water vapor and atmospheric water vapor profiles. The results are applicable over ocean in the latitude band +/-40 degrees.

  5. An analysis of spatial representativeness of air temperature monitoring stations

    NASA Astrophysics Data System (ADS)

    Liu, Suhua; Su, Hongbo; Tian, Jing; Wang, Weizhen

    2018-05-01

    Surface air temperature is an essential variable for monitoring the atmosphere, and it is generally acquired at meteorological stations that can provide information about only a small area within an r m radius ( r-neighborhood) of the station, which is called the representable radius. In studies on a local scale, ground-based observations of surface air temperatures obtained from scattered stations are usually interpolated using a variety of methods without ascertaining their effectiveness. Thus, it is necessary to evaluate the spatial representativeness of ground-based observations of surface air temperature before conducting studies on a local scale. The present study used remote sensing data to estimate the spatial distribution of surface air temperature using the advection-energy balance for air temperature (ADEBAT) model. Two target stations in the study area were selected to conduct an analysis of spatial representativeness. The results showed that one station (AWS 7) had a representable radius of about 400 m with a possible error of less than 1 K, while the other station (AWS 16) had the radius of about 250 m. The representable radius was large when the heterogeneity of land cover around the station was small.

  6. CloudSat Overflight of Hurricane Bud

    NASA Image and Video Library

    2006-07-13

    The image at the top of figure 1 is from a geostationary imager. The colors relate to the temperature of the clouds. The higher the clouds, the lower the temperature. The highest, coldest clouds are located near the center of the hurricane.

  7. Global Average Brightness Temperature for April 2003

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] Figure 1

    This image shows average temperatures in April, 2003, observed by AIRS at an infrared wavelength that senses either the Earth's surface or any intervening cloud. Similar to a photograph of the planet taken with the camera shutter held open for a month, stationary features are captured while those obscured by moving clouds are blurred. Many continental features stand out boldly, such as our planet's vast deserts, and India, now at the end of its long, clear dry season. Also obvious are the high, cold Tibetan plateau to the north of India, and the mountains of North America. The band of yellow encircling the planet's equator is the Intertropical Convergence Zone (ITCZ), a region of persistent thunderstorms and associated high, cold clouds. The ITCZ merges with the monsoon systems of Africa and South America. Higher latitudes are increasingly obscured by clouds, though some features like the Great Lakes, the British Isles and Korea are apparent. The highest latitudes of Europe and Eurasia are completely obscured by clouds, while Antarctica stands out cold and clear at the bottom of the image.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  8. Two-way effect modifications of air pollution and air temperature on total natural and cardiovascular mortality in eight European urban areas.

    PubMed

    Chen, Kai; Wolf, Kathrin; Breitner, Susanne; Gasparrini, Antonio; Stafoggia, Massimo; Samoli, Evangelia; Andersen, Zorana Jovanovic; Bero-Bedada, Getahun; Bellander, Tom; Hennig, Frauke; Jacquemin, Bénédicte; Pekkanen, Juha; Hampel, Regina; Cyrys, Josef; Peters, Annette; Schneider, Alexandra

    2018-07-01

    Although epidemiological studies have reported associations between mortality and both ambient air pollution and air temperature, it remains uncertain whether the mortality effects of air pollution are modified by temperature and vice versa. Moreover, little is known on the interactions between ultrafine particles (diameter ≤ 100 nm, UFP) and temperature. We investigated whether the short-term associations of particle number concentration (PNC in the ultrafine range (≤100 nm) or total PNC ≤ 3000 nm, as a proxy for UFP), particulate matter ≤ 2.5 μm (PM 2.5 ) and ≤ 10 μm (PM 10 ), and ozone with daily total natural and cardiovascular mortality were modified by air temperature and whether air pollution levels affected the temperature-mortality associations in eight European urban areas during 1999-2013. We first analyzed air temperature-stratified associations between air pollution and total natural (nonaccidental) and cardiovascular mortality as well as air pollution-stratified temperature-mortality associations using city-specific over-dispersed Poisson additive models with a distributed lag nonlinear temperature term in each city. All models were adjusted for long-term and seasonal trend, day of the week, influenza epidemics, and population dynamics due to summer vacation and holidays. City-specific effect estimates were then pooled using random-effects meta-analysis. Pooled associations between air pollutants and total and cardiovascular mortality were overall positive and generally stronger at high relatively compared to low air temperatures. For example, on days with high air temperatures (>75th percentile), an increase of 10,000 particles/cm 3 in PNC corresponded to a 2.51% (95% CI: 0.39%, 4.67%) increase in cardiovascular mortality, which was significantly higher than that on days with low air temperatures (<25th percentile) [-0.18% (95% CI: -0.97%, 0.62%)]. On days with high air pollution (>50th percentile), both heat

  9. AIRS Detection of Dust: Global Map for July 2003

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The averaged brightness temperature differences between the 961 and 1231 cm-1 AIRS channels for July 2003, reveal long range transport of Sahara Dust across the Atlantic.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  10. LACIS-T - A moist air wind tunnel for investigating the interactions between cloud microphysics and turbulence

    NASA Astrophysics Data System (ADS)

    Niedermeier, Dennis; Voigtländer, Jens; Siebert, Holger; Desai, Neel; Shaw, Raymond; Chang, Kelken; Krueger, Steven; Schumacher, Jörg; Stratmann, Frank

    2017-11-01

    Turbulence - cloud droplet interaction processes have been investigated primarily through numerical simulation and field measurements over the last ten years. However, only in the laboratory we can be confident in our knowledge of initial and boundary conditions, and are able to measure for extended times under statistically stationary and repeatable conditions. Therefore, the newly built turbulent wind tunnel LACIS-T (Turbulent Leipzig Aerosol Cloud Interaction Simulator) is an ideal facility for pursuing mechanistic understanding of these processes. Within the tunnel we are able to adjust precisely controlled turbulent temperature and humidity fields so as to achieve supersaturation levels allowing for detailed investigations of the interactions between cloud microphysical processes (e.g., cloud droplet activation) and the turbulent flow, under well-defined and reproducible laboratory conditions. We will present the fundamental operating principle, first results from ongoing characterization efforts, numerical simulations as well as first droplet activation experiments.

  11. Tropical Storm Bonnie as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image of tropical storm Bonnie was captured on August 11 at 1:30am CDT. Located in the Gulf of Mexico, the center of the storm is positioned about 280 miles south-southwest of the mouth of the Mississippi River. Bonnie is a small tropical storm with wind speeds sustained at 45 mph and extending 30 miles from the storm center. It is moving northward at 5 mph.

    About the Movies The major contribution to radiation (infrared light) that AIRS infrared channels sense comes from different levels in the atmosphere, depending upon the channel wavelength. To create the movies, a set of AIRS infrared channels were selected which probe the atmosphere at progressively deeper levels. If there were no clouds, the color in each frame would be nearly uniform until the Earth's surface is encountered. The tropospheric air temperature warms at a rate of 6 K (about 11 F) for each kilometer of descent toward the surface. Thus the colors would gradually change from cold to warm as the movie progresses.

    Clouds block the infrared radiation. Thus wherever there are clouds we can penetrate no deeper in infrared. The color remains fixed as the movie progresses, for that area of the image is 'stuck' to the cloud top temperature. The coldest temperatures around 220 K (about -65 F) come from altitudes of about 10 miles.

    We therefore see in a 'surface channel' at the end of the movie, signals from clouds as cold as 220 K and from Earth's surface at 310 K (about 100 F). The very coldest clouds are seen in deep convection thunderstorms over land. Images [figure removed for brevity, see original site] August 11, 2004 Infrared image. [figure removed for brevity, see original site] August 10, 2004 Daylight snapshot from AIRS visible/near-infrared sensor.

    [figure removed for brevity, see original site] August 11, 2004 At this time, Bonnie is a small tropical storm with wind speeds sustained at 50 mph (85 km/h), and it moving northward at 6 mph. August 10, 2004 Infrared

  12. Meteorological Analysis of Icing Conditions Encountered in Low-Altitude Stratiform Clouds

    NASA Technical Reports Server (NTRS)

    Kline, D. B.; Walker, J. A.

    1951-01-01

    Liquid-water content, droplet size, and temperature data measured during 22 flights in predominatly stratiform clouds through the 1948-49 and the 1949-50 winters are presented. Several icing encounters were of greater severity than those previously measured over the same geographical area, but were within the limits of similar measurements obtained over different terrain within the United States. An analysis of meteorological conditions existing during the 74 flights conducted for four winters indicated an inverse relation of liquid-water concentration to maximum horizontal extent of icing clouds. Data on the vertical extent of supercooled clouds are also presented. Icing conditions were most likely to occur in the southwest and northwest quadrants of a cyclone area, and least likely to occur in the southeast and northeast quadrants where convergent air flow and lifting over the associated warm frontal surface usually cause precipitation. Additional data indicated that, icing conditions were usually encountered in nonprecipitating clouds existing at subfreezing temperatures and were unlikely over areas where most weather observing stations reported the existence of precipitation. Measurements of liquid-water content obtained during 12 flights near the time and location of radiosonde observations were compared with theoretical values. The average liquid-water content of a cloud layer, as measured by the multicylinder technique, seldom exceeded two-thirds of that which could be released by adiabatic lifting. Local areas near the cloud tops equaled or occasionally exceeded the calculated maximum quantity of liquid water.

  13. Hurricane Alex as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Click on the image for August 3, 2004 movie, slicing down the atmosphere with the AIRS infrared sensor

    These images of hurricane Alex were captured on August 3, 2004 at 1:30pm EDT. Located in the Atlantic Ocean located about 80 miles south-southeast of Charleston, South Carolina, Alex is now a category 2 hurricane with maximum sustained winds were near 100 mph (161 kph). Alex's center was about 65 miles (104 kilometers) northeast of Cape Hatteras and moving away from the U.S. coast.

    The major contribution to radiation (infrared light) that AIRS infrared channels sense comes from different levels in the atmosphere, depending upon the channel wavelength. To create the movies, a set of AIRS infrared channels were selected which probe the atmosphere at progressively deeper levels. If there were no clouds, the color in each frame would be nearly uniform until the Earth's surface is encountered. The tropospheric air temperature warms at a rate of 6 K (about 11 F) for each kilometer of descent toward the surface. Thus the colors would gradually change from cold to warm as the movie progresses.

    Clouds block the infrared radiation. Thus wherever there are clouds we can penetrate no deeper in infrared. The color remains fixed as the movie progresses, for that area of the image is 'stuck' to the cloud top temperature. The coldest temperatures around 220 K (about -65 F) come from altitudes of about 10 miles.

    We therefore see in a 'surface channel' at the end of the movie, signals from clouds as cold as 220 K and from Earth's surface at 310 K (about 100 F). The very coldest clouds are seen in deep convection thunderstorms over land. Images [figure removed for brevity, see original site] August 2, 2004, 1:30am ET Frame from August 2 movie, slicing down the atmosphere with the AIRS infrared sensor. Alex a tropical storm, sustained winds at 60 mph. The storm is 115 miles southeast of Charleston, South

  14. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ambient air temperature and operating... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Operating Limitations and Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of...

  15. Cloud point phenomena for POE-type nonionic surfactants in a model room temperature ionic liquid.

    PubMed

    Inoue, Tohru; Misono, Takeshi

    2008-10-15

    The cloud point phenomenon has been investigated for the solutions of polyoxyethylene (POE)-type nonionic surfactants (C(12)E(5), C(12)E(6), C(12)E(7), C(10)E(6), and C(14)E(6)) in 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)), a typical room temperature ionic liquid (RTIL). The cloud point, T(c), increases with the elongation of the POE chain, while decreases with the increase in the hydrocarbon chain length. This demonstrates that the solvophilicity/solvophobicity of the surfactants in RTIL comes from POE chain/hydrocarbon chain. When compared with an aqueous system, the chain length dependence of T(c) is larger for the RTIL system regarding both POE and hydrocarbon chains; in particular, hydrocarbon chain length affects T(c) much more strongly in the RTIL system than in equivalent aqueous systems. In a similar fashion to the much-studied aqueous systems, the micellar growth is also observed in this RTIL solvent as the temperature approaches T(c). The cloud point curves have been analyzed using a Flory-Huggins-type model based on phase separation in polymer solutions.

  16. Soil and air temperature and biomass after residue treatment.

    Treesearch

    W.B. Fowler; J.D. Helvey

    1981-01-01

    Air temperature at 0.5 m and soil temperature at 0.01 m were measured during May and early June after forest harvest on four residue treatment sites and a control. Broadcast burning or burning in piles increased daily accumulation of heat in air while scattered chips and scarified and cleared treatments were equal to the control (broadcast, untreated slash). During mid...

  17. Raman lidar measurement of water vapor and ice clouds associated with Asian dust layer over Tsukuba, Japan

    NASA Astrophysics Data System (ADS)

    Sakai, Tetsu; Nagai, Tomohiro; Nakazato, Masahisa; Matsumura, Takatsugu

    2004-03-01

    The vertical distributions of particle extinction, backscattering, depolarization, and water vapor mixing ratio were measured using a Raman lidar over Tsukuba (36.1°N, 140.1°E), Japan, on 23-24 April 2001. Ice clouds associated with the Asian dust layer were observed at an altitude of ~6-9 km. The relative humidities in the cloud layer were close to the ice saturation values and the temperature at the top of the cloud layer was ~-35°C, suggesting that the Asian dust acted as ice nuclei at the high temperatures. The meteorological analysis suggested that the ice-saturated region was formed near the top of the dust layer where the moist air ascended in slantwise fashion above the cold-frontal zone associated with extratropical cyclone.

  18. Simultaneous retrieval of water vapour, temperature and cirrus clouds properties from measurements of far infrared spectral radiance over the Antarctic Plateau

    NASA Astrophysics Data System (ADS)

    Di Natale, Gianluca; Palchetti, Luca; Bianchini, Giovanni; Del Guasta, Massimo

    2017-03-01

    The possibility separating the contributions of the atmospheric state and ice clouds by using spectral infrared measurements is a fundamental step to quantifying the cloud effect in climate models. A simultaneous retrieval of cloud and atmospheric parameters from infrared wideband spectra will allow the disentanglement of the spectral interference between these variables. In this paper, we describe the development of a code for the simultaneous retrieval of atmospheric state and ice cloud parameters, and its application to the analysis of the spectral measurements acquired by the Radiation Explorer in the Far Infrared - Prototype for Applications and Development (REFIR-PAD) spectroradiometer, which has been in operation at Concordia Station on the Antarctic Plateau since 2012. The code performs the retrieval with a computational time that is comparable with the instrument acquisition time. Water vapour and temperature profiles and the cloud optical and microphysical properties, such as the generalised effective diameter and the ice water path, are retrieved by exploiting the 230-980 cm-1 spectral band. To simulate atmospheric radiative transfer, the Line-By-Line Radiative Transfer Model (LBLRTM) has been integrated with a specifically developed subroutine based on the δ-Eddington two-stream approximation, whereas the single-scattering properties of cirrus clouds have been derived from a database for hexagonal column habits. In order to detect ice clouds, a backscattering and depolarisation lidar, co-located with REFIR-PAD has been used, allowing us to infer the position and the cloud thickness to be used in the retrieval. A climatology of the vertical profiles of water vapour and temperature has been performed by using the daily radiosounding available at the station at 12:00 UTC. The climatology has been used to build an a priori profile correlation to constrain the fitting procedure. An optimal estimation method with the Levenberg-Marquardt approach has been

  19. Thermodynamic control of anvil cloud amount

    PubMed Central

    Bony, Sandrine; Stevens, Bjorn; Coppin, David; Becker, Tobias; Reed, Kevin A.; Voigt, Aiko

    2016-01-01

    General circulation models show that as the surface temperature increases, the convective anvil clouds shrink. By analyzing radiative–convective equilibrium simulations, we show that this behavior is rooted in basic energetic and thermodynamic properties of the atmosphere: As the climate warms, the clouds rise and remain at nearly the same temperature, but find themselves in a more stable atmosphere; this enhanced stability reduces the convective outflow in the upper troposphere and decreases the anvil cloud fraction. By warming the troposphere and increasing the upper-tropospheric stability, the clustering of deep convection also reduces the convective outflow and the anvil cloud fraction. When clouds are radiatively active, this robust coupling between temperature, high clouds, and circulation exerts a positive feedback on convective aggregation and favors the maintenance of strongly aggregated atmospheric states at high temperatures. This stability iris mechanism likely contributes to the narrowing of rainy areas as the climate warms. Whether or not it influences climate sensitivity requires further investigation. PMID:27412863

  20. Thermodynamic control of anvil cloud amount

    DOE PAGES

    Bony, Sandrine; Stevens, Bjorn; Coppin, David; ...

    2016-07-13

    General circulation models show that as the surface temperature increases, the convective anvil clouds shrink. By analyzing radiative–convective equilibrium simulations, our work shows that this behavior is rooted in basic energetic and thermodynamic properties of the atmosphere: As the climate warms, the clouds rise and remain at nearly the same temperature, but find themselves in a more stable atmosphere; this enhanced stability reduces the convective outflow in the upper troposphere and decreases the anvil cloud fraction. By warming the troposphere and increasing the upper-tropospheric stability, the clustering of deep convection also reduces the convective outflow and the anvil cloud fraction.more » When clouds are radiatively active, this robust coupling between temperature, high clouds, and circulation exerts a positive feedback on convective aggregation and favors the maintenance of strongly aggregated atmospheric states at high temperatures. This stability iris mechanism likely contributes to the narrowing of rainy areas as the climate warms. Whether or not it influences climate sensitivity requires further investigation.« less

  1. Drizzle formation in stratocumulus clouds: Effects of turbulent mixing

    DOE PAGES

    Magaritz-Ronen, L.; Pinsky, M.; Khain, A.

    2016-02-17

    The mechanism of drizzle formation in shallow stratocumulus clouds and the effect of turbulent mixing on this process are investigated. A Lagrangian–Eularian model of the cloud-topped boundary layer is used to simulate the cloud measured during flight RF07 of the DYCOMS-II field experiment. The model contains ~ 2000 air parcels that are advected in a turbulence-like velocity field. In the model all microphysical processes are described for each Lagrangian air volume, and turbulent mixing between the parcels is also taken into account. It was found that the first large drops form in air volumes that are closest to adiabatic andmore » characterized by high humidity, extended residence near cloud top, and maximum values of liquid water content, allowing the formation of drops as a result of efficient collisions. The first large drops form near cloud top and initiate drizzle formation in the cloud. Drizzle is developed only when turbulent mixing of parcels is included in the model. Without mixing, the cloud structure is extremely inhomogeneous and the few large drops that do form in the cloud evaporate during their sedimentation. Lastly, it was found that turbulent mixing can delay the process of drizzle initiation but is essential for the further development of drizzle in the cloud.« less

  2. Drizzle formation in stratocumulus clouds: Effects of turbulent mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magaritz-Ronen, L.; Pinsky, M.; Khain, A.

    The mechanism of drizzle formation in shallow stratocumulus clouds and the effect of turbulent mixing on this process are investigated. A Lagrangian–Eularian model of the cloud-topped boundary layer is used to simulate the cloud measured during flight RF07 of the DYCOMS-II field experiment. The model contains ~ 2000 air parcels that are advected in a turbulence-like velocity field. In the model all microphysical processes are described for each Lagrangian air volume, and turbulent mixing between the parcels is also taken into account. It was found that the first large drops form in air volumes that are closest to adiabatic andmore » characterized by high humidity, extended residence near cloud top, and maximum values of liquid water content, allowing the formation of drops as a result of efficient collisions. The first large drops form near cloud top and initiate drizzle formation in the cloud. Drizzle is developed only when turbulent mixing of parcels is included in the model. Without mixing, the cloud structure is extremely inhomogeneous and the few large drops that do form in the cloud evaporate during their sedimentation. Lastly, it was found that turbulent mixing can delay the process of drizzle initiation but is essential for the further development of drizzle in the cloud.« less

  3. Open-cell cloud formation over the Bahamas

    NASA Technical Reports Server (NTRS)

    2002-01-01

    What atmospheric scientists refer to as open cell cloud formation is a regular occurrence on the back side of a low-pressure system or cyclone in the mid-latitudes. In the Northern Hemisphere, a low-pressure system will draw in surrounding air and spin it counterclockwise. That means that on the back side of the low-pressure center, cold air will be drawn in from the north, and on the front side, warm air will be drawn up from latitudes closer to the equator. This movement of an air mass is called advection, and when cold air advection occurs over warmer waters, open cell cloud formations often result. This MODIS image shows open cell cloud formation over the Atlantic Ocean off the southeast coast of the United States on February 19, 2002. This particular formation is the result of a low-pressure system sitting out in the North Atlantic Ocean a few hundred miles east of Massachusetts. (The low can be seen as the comma-shaped figure in the GOES-8 Infrared image from February 19, 2002.) Cold air is being drawn down from the north on the western side of the low and the open cell cumulus clouds begin to form as the cold air passes over the warmer Caribbean waters. For another look at the scene, check out the MODIS Direct Broadcast Image from the University of Wisconsin. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  4. Determination of bulk properties of tropical cloud clusters from large scale heat and moisture budgets, appendix B

    NASA Technical Reports Server (NTRS)

    Yanai, M.; Esbensen, S.; Chu, J.

    1972-01-01

    The bulk properties of tropical cloud clusters, as the vertical mass flux, the excess temperature, and moisture and the liquid water content of the clouds, are determined from a combination of the observed large-scale heat and moisture budgets over an area covering the cloud cluster, and a model of a cumulus ensemble which exchanges mass, heat, vapor and liquid water with the environment through entrainment and detrainment. The method also provides an understanding of how the environmental air is heated and moistened by the cumulus convection. An estimate of the average cloud cluster properties and the heat and moisture balance of the environment, obtained from 1956 Marshall Islands data, is presented.

  5. CAUSES: On the Role of Surface Energy Budget Errors to the Warm Surface Air Temperature Error Over the Central United States

    DOE PAGES

    Ma, H. -Y.; Klein, S. A.; Xie, S.; ...

    2018-02-27

    Many weather forecast and climate models simulate warm surface air temperature (T 2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T 2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions ofmore » surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T 2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T 2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.« less

  6. CAUSES: On the Role of Surface Energy Budget Errors to the Warm Surface Air Temperature Error Over the Central United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, H. -Y.; Klein, S. A.; Xie, S.

    Many weather forecast and climate models simulate warm surface air temperature (T 2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T 2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions ofmore » surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T 2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T 2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.« less

  7. Verifying Operational and Developmental Air Force Weather Cloud Analysis and Forecast Products Using Lidar Data from Department of Energy Atmospheric Radiation Measurement (ARM) Sites

    NASA Astrophysics Data System (ADS)

    Hildebrand, E. P.

    2017-12-01

    Air Force Weather has developed various cloud analysis and forecast products designed to support global Department of Defense (DoD) missions. A World-Wide Merged Cloud Analysis (WWMCA) and short term Advected Cloud (ADVCLD) forecast is generated hourly using data from 16 geostationary and polar-orbiting satellites. Additionally, WWMCA and Numerical Weather Prediction (NWP) data are used in a statistical long-term (out to five days) cloud forecast model known as the Diagnostic Cloud Forecast (DCF). The WWMCA and ADVCLD are generated on the same polar stereographic 24 km grid for each hemisphere, whereas the DCF is generated on the same grid as its parent NWP model. When verifying the cloud forecast models, the goal is to understand not only the ability to detect cloud, but also the ability to assign it to the correct vertical layer. ADVCLD and DCF forecasts traditionally have been verified using WWMCA data as truth, but this might over-inflate the performance of those models because WWMCA also is a primary input dataset for those models. Because of this, in recent years, a WWMCA Reanalysis product has been developed, but this too is not a fully independent dataset. This year, work has been done to incorporate data from external, independent sources to verify not only the cloud forecast products, but the WWMCA data itself. One such dataset that has been useful for examining the 3-D performance of the cloud analysis and forecast models is Atmospheric Radiation Measurement (ARM) data from various sites around the globe. This presentation will focus on the use of the Department of Energy (DoE) ARM data to verify Air Force Weather cloud analysis and forecast products. Results will be presented to show relative strengths and weaknesses of the analyses and forecasts.

  8. Cloud Particle Size and Water/Ice Ratio Estimation using the DMSP SSMIS Sounder

    NASA Astrophysics Data System (ADS)

    Peng, G. S.; Fote, A. A.; Wu, D. L.; Boucher, D. J.; Thomas, B. H.; Kishi, A. M.

    2008-12-01

    The Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager/Sounder (SSMIS) is a next-generation passive conically scanning microwave radiometer. It combines both imaging and sounding capabilities of current operational instruments, SSM/I, SSM/T-1 and SSM/T-2. It also improves the capability of temperature sounding by providing profiles from the surface up to 70 km altitude with higher spatial resolutions (~37.5 for lower air and ~75 km for upper air). DMSP Flight 17 launched on 4 November 2006 from Vandenberg Air Force Base carrying the second SSMIS sounder. During the SSMIS Cal/Val period, cold patches were observed in the 50-55 GHz temperature sounding channels at low latitudes. Cold patches were also more apparent in the horizontal polarization (H- pol) than the Vertical polarization (V-pol) channels. A difference in sensitivity of the H-pol and V-pol channels gives the ratio of water to ice in the clouds. Subsequent investigation showed that these patches appeared in the 91.6 GHz channels but not the 37 GHz channels. This information, together with the theoretical scattering efficiency for spherical particles of various sizes, gives an upper bound of < 2 mm diameter for water and ice particles that may not be detected by SSMIS operational 'cloud clearing' algorithms.

  9. Comparisons of Mixed-Phase Icing Cloud Simulations with Experiments Conducted at the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Bartkus, Tadas P.; Struk, Peter M.; Tsao, Jen-Ching

    2017-01-01

    This paper builds on previous work that compares numerical simulations of mixed-phase icing clouds with experimental data. The model couples the thermal interaction between ice particles and water droplets of the icing cloud with the flowing air of an icing wind tunnel for simulation of NASA Glenn Research Centers (GRC) Propulsion Systems Laboratory (PSL). Measurements were taken during the Fundamentals of Ice Crystal Icing Physics Tests at the PSL tunnel in March 2016. The tests simulated ice-crystal and mixed-phase icing that relate to ice accretions within turbofan engines. Experimentally measured air temperature, humidity, total water content, liquid and ice water content, as well as cloud particle size, are compared with model predictions. The model showed good trend agreement with experimentally measured values, but often over-predicted aero-thermodynamic changes. This discrepancy is likely attributed to radial variations that this one-dimensional model does not address. One of the key findings of this work is that greater aero-thermodynamic changes occur when humidity conditions are low. In addition a range of mixed-phase clouds can be achieved by varying only the tunnel humidity conditions, but the range of humidities to generate a mixed-phase cloud becomes smaller when clouds are composed of smaller particles. In general, the model predicted melt fraction well, in particular with clouds composed of larger particle sizes.

  10. Attribution of precipitation changes on ground-air temperature offset: Granger causality analysis

    NASA Astrophysics Data System (ADS)

    Cermak, Vladimir; Bodri, Louise

    2018-01-01

    This work examines the causal relationship between the value of the ground-air temperature offset and the precipitation changes for monitored 5-min data series together with their hourly and daily averages obtained at the Sporilov Geophysical Observatory (Prague). Shallow subsurface soil temperatures were monitored under four different land cover types (bare soil, sand, short-cut grass and asphalt). The ground surface temperature (GST) and surface air temperature (SAT) offset, Δ T(GST-SAT), is defined as the difference between the temperature measured at the depth of 2 cm below the surface and the air temperature measured at 5 cm above the surface. The results of the Granger causality test did not reveal any evidence of Granger causality for precipitation to ground-air temperature offsets on the daily scale of aggregation except for the asphalt pavement. On the contrary, a strong evidence of Granger causality for precipitation to the ground-air temperature offsets was found on the hourly scale of aggregation for all land cover types except for the sand surface cover. All results are sensitive to the lag choice of the autoregressive model. On the whole, obtained results contain valuable information on the delay time of Δ T(GST-SAT) caused by the rainfall events and confirmed the importance of using autoregressive models to understand the ground-air temperature relationship.

  11. Comparison of Near-Surface Air Temperatures and MODIS Ice-Surface Temperatures at Summit, Greenland (2008-2013)

    NASA Technical Reports Server (NTRS)

    Shuman, Christopher A.; Hall, Dorothy K.; DiGirolamo, Nicolo E.; Mefford, Thomas K.; Schnaubelt, Michael J.

    2014-01-01

    We have investigated the stability of the MODerate resolution Imaging Spectroradiometer (MODIS) infrared-derived ice surface temperature (IST) data from Terra for use as a climate quality data record. The availability of climate quality air temperature data (TA) from a NOAA Global Monitoring Division observatory at Greenlands Summit station has enabled this high temporal resolution study of MODIS ISTs. During a 5 year period (July 2008 to August 2013), more than 2500 IST values were compared with 3-minute average TA values derived from the 1-minute data from NOAAs primary 2 m air temperature sensor. These data enabled an expected small offset between air and surface temperatures at this the ice sheet location to be investigated over multiple annual cycles.

  12. A Quantitative Investigation of Entrainment and Detrainment in Numerically Simulated Convective Clouds. Pt. 1; Model Development

    NASA Technical Reports Server (NTRS)

    Cohen, Charles

    1998-01-01

    A method is developed which uses numerical tracers to make accurate diagnoses of entraimnent and detrainment rates and of the properties of the entrained and detrained air in numerically simulated clouds. The numerical advection scheme is modified to make it nondispersive, as required by the use of the tracers. Tests of the new method are made, and an appropriate definition of clouds is selected. Distributions of mixing fractions in the model consistently show maximums at the end points, for nearly undilute environmental air or nearly undilute cloud air, with a uniform distribution between. The cumulonimbus clouds simulated here entrain air that had been substantially changed by the clouds, and detrained air that is not necessarily representative of the cloud air at the same level.

  13. Impacts of Lowered Urban Air Temperatures on Precursor Emission and Ozone Air Quality.

    PubMed

    Taha, Haider; Konopacki, Steven; Akbari, Hashem

    1998-09-01

    Meteorological, photochemical, building-energy, and power plant simulations were performed to assess the possible precursor emission and ozone air quality impacts of decreased air temperatures that could result from implementing the "cool communities" concept in California's South Coast Air Basin (SoCAB). Two pathways are considered. In the direct pathway, a reduction in cooling energy use translates into reduced demand for generation capacity and, thus, reduced precursor emissions from electric utility power plants. In the indirect pathway, reduced air temperatures can slow the atmospheric production of ozone as well as precursor emission from anthropogenic and biogenic sources. The simulations suggest small impacts on emissions following implementation of cool communities in the SoCAB. In summer, for example, there can be reductions of up to 3% in NO x emissions from in-basin power plants. The photochemical simulations suggest that the air quality impacts of these direct emission reductions are small. However, the indirect atmospheric effects of cool communities can be significant. For example, ozone peak concentrations can decrease by up to 11% in summer and population-weighted exceedance exposure to ozone above the California and National Ambient Air Quality Standards can decrease by up to 11 and 17%, respectively. The modeling suggests that if these strategies are combined with others, such as mobile-source emission control, the improvements in ozone air quality can be substantial.

  14. Thermal disequilibrium at the top of volcanic clouds and its effect on estimates of the column height

    NASA Technical Reports Server (NTRS)

    Woods, Andrew W.; Self, Stephen

    1992-01-01

    Satellite images of large volcanic explosions reveal that the tops of volcanic eruptions columns are much cooler than the surrounding atmosphere. It is proposed that this effect occurs whenever a mixture of hot volcanic ash and entrained air ascends sufficiently high into a stably stratified atmosphere. Although the mixture is initially very hot, it expands and cools as the ambient pressure decreases. It is shown that cloud-top undercoolings in excess of 20 C may develop in clouds that penetrate the stratosphere, and it is predicted that, for a given cloud-top temperature, variations in the initial temperature of 100-200 C may correspond to variations in the column height of 5-10 km. It is deduced that the present practice of converting satellite-based measurements of the temperature at the top of volcanic eruptions columns to estimates of the column height will produce rather inaccurate results and should therefore be discontinued.

  15. Characterizing Air Temperature Changes in the Tarim Basin over 1960–2012

    PubMed Central

    Peng, Dongmei; Wang, Xiujun; Zhao, Chenyi; Wu, Xingren; Jiang, Fengqing; Chen, Pengxiang

    2014-01-01

    There has been evidence of warming rate varying largely over space and between seasons. However, little has been done to evaluate the spatial and temporal variability of air temperature in the Tarim Basin, northwest China. In this study, we collected daily air temperature from 19 meteorological stations for the period of 1960–2012, and analyzed annual mean temperature (AMT), the annual minimum (Tmin) and maximum temperature (Tmax), and mean temperatures of all twelve months and four seasons and their anomalies. Trend analyses, standard deviation of the detrended anomaly (SDDA) and correlations were carried out to characterize the spatial and temporal variability of various mean air temperatures. Our data showed that increasing trend was much greater in the Tmin (0.55°C/10a) than in the AMT (0.25°C/10a) and Tmax (0.12°C/10a), and the fluctuation followed the same order. There were large spatial variations in the increasing trends of both AMT (from −0.09 to 0.43 °C/10a) and Tmin (from 0.15 to 1.12°C/10a). Correlation analyses indicated that AMT had a significantly linear relationship with Tmin and the mean temperatures of four seasons. There were also pronounced changes in the monthly air temperature from November to March at decadal time scale. The seasonality (i.e., summer and winter difference) of air temperature was stronger during the period of 1960–1979 than over the recent three decades. Our preliminary analyses indicated that local environmental conditions (such as elevation) might be partly responsible for the spatial variability, and large scale climate phenomena might have influences on the temporal variability of air temperature in the Tarim Basin. In particular, there was a significant correlation between index of El Niño-Southern Oscillation (ENSO) and air temperature of May (P = 0.004), and between the index of Pacific Decadal Oscillation (PDO) and air temperature of July (P = 0.026) over the interannual to decadal time scales. PMID

  16. Dispersion of Droplet Clouds in Turbulence.

    PubMed

    Bocanegra Evans, Humberto; Dam, Nico; Bertens, Guus; van der Voort, Dennis; van de Water, Willem

    2016-10-14

    We measure the absolute dispersion of clouds of monodisperse, phosphorescent droplets in turbulent air by means of high-speed image-intensified video recordings. Laser excitation allows the initial preparation of well-defined, pencil-shaped luminous droplet clouds in a completely nonintrusive way. We find that the dispersion of the clouds is faster than the dispersion of fluid elements. We speculate that preferential concentration of inertial droplet clouds is responsible for the enhanced dispersion.

  17. AIRS Data Subsetting Service at the Goddard Earth Sciences (GES) DISC/DAAC

    NASA Technical Reports Server (NTRS)

    Vicente, Gilberto A.; Qin, Jianchun; Li, Jason; Gerasimov, Irina; Savtchenko, Andrey

    2004-01-01

    The AIRS mission, as a combination of the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil (HSB), brings climate research and weather prediction into 21st century. From NASA' Aqua spacecraft, the AIRS/AMSU/HSB instruments measure humidity, temperature, cloud properties and the amounts of greenhouse gases. The AIRS also reveals land and sea- surface temperatures. Measurements from these three instruments are analyzed . jointly to filter out the effects of clouds from the IR data in order to derive clear-column air-temperature profiles and surface temperatures with high vertical resolution and accuracy. Together, they constitute an advanced operational sounding data system that have contributed to improve global modeling efforts and numerical weather prediction; enhance studies of the global energy and water cycles, the effects of greenhouse gases, and atmosphere-surface interactions; and facilitate monitoring of climate variations and trends. The high data volume generated by the AIRS/AMSU/HSB instruments and the complexity of its data format (Hierarchical Data Format, HDF) are barriers to AIRS data use. Although many researchers are interested in only a fraction of the data they receive or request, they are forced to run their algorithms on a much larger data set to extract the information of interest. In order to better server its users, the GES DISC/DAAC, provider of long-term archives and distribution services as well science support for the AIRS/AMSU/HSB data products, has developed various tools for performing channels, variables, parameter, spatial and derived products subsetting, resampling and reformatting operations. This presentation mainly describes the web-enabled subsetting services currently available at the GES DISC/DAAC that provide subsetting functions for all the Level 1B and Level 2 data products from the AIRS/AMSU/HSB instruments.

  18. Extraction of Profile Information from Cloud Contaminated Radiances. Appendixes 2

    NASA Technical Reports Server (NTRS)

    Smith, W. L.; Zhou, D. K.; Huang, H.-L.; Li, Jun; Liu, X.; Larar, A. M.

    2003-01-01

    Clouds act to reduce the signal level and may produce noise dependence on the complexity of the cloud properties and the manner in which they are treated in the profile retrieval process. There are essentially three ways to extract profile information from cloud contaminated radiances: (1) cloud-clearing using spatially adjacent cloud contaminated radiance measurements, (2) retrieval based upon the assumption of opaque cloud conditions, and (3) retrieval or radiance assimilation using a physically correct cloud radiative transfer model which accounts for the absorption and scattering of the radiance observed. Cloud clearing extracts the radiance arising from the clear air portion of partly clouded fields of view permitting soundings to the surface or the assimilation of radiances as in the clear field of view case. However, the accuracy of the clear air radiance signal depends upon the cloud height and optical property uniformity across the two fields of view used in the cloud clearing process. The assumption of opaque clouds within the field of view permits relatively accurate profiles to be retrieved down to near cloud top levels, the accuracy near the cloud top level being dependent upon the actual microphysical properties of the cloud. The use of a physically correct cloud radiative transfer model enables accurate retrievals down to cloud top levels and below semi-transparent cloud layers (e.g., cirrus). It should also be possible to assimilate cloudy radiances directly into the model given a physically correct cloud radiative transfer model using geometric and microphysical cloud parameters retrieved from the radiance spectra as initial cloud variables in the radiance assimilation process. This presentation reviews the above three ways to extract profile information from cloud contaminated radiances. NPOESS Airborne Sounder Testbed-Interferometer radiance spectra and Aqua satellite AIRS radiance spectra are used to illustrate how cloudy radiances can be used

  19. High-precision diode-laser-based temperature measurement for air refractive index compensation.

    PubMed

    Hieta, Tuomas; Merimaa, Mikko; Vainio, Markku; Seppä, Jeremias; Lassila, Antti

    2011-11-01

    We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements, it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlén equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilizes direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well-matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially nonhomogeneous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using a 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement. © 2011 Optical Society of America

  20. Combustion Organic Aerosol as Cloud Condensation Nuclei in Ship Tracks.

    NASA Astrophysics Data System (ADS)

    Russell, Lynn M.; Noone, Kevin J.; Ferek, Ronald J.; Pockalny, Robert A.; Flagan, Richard C.; Seinfeld, John H.

    2000-08-01

    Polycyclic aromatic hydrocarbons (PAHs) have been sampled in marine stratiform clouds to identify the contribution of anthropogenic combustion emissions in activation of aerosol to cloud droplets. The Monterey Area Ship Track experiment provided an opportunity to acquire data on the role of organic compounds in ambient clouds and in ship tracks identified in satellite images. Identification of PAHs in cloud droplet residual samples indicates that several PAHs are present in cloud condensation nuclei in anthropogenically influenced air and do result in activated droplets in cloud. These results establish the presence of combustion products, such as PAHs, in submicrometer aerosols in anthropogenically influenced marine air, with enhanced concentrations in air polluted by ship effluent. The presence of PAHs in droplet residuals in anthropogenically influenced air masses indicates that some fraction of those combustion products is present in the cloud condensation nuclei that activate in cloud. Although a sufficient mass of droplet residuals was not collected to establish a similar role for organics from measurements in satellite-identified ship tracks, the available evidence from the fraction of organics present in the interstitial aerosol is consistent with part of the organic fraction partitioning to the droplet population. In addition, the probability that a compound will be found in cloud droplets rather than in the unactivated aerosol and the compound's water solubility are compared. The PAHs studied are only weakly soluble in water, but most of the sparse data collected support more soluble compounds having a higher probability of activation.

  1. An inquiry into the cirrus-cloud thermostat effect for tropical sea surface temperature

    NASA Technical Reports Server (NTRS)

    Lau, K.-M.; Sui, C.-H.; Chou, M.-D.; Tao, W.-K.

    1994-01-01

    In this paper, we investigate the relative importance of local vs remote control on cloud radiative forcing using a cumulus ensemble model. It is found that cloud and surface radiation forcings are much more sensitive to the mean vertical motion assoicated with large scale tropical circulation than to the local SST (sea surface temperature). When the local SST is increased with the mean vertical motion held constant, increased surface latent and sensible heat flux associated with enhanced moisture recycling is found to be the primary mechanism for cooling the ocean surface. Large changes in surface shortwave fluxes are related to changes in cloudiness induced by changes in the large scale circulation. These results are consistent with a number of earlier empirical studies, which raised concerns regarding the validity of the cirrus-thermostat hypothesis (Ramanathan and Collins, 1991). It is argued that for a better understanding of cloud feedback, both local and remote controls need to be considered and that a cumulus ensemble model is a powerful tool that should be explored for such purpose.

  2. Volcanic Plume from Mt. Unzen, Dust Cloud, cloud Vortices

    NASA Image and Video Library

    1991-12-01

    Stable, south flowing air over the western Pacific Ocean (26.0N, 131.0E) is disturbed by islands south of Korea, resulting in sinuous clouds known as von Karman vortices. The smoke plume from Japan's Mount Unzen Volcano on Kyushu, is visible just west of the large cloud mass and extending southward. A very large, purple tinged dust pall, originating in Mongolia, can be seen on the Earth's Limb, covering eastern China and extending into the East China Sea.

  3. A CloudSat-CALIPSO View of Cloud and Precipitation Properties Across Cold Fronts over the Global Oceans

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.

    2015-01-01

    The distribution of cloud and precipitation properties across oceanic extratropical cyclone cold fronts is examined using four years of combined CloudSat radar and CALIPSO lidar retrievals. The global annual mean cloud and precipitation distributions show that low-level clouds are ubiquitous in the post frontal zone while higher-level cloud frequency and precipitation peak in the warm sector along the surface front. Increases in temperature and moisture within the cold front region are associated with larger high-level but lower mid-/low level cloud frequencies and precipitation decreases in the cold sector. This behavior seems to be related to a shift from stratiform to convective clouds and precipitation. Stronger ascent in the warm conveyor belt tends to enhance cloudiness and precipitation across the cold front. A strong temperature contrast between the warm and cold sectors also encourages greater post-cold-frontal cloud occurrence. While the seasonal contrasts in environmental temperature, moisture, and ascent strength are enough to explain most of the variations in cloud and precipitation across cold fronts in both hemispheres, they do not fully explain the differences between Northern and Southern Hemisphere cold fronts. These differences are better explained when the impact of the contrast in temperature across the cold front is also considered. In addition, these large-scale parameters do not explain the relatively large frequency in springtime post frontal precipitation.

  4. Evidence That Nitric Acid Increases Relative Humidity in Low-Temperature Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Gao, R. S.; Popp, P. J.; Fahey, D. W.; Marcy, T. P.; Herman, R. L.; Weinstock, E. M.; Baumgardner, D. G.; Garrett, T. J.; Rosenlof, K. H.; Thompson, T. L.

    2004-01-01

    In situ measurements of the relative humidity with respect to ice (RH(sub(i)) and of nitric acid (HNO3) were made in both natural and contrail cirrus clouds in the upper troposphere. At temperatures lower than 202 kelvin, RH(sub i) values show a sharp increase to average values of over 130% in both cloud types. These enhanced RH(sub i) values are attributed to the presence of a new class of NHO3- containing ice particles (Delta-ice). We propose that surface HNO3 molecules prevent the ice/vapor system from reaching equilibrium by a mechanism similar to that of freezing point depression by antifreeze proteins. Delta-ice represents a new link between global climate and natural and anthropogenic nitrogen oxide emissions. Including Delta-ice in climate models will alter simulated cirrus properties and the distribution of upper tropospheric water vapor.

  5. A physically based analytical spatial air temperature and humidity model

    Treesearch

    Yang Yang; Theodore A. Endreny; David J. Nowak

    2013-01-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat...

  6. Satellite remote sensing of aerosol and cloud properties over Eurasia

    NASA Astrophysics Data System (ADS)

    Sogacheva, Larisa; Kolmonen, Pekka; Saponaro, Giulia; Virtanen, Timo; Rodriguez, Edith; Sundström, Anu-Maija; Atlaskina, Ksenia; de Leeuw, Gerrit

    2015-04-01

    Satellite remote sensing provides the spatial distribution of aerosol and cloud properties over a wide area. In our studies large data sets are used for statistical studies on aerosol and cloud interaction in an area over Fennoscandia, the Baltic Sea and adjacent regions over the European mainland. This area spans several regimes with different influences on aerosol cloud interaction such as a the transition from relative clean air over Fennoscandia to more anthropogenically polluted air further south, and the influence maritime air over the Baltic and oceanic air advected from the North Atlantic. Anthropogenic pollution occurs in several parts of the study area, and in particular near densely populated areas and megacities, but also in industrialized areas and areas with dense traffic. The aerosol in such areas is quite different from that produced over the boreal forest and has different effects on air quality and climate. Studies have been made on the effects of aerosols on air quality and on the radiation balance in China. The aim of the study is to study the effect of these different regimes on aerosol-cloud interaction using a large aerosol and cloud data set retrieved with the (Advanced) Along Track Scanning Radiometer (A)ATSR Dual View algorithm (ADV) further developed at Finnish Meteorological Institute and aerosol and cloud data provided by MODIS. Retrieval algorithms for aerosol and clouds have been developed for the (A)ATSR, consisting of a series of instruments of which we use the second and third one: ATSR-2 which flew on the ERS-2 satellite (1995-2003) and AATSR which flew on the ENVISAT satellite (2002-2012) (both from the European Space Agency, ESA). The ADV algorithm provides aerosol data on a global scale with a default resolution of 10x10km2 (L2) and an aggregate product on 1x1 degree (L3). Optional, a 1x1 km2 retrieval products is available over smaller areas for specific studies. Since for the retrieval of AOD no prior knowledge is needed on

  7. Apparatus and method for maintaining an article at a temperature that is less than the temperature of the ambient air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klett, James; Klett, Lynn

    An apparatus for maintaining the temperature of an article at a temperature that is below the ambient air temperature includes an enclosure having an outer wall that defines an interior chamber for holding a volume of sealed air. An insert is disposed inside of the chamber and has a body that is made of a porous graphite foam material. A vacuum pump penetrates the outer wall and fluidly connects the sealed air in the interior chamber with the ambient air outside of the enclosure. The temperatures of the insert and article is maintained at temperatures that are below the ambientmore » air temperature when a volume of a liquid is wicked into the pores of the porous insert and the vacuum pump is activated to reduce the pressure of a volume of sealed air within the interior chamber to a pressure that is below the vapor pressure of the liquid.« less

  8. Implementation of Cloud Retrievals for Tropospheric Emission Spectrometer (TES) Atmospheric Retrievals: Part 1. Description and Characterization of Errors on Trace Gas Retrievals

    NASA Technical Reports Server (NTRS)

    Kulawik, Susan S.; Worden, John; Eldering, Annmarie; Bowman, Kevin; Gunson, Michael; Osterman, Gregory B.; Zhang, Lin; Clough, Shepard A.; Shephard, Mark W.; Beer, Reinhard

    2006-01-01

    We develop an approach to estimate and characterize trace gas retrievals in the presence of clouds in high spectral measurements of upwelling radiance in the infrared spectral region (650-2260/cm). The radiance contribution of clouds is parameterized in terms of a set of frequency-dependent nonscattering optical depths and a cloud height. These cloud parameters are retrieved jointly with surface temperature, emissivity, atmospheric temperature, and trace gases such as ozone from spectral data. We demonstrate the application of this approach using data from the Tropospheric Emission Spectrometer (TES) and test data simulated with a scattering radiative transfer model. We show the value of this approach in that it results in accurate estimates of errors for trace gas retrievals, and the retrieved values improve over the initial guess for a wide range of cloud conditions. Comparisons are made between TES retrievals of ozone, temperature, and water to model fields from the Global Modeling and Assimilation Office (GMAO), temperature retrievals from the Atmospheric Infrared Sounder (AIRS), tropospheric ozone columns from the Goddard Earth Observing System (GEOS) GEOS-Chem, and ozone retrievals from the Total Ozone Mapping Spectrometer (TOMS). In each of these cases, this cloud retrieval approach does not introduce observable biases into TES retrievals.

  9. Discussion on Boiler Efficiency Correction Method with Low Temperature Economizer-Air Heater System

    NASA Astrophysics Data System (ADS)

    Ke, Liu; Xing-sen, Yang; Fan-jun, Hou; Zhi-hong, Hu

    2017-05-01

    This paper pointed out that it is wrong to take the outlet flue gas temperature of low temperature economizer as exhaust gas temperature in boiler efficiency calculation based on GB10184-1988. What’s more, this paper proposed a new correction method, which decomposed low temperature economizer-air heater system into two hypothetical parts of air preheater and pre condensed water heater and take the outlet equivalent gas temperature of air preheater as exhaust gas temperature in boiler efficiency calculation. This method makes the boiler efficiency calculation more concise, with no air heater correction. It has a positive reference value to deal with this kind of problem correctly.

  10. Estimation of thermal sensation during varied air temperature conditions.

    PubMed

    Katsuura, T; Tabuchi, R; Iwanaga, K; Harada, H; Kikuchi, Y

    1998-03-01

    Seven male students were exposed to four varied air temperature environments: hot (37 degrees C) to neutral (27 degrees C) (HN), neutral to hot (NH), cool (17 degrees C) to neutral (CN), and neutral to cool (NC). The air temperature was maintained at the first condition for 20 min, then was changed to the second condition after 15 min and was held there for 20 min. Each subject wore a T-shirt, briefs, trunks, and socks. Each sat on a chair and was continuously evaluated for thermal sensation, thermal comfort, and air velocity sensation. Some physiological and thermal parameters were also measured every 5 s during the experiment. The correlation between thermal sensation and skin temperature at 15 sites was found to be poor. The subjects felt much warmer during the rising phase of the air temperature (CN, NH) than during the descending phase (HN, NC) at a given mean skin temperature. However, thermal sensation at the same heat flux or at the same value of the difference between skin and air temperature (delta(Tsk - Ta)) was not so different among the four experimental conditions, and the correlation between thermal sensation and heat flux or delta(Tsk - Ta) was fairly good. The multiple regression equation of the thermal sensation (TS) on 15 sites of skin temperature (Tsk; degrees C) was calculated and the coefficient of determination (R*2) was found to be 0.656. Higher coefficients of determination were found in the equations of thermal sensation for the heat flux (H; kcal.m-2.h-1) at the right and left thighs of the subjects and on delta(Tsk - Ta) (degrees C) at 4 sites. They were as follows: TS = 2.04 - 0.016 Hright - 0.036 Hleft; R*2 = 0.717, TS = 1.649 + 0.013 delta(Tsk - Ta)UpperArm - 0.036 delta(Tsk - Ta)Chest - 0.223 delta(Tsk - Ta)Thigh-0.083 delta(Tsk - Ta)LowerLeg; R*2 = 0.752, respectively.

  11. A Neural Network Based Intelligent Predictive Sensor for Cloudiness, Solar Radiation and Air Temperature

    PubMed Central

    Ferreira, Pedro M.; Gomes, João M.; Martins, Igor A. C.; Ruano, António E.

    2012-01-01

    Accurate measurements of global solar radiation and atmospheric temperature, as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight and portable sensor was developed, using artificial neural network models as the time-series predictor mechanisms. These have been identified with the aid of a procedure based on the multi-objective genetic algorithm. As cloudiness is the most significant factor affecting the solar radiation reaching a particular location on the Earth surface, it has great impact on the performance of predictive solar radiation models for that location. This work also represents one step towards the improvement of such models by using ground-to-sky hemispherical colour digital images as a means to estimate cloudiness by the fraction of visible sky corresponding to clouds and to clear sky. The implementation of predictive models in the prototype has been validated and the system is able to function reliably, providing measurements and four-hour forecasts of cloudiness, solar radiation and air temperature. PMID:23202230

  12. Impact of air temperature on physically-based maximum precipitation estimation through change in moisture holding capacity of air

    NASA Astrophysics Data System (ADS)

    Ishida, K.; Ohara, N.; Kavvas, M. L.; Chen, Z. Q.; Anderson, M. L.

    2018-01-01

    Impact of air temperature on the Maximum Precipitation (MP) estimation through change in moisture holding capacity of air was investigated. A series of previous studies have estimated the MP of 72-h basin-average precipitation over the American River watershed (ARW) in Northern California by means of the Maximum Precipitation (MP) estimation approach, which utilizes a physically-based regional atmospheric model. For the MP estimation, they have selected 61 severe storm events for the ARW, and have maximized them by means of the atmospheric boundary condition shifting (ABCS) and relative humidity maximization (RHM) methods. This study conducted two types of numerical experiments in addition to the MP estimation by the previous studies. First, the air temperature on the entire lateral boundaries of the outer model domain was increased uniformly by 0.0-8.0 °C with 0.5 °C increments for the two severest maximized historical storm events in addition to application of the ABCS + RHM method to investigate the sensitivity of the basin-average precipitation over the ARW to air temperature rise. In this investigation, a monotonous increase was found in the maximum 72-h basin-average precipitation over the ARW with air temperature rise for both of the storm events. The second numerical experiment used specific amounts of air temperature rise that is assumed to happen under future climate change conditions. Air temperature was increased by those specified amounts uniformly on the entire lateral boundaries in addition to application of the ABCS + RHM method to investigate the impact of air temperature on the MP estimate over the ARW under changing climate. The results in the second numerical experiment show that temperature increases in the future climate may amplify the MP estimate over the ARW. The MP estimate may increase by 14.6% in the middle of the 21st century and by 27.3% in the end of the 21st century compared to the historical period.

  13. Cloud microphysical relationships and their implication on entrainment and mixing mechanism for the stratocumulus clouds measured during the VOCALS project

    DOE PAGES

    Yum, Seong Soo; Wang, Jian; Liu, Yangang; ...

    2015-05-27

    Cloud microphysical data obtained from G-1 aircraft flights over the southeastern pacific during the VOCALS-Rex field campaign were analyzed for evidence of entrainment mixing of dry air from above cloud top. Mixing diagram analysis was made for the horizontal flight data recorded at 1 Hz and 40 Hz. The dominant observed feature, a positive relationship between cloud droplet mean volume (V) and liquid water content (L), suggested occurrence of homogeneous mixing. On the other hand, estimation of the relevant scale parameters (i.e., transition length scale and transition scale number) consistently indicated inhomogeneous mixing. Importantly, the flight altitudes of the measurementsmore » were significantly below cloud top. We speculate that mixing of the entrained air near the cloud top may have indeed been inhomogeneous; but due to vertical circulation mixing, the correlation between V and L became positive at the measurement altitudes in mid-level of clouds, because during their descent, cloud droplets evaporate, faster in more diluted cloud parcels, leading to a positive correlation between V and L regardless of the mixing mechanism near the cloud top.« less

  14. Comparison of CERES-MODIS Stratus Cloud Properties with Ground-Based Measurements at the DOE ARM Southern Great Plains Site

    NASA Technical Reports Server (NTRS)

    Dong, Xiquan; Minnis Patrick; Xi, Baike; Sun-Mack, Sunny; Chen, Yan

    2008-01-01

    Overcast stratus cloud properties derived for the Clouds and the Earth's Radiant Energy system (CERES) Project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site from March 2000 through December 2004. Retrievals from ARM surface-based data were averaged over a 1-hour interval centered at the time of each satellite overpass, and the CERES-MODIS cloud properties were averaged within a 30-km x 30 km box centered on the ARM SGP site. Two datasets were analyzed: all of the data (ALL) which include multilayered, single-layered, and slightly broken stratus decks and a subset, single-layered unbroken decks (SL). The CERES-MODIS effective cloud heights were determined from effective cloud temperature using a lapse rate method with the surface temperature specified as the 24-h mean surface air temperature. For SL stratus, they are, on average, within the ARM radar-lidar estimated cloud boundaries and are 0.534 +/- 0.542 km and 0.108 +/- 0.480 km lower than the cloud physical tops and centers, respectively, and are comparable for day and night observations. The mean differences and standard deviations are slightly larger for ALL data, but not statistically different to those of SL data. The MODIS-derived effective cloud temperatures are 2.7 +/- 2.4 K less than the surface-observed SL cloud center temperatures with very high correlations (0.86-0.97). Variations in the height differences are mainly caused by uncertainties in the surface air temperatures, lapse rates, and cloud-top height variability. The biases are mainly the result of the differences between effective and physical cloud top, which are governed by cloud liquid water content and viewing zenith angle, and the selected lapse rate, -7.1 K km(exp -1). Based on a total of 43 samples, the means and standard deviations of the differences between the daytime Terra and surface

  15. Large-Scale, Multi-Sensor Atmospheric Data Fusion Using Hybrid Cloud Computing

    NASA Astrophysics Data System (ADS)

    Wilson, B. D.; Manipon, G.; Hua, H.; Fetzer, E. J.

    2015-12-01

    NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the "A-Train" platforms (AIRS, MODIS, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over decades. Moving to multi-sensor, long-duration presents serious challenges for large-scale data mining and fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the "cloud scenes" from CloudSat, and repeat the entire analysis over 10 years of data. HySDS is a Hybrid-Cloud Science Data System that has been developed and applied under NASA AIST, MEaSUREs, and ACCESS grants. HySDS uses the SciFlow workflow engine to partition analysis workflows into parallel tasks (e.g. segmenting by time or space) that are pushed into a durable job queue. The tasks are "pulled" from the queue by worker Virtual Machines (VM's) and executed in an on-premise Cloud (Eucalyptus or OpenStack) or at Amazon in the public Cloud or govCloud. In this way, years of data (millions of files) can be processed in a massively parallel way. Input variables (arrays) are pulled on-demand into the Cloud using OPeNDAP URLs or other subsetting services, thereby minimizing the size of the transferred data. We are using HySDS to automate the production of multiple versions of a ten-year A-Train water vapor climatology under a MEASURES grant. We will present the architecture of HySDS, describe the achieved "clock time" speedups in fusing datasets on our own nodes and in the Amazon Cloud, and discuss the Cloud cost tradeoffs for storage, compute, and data transfer. Our system demonstrates how one can pull A-Train variables (Levels 2 & 3) on-demand into the Amazon Cloud, and cache only those variables that are heavily used, so that any number of compute jobs can be

  16. A physically based analytical spatial air temperature and humidity model

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Endreny, Theodore A.; Nowak, David J.

    2013-09-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat storage based on semiempirical functions and generates spatially distributed estimates based on inputs of topography, land cover, and the weather data measured at a reference site. The model assumes that for all grids under the same mesoscale climate, grid air temperature and humidity are modified by local variation in absorbed solar radiation and the partitioning of sensible and latent heat. The model uses a reference grid site for time series meteorological data and the air temperature and humidity of any other grid can be obtained by solving the heat flux network equations. PASATH was coupled with the USDA iTree-Hydro water balance model to obtain evapotranspiration terms and run from 20 to 29 August 2010 at a 360 m by 360 m grid scale and hourly time step across a 285 km2 watershed including the urban area of Syracuse, NY. PASATH predictions were tested at nine urban weather stations representing variability in urban topography and land cover. The PASATH model predictive efficiency R2 ranged from 0.81 to 0.99 for air temperature and 0.77 to 0.97 for dew point temperature. PASATH is expected to have broad applications on environmental and ecological models.

  17. Interaction between Soil Moisture and Air Temperature in the Mississippi River Basin

    EPA Science Inventory

    Increasing air temperatures are expected to continue in the future. The relation between soil moisture and near surface air temperature is significant for climate change and climate extremes. Evaluation of the relations between soil moisture and temperature was performed by devel...

  18. Hurricane Frances as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS) and SeaWinds

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image shows Hurricane Frances as captured by instruments onboard two different satellites: the AIRS infrared instrument onboard Aqua, and the SeaWinds scatterometer onboard QuikSCAT. Both are JPL-managed instruments. AIRS data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction over the ocean.

    The red vectors in the image show Frances' surface winds as measured by SeaWinds on QuikSCAT. The background colors show the temperature of clouds and surface as viewed in the infrared by AIRS, with cooler areas pushing to purple and warmer areas are pushing to red. The color scale on the right gives the temperatures in degrees Kelvin. (The top of the scale, 320 degrees Kelvin, corresponds to 117 degrees Fahrenheit, and the bottom, 180 degrees K is -135 degrees F.) The powerful circulation of this storm is evident from the combined data as well as the development of a clearly-defined central 'eye'. The infrared signal does not penetrate through clouds, so the light blue areas reveal the cold clouds tops associated with strong thunderstorms embedded within the storm. In cloud-free areas the infrared signal comes from Earth's surface, revealing warmer temperatures.

    The power of the SeaWinds scatterometer data set lies in its ability to generate global maps of wind speed and direction, giving us a snapshot of how the atmosphere is circulating. Weather prediction centers, including the Tropical Prediction Center - a branch of NOAA that monitors the creation of ocean-born storms, use scatterometer data to help it 'see' where these storms are brewing so that warnings can be issued and the storms, with often erratic motions, can be tracked.

    While the SeaWinds instrument isn't designed to gather hurricane data, having difficulty seeing the surface in heavy rain, it's data can be used in combination with other data sets to give us an insight into these storms. In

  19. The Aerosol/Cloud/Ecosystems Mission (ACE)

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark

    2008-01-01

    The goals and measurement strategy of the Aerosol/Cloud/Ecosystems Mission (ACE) are described. ACE will help to answer fundamental science questions associated with aerosols, clouds, air quality and global ocean ecosystems. Specifically, the goals of ACE are: 1) to quantify aerosol-cloud interactions and to assess the impact of aerosols on the hydrological cycle and 2) determine Ocean Carbon Cycling and other ocean biological processes. It is expected that ACE will: narrow the uncertainty in aerosol-cloud-precipitation interaction and quantify the role of aerosols in climate change; measure the ocean ecosystem changes and precisely quantify ocean carbon uptake; and, improve air quality forecasting by determining the height and type of aerosols being transported long distances. Overviews are provided of the aerosol-cloud community measurement strategy, aerosol and cloud observations over South Asia, and ocean biology research goals. Instruments used in the measurement strategy of the ACE mission are also highlighted, including: multi-beam lidar, multiwavelength high spectra resolution lidar, the ocean color instrument (ORCA)--a spectroradiometer for ocean remote sensing, dual frequency cloud radar and high- and low-frequency micron-wave radiometer. Future steps for the ACE mission include refining measurement requirements and carrying out additional instrument and payload studies.

  20. Numerical simulation of airborne cloud seeding over Greece, using a convective cloud model

    NASA Astrophysics Data System (ADS)

    Spiridonov, Vlado; Karacostas, Theodore; Bampzelis, Dimitrios; Pytharoulis, Ioannis

    2015-02-01

    An extensive work has been done by the Department of Meteorology and Climatology at Aristotle University of Thessaloniki and others using a three-dimensional cloud resolving model to simulate AgI seeding by aircraft of three distinct hailstorm cases occurred over Greece in period 2007-2009. The seeding criterion for silver iodide glaciogenic seeding from air is based on the beneficial competition mechanism. According to thermodynamic analysis and classification proposed by Marwitz (1972a, b, and c) and based on their structural and evolutionary properties we classified them in three groups as singlecell, multicell and supercell hailstorms. The seeding optimization for each selected case is conducted by analysis of the thermodynamic characteristics of the meteorological environment as well as radar reflectivity fields observed by the state of the art Thunderstorm Identification, Tracking, Analysis and Nowcasting (TITAN) software applied in the Greek National Hail Suppression Program (GNHSP). Results of this comprehensive study have shown positive effects with respect to hailfall decrease after successful seeding as our primarily objective. All three cases have illustrated 15-20% decrease in accumulated hailfall at the ground Seeded clouds have exhibited earlier development of precipitation and slight dynamical enhancement of the updraft and rainfall increase of ~10- 12.5%. The results have emphasized a strong interaction between cloud dynamics and microphysics, especially the subgrid scale processes that have impact on agent transport and diffusion in a complex environment. Comparisons between modelled and observed radar reflectivity also show a relatively good agreement. Simulated cloud seeding follows the operational aircraft seeding for hail suppression. The ability of silver-iodide particles to act as ice nuclei has been used to perform airborne cloud seeding, under controlled conditions of temperature and humidity. The seeding effects depend upon applying the

  1. Can air temperature be used to project influences of climate change on stream temperature?

    Treesearch

    Ivan Arismendi; Mohammad Safeeq; Jason B Dunham; Sherri L Johnson

    2014-01-01

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To...

  2. Assimilation of Goes-Derived Skin Temperature Tendencies into Mesoscale Models to Improve Forecasts of near Surface Air Temperature and Mixing Ratio

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; McNider, Richard T.; Suggs, Ron; Jedlovec, Gary; Robertson, Franklin R.

    1998-01-01

    A technique has been developed for assimilating GOES-FR skin temperature tendencies into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature chance closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite-observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. An advantage of this technique for short-range forecasts (0-48 h) is that it does not require a complex land-surface formulation within the atmospheric model. As a result, the need to specify poorly known soil and vegetative characteristics is eliminated. The GOES assimilation technique has been incorporated into the PSU/NCAR MM5. Results will be presented to demonstrate the ability of the assimilation scheme to improve short- term (0-48h) simulations of near-surface air temperature and mixing ratio during the warm season for several selected cases which exhibit a variety of atmospheric and land-surface conditions. In addition, validation of terms in the simulated surface energy budget will be presented using in situ data collected at the Southern Great Plains (SGP) Cloud And Radiation Testbed (CART) site as part of the Atmospheric Radiation Measurements Program (ARM).

  3. Temperature Dependence of Lithium Reactions with Air

    NASA Astrophysics Data System (ADS)

    Sherrod, Roman; Skinner, C. H.; Koel, Bruce

    2016-10-01

    Liquid lithium plasma facing components (PFCs) are being developed to handle long pulse, high heat loads in tokamaks. Wetting by lithium of its container is essential for this application, but can be hindered by lithium oxidation by residual gases or during tokamak maintenance. Lithium PFCs will experience elevated temperatures due to plasma heat flux. This work presents measurements of lithium reactions at elevated temperatures (298-373 K) when exposed to natural air. Cylindrical TZM wells 300 microns deep with 1 cm2 surface area were filled with metallic lithium in a glovebox containing argon with less than 1.6 ppm H20, O2, and N2. The wells were transferred to a hot plate in air, and then removed periodically for mass gain measurements. Changes in the surface topography were recorded with a microscope. The mass gain of the samples at elevated temperatures followed a markedly different behavior to that at room temperature. One sample at 373 K began turning red indicative of lithium nitride, while a second turned white indicative of lithium carbonate formation. Data on the mass gain vs. temperature and associated topographic changes of the surface will be presented. Science Undergraduate Laboratory Internship funded by Department of Energy.

  4. Broadening of cloud droplet spectra through turbulent entrainment and eddy hopping

    NASA Astrophysics Data System (ADS)

    Abade, Gustavo; Grabowski, Wojciech; Pawlowska, Hanna

    2017-11-01

    This work discusses the effect of cloud turbulence and turbulent entrainment on the evolution of the cloud droplet-size spectrum. We simulate an ensemble of idealized turbulent cloud parcels that are subject to entrainment events, modeled as a random Poisson process. Entrainment events, subsequent turbulent mixing inside the parcel, supersaturation fluctuations, and the resulting stochastic droplet growth by condensation are simulated using a Monte Carlo scheme. Quantities characterizing the turbulence intensity, entrainment rate and the mean fraction of environmental air entrained in an event are specified as external parameters. Cloud microphysics is described by applying Lagrangian particles, the so-called superdroplets. They are either unactivated cloud condensation nuclei (CCN) or cloud droplets that form from activated CCN. The model accounts for the transport of environmental CCN into the cloud by the entraining eddies at the cloud edge. Turbulent mixing of the entrained dry air with cloudy air is described using a linear model. We show that turbulence plays an important role in aiding entrained CCN to activate, providing a source of small cloud droplets and thus broadening the droplet size distribution. Further simulation results will be reported at the meeting.

  5. Validation of Nimbus-7 temperature-humidity infrared radiometer estimates of cloud type and amount

    NASA Technical Reports Server (NTRS)

    Stowe, L. L.

    1982-01-01

    Estimates of clear and low, middle and high cloud amount in fixed geographical regions approximately (160 km) squared are being made routinely from 11.5 micron radiance measurements of the Nimbus-7 Temperature-Humidity Infrared Radiometer (THIR). The purpose of validation is to determine the accuracy of the THIR cloud estimates. Validation requires that a comparison be made between the THIR estimates of cloudiness and the 'true' cloudiness. The validation results reported in this paper use human analysis of concurrent but independent satellite images with surface meteorological and radiosonde observations to approximate the 'true' cloudiness. Regression and error analyses are used to estimate the systematic and random errors of THIR derived clear amount.

  6. Trends in Surface Temperature from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Aumann, H. H.

    2014-12-01

    To address possible causes of the current hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We find a monotonic positive trend for the land temperature but not for the ocean temperature. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The results are compared with the model studies. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  7. Statistical thermodynamics and the size distributions of tropical convective clouds.

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.; Glenn, I. B.; Krueger, S. K.; Ferlay, N.

    2017-12-01

    Parameterizations for sub-grid cloud dynamics are commonly developed by using fine scale modeling or measurements to explicitly resolve the mechanistic details of clouds to the best extent possible, and then to formulating these behaviors cloud state for use within a coarser grid. A second is to invoke physical intuition and some very general theoretical principles from equilibrium statistical thermodynamics. This second approach is quite widely used elsewhere in the atmospheric sciences: for example to explain the heat capacity of air, blackbody radiation, or even the density profile or air in the atmosphere. Here we describe how entrainment and detrainment across cloud perimeters is limited by the amount of available air and the range of moist static energy in the atmosphere, and that constrains cloud perimeter distributions to a power law with a -1 exponent along isentropes and to a Boltzmann distribution across isentropes. Further, the total cloud perimeter density in a cloud field is directly tied to the buoyancy frequency of the column. These simple results are shown to be reproduced within a complex dynamic simulation of a tropical convective cloud field and in passive satellite observations of cloud 3D structures. The implication is that equilibrium tropical cloud structures can be inferred from the bulk thermodynamic structure of the atmosphere without having to analyze computationally expensive dynamic simulations.

  8. Measuring centimeter-resolution air temperature profiles above land and water using fiber-optic Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Sigmund, Armin; Pfister, Lena; Olesch, Johannes; Thomas, Christoph K.

    2016-04-01

    The precise determination of near-surface air temperature profiles is of special importance for the characterization of airflows (e.g. cold air) and the quantification of sensible heat fluxes according to the flux-gradient similarity approach. In contrast to conventional multi-sensor techniques, measuring temperature profiles using fiber-optic Distributed Temperature Sensing (DTS) provides thousands of measurements referenced to a single calibration standard at much reduced costs. The aim of this work was to enhance the vertical resolution of Raman scatter DTS measurements up to the centimeter-scale using a novel approach for atmospheric applications: the optical fiber was helically coiled around a meshed fabric. In addition to testing the new fiber geometry, we quantified the measurement uncertainty and demonstrated the benefits of the enhanced-resolution profiles. The fiber-optic cable was coiled around a hollow column consisting of white reinforcing fabric supported by plexiglass rings every meter. Data from two columns of this type were collected for 47 days to measure air temperature vertically over 3.0 and 5.1 m over a gently inclined meadow and over and in a small lake, respectively. Both profiles had a vertical resolution of 1 cm in the lower section near the surface and 5 cm in the upper section with an along-fiber instrument-specific averaging of 1.0 m and a temporal resolution of 30 s. Measurement uncertainties, especially from conduction between reinforcing fabric and fiber-optic cable, were estimated by modeling the fiber temperature via a detailed energy balance approach. Air temperature, wind velocity and radiation components were needed as input data and measured separately. The temperature profiles revealed valuable details, especially in the lowest 1 m above surface. This was best demonstrated for nighttime observations when artefacts due to solar heating did not occur. For example, the dynamics of a cold air layer was detected in a clear night

  9. An eight-month climatology of marine stratocumulus cloud fraction, albedo, and integrated liquid water

    NASA Technical Reports Server (NTRS)

    Fairall, C. W.; Hare, J. E.; Snider, Jack B.

    1990-01-01

    As part of the FIRE/Extended Time Observations (ETO) program, extended time observations were made at San Nicolas Island (SNI) from March to October, 1987. Hourly averages of air temperature, relative humidity, wind speed and direction, solar irradiance, and downward longwave irradiance were recorded. The radiation sensors were standard Eppley pyranometers (shortwave) and pyrgeometers (longwave). The SNI data were processed in several ways to deduce properties of the stratocumulus covered marine boundary layer (MBL). For example, from the temperature and humidity the lifting condensation level, which is an estimate of the height of the cloud bottom, can be computed. A combination of longwave irradiance statistics can be used to estimate fractional cloud cover. An analysis technique used to estimate the integrated cloud liquid water content (W) and the cloud albedo from the measured solar irradiance is also described. In this approach, the cloud transmittance is computed by dividing the irradiance measured at some time by a clear sky value obtained at the same hour on a cloudless day. From the transmittance and the zenith angle, values of cloud albedo and W are computed using the radiative transfer parameterizations of Stephens (1978). These analysis algorithms were evaluated with 17 days of simultaneous and colocated mm-wave (20.6 and 31.65 GHz) radiometer measurements of W and lidar ceilometer measurements of cloud fraction and cloudbase height made during the FIRE IFO. The algorithms are then applied to the entire data set to produce a climatology of these cloud properties for the eight month period.

  10. Large-Scale, Parallel, Multi-Sensor Data Fusion in the Cloud

    NASA Astrophysics Data System (ADS)

    Wilson, B. D.; Manipon, G.; Hua, H.

    2012-12-01

    NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the "A-Train" platforms (AIRS, AMSR-E, MODIS, MISR, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over periods of years to decades. However, moving from predominantly single-instrument studies to a multi-sensor, measurement-based model for long-duration analysis of important climate variables presents serious challenges for large-scale data mining and data fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another instrument (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the "cloud scenes" from CloudSat, and repeat the entire analysis over years of AIRS data. To perform such an analysis, one must discover & access multiple datasets from remote sites, find the space/time "matchups" between instruments swaths and model grids, understand the quality flags and uncertainties for retrieved physical variables, assemble merged datasets, and compute fused products for further scientific and statistical analysis. To efficiently assemble such decade-scale datasets in a timely manner, we are utilizing Elastic Computing in the Cloud and parallel map/reduce-based algorithms. "SciReduce" is a Hadoop-like parallel analysis system, programmed in parallel python, that is designed from the ground up for Earth science. SciReduce executes inside VMWare images and scales to any number of nodes in the Cloud. Unlike Hadoop, in which simple tuples (keys & values) are passed between the map and reduce functions, SciReduce operates on bundles of named numeric arrays, which can be passed in memory or serialized to disk in netCDF4 or HDF5. Thus, SciReduce uses the native datatypes (geolocated grids, swaths, and points) that geo-scientists are familiar with. We are deploying within Sci

  11. Large-Scale, Parallel, Multi-Sensor Data Fusion in the Cloud

    NASA Astrophysics Data System (ADS)

    Wilson, B.; Manipon, G.; Hua, H.

    2012-04-01

    NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the "A-Train" platforms (AIRS, AMSR-E, MODIS, MISR, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over periods of years to decades. However, moving from predominantly single-instrument studies to a multi-sensor, measurement-based model for long-duration analysis of important climate variables presents serious challenges for large-scale data mining and data fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another instrument (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the "cloud scenes" from CloudSat, and repeat the entire analysis over years of AIRS data. To perform such an analysis, one must discover & access multiple datasets from remote sites, find the space/time "matchups" between instruments swaths and model grids, understand the quality flags and uncertainties for retrieved physical variables, assemble merged datasets, and compute fused products for further scientific and statistical analysis. To efficiently assemble such decade-scale datasets in a timely manner, we are utilizing Elastic Computing in the Cloud and parallel map/reduce-based algorithms. "SciReduce" is a Hadoop-like parallel analysis system, programmed in parallel python, that is designed from the ground up for Earth science. SciReduce executes inside VMWare images and scales to any number of nodes in the Cloud. Unlike Hadoop, in which simple tuples (keys & values) are passed between the map and reduce functions, SciReduce operates on bundles of named numeric arrays, which can be passed in memory or serialized to disk in netCDF4 or HDF5. Thus, SciReduce uses the native datatypes (geolocated grids, swaths, and points) that geo-scientists are familiar with. We are deploying within Sci

  12. Satellite Observations of Volcanic Clouds from the Eruption of Redoubt Volcano, Alaska, 2009

    NASA Astrophysics Data System (ADS)

    Dean, K. G.; Ekstrand, A. L.; Webley, P.; Dehn, J.

    2009-12-01

    Redoubt Volcano began erupting on 23 March 2009 (UTC) and consisted of 19 events over a 14 day period. The volcano is located on the Alaska Peninsula, 175 km southwest of Anchorage, Alaska. The previous eruption was in 1989/1990 and seriously disrupted air traffic in the region, including the near catastrophic engine failure of a passenger airliner. Plumes and ash clouds from the recent eruption were observed on a variety of satellite data (AVHRR, MODIS and GOES). The eruption produced volcanic clouds up to 19 km which are some of the highest detected in recent times in the North Pacific region. The ash clouds primarily drifted north and east of the volcano, had a weak ash signal in the split window data and resulted in light ash falls in the Cook Inlet basin and northward into Alaska’s Interior. Volcanic cloud heights were measured using ground-based radar, and plume temperature and wind shear methods but each of the techniques resulted in significant variations in the estimates. Even though radar showed the greatest heights, satellite data and wind shears suggest that the largest concentrations of ash may be at lower altitudes in some cases. Sulfur dioxide clouds were also observed on satellite data (OMI, AIRS and Calipso) and they primarily drifted to the east and were detected at several locations across North America, thousands of kilometers from the volcano. Here, we show time series data collected by the Alaska Volcano Observatory, illustrating the different eruptive events and ash clouds that developed over the subsequent days.

  13. The FALL3D Ash Cloud Dispersion Model and its Implementation at the Buenos Aires VAAC

    NASA Astrophysics Data System (ADS)

    Folch, A.; Suaya, M.; Costa, A.; Viramonte, J.

    2009-12-01

    Airborne volcanic ash and aerosols threat aerial navigation and affect the quality of air at medium to large distances downwind from the volcano. Airplane re-routing and airport disruption carry important socioeconomic consequences at regional and national levels. Models to forecast volcanic ash clouds constitute, together with satellite imagery, a valuable predictive tool during a crisis. FALL3D is an Eulerian ash cloud dispersion model based on the advection-diffusion-sedimentation equation. The model runs at any scale, from regional to global. The dispersion model is off-line coupled with global (e.g. GFS, NMM-b) and mesoscalar (e.g. NMM-b, WRF, ETA) meteorological models and with re-analysis datasets. FALL3D has been recently installed at the Buenos Aires VAAC, depending on the Argentinean National Meteorological Service (SMN). In this presentation we summarize the characteristics of the model and its implementation at the VAAC, including the different domains, the meteorological forecast inputs (ETA or GFS) and the scenarios assumed for some critical volcanoes (Chaitén, Llaima, Lascar, etc.). Pre-defined scenarios are necessary to give an early first order prediction when data is poor or unavailable. This is particularly critical in Central Andes, were most active volcanoes are located in remote areas with poor or inexistent monitoring.

  14. Retrievals of Surface Air Temperature Using Multiple Satellite Data Combinations over Complex Terrain in the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Jang, K.; Won, M.; Yoon, S.; Lim, J.

    2016-12-01

    Surface air temperature (Tair) is a fundamental factor for terrestrial environments and plays a major role in the fields of applied meteorology, climatology, and ecology. The satellite remotely sensed data offers the opportunity to estimate Tair on the earth's surface with high spatial and temporal resolutions. The Moderate Resolution Imaging Spectroradiometer (MODIS) provides effective Tair retrievals although restricted to clear sky condition. MODIS Tair over complex terrain can result in significant retrieval errors due to the retrieval height mismatch to the elevation of local weather stations. In this study, we propose the methodology to estimate Tair over complex terrain for all sky conditions using multiple satellite data fusion based on the pixel-wise regression method. The combination of synergistic information from MODIS Tair and the brightness temperature (Tb) retrievals at 37 GHz frequency from the satellite microwave sensor were used for analysis. The air temperature lapse rate was applied to estimate the near-surface Tair considering the complex terrain such as mountainous regions. The retrieval results produced from this study showed a good agreement (RMSE < 2.5 K) with weather measurements from the Korea Forest Service (KFS) for mountain regions and the Korea Meteorology Administration (KMA). The gaps in the MODIS Tair data due to cloud contamination were successfully filled using the proposed method which yielded similar accuracy as retrievals of clear sky. The results of this study indicate that the satellite data fusion can continuously produce Tair retrievals with reasonable accuracy and that the application of the temperature lapse rate can lead to improvement of the reliability over complex terrains such as the Korean Peninsula.

  15. ULF geomagnetic activity effects on tropospheric temperature, specific humidity, and cloud cover in Antarctica, during 2003-2010

    NASA Astrophysics Data System (ADS)

    Regi, Mauro; Redaelli, Gianluca; Francia, Patrizia; De Lauretis, Marcello

    2017-06-01

    In the present study we investigated the possible relationship between the ULF geomagnetic activity and the variations of several atmospheric parameters. In particular, we compared the ULF activity in the Pc1-2 frequency band (100 mHz-5 Hz), computed from geomagnetic field measurements at Terra Nova Bay in Antarctica, with the tropospheric temperature T, specific humidity Q, and cloud cover (high cloud cover, medium cloud cover, and low cloud cover) obtained from reanalysis data set. The statistical analysis was conducted during the years 2003-2010, using correlation and Superposed Epoch Analysis approaches. The results show that the atmospheric parameters significantly change following the increase of geomagnetic activity within 2 days. These changes are evident in particular when the interplanetary magnetic field Bz component is oriented southward (Bz<0) and the By component duskward (By>0). We suggest that both the precipitation of electrons induced by Pc1-2 activity and the intensification of the polar cap potential difference, modulating the microphysical processes in the clouds, can affect the atmosphere conditions.

  16. Parameterization of Cirrus Cloud Vertical Profiles and Geometrical Thickness Using CALIPSO and CloudSat Data

    NASA Astrophysics Data System (ADS)

    Khatri, P.; Iwabuchi, H.; Saito, M.

    2017-12-01

    High-level cirrus clouds, which normally occur over more than 20% of the globe, are known to have profound impacts on energy budget and climate change. The scientific knowledge regarding the vertical structure of such high-level cirrus clouds and their geometrical thickness are relatively poorer compared to low-level water clouds. Knowledge regarding cloud vertical structure is especially important in passive remote sensing of cloud properties using infrared channels or channels strongly influenced by gaseous absorption when clouds are geometrically thick and optically thin. Such information is also very useful for validating cloud resolving numerical models. This study analyzes global scale data of ice clouds identified by Cloud profiling Radar (CPR) onboard CloudSat and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard CALIPSO to parameterize (i) vertical profiles of ice water content (IWC), cloud-particle effective radius (CER), and ice-particle number concentration for varying ice water path (IWP) values and (ii) the relation of cloud geometrical thickness (CGT) with IWP and CER for varying cloud top temperature (CTT) values. It is found that the maxima in IWC and CER profile shifts towards cloud base with the increase of IWP. Similarly, if the cloud properties remain same, CGT shows an increasing trend with the decrease of CTT. The implementation of such cloud vertical inhomogeneity parameterization in the forward model used in the Integrated Cloud Analysis System ICAS (Iwabuchi et al., 2016) generally shows increase of brightness temperatures in infrared channels compared to vertically homogeneous cloud assumption. The cloud vertical inhomogeneity is found to bring noticeable changes in retrieved cloud properties. Retrieved CER and cloud top height become larger for optically thick cloud. We will show results of comparison of cloud properties retrieved from infrared measurements and active remote sensing.

  17. A simulation of ice cloud particle size, humidity, and temperature measurements from the TWICE CubeSat.

    PubMed

    Jiang, Jonathan H; Yue, Qing; Su, Hui; Reising, Steven C; Kangaslahti, Pekka P; Deal, William R; Schlecht, Erich T; Wu, Longtao; Evans, K Franklin

    2017-08-01

    This paper describes a forward radiative transfer model and retrieval system (FMRS) for the Tropospheric Water and cloud ICE (TWICE) CubeSat instrument. We use the FMRS to simulate radiances for the TWICE's 14 millimeter- and submillimeter-wavelength channels for a tropical atmospheric state produced by a Weather Research and Forecasting model simulation. We also perform simultaneous retrievals of cloud ice particle size, ice water content (IWC), water vapor content (H 2 O), and temperature from the simulated TWICE radiances using the FMRS. We show that the TWICE instrument is capable of retrieving ice particle size in the range of ~50-1000 μm in mass mean effective diameter with approximately 50% uncertainty. The uncertainties of other retrievals from TWICE are about 1 K for temperature, 50% for IWC, and 20% for H 2 O.

  18. A simulation of ice cloud particle size, humidity, and temperature measurements from the TWICE CubeSat

    PubMed Central

    Yue, Qing; Su, Hui; Reising, Steven C.; Kangaslahti, Pekka P.; Deal, William R.; Schlecht, Erich T.; Wu, Longtao; Evans, K. Franklin

    2017-01-01

    Abstract This paper describes a forward radiative transfer model and retrieval system (FMRS) for the Tropospheric Water and cloud ICE (TWICE) CubeSat instrument. We use the FMRS to simulate radiances for the TWICE's 14 millimeter‐ and submillimeter‐wavelength channels for a tropical atmospheric state produced by a Weather Research and Forecasting model simulation. We also perform simultaneous retrievals of cloud ice particle size, ice water content (IWC), water vapor content (H2O), and temperature from the simulated TWICE radiances using the FMRS. We show that the TWICE instrument is capable of retrieving ice particle size in the range of ~50–1000 μm in mass mean effective diameter with approximately 50% uncertainty. The uncertainties of other retrievals from TWICE are about 1 K for temperature, 50% for IWC, and 20% for H2O. PMID:29104900

  19. The influence of air-conditioning on street temperatures in the city of Paris

    NASA Astrophysics Data System (ADS)

    de Munck, C. S.; Pigeon, G.; Masson, V.; Marchadier, C.; Meunier, F.; Tréméac, B.; Merchat, M.

    2010-12-01

    A consequence of urban heat islands in summer is the increased use of air-conditioning during extreme heat events : the use of air-conditioning systems, while cooling the inside of buildings releases waste heat (as latent and sensible heat) in the lower part of the urban atmosphere, hence potentially increasing air street temperatures where the heat is released. This may lead locally to a further increase in air street temperatures, therefore increasing the air cooling demand, while at the same time lowering the efficiency of air-conditioning units. A coupled model consisting of a meso-scale meteorological model (MESO-NH) and an urban energy balance model (TEB) has been implemented with an air-conditioning module and used in combination to real spatialised datasets to understand and quantify potential increases in temperature due to air-conditioning heat releases for the city of Paris . In a first instance, the current types of air-conditioning systems co-existing in the city were simulated (underground chilled water network, wet cooling towers and individual air-conditioning units) to study the effects of latent and sensible heat releases on street temperatures. In a third instance, 2 scenarios were tested to characterise the impacts of likely future trends in air-conditioning equipment in the city : a first scenario for which current heat releases were converted to sensible heat, and a second based on 2030s projections of air-conditioning equipment at the scale of the city. All the scenarios showed an increase in street temperature which, as expected, was greater at night time than day time. For the first two scenarios, this increase in street temperatures was localised at or near the sources of air-conditioner heat releases, while the 2030s air-conditioning scenario impacted wider zones in the city. The amplitude of the increase in temperature varied from 0,25°C to 1°C for the air-conditioning current state, between 0,25°C and 2°C for the sensible heat

  20. Empirical downscaling of daily minimum air temperature at very fine resolutions in complex terrain

    Treesearch

    Zachary A. Holden; John T. Abatzoglou; Charles H. Luce; L. Scott Baggett

    2011-01-01

    Available air temperature models do not adequately account for the influence of terrain on nocturnal air temperatures. An empirical model for night time air temperatures was developed using a network of one hundred and forty inexpensive temperature sensors deployed across the Bitterroot National Forest, Montana. A principle component analysis (PCA) on minimum...

  1. The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM2.5 Mass and Composition

    PubMed Central

    Chang, Howard H.; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei

    2017-01-01

    Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM2.5) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, ~70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM2.5 concentrations. PMID:29057838

  2. The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM2.5 Mass and Composition

    NASA Technical Reports Server (NTRS)

    Belle, Jessica H.; Chang, Howard H.; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei; Liu, Yang

    2017-01-01

    Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM2.5) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, approximately 70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM2.5 concentrations.

  3. The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM2.5 Mass and Composition.

    PubMed

    Belle, Jessica H; Chang, Howard H; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei; Liu, Yang

    2017-10-18

    Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM 2.5 ) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, ~70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM 2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM 2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM 2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM 2.5 concentrations.

  4. An analysis of the relationship between cloud anomalies and sea surface temperature anomalies in a global circulation model

    NASA Technical Reports Server (NTRS)

    Peterson, Thomas C.; Barnett, Tim P.; Roeckner, Erich; Vonder Haar, Thomas H.

    1992-01-01

    The relationship between the sea surface temperature anomalies (SSTAs) and the anomalies of the monthly mean cloud cover (including the high-level, low-level, and total cloud cover), the outgoing longwave radiation, and the reflected solar radiation was analyzed using a least absolute deviations regression at each grid point over the open ocean for a 6-yr period. The results indicate that cloud change in association with a local 1-C increase in SSTAs cannot be used to predict clouds in a potential future world where all the oceans are 1-C warmer than at present, because much of the observed cloud changes are due to circulation changes, which in turn are related not only to changes in SSTAs but to changes in SSTA gradients. However, because SSTAs are associated with changes in the local ocean-atmosphere moisture and heat fluxes as well as significant changes in circulation (such as ENSO), SSTAs can serve as a surrogate for many aspects of global climate change.

  5. Assimilation of Quality Controlled AIRS Temperature Profiles using the NCEP GFS

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste; Iredell, Lena; Rosenberg, Robert

    2013-01-01

    We have previously conducted a number of data assimilation experiments using AIRS Version-5 quality controlled temperature profiles as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The data assimilation and forecast system we used was the Goddard Earth Observing System Model , Version-5 (GEOS-5) Data Assimilation System (DAS), which represents a combination of the NASA GEOS-5 forecast model with the National Centers for Environmental Prediction (NCEP) operational Grid Point Statistical Interpolation (GSI) global analysis scheme. All analyses and forecasts were run at a 0.5deg x 0.625deg spatial resolution. Data assimilation experiments were conducted in four different seasons, each in a different year. Three different sets of data assimilation experiments were run during each time period: Control; AIRS T(p); and AIRS Radiance. In the "Control" analysis, all the data used operationally by NCEP was assimilated, but no AIRS data was assimilated. Radiances from the Aqua AMSU-A instrument were also assimilated operationally by NCEP and are included in the "Control". The AIRS Radiance assimilation adds AIRS observed radiance observations for a select set of channels to the data set being assimilated, as done operationally by NCEP. In the AIRS T(p) assimilation, all information used in the Control was assimilated as well as Quality Controlled AIRS Version-5 temperature profiles, i.e., AIRS T(p) information was substituted for AIRS radiance information. The AIRS Version-5 temperature profiles were presented to the GSI analysis as rawinsonde profiles, assimilated down to a case-by-case appropriate pressure level p(sub best) determined using the Quality Control procedure. Version-5 also determines case-by-case, level-by-level error estimates of the temperature profiles, which were used as the uncertainty of each temperature measurement. These experiments using GEOS-5 have shown that forecasts

  6. A Numerical Study of Tropical Sea-Air Interactions Using a Cloud Resolving Model Coupled with an Ocean Mixed-Layer Model

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Tao, Wei-Kuo; Johnson, Dan; Simpson, Joanne; Li, Xiaofan; Sui, Chung-Hsiung; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Coupling a cloud resolving model (CRM) with an ocean mixed layer (OML) model can provide a powerful tool for better understanding impacts of atmospheric precipitation on sea surface temperature (SST) and salinity. The objective of this study is twofold. First, by using the three dimensional (3-D) CRM-simulated (the Goddard Cumulus Ensemble model, GCE) diabatic source terms, radiation (longwave and shortwave), surface fluxes (sensible and latent heat, and wind stress), and precipitation as input for the OML model, the respective impact of individual component on upper ocean heat and salt budgets are investigated. Secondly, a two-way air-sea interaction between tropical atmospheric climates (involving atmospheric radiative-convective processes) and upper ocean boundary layer is also examined using a coupled two dimensional (2-D) GCE and OML model. Results presented here, however, only involve the first aspect. Complete results will be presented at the conference.

  7. A Thermal Infrared Cloud Mapper

    NASA Astrophysics Data System (ADS)

    Mallama, A.; Degnan, J. J.

    2001-12-01

    A thermal infrared imager for mapping the changing cloud cover over a ground based observing site has been developed. There are two main components to our instrument. One is a commercially made uncooled 10 micron thermal infrared detector that outputs a 120x120 pixel thermogram. The other is a convex electroplated reflector, which is situated beneath the detector and in its field of view. The resulting image covers the sky from zenith down to about 10 degrees elevation. The self-reflection of the camera and supporting vanes is removed by interpolation. Atmospheric transparency is distinguished by the difference between the sky temperature and the ambient air temperature. Clear sky is indicated by pixels having a difference of about 20 degrees C or more. The qualitative results 'clear, haze and cloud' have proven to be very reliable during two years of development and testing. Quantitative information, such as the extinction coefficient, is also available though it is not exact. The uncertainty is probably due to variability of the lapse rate under different atmospheric conditions. Software has been written for PC/DOS and VME/LynxOS (similar to Linux) systems in the C programming language. Functionality includes serial communication with the detector, analysis of the thermogram, mapping of cloud cover, data display, and file I/O. The main elements of cost in this system were for the thermal infrared detector and for the machining of an 18-inch diameter stainless steel mandrel. The latter is needed to produce an electroplated reflector. We have had good success with the gold and rhodium reflectors that have been generated. The reflectors themselves are relatively inexpensive now that the mandrel is available.

  8. Maternal exposure to ambient air temperature during pregnancy and early childhood pneumonia.

    PubMed

    Miao, Yufeng; Shen, Yong-Ming; Lu, Chan; Zeng, Ji; Deng, Qihong

    2017-10-01

    Pneumonia has been widely recognized as the leading cause of death in children worldwide, but its etiology still remains unclear. We examined the association between maternal exposure to ambient air temperature during pregnancy and lifetime pneumonia in the offspring. We conducted a cohort study of 2598 preschool children aged 3-6 years in Changsha, China. The lifetime prevalence of pneumonia was assessed using questionnaire. We backwards estimated each child's exposure to air temperature during prenatal and postnatal periods. Multiple regression model was used to examine the association between childhood pneumonia and exposure to air temperature in terms of odd ratios (OR) and 95% confidence interval (CI). Prevalence of childhood pneumonia in Changsha was high up to 38.6%. We found that childhood pneumonia was significantly associated with prenatal exposure to air temperature, with adjusted OR (95% CI) = 1.77 (1.23-2.54) for an interquartile range (IQR) increase in temperature, particularly during the second trimester with adjusted OR (95% CI) = 2.26 (1.32-3.89). Boys are more susceptible to the risk of pneumonia due to air temperature than girls. We further observed that maternal exposure to extreme heat days during pregnancy increased the risk of pneumonia in the offspring. Maternal exposure to air temperature during pregnancy, particularly the second trimester, was associated with pneumonia in the children, providing the evidence for fetal origins of pneumonia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The Effects of Air Pollution and Temperature on COPD.

    PubMed

    Hansel, Nadia N; McCormack, Meredith C; Kim, Victor

    2016-06-01

    Chronic Obstructive Pulmonary Disease (COPD) affects 12-16 million people in the United States and is the third-leading cause of death. In developed countries, smoking is the greatest risk factor for the development of COPD, but other exposures also contribute to the development and progression of the disease. Several studies suggest, though are not definitive, that outdoor air pollution exposure is linked to the prevalence and incidence of COPD. Among individuals with COPD, outdoor air pollutants are associated with loss of lung function and increased respiratory symptoms. In addition, outdoor air pollutants are also associated with COPD exacerbations and mortality. There is much less evidence for the impact of indoor air on COPD, especially in developed countries in residences without biomass exposure. The limited existing data suggests that indoor particulate matter and nitrogen dioxide concentrations are linked to increased respiratory symptoms among patients with COPD. In addition, with the projected increases in temperature and extreme weather events in the context of climate change there has been increased attention to the effects of heat exposure. Extremes of temperature-both heat and cold-have been associated with increased respiratory morbidity in COPD. Some studies also suggest that temperature may modify the effect of pollution exposure and though results are not conclusive, understanding factors that may modify susceptibility to air pollution in patients with COPD is of utmost importance.

  10. Impact of stratospheric aircraft on calculations of nitric acid trihydrate cloud surface area densities using NMC temperatures and 2D model constituent distributions

    NASA Technical Reports Server (NTRS)

    Considine, David B.; Douglass, Anne R.

    1994-01-01

    A parameterization of NAT (nitric acid trihydrate) clouds is developed for use in 2D models of the stratosphere. The parameterization uses model distributions of HNO3 and H2O to determine critical temperatures for NAT formation as a function of latitude and pressure. National Meteorological Center temperature fields are then used to determine monthly temperature frequency distributions, also as a function of latitude and pressure. The fractions of these distributions which fall below the critical temperatures for NAT formation are then used to determine the NAT cloud surface area density for each location in the model grid. By specifying heterogeneous reaction rates as functions of the surface area density, it is then possible to assess the effects of the NAT clouds on model constituent distributions. We also consider the increase in the NAT cloud formation in the presence of a fleet of stratospheric aircraft. The stratospheric aircraft NO(x) and H2O perturbations result in increased HNO3 as well as H2O. This increases the probability of NAT formation substantially, especially if it is assumed that the aircraft perturbations are confined to a corridor region.

  11. Characteristics of Gaseous Diffusion Flames with High Temperature Combustion Air in Microgravity

    NASA Technical Reports Server (NTRS)

    Ghaderi, M.; Gupta, A. K.

    2003-01-01

    The characteristics of gaseous diffusion flames have been obtained using high temperature combustion air under microgravity conditions. The time resolved flame images under free fall microgravity conditions were obtained from the video images obtained. The tests results reported here were conducted using propane as the fuel and about 1000 C combustion air. The burner included a 0.686 mm diameter central fuel jet injected into the surrounding high temperature combustion air. The fuel jet exit Reynolds number was 63. Several measurements were taken at different air preheats and fuel jet exit Reynolds number. The resulting hybrid color flame was found to be blue at the base of the flame followed by a yellow color flame. The length and width of flame during the entire free fall conditions has been examined. Also the relative flame length and width for blue and yellow portion of the flame has been examined under microgravity conditions. The results show that the flame length decreases and width increases with high air preheats in microgravity condition. In microgravity conditions the flame length is larger with normal temperature combustion air than high temperature air.

  12. Correction of Temperatures of Air-Cooled Engine Cylinders for Variation in Engine and Cooling Conditions

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Pinkel, Benjamin; Ellerbrock, Herman H , Jr

    1939-01-01

    Factors are obtained from semiempirical equations for correcting engine-cylinder temperatures for variation in important engine and cooling conditions. The variation of engine temperatures with atmospheric temperature is treated in detail, and correction factors are obtained for various flight and test conditions, such as climb at constant indicated air speed, level flight, ground running, take-off, constant speed of cooling air, and constant mass flow of cooling air. Seven conventional air-cooled engine cylinders enclosed in jackets and cooled by a blower were tested to determine the effect of cooling-air temperature and carburetor-air temperature on cylinder temperatures. The cooling air temperature was varied from approximately 80 degrees F. to 230 degrees F. and the carburetor-air temperature from approximately 40 degrees F. to 160 degrees F. Tests were made over a large range of engine speeds, brake mean effective pressures, and pressure drops across the cylinder. The correction factors obtained experimentally are compared with those obtained from the semiempirical equations and a fair agreement is noted.

  13. Identification Code of Interstellar Cloud within IRAF

    NASA Astrophysics Data System (ADS)

    Lee, Youngung; Jung, Jae Hoon; Kim, Hyun-Goo

    1997-12-01

    We present a code which identifies individual clouds in crowded region using IMFORT interface within Image Reduction and Analysis Facility(IRAF). We define a cloud as an object composed of all pixels in longitude, latitude, and velocity that are simply connected and that lie above some threshold temperature. The code searches the whole pixels of the data cube in efficient way to isolate individual clouds. Along with identification of clouds it is designed to estimate their mean values of longitudes, latitudes, and velocities. In addition, a function of generating individual images(or cube data) of identified clouds is added up. We also present identified individual clouds using a 12CO survey data cube of Galactic Anticenter Region(Lee et al. 1997) as a test example. We used a threshold temperature of 5 sigma rms noise level of the data. With a higher threshold temperature, we isolated subclouds of a huge cloud identified originally. As the most important parameter to identify clouds is the threshold value, its effect to the size and velocity dispersion is discussed rigorously.

  14. Effect of CALIPSO Cloud Aerosol Discrimination (CAD) Confidence Levels on Observations of Aerosol Properties near Clouds

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Liu, Zhaoyan

    2012-01-01

    CALIPSO aerosol backscatter enhancement in the transition zone between clouds and clear sky areas is revisited with particular attention to effects of data selection based on the confidence level of cloud-aerosol discrimination (CAD). The results show that backscatter behavior in the transition zone strongly depends on the CAD confidence level. Higher confidence level data has a flatter backscatter far away from clouds and a much sharper increase near clouds (within 4 km), thus a smaller transition zone. For high confidence level data it is shown that the overall backscatter enhancement is more pronounced for small clear-air segments and horizontally larger clouds. The results suggest that data selection based on CAD reduces the possible effects of cloud contamination when studying aerosol properties in the vicinity of clouds.

  15. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  16. The mass and speed dependence of meteor air plasma temperatures.

    PubMed

    Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  17. Processing AIRS Scientific Data Through Level 2

    NASA Technical Reports Server (NTRS)

    Oliphant, Robert; Lee, Sung-Yung; Chahine, Moustafa; Susskind, Joel; arnet, Christopher; McMillin, Larry; Goldberg, Mitchell; Blaisdell, John; Rosenkranz, Philip; Strow, Larrabee

    2007-01-01

    The Atmospheric Infrared Spectrometer (AIRS) Science Processing System (SPS) is a collection of computer programs, denoted product generation executives (PGEs), for processing the readings of the AIRS suite of infrared and microwave instruments orbiting the Earth aboard NASA s Aqua spacecraft. AIRS SPS at an earlier stage of development was described in "Initial Processing of Infrared Spectral Data' (NPO-35243), NASA Tech Briefs, Vol. 28, No. 11 (November 2004), page 39. To recapitulate: Starting from level 0 (representing raw AIRS data), the PGEs and their data products are denoted by alphanumeric labels (1A, 1B, and 2) that signify the successive stages of processing. The cited prior article described processing through level 1B (the level-2 PGEs were not yet operational). The level-2 PGEs, which are now operational, receive packages of level-1B geolocated radiance data products and produce such geolocated geophysical atmospheric data products such as temperature and humidity profiles. The process of computing these geophysical data products is denoted "retrieval" and is quite complex. The main steps of the process are denoted microwave-only retrieval, cloud detection and cloud clearing, regression, full retrieval, and rapid transmittance algorithm.

  18. Ambient air pollution, temperature and kawasaki disease in Shanghai, China.

    PubMed

    Lin, Zhijing; Meng, Xia; Chen, Renjie; Huang, Guoying; Ma, Xiaojing; Chen, Jingjing; Huang, Min; Huang, Meirong; Gui, Yonghao; Chu, Chen; Liu, Fang; Kan, Haidong

    2017-11-01

    Kawasaki disease (KD) is a kind of pediatric vasculitis of unknown etiology which mainly affects the development of coronary artery aneurysms. Few studies have explored the potential environmental risk factors on KD incidence. We performed a time-series analysis to investigate the associations between air pollution and temperature and KD in Shanghai, China. We collected daily-hospitalized KD patients that were admitted in major pediatric specialty hospitals located in the urban areas of Shanghai from 2001 to 2010. The over-dispersed generalized additive model was used to estimate the effects of air pollutants on KD incidence on each day. Then, this model was combined with a distributed lag non-linear model to estimate the cumulative effects of temperature over a week. There were positive but statistically insignificant associations between three major air pollutants and KD incidence. The association between daily mean temperature and KD was generally J-shaped with higher risks on hot days. The cumulative relative risk of KD at extreme hot temperature (99th percentile, 32.4 °C) over a week was 1.91 [95% confidence interval (CI): 1.13, 3.23], compared with the referent temperature (10.0 °C). This study suggested that a short-term exposure to high temperature may significantly increase the incidence of KD, and the evidence linking air pollution and KD incidence was limited. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Trends and Periodic Variability in Tropical Wave Clouds

    NASA Astrophysics Data System (ADS)

    Burgwardt, Lester Charles, III

    This dissertation describes the acquisition and analysis of tropical wave cloudiness. Tropical wave positions for the years 2003 through 2013 were extracted via text mining, from the National Hurricane Center's Tropical Weather Discussion, a bulletin released every six hours and published on-line. Tropical wave tracks were developed from these positions using the Multiple Hypothesis Tracking algorithm. Satellite data from the Atmospheric Infrared Sounder (AIRS) was downloaded from the NASA Mirador website based on time and position of tracked tropical waves. The AIRS data was mosaicked to provide complete coverage between satellite swaths. The AIRS Level 2 Cloud Fraction Standard product was used exclusively in the analysis. Cloud fraction data was divided into upper and lower levels as provided in the AIRS product. A cloud fraction ratio was also developed to provide some indication of the insulating quality of clouds. The analysis discovered secular trends of varying degrees and direction depending on location of tropical waves. The analysis also found significant periodic variability within cloud fraction values, much of which correlated to known global oscillations such as El Nino and the Madden-Julian Oscillation. However a number of periodic signals found within tropical wave cloudiness could not be correlated with any of the known global and non-earth oscillations tested against. Future research ideas in the conclusions include an examination of those uncorrelated periodic signals. Also included in the conclusions are theories about differences in correlations to periodic signals within a tropical wave core versus correlations that are seen in surrounding cloud patterns.

  20. Air separation with temperature and pressure swing

    DOEpatents

    Cassano, Anthony A.

    1986-01-01

    A chemical absorbent air separation process is set forth which uses a temperature swing absorption-desorption cycle in combination with a pressure swing wherein the pressure is elevated in the desorption stage of the process.

  1. Geographical and Geomorphological Effects on Air Temperatures in the Columbia Basin's Signature Vineyards

    NASA Astrophysics Data System (ADS)

    Olson, L.; Pogue, K. R.; Bader, N.

    2012-12-01

    The Columbia Basin of Washington and Oregon is one of the most productive grape-growing areas in the United States. Wines produced in this region are influenced by their terroir - the amalgamation of physical and cultural elements that influence grapes grown at a particular vineyard site. Of the physical factors, climate, and in particular air temperature, has been recognized as a primary influence on viticulture. Air temperature directly affects ripening in the grapes. Proper fruit ripening, which requires precise and balanced levels of acid and sugar, and the accumulation of pigment in the grape skin, directly correlates with the quality of wine produced. Many features control air temperature within a particular vineyard. Elevation, latitude, slope, and aspect all converge to form complex relationships with air temperatures; however, the relative degree to which these attributes affect temperatures varies between regions and is not well understood. This study examines the influence of geography and geomorphology on air temperatures within the American Viticultural Areas (AVAs) of the Columbia Basin in eastern Washington and Oregon. The premier vineyards within each AVA, which have been recognized for producing high-quality wine, were equipped with air temperature monitoring stations that collected hourly temperature measurements. A variety of temperature statistics were calculated, including daily average, maximum, and minimum temperatures. From these values, average diurnal variation and growing degree-days (10°C) were calculated. A variety of other statistics were computed, including date of first and last frost and time spent below a minimum temperature threshold. These parameters were compared to the vineyard's elevation, latitude, slope, aspect, and local topography using GPS, ArcCatalog, and GIS in an attempt to determine their relative influences on air temperatures. From these statistics, it was possible to delineate two trends of temperature variation

  2. The pH and ionic composition of stratiform cloud water

    NASA Astrophysics Data System (ADS)

    Castillo, Raymond A.; Jiusto, James E.; Mclaren, Eugene

    Over 50 cloud water samples were collected during five comprehensive case studies of the water chemistry of stratiform clouds at Whiteface Mountain, New York. The water samples were analyzed for pH, conductivity and ions of sodium, potassium, magnesium, calcium, ammonium, sulfate, chloride and nitrate. Trajectory analyses and cloud condensation nucleus concentrations at 0.5 % confirmed that the air masses in all five of these cases represented continental air that was relatively clean (low aerosol concentration) for the northeystern United States. The major ions related to cloud water pH were found to be sulfate, nitrate, potassium, ammonium and calcium. The results revealed a mean hydrogen ion concentration [ H+] = 0.239 meq ℓ -1 ( σ = ± 0.21) which converts to a mean pH = 3.6 for all collected cloud samples. The low pH values are related to a normal background of nitrate ions found in the rural continental air masses plus sulfate ions largely from the industrial emissions of the midwestern United States. The [NO -3], in two of the three cases presented, demonstrates the importance of the nitrate ions' contribution to the pH of cloud water. A dependent means analysis of 40 events yielded a significant difference (0.04 level of significance), with the mean pH of precipitation (4.2) being greater than the mean pH of cloud water (4.0) for event samples. The ion concentrations indicated that the cloud rainout process contributed from 67 % to almost 100% of the total ion concentration of the precipitation. The washout process, i.e. precipitation scavenging below the cloud base, contributed considerably less than the cloud/rainout process of those total precipitation anions associated with air pollution.

  3. Air temperature changes in Toruń (central Poland) from 1871 to 2010

    NASA Astrophysics Data System (ADS)

    Pospieszyńska, Aleksandra; Przybylak, Rajmund

    2018-02-01

    The article presents a detailed analysis of changes in air temperature in Toruń in the period 1871-2010 on the basis of homogenised monthly, seasonal and annual air temperature series which have been newly constructed (i.e. extended by the 50 years of 1871-1920). Over the 140-year study period, a sizeable and statistically significant increase of 0.1 °C per decade was found in the air temperature in Toruń. The greatest increases occurred for spring and winter, at 0.12 and 0.11 °C, respectively. A lesser warming, meanwhile, was recorded for autumn (0.10 °C/10 years), and particularly for summer (0.07 °C/10 years). The air temperature trends are statistically significant for all seasons. Air temperature differences between the monthly averages of three analysed subperiods (1871-1900, 1901-1950 and 1951-2010) and averages for the entire period under review rarely exceeded ± 0.5 °C. In all of these periods, the highest average air temperatures occurred in July and the lowest in January. The period of 1981-2010 had the highest frequency of occurrence of very and extremely warm seasons and years. Meanwhile, the highest frequency of very and extremely cool seasons and years was recorded in the 1940s and in the nineteenth century. In the period of 1871-2010, winters shortened markedly (by 7%) and summers lengthened by 3.8%. All of the presented aspects of air temperature in Toruń, which is representative of the climate of central Poland, are in close agreement with the findings of analogous studies of the same for other areas of Poland and Central Europe.

  4. A cloud-resolving model study of aerosol-cloud correlation in a pristine maritime environment

    NASA Astrophysics Data System (ADS)

    Nishant, Nidhi; Sherwood, Steven C.

    2017-06-01

    In convective clouds, satellite-observed deepening or increased amount of clouds with increasing aerosol concentration has been reported and is sometimes interpreted as aerosol-induced invigoration of the clouds. However, such correlations can be affected by meteorological factors that affect both aerosol and clouds, as well as observational issues. In this study, we examine the behavior in a 660 × 660 km2 region of the South Pacific during June 2007, previously found by Koren et al. (2014) to show strong correlation between cloud fraction, cloud top pressure, and aerosols, using a cloud-resolving model with meteorological boundary conditions specified from a reanalysis. The model assumes constant aerosol loading, yet reproduces vigorous clouds at times of high real-world aerosol concentrations. Days with high- and low-aerosol loading exhibit deep-convective and shallow clouds, respectively, in both observations and the simulation. Synoptic analysis shows that vigorous clouds occur at times of strong surface troughs, which are associated with high winds and advection of boundary layer air from the Southern Ocean where sea-salt aerosol is abundant, thus accounting for the high correlation. Our model results show that aerosol-cloud relationships can be explained by coexisting but independent wind-aerosol and wind-cloud relationships and that no cloud condensation nuclei effect is required.

  5. A comparison of urban heat islands mapped using skin temperature, air temperature, and apparent temperature (Humidex), for the greater Vancouver area.

    PubMed

    Ho, Hung Chak; Knudby, Anders; Xu, Yongming; Hodul, Matus; Aminipouri, Mehdi

    2016-02-15

    Apparent temperature is more closely related to mortality during extreme heat events than other temperature variables, yet spatial epidemiology studies typically use skin temperature (also known as land surface temperature) to quantify heat exposure because it is relatively easy to map from satellite data. An empirical approach to map apparent temperature at the neighborhood scale, which relies on publicly available weather station observations and spatial data layers combined in a random forest regression model, was demonstrated for greater Vancouver, Canada. Model errors were acceptable (cross-validated RMSE=2.04 °C) and the resulting map of apparent temperature, calibrated for a typical hot summer day, corresponded well with past temperature research in the area. A comparison with field measurements as well as similar maps of skin temperature and air temperature revealed that skin temperature was poorly correlated with both air temperature (R(2)=0.38) and apparent temperature (R(2)=0.39). While the latter two were more similar (R(2)=0.87), apparent temperature was predicted to exceed air temperature by more than 5 °C in several urban areas as well as around the confluence of the Pitt and Fraser rivers. We conclude that skin temperature is not a suitable proxy for human heat exposure, and that spatial epidemiology studies could benefit from mapping apparent temperature, using an approach similar to the one reported here, to better quantify differences in heat exposure that exist across an urban landscape. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Rate constants for chemical reactions in high-temperature nonequilibrium air

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.

    1986-01-01

    In the nonequilibrium atmospheric chemistry regime that will be encountered by the proposed Aeroassisted Orbital Transfer Vehicle in the upper atmosphere, where air density is too low for thermal and chemical equilibrium to be maintained, the detailed high temperature air chemistry plays a critical role in defining radiative and convective heating loads. Although vibrational and electronic temperatures remain low (less than 15,000 K), rotational and translational temperatures may reach 50,000 K. Attention is presently given to the effects of multiple temperatures on the magnitudes of various chemical reaction rate constants, for the cases of both bimolecular exchange reactions and collisional excitation and dissociation reactions.

  7. Cloud shading and fog drip influence the metabolism of a coastal pine ecosystem.

    PubMed

    Carbone, Mariah S; Park Williams, A; Ambrose, Anthony R; Boot, Claudia M; Bradley, Eliza S; Dawson, Todd E; Schaeffer, Sean M; Schimel, Joshua P; Still, Christopher J

    2013-02-01

    Assessing the ecological importance of clouds has substantial implications for our basic understanding of ecosystems and for predicting how they will respond to a changing climate. This study was conducted in a coastal Bishop pine forest ecosystem that experiences regular cycles of stratus cloud cover and inundation in summer. Our objective was to understand how these clouds impact ecosystem metabolism by contrasting two sites along a gradient of summer stratus cover. The site that was under cloud cover ~15% more of the summer daytime hours had lower air temperatures and evaporation rates, higher soil moisture content, and received more frequent fog drip inputs than the site with less cloud cover. These cloud-driven differences in environmental conditions translated into large differences in plant and microbial activity. Pine trees at the site with greater cloud cover exhibited less water stress in summer, larger basal area growth, and greater rates of sap velocity. The difference in basal area growth between the two sites was largely due to summer growth. Microbial metabolism was highly responsive to fog drip, illustrated by an observed ~3-fold increase in microbial biomass C with increasing summer fog drip. In addition, the site with more cloud cover had greater total soil respiration and a larger fractional contribution from heterotrophic sources. We conclude that clouds are important to the ecological functioning of these coastal forests, providing summer shading and cooling that relieve pine and microbial drought stress as well as regular moisture inputs that elevate plant and microbial metabolism. These findings are important for understanding how these and other seasonally dry coastal ecosystems will respond to predicted changes in stratus cover, rainfall, and temperature. © 2012 Blackwell Publishing Ltd.

  8. Comparison of CERES-MODIS stratus cloud properties with ground-based measurements at the DOE ARM Southern Great Plains site

    NASA Astrophysics Data System (ADS)

    Dong, Xiquan; Minnis, Patrick; Xi, Baike; Sun-Mack, Sunny; Chen, Yan

    2008-02-01

    Overcast stratus cloud properties derived for the Clouds and the Earth's Radiant Energy System (CERES) project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains site from March 2000 through December 2004. Retrievals from ARM surface-based data were averaged over a 1-h interval centered at the time of each satellite overpass, and the CERES-MODIS cloud properties were averaged within a 30 km × 30 km box centered on the ARM SGP site. Two data sets were analyzed: all of the data (ALL), which include multilayered, single-layered, and slightly broken stratus decks and a subset, single-layered unbroken decks (SL). The CERES-MODIS effective cloud heights were determined from effective cloud temperature using a lapse rate method with the surface temperature specified as the 24-h mean surface air temperature. For SL stratus, they are, on average, within the ARM radar-lidar estimated cloud boundaries and are 0.534 ± 0.542 km and 0.108 ± 0.480 km lower than the cloud physical tops and centers, respectively, and are comparable for day and night observations. The mean differences and standard deviations are slightly larger for ALL data, but not statistically different to those of SL data. The MODIS-derived effective cloud temperatures are 2.7 ± 2.4 K less than the surface-observed SL cloud center temperatures with very high correlations (0.86-0.97). Variations in the height differences are mainly caused by uncertainties in the surface air temperatures, lapse rates, and cloud top height variability. The biases are mainly the result of the differences between effective and physical cloud top, which are governed by cloud liquid water content and viewing zenith angle, and the selected lapse rate, -7.1 K km-1. On the basis of a total of 43 samples, the means and standard deviations of the differences between the daytime

  9. Effect of production microclimate on female thermal state with increased temperature and air humidity

    NASA Technical Reports Server (NTRS)

    Machablishvili, O. G.

    1980-01-01

    The thermal state of women during the effect of high air temperature and relative humidity with a varying degree of physical loads was studied. Parameters for air temperature, relative humidity, and air movement were established. It was established that in women the thermo-regulatory stress occurs at lower air temperatures and with lower physical loads than in men. The accumulation of heat in women was revealed with lower air temperature than in men. It is concluded that to preserve the normal physiological state of the female organism it is necessary to create more favorable microclimate conditions and decrease the physical loads.

  10. Nitric Acid Particles in Cold Thick Ice Clouds Observed at Global Scale: Link with Lightning, Temperature, and Upper Tropospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Chepfer, H.; Minnis, P.; Dubuisson, P.; Chiriaco, M.; Sun-Mack, S.; Riviere, E. D.

    2007-01-01

    Signatures of nitric acid particles (NAP) in cold thick ice clouds have been derived from satellite observations. Most NAP are detected in the Tropics (9 to 20% of clouds with T less than 202.5 K). Higher occurrences were found in the rare mid-latitudes very cold clouds. NAP occurrence increases as cloud temperature decreases and NAP are more numerous in January than July. Comparisons of NAP and lightning distributions show that lightning is the main source of the NOx, which forms NAP in cold clouds. Qualitative comparisons of NAP with upper tropospheric humidity distributions suggest that NAP play a role in the dehydration of the upper troposphere when the tropopause is colder than 195K.

  11. Nitric acid particles in cold thick ice clouds observed at global scale: Link with lightning, temperature, and upper tropospheric water vapor

    NASA Astrophysics Data System (ADS)

    Chepfer, H.; Minnis, P.; Dubuisson, P.; Chiriaco, M.; Sun-Mack, S.; RivièRe, E. D.

    2007-03-01

    Signatures of nitric acid particles (NAP) in cold thick ice clouds have been derived from satellite observations. Most NAP are detected in the tropics (9 to 20% of clouds with T < 202.5 K). Higher occurrences were found in the rare midlatitudes very cold clouds. NAP occurrence increases as cloud temperature decreases, and NAP are more numerous in January than July. Comparisons of NAP and lightning distributions show that lightning seems to be the main source of the NOx, which forms NAP in cold clouds over continents. Qualitative comparisons of NAP with upper tropospheric humidity distributions suggest that NAP may play a role in the dehydration of the upper troposphere when the tropopause is colder than 195 K.

  12. Surface Temperature variability from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Dang, V. T.; Aumann, H. H.

    2015-12-01

    To address the existence and possible causes of the climate hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014for the day and night conditions. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We compare the satellite data with the new surface data produced by Karl et al. (2015) who denies the reality of the climate hiatus. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The day-night difference is an indicator of the anthropogenic trend. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  13. Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H

    1937-01-01

    Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.

  14. In situ measurements of cloud microphysics and aerosol over coastal Antarctica during the MAC campaign

    NASA Astrophysics Data System (ADS)

    O'Shea, Sebastian J.; Choularton, Thomas W.; Flynn, Michael; Bower, Keith N.; Gallagher, Martin; Crosier, Jonathan; Williams, Paul; Crawford, Ian; Fleming, Zoë L.; Listowski, Constantino; Kirchgaessner, Amélie; Ladkin, Russell S.; Lachlan-Cope, Thomas

    2017-11-01

    During austral summer 2015, the Microphysics of Antarctic Clouds (MAC) field campaign collected unique and detailed airborne and ground-based in situ measurements of cloud and aerosol properties over coastal Antarctica and the Weddell Sea. This paper presents the first results from the experiment and discusses the key processes important in this region, which is critical to predicting future climate change. The sampling was predominantly of stratus clouds, at temperatures between -20 and 0 °C. These clouds were dominated by supercooled liquid water droplets, which had a median concentration of 113 cm-3 and an interquartile range of 86 cm-3. Both cloud liquid water content and effective radius increased closer to cloud top. The cloud droplet effective radius increased from 4 ± 2 µm near cloud base to 8 ± 3 µm near cloud top. Cloud ice particle concentrations were highly variable with the ice tending to occur in small, isolated patches. Below approximately 1000 m, glaciated cloud regions were more common at higher temperatures; however, the clouds were still predominantly liquid throughout. When ice was present at temperatures higher than -10 °C, secondary ice production most likely through the Hallett-Mossop mechanism led to ice concentrations 1 to 3 orders of magnitude higher than the number predicted by commonly used primary ice nucleation parameterisations. The drivers of the ice crystal variability are investigated. No clear dependence on the droplet size distribution was found. The source of first ice in the clouds remains uncertain but may include contributions from biogenic particles, blowing snow or other surface ice production mechanisms. The concentration of large aerosols (diameters 0.5 to 1.6 µm) decreased with altitude and were depleted in air masses that originated over the Antarctic continent compared to those more heavily influenced by the Southern Ocean and sea ice regions. The dominant aerosol in the region was hygroscopic in nature, with

  15. Offline GCSS Intercomparison of Cloud-Radiation Interaction and Surface Fluxes

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Johnson, D.; Krueger, S.; Zulauf, M.; Donner, L.; Seman, C.; Petch, J.; Gregory, J.

    2004-01-01

    Simulations of deep tropical clouds by both cloud-resolving models (CRMs) and single-column models (SCMs) in the GEWEX Cloud System Study (GCSS) Working Group 4 (WG4; Precipitating Convective Cloud Systems), Case 2 (19-27 December 1992, TOGA-COARE IFA) have produced large differences in the mean heating and moistening rates (-1 to -5 K and -2 to 2 grams per kilogram respectively). Since the large-scale advective temperature and moisture "forcing" are prescribed for this case, a closer examination of two of the remaining external types of "forcing", namely radiative heating and air/sea hear and moisture transfer, are warranted. This paper examines the current radiation and surface flux of parameterizations used in the cloud models participating in the GCSS WG4, be executing the models "offline" for one time step (12 s) for a prescribed atmospheric state, then examining the surface and radiation fluxes from each model. The dynamic, thermodynamic, and microphysical fluids are provided by the GCE-derived model output for Case 2 during a period of very active deep convection (westerly wind burst). The surface and radiation fluxes produced from the models are then divided into prescribed convective, stratiform, and clear regions in order to examine the role that clouds play in the flux parameterizations. The results suggest that the differences between the models are attributed more to the surface flux parameterizations than the radiation schemes.

  16. Cloud cover determination in polar regions from satellite imagery

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Key, J.

    1989-01-01

    The objectives are to develop a suitable validation data set for evaluating the effectiveness of the International Satellite Cloud Climatology Project (ISCCP) algorithm for cloud retrieval in polar regions, to identify limitations of current procedures and to explore potential means to remedy them using textural classifiers, and to compare synoptic cloud data from model runs with observations. Toward the first goal, a polar data set consisting of visible, thermal, and passive microwave data was developed. The AVHRR and SMMR data were digitally merged to a polar stereographic projection with an effective pixel size of 5 sq km. With this data set, two unconventional methods of classifying the imagery for the analysis of polar clouds and surfaces were examined: one based on fuzzy sets theory and another based on a trained neural network. An algorithm for cloud detection was developed from an early test version of the ISCCP algorithm. This algorithm includes the identification of surface types with passive microwave, then temporal tests at each pixel location in the cloud detection phase. Cloud maps and clear sky radiance composites for 5 day periods are produced. Algorithm testing and validation was done with both actural AVHRR/SMMR data, and simulated imagery. From this point in the algorithm, groups of cloud pixels are examined for their spectral and textural characteristics, and a procedure is developed for the analysis of cloud patterns utilizing albedo, IR temperature, and texture. In a completion of earlier work, empirical analyses of arctic cloud cover were explored through manual interpretations of DMSP imagery and compared to U.S. Air Force 3D-nephanalysis. Comparisons of observed cloudiness from existing climatologies to patterns computed by the GISS climate model were also made.

  17. Nowcasting Cloud Fields for U.S. Air Force Special Operations

    DTIC Science & Technology

    2017-03-01

    application of Bayes’ Rule offers many advantages over Kernel Density Estimation (KDE) and other commonly used statistical post-processing methods...reflectance and probability of cloud. A statistical post-processing technique is applied using Bayesian estimation to train the system from a set of past...nowcasting, low cloud forecasting, cloud reflectance, ISR, Bayesian estimation, statistical post-processing, machine learning 15. NUMBER OF PAGES

  18. Investigation of the impact of extreme air temperature on river water temperature: case study of the heat episode 2013.

    NASA Astrophysics Data System (ADS)

    Weihs, Philipp; Trimmel, Heidelinde; Goler, Robert; Formayer, Herbert; Holzapfel, Gerda; Rauch, Hans Peter

    2014-05-01

    Water stream temperature is a relevant factor for water quality since it is an important driver of water oxygen content and in turn also reduces or increases stress on the aquatic fauna. The water temperature of streams is determined by the source and inflow water temperature, by the energy balance at the stream surface and by the hydrological regime of the stream. Main factors driving the energy balance of streams are radiation balance and air temperature which influences the sensitive and latent heat flux. The present study investigates the impact of the heat episode of summer 2013 on water temperature of two lowland rivers in south eastern Austria. Within the scope of the project BIO_CLIC routine measurements of water temperature at 33 locations alongside the rivers Pinka and Lafnitz have been performed since spring 2012. In addition meteorological measurements of global shortwave and longwave radiation, air temperature, wind and air humidity have been carried out during this time. For the same time period, data of discharge and water levels of both rivers were provided by the public hydrological office. The heat episode of summer 2013 started, according to the Kysely- definition, on 18 July and lasted until 14 August. The highest air temperature ever recorded in Austria was reported on 8 August at 40.5°C. In Güssing, which is located within the project area, 40.0 °C were recorded. In the lower reaches of the river Pinka, at the station Burg the monthly mean water temperature of August 2013 was with more than 22°C, 1°C higher than the mean water temperature of the same period of the previous years. At the same station, the maximum water temperature of 27.1°C was recorded on 29 July, 9 days prior to the air temperature record. Analysis shows that at the downstream stations the main driving parameter is solar radiation whereas at the upstream stations a better correlation between air temperature and water temperature is obtained. Using the extensive data set

  19. Influence of air temperature on electric consumption in Moscow

    NASA Astrophysics Data System (ADS)

    Lokoshchenko, Mikhail A.; Nikolayeva, Nataliya A.

    2017-04-01

    For the first time for mid latitudes and with the use of long-term data of Moscow State University Meteorological observatory a dependence of electric power consumption E on the air temperature T has been studied for each separate day for the period from 1990 to 2015 (totally - 9496 values). As a result, it is shown that the relation is in general decreasing in conditions of cold Moscow region: energy consumption as a rule reduces with a rise of the temperature. However, in time of severe frosts the energy consumption increasing goes to nothing due to special measures for energy savings whereas during heat wave episodes of extremely hot weather (especially in summer of 2010) an opposite tendency appears to the energy consumption increase with the increase of the air temperature due to additional consumption for the air conditioning. This relation between E and T is statistically significant with extremely high confidence probability (more than 0.999). The optimum temperature for the energy saving is 18 ˚C. The air temperature limit values in Moscow during last decades have been discussed. Daily-averaged T varied from -28.0 ˚C in January of 2006 to +31.4 ˚C in August of 2010 so a range of this parameter is almost 60 ˚C. Catastrophic heat wave in 2010 appeared as a secondary summer maximum of the electric consumption annual course. The relation between E and T for separate years demonstrates strong weekly periodicity at the dynamics of E daily values. As a result statistical distribution of E daily values for separate years is bimodal. One its mode is connected with working-days and another one - with non-work days (Saturday, Sunday and holidays) when consumption is much less. In recent time weekly cycle at the electric consumption became weaker due to total fall of industry in Moscow. In recent years the dependence of energy consumption on the air temperature generally became stronger - probably due to changes of its structure (growth of non-industrial users

  20. Aerosol-Cloud Interactions and Cloud Microphysical Properties in the Asir Region of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Kucera, P. A.; Axisa, D.; Burger, R. P.; Li, R.; Collins, D. R.; Freney, E. J.; Buseck, P. R.

    2009-12-01

    In recent advertent and inadvertent weather modification studies, a considerable effort has been made to understand the impact of varying aerosol properties and concentration on cloud properties. Significant uncertainties exist with aerosol-cloud interactions for which complex microphysical processes link the aerosol and cloud properties. Under almost all environmental conditions, increased aerosol concentrations within polluted air masses will enhance cloud droplet concentration relative to that in unperturbed regions. The interaction between dust particles and clouds are significant, yet the conditions in which dust particles become cloud condensation nuclei (CCN) are uncertain. In order to quantify this aerosol effect on clouds and precipitation, a field campaign was launched in the Asir region, located adjacent to the Red Sea in the southwest region of Saudi Arabia. Ground measurements of aerosol size distributions, hygroscopic growth factors, CCN concentrations as well as aircraft measurements of cloud hydrometeor size distributions were observed in the Asir region in August 2009. The presentation will include a summary of the analysis and results with a focus on aerosol-cloud interactions and cloud microphysical properties observed during the convective season in the Asir region.

  1. Operational implications of a cloud model simulation of space shuttle exhaust clouds in different atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Zak, J. A.

    1989-01-01

    A three-dimensional cloud model was used to characterize the dominant influence of the environment on the Space Shuttle exhaust cloud. The model was modified to accept the actual heat and moisture from rocket exhausts and deluge water as initial conditions. An upper-air sounding determined the ambient atmosphere in which the cloud would grow. The model was validated by comparing simulated clouds with observed clouds from four actual Shuttle launches. Results are discussed with operational weather forecasters in mind. The model successfully produced clouds with dimensions, rise, decay, liquid water contents, and vertical motion fields very similar to observed clouds whose dimensions were calculated from 16 mm film frames. Once validated, the model was used in a number of different atmospheric conditions ranging from very unstable to very stable. Wind shear strongly affected the appearance of both the ground cloud and vertical column cloud. The ambient low-level atmospheric moisture governed the amount of cloud water in model clouds. Some dry atmospheres produced little or no cloud water. An empirical forecast technique for Shuttle cloud rise is presented and differences between natural atmospheric convection and exhaust clouds are discussed.

  2. Air and ground temperatures along elevation and continentality gradients in Southern Norway

    NASA Astrophysics Data System (ADS)

    Farbrot, Herman; Hipp, Tobias; Etzelmüller, Bernd; Humlum, Ole; Isaksen, Ketil; Strand Ødegârd, Rune

    2010-05-01

    The modern southern boundary for Scandinavian permafrost is located in the mountains of Southern Norway. Permafrost and seasonal frost are considered key components of the cryosphere, and the climate-permafrost relation has acquired added importance with the increasing awareness and concern of rising air temperatures. The three-year research project CRYOLINK ("Permafrost and seasonal frost in southern Norway") aims at improving knowledge on past and present ground temperatures, seasonal frost, and distribution of mountain permafrost in Southern Norway by addressing the fundamental problem of heat transfer between the atmosphere and the ground surface. Hence, several shallow boreholes have been drilled, and a monitoring program to measure air and ground temperatures was started August 2008. The borehole areas (Juvvass, Jetta and Tron) are situated along a west-east transect and, hence, a continentality gradient, and each area provides boreholes at different elevations. Here we present the first year of air and ground temperatures from these sites and discuss the influence of air temperature and ground surface charcteristics (snow conditions, sediments/bedrock, vegetation) on ground temperatures.

  3. Eight Year Climatologies from Observational (AIRS) and Model (MERRA) Data

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas; Savtchenko, Andrey; Won, Young-In; Theobalk, Mike; Vollmer, Bruce; Manning, Evan; Smith, Peter; Ostrenga, Dana; Leptoukh, Greg

    2010-01-01

    We examine climatologies derived from eight years of temperature, water vapor, cloud, and trace gas observations made by the Atmospheric Infrared Sounder (AIRS) instrument flying on the Aqua satellite and compare them to similar climatologies constructed with data from a global assimilation model, the Modern Era Retrospective-Analysis for Research and Applications (MERRA). We use the AIRS climatologies to examine anomalies and trends in the AIRS data record. Since sampling can be an issue for infrared satellites in low earth orbit, we also use the MERRA data to examine the AIRS sampling biases. By sampling the MERRA data at the AIRS space-time locations both with and without the AIRS quality control we estimate the sampling bias of the AIRS climatology and the atmospheric conditions where AIRS has a lower sampling rate. While the AIRS temperature and water vapor sampling biases are small at low latitudes, they can be more than a few degrees in temperature or 10 percent in water vapor at higher latitudes. The largest sampling biases are over desert. The AIRS and MERRA data are available from the Goddard Earth Sciences Data and Information Services Center (GES DISC). The AIRS climatologies we used are available for analysis with the GIOVANNI data exploration tool. (see, http://disc.gsfc.nasa.gov).

  4. Characterization of Extreme Deposition of Air Pollutants in MT. Mitchell State Park: Potential for Forest Decline and Opportunity for Cloud Deacidification

    NASA Astrophysics Data System (ADS)

    Defelice, Thomas Peter

    The decline of forests has long been attributed to various natural (e.g. drought), man-made (e.g. logging), and perhaps, combinations of these (eg. fires caused by loggers) causes. A new type of forest decline (attributed to the deposition of air pollutants and other natural causes) has become apparent at high elevation sites in western Europe and North America; especially for above cloudbase forests like those in the Mt. Mitchell State Park. Investigations of air pollutant deposition are plentiful and laboratory studies have shown extreme deposition of these pollutants to be potentially harmful to forests. However, no field study has concentrated on these events. The primary objective of this study is to characterize (i.e., meterologically, microphysically, chemically) extreme episodes of air pollutant deposition. This study defines extreme aqueous events as having a pH < 3.1. pH's of this order are known to reduce laboratory tree growth depending on their age and species. On the average, one out of three aqueous events, sampled in the park during the 1986-1988 growing seasons (mid-May through mid-September), was extreme. Their occurrence over time may lead to the death of infant and 'old' trees, and to the reduced vigor of trees in their prime, as a result of triggering the decline mechanisms of these trees. These events usually last ~ 4.0 h, form during extended periods of high atmospheric pressure, have a liquid water content of ~ 0.10 gm^{-3}, and near typical cloud droplet sizes (~ 8.0 μm). Extreme aqueous events deposit most of their acid at their end. The deposition from the infrequent occurrences of very high ozone ( >=q100 ppb) and sulfur dioxide (>=q 5 ppb) concentrations in conjunction with these cloud events may be even more detrimental to the canopy, then that by extreme aqueous events alone. The physical characteristics of these combined events appear to include those of mature, precipitating clouds. Their occurrence may provide a clue as to how

  5. Characteristic Vertical Profiles of Cloud Water Composition in Marine Stratocumulus Clouds and Relationships With Precipitation

    NASA Astrophysics Data System (ADS)

    MacDonald, Alexander B.; Dadashazar, Hossein; Chuang, Patrick Y.; Crosbie, Ewan; Wang, Hailong; Wang, Zhen; Jonsson, Haflidi H.; Flagan, Richard C.; Seinfeld, John H.; Sorooshian, Armin

    2018-04-01

    This study uses airborne cloud water composition measurements to characterize the vertical structure of air-equivalent mass concentrations of water-soluble species in marine stratocumulus clouds off the California coast. A total of 385 cloud water samples were collected in the months of July and August between 2011 and 2016 and analyzed for water-soluble ionic and elemental composition. Three characteristic profiles emerge: (i) a reduction of concentration with in-cloud altitude for particulate species directly emitted from sources below cloud without in-cloud sources (e.g., Cl- and Na+), (ii) an increase of concentration with in-cloud altitude (e.g., NO2- and formate), and (iii) species exhibiting a peak in concentration in the middle of cloud (e.g., non-sea-salt SO42-, NO3-, and organic acids). Vertical profiles of rainout parameters such as loss frequency, lifetime, and change in concentration with respect to time show that the scavenging efficiency throughout the cloud depth depends strongly on the thickness of the cloud. Thin clouds exhibit a greater scavenging loss frequency at cloud top, while thick clouds have a greater scavenging loss frequency at cloud base. The implications of these results for treatment of wet scavenging in models are discussed.

  6. Characteristic Vertical Profiles of Cloud Water Composition in Marine Stratocumulus Clouds and Relationships With Precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, Alexander B.; Dadashazar, Hossein; Chuang, Patrick Y.

    This study uses airborne cloud water composition measurements to characterize the vertical structure of air-equivalent mass concentrations of water-soluble species in marine stratocumulus clouds off the California coast. A total of 385 cloud water samples were collected in the months of July and August between 2011 and 2016 and analyzed for water-soluble ionic and elemental composition. Three characteristic profiles emerge: (i) a reduction of concentration with in-cloud altitude for particulate species directly emitted from sources below cloud without in-cloud sources (e.g., Cl-, Na+); (ii) an increase of concentration with in-cloud altitude (e.g., NO2-, formate); and (iii) species exhibiting a peakmore » in concentration in the middle of cloud (e.g., non-sea salt SO42-, NO3-, organic acids). Vertical profiles of rainout parameters such as loss frequency, lifetime, and change in concentration with respect to time show that the scavenging efficiency throughout the cloud depth depends strongly on the thickness of the cloud. Thin clouds exhibit a greater scavenging loss frequency at cloud top, while thick clouds have a greater scavenging loss frequency at cloud base. The implications of these results for treatment of wet scavenging in models are discussed.« less

  7. Estimating effective particle size of tropical deep convective clouds with a look-up table method using satellite measurements of brightness temperature differences

    NASA Astrophysics Data System (ADS)

    Hong, Gang; Minnis, Patrick; Doelling, David; Ayers, J. Kirk; Sun-Mack, Szedung

    2012-03-01

    A method for estimating effective ice particle radius Re at the tops of tropical deep convective clouds (DCC) is developed on the basis of precomputed look-up tables (LUTs) of brightness temperature differences (BTDs) between the 3.7 and 11.0 μm bands. A combination of discrete ordinates radiative transfer and correlated k distribution programs, which account for the multiple scattering and monochromatic molecular absorption in the atmosphere, is utilized to compute the LUTs as functions of solar zenith angle, satellite zenith angle, relative azimuth angle, Re, cloud top temperature (CTT), and cloud visible optical thickness τ. The LUT-estimated DCC Re agrees well with the cloud retrievals of the Moderate Resolution Imaging Spectroradiometer (MODIS) for the NASA Clouds and Earth's Radiant Energy System with a correlation coefficient of 0.988 and differences of less than 10%. The LUTs are applied to 1 year of measurements taken from MODIS aboard Aqua in 2007 to estimate DCC Re and are compared to a similar quantity from CloudSat over the region bounded by 140°E, 180°E, 0°N, and 20°N in the Western Pacific Warm Pool. The estimated DCC Re values are mainly concentrated in the range of 25-45 μm and decrease with CTT. Matching the LUT-estimated Re with ice cloud Re retrieved by CloudSat, it is found that the ice cloud τ values from DCC top to the vertical location where LUT-estimated Re is located at the CloudSat-retrieved Re profile are mostly less than 2.5 with a mean value of about 1.3. Changes in the DCC τ can result in differences of less than 10% for Re estimated from LUTs. The LUTs of 0.65 μm bidirectional reflectance distribution function (BRDF) are built as functions of viewing geometry and column amount of ozone above upper troposphere. The 0.65 μm BRDF can eliminate some noncore portions of the DCCs detected using only 11 μm brightness temperature thresholds, which result in a mean difference of only 0.6 μm for DCC Re estimated from BTD LUTs.

  8. Transport of infrared radiation in cuboidal clouds

    NASA Technical Reports Server (NTRS)

    HARSHVARDHAN; Weinman, J. A.; Davies, R.

    1981-01-01

    The transport of infrared radiation in a single cuboidal cloud using a vertical two steam approximation was modeled. The emittance of the top face of the model cloud is always less than that for a plane parallel cloud of the same optical depth. The hemisphere flux escaping from the cloud top has a gradient from the center to the edges which brighten when the cloud is over warmer ground. Cooling rate calculations in the 8 to 13.6 micrometer region show that there is cooling from the sides of the cloud at all levels even when there is heating of the core from the ground below. The radiances exiting from model cuboidal clouds were computed by path integration over the source function obtained with the two stream approximation. It is suggested that the brightness temperature measured from finite clouds will overestimate the cloud top temperature.

  9. Balloon-borne match measurements of midlatitude cirrus clouds

    NASA Astrophysics Data System (ADS)

    Cirisan, A.; Luo, B. P.; Engel, I.; Wienhold, F. G.; Sprenger, M.; Krieger, U. K.; Weers, U.; Romanens, G.; Levrat, G.; Jeannet, P.; Ruffieux, D.; Philipona, R.; Calpini, B.; Spichtinger, P.; Peter, T.

    2014-07-01

    Observations of high supersaturations with respect to ice inside cirrus clouds with high ice water content (> 0.01 g kg-1) and high crystal number densities (> 1 cm-3) are challenging our understanding of cloud microphysics and of climate feedback processes in the upper troposphere. However, single measurements of a cloudy air mass provide only a snapshot from which the persistence of ice supersaturation cannot be judged. We introduce here the "cirrus match technique" to obtain information about the evolution of clouds and their saturation ratio. The aim of these coordinated balloon soundings is to analyze the same air mass twice. To this end the standard radiosonde equipment is complemented by a frost point hygrometer, "SnowWhite", and a particle backscatter detector, "COBALD" (Compact Optical Backscatter AerosoL Detector). Extensive trajectory calculations based on regional weather model COSMO (Consortium for Small-Scale Modeling) forecasts are performed for flight planning, and COSMO analyses are used as a basis for comprehensive microphysical box modeling (with grid scale of 2 and 7 km, respectively). Here we present the results of matching a cirrus cloud to within 2-15 km, realized on 8 June 2010 over Payerne, Switzerland, and a location 120 km downstream close to Zurich. A thick cirrus cloud was detected over both measurement sites. We show that in order to quantitatively reproduce the measured particle backscatter ratios, the small-scale temperature fluctuations not resolved by COSMO must be superimposed on the trajectories. The stochastic nature of the fluctuations is captured by ensemble calculations. Possibilities for further improvements in the agreement with the measured backscatter data are investigated by assuming a very slow mass accommodation of water on ice, the presence of heterogeneous ice nuclei, or a wide span of (spheroidal) particle shapes. However, the resulting improvements from these microphysical refinements are moderate and comparable in

  10. Identifying anthropogenic anomalies in air, surface and groundwater temperatures in Germany.

    PubMed

    Benz, Susanne A; Bayer, Peter; Blum, Philipp

    2017-04-15

    Human activity directly influences ambient air, surface and groundwater temperatures. The most prominent phenomenon is the urban heat island effect, which has been investigated particularly in large and densely populated cities. This study explores the anthropogenic impact on the thermal regime not only in selected urban areas, but on a countrywide scale for mean annual temperature datasets in Germany in three different compartments: measured surface air temperature, measured groundwater temperature, and satellite-derived land surface temperature. Taking nighttime lights as an indicator of rural areas, the anthropogenic heat intensity is introduced. It is applicable to each data set and provides the difference between measured local temperature and median rural background temperature. This concept is analogous to the well-established urban heat island intensity, but applicable to each measurement point or pixel of a large, even global, study area. For all three analyzed temperature datasets, anthropogenic heat intensity grows with increasing nighttime lights and declines with increasing vegetation, whereas population density has only minor effects. While surface anthropogenic heat intensity cannot be linked to specific land cover types in the studied resolution (1km×1km) and classification system, both air and groundwater show increased heat intensities for artificial surfaces. Overall, groundwater temperature appears most vulnerable to human activity, albeit the different compartments are partially influenced through unrelated processes; unlike land surface temperature and surface air temperature, groundwater temperatures are elevated in cultivated areas as well. At the surface of Germany, the highest anthropogenic heat intensity with 4.5K is found at an open-pit lignite mine near Jülich, followed by three large cities (Munich, Düsseldorf and Nuremberg) with annual mean anthropogenic heat intensities >4K. Overall, surface anthropogenic heat intensities >0K and

  11. Hurricane Ivan as Observed by NASA Spaceborne Atmospheric Infrared Sounder AIRS

    NASA Image and Video Library

    2004-09-15

    Hurricane Ivan is the most powerful hurricane to hit the Caribbean in 10 years. On September 7 and 8 it damaged 90 percent of the homes in Grenada and killed at least 16 people as it swept over Grenada, Barbados and the other islands in the area. By Thursday morning on September 9, Ivan's sustained winds reached 160 mph making it a rare category 5 hurricane on the Saffir-Simpson scale. By Monday September 13, Ivan is blamed for 67 deaths and skirts western Cuba with winds clocked at 156 mph. The National Hurricane Center predicted the eye of Ivan will make landfall across Mobile Bay in Alabama late Wednesday or early Thursday. These images of Hurricane Ivan were acquired by the AIRS infrared, microwave, and visible sensors on September 15 at 1:30 pm local time as the storm moves in to Alabama. Ivan at category 4 strength is about 150 miles south of Mobile, Alabama and is moving north at 14 mph. Maximum sustained winds are reported to be at 135 mph and extend 105 miles from the center, while tropical storm-force winds extend 290 miles from the center. Ivan pounded the Gulf coast all day Wednesday, and is expected to make landfall between midnight and 3am in Mobile Bay, Alabama. This image shows how the storm looks through an AIRS Infrared window channel, and reveals a very large eye - about 75 km (50 miles) across. Window channels measure the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds, so the purple color indicates the cool cloud tops of the storm. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Cooler areas are pushing to purple and warmer areas are pushing to red. http://photojournal.jpl.nasa.gov/catalog/PIA00431

  12. Cloud Statistics for NASA Climate Change Studies

    NASA Technical Reports Server (NTRS)

    Wylie, Donald P.

    1999-01-01

    The Principal Investigator participated in two field experiments and developed a global data set on cirrus cloud frequency and optical depth to aid the development of numerical models of climate. Four papers were published under this grant. The accomplishments are summarized: (1) In SUCCESS (SUbsonic aircraft: Contrail & Cloud Effects Special Study) the Principal Investigator aided weather forecasters in the start of the field program. A paper also was published on the clouds studied in SUCCESS and the use of the satellite stereographic technique to distinguish cloud forms and heights of clouds. (2) In SHEBA (Surface Heat Budget in the Arctic) FIRE/ACE (Arctic Cloud Experiment) the Principal Investigator provided daily weather and cloud forecasts for four research aircraft crews, NASA's ER-2, UCAR's C-130, University of Washington's Convert 580, and the Canadian Atmospheric Environment Service's Convert 580. Approximately 105 forecasts were written. The Principal Investigator also made daily weather summaries with calculations of air trajectories for 54 flight days in the experiment. The trajectories show where the air sampled during the flights came from and will be used in future publications to discuss the origin and history of the air and clouds sampled by the aircraft. A paper discussing how well the FIRE/ACE data represent normal climatic conditions in the arctic is being prepared. (3) The Principal Investigator's web page became the source of information for weather forecasting by the scientists on the SHEBA ship. (4) Global Cirrus frequency and optical depth is a continuing analysis of global cloud cover and frequency distribution are being made from the NOAA polar orbiting weather satellites. This analysis is sensitive to cirrus clouds because of the radiative channels used. During this grant three papers were published which describe cloud frequencies, their optical properties and compare the Wisconsin FM Cloud Analysis to other global cloud data such as

  13. Cloud Detection Using Measured and Modeled State Parameters

    NASA Technical Reports Server (NTRS)

    Yi, Y.; Minnis, P.; Huang, J.; Ayers, J. K.; Doelling, D. R.; Khaiyer, M. M.; Nordeen, M. L.

    2004-01-01

    In this study, hourly RUC analyses were used to examine the differences between RH and temperature values from RUC reanalysis data and from radiosonde atmospheric profiles obtained at the ARM SCF. The results show that the temperature observations from the SONDE and RUC are highly correlated. The RHs are also well-correlated, but the SONDE values generally exceed those from RUC. Inside cloud layers, the RH from RUC is 2-14% lower than the RH from SONDE for all RUC layers. Although the layer mean RH within clouds is much greater than the layer mean RH outside cloud or in the clear-sky, RH thresholds chosen as a function of temperature can more accurately diagnose cloud occurrence for either dataset. For overcast clouds, it was found that the 50% probability RH threshold for diagnosing a cloud, within a given upper tropospheric layer is roughly 90% for the Vaisala RS80-15LH radisonde and 80% for RUC data. While for the partial cloud (cloud amount is less than 90%), the RH thresholds of SONDE are close to RUC for a given probability in upper tropospheric layers. The probabilities of detecting clouds at a given RH and temperature should be useful for a variety of application such as the development of new cloud parameterizations or for estimating the vertical profile of cloudiness underneath a given cloud observed from the satellite to construct a 3-D cloud data set for computing atmospheric radiative heating profiles or determining potential aircraft icing conditions.

  14. Effects of cloud cover and meteorology in estimating ground-level air pollution using MAIAC AOD in the Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Xiao, Q.; Liu, Y.

    2017-12-01

    Satellite aerosol optical depth (AOD) has been used to assess fine particulate matter (PM2.5) pollution worldwide. However, non-random missing AOD due to cloud cover or high surface reflectance can cause up to 80% data loss and bias model-estimated spatial and temporal trends of PM2.5. Previous studies filled the data gap largely by spatial smoothing which ignored the impact of cloud cover and meteorology on aerosol loadings and has been shown to exhibit poor performance when monitoring stations are sparse or when there is seasonal large-scale missingness. Using the Yangtze River Delta of China as an example, we present a flexible Multiple Imputation (MI) method that combines cloud fraction, elevation, humidity, temperature, and spatiotemporal trends to impute the missing AOD. A two-stage statistical model driven by gap-filled AOD, meteorology and land use information was then fitted to estimate daily ground PM2.5 concentrations in 2013 and 2014 at 1 km resolution with complete coverage in space and time. The daily MI models have an average R2 of 0.77, with an inter-quartile range of 0.71 to 0.82 across days. The overall model 10-fold cross-validation R2 were 0.81 and 0.73 (for year 2013 and 2014, respectively. Predictions with only observational AOD or only imputed AOD showed similar accuracy. This method provides reliable PM2.5 predictions with complete coverage at high resolution. By including all the pixels of all days into model development, this method corrected the sampling bias in satellite-driven air pollution modelling due to non-random missingness in AOD. Comparing with previously reported gap-filling methods, the MI method has the strength of not relying on ground PM2.5 measurements, therefore allows the prediction of historical PM2.5 levels prior to the establishment of regular ground monitoring networks.

  15. Size-resolved Chemical Composition of Cloud and Rain Water Collected during the Puerto Rico African Dust and Clouds Study (PRADACS) Campaign

    NASA Astrophysics Data System (ADS)

    Torres, E.; Valle Diaz, C. J.; Zurcher, F.; Lee, T.; Collett, J. L.; Fitzgerald, E.; Cuadra, L.; Prather, K. A.; Mayol-Bracero, O. L.

    2011-12-01

    The underlying physico-chemical processes of dust-aerosol interactions are poorly understood; even less understood is how aging impacts cloud properties and climate as the particles travel from Africa to the Caribbean region. Caribbean landmasses have tropical montane cloud forests (TMCFs) that are tightly coupled to the atmospheric hydrologic cycle. Small-scale shifts in temperature and precipitation could have serious ecological consequences. Therefore, this makes TMCFs an interesting ecosystem to see the effects African Dust (AD) might have on cloud formation and precipitation. As part of the Puerto Rico African Dust and Clouds Study (PRADACS) cloud and rain water samples for subsequent chemical analysis were collected at Pico del Este (PE) station in Luquillo, PR (1051 masl) during summer 2011. At PE, two cloud collectors (i.e., single stage (Aluminum version) and 2-stage (Teflon version) Caltech Active Strand Cloudwater Collector (CASCC)), and a rainwater collector were operated. Measurements such as the liquid water content (LWC), pH, conductivity., and composition of single particles using an aerosol time of flight mass spectrometer (ATOFMS) were performed. Preliminary results showed that days with the influence of African dust (AD), had LWC values that ranged from 300 to 500 mg/m3, pH values up to 5.7,, and conductivity up to 180 μS/cm. The ATOFMS showed titanium and iron ions, suggesting the presence of AD as well as, occasionally, sulfate and nitrate ions suggesting the influence of anthropogenic pollution. Results on the chemical composition and the physical properties of cloud, rainwater, and aerosol for the inorganic as well as the organic fraction and how these properties change for the different air masses observed will also be presented.

  16. Cloud droplet activation through oxidation of organic aerosol influenced by temperature and particle phase state: CLOUD ACTIVATION BY AGED ORGANIC AEROSOL

    DOE PAGES

    Slade, Jonathan H.; Shiraiwa, Manabu; Arangio, Andrea; ...

    2017-02-04

    Chemical aging of organic aerosol (OA) through multiphase oxidation reactions can alter their cloud condensation nuclei (CCN) activity and hygroscopicity. However, the oxidation kinetics and OA reactivity depend strongly on the particle phase state, potentially influencing the hydrophobic-to-hydrophilic conversion rate of carbonaceous aerosol. Here, amorphous Suwannee River fulvic acid (SRFA) aerosol particles, a surrogate humic-like substance (HULIS) that contributes substantially to global OA mass, are oxidized by OH radicals at different temperatures and phase states. When oxidized at low temperature in a glassy solid state, the hygroscopicity of SRFA particles increased by almost a factor of two, whereas oxidation ofmore » liquid-like SRFA particles at higher temperatures did not affect CCN activity. Low-temperature oxidation appears to promote the formation of highly-oxygenated particle-bound fragmentation products with lower molar mass and greater CCN activity, underscoring the importance of chemical aging in the free troposphere and its influence on the CCN activity of OA.« less

  17. Sea Ice Surface Temperature Product from the Moderate Resolution Imaging Spectroradiometer (MODIS)

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Key, Jeffrey R.; Casey, Kimberly A.; Riggs, George A.; Cavalieri, Donald J.

    2003-01-01

    Global sea ice products are produced from the Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) on board both the Terra and Aqua satellites. Daily sea ice extent and ice-surface temperature (IST) products are available at 1- and 4-km resolution. Validation activities have been undertaken to assess the accuracy of the MODIS IST product at the South Pole station in Antarctica and in the Arctic Ocean using near-surface air-temperature data from a meteorological station and drifting buoys. Results from the study areas show that under clear skies, the MODIS ISTs are very close to those of the near-surface air temperatures with a bias of -1.1 and -1.2 K, and an uncertainty of 1.6 and 1.7 K, respectively. It is shown that the uncertainties would be reduced if the actual temperature of the ice surface were reported instead of the near-surface air temperature. It is not possible to get an accurate IST from MODIS in the presence of even very thin clouds or fog, however using both the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and the MODIS on the Aqua satellite, it may be possible to develop a relationship between MODIS-derived IST and ice temperature derived from the AMSR-E. Since the AMSR-E measurements are generally unaffected by cloud cover, they may be used to complement the MODIS IST measurements.

  18. Evaluation of Passive Multilayer Cloud Detection Using Preliminary CloudSat and CALIPSO Cloud Profiles

    NASA Astrophysics Data System (ADS)

    Minnis, P.; Sun-Mack, S.; Chang, F.; Huang, J.; Nguyen, L.; Ayers, J. K.; Spangenberg, D. A.; Yi, Y.; Trepte, C. R.

    2006-12-01

    During the last few years, several algorithms have been developed to detect and retrieve multilayered clouds using passive satellite data. Assessing these techniques has been difficult due to the need for active sensors such as cloud radars and lidars that can "see" through different layers of clouds. Such sensors have been available only at a few surface sites and on aircraft during field programs. With the launch of the CALIPSO and CloudSat satellites on April 28, 2006, it is now possible to observe multilayered systems all over the globe using collocated cloud radar and lidar data. As part of the A- Train, these new active sensors are also matched in time ad space with passive measurements from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer - EOS (AMSR-E). The Clouds and the Earth's Radiant Energy System (CERES) has been developing and testing algorithms to detect ice-over-water overlapping cloud systems and to retrieve the cloud liquid path (LWP) and ice water path (IWP) for those systems. One technique uses a combination of the CERES cloud retrieval algorithm applied to MODIS data and a microwave retrieval method applied to AMSR-E data. The combination of a CO2-slicing cloud retireval technique with the CERES algorithms applied to MODIS data (Chang et al., 2005) is used to detect and analyze such overlapped systems that contain thin ice clouds. A third technique uses brightness temperature differences and the CERES algorithms to detect similar overlapped methods. This paper uses preliminary CloudSat and CALIPSO data to begin a global scale assessment of these different methods. The long-term goals are to assess and refine the algorithms to aid the development of an optimal combination of the techniques to better monitor ice 9and liquid water clouds in overlapped conditions.

  19. Evaluation of Passive Multilayer Cloud Detection Using Preliminary CloudSat and CALIPSO Cloud Profiles

    NASA Astrophysics Data System (ADS)

    Minnis, P.; Sun-Mack, S.; Chang, F.; Huang, J.; Nguyen, L.; Ayers, J. K.; Spangenberg, D. A.; Yi, Y.; Trepte, C. R.

    2005-05-01

    During the last few years, several algorithms have been developed to detect and retrieve multilayered clouds using passive satellite data. Assessing these techniques has been difficult due to the need for active sensors such as cloud radars and lidars that can "see" through different layers of clouds. Such sensors have been available only at a few surface sites and on aircraft during field programs. With the launch of the CALIPSO and CloudSat satellites on April 28, 2006, it is now possible to observe multilayered systems all over the globe using collocated cloud radar and lidar data. As part of the A- Train, these new active sensors are also matched in time ad space with passive measurements from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer - EOS (AMSR-E). The Clouds and the Earth's Radiant Energy System (CERES) has been developing and testing algorithms to detect ice-over-water overlapping cloud systems and to retrieve the cloud liquid path (LWP) and ice water path (IWP) for those systems. One technique uses a combination of the CERES cloud retrieval algorithm applied to MODIS data and a microwave retrieval method applied to AMSR-E data. The combination of a CO2-slicing cloud retireval technique with the CERES algorithms applied to MODIS data (Chang et al., 2005) is used to detect and analyze such overlapped systems that contain thin ice clouds. A third technique uses brightness temperature differences and the CERES algorithms to detect similar overlapped methods. This paper uses preliminary CloudSat and CALIPSO data to begin a global scale assessment of these different methods. The long-term goals are to assess and refine the algorithms to aid the development of an optimal combination of the techniques to better monitor ice 9and liquid water clouds in overlapped conditions.

  20. Observation of local cloud and moisture feedbacks over high ocean and desert surface temperatures

    NASA Technical Reports Server (NTRS)

    Chahine, Moustafa T.

    1995-01-01

    New data on clouds and moisture, made possible by reanalysis of weather satellite observations, show that the atmosphere reacts to warm clusters of very high sea surface temperatures in the western Pacific Ocean with increased moisture, cloudiness, and convection, suggesting a negative feedback limiting the sea surface temperature rise. The reverse was observed over dry and hot deserts where both moisture and cloudiness decrease, suggesting a positive feedback perpetuating existing desert conditions. In addition, the observations show a common critical surface temperature for both oceans and land; the distribution of atmospheric moisture is observed to reach a maximum value when the daily surface temperatures approach 304 +/- 1 K. These observations reveal complex dynamic-radiative interactions where multiple processes act simultaneously at the surface as well as in the atmosphere to regulate the feedback processes.