Science.gov

Sample records for air temperature daily

  1. Nowcasting daily minimum air and grass temperature

    NASA Astrophysics Data System (ADS)

    Savage, M. J.

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient ( b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  2. Nowcasting daily minimum air and grass temperature.

    PubMed

    Savage, M J

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient (b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  3. Persistence analysis of daily mean air temperature variation in Georgia

    NASA Astrophysics Data System (ADS)

    Matcharashvili, Teimuraz; Chelidze, Tamaz; Zhukova, Natalia; Mepharidze, Ekaterine; Sborshchikov, Alexander

    2010-05-01

    Extrapolation of observed linear trends is common practice in climate change researches on different scales. In this respect it is important, that though global warming is well established, the question of persistence of trends on regional scales remain controversial. Indeed, climate change for specific region and time by definition includes more than the simple average of weather conditions. Either random events or long-term changes, or more often combinations of them, can bring about significant swings in a variety of climate indicators from one time period to the next. Therefore in order to achieve further understanding of dynamics of climate change the character of stable peculiarities of analyzed dynamics should be investigated. Analysis of the character of long range correlations in climatological time series or peculiarities of their inherent memory is motivated exactly by this goal. Such analysis carried out on a different scales may help to understand spatial and temporal features of regional climate change. In present work the problem of persistence of observed trends in air temperature time series in Georgia was investigated. Longest available mean daily temperature time series of Tbilisi (1890-2008) were analyzed. Time series on shorter time scales of five stations in the West and East Georgia also were considered as well as monthly mean temperature time series of five stations. Additionally, temporally and spatially averaged daily and monthly mean air temperature time series were analyzed. Extent of persistence in mentioned time series were evaluated using R/S analysis calculation. Detrended and Multifractal Detrended Fluctuation Analysis as well as multi scaling analysis based on CWT have been used. Our results indicate that variation of daily or monthly mean temperatures reveals clear antipersistence on whole available time scale. It seems that antipersistence on global scale is general characteristics of mean air temperature variation and is not

  4. Modeling daily average stream temperature from air temperature and watershed area

    NASA Astrophysics Data System (ADS)

    Butler, N. L.; Hunt, J. R.

    2012-12-01

    Habitat restoration efforts within watersheds require spatial and temporal estimates of water temperature for aquatic species especially species that migrate within watersheds at different life stages. Monitoring programs are not able to fully sample all aquatic environments within watersheds under the extreme conditions that determine long-term habitat viability. Under these circumstances a combination of selective monitoring and modeling are required for predicting future geospatial and temporal conditions. This study describes a model that is broadly applicable to different watersheds while using readily available regional air temperature data. Daily water temperature data from thirty-eight gauges with drainage areas from 2 km2 to 2000 km2 in the Sonoma Valley, Napa Valley, and Russian River Valley in California were used to develop, calibrate, and test a stream temperature model. Air temperature data from seven NOAA gauges provided the daily maximum and minimum air temperatures. The model was developed and calibrated using five years of data from the Sonoma Valley at ten water temperature gauges and a NOAA air temperature gauge. The daily average stream temperatures within this watershed were bounded by the preceding maximum and minimum air temperatures with smaller upstream watersheds being more dependent on the minimum air temperature than maximum air temperature. The model assumed a linear dependence on maximum and minimum air temperature with a weighting factor dependent on upstream area determined by error minimization using observed data. Fitted minimum air temperature weighting factors were consistent over all five years of data for each gauge, and they ranged from 0.75 for upstream drainage areas less than 2 km2 to 0.45 for upstream drainage areas greater than 100 km2. For the calibration data sets within the Sonoma Valley, the average error between the model estimated daily water temperature and the observed water temperature data ranged from 0.7

  5. Association between Daily Hospital Outpatient Visits for Accidents and Daily Ambient Air Temperatures in an Industrial City.

    PubMed

    Chau, Tang-Tat; Wang, Kuo-Ying

    2016-01-01

    An accident is an unwanted hazard to a person. However, accidents occur. In this work, we search for correlations between daily accident rates and environmental factors. To study daily hospital outpatients who were admitted for accidents during a 5-year period, 2007-2011, we analyzed data regarding 168,366 outpatients using univariate regression models; we also used multivariable regression models to account for confounding factors. Our analysis indicates that the number of male outpatients admitted for accidents was approximately 1.31 to 1.47 times the number of female outpatients (P < 0.0001). Of the 12 parameters (regarding air pollution and meteorology) considered, only daily temperature exhibited consistent and significant correlations with the daily number of hospital outpatient visits for accidents throughout the 5-year analysis period. The univariate regression models indicate that older people (greater than 66 years old) had the fewest accidents per 1-degree increase in temperature, followed by young people (0-15 years old). Middle-aged people (16-65 years old) were the group of outpatients that were more prone to accidents, with an increase in accident rates of 0.8-1.2 accidents per degree increase in temperature. The multivariable regression models also reveal that the temperature variation was the dominant factor in determining the daily number of outpatient visits for accidents. Our further multivariable model analysis of temperature with respect to air pollution variables show that, through the increases in emissions and concentrations of CO, photochemical O3 production and NO2 loss in the ambient air, increases in vehicular emissions are associated with increases in temperatures. As such, increases in hospital visits for accidents are related to vehicular emissions and usage. This finding is consistent with clinical experience which shows about 60% to 80% of accidents are related to traffic, followed by accidents occurred in work place. PMID:26815039

  6. Association between Daily Hospital Outpatient Visits for Accidents and Daily Ambient Air Temperatures in an Industrial City

    PubMed Central

    Chau, Tang-Tat; Wang, Kuo-Ying

    2016-01-01

    An accident is an unwanted hazard to a person. However, accidents occur. In this work, we search for correlations between daily accident rates and environmental factors. To study daily hospital outpatients who were admitted for accidents during a 5-year period, 2007–2011, we analyzed data regarding 168,366 outpatients using univariate regression models; we also used multivariable regression models to account for confounding factors. Our analysis indicates that the number of male outpatients admitted for accidents was approximately 1.31 to 1.47 times the number of female outpatients (P < 0.0001). Of the 12 parameters (regarding air pollution and meteorology) considered, only daily temperature exhibited consistent and significant correlations with the daily number of hospital outpatient visits for accidents throughout the 5-year analysis period. The univariate regression models indicate that older people (greater than 66 years old) had the fewest accidents per 1-degree increase in temperature, followed by young people (0–15 years old). Middle-aged people (16–65 years old) were the group of outpatients that were more prone to accidents, with an increase in accident rates of 0.8–1.2 accidents per degree increase in temperature. The multivariable regression models also reveal that the temperature variation was the dominant factor in determining the daily number of outpatient visits for accidents. Our further multivariable model analysis of temperature with respect to air pollution variables show that, through the increases in emissions and concentrations of CO, photochemical O3 production and NO2 loss in the ambient air, increases in vehicular emissions are associated with increases in temperatures. As such, increases in hospital visits for accidents are related to vehicular emissions and usage. This finding is consistent with clinical experience which shows about 60% to 80% of accidents are related to traffic, followed by accidents occurred in work place. PMID

  7. The EUSTACE project: delivering global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Morice, C. P.; Rayner, N. A.; Auchmann, R.; Bessembinder, J.; Bronnimann, S.; Brugnara, Y.; Conway, E. A.; Ghent, D.; Good, E.; Herring, K.; Kennedy, J.; Lindgren, F.; Madsen, K. S.; Merchant, C. J.; van der Schrier, G.; Stephens, A.; Tonboe, R. T.; Waterfall, A. M.; Mitchelson, J.; Woolway, I.

    2015-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, we must develop an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. These relationships can be derived either empirically or with the help of a physical model.Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals would be used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. As the data volumes involved are considerable, such work needs to include development of new "Big Data" analysis methods.We will present plans and progress along this road in the EUSTACE project (2015-June 2018), i.e.: • providing new, consistent, multi-component estimates of uncertainty in surface skin temperature retrievals from satellites; • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras.Information will also be given on how interested users can become

  8. Daily Cycle of Air Temperature and Surface Temperature in Stone Forest

    NASA Astrophysics Data System (ADS)

    Wang, K.; Li, Y.; Wang, X.; Yuan, M.

    2013-12-01

    Urbanization is one of the most profound human activities that impact on climate change. In cities, where are highly artificial areas, the conflict between human activity and natural climate is particularly prominent. Urban areas always have the larger area of impervious land, the higher consumption of greenhouse gases, more emissions of anthropogenic heat and air pollution, all contribute to the urban warming phenomena. Understanding the mechanisms causing a variety of phenomena involved in the urban warming is critical to distinguish the anthropogenic effect and natural variation in the climate change. However, the exact dynamics of urban warming were poorly understood, and effective control strategies are not available. Here we present a study of the daily cycle of air temperature and surface temperature in Stone Forest. The specific heat of the stones in the Stone Forest and concrete of the man-made structures within the cities are approximate. Besides, the height of the Stone Forest and the height of buildings within the city are also similar. As a scenic area, the Stone Forest is being preserved and only opened for sightseeing. There is no anthropogenic heat, as well air pollution within the Stone Forest. The thermal environment in Stone Forest can be considered to be a simulation of thermal environment in the city, which can reveal the effect of man-made structures on urban thermal environment. We conducted the field studies and numerical analysis in the Stone Forest for 4 typical urban morphology and environment scenarios, including high-rise compact cities, low-rise sparse cities, garden cities and isolated single stone. Air temperature and relative humidity were measured every half an hour in 15 different locations, which within different spatial distribution of stones and can represent the four urban scenarios respectively. At the same time, an infrared camera was used to take thermal images and get the hourly surface temperatures of stones and

  9. Estimation of daily mean air temperature from satellite derived radiometric data

    NASA Technical Reports Server (NTRS)

    Phinney, D.

    1976-01-01

    The Screwworm Eradication Data System (SEDS) at JSC utilizes satellite derived estimates of daily mean air temperature (DMAT) to monitor the effect of temperature on screwworm populations. The performance of the SEDS screwworm growth potential predictions depends in large part upon the accuracy of the DMAT estimates.

  10. Spatial downscaling and mapping of daily precipitation and air temperature using daily station data and monthly mean maps

    NASA Astrophysics Data System (ADS)

    Flint, A. L.; Flint, L. E.; Stern, M. A.

    2013-12-01

    Accurate maps of daily weather variables are an essential component of hydrologic and ecologic modeling. Here we present a four-step method that uses daily station data and transient monthly maps of precipitation and air temperature. This method uses the monthly maps to help interpolate between stations for more accurate production of daily maps at any spatial resolution. The first step analyzes the quality of the each station's data using a discrepancy analysis that compares statistics derived from a statistical jack-knifing approach with a time-series evaluation of discrepancies generated for each station. Although several methods could be used for the second step of producing initial maps, such as kriging, splines, etc., we used a gradient plus inverse distance squared method that was developed to produce accurate climate maps for sparse data regions with widely separated and few climate stations, far fewer than would be needed for techniques such as kriging. The gradient plus inverse distance squared method uses local gradients in the climate parameters, easting, northing, and elevation, to adjust the inverse distance squared estimates for local gradients such as lapse rates, inversions, or rain shadows at scales of 10's of meters to kilometers. The third step is to downscale World Wide Web (web) based transient monthly data, such as Precipitation-Elevation Regression on Independent Slope Method (PRISM) for the US (4 km or 800 m maps) or Climate Research Unit (CRU 3.1) data sets (40 km for global applications) to the scale of the daily data's digital elevation model. In the final step the downscaled transient monthly maps are used to adjust the daily time-series mapped data (~30 maps/month) for each month. These adjustments are used to scale daily maps so that summing them for precipitation or averaging them for temperature would more accurately reproduce the variability in selected monthly maps. This method allows for individual days to have maxima or minima

  11. Models for obtaining daily global solar irradiation from air temperature data

    NASA Astrophysics Data System (ADS)

    Paulescu, M.; Fara, L.; Tulcan-Paulescu, E.

    2006-03-01

    The study presents a critical assessment of the possibility of global solar irradiation computation by using air temperature instead of sunshine duration with the classical Ångström equations. The reason for this approach comes from the fact that, although the air temperature is a worldwide measured meteorological parameter, this is rarely used in solar radiation estimation techniques. More than that, the literature is very silent concerning the testing of such models in Eastern Europe. Two new global solar irradiation models (to be called AEAT) related to solar irradiation under clear sky conditions and having the minimum and maximum daily air temperature as input parameters were tested and compared with others from the literature against data measured at five stations in Romania in the year 2000. The accuracy of AEAT is acceptable and comparable to that of the models which use sunshine duration or cloud amount as input parameters. Since temperature-based Ångström correlations are strongly sensitive to origin, the approach for AEAT as a tool for potential users is presented in detail. Additionally reported is a new method to increase the generality of AEAT concerning the extension of the geographical application area. Based on overall results it was concluded that air temperature successfully substitutes sunshine duration in the estimation of the available solar energy.

  12. High-resolution daily gridded datasets of air temperature and wind speed for Europe

    NASA Astrophysics Data System (ADS)

    Brinckmann, S.; Krähenmann, S.; Bissolli, P.

    2015-08-01

    New high-resolution datasets for near surface daily air temperature (minimum, maximum and mean) and daily mean wind speed for Europe (the CORDEX domain) are provided for the period 2001-2010 for the purpose of regional model validation in the framework of DecReg, a sub-project of the German MiKlip project, which aims to develop decadal climate predictions. The main input data sources are hourly SYNOP observations, partly supplemented by station data from the ECA&D dataset (http://www.ecad.eu). These data are quality tested to eliminate erroneous data and various kinds of inhomogeneities. Grids in a resolution of 0.044° (5 km) are derived by spatial interpolation of these station data into the CORDEX area. For temperature interpolation a modified version of a regression kriging method developed by Krähenmann et al. (2011) is used. At first, predictor fields of altitude, continentality and zonal mean temperature are chosen for a regression applied to monthly station data. The residuals of the monthly regression and the deviations of the daily data from the monthly averages are interpolated using simple kriging in a second and third step. For wind speed a new method based on the concept used for temperature was developed, involving predictor fields of exposure, roughness length, coastal distance and ERA Interim reanalysis wind speed at 850 hPa. Interpolation uncertainty is estimated by means of the kriging variance and regression uncertainties. Furthermore, to assess the quality of the final daily grid data, cross validation is performed. Explained variance ranges from 70 to 90 % for monthly temperature and from 50 to 60 % for monthly wind speed. The resulting RMSE for the final daily grid data amounts to 1-2 °C and 1-1.5 m s-1 (depending on season and parameter) for daily temperature parameters and daily mean wind speed, respectively. The datasets presented in this article are published at http://dx.doi.org/10.5676/DWD_CDC/DECREG0110v1.

  13. Chronic air pollution and social deprivation as modifiers of the association between high temperature and daily mortality

    PubMed Central

    2014-01-01

    Background Heat and air pollution are both associated with increases in mortality. However, the interactive effect of temperature and air pollution on mortality remains unsettled. Similarly, the relationship between air pollution, air temperature, and social deprivation has never been explored. Methods We used daily mortality data from 2004 to 2009, daily mean temperature variables and relative humidity, for Paris, France. Estimates of chronic exposure to air pollution and social deprivation at a small spatial scale were calculated and split into three strata. We developed a stratified Poisson regression models to assess daily temperature and mortality associations, and tested the heterogeneity of the regression coefficients of the different strata. Deaths due to ambient temperature were calculated from attributable fractions and mortality rates were estimated. Results We found that chronic air pollution exposure and social deprivation are effect modifiers of the association between daily temperature and mortality. We found a potential interactive effect between social deprivation and chronic exposure with regards to air pollution in the mortality-temperature relationship. Conclusion Our results may have implications in considering chronically polluted areas as vulnerable in heat action plans and in the long-term measures to reduce the burden of heat stress especially in the context of climate change. PMID:24941876

  14. The EUSTACE project: combining different components of the observing system to deliver global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Rayner, Nick

    2016-04-01

    Day-to-day variations in surface air temperature affect society in many ways and are fundamental information for many climate services; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, we must develop an understanding of the relationships between traditional surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we reflect on our experience so far within the Horizon 2020 project EUSTACE of using satellite skin temperature retrievals to help us to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types and developing new statistical models of how surface air temperature varies in a connected way from place to place. We will present plans and progress along this road in the EUSTACE project (2015-June 2018): - providing new, consistent, multi-component estimation of uncertainty in surface skin temperature retrievals from satellites; - identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; - estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; - using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  15. Daily air temperature interpolated at high spatial resolution over a large mountainous region

    USGS Publications Warehouse

    Dodson, R.; Marks, D.

    1997-01-01

    Two methods are investigated for interpolating daily minimum and maximum air temperatures (Tmin and Tmax) at a 1 km spatial resolution over a large mountainous region (830 000 km2) in the U.S. Pacific Northwest. The methods were selected because of their ability to (1) account for the effect of elevation on temperature and (2) efficiently handle large volumes of data. The first method, the neutral stability algorithm (NSA), used the hydrostatic and potential temperature equations to convert measured temperatures and elevations to sea-level potential temperatures. The potential temperatures were spatially interpolated using an inverse-squared-distance algorithm and then mapped to the elevation surface of a digital elevation model (DEM). The second method, linear lapse rate adjustment (LLRA), involved the same basic procedure as the NSA, but used a constant linear lapse rate instead of the potential temperature equation. Cross-validation analyses were performed using the NSA and LLRA methods to interpolate Tmin and Tmax each day for the 1990 water year, and the methods were evaluated based on mean annual interpolation error (IE). The NSA method showed considerable bias for sites associated with vertical extrapolation. A correction based on climate station/grid cell elevation differences was developed and found to successfully remove the bias. The LLRA method was tested using 3 lapse rates, none of which produced a serious extrapolation bias. The bias-adjusted NSA and the 3 LLRA methods produced almost identical levels of accuracy (mean absolute errors between 1.2 and 1.3??C), and produced very similar temperature surfaces based on image difference statistics. In terms of accuracy, speed, and ease of implementation, LLRA was chosen as the best of the methods tested.

  16. Evaluating the Adequacy of Simulating Maximum and Minimum Daily Air Temperature with the Normal Distribution.

    NASA Astrophysics Data System (ADS)

    Harmel, R. D.; Richardson, C. W.; Hanson, C. L.; Johnson, G. L.

    2002-07-01

    Weather simulation models are commonly used to generate synthetic daily weather for use in studies of crop growth, water quality, water availability, soil erosion, climate change, and so on. Synthetic weather sequences are needed if long-term measured data are not available, measured data contain missing records, collection of actual data is cost or time prohibitive, or when necessary to simulate impacts of future climate scenarios. Most weather generators are capable of producing one or more components of weather such as precipitation, temperature, solar radiation, humidity, and wind speed. This study focused on one generation component, the procedure commonly used by weather simulation models to generate daily maximum and minimum temperature. The normal distribution is used by most weather generators (including USCLIMATE, WXGEN, LARS-WG, CLIMGEN, and CLIGEN) to generate daily maximum and minimum temperature values. The objective of this study was to analyze the adequacy of generating temperature data from the normal distribution. To accomplish this objective, the assumption of normality in measured daily temperatures was evaluated by testing the hypothesis that daily minimum and maximum temperature are normally distributed for each month. In addition, synthetic temperature records generated with the normal distribution were compared with measured temperature records. Based on these analyses, it was determined that measured daily maximum and minimum temperature are generally not normally distributed in each month but often are slightly skewed, which contradicts the assumption of normality used by most weather generators. In addition, generating temperature from the normal distribution resulted in several physically improbable values.

  17. Statistical Variability and Persistence Change in Daily Air Temperature Time Series from High Latitude Arctic Stations

    NASA Astrophysics Data System (ADS)

    Suteanu, Cristian

    2015-07-01

    In the last decades, Arctic communities have been reporting that weather conditions are becoming less predictable. Most scientific studies have not been able to consistently confirm such a trend. The question regarding the possible increase in weather variability was addressed here based on daily minimum and maximum surface air temperature time series from 15 high latitude Arctic stations from Canada, Norway, and the Russian Federation. A range of analysis methods were applied, distinguished mainly by the way in which they treat time scale. Statistical L-moments were determined for temporal windows of different lengths. While the picture provided by L-scale and L-kurtosis is not consistent with an increasing variability, L-skewness was found to change towards more positive values, reflecting an enhancement of warm spells. Haar wavelet analysis was applied both to the entire time series and to running windows. Persistence diagrams were generated based on running windows advancing through time and on local slopes of Haar analysis graphs; they offer a more nuanced view on variability by reflecting its change over time on a range of temporal scales. Local increases in variability could be identified in some cases, but no consistent change was detected in any of the stations over the studied temporal scales. The possibility for other intervals of temporal scale (e.g., days, hours, minutes) to potentially reveal a different situation cannot be ruled out. However, in the light of the results presented here, explanations for the discrepancy between variability perception and results of pattern analysis might have to be explored using an integrative approach to weather variables such as air temperature, cloud cover, precipitation, wind, etc.

  18. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags

    USGS Publications Warehouse

    Letcher, Benjamin; Hocking, Daniel; O'Neill, K.; Whiteley, Andrew R.; Nislow, Keith H.; O'Donnell, Matthew

    2016-01-01

    Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59 °C), identified a clear warming trend (0.63 °C · decade-1) and a widening of the synchronized period (29 d · decade-1). We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (~ 0.05% average drop in RMSE with 10% fewer days with data). Missing all data for a year decreased performance (~ 0.6 °C jump in RMSE), but this decrease was moderated when data were available from other streams in the network.

  19. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags.

    PubMed

    Letcher, Benjamin H; Hocking, Daniel J; O'Neil, Kyle; Whiteley, Andrew R; Nislow, Keith H; O'Donnell, Matthew J

    2016-01-01

    Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59°C), identified a clear warming trend (0.63 °C decade(-1)) and a widening of the synchronized period (29 d decade(-1)). We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (∼0.05% average drop in RMSE with 10% fewer days with data). Missing all data for a year decreased performance (∼0.6 °C jump in RMSE), but this decrease was moderated when data were available from other streams in the network. PMID:26966662

  20. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags

    PubMed Central

    Hocking, Daniel J.; O’Neil, Kyle; Whiteley, Andrew R.; Nislow, Keith H.; O’Donnell, Matthew J.

    2016-01-01

    Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59°C), identified a clear warming trend (0.63 °C decade−1) and a widening of the synchronized period (29 d decade−1). We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (∼0.05% average drop in RMSE with 10% fewer days with data). Missing all data for a year decreased performance (∼0.6 °C jump in RMSE), but this decrease was moderated when data were available from other streams in the network. PMID:26966662

  1. GSOD Based Daily Global Mean Surface Temperature and Mean Sea Level Air Pressure (1982-2011)

    SciTech Connect

    Xuan Shi, Dali Wang

    2014-05-05

    This data product contains all the gridded data set at 1/4 degree resolution in ASCII format. Both mean temperature and mean sea level air pressure data are available. It also contains the GSOD data (1982-2011) from NOAA site, contains station number, location, temperature and pressures (sea level and station level). The data package also contains information related to the data processing methods

  2. Daily and Interannual Variability of Air Temperature and Precipitation As Agricultural Factor

    NASA Astrophysics Data System (ADS)

    Sourkova, G.; Pona, C.

    The problem investigated concerns wheat growing process sensitivity to the changes in climate variability. For the sensitivity analysis five CERES-model runs are held for three stations in Italy: Decimomannu (Sardinia), Brindisi (Apulia) and Ghedi (Padana valley, Veneto). The only difference between these five experiments for each station is a weather input. All five weather inputs for each location are simulated by weather generator WXGEN. First run ("base") is forced by weather input having tempera- ture and precipitation variance equal to the present-day values (1960-1990). Then two crop simulations are made with changed "base" interannual variance of monthly to- tal precipitation by multiplicative factors 0.5 and 2. Temperature variability remains unchanged. Last two model runs are carried out with daily halved and doubled temper- ature variance, precipitation variability is the same as in "base" simulation. Investiga- tion showed that doubled precipitation variability is accompanied at all three locations by the largest amounts of yield variability for all five scenarios. Decreased precipi- tation variability is followed by yield decline and, at the same time the amplitude of yield change is the least compared with other forcings. Decreasing of precipitation variability results in noticeably raised harvest index for the years of minimum yield. For Decimomannu and Brindisi it is almost equal to that of the maximum yield years. In general, more significantly expressed response of the yield amounts occurs for pre- cipitation variability forcings. The influence of temperature variability changes seems to be less for all three locations.

  3. Part 2. Association of daily mortality with ambient air pollution, and effect modification by extremely high temperature in Wuhan, China.

    PubMed

    Qian, Zhengmin; He, Qingci; Lin, Hung-Mo; Kong, Lingli; Zhou, Dunjin; Liang, Shengwen; Zhu, Zhichao; Liao, Duanping; Liu, Wenshan; Bentley, Christy M; Dan, Jijun; Wang, Beiwei; Yang, Niannian; Xu, Shuangqing; Gong, Jie; Wei, Hongming; Sun, Huilin; Qin, Zudian

    2010-11-01

    Fewer studies have been published on the association between daily mortality and ambient air pollution in Asia than in the United States and Europe. This study was undertaken in Wuhan, China, to investigate the acute effects of air pollution on mortality with an emphasis on particulate matter (PM*). There were three primary aims: (1) to examine the associations of daily mortality due to all natural causes and daily cause-specific mortality (cardiovascular [CVD], stroke, cardiac [CARD], respiratory [RD], cardiopulmonary [CP], and non-cardiopulmonary [non-CP] causes) with daily mean concentrations (microg/m3) of PM with an aerodynamic diameter--10 pm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), or ozone (O3); (2) to investigate the effect modification of extremely high temperature on the association between air pollution and daily mortality due to all natural causes and daily cause-specific mortality; and (3) to assess the uncertainty of effect estimates caused by the change in International Classification of Disease (ICD) coding of mortality data from Revision 9 (ICD-9) to Revision 10 (ICD-10) code. Wuhan is called an "oven city" in China because of its extremely hot summers (the average daily temperature in July is 37.2 degrees C and maximum daily temperature often exceeds 40 degrees C). Approximately 4.5 million residents live in the core city area of 201 km2, where air pollution levels are higher and ranges are wider than the levels in most cities studied in the published literature. We obtained daily mean levels of PM10, SO2, and NO2 concentrations from five fixed-site air monitoring stations operated by the Wuhan Environmental Monitoring Center (WEMC). O3 data were obtained from two stations, and 8-hour averages, from 10:00 to 18:00, were used. Daily mortality data were obtained from the Wuhan Centres for Disease Prevention and Control (WCDC) during the study period of July 1, 2000, to June 30, 2004. To achieve the first aim, we used a regression of

  4. Estimating daily air temperature across the Southeastern United States using high-resolution satellite data: A statistical modeling study.

    PubMed

    Shi, Liuhua; Liu, Pengfei; Kloog, Itai; Lee, Mihye; Kosheleva, Anna; Schwartz, Joel

    2016-04-01

    Accurate estimates of spatio-temporal resolved near-surface air temperature (Ta) are crucial for environmental epidemiological studies. However, values of Ta are conventionally obtained from weather stations, which have limited spatial coverage. Satellite surface temperature (Ts) measurements offer the possibility of local exposure estimates across large domains. The Southeastern United States has different climatic conditions, more small water bodies and wetlands, and greater humidity in contrast to other regions, which add to the challenge of modeling air temperature. In this study, we incorporated satellite Ts to estimate high resolution (1km×1km) daily Ta across the southeastern USA for 2000-2014. We calibrated Ts-Ta measurements using mixed linear models, land use, and separate slopes for each day. A high out-of-sample cross-validated R(2) of 0.952 indicated excellent model performance. When satellite Ts were unavailable, linear regression on nearby monitors and spatio-temporal smoothing was used to estimate Ta. The daily Ta estimations were compared to the NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) model. A good agreement with an R(2) of 0.969 and a mean squared prediction error (RMSPE) of 1.376°C was achieved. Our results demonstrate that Ta can be reliably predicted using this Ts-based prediction model, even in a large geographical area with topography and weather patterns varying considerably. PMID:26717080

  5. Effects of the 7-8-year cycle in daily mean air temperature as a cross-scale information transfer

    NASA Astrophysics Data System (ADS)

    Jajcay, Nikola; Hlinka, Jaroslav; Paluš, Milan

    2015-04-01

    Using a novel nonlinear time-series analysis method, an information transfer from larger to smaller scales of the air temperature variability has been observed in daily mean surface air temperature (SAT) data from European stations as the influence of the phase of slow oscillatory phenomena with periods around 6-11 years on amplitudes of the variability characterized by smaller temporal scales from a few months to 4-5 years [1]. The strongest effect is exerted by an oscillatory mode with the period close to 8 years and its influence can be seen in 1-2 °C differences of the conditional SAT means taken conditionally on the phase of the 8-year cycle. The size of this effect, however, changes in space and time. The changes in time are studied using sliding window technique, showing that the effect evolves in time, and during the last decades the effect is stronger and significant. Sliding window technique was used along with seasonal division of the data, and it has been found that the cycle is most pronounced in the winter season. Different types of surrogate data are applied in order to establish statistical significance and distinguish the effect of the 7-8-yr cycle from climate variability on shorter time scales. [1] M. Palus, Phys. Rev. Lett. 112 078702 (2014) This study is supported by the Ministry of Education, Youth and Sports of the Czech Republic within the Program KONTAKT II, Project No. LH14001.

  6. Warmer daily temperatures since 1951

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-09-01

    Days and nights have indeed become warmer over the past 60 years, a new study finds. Although several observation-based studies have shown that daily average temperatures as well as daily maximum and minimum temperatures have increased over the past few decades, controversy has remained as to how the observed trends in extreme and average temperatures are related to each other: Are the warming trends in extreme temperatures a result of a shifting mean climate, or have temperatures become more variable? Using a global observational data set of daily temperatures, Donat and Alexander compared the probability distributions of daily maximum and minimum temperatures over two 30-year periods, 1951-1980 and 1981-2010. The authors show that the maximum and minimum daily temperatures all over the globe have significantly shifted toward higher values during the latter period. They further show that the distributions have become skewed toward the hotter part of the distribution; changes are greater for daily minimum (nighttime) temperatures than for the daily maximum (daytime) temperatures. The authors conclude that the distribution of global daily temperatures has indeed become “more extreme” compared to the middle of the twentieth century. (Geophysical Research Letters, doi:10.1029/2012GL052459, 2012)

  7. Daily global solar radiation prediction from air temperatures using kernel extreme learning machine: A case study for Iran

    NASA Astrophysics Data System (ADS)

    Shamshirband, Shahaboddin; Mohammadi, Kasra; Chen, Hui-Ling; Narayana Samy, Ganthan; Petković, Dalibor; Ma, Chao

    2015-11-01

    Lately, the kernel extreme learning machine (KELM) has gained considerable importance in the scientific area due to its great efficiency, easy implementation and fast training speed. In this paper, for the first time the potential of KELM to predict the daily horizontal global solar radiation from the maximum and minimum air temperatures (Tmax and Tmin) is appraised. The effectiveness of the proposed KELM method is evaluated against the grid search based support vector regression (SVR), as a robust methodology. Three KELM and SVR models are developed using different input attributes including: (1) Tmin and Tmax, (2) Tmin and Tmax-Tmin, and (3) Tmax and Tmax-Tmin. The achieved results reveal that the best predictions precision is achieved by models (3). The achieved results demonstrate that KELM offers favorable predictions and outperforms the SVR. For the KELM (3) model, the obtained statistical parameters of mean absolute bias error, root mean square error, relative root mean square error and correlation coefficient are 1.3445 MJ/m2, 2.0164 MJ/m2, 11.2464% and 0.9057%, respectively for the testing data. As further examination, a month-by-month evaluation is conducted and found that in six months from May to October the KELM (3) model provides further accuracy than overall accuracy. Based upon the relative root mean square error, the KELM (3) model shows excellent capability in the period of April to October while in the remaining months represents good performance.

  8. A general model for estimation of daily global solar radiation using air temperatures and site geographic parameters in Southwest China

    NASA Astrophysics Data System (ADS)

    Li, Mao-Fen; Fan, Li; Liu, Hong-Bin; Guo, Peng-Tao; Wu, Wei

    2013-01-01

    Estimation of daily global solar radiation (Rs) from routinely measured temperature data has been widely developed and used in many different areas of the world. However, many of them are site specific. It is assumed that a general model for estimating daily Rs using temperature variables and geographical parameters could be achieved within a climatic region. This paper made an attempt to develop a general model to estimate daily Rs using routinely measured temperature data (maximum (Tmax, °C) and minimum (Tmin, °C) temperatures) and site geographical parameters (latitude (La, °N), longitude (Ld, °E) and altitude (Alt, m)) for Guizhou and Sichuan basin of southwest China, which was classified into the hot summer and cold winter climate zone. Comparison analysis was carried out through statistics indicators such as root mean squared error of percentage (RMSE%), modeling efficiency (ME), coefficient of residual mass (CRM) and mean bias error (MBE). Site-dependent daily Rs estimating models were calibrated and validated using long-term observed weather data. A general formula was then obtained from site geographical parameters and the better fit site-dependent models with mean RMSE% of 38.68%, mean MBE of 0.381 MJ m-2 d-1, mean CRM of 0.04 and mean ME value of 0.713.

  9. Contrails reduce daily temperature range.

    PubMed

    Travis, David J; Carleton, Andrew M; Lauritsen, Ryan G

    2002-08-01

    The potential of condensation trails (contrails) from jet aircraft to affect regional-scale surface temperatures has been debated for years, but was difficult to verify until an opportunity arose as a result of the three-day grounding of all commercial aircraft in the United States in the aftermath of the terrorist attacks on 11 September 2001. Here we show that there was an anomalous increase in the average diurnal temperature range (that is, the difference between the daytime maximum and night-time minimum temperatures) for the period 11-14 September 2001. Because persisting contrails can reduce the transfer of both incoming solar and outgoing infrared radiation and so reduce the daily temperature range, we attribute at least a portion of this anomaly to the absence of contrails over this period. PMID:12167846

  10. Heat wave phenomenon in southern Slovakia: long-term changes and variability of daily maximum air temperature in Hurbanovo within the 1901-2009 period

    NASA Astrophysics Data System (ADS)

    Pecho, J.; Výberči, D.; Jarošová, M.; Å¥Astný, P. Å.

    2010-09-01

    Analysis of long-term changes and temporal variability of heat waves incidence in the region of southern Slovakia within the 1901-2009 periods is a goal of the presented contribution. It is expected that climate change in terms of global warming would amplify temporal frequency and spatial extension of extreme heat wave incidence in region of central Europe in the next few decades. The frequency of occurrence and amplitude of heat waves may be impacted by changes in the temperature regime. Heat waves can cause severe thermal environmental stress leading to higher hospital admission rates, health complications, and increased mortality. These effects arise because of one or more meteorology-related factors such as higher effective temperatures, sunshine, more consecutive hot days and nights, stagnation, increased humidity, increased pollutant emissions, and accelerated photochemical smog and particulate formation. Heat waves bring about higher temperatures, increased solar heating of buildings, inhibited ventilation, and a larger number of consecutive warm days and nights. All of these effects increase the thermal loads on buildings, reduce their ability to cool down, and increase indoor temperatures. The paper is focused to analysis of long-term and inter-decadal temporal variability of heat waves occurrence at meteorological station Hurbanovo (time-series of daily maximum air temperature available from at least 1901). We can characterize the heat waves by its magnitude and duration, hence both of these characteristics need to be investigated together using sophisticated statistical methods developed particularly for the analysis of extreme hydrological events. We investigated particular heat wave periods either from the severity point of view using HWI index. In the paper we also present the results of statistical analysis of daily maximum air temperature within 1901-2009 period. Apart from these investigation efforts we also focused on synoptic causes of heat wave

  11. Modeling maximum daily temperature using a varying coefficient regression model

    NASA Astrophysics Data System (ADS)

    Li, Han; Deng, Xinwei; Kim, Dong-Yun; Smith, Eric P.

    2014-04-01

    Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature. A good predictive model for daily maximum temperature is required because daily maximum temperature is an important measure for predicting survival of temperature sensitive fish. To appropriately model the strong relationship between water and air temperatures at a daily time step, it is important to incorporate information related to the time of the year into the modeling. In this work, a time-varying coefficient model is used to study the relationship between air temperature and water temperature. The time-varying coefficient model enables dynamic modeling of the relationship, and can be used to understand how the air-water temperature relationship varies over time. The proposed model is applied to 10 streams in Maryland, West Virginia, Virginia, North Carolina, and Georgia using daily maximum temperatures. It provides a better fit and better predictions than those produced by a simple linear regression model or a nonlinear logistic model.

  12. Daily Temperature Records in a Warming Climate

    NASA Astrophysics Data System (ADS)

    Meehl, G. A.; Tebaldi, C.

    2014-12-01

    The ratio of daily record high maximum temperatures to daily record low minimum temperatures in the first decade of the 21st century was about 2 to 1. Previous model simulations also showed a comparable ratio, with projections of an increase in that ratio in the 21st century. Here we relate record highs and record lows to changing surface conditions in 1 degree and 0.5 degree resolution global coupled climate models for 20th and 21st century climate to address the issue of model resolution in simulating past and future changes of temperature extremes as represented by daily record highs and lows.

  13. Daily temperature variations on Mars

    NASA Technical Reports Server (NTRS)

    Ditteon, R.

    1982-01-01

    It is noted that for approximately 32% of the Martian surface area no values of thermal inertia or albedo can fit the thermal observations. These temperature anomalies do not correlate with elevation, geologic units, morphology, or atmospheric dust content. All regions having a Lambert albedo less than 0.18 can be well fit with the standard thermal model, but all areas with albedo greater than 0.28 are anomalous. A strong inverse correlation is seen between the magnitude of the anomaly and the thermal inertia. This correlation is seen as indicating that some surface property is responsible for the anomaly. In the anomalous region the temperatures are observed to be warmer in the morning and cooler late in the afternoon and to decrease more slowly during the night than the Viking model temperatures. It is believed that of all the physical processes likely to occur on Mars but not included in the Viking thermal model, only a layered soil can explain the observations. A possible explanation of the layering deduced from the infrared thermal mapper observations is a layer of aeolian deposited dust about one thermal skin depth thick (1 to 4 cm), covering a duricrust.

  14. Statistical Analysis of daily mean temperatures

    NASA Technical Reports Server (NTRS)

    Ross, D. C.

    1980-01-01

    Data of daily mean temperatures recorded at the Kennedy Center during the period of 1957-1977 were analyzed to forecast daily mean temperatures and their thirty-day moving averages for a period of ten to fifteen days in a given month. Since it is found that the standard deviation is linear in the mean, a logarithmic transformation of the data is used for finding an integrated moving average process IMA by the Box-Jenkins aproach. The first differences of the transformed data seem to fit a moving average model with parameter value 2, MA(2). The consideration of seasonality factor makes the fit worse.

  15. Assessment of Effects of Air Pollution on Daily Outpatient Visits using the Air Quality Index

    PubMed Central

    Mu, Haosheng; Otani, Shinji; Okamoto, Mikizo; Yokoyama, Yae; Tokushima, Yasuko; Onishi, Kazunari; Hosoda, Takenobu; Kurozawa, Youichi

    2014-01-01

    Background The air quality index (AQI) is widely used to characterize the quality of ambient air. Chinese cities officially report the AQI on a daily basis. To assess the possible effects of air pollution on daily outpatient visits, we examined the association between AQI and the daily outpatient count. Methods Daily data on outpatient visits to each clinical department were collected from the Z county hospital of Datong City, China. The collection period was between 5 April and 30 June, 2012. Daily AQI data and meteorological information were simultaneously recorded. We compared outpatient counts between the index days and comparison days, and calculated Pearson’s product moment correlation coefficient between outpatient counts and AQI levels. Results The average AQI level for index days was significantly higher than that for comparison days. No significant difference was observed in temperature or relative humidity between index days and comparison days. The outpatient counts for pediatrics were significantly higher on index days than on comparison days, and no significant difference was noted in other clinical departments. The outpatient counts for pediatrics positively correlated with the AQI level, and no correlation was noted in other clinical departments. Conclusion The present study assessed the association between daily outpatient visits and air pollution using AQI. The results obtained suggest that air pollution could increase the outpatient count for pediatrics. PMID:25901100

  16. Daily mortality and air pollution in The Netherlands.

    PubMed

    Hoek, G; Brunekreef, B; Verhoeff, A; van Wijnen, J; Fischer, P

    2000-08-01

    We studied the association of daily mortality with short-term variations in the ambient concentrations of major gaseous pollutants and PM in the Netherlands. The magnitude of the association in the four major urban areas was compared with that in the remainder of the country. Daily cause-specific mortality counts, air quality, temperature, relative humidity, and influenza data were obtained from 1986 to 1994. The relationship between daily mortality and air pollution was modeled using Poisson regression analysis. We adjusted for potential confounding due to long-term and seasonal trends, influenza epidemics, ambient temperature and relative humidity, day of the week, and holidays, using generalized additive models. Influenza episodes were associated with increased mortality up to 3 weeks later. Daily mortality was significantly associated with the concentration of all air pollutants. An increase in the PM10 concentration by 100 micrograms/m3 was associated with a relative risk (RR) of 1.02 for total mortality. The largest RRs were found for pneumonia deaths. Ozone had the most consistent, independent association with mortality. Particulate air pollution (e.g., PM10, black smoke [BS]) was not more consistently associated with mortality than were the gaseous pollutants SO2 and NO2. Aerosol SO4(-2), NO3-, and BS were more consistently associated with total mortality than was PM10. The RRs for all pollutants were substantially larger in the summer months than in the winter months. The RR of total mortality for PM10 was 1.10 for the summer and 1.03 for the winter. There was no consistent difference between RRs in the four major urban areas and the more rural areas. PMID:11002600

  17. On estimating total daily evapotranspiration from remote surface temperature measurements

    NASA Technical Reports Server (NTRS)

    Carlson, Toby N.; Buffum, Martha J.

    1989-01-01

    A method for calculating daily evapotranspiration from the daily surface energy budget using remotely sensed surface temperature and several meteorological variables is presented. Vaules of the coefficients are determined from simulations with a one-dimensional boundary layer model with vegetation cover. Model constants are obtained for vegetation and bare soil at two air temperature and wind speed levels over a range of surface roughness and wind speeds. A different means of estimating the daily evapotranspiration based on the time rate of increase of surface temperature during the morning is also considered. Both the equations using our model-derived constants and field measurements are evaluated, and a discussion of sources of error in the use of the formulation is given.

  18. The Flying Newsboy: A Small Daily Attempts Air Delivery.

    ERIC Educational Resources Information Center

    Watts, Elizabeth A.

    For 10 months in 1929-30, subscribers to "The McCook (Nebraska) Daily Gazette" (a daily newspaper serving 33 towns in southwestern Nebraska and northwestern Kansas) received their newspapers via air delivery with "The Newsboy," a Curtis Robin cabin monoplane. In an age when over-the-road travel was difficult and air travel was just emerging,…

  19. Climatology: Contrails reduce daily temperature range

    NASA Astrophysics Data System (ADS)

    Travis, David J.; Carleton, Andrew M.; Lauritsen, Ryan G.

    2002-08-01

    The potential of condensation trails (contrails) from jet aircraft to affect regional-scale surface temperatures has been debated for years, but was difficult to verify until an opportunity arose as a result of the three-day grounding of all commercial aircraft in the United States in the aftermath of the terrorist attacks on 11 September 2001. Here we show that there was an anomalous increase in the average diurnal temperature range (that is, the difference between the daytime maximum and night-time minimum temperatures) for the period 11-14 September 2001. Because persisting contrails can reduce the transfer of both incoming solar and outgoing infrared radiation and so reduce the daily temperature range, we attribute at least a portion of this anomaly to the absence of contrails over this period.

  20. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James C. R.; Leijnse, Hidde; Steeneveld, Gert-Jan; Horn, Berthold K. P.; Uijlenhoet, Remko

    2014-05-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. It has been shown that a straightforward heat transfer model can be employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. The methodology has been applied to Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree

  1. Statistical Modeling of Daily Stream Temperature for Mitigating Fish Mortality

    NASA Astrophysics Data System (ADS)

    Caldwell, R. J.; Rajagopalan, B.

    2011-12-01

    Water allocations in the Central Valley Project (CVP) of California require the consideration of short- and long-term needs of many socioeconomic factors including, but not limited to, agriculture, urban use, flood mitigation/control, and environmental concerns. The Endangered Species Act (ESA) ensures that the decision-making process provides sufficient water to limit the impact on protected species, such as salmon, in the Sacramento River Valley. Current decision support tools in the CVP were deemed inadequate by the National Marine Fisheries Service due to the limited temporal resolution of forecasts for monthly stream temperature and fish mortality. Finer scale temporal resolution is necessary to account for the stream temperature variations critical to salmon survival and reproduction. In addition, complementary, long-range tools are needed for monthly and seasonal management of water resources. We will present a Generalized Linear Model (GLM) framework of maximum daily stream temperatures and related attributes, such as: daily stream temperature range, exceedance/non-exceedance of critical threshold temperatures, and the number of hours of exceedance. A suite of predictors that impact stream temperatures are included in the models, including current and prior day values of streamflow, water temperatures of upstream releases from Shasta Dam, air temperature, and precipitation. Monthly models are developed for each stream temperature attribute at the Balls Ferry gauge, an EPA compliance point for meeting temperature criteria. The statistical framework is also coupled with seasonal climate forecasts using a stochastic weather generator to provide ensembles of stream temperature scenarios that can be used for seasonal scale water allocation planning and decisions. Short-term weather forecasts can also be used in the framework to provide near-term scenarios useful for making water release decisions on a daily basis. The framework can be easily translated to other

  2. Air pollution and daily mortality in Shenyang, China

    SciTech Connect

    Xu, Z.; Yu, D.; Jing, L.; Xu, X.

    2000-04-01

    The authors analyzed daily mortality data in Shenyang, China, for calendar year 1992 to identify possible associations with ambient sulfur dioxide and total suspended particulates. Both total suspended particulate concentrations and sulfur dioxide concentrations far exceeded the World Health Organizations' recommended criteria. An average of 45.5 persons died each day. The lagged moving averages of air-pollution levels, calculated as the mean of the nonmissing air-pollution levels of the concurrent and 3 preceding days, were used for all analyses. Locally weighted regression analysis, including temperature, humidity, day of week, and a time variable, showed a positive association between daily mortality and both total suspended particulates and sulfur dioxide. When the authors included total suspended particulates and sulfur dioxide separately in the model, both were highly significant predictors of daily mortality. The risk of all-cause mortality increased by an estimated 1.7% and 2.4% with a 100-{micro}g/m{sup 3} concomitant increase in total suspended particulate and sulfur dioxide, respectively. When the authors analyzed mortality separately by cause of death, the association with total suspended particulates was significant for cardiovascular disease, but not statistically significant for chronic obstructive pulmonary diseases. In contrast, the association with sulfur dioxide was significant for chronic obstructive pulmonary diseases, but not for cardiovascular disease. The mortality from cancer was not associated significantly with total suspended particles or with sulfur dioxide. The correlation between sulfur dioxide and total suspended particulates was high. When the authors included sulfur dioxide and total suspended particulates simultaneously in the model, the association between total suspended particulates and mortality from all causes and cardiovascular diseases remained significant. Sulfur dioxide was associated significantly with increased

  3. Particulate air pollution and daily mortality on Utah's Wasatch Front.

    PubMed Central

    Pope, C A; Hill, R W; Villegas, G M

    1999-01-01

    Reviews of daily time-series mortality studies from many cities throughout the world suggest that daily mortality counts are associated with short-term changes in particulate matter (PM) air pollution. One U.S. city, however, with conspicuously weak PM-mortality associations was Salt Lake City, Utah; however, relatively robust PM-mortality associations have been observed in a neighboring metropolitan area (Provo/Orem, Utah). The present study explored this apparent discrepancy by collecting, comparing, and analyzing mortality, pollution, and weather data for all three metropolitan areas on Utah's Wasatch Front region of the Wasatch Mountain Range (Ogden, Salt Lake City, and Provo/Orem) for approximately 10 years (1985-1995). Generalized additive Poisson regression models were used to estimate PM-mortality associations while controlling for seasonality, temperature, humidity, and barometric pressure. Salt Lake City experienced substantially more episodes of high PM that were dominated by windblown dust. When the data were screened to exclude obvious windblown dust episodes and when PM data from multiple monitors were used to construct an estimate of mean exposure for the area, comparable PM-mortality effects were estimated. After screening and by using constructed mean PM [less than/equal to] 10 microm in aerodynamic diameter (PM10) data, the estimated percent change in mortality associated with a 10-mg/m3 increase in PM10 (and 95% confidence intervals) for the three Wasatch Front metropolitan areas equaled approximately 1. 6% (0.3-2.9), 0.8% (0.3-1.3), and 1.0% (0.2-1.8) for the Ogden, Salt Lake City, and Provo/Orem areas, respectively. We conclude that stagnant air pollution episodes with higher concentrations of primary and secondary combustion-source particles were more associated with elevated mortality than windblown dust episodes with relatively higher concentrations of coarse crustal-derived particles. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:10379003

  4. Short-term effects of daily air pollution on mortality

    NASA Astrophysics Data System (ADS)

    Wan Mahiyuddin, Wan Rozita; Sahani, Mazrura; Aripin, Rasimah; Latif, Mohd Talib; Thach, Thuan-Quoc; Wong, Chit-Ming

    2013-02-01

    The daily variations of air pollutants in the Klang Valley, Malaysia, which includes Kuala Lumpur were investigated for its association with mortality counts using time series analysis. This study located in the tropic with much less seasonal variation than typically seen in more temperate climates. Data on daily mortality for the Klang Valley (2000-2006), daily mean concentrations of air pollutants of PM10, SO2, CO, NO2, O3, daily maximum O3 and meteorological conditions were obtained from Malaysian Department of Environment. We examined the association between pollutants and daily mortality using Poisson regression while controlling for time trends and meteorological factors. Effects of the pollutants (Relative Risk, RR) on current-day (lag 0) mortality to seven previous days (lag 7) and the effects of the pollutants from the first two days (lag 01) to the first eight days (lag 07) were determined. We found significant associations in the single-pollutant model for PM10 and the daily mean O3 with natural mortality. For the daily mean O3, the highest association was at lag 05 (RR = 1.0215, 95% CI = 1.0013-1.0202). CO was found not significantly associated with natural mortality, however the RR's of CO were found to be consistently higher than PM10. In spite of significant results of PM10, the magnitude of RR's of PM10 was not important for natural mortality in comparison with either daily mean O3 or CO. There is an association between daily mean O3 and natural mortality in a two-pollutants model after adjusting for PM10. Most pollutants except SO2, were significantly associated with respiratory mortality in a single pollutant model. Daily mean O3 is also important for respiratory mortality, with over 10% of mortality associated with every IQR increased. These findings are noteworthy because seasonal confounding is unlikely in this relatively stable climate, by contrast with more temperate regions.

  5. Pollutant roses for daily averaged ambient air pollutant concentrations

    NASA Astrophysics Data System (ADS)

    Cosemans, Guido; Kretzschmar, Jan; Mensink, Clemens

    Pollutant roses are indispensable tools to identify unknown (fugitive) sources of heavy metals at industrial sites whose current impact exceeds the target values imposed for the year 2012 by the European Air Quality Daughter Directive 2004/207/EC. As most of the measured concentrations of heavy metals in ambient air are daily averaged values, a method to obtain high quality pollutant roses from such data is of practical interest for cost-effective air quality management. A computational scheme is presented to obtain, from daily averaged concentrations, 10° angular resolution pollutant roses, called PRP roses, that are in many aspects comparable to pollutant roses made with half-hourly concentrations. The computational scheme is a ridge regression, based on three building blocks: ordinary least squares regression; outlier handling by weighting based on expected values of the higher percentiles in a lognormal distribution; weighted averages whereby observed values, raised to a power m, and daily wind rose frequencies are used as weights. Distance measures are used to find the optimal value for m. The performance of the computational scheme is illustrated by comparing the pollutant roses, constructed with measured half-hourly SO 2 data for 10 monitoring sites in the Antwerp harbour, with the PRP roses made with the corresponding daily averaged SO 2 concentrations. A miniature dataset, made up of 7 daily concentrations and of half-hourly wind directions assigned to 4 wind sectors, is used to illustrate the formulas and their results.

  6. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, A.; Robinson, J. C. R.; Leijnse, H.; Steeneveld, G. J.; Horn, B. K. P.; Uijlenhoet, R.

    2013-08-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. A straightforward heat transfer model is employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas.

  7. New developments on the homogenization of Canadian daily temperature data

    NASA Astrophysics Data System (ADS)

    Vincent, Lucie A.; Wang, Xiaolan L.

    2010-05-01

    Long-term and homogenized surface air temperature datasets had been prepared for the analysis of climate trends in Canada (Vincent and Gullett 1999). Non-climatic steps due to instruments relocation/changes and changes in observing procedures were identified in the annual mean of the daily maximum and minimum temperatures using a technique based on regression models (Vincent 1998). Monthly adjustments were derived from the regression models and daily adjustments were obtained from an interpolation procedure using the monthly adjustments (Vincent et al. 2002). Recently, new statistical tests have been developed to improve the power of detecting changepoints in climatological data time series. The penalized maximal t (PMT) test (Wang et al. 2007) and the penalized maximal F (PMF) test (Wang 2008b) were developed to take into account the position of each changepoint in order to minimize the effect of unequal and small sample size. A software package RHtestsV3 (Wang and Feng 2009) has also been developed to implement these tests to homogenize climate data series. A recursive procedure was developed to estimate the annual cycle, linear trend, and lag-1 autocorrelation of the base series in tandem, so that the effect of lag-1 autocorrelation is accounted for in the tests. A Quantile Matching (QM) algorithm (Wang 2009) was also developed for adjusting Gaussian daily data so that the empirical distributions of all segments of the detrended series match each other. The RHtestsV3 package was used to prepare a second generation of homogenized temperatures in Canada. Both the PMT test and the PMF test were applied to detect shifts in monthly mean temperature series. Reference series was used in conducting a PMT test. Whenever possible, the main causes of the shifts were retrieved through historical evidence such as the station inspection reports. Finally, the QM algorithm was used to adjust the daily temperature series for the artificial shifts identified from the respective

  8. Air exchange rates from atmospheric CO2 daily cycle

    PubMed Central

    Carrilho, João Dias; Mateus, Mário; Batterman, Stuart; da Silva, Manuel Gameiro

    2015-01-01

    We propose a new approach for measuring ventilation air exchange rates (AERs). The method belongs to the class of tracer gas techniques, but is formulated in the light of systems theory and signal processing. Unlike conventional CO2 based methods that assume the outdoor ambient CO2 concentration is constant, the proposed method recognizes that photosynthesis and respiration cycle of plants and processes associated with fuel combustion produce daily, quasi-periodic, variations in the ambient CO2 concentrations. These daily variations, which are within the detection range of existing monitoring equipment, are utilized for estimating ventilation rates without the need of a source of CO2 in the building. Using a naturally-ventilated residential apartment, AERs obtained using the new method compared favorably (within 10%) to those obtained using the conventional CO2 decay fitting technique. The new method has the advantages that no tracer gas injection is needed, and high time resolution results are obtained. PMID:26236090

  9. Air pollution and daily mortality in Seoul and Ulsan, Korea.

    PubMed Central

    Lee, J T; Shin, D; Chung, Y

    1999-01-01

    The relationship between air pollution and daily mortality for the period 1991-1995 was examined in two Korean cities, Seoul and Ulsan. The observed concentrations of sulfur dioxide (SO2; mean = 28.7 ppb), ozone (O3; mean = 29.2 ppb), and total suspended particulates (TSP; mean = 82.3 microg/m3) during the study period were at levels below Korea's current ambient air quality standards. Daily death counts were regressed separately in the two cities, using Poisson regression on SO2, O3, and/or TSP controlling for variability in the weather and seasons. When considered singly in Poisson regression models controlling for seasonal variations and weather conditions, the nonaccidental mortality associated with a 50-ppb increment in a 3-day moving average of SO2 concentrations, including the concurrent day and the preceding 2 days, was 1.078 [95% confidence interval (CI), 1.057-1.099] for Seoul and 1.051 (CI, 0.991-1.115) for Ulsan. The rate ratio was 1.051 (CI, 1.031-1.072) in Seoul and 0.999 (CI, 0. 961-1.039) in Ulsan per 100 microg/m3 for TSP, and 1.015 (CI, 1. 005-1.025) in Seoul and 1.020 (0.889-1.170) in Ulsan per 50 ppb for 1-hr maximum O3. When TSP was considered simultaneously with other pollutants, the TSP association was no longer significant. We observed independent pollution effects on daily mortality even after using various approaches to control for either weather or seasonal variables in the regression model. This study demonstrated increased mortality associated with air pollution at both SO2 and O3 levels below the current World Health Organization recommendations. Images Figure 1 Figure 2 Figure 3 PMID:9924011

  10. Daily air pollution effects on children's respiratory symptoms and peak expiratory flow

    SciTech Connect

    Vedal, S.; Schenker, M.B.; Munoz, A.; Samet, J.M.; Batterman, S.; Speizer, F.E.

    1987-06-01

    To identify acute respiratory health effects associated with air pollution due to coal combustion, a subgroup of elementary school-aged children was selected from a large cross-sectional study and followed daily for eight months. Children were selected to obtain three equal-sized groups: one without respiratory symptoms, one with symptoms of persistent wheeze, and one with cough or phlegm production but without persistent wheeze. Parents completed a daily diary of symptoms from which illness constellations of upper respiratory illness (URI) and lower respiratory illness (LRI) and the symptom of wheeze were derived. Peak expiratory flow rate (PEFR) was measured daily for nine consecutive weeks during the eight-month study period. Maximum hourly concentrations of sulfur dioxide, nitrogen dioxide, ozone, and coefficient of haze for each 24-hour period, as well as minimum hourly temperature, were correlated with daily URI, LRI, wheeze, and PEFR using multiple regression models adjusting for illness occurrence or level of PEFR on the immediately preceding day. Respiratory illness on the preceding day was the most important predictor of current illness. A drop in temperature was associated with increased URI and LRI but not with increased wheeze or with a decrease in level of PEFR. No air pollutant was strongly associated with respiratory illness or with level of PEFR, either in the group of children as a whole, or in either of the symptomatic subgroups; the pollutant concentrations observed, however, were uniformly lower than current ambient air quality standards.

  11. Increased mortality in Philadelphia associated with daily air pollution concentrations

    SciTech Connect

    Schwartz, J.; Dockery, D.W. )

    1992-03-01

    Cause-specific deaths by day for the years 1973 to 1980 in Philadelphia, Pennsylvania, were extracted from National Center for Health Statistics mortality tapes. Death from accidents (International Classification of Disease, Revision 9 greater than or equal to 800) and deaths outside of the city were excluded. Daily counts of deaths were regressed using Poisson regression on total suspended particulate (TSP) and/or SO2 on the same day and on the preceding day, controlling for year, season, temperature, and humidity. A significant positive association was found between total mortality (mean of 48 deaths/day) and both TSP (second highest daily mean, 222 micrograms/m3) and SO2 (second highest daily mean, 299 micrograms/m3). The strongest associations were found with the mean pollution of the current and the preceding days. Total mortality was estimated to increase by 7% (95% CI, 4 to 10%) with each 100-micrograms/m3 increase in TSP, and 5% (95% CI, 3 to 7%) with each 100-micrograms/m3 increase in SO2. When both pollutants were considered simultaneously, the SO2 association was no longer significant. Mortality increased monotonically with TSP. The effect of 100 micrograms/m3 TSP was stronger in subjects older than 65 yr of age (10% increase) compared with those younger than 65 yr of age (3% increase). Cause-specific mortality was also associated with a 100-micrograms/m3 increase in TSP: chronic obstructive pulmonary disease (ICD9 490-496), +19% (95% CI, 0 to 42%), pneumonia (ICD9 480-486 and 507), +11% (95% CI, -3 to +27%), and cardiovascular disease (ICD9 390-448), +10% (95% CI, 6 to 14%). These results are somewhat higher than previously reported associations, and they add to the body of evidence showing that particulate pollution is associated with increased daily mortality at current levels in the United States.

  12. A stochastic model for the analysis of maximum daily temperature

    NASA Astrophysics Data System (ADS)

    Sirangelo, B.; Caloiero, T.; Coscarelli, R.; Ferrari, E.

    2016-08-01

    In this paper, a stochastic model for the analysis of the daily maximum temperature is proposed. First, a deseasonalization procedure based on the truncated Fourier expansion is adopted. Then, the Johnson transformation functions were applied for the data normalization. Finally, the fractionally autoregressive integrated moving average model was used to reproduce both short- and long-memory behavior of the temperature series. The model was applied to the data of the Cosenza gauge (Calabria region) and verified on other four gauges of southern Italy. Through a Monte Carlo simulation procedure based on the proposed model, 105 years of daily maximum temperature have been generated. Among the possible applications of the model, the occurrence probabilities of the annual maximum values have been evaluated. Moreover, the procedure was applied for the estimation of the return periods of long sequences of days with maximum temperature above prefixed thresholds.

  13. Particulate air pollution and daily mortality in Bangkok

    NASA Astrophysics Data System (ADS)

    Vajanapoom, Nitaya

    1999-10-01

    This study was designed to assess the association between PM10 and visibility, and to determine whether the variations in daily mortality were associated with fluctuations in daily PM10 and visibility levels, in Bangkok during 1992-1997. Mortality data were extracted from death certificates, provided by the Bureau of Registration Administration. PM10 data were obtained from three monitoring stations operated by the Pollution Control Department, and visibility data were obtained from two monitoring stations operated by the Department of Meteorology. PM10 was regressed on visibility using multiple regression. Inverse and significant association was found between PM10 and visibility, after controlling for relative humidity, minimum temperature, and winter indicator variable. Positive association was found between total mortality and PM10, in Poisson regression model while controlling for long-term trends, season, and variations in weather. Five-day moving average of PM10 was significantly and most strongly associated with total mortality from non-external causes; a 2.3% (95% CI = 1.3, 3.3) increase in mortality was estimated for one interquartile range (30 μg/m3) increase in PM10. When PM10 was replaced with visibility, a 1.3% (95% CI = 0.4, 2.3) increase in mortality was estimated for one interquartile range (1.5 km) decrease in visibility. Lagged effects up to three day lags prior to death with similar patterns were observed for both PM10 and visibility. The findings suggest the possibility of using visibility as a surrogate for fine particulate matter. This approach is feasible because visibility data are usually routinely recorded at airports throughout the world. On the other hand, given the large number of population living in Bangkok, the small but significant percent excess deaths attributable to airborne particle exposure is an important public health concern.

  14. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

  15. Retrieval of air temperatures from crowd-sourced battery temperatures of cell phones

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James; Leijnse, Hidde; Uijlenhoet, Remko; Steeneveld, Gert-Jan; Horn, Berthold K. P.

    2013-04-01

    Accurate air temperature observations are important for urban meteorology, for example to study the urban heat island and adverse effects of high temperatures on human health. The number of available temperature observations is often relatively limited. A new development is presented to derive temperature information for the urban canopy from an alternative source: cell phones. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. Results are presented for Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree Celsius. This shows that monitoring air temperatures employing an Android application holds great promise. Since 75% of the world's population has a cell phone, 20% of the land surface of the earth has cellular telephone coverage, and 500 million devices use the Android operating system, there is a huge potential for measuring air temperatures employing cell phones. This could eventually lead to real-time world-wide temperature maps.

  16. A Temperature-Based Model for Estimating Monthly Average Daily Global Solar Radiation in China

    PubMed Central

    Li, Huashan; Cao, Fei; Wang, Xianlong; Ma, Weibin

    2014-01-01

    Since air temperature records are readily available around the world, the models based on air temperature for estimating solar radiation have been widely accepted. In this paper, a new model based on Hargreaves and Samani (HS) method for estimating monthly average daily global solar radiation is proposed. With statistical error tests, the performance of the new model is validated by comparing with the HS model and its two modifications (Samani model and Chen model) against the measured data at 65 meteorological stations in China. Results show that the new model is more accurate and robust than the HS, Samani, and Chen models in all climatic regions, especially in the humid regions. Hence, the new model can be recommended for estimating solar radiation in areas where only air temperature data are available in China. PMID:24605046

  17. A regional neural network model for predicting mean daily river water temperature

    USGS Publications Warehouse

    Wagner, Tyler; DeWeber, Jefferson Tyrell

    2014-01-01

    Water temperature is a fundamental property of river habitat and often a key aspect of river resource management, but measurements to characterize thermal regimes are not available for most streams and rivers. As such, we developed an artificial neural network (ANN) ensemble model to predict mean daily water temperature in 197,402 individual stream reaches during the warm season (May–October) throughout the native range of brook trout Salvelinus fontinalis in the eastern U.S. We compared four models with different groups of predictors to determine how well water temperature could be predicted by climatic, landform, and land cover attributes, and used the median prediction from an ensemble of 100 ANNs as our final prediction for each model. The final model included air temperature, landform attributes and forested land cover and predicted mean daily water temperatures with moderate accuracy as determined by root mean squared error (RMSE) at 886 training sites with data from 1980 to 2009 (RMSE = 1.91 °C). Based on validation at 96 sites (RMSE = 1.82) and separately for data from 2010 (RMSE = 1.93), a year with relatively warmer conditions, the model was able to generalize to new stream reaches and years. The most important predictors were mean daily air temperature, prior 7 day mean air temperature, and network catchment area according to sensitivity analyses. Forest land cover at both riparian and catchment extents had relatively weak but clear negative effects. Predicted daily water temperature averaged for the month of July matched expected spatial trends with cooler temperatures in headwaters and at higher elevations and latitudes. Our ANN ensemble is unique in predicting daily temperatures throughout a large region, while other regional efforts have predicted at relatively coarse time steps. The model may prove a useful tool for predicting water temperatures in sampled and unsampled rivers under current conditions and future projections of climate

  18. A regional neural network ensemble for predicting mean daily river water temperature

    NASA Astrophysics Data System (ADS)

    DeWeber, Jefferson Tyrell; Wagner, Tyler

    2014-09-01

    Water temperature is a fundamental property of river habitat and often a key aspect of river resource management, but measurements to characterize thermal regimes are not available for most streams and rivers. As such, we developed an artificial neural network (ANN) ensemble model to predict mean daily water temperature in 197,402 individual stream reaches during the warm season (May-October) throughout the native range of brook trout Salvelinus fontinalis in the eastern U.S. We compared four models with different groups of predictors to determine how well water temperature could be predicted by climatic, landform, and land cover attributes, and used the median prediction from an ensemble of 100 ANNs as our final prediction for each model. The final model included air temperature, landform attributes and forested land cover and predicted mean daily water temperatures with moderate accuracy as determined by root mean squared error (RMSE) at 886 training sites with data from 1980 to 2009 (RMSE = 1.91 °C). Based on validation at 96 sites (RMSE = 1.82) and separately for data from 2010 (RMSE = 1.93), a year with relatively warmer conditions, the model was able to generalize to new stream reaches and years. The most important predictors were mean daily air temperature, prior 7 day mean air temperature, and network catchment area according to sensitivity analyses. Forest land cover at both riparian and catchment extents had relatively weak but clear negative effects. Predicted daily water temperature averaged for the month of July matched expected spatial trends with cooler temperatures in headwaters and at higher elevations and latitudes. Our ANN ensemble is unique in predicting daily temperatures throughout a large region, while other regional efforts have predicted at relatively coarse time steps. The model may prove a useful tool for predicting water temperatures in sampled and unsampled rivers under current conditions and future projections of climate and land use

  19. Poorest countries experience earlier anthropogenic emergence of daily temperature extremes

    NASA Astrophysics Data System (ADS)

    Harrington, Luke J.; Frame, David J.; Fischer, Erich M.; Hawkins, Ed; Joshi, Manoj; Jones, Chris D.

    2016-05-01

    Understanding how the emergence of the anthropogenic warming signal from the noise of internal variability translates to changes in extreme event occurrence is of crucial societal importance. By utilising simulations of cumulative carbon dioxide (CO2) emissions and temperature changes from eleven earth system models, we demonstrate that the inherently lower internal variability found at tropical latitudes results in large increases in the frequency of extreme daily temperatures (exceedances of the 99.9th percentile derived from pre-industrial climate simulations) occurring much earlier than for mid-to-high latitude regions. Most of the world’s poorest people live at low latitudes, when considering 2010 GDP-PPP per capita; conversely the wealthiest population quintile disproportionately inhabit more variable mid-latitude climates. Consequently, the fraction of the global population in the lowest socio-economic quintile is exposed to substantially more frequent daily temperature extremes after much lower increases in both mean global warming and cumulative CO2 emissions.

  20. Examining the spring discontinuity in daily temperature ranges

    SciTech Connect

    Schwartz, M.D.

    1996-04-01

    The atmosphere and biosphere both change rapidly throughout midlatitude spring. Many weather variables are modified during this season, including the diurnal temperature range (DTR). The mean DTR trend displays a discontinuity at the onset of spring characterized by a rapid increase for several weeks, followed by an abrupt leveling off. The trend then remains essentially flat throughout the remainder of the warm season. These DTR changes reflect the interactive role many weather variables play with surface-layer processes. Thus, diagnosing the causes of these variations may provide background information for numerous global change analyses, as daily temperature data become increasingly available worldwide. The results of this study suggest that several factors (snow cover loss, more frequent southerly winds, and increased ceiling heights) are responsible for the initial rapid increase in the DTR. The second half of the discontinuity (subsequent leveling off) is connected with increased atmospheric moisture and coincides with the onset of plant transpiration. 14 refs., 5 figs, 2 tabs.

  1. Trends in Observed Summer Daily Temperature Maximum Across Colorado

    NASA Astrophysics Data System (ADS)

    Rangwala, I.; Arvidson, L.

    2015-12-01

    Increases in the anthropogenic greenhouse forcing are expected to increase the tendency for longer and stronger heat waves in summer. We examine if there is a trend in the observed daytime extreme temperature (Tmax) during summer between 1900-2014 at select high quality stations (n=9) across Colorado. We compile daily observations of Tmax and other variables during summer (JJA), and derive and analyze trends in five different extreme metrics from this data that include the maximum five-day Tmax average, warm spell duration index, and the number of days when Tmax exceeds the 95th, 99th, and 99.9th percentile conditions. We find that the 1930s and 2000s in Colorado had some outstandingly hot years, when we also find exceptionally high count of summer Tmax extremes. Five out of the nine stations show increases in extreme temperature indicators in the more recent decades. The variability in trends in the daily summer Tmax extremes across the nine stations correspond with the mean annual warming trends at those stations. We also find that wetter summers have much smaller instances of Tmax extremes as compared to drier summers.

  2. Two daily smoke maxima in eighteenth century London air

    NASA Astrophysics Data System (ADS)

    Harrison, R. Giles

    Varied electrostatics experiments followed Benjamin Franklin's pioneering atmospheric investigations. In Knightsbridge, Central London, John Read (1726-1814) installed a sensing rod in the upper part of his house and, using a pith ball electrometer and Franklin chimes, monitored atmospheric electricity from 1789 to 1791. Atmospheric electricity is sensitive to weather and smoke pollution. In calm weather conditions, Read observed two daily electrification maxima in moderate weather, around 9 am and 7 pm. This is likely to represent a double diurnal cycle in urban smoke. Before the motor car and steam railways, one source of the double maximum smoke pattern was the daily routine of fire lighting for domestic heating.

  3. Statistical modeling of daily and subdaily stream temperatures: Application to the Methow River Basin, Washington

    NASA Astrophysics Data System (ADS)

    Caldwell, R. J.; Gangopadhyay, S.; Bountry, J.; Lai, Y.; Elsner, M. M.

    2013-07-01

    Management of water temperatures in the Columbia River Basin (Washington) is critical because water projects have substantially altered the habitat of Endangered Species Act listed species, such as salmon, throughout the basin. This is most important in tributaries to the Columbia, such as the Methow River, where the spawning and rearing life stages of these cold water fishes occurs. Climate change projections generally predict increasing air temperatures across the western United States, with less confidence regarding shifts in precipitation. As air temperatures rise, we anticipate a corresponding increase in water temperatures, which may alter the timing and availability of habitat for fish reproduction and growth. To assess the impact of future climate change in the Methow River, we couple historical climate and future climate projections with a statistical modeling framework to predict daily mean stream temperatures. A K-nearest neighbor algorithm is also employed to: (i) adjust the climate projections for biases compared to the observed record and (ii) provide a reference for performing spatiotemporal disaggregation in future hydraulic modeling of stream habitat. The statistical models indicate the primary drivers of stream temperature are maximum and minimum air temperature and stream flow and show reasonable skill in predictability. When compared to the historical reference time period of 1916-2006, we conclude that increases in stream temperature are expected to occur at each subsequent time horizon representative of the year 2020, 2040, and 2080, with an increase of 0.8 ± 1.9°C by the year 2080.

  4. Surface Temperature variability from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Dang, V. T.; Aumann, H. H.

    2015-12-01

    To address the existence and possible causes of the climate hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014for the day and night conditions. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We compare the satellite data with the new surface data produced by Karl et al. (2015) who denies the reality of the climate hiatus. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The day-night difference is an indicator of the anthropogenic trend. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  5. Daily temperature and precipitation data for 223 USSR Stations

    SciTech Connect

    Razuvaev, V.N.; Apasova, E.G.; Martuganov, R.A.; Vose, R.S.; Steurer, P.M.

    1993-11-01

    On- May 23, 1972, the United States and the USSR established a bilateral initiative known as the Agreement on Protection of the Environment. Given recent interest in possible greenhouse gas-induced climate change, Working Group VIII (Influence of Environmental Changes on Climate) has become particularly useful to the scientific communities of both nations. Among its many achievements, Working Group VIII has been instrumental in the exchange of climatological information between the principal climate data centers of each country [i.e., the National Climatic Data Center (NCDC) in Asheville, North Carolina, and the Research Institute of Hydrometeorological Information in Obninsk, Russia]. Considering the relative lack of climate records previously available for the USSR, data obtained via this bilateral exchange are particularly valuable to researchers outside the former Soviet Union. To expedite the dissemination of these data, NOAA`s Climate and Global Change Program funded the Carbon Dioxide Information Analysis Center (CDIAC) and NCDC to distribute one of the more useful archives acquired through this exchange: a 223-station daily data set covering the period 1881-1989. This data set contains: (1) daily mean, minimum, and maximum temperature data; (2) daily precipitation data; (3) station inventory information (WMO No., name, coordinates, and elevation); (4) station history information (station relocation and rain gauge replacement dates); and (5) quality assurance information (i.e., flag codes that were assigned as a result of various data checks). The data set is available, free of charge, as a Numeric Data Package (NDP) from CDIAC. The NDP consists of 18 data files and a printed document which describes both the data files and the 223-station network in detail.

  6. Comparison of MODIS Land Surface Temperature and Air Temperature over the Continental USA Meteorological Stations

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Bounoua, Lahouari; Imhoff, Marc L.; Wolfe, Robert E.; Thome, Kurtis

    2014-01-01

    The National Land Cover Database (NLCD) Impervious Surface Area (ISA) and MODIS Land Surface Temperature (LST) are used in a spatial analysis to assess the surface-temperature-based urban heat island's (UHIS) signature on LST amplitude over the continental USA and to make comparisons to local air temperatures. Air-temperature-based UHIs (UHIA), calculated using the Global Historical Climatology Network (GHCN) daily air temperatures, are compared with UHIS for urban areas in different biomes during different seasons. NLCD ISA is used to define urban and rural temperatures and to stratify the sampling for LST and air temperatures. We find that the MODIS LST agrees well with observed air temperature during the nighttime, but tends to overestimate it during the daytime, especially during summer and in nonforested areas. The minimum air temperature analyses show that UHIs in forests have an average UHIA of 1 C during the summer. The UHIS, calculated from nighttime LST, has similar magnitude of 1-2 C. By contrast, the LSTs show a midday summer UHIS of 3-4 C for cities in forests, whereas the average summer UHIA calculated from maximum air temperature is close to 0 C. In addition, the LSTs and air temperatures difference between 2006 and 2011 are in agreement, albeit with different magnitude.

  7. Need for Caution in Interpreting Daily Temperature Extremes

    NASA Astrophysics Data System (ADS)

    Sardeshmukh, P. D.; Compo, G. P.; Penland, C.

    2014-12-01

    alternative to that based on GEV or Generalized Pareto distributions, and can be used to assess changes not only in tail probabilities but the entire distribution. The procedure will be illustrated to assess changes in the observed distributions of daily temperature anomalies in several regions of the globe over the 1874 to 2010 period.

  8. Tempo-spatial characteristics of sub-daily temperature trends in mainland China

    NASA Astrophysics Data System (ADS)

    Ren, Yuyu; Parker, David; Ren, Guoyu; Dunn, Robert

    2016-05-01

    The spatial and temporal pattern of sub-daily temperature change in mainland China was analysed for the period from 1973 to 2011 using a 3-hourly dataset based on 408 stations. The increase in surface air temperature was more significant by night between 1973 and 1992, with the fastest upward trend around local midnight being about 0.27 °C/decade, while it was more significant by day between 1992 and 2011, with the fastest upward trend being about 0.46 °C/decade in mid-late morning. The season with rapid temperature increase also shifted from winter in 1973-1992 (the largest increase happened near midnight in December, 0.75 °C/decade) to spring in 1992-2011 (the largest increase happened at in the early afternoon in March, 0.82 °C/decade). The change in the spatial distributions of the sub-daily temperature trends shows that Northeast China warmed more significantly in 1973-1992 than elsewhere, but it cooled in 1992-2011, when Southwest China was the new focus of temperature increase whereas it had previously been cooling. A preliminary analysis of the possible causes implies that changes in solar radiation, cloud cover, aerosols and the observational environments near the stations might have contributed to these observed temperature changes.

  9. The role of subsurface soil temperature feedbacks in summer surface air temperature variability over East Asia

    NASA Astrophysics Data System (ADS)

    Zhang, J.

    2012-12-01

    Soil temperature, an important component of land surface, can influence the climate through its effects on surface energy and water budgets and resulted changes in regional atmospheric circulation. However, the effects of soil temperature on climate variations have been less discussed. This study investigates the role of subsurface soil temperature feedbacks in influencing summer surface air temperature variability over East Asia by means of regional climate model (RCM) simulations. For this aim, two long-term simulations with and without subsurface soil temperature feedbacks are performed with the Weather Research and Forecasting (WRF) model. From our investigation, it is evident that subsurface soil temperature feedbacks make a dominant contribution to amplifying summer surface air temperature variability over the arid/semi-arid regions. Further analysis reveals that subsurface soil temperature exhibits an asymmetric effect on summer daytime and nighttime surface air temperature variability, with a stronger effect on daily minimum temperature variability than that of daily maximum temperature variability. This study provides the first RCM-based demonstration that subsurface soil temperature feedbacks play an important role in influencing climate variability over East Asia, such as summer surface air temperature. In the meanwhile, the model bias should be recognized. The results achieved by this study thus need to be further confirmed in a multi-model framework to eliminate the model dependence.

  10. Daily mortality and air pollution along busy streets in Amsterdam, 1987-1998.

    PubMed

    Roemer, W H; van Wijnen, J H

    2001-11-01

    Time-series studies on the association between daily mortality and air pollution levels have been criticized because they use background air pollution measurement sites to estimate exposure of the whole population, including those living along busy roads. To evaluate whether the exposure of people living along busy roads is estimated with error, we calculated separate effect estimates with separate exposure estimates using background and traffic-influenced measurement stations. We used Poisson regression analysis with generalized additive models to correct for long-term trends, influenza, ambient temperature and relative humidity, and day of the week. Black smoke and nitrogen dioxide were associated with mortality (relative risk of 1.38 and 1.10, respectively, for an increase of 100 microg/m3 on the previous day). Effect estimates were larger in the summer and in the population living along busy roads. Effect estimates were also larger using background stations rather than traffic stations. Overall, we found differences in the association between mortality and air pollution using different methods of exposure assessment; these differences are attributable to exposure misclassification for populations living along busy roads. PMID:11679792

  11. Air pollution and daily hospital admissions in metropolitan Los Angeles.

    PubMed Central

    Linn, W S; Szlachcic, Y; Gong, H; Kinney, P L; Berhane, K T

    2000-01-01

    We used daily time-series analysis to evaluate associations between ambient carbon monoxide, nitrogen dioxide, particulate matter [less than and equal to] 10 microm in aerodynamic diameter (PM(10)), or ozone concentrations, and hospital admissions for cardiopulmonary illnesses in metropolitan Los Angeles during 1992-1995. We performed Poisson regressions for the entire patient population and for subgroups defined by season, region, or personal characteristics, allowing for effects of temporal variation, weather, and autocorrelation. CO showed the most consistently significant (p<0.05) relationships to cardiovascular admissions. A wintertime 25th-75th percentile increase in CO (1.1-2.2 ppm) predicted an increase of 4% in cardiovascular admissions. NO(2), and, to a lesser extent, PM(10) tracked CO and showed similar associations with cardiovascular disease, but O(3) was negatively or nonsignificantly associated. No significant demographic differences were found, although increased cardiovascular effects were suggested in diabetics, in whites and blacks (relative to Hispanics and Asians), and in persons older than 65 years of age. Pulmonary disease admissions associated more with NO(2) and PM(10) than with CO. Pulmonary effects were generally smaller than cardiovascular effects and were more sensitive to the choice of model. We conclude that in Los Angeles, atmospheric stagnation with high primary (CO/NO(2)/PM(10)) pollution, most common in autumn/winter, increases the risk of hospitalization for cardiopulmonary illness. Summer photochemical pollution (high O(3)) apparently presents less risk. Images Figure 1 Figure 2 PMID:10811569

  12. DYNAMIC ELECTRICITY GENERATION FOR ADDRESSING DAILY AIR QUALITY EXCEEDANCES IN THE US

    EPA Science Inventory

    We will design, demonstrate, and evaluate a dynamic management system for managing daily air quality, exploring different elements of the design of this system such as how air quality forecasts can best be used, and decision rules for the electrical dispatch model. We will ...

  13. Homogenization of daily temperature series: methods and applications

    NASA Astrophysics Data System (ADS)

    Toreti, Andrea; Kuglitsch, Franz G.; Xoplaki, Elena; Luterbacher, Juerg

    2010-05-01

    Data quality control and homogenization are essential tasks to be performed before any climate change analysis. They help identifying and removing (or reducing) the effects of non-climatic factors, as station relocation or instrumentation changes. Regarding the break point detection, a new procedure based on a Genetic Algorithm and Hidden Markov Models (GAHMM) is developed for changes in the mean and variance. Simulations confirm that GAHMM performs well in the identification of multiple shifts; moreover, it can be easily adapted to different initial assumptions on series and variables under investigation. As for the correction of inhomogeneities, an improved method, named Higher Order Moments for Autocorrelated Data (HOMAD), based on the well-known HOM method (Della-Marta and Wanner, 2006) has been implemented. It takes into account data autocorrelation both in the estimation of the regression function and cumulative distributions. GAHMM is applied together with the method of Caussinus and Mestre (2004) and RH-test (Wang et al., 2007) to a set of 246 daily series of maximum and minimum temperature recorded in the eastern Mediterranean from 1960 to 2006. The detected inhomogeneities are corrected with HOMAD.

  14. Trend of monthly temperature and daily extreme temperature during 1951-2012 in New Zealand

    NASA Astrophysics Data System (ADS)

    Caloiero, Tommaso

    2016-03-01

    Among several variables affecting climate change and climate variability, temperature plays a crucial role in the process because its variations in monthly and extreme values can impact on the global hydrologic cycle and energy balance through thermal forcing. In this study, an analysis of temperature data has been performed over 22 series observed in New Zealand. In particular, to detect possible trends in the time series, the Mann-Kendall non-parametric test was first applied at monthly scale and then to several indices of extreme daily temperatures computed since 1951. The results showed a positive trend in both the maximum and the minimum temperatures, in particular, in the autumn-winter period. This increase has been evaluated faster in maximum temperature than in minimum one. The trend analysis of the temperature indices suggests that there has been an increase in the frequency and intensity of hot extremes, while most of the cold extremes showed a downward tendency.

  15. [Interpolation of daily mean temperature by using geographically weighted regression-Kriging].

    PubMed

    Zhang, Guo-feng; Yang, Li-rong; Qu, Ming-kai; Chen, Hui-lin

    2015-05-01

    Air temperature is the input variable of numerous models in agriculture, hydrology, climate, and ecology. Currently, in study areas where the terrain is complex, methods taking into account correlation between temperature and environment variables and autocorrelation of regression residual (e.g., regression Kriging, RK) are mainly adopted to interpolate the temperature. However, such methods are based on the global ordinary least squares (OLS) regression technique, without taking into account the spatial nonstationary relationship of environment variables. Geographically weighted regression-Kriging (GWRK) is a kind of method that takes into account spatial nonstationarity relationship of environment variables and spatial autocorrelation of regression residuals of environment variables. In this study, according to the results of correlation and stepwise regression analysis, RK1 (covariates only included altitude), GWRK1 (covariates only included altitude), RK2 (covariates included latitude, altitude and closest distance to the seaside) and GWRK2 (co-variates included altitude and closest distance to the seaside) were compared to predict the spatial distribution of mean daily air temperature on Hainan Island on December 18, 2013. The prediction accuracy was assessed using the maximum positive error, maximum negative error, mean absolute error and root mean squared error based on the 80 validation sites. The results showed that GWRK1's four assessment indices were all closest to 0. The fact that RK2 and GWRK2 were worse than RK1 and GWRK1 implied that correlation among covariates reduced model performance. PMID:26571674

  16. Forecasting Cool Season Daily Peak Winds at Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Barrett, Joe, III; Short, David; Roeder, William

    2008-01-01

    The expected peak wind speed for the day is an important element in the daily 24-Hour and Weekly Planning Forecasts issued by the 45th Weather Squadron (45 WS) for planning operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The morning outlook for peak speeds also begins the warning decision process for gusts ^ 35 kt, ^ 50 kt, and ^ 60 kt from the surface to 300 ft. The 45 WS forecasters have indicated that peak wind speeds are a challenging parameter to forecast during the cool season (October-April). The 45 WS requested that the Applied Meteorology Unit (AMU) develop a tool to help them forecast the speed and timing of the daily peak and average wind, from the surface to 300 ft on KSC/CCAFS during the cool season. The tool must only use data available by 1200 UTC to support the issue time of the Planning Forecasts. Based on observations from the KSC/CCAFS wind tower network, surface observations from the Shuttle Landing Facility (SLF), and CCAFS upper-air soundings from the cool season months of October 2002 to February 2007, the AMU created multiple linear regression equations to predict the timing and speed of the daily peak wind speed, as well as the background average wind speed. Several possible predictors were evaluated, including persistence, the temperature inversion depth, strength, and wind speed at the top of the inversion, wind gust factor (ratio of peak wind speed to average wind speed), synoptic weather pattern, occurrence of precipitation at the SLF, and strongest wind in the lowest 3000 ft, 4000 ft, or 5000 ft. Six synoptic patterns were identified: 1) surface high near or over FL, 2) surface high north or east of FL, 3) surface high south or west of FL, 4) surface front approaching FL, 5) surface front across central FL, and 6) surface front across south FL. The following six predictors were selected: 1) inversion depth, 2) inversion strength, 3) wind gust factor, 4) synoptic weather pattern, 5) occurrence of

  17. Daily mortality and air pollution in Atlanta: two years of data from ARIES.

    PubMed

    Klemm, R J; Lipfert, F W; Wyzga, R E; Gust, C

    2004-01-01

    Associations between daily mortality and air pollution were investigated in Fulton and DeKalb Counties, Georgia, for the 2-yr period beginning in August 1998, as part of the Aerosol Research and Inhalation Epidemiological Study (ARIES). Mortality data were obtained directly from county offices of vital records. Air quality data were obtained from a dedicated research site in central Atlanta; 15 separate air quality indicators (AQIs) were selected from the 70 particulate and gaseous air quality parameters archived in the ARIES ambient air quality database. Daily meteorological parameters, comprising 24-h average temperatures and dewpoints, were obtained from Atlanta's Hartsfield International Airport. Effects were estimated using Poisson regression with daily deaths as the response variable and time, meteorology, AQI, and days of the week as predictor variables. AQI variables entered the model in a linear fashion, while all other continuous predictor variables were smoothed via natural cubic splines using the generalized linear model (GLM) framework in S-PLUS. Knots were spaced either quarterly, monthly, or biweekly for temporal smoothing. A default model using monthly knots and AQIs averaged for lags 0 and 1 was postulated, with other models considered in sensitivity analyses. Lags up to 5 days were considered, and multipollutant models were evaluated, taking care to avoid overlapping (and thus collinear) AQIs. For this reason, PM(2.5) was partitioned into its three major constituents: SO(2-)(4), carbon (EC + 1.4 OC), and the remainder; sulfate was assumed to be (NH(4))(2)SO(4) for this purpose. Initial AQI screening was based on all-cause (ICD-9 codes <800) mortality for those aged 65 and over. For the (apparently) most important pollutants--PM(2.5) and its 3 major constituents, coarse PM mass [CM], 1-h maximum CO, 8-h maximum O(3)--we investigated 15 mortality categories in detail. (The 15 categories result from three age groups [all ages, <65, 65+] and five

  18. Air pollution, temperature and pediatric influenza in Brisbane, Australia.

    PubMed

    Xu, Zhiwei; Hu, Wenbiao; Williams, Gail; Clements, Archie C A; Kan, Haidong; Tong, Shilu

    2013-09-01

    Previous studies have demonstrated the importance of weather variables in influencing the incidence of influenza. However, the role of air pollution is often ignored in identifying the environmental drivers of influenza. This research aims to examine the impacts of air pollutants and temperature on the incidence of pediatric influenza in Brisbane, Australia. Lab-confirmed daily data on influenza counts among children aged 0-14years in Brisbane from 2001 January 1st to 2008 December 31st were retrieved from Queensland Health. Daily data on maximum and minimum temperatures for the same period were supplied by the Australian Bureau of Meteorology. Winter was chosen as the main study season due to it having the highest pediatric influenza incidence. Four Poisson log-linear regression models, with daily pediatric seasonal influenza counts as the outcome, were used to examine the impacts of air pollutants (i.e., ozone (O3), particulate matter≤10μm (PM10) and nitrogen dioxide (NO2)) and temperature (using a moving average of ten days for these variables) on pediatric influenza. The results show that mean temperature (Relative risk (RR): 0.86; 95% Confidence Interval (CI): 0.82-0.89) was negatively associated with pediatric seasonal influenza in Brisbane, and high concentrations of O3 (RR: 1.28; 95% CI: 1.25-1.31) and PM10 (RR: 1.11; 95% CI: 1.10-1.13) were associated with more pediatric influenza cases. There was a significant interaction effect (RR: 0.94; 95% CI: 0.93-0.95) between PM10 and mean temperature on pediatric influenza. Adding the interaction term between mean temperature and PM10 substantially improved the model fit. This study provides evidence that PM10 needs to be taken into account when evaluating the temperature-influenza relationship. O3 was also an important predictor, independent of temperature. PMID:23911338

  19. Can air temperatures be used to project influences of climate change on stream temperatures?

    NASA Astrophysics Data System (ADS)

    Arismendi, I.; Safeeq, M.; Dunham, J.; Johnson, S. L.

    2013-12-01

    The lack of available in situ stream temperature records at broad spatiotemporal scales have been recognized as a major limiting factor in the understanding of thermal behavior of stream and river systems. This has motivated the promotion of a wide variety of models that use surrogates for stream temperatures including a regression approach that uses air temperature as the predictor variable. We investigate the long-term performance of widely used linear and non-linear regression models between air and stream temperatures to project the latter in future climate scenarios. Specifically, we examine the temporal variability of the parameters that define each of these models in long-term stream and air temperature datasets representing relatively natural and highly human-influenced streams. We selected 25 sites with long-term records that monitored year-round daily measurements of stream temperature (daily mean) in the western United States (California, Oregon, Idaho, Washington, and Alaska). Surface air temperature data from each site was not available. Therefore, we calculated daily mean surface air temperature for each site in contiguous US from a 1/16-degree resolution gridded surface temperature data. Our findings highlight several limitations that are endemic to linear or nonlinear regressions that have been applied in many recent attempts to project future stream temperatures based on air temperature. Our results also show that applications over longer time periods, as well as extrapolation of model predictions to project future stream temperatures are unlikely to be reliable. Although we did not analyze a broad range of stream types at a continental or global extent, our analysis of stream temperatures within the set of streams considered herein was more than sufficient to illustrate a number of specific limitations associated with statistical projections of stream temperature based on air temperature. Radar plots of Nash-Sutcliffe efficiency (NSE) values for

  20. Controlled-Temperature Hot-Air Gun

    NASA Technical Reports Server (NTRS)

    Munoz, M. C.

    1986-01-01

    Materials that find applications in wind tunnels first tested in laboratory. Hot-Air Gun differs from commercial units in that flow rate and temperature monitored and controlled. With typical compressed-airsupply pressure of 25 to 38 psi (170 to 260 kPa), flow rate and maximum temperature are 34 stdft3/min (0.96 stdm3/min) and 1,090 degrees F (590 degrees C), respectively. Resembling elaborate but carefully regulated hot-air gun, setup used to apply blasts of air temperatures above 1,500 degrees F (815 degrees C) to test specimens.

  1. Development of daily temperature scenarios and their impact on paddy crop evapotranspiration in Kangsabati command area

    NASA Astrophysics Data System (ADS)

    Dhage, P. M.; Raghuwanshi, N. S.; Singh, R.; Mishra, A.

    2016-02-01

    Production of the principal paddy crop in West Bengal state of India is vulnerable to climate change due to limited water resources and strong dependence on surface irrigation. Therefore, assessment of impact of temperature scenarios on crop evapotranspiration (ETc) is essential for irrigation management in Kangsabati command (West Bengal). In the present study, impact of the projected temperatures on ETc was studied under climate change scenarios. Further, the performance of the bias correction and spatial downscaling (BCSD) technique was compared with the two well-known downscaling techniques, namely, multiple linear regression (MLR) and Kernel regression (KR), for the projections of daily maximum and minimum air temperatures for four stations, namely, Purulia, Bankura, Jhargram, and Kharagpur. In National Centers for Environmental Prediction (NCEP) and General Circulation Model (GCM), 14 predictors were used in MLR and KR techniques, whereas maximum and minimum surface air temperature predictor of CanESM2 GCM was used in BCSD technique. The comparison results indicated that the performance of the BCSD technique was better than the MLR and KR techniques. Therefore, the BCSD technique was used to project the future temperatures of study locations with three Representative Concentration Pathway (RCP) scenarios for the period of 2006-2100. The warming tendencies of maximum and minimum temperatures over the Kangsabati command area were projected as 0.013 and 0.014 °C/year under RCP 2.6, 0.015 and 0.023 °C/year under RCP 4.5, and 0.056 and 0.061 °C/year under RCP 8.5 for 2011-2100 period, respectively. As a result, kharif (monsoon) crop evapotranspiration demand of Kangsabati reservoir command (project area) will increase by approximately 10, 8, and 18 % over historical demand under RCP 2.6, 4.5, and 8.5 scenarios, respectively.

  2. Effect of Daily Temperature Fluctuation during the Cool Season on the Infectivity of Cryptosporidium parvum▿

    PubMed Central

    Li, Xunde; Atwill, Edward R.; Dunbar, Lissa A.; Tate, Kenneth W.

    2010-01-01

    The present work calculated the rate of inactivation of Cryptosporidium parvum oocysts attributable to daily oscillations of low ambient temperatures. The relationship between air temperature and the internal temperature of bovine feces on commercial operations was measured, and three representative 24-h thermal regimens in the ∼15°C, ∼25°C, and ∼35°C ranges were chosen and emulated using a thermocycler. C. parvum oocysts suspended in deionized water were exposed to the temperature cycles, and their infectivity in mice was tested. Oral inoculation of 103 treated oocysts per neonatal BALB/c mouse (∼14 times the 50% infective dose) resulted in time- and temperature-dependent reductions in the proportion of infected mice. Oocysts were completely noninfectious after 14 24-h cycles with the 30°C regimen and after 70 24-h cycles with the 20°C regimen. In contrast, oocysts remained infectious after 90 24-h cycles with the 10°C regimens. The estimated numbers of days needed for a 1-log10 reduction in C. parvum oocyst infectivity were 4.9, 28.7, and 71.5 days for the 30, 20, and 10°C thermal regimens, respectively. The loss of infectivity of oocysts induced by these thermal regimens was due in part to partial or complete in vitro excystation. PMID:20023095

  3. Air Temperature Estimation over the Third Pole Using MODIS LST

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Zhang, F.; Ye, M.; Che, T.

    2015-12-01

    The Third Pole is centered on the Tibetan Plateau (TP), which is the highest large plateau around the world with extremely complex terrain and climate conditions, resulting in very scarce meteorological stations especially in the vast west region. For these unobserved areas, the remotely sensed land surface temperature (LST) can greatly contribute to air temperature estimation. In our research we utilized the MODIS LST production from both TERRA and AQUA to estimate daily mean air temperature over the TP using multiple statistical models. Other variables used in the models include longitudes, latitudes, Julian day, solar zenith, NDVI and elevation. To select a relatively optimal model, we chose six popular and representative statistical models as candidate models including the multiple linear regression (MLR), the partial least squares regression (PLS), back propagate neural network (BPNN), support vector regression (SVR), random forests (RF) and Cubist regression (CR). The performances of the six models were compared for each possible combination of LSTs at four satellite pass times and two quality situations. Eventually a ranking table consisting of optimal models for each LST combination and quality situation was built up based on the validation results. By this means, the final production is generated providing daily mean air temperature with the least cloud blockage and acceptable accuracy. The average RMSEs of cross validation are mostly around 2℃. Stratified validations were also performed to test the expansibility to unobserved and high-altitude areas of the final models selected.

  4. Air separation with temperature and pressure swing

    DOEpatents

    Cassano, Anthony A.

    1986-01-01

    A chemical absorbent air separation process is set forth which uses a temperature swing absorption-desorption cycle in combination with a pressure swing wherein the pressure is elevated in the desorption stage of the process.

  5. Trends and variability of daily and extreme temperature and precipitation in the Caribbean region, 1961-2010

    NASA Astrophysics Data System (ADS)

    Allen, T. L.; Stephenson, T. S.; Vincent, L.; Van Meerbeeck, C.; McLean, N.

    2013-05-01

    A workshop was held at the University of the West Indies, Jamaica, in May 2012 to build capacity in climate data rescue and to enhance knowledge about climate change in the Caribbean region. Scientists brought their daily surface temperature and precipitation data for an assessment of quality and homogeneity and for the preparation of climate change indices helpful for studying climate change in their region. This study presents the trends in daily and extreme temperature and precipitation indices in the Caribbean region for records spanning the 1961-2010 and 1986-2010 intervals. Overall, the results show a warming of the surface air temperature at land stations. Region-wide, annual means of the daily minimum temperatures (+1.4°C) have increased more than the annual means of the daily maximum temperatures (+0.9°C) leading to significant decrease in the diurnal temperature range. The frequency of warm days and warm nights has increased by more than 15% while 9% fewer cool days and 13% fewer cool night were found over the 50-year interval. These frequency trends are further reflected in a rise of the annual extreme high and low temperatures by ~1°C. Changes in precipitation indices are less consistent and the trends are generally weak. Small positive trends were found in annual total precipitation, daily intensity, maximum number of consecutive dry days and heavy rainfall events particularly during the period 1986- 2010. Finally, aside from the observed climate trends, correlations between these indices and the Atlantic Multidecadal Oscillation (AMO) annual index suggest a coupling between land temperature variability and, to a lesser extent, precipitation extremes on the one hand, and the AMO signal of the North Atlantic surface sea temperatures.

  6. Trends and variability of daily and extreme temperature and precipitation in the Caribbean region, 1961-2010

    NASA Astrophysics Data System (ADS)

    Stephenson, Tannecia; Vincent, Lucie; Allen, Theodore; Van Meerbeeck, Cedric; McLean, Natalie

    2013-04-01

    A workshop was held at the University of the West Indies, Jamaica, in May 2012 to build capacity in climate data rescue and to enhance knowledge about climate change in the Caribbean region. Scientists brought their daily surface temperature and precipitation data for an assessment of quality and homogeneity and for the preparation of climate change indices helpful for studying climate change in their region. This study presents the trends in daily and extreme temperature and precipitation indices in the Caribbean region for records spanning the 1961-2010 and 1986-2010 intervals. Overall, the results show a warming of the surface air temperature at land stations. Region-wide, annual means of the daily minimum temperatures (+1.4°C) have increased more than the annual means of the daily maximum temperatures (+0.95°C) leading to significant decrease in the diurnal temperature range. The frequency of warm days and warm nights has increased by more than 15% while 7% fewer cool days and 10% fewer cool night were found over the 50-year interval. These frequency trends are further reflected in a rise of the annual extreme high and low temperatures by ~1°C. Changes in precipitation indices are less consistent and the trends are generally weak. Small positive trends were found in annual total precipitation, daily intensity, maximum number of consecutive dry days and heavy rainfall events particularly during the period 1986-2010. Finally, aside from the observed climate trends, correlations between these indices and the Atlantic Multidecadal Oscillation (AMO) annual index suggest a coupling between land temperature variability and, to a lesser extent, precipitation extremes on the one hand, and the AMO signal of the North Atlantic surface sea temperatures.

  7. Air pollution and daily mortality in Sydney, Australia, 1989 through 1993.

    PubMed Central

    Morgan, G; Corbett, S; Wlodarczyk, J; Lewis, P

    1998-01-01

    OBJECTIVES: This study examined the effects of outdoor air pollutants in Sydney, Australia, on daily mortality. METHODS: Time-series analysis was performed on counts of daily mortality and major outdoor air pollutants (particulates, ozone, and nitrogen dioxide) in Sydney (1989 to 1993) with adjustment for seasonal and cyclical factors. Poisson regression was calculated with allowance for overdispersion and autocorrelation. The effects of lagging exposure by 0 to 2 days were assessed with single- and multiple-pollutant models. RESULTS: An increase in daily mean particulate concentration from the 10th to the 90th centile was associated with an increase of 2.63% (95% confidence interval 0.87 to 4.41) in all-cause mortality and 2.68% (0.25 to 5.16) in cardiovascular mortality. An increase in daily maximum 1-hour ozone concentration from the 10th to the 90th centile was associated with an increase of 2.04% (0.37 to 3.73) in all-cause mortality and 2.52% (-0.25 to 5.38) in cardiovascular mortality. An increase in the daily mean nitrogen dioxide concentration from the 10th to the 90th centile was associated with an increase of 7.71% (-0.34 to 16.40) in respiratory mortality. Multiple-pollutant models suggest that the effects of particulates and ozone on all-cause and cardiovascular mortality, and of nitrogen dioxide on respiratory mortality, are independent of the effects of the other pollutants. CONCLUSIONS: Current levels of air pollution in Sydney are associated with daily mortality. PMID:9585741

  8. Crowdsourcing urban air temperature measurements using smartphones

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-10-01

    Crowdsourced data from cell phone battery temperature sensors could be used to contribute to improved real-time, high-resolution air temperature estimates in urban areas, a new study shows. Temperature observations in cities are in some cases currently limited to a few weather stations, but there are millions of smartphone users in many cities. The batteries in cell phones have temperature sensors to avoid damage to the phone.

  9. Daily changes in oxygen saturation and pulse rate associated with particulate air pollution and barometric pressure.

    PubMed

    Dockery, D W; Pope, C A; Kanner, R E; Martin Villegas, G; Schwartz, J

    1999-01-01

    Epidemiologic studies have linked fine particulate air pollution with increases in morbidity and mortality rates from cardiopulmonary complications. Although the underlying biologic mechanisms responsible for this increase remain largely unknown, potential pathways include transient declines in blood oxygenation and changes in pulse rate following exposures to particulate air pollution episodes. This study evaluated potential associations between daily measures of respirable particulate matter (PM) with pulse rate and oxygen saturation of the blood. Pulse rate and oxygen saturation (Spo2) using pulse oximetry were measured daily in 90 elderly subjects living near air pollution monitors during the winter of 1995-96 in Utah Valley. We also evaluated potential associations of oxygen saturation and pulse rate with barometric pressure. Small but statistically significant positive associations between day-to-day changes in Spo2 and barometric pressure were observed. Pulse rate was inversely associated with barometric pressure. Exposure to particulate pollution was not significantly associated with Spo2 except in male participants 80 years of age or older. Increased daily pulse rate, as well as the odds of having a pulse rate 5 or 10 beats per minute (bpm) above normal (normal is defined as the individual's mean pulse rate throughout the study period), were significantly associated with exposure to particulate pollution on the previous 1 to 5 days. The medical or biologic relevance of these increases in pulse rate following exposure to particulate air pollution requires further study. PMID:10192116

  10. Effects of repeated surgical stress on daily changes of body core temperature in mice.

    PubMed

    Kanizsai, P; Vámos, Z; Solymár, M; Garami, A; Szelényi, Z

    2010-06-01

    Daily body core temperature rhythm has been known to become blunted for several days following intra-abdominal implantation of biotelemetry transmitters in small rodents and about a week is required for re-establishment of stable body core temperature oscillation. In the present study carried out on mice it was found that a repetition of the same minor surgical intervention (laparotomy) several days apart could speed up the stabilization of body temperature oscillations. Melatonin supplied with the drinking water continuously was found to speed up the return of stable daily body temperature rhythm further on consecutive laparotomies, while daily injections of methylprednisolone resulted in some delay in the development of stable body core temperature oscillations. It is concluded that in C57BL/6 mice possessing low plasma levels of melatonin exhibit an adaptive response to repeated stresses influencing the dynamics of daily body temperature rhythm. PMID:20511129

  11. Improving Forecast Skill by Assimilation of AIRS Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The AIRS Version 5 retrieval algorithm, is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates delta T(p) for retrieved quantities and the use of these error estimates for Quality Control. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 deg. latitude X 0.67 deg longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates delta (p) were used as the uncertainty for each measurement in the data assimilation process. We compared forecasts analyses generated from the analyses done by assimilation of AIRS temperature profiles with three different sets of thresholds; Standard, Medium, and Tight. Assimilation of Quality Controlled AIRS temperature profiles significantly improve 5-7 day forecast skill compared to that obtained without the benefit of AIRS data in all of the cases studied. In addition, assimilation of Quality Controlled AIRS temperature soundings performs better than assimilation of AIRS observed radiances. Based on the experiments shown, Tight Quality Control of AIRS temperature profile performs best

  12. Effect of ambient air pollution on daily mortality rates in Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Yu, Ignatius Tak Sun; Zhang, Yong hui; San Tam, Wilson Wai; Yan, Qing Hua; Xu, Yan jun; Xun, Xiao jun; Wu, Wei; Ma, Wen Jun; Tian, Lin Wei; Tse, Lap Ah; Lao, Xiang Qian

    2012-01-01

    We aimed to investigate the effects of ambient air pollutants on daily mortality in a relatively stable and homogeneous population in Guangzhou, China. Daily mortality, air pollution, and weather data between 2006 and 2009 were collected. The generalized additive model with poison regression was used to estimate the excessive risks (ERs) of air pollutants (PM 10, SO 2, and NO 2) on total, cardiovascular and respiratory mortality. The effects of lag0-1 were the greatest for total non-accidental and cardiovascular deaths. The increments of 10 μg m -3 in SO 2, NO 2, and PM 10 were associated with ERs of 1.54% (95%CI: 1.03-2.06%), 1.42% (95%CI: 1.06-1.78%), and 1.26% (95%CI: 0.86-1.66%) respectively for total non-accidental deaths, and 2.28% (95%CI: 1.40-3.16%), 1.81% (95%CI: 1.20-2.41%), and 1.79% (95%CI: 1.11-2.47%) respectively for cardiovascular deaths. For persons who died from respiratory disease, however, the maximum effects occurred at lag0. The ERs for SO 2, NO 2, and PM 10 were 1.36% (95%CI: 0.23-2.50%), 1.47% (95%CI: 0.66-2.29%) and 0.93% (95%CI: 0.03-1.83%), respectively. The effects of the three air pollutants on mortality were stronger in elderly and in women. The ERs in the present study were higher than those reported in Europe, the U.S., and most other Asian cities. Our findings show relatively higher ERs of daily mortality by ambient air pollutants in the center of Guangzhou, China, compared with estimates in other cities. Further studies with accurate exposure measurement among homogeneous population are needed to evaluate the precise magnitudes of the effects of the air pollutants.

  13. Temperature Tunable Air-Gap Etalon Filter

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Stephen, Mark A.; Lunt, David L.

    1998-01-01

    We report on experimental measurements of a temperature tuned air-gap etalon filter. The filter exhibits temperature dependent wavelength tuning of 54 pm/C. It has a nominal center wavelength of 532 nm. The etalon filter has a 27 pm optical bandpass and 600 pm free spectral range (finesse approximately 22). The experimental results are in close agreement with etalon theory.

  14. COLUMBIA/SNAKE RIVER TEMPERATURE TOTAL MAXIMUM DAILY LOAD (TMDL)

    EPA Science Inventory

    EPA and the States of Idaho, Oregon and Washington are working in coordination with the Columbia River Tribes to establish a temperature TMDL for the mainstems of the Columbia and Snake Rivers. Both rivers are on state 303(d) lists of impaired waters for exceedances of water qua...

  15. Part 1. A time-series study of ambient air pollution and daily mortality in Shanghai, China.

    PubMed

    Kan, Haidong; Chen, Bingheng; Zhao, Naiqing; London, Stephanie J; Song, Guixiang; Chen, Guohai; Zhang, Yunhui; Jiang, Lili

    2010-11-01

    pollutants. For mortality due to all natural causes, we also examined the associations stratified by sex and age. Stratified analyses by education level, used as a measure of socioeconomic status, were conducted as well. In addition to an analysis of the entire study period, the effects of air pollution in just the warm season (from April to September) and cool season (from October to March) were analyzed. We also examined the effects of alternative model specifications--such as lag effects of pollutants and temperature, degrees of freedom for time trend and weather conditions, statistical approaches, and averaging methods for pollutant concentrations-on the estimated effects of air pollution. We found significant associations between the air pollutants--particulate matter 10 pm or less in aerodynamic diameter (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3) -and daily mortality from all natural causes and from cardiopulmonary diseases. The increased mortality risks found in the data from Shanghai were generally similar in magnitude, per concentration of pollutant, to the risks found in research from other parts of the world. An increase of 10 microg/m3 in 2-day moving average concentrations of PM10, SO2, NO2, and O3 corresponded to 0.26% (95% confidence interval [CI], 0.14-0.37), 0.95% (95% CI, 0.62-1.28), 0.97% (95% CI, 0.66-1.27), and 0.31% (95% CI, 0.04-0.58) increases, respectively, in mortality due to all natural causes. Sensitivity analyses suggested that our findings were generally insensitive to alternative model specifications. We found significant effects of the gaseous pollutants SO2 and NO2 on daily mortality after adjustment for PM10. Our analysis also provided preliminary, but not conclusive, evidence that women, older people, and people with a low level of education might be more vulnerable to air pollution than men, younger people, and people with a high level of education. In addition, the associations between air pollution and daily

  16. Undulator Hall Air Temperature Fault Scenarios

    SciTech Connect

    Sevilla, J.; Welch, J.; /SLAC

    2010-11-17

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  17. Modeling monthly mean air temperature for Brazil

    NASA Astrophysics Data System (ADS)

    Alvares, Clayton Alcarde; Stape, José Luiz; Sentelhas, Paulo Cesar; de Moraes Gonçalves, José Leonardo

    2013-08-01

    Air temperature is one of the main weather variables influencing agriculture around the world. Its availability, however, is a concern, mainly in Brazil where the weather stations are more concentrated on the coastal regions of the country. Therefore, the present study had as an objective to develop models for estimating monthly and annual mean air temperature for the Brazilian territory using multiple regression and geographic information system techniques. Temperature data from 2,400 stations distributed across the Brazilian territory were used, 1,800 to develop the equations and 600 for validating them, as well as their geographical coordinates and altitude as independent variables for the models. A total of 39 models were developed, relating the dependent variables maximum, mean, and minimum air temperatures (monthly and annual) to the independent variables latitude, longitude, altitude, and their combinations. All regression models were statistically significant ( α ≤ 0.01). The monthly and annual temperature models presented determination coefficients between 0.54 and 0.96. We obtained an overall spatial correlation higher than 0.9 between the models proposed and the 16 major models already published for some Brazilian regions, considering a total of 3.67 × 108 pixels evaluated. Our national temperature models are recommended to predict air temperature in all Brazilian territories.

  18. Constructing retrospective gridded daily precipitation and temperature datasets for the conterminous United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper presents and evaluates a method for the construction of long-range and wide-area temporal spatial datasets of daily precipitation and temperature (maximum and minimum). This method combines the interpolation of daily ratios/fractions derived from ground-based meteorological station record...

  19. The concentration-response relation between air pollution and daily deaths.

    PubMed Central

    Schwartz, J; Ballester, F; Saez, M; Pérez-Hoyos, S; Bellido, J; Cambra, K; Arribas, F; Cañada, A; Pérez-Boillos, M J; Sunyer, J

    2001-01-01

    Studies on three continents have reported associations between various measures of airborne particles and daily deaths. Sulfur dioxide has also been associated with daily deaths, particularly in Europe. Questions remain about the shape of those associations, particularly whether there are thresholds at low levels. We examined the association of daily concentrations of black smoke and SO(2) with daily deaths in eight Spanish cities (Barcelona, Bilbao, Castellón, Gijón, Oviedo, Valencia, Vitoria, and Zaragoza) with different climates and different environmental and social characteristics. We used nonparametric smoothing to estimate the shape of the concentration-response curve in each city and combined those results using a metasmoothing technique developed by Schwartz and Zanobetti. We extended their method to incorporate random variance components. Black smoke had a nearly linear association with daily deaths, with no evidence of a threshold. A 10 microg/m(3) increase in black smoke was associated with a 0.88% increase in daily deaths (95% confidence interval, 0.56%-1.20%). SO(2) had a less plausible association: Daily deaths increased at very low concentrations, but leveled off and then decreased at higher concentrations. These findings held in both one- and two-pollutant models and held whether we optimized our weather and seasonal model in each city or used the same smoothing parameters in each city. We conclude that the association with particle levels is more convincing than for SO(2), and without a threshold. Linear models provide an adequate estimation of the effect of particulate air pollution on mortality at low to moderate concentrations. PMID:11675264

  20. The effect of air temperature and human thermal indices on mortality in Athens, Greece

    NASA Astrophysics Data System (ADS)

    Nastos, Panagiotis T.; Matzarakis, Andreas

    2012-05-01

    This paper investigates whether there is any association between the daily mortality for the wider region of Athens, Greece and the thermal conditions, for the 10-year period 1992-2001. The daily mortality datasets were acquired from the Hellenic Statistical Service and the daily meteorological datasets, concerning daily maximum and minimum air temperature, from the Hellinikon/Athens meteorological station, established at the headquarters of the Greek Meteorological Service. Besides, the daily values of the thermal indices Physiologically Equivalent Temperature (PET) and Universal Thermal Climate Index (UTCI) were evaluated in order to interpret the grade of physiological stress. The first step was the application of Pearson's χ 2 test to the compiled contingency tables, resulting in that the probability of independence is zero ( p = 0.000); namely, mortality is in close relation to the air temperature and PET/UTCI. Furthermore, the findings extracted by the generalized linear models showed that, statistically significant relationships ( p < 0.01) between air temperature, PET, UTCI and mortality exist on the same day. More concretely, on one hand during the cold period (October-March), a 10°C decrease in daily maximum air temperature, minimum air temperature, temperature range, PET and UTCI is related with an increase 13%, 15%, 2%, 7% and 6% of the probability having a death, respectively. On the other hand, during the warm period (April-September), a 10°C increase in daily maximum air temperature, minimum air temperature, temperature range, PET and UTCI is related with an increase 3%, 1%, 10%, 3% and 5% of the probability having a death, respectively. Taking into consideration the time lag effect of the examined parameters on mortality, it was found that significant effects of 3-day lag during the cold period appears against 1-day lag during the warm period. In spite of the general aspect that cold conditions seem to be favourable factors for daily mortality

  1. Air pollution exposure and daily clinical visits for allergic rhinitis in a subtropical city: Taipei, Taiwan.

    PubMed

    Chen, Chih-Cheng; Chiu, Hui-Fen; Yang, Chun-Yuh

    2016-01-01

    This study was undertaken to determine whether there was an association between air pollutant level exposure and daily clinic visits for allergic rhinitis (AR) in Taipei, Taiwan. Daily clinic visits for AR and ambient air pollution data for Taipei were obtained for the period of 2006-2011. The relative risk for clinic visits for AR was estimated using a case-crossover approach, controlling for weather variables, day of the week, seasonality, and long-term time trends. In the single-pollutant models, on warm days (>23ºC) significant positive associations were found for increased rate of AR occurrence and ambient levels of particulate matter (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3). On cool days (<23ºC), all air pollutants were significantly associated with elevated number of AR visits except SO2. For the two-pollutant models, PM10, O3, and NO2 were significantly associated with higher rate of AR visits in combination with each of the other four pollutants on cool days. On warm days, CO levels remained significantly related with increased AR visits in all two-pollutant models. This study provides evidence that higher levels of ambient air contaminants enhance the risk of elevated frequency of clinic visits for AR. PMID:27294298

  2. Simulation of mosquitoes population dynamic based on rainfall and average daily temperature

    NASA Astrophysics Data System (ADS)

    Widayani, H.; Seprianus, Nuraini, N.; Arum, J.

    2014-02-01

    This paper proposed rainfall and average daily temperature approximation functions using least square method with trigonometry polynomial. Error value from this method is better than Fast Fourier Transform method. This approximation is used to accommodate climatic factors into deterministic model of mosquitoes population by constructing a carrying capacity function which contains rainfall and average daily temperature functions. We develop a mathematical model for mosquitoes population dynamic which formulated by Yang et al (2010) with dynamic parameter of a daily rainfall as well as temperature on that model. Two fixed points, trivial and non-trivial, are obtained when constant entomological parameters assumed. Basic offspring number, Q0 as mosquitoes reproduction parameter is constructed. Non-trivial fixed point is stable if and only if Q0 > 1. Numerical simulation shown the dynamics of mosquitoes population significantly affected by rainfall and average daily temperature function.

  3. Using daily temperature to predict phenology trends in spring flowers

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Hee; Kim, Soo-Ock; Kim, Dae-Jun; Moon, Kyung Hwan; Yun, Jin I.

    2015-05-01

    The spring season in Korea features a dynamic landscape with a variety of flowers blooming sequentially one after another. This enables local governments to earn substantial sightseeing revenues by hosting festivals featuring spring flowers. Furthermore, beekeepers move from the southern tip of the Korean Peninsula all the way northward in a quest to secure spring flowers as nectar sources for a sustained period of time. However, areal differences in flowering dates of flower species are narrowing, which has economic consequences. Analysis of data on flowering dates of forsythia ( Forsythia koreana) and cherry blossom ( Prunus serrulata), two typical spring flower species, as observed for the past 60 years at six weather stations of the Korea Meteorological Administration (KMA) indicated that the difference between the flowering date of forsythia, the earliest blooming flower in spring, and cherry blossom, which flowers later than forsythia, was 14 days on average in the climatological normal year for the period 1951-1980, compared with 11 days for the period 1981-2010. In 2014, the gap narrowed further to 7 days, making it possible in some locations to see forsythias and cherry blossoms blooming at the same time. Synchronized flowering of these two flower species is due to acceleration of flowering due to an abnormally high spring temperature, and this was more pronounced in the later-blooming cherry blossom than forsythia. While cherry blossom flowering dates across the nation ranged from March 31 to April 19 (an areal difference of 20 days) for the 1951-1980 normal year, the difference ranged from March 29 to April 12 (an areal difference of 16 days) for the 1981-2010 normal year, and in 2014, the flowering dates spanned March 25 and March 30 (an areal difference of 6 days). In the case of forsythia, the gap was narrower than in cherry blossoms. Climate change in the Korean Peninsula, reflected by rapid temperature hikes in late spring in contrast to a slow

  4. [Daily temperature gradients and processes of organogenesis in apical meristem of Cucumis sativus L].

    PubMed

    Markovskaia, E F; Sysoeva, M I; Vasilevskaia, N V

    2007-01-01

    We studied the influence of daily temperature gradients on organogenesis in apical and axil shoot meristems at different developmental stages in Cucumis sativus L. The level of organogenic activity of meristems was determined according to the number of leaf primordia on the main and lateral shoots, number of 2nd order shoots, and rudiments of flowers of different levels of development. At the studied ontogenetic stages (mesotrophic seedling or juvenile state), plants were grown under the controlled conditions: photoperiod 12 h, light intensity 100 Wt/m2, range of mean daily temperatures 20 ... 30 degrees C, and daily temperature gradients -20 ... +20 degrees C. After the temperature treatment, some plants were returned to the optimal, for growth and development, conditions for two weeks (aftereffect). Three types of organogenic activity of meristems in response to the influence of variable daily temperatures were described: stimulation, inhibition, or absence of effect. The phenomenon of stimulation includes two subtypes: optimization, when a maximum effect, observed at other constant temperatures, was attained under the influence of variable temperatures and maximization, when maximum values markedly exceeded those at constant temperatures. The patterns described are preserved on the whole in the aftereffect of daily temperatures. PMID:17352290

  5. A space and time scale-dependent nonlinear geostatistical approach for downscaling daily precipitation and temperature

    NASA Astrophysics Data System (ADS)

    Jha, Sanjeev Kumar; Mariethoz, Gregoire; Evans, Jason; McCabe, Matthew F.; Sharma, Ashish

    2015-08-01

    A geostatistical framework is proposed to downscale daily precipitation and temperature. The methodology is based on multiple-point geostatistics (MPS), where a multivariate training image is used to represent the spatial relationship between daily precipitation and daily temperature over several years. Here the training image consists of daily rainfall and temperature outputs from the Weather Research and Forecasting (WRF) model at 50 and 10 km resolution for a 20 year period ranging from 1985 to 2004. The data are used to predict downscaled climate variables for the year 2005. The result, for each downscaled pixel, is daily time series of precipitation and temperature that are spatially dependent. Comparison of predicted precipitation and temperature against a reference data set indicates that both the seasonal average climate response together with the temporal variability are well reproduced. The explicit inclusion of time dependence is explored by considering the climate properties of the previous day as an additional variable. Comparison of simulations with and without inclusion of time dependence shows that the temporal dependence only slightly improves the daily prediction because the temporal variability is already well represented in the conditioning data. Overall, the study shows that the multiple-point geostatistics approach is an efficient tool to be used for statistical downscaling to obtain local-scale estimates of precipitation and temperature from General Circulation Models.

  6. Spatial interpolation of monthly mean air temperature data for Latvia

    NASA Astrophysics Data System (ADS)

    Aniskevich, Svetlana

    2016-04-01

    Temperature data with high spatial resolution are essential for appropriate and qualitative local characteristics analysis. Nowadays the surface observation station network in Latvia consists of 22 stations recording daily air temperature, thus in order to analyze very specific and local features in the spatial distribution of temperature values in the whole Latvia, a high quality spatial interpolation method is required. Until now inverse distance weighted interpolation was used for the interpolation of air temperature data at the meteorological and climatological service of the Latvian Environment, Geology and Meteorology Centre, and no additional topographical information was taken into account. This method made it almost impossible to reasonably assess the actual temperature gradient and distribution between the observation points. During this project a new interpolation method was applied and tested, considering auxiliary explanatory parameters. In order to spatially interpolate monthly mean temperature values, kriging with external drift was used over a grid of 1 km resolution, which contains parameters such as 5 km mean elevation, continentality, distance from the Gulf of Riga and the Baltic Sea, biggest lakes and rivers, population density. As the most appropriate of these parameters, based on a complex situation analysis, mean elevation and continentality was chosen. In order to validate interpolation results, several statistical indicators of the differences between predicted values and the values actually observed were used. Overall, the introduced model visually and statistically outperforms the previous interpolation method and provides a meteorologically reasonable result, taking into account factors that influence the spatial distribution of the monthly mean temperature.

  7. Air pollution and daily admissions for chronic obstructive pulmonary disease in 6 European cities: results from the APHEA project.

    PubMed

    Anderson, H R; Spix, C; Medina, S; Schouten, J P; Castellsague, J; Rossi, G; Zmirou, D; Touloumi, G; Wojtyniak, B; Ponka, A; Bacharova, L; Schwartz, J; Katsouyanni, K

    1997-05-01

    We investigated the short-term effects of air pollution on hospital admissions for chronic obstructive pulmonary disease (COPD) in Europe. As part of a European project (Air Pollution and Health, a European Approach (APHEA)), we analysed data from the cities of Amsterdam, Barcelona, London, Milan, Paris and Rotterdam, using a standardized approach to data eligibility and statistical analysis. Relative risks for daily COPD admissions were obtained using Poisson regression, controlling for: seasonal and other cycles; influenza epidemics; day of the week; temperature; humidity and autocorrelation. Summary effects for each pollutant were estimated as the mean of each city's regression coefficients weighted by the inverse of the variance, allowing for additional between-cities variance, as necessary. For all ages, the relative risks (95% confidence limits (95% CL)) for a 50 microg x m(-3) increase in daily mean level of pollutant (lagged 1-3 days) were (95% CL): sulphur dioxide 1.02 (0.98, 1.06); black smoke 1.04 (1.01, 1.06); total suspended particulates 1.02 (1.00, 1.05), nitrogen dioxide 1.02 (1.00, 1.05) and ozone (8 h) 1.04 (1.02, 1.07). The results confirm that air pollution is associated with daily admissions for chronic obstructive pulmonary disease in European cities with widely varying climates. The results for particles and ozone are broadly consistent with those from North America, though the coefficients for particles are substantially smaller. Overall, the evidence points to a causal relationship but the mechanisms of action, exposure response relationships and pollutant interactions remain unclear. PMID:9163648

  8. Short-term effects of air temperature on mortality and effect modification by air pollution in three cities of Bavaria, Germany: A time-series analysis

    EPA Science Inventory

    Background: Air temperature has been shown to be associated with mortality; however, only very few studies have been conducted in Germany. This study examined the association between daily air temperature and cause-specific mortality in Bavaria, Southern Germany. Moreover, we inv...

  9. Soil temperature synchronisation improves estimation of daily variation of ecosystem respiration in Sphagnum peatlands

    NASA Astrophysics Data System (ADS)

    D'Angelo, Benoît; Gogo, Sébastien; Le Moing, Franck; Jégou, Fabrice; Guimbaud, Christophe; Laggoun, Fatima

    2015-04-01

    comparison was performed using RMSE (goodness-of-fit) and AIC (goodness-of-fit and model complexity) as indicators to assess their relative quality. Both indicators showed a wide variation between sites. However, for each site differences between synchronised and non-synchronised data were larger than the differences between models equations. According to the AIC, models using synchronised data produced better ER estimations than models using non-synchronised data, at all depth. RMSE support this result for all sites for superficial peat layer. In some locations, mainly Frasne, synchronised data at 5 cm depth provide better estimation than air temperature, i.e. 25.0 vs. 26.4 for RMSE and 337.1 vs. 379.8 for AIC, respectively. The equation of the most appropriate model varies between sites, but the differences between them are small. At a daily scale, data synchronisation in Sphagnum peatlands improves ER estimation regardless of the model used. Moreover, to estimate ER flux, the use of synchronised data at 5 cm depth seems the most adequate method.

  10. Air pollution and daily clinic visits for migraine in a subtropical city: Taipei, Taiwan.

    PubMed

    Chiu, Hui-Fen; Yang, Chun-Yuh

    2015-01-01

    This study was undertaken to determine whether there was an association between air pollutant levels and daily clinic visits for migraine in Taipei, Taiwan. Daily clinic visits for migraine and ambient air pollution data for Taipei were obtained for the period 2006-2011. The relative risk of clinic visits for migraine was estimated using a case-crossover approach, controlling for weather variables, day of the week, seasonality, and long-term time trends. In the single-pollutant models, on warm days (>23°C) statistically significant positive associations were found for increased rate of migraine occurrence and levels of particulate matter (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3). On cool days (<23°C), all pollutants were significantly associated with increased migraine visits except CO and SO2. For the two-pollutant models, O3 and NO2 were significant for higher rate of migraine visits in combination with each of the other four pollutants on cool days. On warm days, CO remained statistically significant in all two-pollutant models. This study provides evidence that higher levels of ambient air pollutants enhance the risk of clinic visits for migraine. PMID:25965190

  11. Air pollution and daily clinic visits for headache in a subtropical city: Taipei, Taiwan.

    PubMed

    Chiu, Hui-Fen; Weng, Yi-Hao; Chiu, Ya-Wen; Yang, Chun-Yuh

    2015-02-01

    This study was undertaken to determine whether there was an association between air pollutant levels and daily clinic visits for headache in Taipei, Taiwan. Daily clinic visits for headache and ambient air pollution data for Taipei were obtained for the period from 2006-2011. The odds ratio of clinic visits for headache was estimated using a case-crossover approach, controlling for weather variables, day of the week, seasonality, and long-term time trends. In the single pollutant models, on warm days (≥23 °C) statistically significant positive associations were found for increased rate of headache occurrence and levels of particulate matter (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3). On cool days (<23 °C), all pollutants were significantly associated with increased headache visits except SO2. For the two-pollutant models, PM10, O3 and NO2 were significant for higher rate of headache visits in combination with each of the other four pollutants on cool days. On warm days, CO remained statistically significant in all two-pollutant models. This study provides evidence that higher levels of ambient air pollutants increase the risk of clinic visits for headache. PMID:25690001

  12. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  13. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  14. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  15. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  16. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  17. Ice surface temperatures: seasonal cycle and daily variability from in-situ and satellite observations

    NASA Astrophysics Data System (ADS)

    Madsen, Kristine S.; Dybkjær, Gorm; Høyer, Jacob L.; Nielsen-Englyst, Pia; Rasmussen, Till A. S.; Tonboe, Rasmus T.

    2016-04-01

    Surface temperature is an important parameter for understanding the climate system, including the Polar Regions. Yet, in-situ temperature measurements over ice- and snow covered regions are sparse and unevenly distributed, and atmospheric circulation models estimating surface temperature may have large biases. To change this picture, we will analyse the seasonal cycle and daily variability of in-situ and satellite observations, and give an example of how to utilize the data in a sea ice model. We have compiled a data set of in-situ surface and 2 m air temperature observations over land ice, snow, sea ice, and from the marginal ice zone. 2523 time series of varying length from 14 data providers, with a total of more than 13 million observations, have been quality controlled and gathered in a uniform format. An overview of this data set will be presented. In addition, IST satellite observations have been processed from the Metop/AVHRR sensor and a merged analysis product has been constructed based upon the Metop/AVHRR, IASI and Modis IST observations. The satellite and in-situ observations of IST are analysed in parallel, to characterize the IST variability on diurnal and seasonal scales and its spatial patterns. The in-situ data are used to estimate sampling effects within the satellite observations and the good coverage of the satellite observations are used to complete the geographical variability. As an example of the application of satellite IST data, results will be shown from a coupled HYCOM-CICE ocean and sea ice model run, where the IST products have been ingested. The impact of using IST in models will be assessed. This work is a part of the EUSTACE project under Horizon 2020, where the ice surface temperatures form an important piece of the puzzle of creating an observationally based record of surface temperatures for all corners of the Earth, and of the ESA GlobTemperature project which aims at applying surface temperatures in models in order to

  18. Air pollution and daily mortality in Erfurt, east Germany, 1980-1989.

    PubMed Central

    Spix, C; Heinrich, J; Dockery, D; Schwartz, J; Völksch, G; Schwinkowski, K; Cöllen, C; Wichmann, H E

    1993-01-01

    In Erfurt, Germany, unfavorable geography and emissions from coal burning lead to very high ambient pollution (up to about 4000 micrograms/m3 SO2 in 1980-89). To assess possible health effects of these exposures, total daily mortality was obtained for this same period. A multivariate model was fitted, including corrections for long-term fluctuations, influenza epidemics, and meterology, before analyzing the effect of pollution. The best fit for pollution was obtained for log (SO2 daily mean) with a lag of 2 days. Daily mortality increased by 10% for an increase in SO2 from 23 to 929 micrograms/m3 (5% quantile to 95% quantile). A harvesting effect (fewer people die on a given day if more deaths occurred in the last 15 days) may modify this by +/- 2%. The effect for particulates (SP, 1988-89 only) was stronger than the effect of SO2. Log SP (daily mean) increasing from 15 micrograms/m3 to 331 micrograms/m3 (5% quantile to 95% quantile) was associated with a 22% increase in mortality. Depending on harvesting, the observable effect may lie between 14% and 27%. There is no indication of a threshold or synergism. The effects of air pollution are smaller than the effects of influenza epidemics and are of the same size as meterologic effects. The results for the lower end of the dose range are in agreement with linear models fitted in studies of moderate air pollution and episode studies. Images Figure 1. Figure 2. PMID:8137781

  19. Report: landfill alternative daily cover: conserving air space and reducing landfill operating cost.

    PubMed

    Haughey, R D

    2001-02-01

    Title 40, Part 258 of the Code of Federal Regulations, Solid Waste Disposal Facility Criteria, commonly referred to as Subtitle D, became effective on October 9, 1993. It establishes minimum criteria for solid waste disposal facility siting, design, operations, groundwater monitoring and corrective action, and closure and postclosure maintenance, while providing EPA-approved state solid waste regulatory programs flexibility in implementing the criteria. Section 258.21(a) [40 CFR 258.21(a)] requires owners or operators of municipal solid waste landfill (MSWLF) units to cover disposed solid waste with 30cm of earthen material at the end of the operating day, or at more frequent intervals, if necessary, to control disease vectors, fires, odours, blowing litter, and scavenging. This requirement is consistent with already existing solid waste facility regulations in many states. For many MSWLFs, applying daily cover requires the importation of soil which increases landfill operating costs. Daily cover also uses valuable landfill air space, reducing potential operating revenue and the landfill's operating life. 40 CFR 258.21 (b) allows the director of an approved state to approve alternative materials of an alternative thickness if the owner or operator demonstrates that the alternative material and thickness will control disease vectors, fires, odours, blowing litter, and scavenging without presenting a threat to human health and the environment. Many different types of alternative daily cover (ADC) are currently being used, including geosynthetic tarps, foams, garden waste, and auto shredder fluff. These materials use less air space than soil and can reduce operating costs. This paper discusses the variety of ADCs currently being used around the country and their applicability to different climates and operating conditions, highlighting the more unusual types of ADC, the types of demonstrations necessary to obtain approval of ADC, and the impact on landfill air space

  20. Combined impacts of land cover changes and large-scale forcing on Southern California summer daily maximum temperatures

    NASA Astrophysics Data System (ADS)

    Sequera, Pedro; González, Jorge E.; McDonald, Kyle; Bornstein, Robert; Comarazamy, Daniel

    2015-09-01

    California near-surface air temperatures are influenced by large-scale, regional and local factors. In that sense, a numerical model experiment was carried out to analyze the contribution of large-scale (changes in atmospheric and oceanic conditions) and regional (increased urbanization) factors on the observed California South Coast Air Basin regional summer daily maximum temperature warming pattern from 1950 to 2013. The simulations were performed with past (1950-1954) and present (2009-2013) land cover and climate conditions. The past land cover was derived from historical digital maps, and the present land cover was updated with high-resolution airborne remote sensing data. Results show that both factors contribute to the total change in daily maximum temperatures. Changes due to large-scale climate conditions dominate in coastal (due to warming sea surface temperatures) and nonurban regions, while changes due to urbanization have an impact mainly in urban areas, especially inland where large-scale warming weakens. Increased urbanization has also reduced sea-breeze intensity due to changes in surface roughness. The model was able to reproduce the regional observed warming pattern, as it incorporates urban heat island effects, otherwise underestimated by large-scale climate change only.

  1. Application of Markov chain model to daily maximum temperature for thermal comfort in Malaysia

    SciTech Connect

    Nordin, Muhamad Asyraf bin Che; Hassan, Husna

    2015-10-22

    The Markov chain’s first order principle has been widely used to model various meteorological fields, for prediction purposes. In this study, a 14-year (2000-2013) data of daily maximum temperatures in Bayan Lepas were used. Earlier studies showed that the outdoor thermal comfort range based on physiologically equivalent temperature (PET) index in Malaysia is less than 34°C, thus the data obtained were classified into two state: normal state (within thermal comfort range) and hot state (above thermal comfort range). The long-run results show the probability of daily temperature exceed TCR will be only 2.2%. On the other hand, the probability daily temperature within TCR will be 97.8%.

  2. Spatial variation of deterministic chaos in mean daily temperature and rainfall over Nigeria

    NASA Astrophysics Data System (ADS)

    Fuwape, I. A.; Ogunjo, S. T.; Oluyamo, S. S.; Rabiu, A. B.

    2016-07-01

    Daily rainfall and temperature data from 47 locations across Nigeria for the 36-year period 1979-2014 were treated to time series analysis technique to investigate some nonlinear trends in rainfall and temperature data. Some quantifiers such as Lyapunov exponents, correlation dimension, and entropy were obtained for the various locations. Positive Lyapunov exponents were obtained for the time series of mean daily rainfall for all locations in the southern part of Nigeria while negative Lyapunov exponents were obtained for all locations in the Northern part of Nigeria. The mean daily temperature had positive Lyapunov exponent values (0.35-1.6) for all the locations. Attempts were made in reconstructing the phase space of time series of rainfall and temperature.

  3. Modeling daily soil temperature using data-driven models and spatial distribution

    NASA Astrophysics Data System (ADS)

    Kim, Sungwon; Singh, Vijay P.

    2014-11-01

    The objective of this study is to develop data-driven models, including multilayer perceptron (MLP) and adaptive neuro-fuzzy inference system (ANFIS), for estimating daily soil temperature at Champaign and Springfield stations in Illinois. The best input combinations (one, two, and three inputs) can be identified using MLP. The ANFIS is used to estimate daily soil temperature using the best input combinations (one, two, and three inputs). From the performance evaluation and scatter diagrams of MLP and ANFIS models, MLP 3 produces the best results for both stations at different depths (10 and 20 cm), and ANFIS 3 produces the best results for both stations at two different depths except for Champaign station at the 20 cm depth. Results of MLP are better than those of ANFIS for both stations at different depths. The MLP-based spatial distribution is used to estimate daily soil temperature using the best input combinations (one, two, and three inputs) at different depths below the ground. The MLP-based spatial distribution estimates daily soil temperature with high accuracy, but the results of MLP and ANFIS are better than those of the MLP-based spatial distribution for both stations at different depths. Data-driven models can estimate daily soil temperature successfully in this study.

  4. Short-term exposure to traffic-related air pollution and daily mortality in London, UK

    PubMed Central

    Atkinson, Richard W; Analitis, Antonis; Samoli, Evangelia; Fuller, Gary W; Green, David C; Mudway, Ian S; Anderson, Hugh R; Kelly, Frank J

    2016-01-01

    Epidemiological studies have linked daily concentrations of urban air pollution to mortality, but few have investigated specific traffic sources that can inform abatement policies. We assembled a database of >100 daily, measured and modelled pollutant concentrations characterizing air pollution in London between 2011 and 2012. Based on the analyses of temporal patterns and correlations between the metrics, knowledge of local emission sources and reference to the existing literature, we selected, a priori, markers of traffic pollution: oxides of nitrogen (general traffic); elemental and black carbon (EC/BC) (diesel exhaust); carbon monoxide (petrol exhaust); copper (tyre), zinc (brake) and aluminium (mineral dust). Poisson regression accounting for seasonality and meteorology was used to estimate the percentage change in risk of death associated with an interquartile increment of each pollutant. Associations were generally small with confidence intervals that spanned 0% and tended to be negative for cardiovascular mortality and positive for respiratory mortality. The strongest positive associations were for EC and BC adjusted for particle mass and respiratory mortality, 2.66% (95% confidence interval: 0.11, 5.28) and 2.72% (0.09, 5.42) per 0.8 and 1.0 μg/m3, respectively. These associations were robust to adjustment for other traffic metrics and regional pollutants, suggesting a degree of specificity with respiratory mortality and diesel exhaust containing EC/BC. PMID:26464095

  5. Daily diaries of respiratory symptoms and air pollution: Methodological issues and results

    SciTech Connect

    Schwartz, J. ); Wypij, D.; Dockery D.; Ware, J.; Spengler, J.; Ferris, B. Jr. ); Zeger, S. )

    1991-01-01

    Daily diaries of respiratory symptoms are a powerful technique for detecting acute effects of air pollution exposure. While conceptually simple, these diary studies can be difficult to analyze. The daily symptom rates are highly correlated, even after adjustment for covariates, and this lack of independence must be considered in the analysis. Possible approaches include the use of incidence instead of prevalence rates and autoregressive models. Heterogeneity among subjects also induces dependencies in the data. These can be addressed by stratification and by two-stage models such as those developed by Korn and Whittemore. These approaches have been applied to two data sets: a cohort of school children participating in the Harvard Six Cities Study and a cohort of student nurses in Los Angeles. Both data sets provide evidence of autocorrelation and heterogeneity. Controlling for autocorrelation corrects the precision estimates, and because diary data are usually positively autocorrelated, this leads to larger variance estimates. Controlling for heterogeneity among subjects appears to increase the effect sizes for air pollution exposure. Preliminary results indicate associations between sulfur dioxide and cough incidence in children and between nitrogen dioxide and phlegm incidence in student nurses.

  6. Short-term exposure to traffic-related air pollution and daily mortality in London, UK.

    PubMed

    Atkinson, Richard W; Analitis, Antonis; Samoli, Evangelia; Fuller, Gary W; Green, David C; Mudway, Ian S; Anderson, Hugh R; Kelly, Frank J

    2016-01-01

    Epidemiological studies have linked daily concentrations of urban air pollution to mortality, but few have investigated specific traffic sources that can inform abatement policies. We assembled a database of >100 daily, measured and modelled pollutant concentrations characterizing air pollution in London between 2011 and 2012. Based on the analyses of temporal patterns and correlations between the metrics, knowledge of local emission sources and reference to the existing literature, we selected, a priori, markers of traffic pollution: oxides of nitrogen (general traffic); elemental and black carbon (EC/BC) (diesel exhaust); carbon monoxide (petrol exhaust); copper (tyre), zinc (brake) and aluminium (mineral dust). Poisson regression accounting for seasonality and meteorology was used to estimate the percentage change in risk of death associated with an interquartile increment of each pollutant. Associations were generally small with confidence intervals that spanned 0% and tended to be negative for cardiovascular mortality and positive for respiratory mortality. The strongest positive associations were for EC and BC adjusted for particle mass and respiratory mortality, 2.66% (95% confidence interval: 0.11, 5.28) and 2.72% (0.09, 5.42) per 0.8 and 1.0 μg/m(3), respectively. These associations were robust to adjustment for other traffic metrics and regional pollutants, suggesting a degree of specificity with respiratory mortality and diesel exhaust containing EC/BC. PMID:26464095

  7. Midlatitude daily summer temperatures reshaped by soil moisture under climate change

    NASA Astrophysics Data System (ADS)

    Douville, H.; Colin, J.; Krug, E.; Cattiaux, J.; Thao, S.

    2016-01-01

    Projected changes in daily temperatures are highly model dependent, particularly in the summer midlatitudes where the spread in the response of heat waves represents a major obstacle for the design of adaptation strategies. Understanding the main reasons for such uncertainties is obviously a research priority. Here we use a set of global atmospheric simulations to assess the contribution of the soil moisture feedback to changes in the full distribution of daily maximum summer temperatures projected in the late 21st century. Results show that this feedback (i) accounts for up to one third of the mean increase in daily maximum temperatures, (ii) dominates changes in the shape of the distribution, and (iii) explains about half of the increase in the severity of heat waves over densely populated areas of the northern midlatitudes. A dedicated intercomparison project is therefore needed to assess and constrain land surface feedbacks in the new generation Earth System Models.

  8. Attribution of precipitation changes on ground-air temperature offset: Granger causality analysis

    NASA Astrophysics Data System (ADS)

    Cermak, Vladimir; Bodri, Louise

    2016-06-01

    This work examines the causal relationship between the value of the ground-air temperature offset and the precipitation changes for monitored 5-min data series together with their hourly and daily averages obtained at the Sporilov Geophysical Observatory (Prague). Shallow subsurface soil temperatures were monitored under four different land cover types (bare soil, sand, short-cut grass and asphalt). The ground surface temperature (GST) and surface air temperature (SAT) offset, ΔT(GST-SAT), is defined as the difference between the temperature measured at the depth of 2 cm below the surface and the air temperature measured at 5 cm above the surface. The results of the Granger causality test did not reveal any evidence of Granger causality for precipitation to ground-air temperature offsets on the daily scale of aggregation except for the asphalt pavement. On the contrary, a strong evidence of Granger causality for precipitation to the ground-air temperature offsets was found on the hourly scale of aggregation for all land cover types except for the sand surface cover. All results are sensitive to the lag choice of the autoregressive model. On the whole, obtained results contain valuable information on the delay time of ΔT(GST-SAT) caused by the rainfall events and confirmed the importance of using autoregressive models to understand the ground-air temperature relationship.

  9. Sensitivity of New England Stream Temperatures to Air Temperature and Precipitation Under Projected Climate

    NASA Astrophysics Data System (ADS)

    Huang, T.; Samal, N. R.; Wollheim, W. M.; Stewart, R. J.; Zuidema, S.; Prousevitch, A.; Glidden, S.

    2015-12-01

    The thermal response of streams and rivers to changing climate will influence aquatic habitat. This study examines the impact that changing climate has on stream temperatures in the Merrimack River, NH/MA USA using the Framework for Aquatic Modeling in the Earth System (FrAMES), a spatially distributed river network model driven by air temperature, air humidity, wind speed, precipitation, and solar radiation. Streamflow and water temperatures are simulated at a 45-second (latitude x longitude) river grid resolution for 135 years under historical and projected climate variability. Contemporary streamflow (Nash-Sutcliffe Coefficient = 0.77) and river temperatures (Nash-Sutcliffe Coefficient = 0.89) matched at downstream USGS gauge data well. A suite of model runs were made in combination with uniformly increased daily summer air temperatures by 2oC, 4 oC and 6 oC as well as adjusted precipitation by -40%, -30%, -20%, -10% and +10% as a sensitivity analysis to explore a broad range of potential future climates. We analyzed the summer stream temperatures and the percent of river length unsuitable for cold to warm water fish habitats. Impacts are greatest in large rivers due to the accumulation of river temperature warming throughout the entire river network. Cold water fish (i.e. brook trout) are most strongly affected while, warm water fish (i.e. largemouth bass) aren't expected to be impacted. The changes in stream temperatures under various potential climate scenarios will provide a better understanding of the specific impact that air temperature and precipitation have on aquatic thermal regimes and habitat.

  10. Statistical downscaling of sub-daily (6-hour) temperature in Romania, by means of artificial neural networks

    NASA Astrophysics Data System (ADS)

    Birsan, Marius-Victor; Dumitrescu, Alexandru; Cǎrbunaru, Felicia

    2016-04-01

    The role of statistical downscaling is to model the relationship between large-scale atmospheric circulation and climatic variables on a regional and sub-regional scale, making use of the predictions of future circulation generated by General Circulation Models (GCMs) in order to capture the effects of climate change on smaller areas. The study presents a statistical downscaling model based on a neural network-based approach, by means of multi-layer perceptron networks. Sub-daily temperature data series from 81 meteorological stations over Romania, with full data records are used as predictands. As large-scale predictor, the NCEP/NCAD air temperature data at 850 hPa over the domain 20-30E / 40-50N was used, at a spatial resolution of 2.5×2.5 degrees. The period 1961-1990 was used for calibration, while the validation was realized over the 1991-2010 interval. Further, in order to estimate future changes in air temperature for 2021-2050 and 2071-2100, air temperature data at 850 hPa corresponding to the IPCC A1B scenario was extracted from the CNCM33 model (Meteo-France) and used as predictor. This work has been realized within the research project "Changes in climate extremes and associated impact in hydrological events in Romania" (CLIMHYDEX), code PN II-ID-2011-2-0073, financed by the Romanian Executive Agency for Higher Education Research, Development and Innovation Funding (UEFISCDI).

  11. Estimation of Daily Reference Evapotranspiration using Temperature Based Models and Remotely Sensed Data over Indian River Basin

    NASA Astrophysics Data System (ADS)

    R, Shwetha H.; D, Nagesh Kumar

    2015-04-01

    Reference evapotranspiration (ETo) is the most significant component of the hydrological budget. Accurate quantification of ETo is vital for proper water management, efficient agricultural activities, irrigation planning and irrigation scheduling. FAO Penman Montieth (FAO-PM) is the widely accepted and used method for the ETo estimation under all climatic conditions, but needs numerous inputs which are difficult to acquire in developing countries. In such conditions, temperature based models such as Hargreaves-Samani (HS) equation and Penman Montieth temperature (PMT) can be used, where only maximum and minimum temperatures are required. Spatial interpolation of meteorological parameters to calculate spatial variation of ETo results in inaccurate estimations at lowly densed weather stations. Hence, there is a necessity of simple and easy method to estimate spatial distribution of ETo. In this regard, remotely sensed data provides viable alternative approach to obtain continuous spatio-temporal ETo. In this study, we used temperature based ETo models with remotely sensed LST data to estimate spatio-temporal variation of ETo. Day and night LST (MYD11A1) data of the year 2010 for the Cauvery basin on a daily basis were obtained from MODIS sensor of Aqua satellite. Firstly, day and night land surface temperatures (LST) with HS and PMT methods were applied to estimate ETo. Secondly, maximum and minimum air temperatures were estimated from day and night LST respectively using simple linear regression and these air temperature data were used to estimate ETo. Estimated results were validated with the ETo calculated using meteorological data obtained from Automatic Weather Stations (AWS) by applying standard FAO-PM. The preliminary results revealed that, HS method with LST overestimated ETo in the study region. Statistical analysis showed PMT method with both LST and air temperatures performed better than the HS method. These two temperature based methods are often used for

  12. Daily Mean Temperature Affects Urolithiasis Presentation in Seoul: a Time-series Analysis

    PubMed Central

    2016-01-01

    This study aimed to investigate the overall cumulative exposure-response and the lag response relationships between daily temperature and urolithiasis presentation in Seoul. Using a time-series design and distributing lag nonlinear methods, we estimated the relative risk (RR) of urolithiasis presentation associated with mean daily temperature, including the cumulative RR for a 20 days period, and RR for individual daily lag through 20 days. We analyzed data from 14,518 patients of 4 hospitals emergency department who sought medical evaluation or treatment of urolithiasis from 2005-2013 in Seoul. RR was estimated according to sex and age. Associations between mean daily temperature and urolithiasis presentation were not monotonic. Furthermore, there was variation in the exposure-response curve shapes and the strength of association at different temperatures, although in most cases RRs increased for temperatures above the 13°C reference value. The RRs for urolothiasis at 29°C vs. 13°C were 2.54 in all patients (95% confidence interval [CI]: 1.67-3.87), 2.59 in male (95% CI, 1.56-4.32), 2.42 in female (95% CI, 1.15-5.07), 3.83 in male less than 40 years old (95% CI, 1.78-8.26), and 2.47 in male between 40 and 60 years old (95% CI, 1.15-5.34). Consistent trends of increasing RR of urolithiasis presentation were observed within 5 days of high temperatures across all groups. Urolithiasis presentation increased with high temperature with higher daily mean temperatures, with the strongest associations estimated for lags of only a few days, in Seoul, a metropolitan city in Korea. PMID:27134497

  13. Daily Temperature Fluctuations Alter Interactions between Closely Related Species of Marine Nematodes.

    PubMed

    De Meester, Nele; Dos Santos, Giovanni A P; Rigaux, Annelien; Valdes, Yirina; Derycke, Sofie; Moens, Tom

    2015-01-01

    In addition to an increase in mean temperature, climate change models predict decreasing amplitudes of daily temperature fluctuations. In temperate regions, where daily and seasonal fluctuations are prominent, such decreases in daily temperature fluctuations can have a pronounced effect on the fitness of species and on the outcome of species interactions. In this study, the effect of a temperature regime with daily fluctuations versus a constant temperature on the fitness and interspecific interactions of three cryptic species of the marine nematode species complex of Litoditis marina (Pm I, Pm III and Pm IV) were investigated. In a lab experiment, different combinations of species (monospecific treatment: Pm I and Pm IV and Pm III alone; two-species treatment: Pm I + Pm IV; three-species treatment: Pm I + Pm IV + Pm III) were subjected to two different temperature regimes: one constant and one fluctuating temperature. Our results showed that fluctuating temperature had minor or no effects on the population fitness of the three species in monocultures. In contrast, interspecific interactions clearly influenced the fitness of all three species, both positively and negatively. Temperature regime did have a substantial effect on the interactions between the species. In the two-species treatment, temperature regime altered the interaction from a sort of mutualism to commensalism. In addition, the strength of the interspecific interactions changed depending on the temperature regime in the three-species treatment. This experiment confirms that interactions between the species can change depending on the abiotic environment; these results show that it is important to incorporate the effect of fluctuations on interspecific interactions to predict the effect of climate change on biodiversity. PMID:26147103

  14. How do GCMs represent daily maximum and minimum temperatures in La Plata Basin?

    NASA Astrophysics Data System (ADS)

    Bettolli, M. L.; Penalba, O. C.; Krieger, P. A.

    2013-05-01

    This work focuses on southern La Plata Basin region which is one of the most important agriculture and hydropower producing regions worldwide. Extreme climate events such as cold and heat waves and frost events have a significant socio-economic impact. It is a big challenge for global climate models (GCMs) to simulate regional patterns, temporal variations and distribution of temperature in a daily basis. Taking into account the present and future relevance of the region for the economy of the countries involved, it is very important to analyze maximum and minimum temperatures for model evaluation and development. This kind of study is aslo the basis for a great deal of the statistical downscaling methods in a climate change context. The aim of this study is to analyze the ability of the GCMs to reproduce the observed daily maximum and minimum temperatures in the southern La Plata Basin region. To this end, daily fields of maximum and minimum temperatures from a set of 15 GCMs were used. The outputs corresponding to the historical experiment for the reference period 1979-1999 were obtained from the WCRP CMIP5 (World Climate Research Programme Coupled Model Intercomparison Project Phase 5). In order to compare daily temperature values in the southern La Plata Basin region as generated by GCMs to those derived from observations, daily maximum and minimum temperatures were used from the gridded dataset generated by the Claris LPB Project ("A Europe-South America Network for Climate Change Assessment and Impact Studies in La Plata Basin"). Additionally, reference station data was included in the study. The analysis was focused on austral winter (June, July, August) and summer (December, January, February). The study was carried out by analyzing the performance of the 15 GCMs , as well as their ensemble mean, in simulating the probability distribution function (pdf) of maximum and minimum temperatures which include mean values, variability, skewness, et c, and regional

  15. Daily ambient temperature and renal colic incidence in Guangzhou, China: a time-series analysis.

    PubMed

    Yang, Changyuan; Chen, Xinyu; Chen, Renjie; Cai, Jing; Meng, Xia; Wan, Yue; Kan, Haidong

    2016-08-01

    Few previous studies have examined the association between temperature and renal colic in developing regions, especially in China, the largest developing country in the world. We collected daily emergency ambulance dispatches (EADs) for renal colic from Guangzhou Emergency Center from 1 January 2008 to 31 December 2012. We used a distributed-lag nonlinear model in addition to the over-dispersed generalized additive model to investigate the association between daily ambient temperature and renal colic incidence after controlling for seasonality, humidity, public holidays, and day of the week. We identified 3158 EADs for renal colic during the study period. This exposure-response curve was almost flat when the temperature was low and moderate and elevated when the temperature increased over 21 °C. For heat-related effects, the significant risk occurred on the concurrent day and diminished until lag day 7. The cumulative relative risk of hot temperatures (90th percentile) and extremely hot temperatures (99th percentile) over lag days 0-7 was 1.92 (95 % confidence interval, 1.21, 3.05) and 2.45 (95 % confidence interval, 1.50, 3.99) compared with the reference temperature of 21 °C. This time-series analysis in Guangzhou, China, suggested a nonlinear and lagged association between high outdoor temperatures and daily EADs for renal colic. Our findings might have important public health significance to prevent renal colic. PMID:26581758

  16. Daily ambient temperature and renal colic incidence in Guangzhou, China: a time-series analysis

    NASA Astrophysics Data System (ADS)

    Yang, Changyuan; Chen, Xinyu; Chen, Renjie; Cai, Jing; Meng, Xia; Wan, Yue; Kan, Haidong

    2015-11-01

    Few previous studies have examined the association between temperature and renal colic in developing regions, especially in China, the largest developing country in the world. We collected daily emergency ambulance dispatches (EADs) for renal colic from Guangzhou Emergency Center from 1 January 2008 to 31 December 2012. We used a distributed-lag nonlinear model in addition to the over-dispersed generalized additive model to investigate the association between daily ambient temperature and renal colic incidence after controlling for seasonality, humidity, public holidays, and day of the week. We identified 3158 EADs for renal colic during the study period. This exposure-response curve was almost flat when the temperature was low and moderate and elevated when the temperature increased over 21 °C. For heat-related effects, the significant risk occurred on the concurrent day and diminished until lag day 7. The cumulative relative risk of hot temperatures (90th percentile) and extremely hot temperatures (99th percentile) over lag days 0-7 was 1.92 (95 % confidence interval, 1.21, 3.05) and 2.45 (95 % confidence interval, 1.50, 3.99) compared with the reference temperature of 21 °C. This time-series analysis in Guangzhou, China, suggested a nonlinear and lagged association between high outdoor temperatures and daily EADs for renal colic. Our findings might have important public health significance to prevent renal colic.

  17. Daily ambient temperature and renal colic incidence in Guangzhou, China: a time-series analysis

    NASA Astrophysics Data System (ADS)

    Yang, Changyuan; Chen, Xinyu; Chen, Renjie; Cai, Jing; Meng, Xia; Wan, Yue; Kan, Haidong

    2016-08-01

    Few previous studies have examined the association between temperature and renal colic in developing regions, especially in China, the largest developing country in the world. We collected daily emergency ambulance dispatches (EADs) for renal colic from Guangzhou Emergency Center from 1 January 2008 to 31 December 2012. We used a distributed-lag nonlinear model in addition to the over-dispersed generalized additive model to investigate the association between daily ambient temperature and renal colic incidence after controlling for seasonality, humidity, public holidays, and day of the week. We identified 3158 EADs for renal colic during the study period. This exposure-response curve was almost flat when the temperature was low and moderate and elevated when the temperature increased over 21 °C. For heat-related effects, the significant risk occurred on the concurrent day and diminished until lag day 7. The cumulative relative risk of hot temperatures (90th percentile) and extremely hot temperatures (99th percentile) over lag days 0-7 was 1.92 (95 % confidence interval, 1.21, 3.05) and 2.45 (95 % confidence interval, 1.50, 3.99) compared with the reference temperature of 21 °C. This time-series analysis in Guangzhou, China, suggested a nonlinear and lagged association between high outdoor temperatures and daily EADs for renal colic. Our findings might have important public health significance to prevent renal colic.

  18. Daily mortality and air pollution in Santa Clara County, California: 1989-1996.

    PubMed Central

    Fairley, D

    1999-01-01

    Since the last revision of the national particulate standards, there has been a profusion of epidemiologic research showing associations between particulates and health effects--mortality in particular. Supported by this research, the U.S. Environmental Protection Agency promulgated a national standard for particulate matter [less than/equal to] 2.5 microm in aerodynamic diameter (PM(2.5)). Nevertheless, the San Francisco Bay Area of California may meet this new standard. This study investigates the relationship between daily mortality and air pollution in Santa Clara County (a Bay Area county) using techniques similar to those utilized in earlier epidemiologic studies. Statistically significant associations persist in the early 1990s, when the Bay Area met national air pollution standards for every criteria pollutant. Of the various pollutants, the strongest associations occur with particulates, especially ammonium nitrate and PM(2.5). The continuing presence of associations between mortality and air pollutants calls into question the adequacy of national standards for protecting public health. PMID:10417361

  19. Trends in Surface Temperature from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Aumann, H. H.

    2014-12-01

    To address possible causes of the current hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We find a monotonic positive trend for the land temperature but not for the ocean temperature. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The results are compared with the model studies. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  20. Influence of climate on malaria transmission depends on daily temperature variation.

    PubMed

    Paaijmans, Krijn P; Blanford, Simon; Bell, Andrew S; Blanford, Justine I; Read, Andrew F; Thomas, Matthew B

    2010-08-24

    Malaria transmission is strongly influenced by environmental temperature, but the biological drivers remain poorly quantified. Most studies analyzing malaria-temperature relations, including those investigating malaria risk and the possible impacts of climate change, are based solely on mean temperatures and extrapolate from functions determined under unrealistic laboratory conditions. Here, we present empirical evidence to show that, in addition to mean temperatures, daily fluctuations in temperature affect parasite infection, the rate of parasite development, and the essential elements of mosquito biology that combine to determine malaria transmission intensity. In general, we find that, compared with rates at equivalent constant mean temperatures, temperature fluctuation around low mean temperatures acts to speed up rate processes, whereas fluctuation around high mean temperatures acts to slow processes down. At the extremes (conditions representative of the fringes of malaria transmission, where range expansions or contractions will occur), fluctuation makes transmission possible at lower mean temperatures than currently predicted and can potentially block transmission at higher mean temperatures. If we are to optimize control efforts and develop appropriate adaptation or mitigation strategies for future climates, we need to incorporate into predictive models the effects of daily temperature variation and how that variation is altered by climate change. PMID:20696913

  1. Observed Trends in Indices of Daily Precipitation and Temperature Extremes in Rio de Janeiro State (brazil)

    NASA Astrophysics Data System (ADS)

    Silva, W. L.; Dereczynski, C. P.; Cavalcanti, I. F.

    2013-05-01

    One of the main concerns of contemporary society regarding prevailing climate change is related to possible changes in the frequency and intensity of extreme events. Strong heat and cold waves, droughts, severe floods, and other climatic extremes have been of great interest to researchers because of its huge impact on the environment and population, causing high monetary damages and, in some cases, loss of life. The frequency and intensity of extreme events associated with precipitation and air temperature have been increased in several regions of the planet in recent years. These changes produce serious impacts on human activities such as agriculture, health, urban planning and development and management of water resources. In this paper, we analyze the trends in indices of climatic extremes related to daily precipitation and maximum and minimum temperatures at 22 meteorological stations of the National Institute of Meteorology (INMET) in Rio de Janeiro State (Brazil) in the last 50 years. The present trends are evaluated using the software RClimdex (Canadian Meteorological Service) and are also subjected to statistical tests. Preliminary results indicate that periods of drought are getting longer in Rio de Janeiro State, except in the North/Northwest area. In "Vale do Paraíba", "Região Serrana" and "Região dos Lagos" the increase of consecutive dry days is statistically significant. However, we also detected an increase in the total annual rainfall all over the State (taxes varying from +2 to +8 mm/year), which are statistically significant at "Região Serrana". Moreover, the intensity of heavy rainfall is also growing in most of Rio de Janeiro, except in "Costa Verde". The trends of heavy rainfall indices show significant increase in the "Metropolitan Region" and in "Região Serrana", factor that increases the vulnerability to natural disasters in these areas. With respect to temperature, it is found that the frequency of hot (cold) days and nights is

  2. Temperature and daily mortality in Suzhou, China: a time series analysis.

    PubMed

    Wang, Cuicui; Chen, Renjie; Kuang, Xingya; Duan, Xiaoli; Kan, Haidong

    2014-01-01

    The evidence concerning the association between ambient temperature and mortality is limited in developing countries, especially in China. We assessed the effects of temperature on daily mortality between 2005 and 2008 in Suzhou, China. A Poisson regression model combined with a distributed-lag nonlinear model was used to examine the association between temperature and daily mortality. We investigated effect modification by individual characteristics, including gender, age and educational attainment. We found significant non-linear effects of temperature on total and cardiovascular mortality. Heat effects were immediate and lasted for 1-2 days, whereas cold effects persisted for 10 days. The relative risk of total morality associated with extreme cold temperature (1st percentile of temperature, -0.3 °C) over lags 0-14 days was 1.75 [95% confidence interval (CI): 1.43, 2.14)], compared with the minimum mortality temperature (26 °C). The relative risk associated with extremely hot temperature (99th percentile of temperature, 32.6 °C) over lags 0-3 days was 1.43 (95% CI: 1.31, 1.56). We did not observe significant modifying effect by gender, age or educational level. This study showed that exposure to both hot and cold temperatures was associated with increased mortality in Suzhou. Our findings may have implications for developing intervention strategies for extreme cold and hot temperatures. PMID:23994732

  3. Temporal and spatial assessments of minimum air temperature using satellite surface temperature measurements in Massachusetts, USA

    PubMed Central

    Kloog, Itai; Chudnovsky, Alexandra; Koutrakis, Petros; Schwartz, Joel

    2015-01-01

    Although meteorological stations provide accurate air temperature observations, their spatial coverage is limited and thus often insufficient for epidemiological studies. Satellite data expand spatial coverage, enhancing our ability to estimate near surface air temperature (Ta). However, the derivation of Ta from surface temperature (Ts) measured by satellites is far from being straightforward. In this study, we present a novel approach that incorporates land use regression, meteorological variables and spatial smoothing to first calibrate between Ts and Ta on a daily basis and then predict Ta for days when satellite Ts data were not available. We applied mixed regression models with daily random slopes to calibrate Moderate Resolution Imaging Spectroradiometer (MODIS) Ts data with monitored Ta measurements for 2003. Then, we used a generalized additive mixed model with spatial smoothing to estimate Ta in days with missing Ts. Out-of-sample tenfold cross-validation was used to quantify the accuracy of our predictions. Our model performance was excellent for both days with available Ts and days without Ts observations (mean out-of-sample R2=0.946 and R2=0.941 respectively). Furthermore, based on the high quality predictions we investigated the spatial patterns of Ta within the study domain as they relate to urban vs. non-urban land uses. PMID:22721687

  4. Evaluation of the Global Land Data Assimilation System (GLDAS) air temperature data products

    NASA Astrophysics Data System (ADS)

    Ji, L.; Senay, G. B.; Verdin, J. P.

    2014-12-01

    There is a high demand for agro-hydrologic models to use gridded surface air temperature data as the model input for estimating regional and global water budget and cycle. The Global Land Data Assimilation System (GLDAS) developed by combining simulation models with observations provides a long-term gridded meteorological dataset at the global coverage. However, the GLDAS air temperature products have not been comprehensively evaluated, although the accuracy of the products was assessed in limited areas. In this study, we compared the daily 0.25° resolution GLDAS air temperature data with two reference datasets: (1) 1-km resolution gridded Daymet data (2002 and 2010) for the Conterminous United States, and (2) global meteorological observations (2000 - 2011) archived from the Global Historical Climatology Network (GHCN). The comparison of the GLDAS datasets with the GHCN datasets including 13,511 weather stations indicates a fairly high accuracy of the GLDAS data for daily maximum temperature [bias is 1.2 C°, root mean square error (RMSE) is 3.9 C°, and R2 is 0.92] and daily minimum temperature (bias is -1.4 C°, RMSE is 5.4 C°, and R2 is 0.82). The quality of the GLDAS air temperature data, however, is not always consistent in different regions of the world; for example, some areas in Africa and South America show relatively low accurate estimates. Spatial and temporal analyses reveal a high agreement between GLDAS and Daymet daily air temperature datasets, although spatial details in high mountainous areas are not sufficiently estimated by the GLDAS data. Our evaluation of the GLDAS data demonstrates that the air temperature estimates are generally accurate, but cautions should be taken when the data are used in mountainous areas or places with sparse weather stations.

  5. Is Air Temperature Enough to Predict Lake Surface Temperature?

    NASA Astrophysics Data System (ADS)

    Piccolroaz, S.; Toffolon, M.; Majone, B.

    2014-12-01

    Lake surface water (LST) is a key factor that controls most of the physical and ecological processes occurring in lakes. Reliable estimates are especially important in the light of recent studies, which revealed that inland water bodies are highly sensitive to climate, and are rapidly warming throughout the world. However, an accurate estimation of LST usually requires a significant amount of information that is not always available. In this work, we present an application of air2water, a lumped model that simulates LST as a function of air temperature only. In addition, air2water allows for a qualitative evaluation of the depth of the epilimnion during the annual stratification cycle. The model consists in a simplification of the complete heat budget of the well-mixed surface layer, and has a few parameters (from 4 to 8 depending on the version) that summarize the role of the different heat flux components. Model calibration requires only air and water temperature data, possibly covering sufficiently long historical periods in order to capture inter-annual variability and long-term trends. During the calibration procedure, the information included in input data is retrieved to directly inform model parameters, which can be used to classify the thermal behavior of the lake. In order to investigate how thermal dynamics are related to morphological features, the model has been applied to 14 temperate lakes characterized by different morphological and hydrological conditions, by different sources of temperature data (buoys, satellite), and by variable frequency of acquisition. A good agreement between observed and simulated LST has been achieved, with a RMSE in the order of 1°C, which is fully comparable to the performances of more complex process-based models. This application allowed for a deeper understanding of the thermal response of lakes as a function of their morphology, as well as for specific analyses as for example the investigation of the exceptional

  6. Identifying Modes of Temperature Variability Using AIRS Data.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Aumann, H. H.; Yung, Y.

    2007-12-01

    We use the Atmospheric Infrared Sounder (AIRS) and Advance Microwave Sounding Unit (AMSU) data obtained on Aqua spacecraft to study mid-tropospheric temperature variability between 2002-2007. The analysis is focused on daily zonal means of the AIRS channel at 2388 1/cm in the CO2 R-branch and the AMSU channel #5 in the 57 GHz Oxygen band, both with weighting function peaking in the mid-troposphere (400 mb) and the matching sea surface temperature from NCEP (Aumann et al., 2007). Taking into account the nonlinear and non- stationary behavior of the temperature we apply the Empirical Mode Decomposition (Huang et al., 1998) to better separate modes of variability. All-sky (cloudy) and clear sky, day and night data are analyzed. In addition to the dominant annual variation, which is nonlinear and latitude dependent, we identified the modes with higher frequency and inter-annual modes. Some trends are visible and we apply stringent criteria to test their statistical significance. References: Aumann, H. H., D. T. Gregorich, S. E. Broberg, and D. A. Elliott, Geophys. Res. Lett., 34, L15813, doi:10.1029/2006GL029191, 2007. Huang, N. E. Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, Proc. R. Soc. Lond., A 454, 903-995, 1998.

  7. United States Historical Climatology Network Daily Temperature and Precipitation Data (1871-1997)

    SciTech Connect

    Easterling, D.R.

    2002-10-28

    This document describes a database containing daily observations of maximum and minimum temperature, precipitation amount, snowfall amount, and snow depth from 1062 observing stations across the contiguous US. This database is an expansion and update of the original 138-station database previously released by the Carbon Dioxide Information Analysis Center (CDIAC) as CDIAC numeric data package NDP-042. These 1062 stations are a subset of the 1221-station US Historical Climatology Network (HCN), a monthly database compiled by the National Climatic Data Center (Asheville, North Carolina) that has been widely used in analyzing US climate. Data from 1050 of these daily records extend into the 1990s, while 990 of these extend through 1997. Most station records are essentially complete for at least 40 years; the latest beginning year of record is 1948. Records from 158 stations begin prior to 1900, with that of Charleston, South Carolina beginning the earliest (1871). The daily resolution of these data makes them extremely valuable for studies attempting to detect and monitor long-term climatic changes on a regional scale. Studies using daily data may be able to detect changes in regional climate that would not be apparent from analysis of monthly temperature and precipitation data. Such studies may include analyses of trends in maximum and minimum temperatures, temperature extremes, daily temperature range, precipitation ''event size'' frequency, and the magnitude and duration of wet and dry periods. The data are also valuable in areas such as regional climate model validation and climate change impact assessment. This database is available free of charge from CDIAC as a numeric data package (NDP).

  8. Spatial Disaggregation of the 0.25-degree GLDAS Air Temperature Dataset to 30-arcsec Resolution

    NASA Astrophysics Data System (ADS)

    Ji, L.; Senay, G. B.; Verdin, J. P.; Velpuri, N. M.

    2015-12-01

    Air temperature is a key input variable in ecological and hydrological models for simulating the hydrological cycle and water budget. Several global reanalysis products have been developed at different organizations, which provide gridded air temperature datasets at resolutions ranging from 0.25º to 2.5º (or 27.8 - 278.3 km at the equator). However, gridded air temperature products at a high-resolution (≤1 km) are available only for limited areas of the world. To meet the needs for global eco-hydrological modeling, we aim to produce a continuous daily air temperature datasets at 1-km resolution for the global coverage. In this study, we developed a technique that spatially disaggregates the 0.25º Global Land Data Assimilation System (GLDAS) daily air temperature data to 30-arcsec (0.928 km at the equator) resolution by integrating the GLDAS data with the 30-arcsec WorldClim 1950 - 2000 monthly normal air temperature data. The method was tested using the GLDAS and Worldclim maximum and minimum air temperature datasets from 2002 and 2010 for the conterminous Unites States and Africa. The 30-arcsec disaggregated GLDAS (GLDASd) air temperature dataset retains the mean values of the original GLDAS data, while adding spatial variabilities inherited from the Worldclim data. A great improvement in GLDAS disaggregation is shown in mountain areas where complex terrain features have strong impact on temperature. We validated the disaggregation method by comparing the GLDASd product with daily meteorological observations archived by the Global Historical Climatology Network (GHCN) and the Global Surface Summary of the Day (GSOD) datasets. Additionally, the 30-arcsec TopoWX daily air temperature product was used to compare with the GLDASd data for the conterminous United States. The proposed data disaggregation method provides a convenient and efficient tool for generating a global high-resolution air temperature dataset, which will be beneficial to global eco

  9. Body core temperature of rats subjected to daily exercise limited to a fixed time

    NASA Astrophysics Data System (ADS)

    Shido, O.; Sugimoto, Naotoshi; Sakurada, Sotaro; Kaneko, Yoshiko; Nagasaka, Tetsuo

    Several timed daily environmental cues alter the pattern of nycthemeral variations in body core temperature in rodents. The present study investigated the effect of timed exercise on variations of daily body core temperature. Male rats were housed in cages with a running wheel at an ambient temperature of 24° C with a 12:12 h light/dark cycle. Timed daily exercise rats (TEX) were allowed access to the wheel for 6 h in the last half of the dark phase, freely exercising rats (FEX) could run at any time, and sedentary rats (NEX) were not allowed to run. After a 3-week exercise period, all animals were denied access to the wheel. The intraabdominal temperatures (Tab) and spontaneous activities of rats were measured for 6 days after the exercise period. The Tab values of the TEX rats were significantly higher than those of the other two groups only in the last half of the dark phase, while Tab in the FEX and NEX rats showed no significant difference. The specific Tab changes in the TEX rats lasted for 2 days after the exercise period. Spontaneous activity levels were higher in the TEX rats than the FEX and NEX rats in the last half of the dark phase for 1 day after the exercise period. The results suggest that daily exercise limited to a fixed time per day modifies nycthemeral variations of body core temperature in rats so that the temperature increases during the period when the animals had previously exercised. Such a rise in body core temperature is partly attributed to an increase in the spontaneous activity level.

  10. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  11. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  12. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  13. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  14. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  15. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  16. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  17. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  18. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  19. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  20. Estimation of Missing Daily Temperatures: Can a Weather Categorization Improve Its Accuracy?.

    NASA Astrophysics Data System (ADS)

    Huth, Radan; Nemeová, Ivana

    1995-07-01

    A method of estimating missing daily temperatures is proposed. The procedure is based on a weather classification consisting of two steps: principal component analysis and cluster analysis. At each time of observation @0700, 1400, and 2100 local time) the weather is characterized by temperature, relative humidity, wind speed, and cloudiness. The coefficients of regression equations, enabling the missing temperatures to be determined from the known temperatures at nearby stations, are computed within each weather class. The influence of various parameters @input variables, number of weather classes, number of principal components, their rotation, type of regression equation) on the accuracy of estimated temperatures is discussed. The method yields better results than ordinary regression methods that do not utilize a weather classification. An examination of statistical properties of the estimated temperatures confirms the applicability of the completed temperature series in climate studies.

  1. Daily metabolic patterns of short-tailed shrews (Blarina) in three natural seasonal temperature regimes

    SciTech Connect

    Randolph, J.C.

    1980-01-01

    An automatic, continuous-flow gas analysis system was used to determine daily metabolic patterns of individual short-tailed shrews (Blarina) in three natural seasonal temperature regimes in eastern Tennessee. Average daily metabolic rates (ADMR) were lowest in the summer (0.426 kcal g/sup -1/day/sup -1/), approximately doubled under winter conditions (0.810 kcal g/sup -1/day/sup -1/) but were the highest under fall conditions (1.110 kcal g/sup -1/day/sup -1/) possibly due to incomplete acclimatization of the shrews. The shape of the daily metabolic pattern for Blarina does not change seasonally; however, summer metabolic rates are the least variable and are lower than most values previously reported in the literature. Polynomial multiple regression analyses were conducted to examine the relative influence of body mass, ambient temperature, and time of day on metabolic rates; only ambient temperature was significant in predicting metabolic rates of this shrew. Average daily metabolic rates of Blarina observed under summer and winter conditions further substantiate the general predictive equations of metabolic rates formulated for small mammals by French et al. (1976). Comparisons of metabolic patterns of Blarina with those of Peromyscus leucopus observed under nearly identical conditions indicate similar rates with strong seasonal influences.

  2. CPLFD-GDPT5: High-resolution gridded daily precipitation and temperature data set for two largest Polish river basins

    NASA Astrophysics Data System (ADS)

    Berezowski, Tomasz; Szcześniak, Mateusz; Kardel, Ignacy; Michałowski, Robert; Okruszko, Tomasz; Mezghani, Abdelkader; Piniewski, Mikołaj

    2016-03-01

    The CHASE-PL (Climate change impact assessment for selected sectors in Poland) Forcing Data-Gridded Daily Precipitation & Temperature Dataset-5 km (CPLFD-GDPT5) consists of 1951-2013 daily minimum and maximum air temperatures and precipitation totals interpolated onto a 5 km grid based on daily meteorological observations from the Institute of Meteorology and Water Management (IMGW-PIB; Polish stations), Deutscher Wetterdienst (DWD, German and Czech stations), and European Climate Assessment and Dataset (ECAD) and National Oceanic and Atmosphere Administration-National Climatic Data Center (NOAA-NCDC) (Slovak, Ukrainian, and Belarusian stations). The main purpose for constructing this product was the need for long-term aerial precipitation and temperature data for earth-system modelling, especially hydrological modelling. The spatial coverage is the union of the Vistula and Oder basins and Polish territory. The number of available meteorological stations for precipitation and temperature varies in time from about 100 for temperature and 300 for precipitation in the 1950s up to about 180 for temperature and 700 for precipitation in the 1990s. The precipitation data set was corrected for snowfall and rainfall under-catch with the Richter method. The interpolation methods were kriging with elevation as external drift for temperatures and indicator kriging combined with universal kriging for precipitation. The kriging cross validation revealed low root-mean-squared errors expressed as a fraction of standard deviation (SD): 0.54 and 0.47 for minimum and maximum temperature, respectively, and 0.79 for precipitation. The correlation scores were 0.84 for minimum temperatures, 0.88 for maximum temperatures, and 0.65 for precipitation. The CPLFD-GDPT5 product is consistent with 1971-2000 climatic data published by IMGW-PIB. We also confirm good skill of the product for hydrological modelling by performing an application using the Soil and Water Assessment Tool (SWAT) in

  3. CPLFD-GDPT5: high-resolution gridded daily precipitation and temperature dataset for two largest Polish river basins

    NASA Astrophysics Data System (ADS)

    Berezowski, T.; Szcześniak, M.; Kardel, I.; Michałowski, R.; Okruszko, T.; Mezghani, A.; Piniewski, M.

    2015-12-01

    The CHASE-PL Forcing Data-Gridded Daily Precipitation and Temperature Dataset-5 km (CPLFD-GDPT5) consists of 1951-2013 daily minimum and maximum air temperatures and precipitation totals interpolated onto a 5 km grid based on daily meteorological observations from Institute of Meteorology and Water Management (IMGW-PIB; Polish stations), Deutscher Wetterdienst (DWD, German and Czech stations), ECAD and NOAA-NCDC (Slovak, Ukrainian and Belarus stations). The main purpose for constructing this product was the need for long-term aerial precipitation and temperature data for earth-system modelling, especially hydrological modelling. The spatial coverage is the union of Vistula and Odra basin and Polish territory. The number of available meteorological stations for precipitation and temperature varies in time from about 100 for temperature and 300 for precipitation in 1950 up to about 180 for temperature and 700 for precipitation in 1990. The precipitation dataset was corrected for snowfall and rainfall under-catch with the Richter method. The interpolation methods were: kriging with elevation as external drift for temperatures and indicator kriging combined with universal kriging for precipitation. The kriging cross-validation revealed low root mean squared errors expressed as a fraction of standard deviation (SD): 0.54 and 0.47 for minimum and maximum temperature, respectively and 0.79 for precipitation. The correlation scores were 0.84 for minimum temperatures, 0.88 for maximum temperatures and 0.65 for precipitation. The CPLFD-GDPT5 product is consistent with 1971-2000 climatic data published by IMGW-PIB. We also confirm good skill of the product for hydrological modelling by performing an application using the Soil and Water Assessment Tool (SWAT) in the Vistula and Odra basins. Link to the dataset: http://data.3tu.nl/repository/uuid:e939aec0-bdd1-440f-bd1e-c49ff10d0a07

  4. Quantifying the Effects of Photoperiod, Temperature and Daily Irradiance on Flowering Time of Soybean Isolines

    PubMed Central

    Cober, Elroy R.; Curtis, Daniel F.; Stewart, Douglas W.; Morrison, Malcolm J.

    2014-01-01

    Soybean isolines with different combinations of photoperiod sensitivity alleles were planted in a greenhouse at different times during the year resulting in natural variation in daily incident irradiance and duration. The time from planting to first flower were observed. Mathematical models, using additive and multiplicative modes, were developed to quantify the effect of photoperiod, temperature, photoperiod-temperature interactions, rate of photoperiod change, and daily solar irradiance on flowering time. Observed flowering times correlated with predicted times (R2 = 0.92, Standard Error of the Estimate (SSE) = 2.84 d, multiplicative mode; R2 = 0.91, SSE = 2.88 d, additive mode). The addition of a rate of photoperiod change function and an irradiance function to the temperature and photoperiod functions improved the accuracy of flowering time prediction. The addition of a modified photoperiod function, which allowed for photoperiod sensitivity at shorter photoperiods, improved prediction of flowering time. Both increasing and decreasing rate of photoperiod change, as well as low levels of daily irradiance delayed flowering in soybean. The complete model, which included terms for the rate of photoperiod change, photoperiod, temperature and irradiance, predicted time to first flower in soybean across a range of environmental conditions with an SEE of 3.6 days when tested with independent data. PMID:27135515

  5. Daily regulation of body temperature rhythm in the camel (Camelus dromedarius) exposed to experimental desert conditions

    PubMed Central

    Bouâouda, Hanan; Achâaban, Mohamed R.; Ouassat, Mohammed; Oukassou, Mohammed; Piro, Mohamed; Challet, Etienne; El Allali, Khalid; Pévet, Paul

    2014-01-01

    Abstract In the present work, we have studied daily rhythmicity of body temperature (Tb) in Arabian camels challenged with daily heat, combined or not with dehydration. We confirm that Arabian camels use heterothermy to reduce heat gain coupled with evaporative heat loss during the day. Here, we also demonstrate that this mechanism is more complex than previously reported, because it is characterized by a daily alternation (probably of circadian origin) of two periods of poikilothermy and homeothermy. We also show that dehydration induced a decrease in food intake plays a role in this process. Together, these findings highlight that adaptive heterothermy in the Arabian camel varies across the diurnal light–dark cycle and is modulated by timing of daily heat and degrees of water restriction and associated reduction of food intake. The changed phase relationship between the light–dark cycle and the Tb rhythm observed during the dehydration process points to a possible mechanism of internal desynchronization during the process of adaptation to desert environment. During these experimental conditions mimicking the desert environment, it will be possible in the future to determine if induced high‐amplitude ambient temperature (Ta) rhythms are able to compete with the zeitgeber effect of the light–dark cycle. PMID:25263204

  6. Effects of daily fluctuating temperatures on the Drosophila-Leptopilina boulardi parasitoid association.

    PubMed

    Delava, Emilie; Fleury, Frédéric; Gibert, Patricia

    2016-08-01

    Koinobiont parasitoid insects, which maintain intimate and long-term relationships with their arthropod hosts, constitute an association of ectothermic organisms that is particularly sensitive to temperature variations. Because temperature shows pronounced natural daily fluctuations, we examined if experiments based on a constant temperature range can mask the real effects of the thermal regime on host-parasitoid interactions. The effects of two fluctuating thermal regimes on several developmental parameters of the Drosophila larval parasitoid Leptopilina boulardi were analyzed in this study. Regime 1 included a range of 16-23-16°C and regime 2 included a range of 16-21-26-21-16°C (mean temperature 20.1°C) compared to a 20.1°C constant temperature. Under an average temperature of 20.1°C, which corresponds to a cold condition of L. boulardi development, we showed that the success of parasitism is significantly higher under a fluctuating temperature regime than at constant temperature. A fluctuating regime also correlated with a reduced development time of the parasitoids. In contrast, the thermal regime did not affect the ability of Drosophila to resist parasitoid infestation. Finally, we demonstrated that daily temperature fluctuation prevented the entry into diapause for this species, which is normally observed at a constant temperature of 21°C. Overall, the results reveal that constant temperature experiments can produce misleading results, highlighting the need to study the thermal biology of organisms under fluctuating regimes that reflect natural conditions as closely as possible. This is particularly a major issue in host-parasitoid associations, which constitute a good model to understand the effect of climate warming on interacting species. PMID:27503721

  7. Radon as a tracer of daily, seasonal and spatial air movements in the Underground Tourist Route "Coal Mine" (SW Poland).

    PubMed

    Tchorz-Trzeciakiewicz, Dagmara Eulalia; Parkitny, Tomasz

    2015-11-01

    The surveys of radon concentrations in the Underground Tourist Route "Coal Mine" were carried out using passive and active measurement techniques. Passive methods with application of Solid State Nuclear Track Detectors LR115 were used at 4 points in years 2004-2007 and at 21 points in year 2011. These detectors were exchanged at the beginning of every season in order to get information about seasonal and spatial changes of radon concentrations. The average radon concentration noted in this facility was 799 Bq m(-3) and is consistent with radon concentrations noted in Polish coal mines. Seasonal variations, observed in this underground tourist route, were as follows: the highest radon concentrations were noted during summers, the lowest during winters, during springs and autumns intermediate but higher in spring than in autumn. The main external factor that affected seasonal changes of radon concentrations was the seasonal variation of outside temperature. No correlation between seasonal variations of radon concentrations and seasonal average atmospheric pressures was found. Spatial variations of radon concentrations corresponded with air movements inside the Underground Tourist Route "Coal Mine". The most vivid air movements were noted along the main tunnel in adit and at the place located near no blinded (in the upper part) shaft. Daily variations of radon concentrations were recorded in May 2012 using RadStar RS-230 as the active measurement technique. Typical daily variations of radon concentrations followed the pattern that the highest radon concentrations were recorded from 8-9 a.m. to 7-8 p.m. and the lowest during nights. The main factor responsible for hourly variations of radon concentrations was the daily variation of outside temperatures. No correlations were found between radon concentration and other meteorological parameters such as atmospheric pressure, wind velocity or precipitation. Additionally, the influence of human factor on radon

  8. Reducing Noise in the MSU Daily Lower-Tropospheric Global Temperature Dataset

    NASA Technical Reports Server (NTRS)

    Christy, John R.; Spencer, Roy W.; McNider, Richard T.

    1995-01-01

    The daily global-mean values of the lower-tropospheric temperature determined from microwave emissions measured by satellites are examined in terms of their signal, noise, and signal-to-noise ratio. Daily and 30-day average noise estimates are reduced by, almost 50% and 35%, respectively, by analyzing and adjusting (if necessary) for errors due to (1) missing data, (2) residual harmonics of the annual cycle unique to particular satellites, (3) lack of filtering, and (4) spurious trends. After adjustments, the decadal trend of the lower-tropospheric global temperature from January 1979 through February 1994 becomes -0.058 C, or about 0.03 C per decade cooler than previously calculated.

  9. Air temperature variation across the seed cotton dryer mixpoint

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eighteen tests were conducted in six gins in the fall of 2008 to measure air temperature variation within various heated air seed cotton drying systems with the purpose of: checking validation of recommendations by a professional engineering society and measuring air temperature variation across the...

  10. Possible Economies in Air-Conditioning by Accepting Temperature Swings.

    ERIC Educational Resources Information Center

    Loudon, A. G.; Petherbridge, P.

    Public building air conditioning systems, which use constant and varying heat and cooling loads, are compared and investigated. Experiments indicated that constant temperature controls based on outside air temperature alone were inefficient. Ventilating a building with outside air and the methods of doing so are cited as being the most economical…

  11. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  12. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  13. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  14. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  15. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  16. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  17. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  18. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  19. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  20. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  1. AIR TEMPERATURE DISTRIBUTION IN SEED COTTON DRYING SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ten tests were conducted in the fall of 2007 to measure air temperature variation within various heated air seed cotton drying systems with the purpose of: checking validation of recommendations by a professional engineering society and measuring air temperature variation across the airflow ductwork...

  2. Acoustic method for measuring air temperature and humidity in rooms

    NASA Astrophysics Data System (ADS)

    Kanev, N. G.

    2014-05-01

    A method is proposed to determine air temperature and humidity in rooms with a system of sound sources and receivers, making it possible to find the sound velocity and reverberation time. Nomograms for determining the air temperature and relative air humidity are constructed from the found sound velocity and time reverberation values. The required accuracy of measuring these parameters is estimated.

  3. Effects of apparent temperature on daily mortality in Lisbon and Oporto, Portugal

    PubMed Central

    2010-01-01

    Background Evidence that elevated temperatures can lead to increased mortality is well documented, with population vulnerability being location specific. However, very few studies have been conducted that assess the effects of temperature on daily mortality in urban areas in Portugal. Methods In this paper time-series analysis was used to model the relationship between mean apparent temperature and daily mortality during the warm season (April to September) in the two largest urban areas in Portugal: Lisbon and Oporto. We used generalized additive Poisson regression models, adjusted for day of week and season. Results Our results show that in Lisbon, a 1°C increase in mean apparent temperature is associated with a 2.1% (95%CI: 1.6, 2.5), 2.4% (95%CI: 1.7, 3.1) and 1.7% (95%CI: 0.1, 3.4) increase in all-causes, cardiovascular, and respiratory mortality, respectively. In Oporto the increase was 1.5% (95%CI: 1.0, 1.9), 2.1% (95%CI: 1.3, 2.9) and 2.7% (95%CI: 1.2, 4.3) respectively. In both cities, this increase was greater for the group >65 years. Conclusion Even without extremes in apparent temperature, we observed an association between temperature and daily mortality in Portugal. Additional research is needed to allow for better assessment of vulnerability within populations in Portugal in order to develop more effective heat-related morbidity and mortality public health programs. PMID:20219128

  4. Asthma symptoms in Hispanic children and daily ambient exposures to toxic and criteria air pollutants.

    PubMed Central

    Delfino, Ralph J; Gong, Henry; Linn, William S; Pellizzari, Edo D; Hu, Ye

    2003-01-01

    Although acute adverse effects on asthma have been frequently found for the U.S. Environmental Protection Agency's principal criteria air pollutants, there is little epidemiologic information on specific hydrocarbons from toxic emission sources. We conducted a panel study of 22 Hispanic children with asthma who were 10-16 years old and living in a Los Angeles community with high traffic density. Subjects filled out symptom diaries daily for up to 3 months (November 1999 through January 2000). Pollutants included ambient hourly values of ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide and 24-hr values of volatile organic compounds (VOCs), particulate matter with aerodynamic diameter < 10 microm (PM10, and elemental carbon (EC) and organic carbon (OC) PM10 fractions. Asthma symptom severity was regressed on pollutants using generalized estimating equations, and peak expiratory flow (PEF) was regressed on pollutants using mixed models. We found positive associations of symptoms with criteria air pollutants (O3, NO2, SO2, PM10), EC-OC, and VOCs (benzene, ethylbenzene, formaldehyde, acetaldehyde, acetone, 1,3-butadiene, tetrachloroethylene, toluene, m,p-xylene, and o-xylene). Selected adjusted odds ratios for bothersome or more severe asthma symptoms from interquartile range increases in pollutants were, for 1.4 ppb 8-hr NO2, 1.27 [95% confidence interval (CI), 1.05-1.54]; 1.00 ppb benzene, 1.23 (95% CI, 1.02-1.48); 3.16 ppb formaldehyde, 1.37 (95% CI, 1.04-1.80); 37 microg/m3 PM10, 1.45 (95% CI, 1.11-1.90); 2.91 microg/m3 EC, 1.85 (95% CI, 1.11-3.08); and 4.64 microg/m3 OC, 1.88 (95% CI, 1.12-3.17). Two-pollutant models of EC or OC with PM10 showed little change in odds ratios for EC (to 1.83) or OC (to 1.89), but PM10 decreased from 1.45 to 1.0. There were no significant associations with PEF. Findings support the view that air toxins in the pollutant mix from traffic and industrial sources may have adverse effects on asthma in children. PMID:12676630

  5. Interaction of Mean Temperature and Daily Fluctuation Influences Dengue Incidence in Dhaka, Bangladesh

    PubMed Central

    Sharmin, Sifat; Glass, Kathryn; Viennet, Elvina; Harley, David

    2015-01-01

    Local weather influences the transmission of the dengue virus. Most studies analyzing the relationship between dengue and climate are based on relatively coarse aggregate measures such as mean temperature. Here, we include both mean temperature and daily fluctuations in temperature in modelling dengue transmission in Dhaka, the capital of Bangladesh. We used a negative binomial generalized linear model, adjusted for rainfall, anomalies in sea surface temperature (an index for El Niño-Southern Oscillation), population density, the number of dengue cases in the previous month, and the long term temporal trend in dengue incidence. In addition to the significant associations of mean temperature and temperature fluctuation with dengue incidence, we found interaction of mean and temperature fluctuation significantly influences disease transmission at a lag of one month. High mean temperature with low fluctuation increases dengue incidence one month later. Besides temperature, dengue incidence was also influenced by sea surface temperature anomalies in the current and previous month, presumably as a consequence of concomitant anomalies in the annual rainfall cycle. Population density exerted a significant positive influence on dengue incidence indicating increasing risk of dengue in over-populated Dhaka. Understanding these complex relationships between climate, population, and dengue incidence will help inform outbreak prediction and control. PMID:26161895

  6. Interaction of Mean Temperature and Daily Fluctuation Influences Dengue Incidence in Dhaka, Bangladesh.

    PubMed

    Sharmin, Sifat; Glass, Kathryn; Viennet, Elvina; Harley, David

    2015-01-01

    Local weather influences the transmission of the dengue virus. Most studies analyzing the relationship between dengue and climate are based on relatively coarse aggregate measures such as mean temperature. Here, we include both mean temperature and daily fluctuations in temperature in modelling dengue transmission in Dhaka, the capital of Bangladesh. We used a negative binomial generalized linear model, adjusted for rainfall, anomalies in sea surface temperature (an index for El Niño-Southern Oscillation), population density, the number of dengue cases in the previous month, and the long term temporal trend in dengue incidence. In addition to the significant associations of mean temperature and temperature fluctuation with dengue incidence, we found interaction of mean and temperature fluctuation significantly influences disease transmission at a lag of one month. High mean temperature with low fluctuation increases dengue incidence one month later. Besides temperature, dengue incidence was also influenced by sea surface temperature anomalies in the current and previous month, presumably as a consequence of concomitant anomalies in the annual rainfall cycle. Population density exerted a significant positive influence on dengue incidence indicating increasing risk of dengue in over-populated Dhaka. Understanding these complex relationships between climate, population, and dengue incidence will help inform outbreak prediction and control. PMID:26161895

  7. Eleven years of ground-air temperature tracking over different land cover materials

    NASA Astrophysics Data System (ADS)

    Cermák, Vladimír; Dedecek, Petr; Bodri, Louise; Safanda, Jan; Kresl, Milan

    2015-04-01

    We have analyzed series of air, near surface and shallow ground temperatures under four different land covers, namely bare clayey soil, sand, grass and asphalt, collected between 2002 and 2013, monitored at the Geothermal Climate Change Observatory Sporilov. All obtained temperature series revealed a strong dependence of the subsurface thermal regime on the surface cover material. The ground "skin" temperatures are generally warmer than the surface air temperatures for all monitored surfaces; however they mutually differ significantly reflecting the nature of the land surface. Asphalt shows the highest temperatures, temperatures below the grassy surface are the lowest. A special interest was paid to the assessment of the "temperature offset", the difference between the surface ground temperature and the surface air temperature. Even when its instant value varies dramatically on both, daily and annual scale, by up to 30+ K, on a long time scale it is believed to be generally constant. The characteristic 2003-2013 mean offset values for the individual covers are following: asphalt 4.1 K, sand 1.6 K, clay 1.3 K and grass 0.2-0.3 K. All four surface covers revealed their daily and inter-annual cycles. Incident solar radiation is the primary variable in determining the amount of the temperature offset value and its time changes. A linear relationship between air-ground temperature differences and incident solar radiation was detected. The slope of the linear regression between both variables is clearly surface cover dependent. The greatest value of 3.3 K per 100 W.m-2 was found for asphalt, rates of 1.0 to 1.2 apply for bare soil and sand covers and negative slope of -0.44 K per 100 W.m-2 stands for grass, during the day or year the slope rates may vary extensively reflecting the periodic daily and/or annual cycle as well as the irregular instant deviations in solar radiation.

  8. A regional air quality forecasting system over Europe: the MACC-II daily ensemble production

    NASA Astrophysics Data System (ADS)

    Marécal, V.; Peuch, V.-H.; Andersson, C.; Andersson, S.; Arteta, J.; Beekmann, M.; Benedictow, A.; Bergström, R.; Bessagnet, B.; Cansado, A.; Chéroux, F.; Colette, A.; Coman, A.; Curier, R. L.; Denier van der Gon, H. A. C.; Drouin, A.; Elbern, H.; Emili, E.; Engelen, R. J.; Eskes, H. J.; Foret, G.; Friese, E.; Gauss, M.; Giannaros, C.; Guth, J.; Joly, M.; Jaumouillé, E.; Josse, B.; Kadygrov, N.; Kaiser, J. W.; Krajsek, K.; Kuenen, J.; Kumar, U.; Liora, N.; Lopez, E.; Malherbe, L.; Martinez, I.; Melas, D.; Meleux, F.; Menut, L.; Moinat, P.; Morales, T.; Parmentier, J.; Piacentini, A.; Plu, M.; Poupkou, A.; Queguiner, S.; Robertson, L.; Rouïl, L.; Schaap, M.; Segers, A.; Sofiev, M.; Tarasson, L.; Thomas, M.; Timmermans, R.; Valdebenito, Á.; van Velthoven, P.; van Versendaal, R.; Vira, J.; Ung, A.

    2015-09-01

    This paper describes the pre-operational analysis and forecasting system developed during MACC (Monitoring Atmospheric Composition and Climate) and continued in the MACC-II (Monitoring Atmospheric Composition and Climate: Interim Implementation) European projects to provide air quality services for the European continent. This system is based on seven state-of-the art models developed and run in Europe (CHIMERE, EMEP, EURAD-IM, LOTOS-EUROS, MATCH, MOCAGE and SILAM). These models are used to calculate multi-model ensemble products. The paper gives an overall picture of its status at the end of MACC-II (summer 2014) and analyses the performance of the multi-model ensemble. The MACC-II system provides daily 96 h forecasts with hourly outputs of 10 chemical species/aerosols (O3, NO2, SO2, CO, PM10, PM2.5, NO, NH3, total NMVOCs (non-methane volatile organic compounds) and PAN+PAN precursors) over eight vertical levels from the surface to 5 km height. The hourly analysis at the surface is done a posteriori for the past day using a selection of representative air quality data from European monitoring stations. The performance of the system is assessed daily, weekly and every 3 months (seasonally) through statistical indicators calculated using the available representative air quality data from European monitoring stations. Results for a case study show the ability of the ensemble median to forecast regional ozone pollution events. The seasonal performances of the individual models and of the multi-model ensemble have been monitored since September 2009 for ozone, NO2 and PM10. The statistical indicators for ozone in summer 2014 show that the ensemble median gives on average the best performances compared to the seven models. There is very little degradation of the scores with the forecast day but there is a marked diurnal cycle, similarly to the individual models, that can be related partly to the prescribed diurnal variations of anthropogenic emissions in the models

  9. A regional air quality forecasting system over Europe: the MACC-II daily ensemble production

    NASA Astrophysics Data System (ADS)

    Marécal, V.; Peuch, V.-H.; Andersson, C.; Andersson, S.; Arteta, J.; Beekmann, M.; Benedictow, A.; Bergström, R.; Bessagnet, B.; Cansado, A.; Chéroux, F.; Colette, A.; Coman, A.; Curier, R. L.; Denier van der Gon, H. A. C.; Drouin, A.; Elbern, H.; Emili, E.; Engelen, R. J.; Eskes, H. J.; Foret, G.; Friese, E.; Gauss, M.; Giannaros, C.; Guth, J.; Joly, M.; Jaumouillé, E.; Josse, B.; Kadygrov, N.; Kaiser, J. W.; Krajsek, K.; Kuenen, J.; Kumar, U.; Liora, N.; Lopez, E.; Malherbe, L.; Martinez, I.; Melas, D.; Meleux, F.; Menut, L.; Moinat, P.; Morales, T.; Parmentier, J.; Piacentini, A.; Plu, M.; Poupkou, A.; Queguiner, S.; Robertson, L.; Rouïl, L.; Schaap, M.; Segers, A.; Sofiev, M.; Thomas, M.; Timmermans, R.; Valdebenito, Á.; van Velthoven, P.; van Versendaal, R.; Vira, J.; Ung, A.

    2015-03-01

    This paper describes the pre-operational analysis and forecasting system developed during MACC (Monitoring Atmospheric Composition and Climate) and continued in MACC-II (Monitoring Atmospheric Composition and Climate: Interim Implementation) European projects to provide air quality services for the European continent. The paper gives an overall picture of its status at the end of MACC-II (summer 2014). This system is based on seven state-of-the art models developed and run in Europe (CHIMERE, EMEP, EURAD-IM, LOTOS-EUROS, MATCH, MOCAGE and SILAM). These models are used to calculate multi-model ensemble products. The MACC-II system provides daily 96 h forecasts with hourly outputs of 10 chemical species/aerosols (O3, NO2, SO2, CO, PM10, PM2.5, NO, NH3, total NMVOCs and PAN + PAN precursors) over 8 vertical levels from the surface to 5 km height. The hourly analysis at the surface is done a posteriori for the past day using a selection of representative air quality data from European monitoring stations. The performances of the system are assessed daily, weekly and 3 monthly (seasonally) through statistical indicators calculated using the available representative air quality data from European monitoring stations. Results for a case study show the ability of the median ensemble to forecast regional ozone pollution events. The time period of this case study is also used to illustrate that the median ensemble generally outperforms each of the individual models and that it is still robust even if two of the seven models are missing. The seasonal performances of the individual models and of the multi-model ensemble have been monitored since September 2009 for ozone, NO2 and PM10 and show an overall improvement over time. The change of the skills of the ensemble over the past two summers for ozone and the past two winters for PM10 are discussed in the paper. While the evolution of the ozone scores is not significant, there are improvements of PM10 over the past two winters

  10. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  11. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  12. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  13. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  14. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  15. Homogenization of Daily Temperature Series for Detecting Heat Waves in the Mediterranean Environment

    NASA Astrophysics Data System (ADS)

    Kuglitsch, F. G.; Toreti, A.; Xoplaki, E.; Luterbacher, J.

    2008-12-01

    Extreme temperature events such as the 2003 European summer heat wave have a strong impact on the environment, society and economy (Kovats, R.S. and C. Koppe, 2005; Poumadere, M. et al., 2005). In order to perform reliable and detailed analysis of extreme temperature events it is important to use long daily and high quality and temperature series. However, many long instrumental climate records are characterised by artificial shifts due to changed measuring conditions such as site displacement, technical development or land-use changes among others. The detection and correction of these aberrations is necessary to get homogeneous time-series which are indispensable for reliable climate and climate impact studies. The Mediterranean region has a long and rich history in monitoring the atmosphere, going back to the 19th century. This area is considered as a "Hot Spot" of climate change (Giorgi, F., 2006) which will suffer from even more severe and frequent heat waves in the future (Diffenbaugh, N.A. et al., 2007). Unfortunately most climate studies are based on non-homogenized and not necessarily valid for climate analysis. To address this problem we developed and applied a new homogenization procedure based on well-established homogenization-methods to adjust more than 170 Mediterranean daily maximum temperature series. An adapted penalized log-likelihood procedure based on (Caussinus H. and O. Mestre, 2004), to detect an unknown number of breaks and outliers is used in combination with a nonlinear model based on (Della-Marta, P.M. and H. Wanner, 2006), for the correction of the time series. The strengths of this approach are: (i) that no metadata is needed for break detection, and (ii) an adjustment of mean daily values, variance, skewness and higher order moments becomes possible. Beside the innovative daily data homogenization approach, a new percentile based heat-wave definition considering Tmax and an adapted bootstrap resample procedure (Zhang, X. et al., 2005

  16. Sampling Biases in Datasets of Historical Mean Air Temperature over Land

    NASA Astrophysics Data System (ADS)

    Wang, K.

    2014-12-01

    Global mean surface air temperature have risen by 0.74 °C over the last 100 years. However, the definition of mean surface air temperature is still a subject of debate. The most defensible definition might be the integral of the continuous temperature measurements over a day (Td0). However, for technological and historical reasons, mean temperatures (Td1) over land have been taken to be the average of the daily maximum and minimum temperature measurements. All existing principle global temperature analyses over land are primarily based on Td1. Here, I make a first quantitative assessment of the bias in the use of Td1 to estimate trends of mean air temperature using hourly air temperature observations at 5600 globally distributed weather stations from the 1970s to 2013. I find that the use of Td1 has a negligible impact on the global mean warming rate. However, the trend of Td1 has a substantial bias at regional and local scales, with a root mean square error of over 25% at 5°×5° grids. Therefore, caution should be taken when using mean air temperature datasets based on Td1 to examine spatial patterns of global warming.

  17. Trends in indices of daily temperature and precipitations extremes in Morocco

    NASA Astrophysics Data System (ADS)

    Filahi, S.; Tanarhte, M.; Mouhir, L.; El Morhit, M.; Tramblay, Y.

    2016-05-01

    The purpose of this paper is to provide a summary of Morocco's climate extreme trends during the last four decades. Indices were computed based on a daily temperature and precipitation using a consistent approach recommended by the ETCCDI. Trends in these indices were calculated at 20 stations from 1970 to 2012. Twelve indices were considered to detect trends in temperature. A large number of stations have significant trends and confirm an increase in temperature, showing increased warming during spring and summer seasons. The results also show a decrease in the number of cold days and nights and an increase in the number of warm days and nights. Increasing trends have also been found in the absolute warmest and coldest temperatures of the year. A clear increase is detected for warm nights and diurnal temperature range. Eight indices for precipitation were also analyzed, but the trends for these precipitation indices are much less significant than for temperature indices and show more mixed spatial patterns of change. Heavy precipitation events do not exhibit significant trends except at a few locations, in the north and central parts of Morocco, with a general tendency towards drier conditions. The correlation between these climate indices and the large-scale atmospheric circulations indices such as the NAO, MO, and WEMO were also analyzed. Results show a stronger relationship with these climatic indices for the precipitation indices compared to the temperature indices. The correlations are more significant in the Atlantic regions, but they remain moderate at the whole country scale.

  18. Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models

    NASA Astrophysics Data System (ADS)

    Piani, C.; Weedon, G. P.; Best, M.; Gomes, S. M.; Viterbo, P.; Hagemann, S.; Haerter, J. O.

    2010-12-01

    SummaryA statistical bias correction methodology for global climate simulations is developed and applied to daily land precipitation and mean, minimum and maximum daily land temperatures. The bias correction is based on a fitted histogram equalization function. This function is defined daily, as opposed to earlier published versions in which they were derived yearly or seasonally at best, while conserving properties of robustness and eliminating unrealistic jumps at seasonal or monthly transitions. The methodology is tested using the newly available global dataset of observed hydrological forcing data of the last 50 years from the EU project WATCH (WATer and global CHange) and an initial conditions ensemble of simulations performed with the ECHAM5 global climate model for the same period. Bias corrections are derived from 1960 to 1969 observed and simulated data and then applied to 1990-1999 simulations. Results confirm the effectiveness of the methodology for all tested variables. Bias corrections are also derived using three other non-overlapping decades from 1970 to 1999 and all members of the ECHAM5 initial conditions ensemble. A methodology is proposed to use the resulting "ensemble of bias corrections" to quantify the error in simulated scenario projections of components of the hydrological cycle.

  19. Association between air pollution and daily mortality and hospital admission due to ischaemic heart diseases in Hong Kong

    NASA Astrophysics Data System (ADS)

    Tam, Wilson Wai San; Wong, Tze Wai; Wong, Andromeda H. S.

    2015-11-01

    Ischaemic heart disease (IHD) is one of the leading causes of death worldwide. The effects of air pollution on IHD mortalities have been widely reported. Fewer studies focus on IHD morbidities and PM2.5, especially in Asia. To explore the associations between short-term exposure to air pollution and morbidities and mortalities from IHD, we conducted a time series study using a generalized additive model that regressed the daily numbers of IHD mortalities and hospital admissions on daily mean concentrations of the following air pollutants: nitrogen dioxide (NO2), particulate matter with an aerodynamic diameter less than 10 μm (PM10), particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5), ozone (O3), and sulfur dioxide (SO2). The relative risks (RR) of IHD deaths and hospital admissions per 10 μg/m3 increase in the concentration of each air pollutant were derived in single pollutant models. Multipollutant models were also constructed to estimate their RRs controlling for other pollutants. Significant RRs were observed for all five air pollutants, ranging from 1.008 to 1.032 per 10 μg/m3 increase in air pollutant concentrations for IHD mortality and from 1.006 to 1.021 per 10 μg/m3 for hospital admissions for IHD. In the multipollutant model, only NO2 remained significant for IHD mortality while SO2 and PM2.5 was significantly associated with hospital admissions. This study provides additional evidence that mortalities and hospital admissions for IHD are significantly associated with air pollution. However, we cannot attribute these health effects to a specific air pollutant, owing to high collinearity between some air pollutants.

  20. Meteorology (Temperature)

    Atmospheric Science Data Center

    2014-09-25

    ... daily earth temperature minimum and maximum.   Frost Days (days) The number of days for which the temperature falls below 0 degrees Celsius.   Dew/Frost Point Temperature (° C) Temperature at which air is saturated ...

  1. Impact of extreme temperatures on daily mortality in Madrid (Spain) among the 45-64 age-group

    NASA Astrophysics Data System (ADS)

    Díaz, Julio; Linares, Cristina; Tobías, Aurelio

    2006-07-01

    This paper analyses the relationship between extreme temperatures and mortality among persons aged 45-64 years. Daily mortality in Madrid was analysed by sex and cause, from January 1986 to December 1997. Quantitative analyses were performed using generalised additive models, with other covariables, such as influenza, air pollution and seasonality, included as controls. Our results showed that impact on mortality was limited for temperatures ranging from the 5th to the 95th percentiles, and increased sharply thereafter. During the summer period, the effect of heat was detected solely among males in the target age group, with an attributable risk (AR) of 13.3% for circulatory causes. Similarly, NO2 concentrations registered the main statistically significant associations in females, with an AR of 15% when circulatory causes were considered. During winter, the impact of cold was exclusively observed among females having an AR of 7.7%. The magnitude of the AR indicates that the impact of extreme temperature is by no means negligible.

  2. Impact of extreme temperatures on daily mortality in Madrid (Spain) among the 45-64 age-group.

    PubMed

    Díaz, Julio; Linares, Cristina; Tobías, Aurelio

    2006-07-01

    This paper analyses the relationship between extreme temperatures and mortality among persons aged 45-64 years. Daily mortality in Madrid was analysed by sex and cause, from January 1986 to December 1997. Quantitative analyses were performed using generalised additive models, with other covariables, such as influenza, air pollution and seasonality, included as controls. Our results showed that impact on mortality was limited for temperatures ranging from the 5th to the 95th percentiles, and increased sharply thereafter. During the summer period, the effect of heat was detected solely among males in the target age group, with an attributable risk (AR) of 13.3% for circulatory causes. Similarly, NO(2) concentrations registered the main statistically significant associations in females, with an AR of 15% when circulatory causes were considered. During winter, the impact of cold was exclusively observed among females having an AR of 7.7%. The magnitude of the AR indicates that the impact of extreme temperature is by no means negligible. PMID:16718468

  3. Variation of the shower lateral spread with air temperature at the ground

    NASA Astrophysics Data System (ADS)

    Wilczyńska, B.; Engel, R.; Homola, P.; Keilhauer, B.; Klages, H.; Pękala, J.; Wilczyński, H.

    The vertical profile of air density at a given site varies considerably with time. Well understood seasonal differences are present, but sizeable effects on shorter time scales, like day to night or day to day variations, are also observed. In consequence, the Moliere radius changes, influencing the lateral distribution of particles in the air showers and therefore may influence the shower detection in surface detector arrays. In air shower reconstruction, usually seasonal average profiles of the atmosphere are used, because local daily measurements of the profile are rarely available. Therefore, the daily fluctuations of the atmosphere are not accounted for. This simplification increases the inaccuracies of shower reconstruction. We show that a universal correlation exists between the ground temperature and the shape of the atmospheric profile, up to altitudes of several kilometers, hence providing a method to reduce inaccuracies in shower reconstruction due to weather variation.

  4. Air pollution and daily mortality: A new approach to an old problem

    NASA Astrophysics Data System (ADS)

    Lipfert, Frederick W.; Murray, Christian J.

    2012-08-01

    Many time-series studies find associations between acute health effects and ambient air quality under current conditions. However, few such studies link mortality with morbidity to provide rational bases for improving public health. This paper describes a research project that developed and validated a new modeling approach directly addressing changes in life expectancies and the prematurity of deaths associated with transient changes in air quality. We used state-space modeling and Kalman filtering of elderly Philadelphia mortality counts from 1974-88 to estimate the size of the population at highest risk of imminent death. This subpopulation appears stable over time but is sensitive to season and to environmental factors: ambient temperature, ozone, and total suspended particulate matter (TSP), as an index of airborne particles in this demonstration of methodology. This population at extreme risk averages fewer than 0.1% of the elderly. By considering successively longer lags or moving averages of TSP, we find that cumulative short-term effects on entry to the at-risk pool tend to level off and decrease as periods of exposure longer than a few days are considered. These estimated environmental effects on the elderly are consistent with previous analyses using conventional time-series methods. However, this new model suggests that such environmentally linked deaths comprise only about half of the subjects whose frailty is associated with environmental factors. The average life expectancy of persons in the at-risk pool is estimated to be 5-7 days, which may be reduced by less than one day by environmental effects. These results suggest that exposures leading up to severe acute frailty and subsequent risk of imminent death may be more important from a public health perspective than those directly associated with subsequent mortality.

  5. Geographical and Geomorphological Effects on Air Temperatures in the Columbia Basin's Signature Vineyards

    NASA Astrophysics Data System (ADS)

    Olson, L.; Pogue, K. R.; Bader, N.

    2012-12-01

    The Columbia Basin of Washington and Oregon is one of the most productive grape-growing areas in the United States. Wines produced in this region are influenced by their terroir - the amalgamation of physical and cultural elements that influence grapes grown at a particular vineyard site. Of the physical factors, climate, and in particular air temperature, has been recognized as a primary influence on viticulture. Air temperature directly affects ripening in the grapes. Proper fruit ripening, which requires precise and balanced levels of acid and sugar, and the accumulation of pigment in the grape skin, directly correlates with the quality of wine produced. Many features control air temperature within a particular vineyard. Elevation, latitude, slope, and aspect all converge to form complex relationships with air temperatures; however, the relative degree to which these attributes affect temperatures varies between regions and is not well understood. This study examines the influence of geography and geomorphology on air temperatures within the American Viticultural Areas (AVAs) of the Columbia Basin in eastern Washington and Oregon. The premier vineyards within each AVA, which have been recognized for producing high-quality wine, were equipped with air temperature monitoring stations that collected hourly temperature measurements. A variety of temperature statistics were calculated, including daily average, maximum, and minimum temperatures. From these values, average diurnal variation and growing degree-days (10°C) were calculated. A variety of other statistics were computed, including date of first and last frost and time spent below a minimum temperature threshold. These parameters were compared to the vineyard's elevation, latitude, slope, aspect, and local topography using GPS, ArcCatalog, and GIS in an attempt to determine their relative influences on air temperatures. From these statistics, it was possible to delineate two trends of temperature variation

  6. Seasonal Patterns of Body Temperature Daily Rhythms in Group-Living Cape Ground Squirrels Xerus inauris

    PubMed Central

    Scantlebury, Michael; Danek-Gontard, Marine; Bateman, Philip W.; Bennett, Nigel C.; Manjerovic, Mary-Beth; Joubert, Kenneth E.; Waterman, Jane M.

    2012-01-01

    Organisms respond to cyclical environmental conditions by entraining their endogenous biological rhythms. Such physiological responses are expected to be substantial for species inhabiting arid environments which incur large variations in daily and seasonal ambient temperature (Ta). We measured core body temperature (Tb) daily rhythms of Cape ground squirrels Xerus inauris inhabiting an area of Kalahari grassland for six months from the Austral winter through to the summer. Squirrels inhabited two different areas: an exposed flood plain and a nearby wooded, shady area, and occurred in different social group sizes, defined by the number of individuals that shared a sleeping burrow. Of a suite of environmental variables measured, maximal daily Ta provided the greatest explanatory power for mean Tb whereas sunrise had greatest power for Tb acrophase. There were significant changes in mean Tb and Tb acrophase over time with mean Tb increasing and Tb acrophase becoming earlier as the season progressed. Squirrels also emerged from their burrows earlier and returned to them later over the measurement period. Greater increases in Tb, sometimes in excess of 5°C, were noted during the first hour post emergence, after which Tb remained relatively constant. This is consistent with observations that squirrels entered their burrows during the day to ‘offload’ heat. In addition, greater Tb amplitude values were noted in individuals inhabiting the flood plain compared with the woodland suggesting that squirrels dealt with increased environmental variability by attempting to reduce their Ta-Tb gradient. Finally, there were significant effects of age and group size on Tb with a lower and less variable Tb in younger individuals and those from larger group sizes. These data indicate that Cape ground squirrels have a labile Tb which is sensitive to a number of abiotic and biotic factors and which enables them to be active in a harsh and variable environment. PMID:22558324

  7. Spatial modeling of the highest daily maximum temperature in Korea via max-stable processes

    NASA Astrophysics Data System (ADS)

    Lee, Youngsaeng; Yoon, Sanghoo; Murshed, Md. Sharwar; Kim, Maeng-Ki; Cho, ChunHo; Baek, Hee-Jeong; Park, Jeong-Soo

    2013-11-01

    This paper examines the annual highest daily maximum temperature (DMT) in Korea by using data from 56 weather stations and employing spatial extreme modeling. Our approach is based on max-stable processes (MSP) with Schlather’s characterization. We divide the country into four regions for a better model fit and identify the best model for each region. We show that regional MSP modeling is more suitable than MSP modeling for the entire region and the pointwise generalized extreme value distribution approach. The advantage of spatial extreme modeling is that more precise and robust return levels and some indices of the highest temperatures can be obtained for observation stations and for locations with no observed data, and so help to determine the effects and assessment of vulnerability as well as to downscale extreme events.

  8. Air temperature and precipitation data, Gulkana Glacier, Alaska, 1968-96

    USGS Publications Warehouse

    Kennedy, Ben W.; Mayo, Lawrence R.; Trabant, Dennis C.; March, Rod S.

    1997-01-01

    Daily, monthly, and annual average air temperature and precipitation-catch data were recorded at Gulkana Glacier basin, Alaska, between October 1967 and September 1996. The data set is important because it provides long-term climate information from the highest year-round climatological recording site in Alaska. The daily air temperature data set is 96 percent complete. The daily precipitation data set is 83 percent complete; precipitation data for 1993-96 are missing. Annual data summaries are calculated for each hydrologic year, October 1 through September 30, for years that have 12 months of data. Monthly precipitation-catch and average air temperature summaries are calculated for months with nine or fewer daily records missing. The average annual air temperature recorded at the site from hydrologic year 1968 through 1996 was -4.1 degrees Celsius. The coldest recorded year was 1972 with an average annual temperature of -6.7 degrees Celsius. The warmest year was 1981 with an average annual temperature of -2.6 degrees Celsius. January 1971 was the coldest month with an average temperature of -20.8 degrees Celsius. July 1989 was the warmest month with an average temperature of 8.7 degrees Celsius. January 17, 1971, was the coldest day with an average temperature of -35.0 degrees Celsius. June 15, 1969, was the warmest day with an average temperature of 16.4 degrees Celsius. The average annual precipitation catch recorded at the site from hydrologic year 1968 through 1992 was 1,020 millimeters. The highest annual precipitation catch recorded was 1,572 millimeters in 1981; the lowest was 555 millimeters in 1969. The highest recorded monthly precipitation catch was 448 millimeters in July 1981 and in several different months no precipitation was recorded. The highest daily precipitation catch was 99 millimeters on September 12, 1972, and on many different dates no precipitation was recorded. Because of low gage-catch efficiency the reported annual precipitation

  9. Time Structure of Observed, GCM-Simulated, Downscaled, and Stochastically Generated Daily Temperature Series.

    NASA Astrophysics Data System (ADS)

    Huth, Radan; Kyselý, Jan; Dubrovský, Martin

    2001-10-01

    The time structure of simulated daily maximum and minimum temperature series, produced by several different methods, is compared with observations at six stations in central Europe. The methods are statistical downscaling, stochastic weather generator, and general circulation models (GCMs). Outputs from control runs of two GCMs are examined: ECHAM3 and CCCM2. Four time series are constructed by statistical downscaling using multiple linear regression of 500-hPa heights and 1000-/500-hPa thickness: (i) from observations with variance reproduced by the inflation technique, (ii) from observations with variance reproduced by adding a white noise process, and (iii) from the two GCMs. Two runs of the weather generator were performed, one considering and one neglecting the annual cycle of lag-0 and lag-1 correlations among daily weather characteristics. Standard deviation and skewness of day-to-day temperature changes and lag-1 autocorrelations are examined. For heat and cold waves, the occurrence frequency, mean duration, peak temperature, and mean position within the year are studied.Possible causes of discrepancies between the simulated and observed time series are discussed and identified. They are shown to stem, among others, from (i) the absence of physics in downscaled and stochastically generated series, (ii) inadequacies of treatment of physical processes in GCMs, (iii) assumptions of linearity in downscaling equations, and (iv) properties of the underlying statistical model of the weather generator. In downscaling, variance inflation is preferable to the white noise addition in most aspects as the latter results in highly overestimated day-to-day variability. The inclusion of the annual cycle of correlations into the weather generator does not lead to an overall improvement of the temperature series produced. None of the methods appears to be able to reproduce all the characteristics of time structure correctly.

  10. Characterization of AIRS temperature and water vapor measurement capability using correlative observations

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Eldering, Annmarie; Lee, Sung-Yung

    2005-01-01

    In this presentation we address several fundamental issues in the measurement of temperature and water vapor by AIRS: accuracy, precision, vertical resolution and biases as a function of cloud amount. We use two correlative data sources. First we compare AIRS total water vapor with that from the Advanced microwave Sounding Radiometer for EOS (AMSR-E) instrument, also onboard the Aqua spacecraft. AMSRE uses a mature methodology with a heritage including the operational Special Sensor Microwave Imager (SSM/I) instruments. AIRS and AMSR-E observations are collocated and simultaneous, providing a very large data set for comparison: about 200,000 over-ocean matches daily. We show small cloud-dependent biases between AIRS and AMSR-E total water vapor for several oceanic regions. Our second correlative data source is several hundred dedicated radiosondes launched during AIRS overpasses.

  11. Temperature fluctuations in the lower limbs of young and elderly individuals during activities of daily living.

    PubMed

    Borisov, Vladimir V; Lin, David C

    2014-09-01

    Age-related deficiencies in thermoregulation diminish the capacity to defend against heat loss under conditions often encountered during activities of daily living (ADL). A potential consequence of these deficiencies is that elderly individuals could have colder lower limbs, which would exacerbate the age-related decline in plantarflexor contractile properties and compromise recovery from a tripping incident. Moreover, a common self-perception among the elderly is that their limbs are cold. However, this impression has never been documented, especially under ADL conditions. Our objective was to test the hypothesis that elderly individuals have lower plantarflexor temperatures than their younger counterparts. Skin temperatures above the plantarflexors of elderly and young individuals were continuously recorded during ADL in the winter months and compared under three conditions: quiescent indoor temperature, during a cold challenge, and the recovery period subsequent to the cold challenge. For quiescent indoor periods, differences in skin temperature between the two groups were not statistically significant. During cold exposures, both age and exposure duration were statistically significant factors related to the decrease in skin temperature, with the elderly group maintaining warmer temperatures. In the recovery period following short duration cold exposures, a statistically significant difference between the two groups for the decrease in skin temperature persisted for the first 9min of recovery. The results do not support the hypothesis that the lower limbs of elderly participants are colder. Higher limb temperatures observed in elderly participants were consistent with previous studies of age-related thermoregulatory changes, indicating that deficiencies in vasoconstriction are persistent in ADL. PMID:24909351

  12. The influence of topographic setting and weather type on the correlation between elevation and daily temperature measures in mountainous terrain in the Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Wood, Wendy; Marshall, Shawn

    2016-04-01

    Temperature estimates for hydrological and ecological studies in mountainous regions are often based on lapse rate adjustments using sparse low elevation measurements. These measurements may not be representative of the area where estimates are required. This study examines the effects varying topographic settings under different weather types have on the temperature/elevation relationship. The Foothills Climate Array study recorded hourly temperature between 2004 and 2010 at ˜230 weather stations over an area of approximately 24 000 km2 in the Canadian Rocky mountains, extending to the Canadian prairies. 132 sites are considered mountain sites, comprising a range of elevation values, surface types and varied terrain morphology. Correlations are calculated between all station pairs for daily minimum and maximum temperatures, grouped by weather type for the 2006 data. Topographic and surface type characteristics - horizontal and vertical separation, height above valley bottom, slope aspect and angle and land surface type - for the 10 highest correlated neighbours for each site are examined as a means of determining which of these measures drives a similar behavior in temperature. Results indicate a weak temperature/elevation relationship for daily minimum temperatures. The average temperature/elevation correlation coefficient is -0.31 for daily minimum temperatures, varying from weaker than -0.2 for weather types where cold air pooling is a common occurrence to stronger than -0.6 for cool wet weather days. Daily maximum temperatures have an average correlation coefficient of -0.78, but the correlation weakens to -0.4 for cold weather events. There is a nonlinear maximum temperature/elevation relationship, with weak correlations below 2000 m and stronger correlations at higher elevations. Choosing sites with similar topographic settings does strengthen the correlation coefficient, but the temperature/elevation relationship remains weak due to large day to day

  13. Daily temperature grids for Austria since 1961—concept, creation and applicability

    NASA Astrophysics Data System (ADS)

    Hiebl, Johann; Frei, Christoph

    2016-04-01

    Current interest into past climate change and its potential role for changes in the environment call for spatially distributed climate datasets of high temporal resolution and extending over several decades. To foster such research, we present a new gridded dataset of daily minimum and maximum temperature covering Austria at 1-km resolution and extending back till 1961 at daily time resolution. To account for the complex and highly variable thermal distributions in this high-mountain region, we adapt and employ a recently published interpolation method that estimates nonlinear temperature profiles with altitude and accounts for the non-Euclidean spatial representativity of station measurements. The spatial analysis builds upon 150 station series in and around Austria (homogenised where available), all of which extend over or were gap-filled to cover the entire study period. The restriction to (almost) complete records shall avoid long-term inconsistencies from changes in the station network. Systematic leave-one-out cross-validation reveals interpolation errors (mean absolute error) of about 1 °C. Errors are relatively larger for minimum compared to maximum temperatures, for the interior of the Alps compared to the flatland and for winter compared to summer. Visual comparisons suggest that valley-scale inversions and föhn are more realistically captured in the new compared to existing datasets. The usefulness of the presented dataset (SPARTACUS) is illustrated in preliminary analyses of long-term trends in climate impact indices. These reveal spatially variable and eventually considerable changes in the thermal climate in Austria.

  14. Climate applications for NOAA 1/4° Daily Optimum Interpolation Sea Surface Temperature

    NASA Astrophysics Data System (ADS)

    Boyer, T.; Banzon, P. V. F.; Liu, G.; Saha, K.; Wilson, C.; Stachniewicz, J. S.

    2015-12-01

    Few sea surface temperature (SST) datasets from satellites have the long temporal span needed for climate studies. The NOAA Daily Optimum Interpolation Sea Surface Temperature (DOISST) on a 1/4° grid, produced at National Centers for Environmental Information, is based primarily on SSTs from the Advanced Very High Resolution Radiometer (AVHRR), available from 1981 to the present. AVHRR data can contain biases, particularly when aerosols are present. Over the three decade span, the largest departure of AVHRR SSTs from buoy temperatures occurred during the Mt Pinatubo and El Chichon eruptions. Therefore, in DOISST, AVHRR SSTs are bias-adjusted to match in situ SSTs prior to interpolation. This produces a consistent time series of complete SST fields that is suitable for modelling and investigating local climate phenomena like El Nino or the Pacific warm blob in a long term context. Because many biological processes and animal distributions are temperature dependent, there are also many ecological uses of DOISST (e.g., coral bleaching thermal stress, fish and marine mammal distributions), thereby providing insights into resource management in a changing ocean. The advantages and limitations of using DOISST for different applications will be discussed.

  15. Monthly analysis of indices based on daily minimum temperatures in Serbia

    NASA Astrophysics Data System (ADS)

    Putnikovic, Suzana; Tosic, Ivana; Unkasevic, Miroslava

    2015-04-01

    The following climate indices were analyzed: frost days (FD), cold nights (TN10p), warm nights (TN90p), minimum value of daily minimum temperature (TNn), and tropical nights (TR). Monthly analysis was performed for indices based on the daily minimum temperature at eight stations in Serbia during the period 1950-2009. The non-parametric Mann-Kendall test was used to determine whether the trends were statistically significant. It was found that the trends of FD and TN10p were negative for all the months except for November and December. The significant negative trend of TN10p during the period 1950-2009 was recorded in March, May, August, September and October. There was a positive trend of TN90p, TR for all months and TNn except for October, November and December. The significant positive trend of TN90p was observed in March, May, during the summer months and October, while for TR in July and August, i.e., in the two hottest months. The negative minimum temperature anomaly of about -5.7 °C in February 1956 was obtained for the negative values of the East Atlantic index (EAI) and North Atlantic Oscillation index (NAOI). The positive temperature anomaly of about 3.0 °C in November 2009 was recorded for the positive value of the EAI and small negative value of the NAOI. Hence, the negative/positive anomalies prevailed for the negative/positive values of the EAI. In order to investigate the impact of the low-frequency large-scale variability pattern on the minimum temperature, EAI was compared through a correlation analysis with the time series of the climate indices. It was found that the monthly coefficient of correlation between the EAI and climate indices was negative for FD and TN10p, and positive one for TN90p and TR. The highest monthly correlation was found for FD and TN90p in February and for TN10p and TR in August. Since the highest correlation in value of about 0.7 is obtained in February, it could be concluded that the EA can explain about 50% of the total

  16. On the use of gridded daily temperature data to calculate the extended spring indices phenological models

    NASA Astrophysics Data System (ADS)

    Zurita-Milla, Raul; Mehdipoor, Hamed; Batarseh, Sana; Ault, Toby; Schwartz, Mark D.

    2014-05-01

    Models that predict the timing of recurrent biological events play an important role in supporting the systematic study of phenological changes at a variety of spatial and temporal scales. One set of such models are the extended Spring indices (SI-x). These models predicts a suite of phenological metrics ("first leaf" and "first bloom," "last freeze" and the "damage index") from temperature data and geographic location (to model the duration of the day). The SI-x models were calibrated using historical phenological and weather observations from the continental US. In particular, the models relied on first leaf and first bloom observations for lilac and honeysuckle and on daily minimum and maximum temperature values from a number of weather stations located near to the sites where phenological observations were made. In this work, we study the use of DAYMET (http://daymet.ornl.gov/) to calculate the SI-x models over the continental USA. DAYMET offers daily gridded maximum and minimum temperature values for the period 1980 to 2012. Using an automatic downloader, we downloaded complete DAYMET temperature time series for the over 1100 geographic locations where historical lilac observations were made. The temperature values were parsed and, using the recently available MATLAB code, the SI-x indices were calculated. Subsequently, the predicted first leaf and first bloom dates were compared with historical lilac observations. The RMSE between predicted and observed lilac leaf/bloom dates was calculated after identifying data from the same geographic location and year. Results were satisfactory for the lilac observations in the Eastern US (e.g. the RMSE for the blooming date was of about 5 days). However, the correspondence between the observed and predicted lilac values in the West was rather week (e.g. RMSE for the blooming date of about 22 days). This might indicate that DAYMET temperature data in this region of the US might contain larger uncertainties due to a more

  17. Association between particulate matter and its chemical constituents of urban air pollution and daily mortality or morbidity in Beijing City.

    PubMed

    Li, Pei; Xin, Jinyuan; Wang, Yuesi; Li, Guoxing; Pan, Xiaochuan; Wang, Shigong; Cheng, Mengtian; Wen, Tianxue; Wang, Guangcheng; Liu, Zirui

    2015-01-01

    Recent time series studies have indicated that daily mortality and morbidity are associated with particulate matters. However, about the relative effects and its seasonal patterns of fine particulate matter constituents is particularly limited in developing Asian countries. In this study, we examined the role of particulate matters and its key chemical components of fine particles on both mortality and morbidity in Beijing. We applied several overdispersed Poisson generalized nonlinear models, adjusting for time, day of week, holiday, temperature, and relative humidity, to investigate the association between risk of mortality or morbidity and particulate matters and its constituents in Beijing, China, for January 2005 through December 2009. Particles and several constituents were associated with multiple mortality or morbidity categories, especially on respiratory health. For a 3-day lag, the nonaccident mortality increased by 1.52, 0.19, 1.03, 0.56, 0.42, and 0.32% for particulate matter (PM)2.5, PM10, K(+), SO4(2-), Ca(2+), and NO3(-) based on interquartile ranges of 36.00, 64.00, 0.41, 8.75, 1.43, and 2.24 μg/m(3), respectively. The estimates of short-term effects for PM2.5 and its components in the cold season were 1 ~ 6 times higher than that in the full year on these health outcomes. Most of components had stronger adverse effects on human health in the heavy PM2.5 mass concentrations, especially for K(+), NO3(-), and SO4(2-). This analysis added to the growing body of evidence linking PM2.5 with mortality or morbidity and indicated that excess risks may vary among specific PM2.5 components. Combustion-related products, traffic sources, vegetative burning, and crustal component and resuspended road dust may play a key role in the associations between air pollution and public health in Beijing. PMID:25074829

  18. Association between air pollution and daily consultations with general practitioners for allergic rhinitis in London, United Kingdom.

    PubMed

    Hajat, S; Haines, A; Atkinson, R W; Bremner, S A; Anderson, H R; Emberlin, J

    2001-04-01

    Few published studies have looked at the health effects of air pollution in the primary care setting, and most have concentrated on lower rather than upper respiratory diseases. The authors investigated the association of daily consultations with general practitioners for allergic rhinitis with air pollution in London, United Kingdom. Generalized additive models were used to regress time series of daily numbers of patients consulting for allergic rhinitis against 1992--1994 measures of air pollution, after control for possible confounders and adjustment for overdispersion and serial correlation. In children, a 10th--90th percentile increase in sulfur dioxide (SO(2)) levels 4 days prior to consultation (13-31 microg/m(3)) was associated with a 24.5% increase in consultations (95% confidence interval: 14.6, 35.2; p < 0.00001); a 10th--90th percentile increase in averaged ozone (O(3)) concentrations on the day of consultation and the preceding 3 days (6--29 parts per billion) was associated with a 37.6% rise (95% confidence interval: 23.3, 53.5; p < 0.00001). For adults, smaller effect sizes were observed for SO(2) and O(3). The association with SO(2) remained highly significant in the presence of other pollutants. This study suggests that air pollution worsens allergic rhinitis symptoms, leading to substantial increases in consultations. SO(2) and O(3) seem particularly responsible, and both seem to contribute independently. PMID:11282799

  19. Trends and variability of daily temperature extremes during 1960-2012 in the Yangtze River Basin, China

    NASA Astrophysics Data System (ADS)

    Guan, Yinghui; Zhang, Xunchang; Zheng, Fenli; Wang, Bin

    2015-01-01

    The variability of surface air temperature extremes has been the focus of attention during the past several decades, and may exert a great influence on the global hydrologic cycle and energy balance through thermal forcing. Based on daily minimum (TN) and maximum temperature (TX) observed by the China Meteorological Administration at 143 meteorological stations in the Yangtze River Basin (YRB), a suite of temperature indices recommended by the Expert Team on Climate Change Detection and Indices, with a primary focus on extreme events, were computed and analyzed for the period of 1960-2012 for this area. The results show widespread significant changes in all temperature indices associated with warming in the YRB during 1960-2012. On the whole, cold-related indices, i.e., cold nights, cold days, frost days, icing days and cold spell duration index significantly decreased by - 3.45, - 1.03, - 3.04, - 0.42 and - 1.6 days/decade, respectively. In contrast, warm-related indices such as warm nights, warm days, summer days, tropical nights and warm spell duration index significantly increased by 2.95, 1.71, 2.16, 1.05 and 0.73 days/decade. Minimum TN, maximum TN, minimum TX and maximum TX increased significantly by 0.42, 0.18, 0.19 and 0.14 °C/decade. Because of a faster increase in minimum temperature than maximum temperature, the diurnal temperature range (DTR) exhibited a significant decreasing trend of - 0.09 °C/decade for the whole YRB during 1960-2012. However, the decreasing trends all occurred in 1960-1985, while increasing trends though insignificant were found in all sub-regions and the whole YRB during 1986-2012. Geographically, stations in the eastern Tibet Plateau and northeastern YRB showed stronger trends in almost all temperature indices. Time series analysis indicated that the YRB was dominated by a general cooling trend before the mid-1980s, but a warming trend afterwards. In general, the overall warming in the YRB was mainly due to the warming in 1986

  20. Ambient air pollution, temperature and out-of-hospital coronary deaths in Shanghai, China.

    PubMed

    Dai, Jinping; Chen, Renjie; Meng, Xia; Yang, Changyuan; Zhao, Zhuohui; Kan, Haidong

    2015-08-01

    Few studies have evaluated the effects of ambient air pollution and temperature in triggering out-of-hospital coronary deaths (OHCDs) in China. We evaluated the associations of air pollution and temperature with daily OHCDs in Shanghai, China from 2006 to 2011. We applied an over-dispersed generalized additive model and a distributed lag nonlinear model to analyze the effects of air pollution and temperature, respectively. A 10 μg/m(3) increase in the present-day PM10, PM2.5, SO2, NO2 and CO were associated with increases in OHCD mortality of 0.49%, 0.68%, 0.88%, 1.60% and 0.08%, respectively. A 1 °C decrease below the minimum-mortality temperature corresponded to a 3.81% increase in OHCD mortality on lags days 0-21, and a 1 °C increase above minimum-mortality temperature corresponded to a 4.61% increase over lag days 0-3. No effects were found for in-hospital coronary deaths. This analysis suggests that air pollution, low temperature and high temperature may increase the risk of OHCDs. PMID:25875162

  1. Modeling Comparative Daily Enrollment Indicators To Aid Intelligent College Decisions. AIR 2001 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Lajubutu, Oyebanjo A.

    This paper shows how three critical enrollment indicators drawn from a relationship database were used to guide planning and management decisions. The paper discusses the guidelines for the development of the model, attributes needed, variables to be calculated, and other issues that may improve the effectiveness and efficiency of daily enrollment…

  2. Generating daily high spatial land surface temperatures by combining ASTER and MODIS land surface temperature products for environmental process monitoring.

    PubMed

    Wu, Mingquan; Li, Hua; Huang, Wenjiang; Niu, Zheng; Wang, Changyao

    2015-08-01

    There is a shortage of daily high spatial land surface temperature (LST) data for use in high spatial and temporal resolution environmental process monitoring. To address this shortage, this work used the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), and the Spatial and Temporal Data Fusion Approach (STDFA) to estimate high spatial and temporal resolution LST by combining Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) LST and Moderate Resolution Imaging Spectroradiometer (MODIS) LST products. The actual ASTER LST products were used to evaluate the precision of the combined LST images using the correlation analysis method. This method was tested and validated in study areas located in Gansu Province, China. The results show that all the models can generate daily synthetic LST image with a high correlation coefficient (r) of 0.92 between the synthetic image and the actual ASTER LST observations. The ESTARFM has the best performance, followed by the STDFA and the STARFM. Those models had better performance in desert areas than in cropland. The STDFA had better noise immunity than the other two models. PMID:26165141

  3. Solar Eclipse Effect on Shelter Air Temperature

    NASA Technical Reports Server (NTRS)

    Segal, M.; Turner, R. W.; Prusa, J.; Bitzer, R. J.; Finley, S. V.

    1996-01-01

    Decreases in shelter temperature during eclipse events were quantified on the basis of observations, numerical model simulations, and complementary conceptual evaluations. Observations for the annular eclipse on 10 May 1994 over the United States are presented, and these provide insights into the temporal and spatial changes in the shelter temperature. The observations indicated near-surface temperature drops of as much as 6 C. Numerical model simulations for this eclipse event, which provide a complementary evaluation of the spatial and temporal patterns of the temperature drops, predict similar decreases. Interrelationships between the temperature drop, degree of solar irradiance reduction, and timing of the peak eclipse are also evaluated for late spring, summer, and winter sun conditions. These simulations suggest that for total eclipses the drops in shelter temperature in midlatitudes can be as high as 7 C for a spring morning eclipse.

  4. Spatial distribution of air temperature in Toruń (Central Poland) and its causes

    NASA Astrophysics Data System (ADS)

    Przybylak, Rajmund; Uscka-Kowalkowska, Joanna; Araźny, Andrzej; Kejna, Marek; Kunz, Mieczysław; Maszewski, Rafał

    2015-09-01

    In this article, the results of an investigation into the air temperature pattern and development (including the urban heat island (UHI)) in Toruń (central Poland) are presented. For the analysis, daily mean temperature (Ti) as well as daily maximum (Tmax) and minimum (Tmin) temperatures for 2012 gathered for 20 sites, evenly distributed in the area of city, have been taken as source data. Additionally, in order to provide more extensive characteristics of the diversity of the air temperature in the study area, the diurnal temperature range (DTR) and the number of the so-called characteristic days were calculated as well. The impact of weather conditions (cloudiness and wind speed), atmospheric circulation, urban morphological parameters and land cover on the UHI in the study area was investigated. In Toruń, according to the present study, the average UHI intensity in 2012 was equal to 1.0 °C. The rise of cloudiness and wind speed led to a decrease of the magnitude of the UHI. Generally, in most cases, anticyclonic situations favour increased thermal contrast between rural and city areas, particularly in summer. Warm western circulation types significantly reduced temperature differences in the western side of the city and enlarged them in the eastern side of the city. Eastern cold types also have a similar influence on air temperature differences. Positive and statistically significant correlations have been found between the percentage of built-up areas (sealing factor) and air temperature. Conversely, sky view factor (SVF) reveals negative correlations which are statistically significant only for Tmin.

  5. Toward daily climate scenarios for Canadian Arctic coastal zones with more realistic temperature-precipitation interdependence

    NASA Astrophysics Data System (ADS)

    Gennaretti, Fabio; Sangelantoni, Lorenzo; Grenier, Patrick

    2015-12-01

    The interdependence between climatic variables should be taken into account when developing climate scenarios. For example, temperature-precipitation interdependence in the Arctic is strong and impacts on other physical characteristics, such as the extent and duration of snow cover. However, this interdependence is often misrepresented in climate simulations. Here we use two two-dimensional (2-D) methods for statistically adjusting climate model simulations to develop plausible local daily temperature (Tmean) and precipitation (Pr) scenarios. The first 2-D method is based on empirical quantile mapping (2Dqm) and the second on parametric copula models (2Dcopula). Both methods are improved here by forcing the preservation of the modeled long-term warming trend and by using moving windows to obtain an adjustment specific to each day of the year. These methods were applied to a representative ensemble of 13 global climate model simulations at 26 Canadian Arctic coastal sites and tested using an innovative cross-validation approach. Intervariable dependence was evaluated using correlation coefficients and empirical copula density plots. Results show that these 2-D methods, especially 2Dqm, adjust individual distributions of climatic time series as adequately as one common one-dimensional method (1Dqm) does. Furthermore, although 2Dqm outperforms the other methods in reproducing the observed temperature-precipitation interdependence over the calibration period, both 2Dqm and 2Dcopula perform similarly over the validation periods. For cases where temperature-precipitation interdependence is important (e.g., characterizing extreme events and the extent and duration of snow cover), both 2-D methods are good options for producing plausible local climate scenarios in Canadian Arctic coastal zones.

  6. "Values that vanish into thin air": nurses' experience of ethical values in their daily work.

    PubMed

    Bentzen, Gro; Harsvik, Anita; Brinchmann, Berit Støre

    2013-01-01

    The objective of this study was to examine how nurses experience ethical values as they are expressed in daily practice in a Norwegian hospital. A growing focus in Western healthcare on effectiveness, production, and retrenchment has an influence on professional nursing standards and nursing values. Lack of resources and subsequent ethically difficult prioritizations imply a strain on nurses. This study is qualitative. Data collection was carried out by conducting 4 focus group interviews. The data was analyzed using content analysis. The results are presented in two main themes: (1) values and reflection are important for the nurses; (2) time pressure and nursing frustrations in daily work. The results demonstrate that nurses believe the ethical values to be of crucial importance for the quality of nursing; however, the ethical values are often repressed in daily practice. This results in feeling of frustration, fatigue, and guilty conscience for the nurses. There is a need for changes in the system which could contribute to the development of a caring culture that would take care of both patients and nurses. In an endeavour to reach this goal, one could apply caritative leadership theory, which is grounded on the caritas motive, human love, and mercy. PMID:24024030

  7. Associations of endothelial function and air temperature in diabetic subjects

    EPA Science Inventory

    Background and Objective: Epidemiological studies consistently show that air temperature is associated with changes in cardiovascular morbidity and mortality. However, the biological mechanisms underlying the association remain largely unknown. As one index of endothelial functio...

  8. Evaluation of interventions to reduce air pollution from biomass smoke on mortality in Launceston, Australia: retrospective analysis of daily mortality, 1994-2007

    PubMed Central

    Hanigan, Ivan C; Henderson, Sarah B; Morgan, Geoffrey G

    2013-01-01

    Objective To assess the effect of reductions in air pollution from biomass smoke on daily mortality. Design Age stratified time series analysis of daily mortality with Poisson regression models adjusted for the effects of temperature, humidity, day of week, respiratory epidemics, and secular mortality trends, applied to an intervention and control community. Setting Central Launceston, Australia, a town in which coordinated strategies were implemented to reduce pollution from wood smoke and central Hobart, a comparable city in which there were no specific air quality interventions. Participants 67 000 residents of central Launceston and 148 000 residents of central Hobart (at 2001 census). Interventions Community education campaigns, enforcement of environmental regulations, and a wood heater replacement programme to reduce ambient pollution from residential wood stoves started in the winter of 2001. Main outcome measures Changes in daily all cause, cardiovascular, and respiratory mortality during the 6.5 year periods before and after June 2001 in Launceston and Hobart. Results Mean daily wintertime concentration of PM10 (particulate matter with particle size <10 µm diameter) fell from 44 µg/m3 during 1994-2000 to 27 µg/m3 during 2001-07 in Launceston. The period of improved air quality was associated with small non-significant reductions in annual mortality. In males the observed reductions in annual mortality were larger and significant for all cause (−11.4%, 95% confidence interval −19.2% to −2.9%; P=0.01), cardiovascular (−17.9%, −30.6% to −2.8%; P=0.02), and respiratory (−22.8%, −40.6% to 0.3%; P=0.05) mortality. In wintertime reductions in cardiovascular (−19.6%, −36.3% to 1.5%; P=0.06) and respiratory (−27.9%, −49.5% to 3.1%; P=0.07) mortality were of borderline significance (males and females combined). There were no significant changes in mortality in the control city of Hobart. Conclusions Decreased air pollution from

  9. APHRODITE daily precipitation and temperature dataset: Development, QC, Homogenization and Spatial Correlation

    NASA Astrophysics Data System (ADS)

    Yatagai, Akiyo; Zhao, Tianbao

    2014-05-01

    A daily gridded precipitation dataset for the period 1951-2007 was created by collecting and analyzing rain-gauge observation data across Asia through the activities of the Asian Precipitation - Highly Resolved Observational Data Integration Towards Evaluation (APHRODITE) of water resources project. They are available at http://www.chikyu.ac.jp/precip/. Utilization of station data is ideal for analyses of climatic trends, especially for those of extreme events. However, there was an increasing demand for accurate high-resolution gauge-based precipitation analyses. Rain-gauge based products are sometimes used for assessing trends of climate models or that of river runoff through driving hydrological models, because they are convenient and long records. On the other hand, some information is lost during the gridding process. Hence, in-house results of testing interpolation scheme, quality control and homogenization may give important information for the users. We will present such results as well as our quality control (QC) in the APHRODITE project activities. Before gridding, 14 objective QC steps were applied to the rain-gauge data, which mainly includes position checking, duplicate data checking and inhomogeneity and spatiotemporal isolation etc. Details are described in Hamada et al. (2011). For Chinese data, basic QC steps such as duplicate checking and position checking have been made by the local meteorological agency. Hence we made homogenization test and spatial correlation analyses separately. For 756 Chinese daily temperature stations, we applied Multiple Analysis of Series for Homogenization (MASH) developed by Szentimrey (1999, 2008). The results show this statistical method we used has a good performance to detect the discontinuities in climate series caused by station relocation, instrument change etc. regardless of the absence of metadata. Through the homogenization, most of discontinuities existed in original temperature data can be removed, and the

  10. Trends and variability of daily temperature extremes during 1960-2012 in the Yangtze River Basin, China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The variability of temperature extremes has been the focus of attention during the past few decades, and may exert a great influence on the global hydrologic cycle and energy balance through thermal forcing. Based on daily minimum and maximum temperature observed by the China Meteorological Administ...

  11. High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to

  12. The EUSTACE break-detection algorithm for a global air temperature dataset

    NASA Astrophysics Data System (ADS)

    Brugnara, Yuri; Auchmann, Renate; Brönnimann, Stefan

    2016-04-01

    EUSTACE (EU Surface Temperature for All Corners of Earth) is an EU-funded project that has started in 2015; its goal is to produce daily estimates of surface air temperature since 1850 across the globe for the first time by combining surface and satellite data using novel statistical techniques. For land surface data (LSAT), we assembled a global dataset of ca. 35000 stations where daily maximum and minimum air temperature observations are available, taking advantage of the most recent data rescue initiatives. Beside quantity, data quality also plays an important role for the success of the project; in particular, the assessment of the homogeneity of the temperature series is crucial in order to obtain a product suitable for the study of climate change. This poster describes a fully automatic state-of-the-art break-detection algorithm that we developed for the global LSAT dataset. We evaluate the performance of the method using artificial benchmarks and present various statistics related to frequency and amplitude of the inhomogeneities detected in the real data. We show in particular that long-term temperature trends calculated from raw data are more often underestimated than overestimated and that this behaviour is mostly related to inhomogeneities affecting maximum temperatures.

  13. Parametric time-series analysis of daily air pollutants of city of Shumen, Bulgaria

    NASA Astrophysics Data System (ADS)

    Ivanov, A.; Voynikova, D.; Gocheva-Ilieva, S.; Boyadzhiev, D.

    2012-10-01

    The urban air pollution is one of the main factors determining the ambient air quality, which affects on the human health and the environment. In this paper parametric time series models are obtained for studying the distribution over time of primary pollutants as sulphur and nitrogen oxides, particulate matter and a secondary pollutant ground level ozon in the town of Shumen, Bulgaria. The methods of factor analysis and ARIMA are used to carry out the time series analysis based on hourly average data in 2011 and first quarter of 2012. The constructed models are applied for a short-term air pollution forecasting. The results are estimated on the basis of national and European regulation indices. The sources of pollutants in the region and their harmful effects on human health are also discussed.

  14. Lessons Learned from AIRS: Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2011-01-01

    This slide presentation reviews the use of shortwave channels available to the Atmospheric Infrared Sounder (AIRS) to improve the determination of surface and atmospheric temperatures. The AIRS instrument is compared with the Infrared Atmospheric Sounding Interferometer (IASI) on-board the MetOp-A satellite. The objectives of the AIRS/AMSU were to (1) provide real time observations to improve numerical weather prediction via data assimilation, (2) Provide observations to measure and explain interannual variability and trends and (3) Use of AIRS product error estimates allows for QC optimized for each application. Successive versions in the AIRS retrieval methodology have shown significant improvement.

  15. A Procedure for Inter-Comparing the Skill of Regional-Scale Air Quality Model Simulations of Daily Maximum 8-Hour Ozone Concentrations

    EPA Science Inventory

    An operational model evaluation procedure is described to quantitatively assess the relative skill among several regionalscale air quality models simulating various percentiles of the cumulative frequency distribution of observed daily maximum 8-h ozone concentrations. Bootstrap ...

  16. Effect of Initial Mixture Temperature on Flame Speed of Methane-Air, Propane-Air, and Ethylene-Air Mixtures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L

    1952-01-01

    Flame speeds based on the outer edge of the shadow cast by the laminar Bunsen cone were determined as functions of composition for methane-air mixtures at initial mixture temperatures ranging from -132 degrees to 342 degrees c and for propane-air and ethylene-air mixtures at initial mixture temperatures ranging from -73 degrees to 344 degrees c. The data showed that maximum flame speed increased with temperature at an increasing rate. The percentage change in flame speed with change in initial temperature for the three fuels followed the decreasing order, methane, propane, and ethylene. Empirical equations were determined for maximum flame speed as a function of initial temperature over the temperature range covered for each fuel. The observed effect of temperature on flame speed for each of the fuels was reasonably well predicted by either the thermal theory as presented by Semenov or the square-root law of Tanford and Pease.

  17. DAILY VARIATION OF PARTICULATE AIR POLLUTION AND POOR CARDIAC AUTONOMIC CONTROL IN THE ELDERLY

    EPA Science Inventory

    Particulate matter air pollution (PM) has been related to cardiovascular disease mortality in a number of recent studies. The pathophysiologic mechanisms for this association are under study. Low heart rate variability, a marker of poor cardiac autonomic control, is associated wi...

  18. Characterizing Air Temperature Changes in the Tarim Basin over 1960–2012

    PubMed Central

    Peng, Dongmei; Wang, Xiujun; Zhao, Chenyi; Wu, Xingren; Jiang, Fengqing; Chen, Pengxiang

    2014-01-01

    There has been evidence of warming rate varying largely over space and between seasons. However, little has been done to evaluate the spatial and temporal variability of air temperature in the Tarim Basin, northwest China. In this study, we collected daily air temperature from 19 meteorological stations for the period of 1960–2012, and analyzed annual mean temperature (AMT), the annual minimum (Tmin) and maximum temperature (Tmax), and mean temperatures of all twelve months and four seasons and their anomalies. Trend analyses, standard deviation of the detrended anomaly (SDDA) and correlations were carried out to characterize the spatial and temporal variability of various mean air temperatures. Our data showed that increasing trend was much greater in the Tmin (0.55°C/10a) than in the AMT (0.25°C/10a) and Tmax (0.12°C/10a), and the fluctuation followed the same order. There were large spatial variations in the increasing trends of both AMT (from −0.09 to 0.43 °C/10a) and Tmin (from 0.15 to 1.12°C/10a). Correlation analyses indicated that AMT had a significantly linear relationship with Tmin and the mean temperatures of four seasons. There were also pronounced changes in the monthly air temperature from November to March at decadal time scale. The seasonality (i.e., summer and winter difference) of air temperature was stronger during the period of 1960–1979 than over the recent three decades. Our preliminary analyses indicated that local environmental conditions (such as elevation) might be partly responsible for the spatial variability, and large scale climate phenomena might have influences on the temporal variability of air temperature in the Tarim Basin. In particular, there was a significant correlation between index of El Niño-Southern Oscillation (ENSO) and air temperature of May (P = 0.004), and between the index of Pacific Decadal Oscillation (PDO) and air temperature of July (P = 0.026) over the interannual to decadal time scales. PMID

  19. Characterizing air temperature changes in the Tarim Basin over 1960-2012.

    PubMed

    Peng, Dongmei; Wang, Xiujun; Zhao, Chenyi; Wu, Xingren; Jiang, Fengqing; Chen, Pengxiang

    2014-01-01

    There has been evidence of warming rate varying largely over space and between seasons. However, little has been done to evaluate the spatial and temporal variability of air temperature in the Tarim Basin, northwest China. In this study, we collected daily air temperature from 19 meteorological stations for the period of 1960-2012, and analyzed annual mean temperature (AMT), the annual minimum (T min) and maximum temperature (Tmax), and mean temperatures of all twelve months and four seasons and their anomalies. Trend analyses, standard deviation of the detrended anomaly (SDDA) and correlations were carried out to characterize the spatial and temporal variability of various mean air temperatures. Our data showed that increasing trend was much greater in the T min (0.55°C/10a) than in the AMT (0.25°C/10a) and Tmax (0.12°C/10a), and the fluctuation followed the same order. There were large spatial variations in the increasing trends of both AMT (from -0.09 to 0.43 °C/10a) and T min (from 0.15 to 1.12°C/10a). Correlation analyses indicated that AMT had a significantly linear relationship with T min and the mean temperatures of four seasons. There were also pronounced changes in the monthly air temperature from November to March at decadal time scale. The seasonality (i.e., summer and winter difference) of air temperature was stronger during the period of 1960-1979 than over the recent three decades. Our preliminary analyses indicated that local environmental conditions (such as elevation) might be partly responsible for the spatial variability, and large scale climate phenomena might have influences on the temporal variability of air temperature in the Tarim Basin. In particular, there was a significant correlation between index of El Niño-Southern Oscillation (ENSO) and air temperature of May (P = 0.004), and between the index of Pacific Decadal Oscillation (PDO) and air temperature of July (P = 0.026) over the interannual to decadal time scales. PMID:25375648

  20. Observations of Cooling Summer Daytime Temperatures (1948-2005) in Growing Urban Coastal California Air Basins

    NASA Astrophysics Data System (ADS)

    Bornstein, R.; Lebassi, B.; Gonzalez, J.

    2008-12-01

    The study evaluated long-term (1948-2005) air temperatures in California (CA) during summer (June- August). The aggregate CA results showed asymmetric warming, as daily minimum temperatures increased faster than daily maximum temperatures. The spatial distributions of daily maximum temperatures in the heavily urbanized South Coast and San Francisco Bay Area air basins, however, exhibited a complex pattern, with cooling at low-elevation (mainly urban) coastal-areas and warming at (mainly rural) inland areas. Previous studies have suggested that cooling summer max temperatures in CA were due to increased irrigation, coastal upwelling, or cloud cover. The current hypothesis, however, is that this temperature pattern arises from a 'reverse-reaction' to greenhouse gas (GHG) induced global-warming. In this hypothesis, the global warming of inland areas resulted in an increased (cooling) sea breeze activity in coastal areas. The coastal cooling thus resulted as urban heat island (UHI) warming was weaker than the reverse-reaction cooling; if there was no UHI effect, then the cooling would be even stronger. The cooling or warming trends at several pairs of nearby urban and non- urban sites were compared in an effort to separate out the urban heat island (UHI) and global warming components of the trend. Average temperatures from global circulation models show warming that decreases from inland areas of California to its coastal areas. Such large scale models, however, cannot resolve these smaller scale topographic and coastal effects. Meso-scale modeling on a 4 km grid is thus being carried out to evaluate the contributions from GHG global-warming and land-use changes, including UHI development, to the observed trends. Significant societal impacts may result from this observed reverse-reaction to GHG- warming; possible beneficial effects include decreased maximum: O3 levels, human thermal-stress, and per- capita energy requirements for cooling.

  1. Merging daily sea surface temperature data from multiple satellites using a Bayesian maximum entropy method

    NASA Astrophysics Data System (ADS)

    Tang, Shaolei; Yang, Xiaofeng; Dong, Di; Li, Ziwei

    2015-12-01

    Sea surface temperature (SST) is an important variable for understanding interactions between the ocean and the atmosphere. SST fusion is crucial for acquiring SST products of high spatial resolution and coverage. This study introduces a Bayesian maximum entropy (BME) method for blending daily SSTs from multiple satellite sensors. A new spatiotemporal covariance model of an SST field is built to integrate not only single-day SSTs but also time-adjacent SSTs. In addition, AVHRR 30-year SST climatology data are introduced as soft data at the estimation points to improve the accuracy of blended results within the BME framework. The merged SSTs, with a spatial resolution of 4 km and a temporal resolution of 24 hours, are produced in the Western Pacific Ocean region to demonstrate and evaluate the proposed methodology. Comparisons with in situ drifting buoy observations show that the merged SSTs are accurate and the bias and root-mean-square errors for the comparison are 0.15°C and 0.72°C, respectively.

  2. The variability of California summertime marine stratus: Impacts on surface air temperatures

    NASA Astrophysics Data System (ADS)

    Iacobellis, Sam F.; Cayan, Daniel R.

    2013-08-01

    study investigates the variability of clouds, primarily marine stratus clouds, and how they are associated with surface temperature anomalies over California, especially along the coastal margin. We focus on the summer months of June to September when marine stratus are the dominant cloud type. Data used include satellite cloud reflectivity (cloud albedo) measurements, hourly surface observations of cloud cover and air temperature at coastal airports, and observed values of daily surface temperature at stations throughout California and Nevada. Much of the anomalous variability of summer clouds is organized over regional patterns that affect considerable portions of the coast, often extend hundreds of kilometers to the west and southwest over the North Pacific, and are bounded to the east by coastal mountains. The occurrence of marine stratus is positively correlated with both the strength and height of the thermal inversion that caps the marine boundary layer, with inversion base height being a key factor in determining their inland penetration. Cloud cover is strongly associated with surface temperature variations. In general, increased presence of cloud (higher cloud albedo) produces cooler daytime temperatures and warmer nighttime temperatures. Summer daytime temperature fluctuations associated with cloud cover variations typically exceed 1°C. The inversion-cloud albedo-temperature associations that occur at daily timescales are also found at seasonal timescales.

  3. The variability of California summertime marine stratus: impacts on surface air temperatures

    USGS Publications Warehouse

    Iacobellis, Sam F.; Cayan, Daniel R.

    2013-01-01

    This study investigates the variability of clouds, primarily marine stratus clouds, and how they are associated with surface temperature anomalies over California, especially along the coastal margin. We focus on the summer months of June to September when marine stratus are the dominant cloud type. Data used include satellite cloud reflectivity (cloud albedo) measurements, hourly surface observations of cloud cover and air temperature at coastal airports, and observed values of daily surface temperature at stations throughout California and Nevada. Much of the anomalous variability of summer clouds is organized over regional patterns that affect considerable portions of the coast, often extend hundreds of kilometers to the west and southwest over the North Pacific, and are bounded to the east by coastal mountains. The occurrence of marine stratus is positively correlated with both the strength and height of the thermal inversion that caps the marine boundary layer, with inversion base height being a key factor in determining their inland penetration. Cloud cover is strongly associated with surface temperature variations. In general, increased presence of cloud (higher cloud albedo) produces cooler daytime temperatures and warmer nighttime temperatures. Summer daytime temperature fluctuations associated with cloud cover variations typically exceed 1°C. The inversion-cloud albedo-temperature associations that occur at daily timescales are also found at seasonal timescales.

  4. A physically based analytical spatial air temperature and humidity model

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Endreny, Theodore A.; Nowak, David J.

    2013-09-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat storage based on semiempirical functions and generates spatially distributed estimates based on inputs of topography, land cover, and the weather data measured at a reference site. The model assumes that for all grids under the same mesoscale climate, grid air temperature and humidity are modified by local variation in absorbed solar radiation and the partitioning of sensible and latent heat. The model uses a reference grid site for time series meteorological data and the air temperature and humidity of any other grid can be obtained by solving the heat flux network equations. PASATH was coupled with the USDA iTree-Hydro water balance model to obtain evapotranspiration terms and run from 20 to 29 August 2010 at a 360 m by 360 m grid scale and hourly time step across a 285 km2 watershed including the urban area of Syracuse, NY. PASATH predictions were tested at nine urban weather stations representing variability in urban topography and land cover. The PASATH model predictive efficiency R2 ranged from 0.81 to 0.99 for air temperature and 0.77 to 0.97 for dew point temperature. PASATH is expected to have broad applications on environmental and ecological models.

  5. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  6. Effects of air and water temperatures on resting metabolism of auklets and other diving birds.

    PubMed

    Richman, Samantha E; Lovvorn, James R

    2011-01-01

    For small aquatic endotherms, heat loss while floating on water can be a dominant energy cost, and requires accurate estimation in energetics models for different species. We measured resting metabolic rate (RMR) in air and on water for a small diving bird, the Cassin's auklet (Ptychoramphus aleuticus), and compared these results to published data for other diving birds of diverse taxa and sizes. For 8 Cassin's auklets (~165 g), the lower critical temperature was higher on water (21 °C) than in air (16 °C). Lowest values of RMR (W kg⁻¹) averaged 19% higher on water (12.14 ± 3.14 SD) than in air (10.22 ± 1.43). At lower temperatures, RMR averaged 25% higher on water than in air, increasing with similar slope. RMR was higher on water than in air for alcids, cormorants, and small penguins but not for diving ducks, which appear exceptionally resistant to heat loss in water. Changes in RMR (W) with body mass either in air or on water were mostly linear over the 5- to 20-fold body mass ranges of alcids, diving ducks, and penguins, while cormorants showed no relationship of RMR with mass. The often large energetic effects of time spent floating on water can differ substantially among major taxa of diving birds, so that relevant estimates are critical to understanding their patterns of daily energy use. PMID:21527823

  7. Rapid fluctuations of the air and surface temperature in the city of Bucharest (Romania)

    NASA Astrophysics Data System (ADS)

    Cheval, Sorin; Dumitrescu, Alexandru; Hustiu, Mihaita-Cristinel

    2016-04-01

    Urban areas derive significant changes of the ambient temperature generating specific challenges for society and infrastructure. Extreme temperature events, heat and cold waves affect the human comfort, increase the health risk, and require specific building regulations and emergency preparedness, strongly related to the magnitude and frequency of the thermal hazards. Rapid changes of the temperature put a particular stress for the urban settlements, and the topic has been approached constantly in the scientific literature. Due to its geographical position in a plain area with a temperate climate and noticeable continental influence, the city of Bucharest (Romania) deals with high seasonal and daily temperature variations. However, rapid fluctuations also occur at sub-daily scale caused by cold or warm air advections or by very local effects (e.g. radiative heat exchange, local precipitation). For example, in the area of Bucharest, the cold fronts of the warm season may trigger temperature decreasing up to 10-15 centigrades / hour, while warm advections lead to increasing of 1-2 centigrades / hour. This study focuses on the hourly and sub-hourly temperature variations over the period November 2014 - February 2016, using air temperature data collected from urban sensors and meteorological stations of the national network, and land surface temperature data obtained from satellite remote sensing. The analysis returns different statistics, such as magnitude, intensity, frequency, simultaneous occurrence and areal coverage of the rapid temperature fluctuations. Furthermore, the generating factors for each case study are assessed, and the results are used to define some preliminary patterns and enhance the urban temperature forecast at fine scale. The study was funded by the Romanian Programme Partnership in Priority Domains, PN - II - PCCA - 2013 - 4 - 0509 - Reducing UHI effects to improve urban comfort and balance energy consumption in Bucharest (REDBHI).

  8. Using Satellite-Based Spatiotemporal Resolved Air Temperature Exposure to Study the Association between Ambient Air Temperature and Birth Outcomes in Massachusetts

    PubMed Central

    Melly, Steven J.; Coull, Brent A.; Nordio, Francesco; Schwartz, Joel D.

    2015-01-01

    Background Studies looking at air temperature (Ta) and birth outcomes are rare. Objectives We investigated the association between birth outcomes and daily Ta during various prenatal exposure periods in Massachusetts (USA) using both traditional Ta stations and modeled addresses. Methods We evaluated birth outcomes and average daily Ta during various prenatal exposure periods in Massachusetts (USA) using both traditional Ta stations and modeled address Ta. We used linear and logistic mixed models and accelerated failure time models to estimate associations between Ta and the following outcomes among live births > 22 weeks: term birth weight (≥ 37 weeks), low birth weight (LBW; < 2,500 g at term), gestational age, and preterm delivery (PT; < 37 weeks). Models were adjusted for individual-level socioeconomic status, traffic density, particulate matter ≤ 2.5 μm (PM2.5), random intercept for census tract, and mother’s health. Results Predicted Ta during multiple time windows before birth was negatively associated with birth weight: Average birth weight was 16.7 g lower (95% CI: –29.7, –3.7) in association with an interquartile range increase (8.4°C) in Ta during the last trimester. Ta over the entire pregnancy was positively associated with PT [odds ratio (OR) = 1.02; 95% CI: 1.00, 1.05] and LBW (OR = 1.04; 95% CI: 0.96, 1.13). Conclusions Ta during pregnancy was associated with lower birth weight and shorter gestational age in our study population. Citation Kloog I, Melly SJ, Coull BA, Nordio F, Schwartz JD. 2015. Using satellite-based spatiotemporal resolved air temperature exposure to study the association between ambient air temperature and birth outcomes in Massachusetts. Environ Health Perspect 123:1053–1058; http://dx.doi.org/10.1289/ehp.1308075 PMID:25850104

  9. Parameterizations of daily temperature standard deviation for modeling ice sheet mass balances using a temperature-index method under paleoclimate conditions

    NASA Astrophysics Data System (ADS)

    Erokhina, Olga; Rogozhina, Irina

    2016-04-01

    A number of recent studies have suggested time-dependent parameterizations of daily temperature standard deviation for modelling surface mass balances of ice sheets and glaciers using a temperature-index method. These have been inferred from in-situ measurements and climate reanalysis data, which are only available on yearly to decadal time scales. To date, the existing literature has not explored their applicability to climate conditions that are different from those of today. This study presents an ensemble of simulations of the Greenland Ice Sheet's history since the Last Glacial Maximum to assess the performance of existing parameterizations of daily temperature standard deviation on millennial time scales. To limit the influence of the uncertainties arising from poorly constrained external and internal factors we adopt climate strategies of different complexities and a sensitivity analysis of ice sheet model parameters. Our study reveals that previously proposed parameterizations of daily temperature standard deviation have a limited performance during the deglaciation stage, failing to simulate the retreat of ice masses as suggested by geological reconstructions. In contrast multiple studies that use constant values of daily temperature standard deviation within the range of 4 to 5°C receive support from our analysis, implying that either the ice sheet model used is missing the fundamental physics necessary to capture complex processes associated with rapid deglaciation or the values of daily temperature standard deviation suggested by parameterizations based on present-day observations are too low to ensure the consistent Wisconsin-to-Holocene ice sheet retreat.

  10. Characteristics of inhomogeneities in temperature data derived from an application of daily homogenization methods to Austrian time series

    NASA Astrophysics Data System (ADS)

    Gruber, C.; Auer, I.

    2009-09-01

    The demand for climate extreme studies is getting more and more important. As a consequence reliable data of (at least) daily resolution are required. The examination of the data according to inhomogeneities is indispensable for these questions. The main objective of the "homogenization of daily data” is to remove inhomogeneities not only in mean (e.g. temperature) data, but to account for inhomogeneities in higher order moments as well, thus that inhomogeneities that affect climate extremes are removed. Within the last years several methods for the homogenization of daily (temperature) time series have been developed (e.g. Della-Marta and Wanner, 2006; Mestre et al., submitted; Vincent et al., 2002; Trewin and Trevitt, 1996). However, a general comparison of their advantages and disadvantages has not been performed yet. Based on the experience of the homogenization of Austrian daily temperature data, the benefit of such methods is discussed. The method used for the homogenization of the Austrian data is a combination of the methods Mestre et al. (submitted) and Vincent et al. (2002). The results show that temperature dependent adjustments are beneficial for a minor fraction of inhomogeneities only: Either inhomogeneities affect just the temperature mean or the data availability it too sparse for adjusting higher order moments. However, these methods can be valuable in specific cases and they are even more helpful for the assessment of the time series reliability with respect to climate extremes.

  11. Climatology of upper air temperature in the Eastern Mediterranean region

    NASA Astrophysics Data System (ADS)

    Philandras, C. M.; Nastos, P. T.; Kapsomenakis, I. N.; Repapis, C. C.

    2015-01-01

    The goal of this study is to contribute to the climatology of upper air temperature in the Mediterranean region, during the period 1965-2011. For this purpose, both radiosonde recordings and gridded reanalysis datasets of upper air temperature from National Center for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) were used for seven barometric levels at 850 hPa, 700 hPa, 500 hPa, 300 hPa, 200 hPa, 150 hPa and 100 hPa. Trends and variability of upper air temperature were analyzed on annual and seasonal basis. Further, the impact of atmospheric circulation, by means of correlation between upper air temperature at different barometric levels and specific climatic indices such as Mediterranean Oscillation Index (MOI), North Sea Caspian Pattern Index (NCPI) and North Atlantic Oscillation Index (NAOI), was also quantified. Our findings have given evidence that air temperature is increasing at a higher rate in lower/middle troposphere against upper, and this is very likely due to increasing greenhouse gas concentrations.

  12. Use of Sharpened Land Surface Temperature for Daily Evapotranspiration Estimation over Irrigated Crops in Arid Lands

    NASA Astrophysics Data System (ADS)

    Rosas Aguilar, J.; McCabe, M. F.; Houborg, R.; Gao, F.

    2014-12-01

    Satellite remote sensing provides data on land surface characteristics, useful for mapping land surface energy fluxes and evapotranspiration (ET). Land-surface temperature (LST) derived from thermal infrared (TIR) satellite data has been reliably used as a remote indicator of ET and surface moisture status. However, TIR imagery usually operates at a coarser resolution than that of shortwave sensors on the same satellite platform, making it sometimes unsuitable for monitoring of field-scale crop conditions. This study applies the data mining sharpener (DMS; Gao et al., 2012) technique to data from the Moderate Resolution Imaging Spectroradiometer (MODIS), which sharpens the 1 km thermal data down to the resolution of the optical data (250-500 m) based on functional LST and reflectance relationships established using a flexible regression tree approach. The DMS approach adopted here has been enhanced/refined for application over irrigated farming areas located in harsh desert environments in Saudi Arabia. The sharpened LST data is input to an integrated modeling system that uses the Atmosphere-Land Exchange Inverse (ALEXI) model and associated flux disaggregation scheme (DisALEXI) in conjunction with model reanalysis data and remotely sensed data from polar orbiting (MODIS) and geostationary (MSG; Meteosat Second Generation) satellite platforms to facilitate daily estimates of evapotranspiration. Results are evaluated against available flux tower observations over irrigated maize near Riyadh in Saudi Arabia. Successful monitoring of field-scale changes in surface fluxes are of importance towards an efficient water use in areas where fresh water resources are scarce and poorly monitored. Gao, F.; Kustas, W.P.; Anderson, M.C. A Data Mining Approach for Sharpening Thermal Satellite Imagery over Land. Remote Sens. 2012, 4, 3287-3319.

  13. Heat tolerance of higher plants cenosis to damaging air temperatures

    NASA Astrophysics Data System (ADS)

    Ushakova, Sofya; Shklavtsova, Ekaterina

    Designing sustained biological-technical life support systems (BTLSS) including higher plants as a part of a photosynthesizing unit, it is important to foresee the multi species cenosis reaction on either stress-factors. Air temperature changing in BTLSS (because of failure of a thermoregulation system) up to the values leading to irreversible damages of photosynthetic processes is one of those factors. However, it is possible to increase, within the certain limits, the plant cenosis tolerance to the unfavorable temperatures’ effect due to the choice of the higher plants possessing resistance both to elevated and to lowered air temperatures. Besides, the plants heat tolerance can be increased when subjecting them during their growing to the hardening off temperatures’ effect. Thus, we have come to the conclusion that it is possible to increase heat tolerance of multi species cenosis under the damaging effect of air temperature of 45 (°) СC.

  14. Innovative coal gasification system with high temperature air

    SciTech Connect

    Yoshikawa, K.; Katsushima, H.; Kasahara, M.; Hasegawa, T.; Tanaka, R.; Ootsuka, T.

    1997-12-31

    This paper proposes innovative coal gasification power generation systems where coal is gasified with high temperature air of about 1300K produced by gasified coal fuel gas. The main features of these systems are high thermal efficiency, low NO{sub x} emission, compact desulfurization and dust removal equipment and high efficiency molten slag removal with a very compact gasifier. Recent experimental results on the pebble bed coal gasifier appropriate for high temperature air coal gasification are reported, where 97.7% of coal ash is successfully caught in the pebble bed and extracted without clogging. A new concept of high temperature air preheating system is proposed which is characterized by its high reliability and low cost.

  15. Influence of Air Temperature Difference on the Snow Melting Simulation of SWAT Model

    NASA Astrophysics Data System (ADS)

    YAN, Y.; Onishi, T.

    2013-12-01

    The temperature-index models are commonly used to simulate the snowmelt process in mountain areas because of its good performance, low data requirements, and computational simplicity. Widely used distributed hydrological model: Soil and Water Assessment Tool (SWAT) model is also using a temperature-index module. However, the lack of monitoring air temperature data still involves uncertainties and errors in its simulation performance especially in data sparse area. Thus, to evaluate the different air temperature data influence on the snow melt of the SWAT model, five different air temperature data are applied in two different Russia basins (Birobidjan basin and Malinovka basin). The data include the monitoring air temperature data (TM), NCEP reanalysis data (TNCEP), the dataset created by inverse distance weighted interpolation (IDW) method (TIDW), the dataset created by improved IDW method considering the elevation influence (TIDWEle), and the dataset created by using linear regression and MODIS Land Surface Temperature (LST) data (TLST). Among these data, the TLST , the TIDW and TIDWEle data have the higher spatial density, while the TNCEP and TM DATA have the most valid monitoring value for daily scale. The daily simulation results during the snow melting seasons (March, April and May) showed reasonable results in both test basins for all air temperature data. While R2 and NSE in Birobidjan basin are around 0.6, these values in Malinovka basin are over 0.75. Two methods: Generalized Likelihood Uncertainty Estimation (GLUE) and Sequential Uncertainty Fitting, version. 2 (SUFI-2) were used for model calibration and uncertainty analysis. The evolution index is p-factor which means the percentage of measured data bracketed by the 95% Prediction Uncertainty (95PPU). The TLST dataset always obtained the best results in both basins compared with other datasets. On the other hand, the two IDW based method get the worst results among all the scenarios. Totally, the

  16. Effects of metabolizable energy intake on tympanic temperature and average daily gain of steers finished in southern Chile during wintertime

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of 24 Angus x Hereford steers (BW = 479.8 ± 4.48) were used to assess the effect of Metabolizable Energy Intake (MEI) on Average Daily Gain (ADG) and Tympanic Temperature (TT) during the wintertime in southern Chile. The study was conducted at the experimental field of the Catholic Universit...

  17. Comparison of two temperature differencing methods to estimate daily evapotranspiration over a Mediterranean vineyard watershed from ASTER data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Daily evapo-transpiration (ET) was mapped at the regional extent over a Mediterranean vineyard watershed, by using ASTER imagery along with two temperature differencing methods: the Simplified Surface Energy Balance Index (S-SEBI) and the Water Deficit Index (WDI). Validation of remotely sensed esti...

  18. Passive radiative cooling below ambient air temperature under direct sunlight.

    PubMed

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day. PMID:25428501

  19. The creation of future daily gridded datasets of precipitation and temperature with a spatial weather generator, Cyprus 2020-2050

    NASA Astrophysics Data System (ADS)

    Camera, Corrado; Bruggeman, Adriana; Hadjinicolaou, Panos; Pashiardis, Stelios; Lange, Manfred

    2014-05-01

    High-resolution gridded daily datasets are essential for natural resource management and the analysis of climate changes and their effects. This study aimed to create gridded datasets of daily precipitation and daily minimum and maximum temperature, for the future (2020-2050). The horizontal resolution of the developed datasets is 1 x 1 km2, covering the area under control of the Republic of Cyprus (5.760 km2). The study is divided into two parts. The first consists of the evaluation of the performance of different interpolation techniques for daily rainfall and temperature data (1980-2010) for the creation of the gridded datasets. Rainfall data recorded at 145 stations and temperature data from 34 stations were used. For precipitation, inverse distance weighting (IDW) performs best for local events, while a combination of step-wise geographically weighted regression and IDW proves to be the best method for large scale events. For minimum and maximum temperature, a combination of step-wise linear multiple regression and thin plate splines is recognized as the best method. Six Regional Climate Models (RCMs) for the A1B SRES emission scenario from the EU ENSEMBLE project database were selected as sources for future climate projections. The RCMs were evaluated for their capacity to simulate Cyprus climatology for the period 1980-2010. Data for the period 2020-2050 from the three best performing RCMs were downscaled, using the change factors approach, at the location of observational stations. Daily time series were created with a stochastic rainfall and temperature generator. The RainSim V3 software (Burton et al., 2008) was used to generate spatial-temporal coherent rainfall fields. The temperature generator was developed in R and modeled temperature as a weakly stationary process with the daily mean and standard deviation conditioned on the wet and dry state of the day (Richardson, 1981). Finally gridded datasets depicting projected future climate conditions were

  20. Estimation of Surface Air Temperature Over Central and Eastern Eurasia from MODIS Land Surface Temperature

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.

    2011-01-01

    Surface air temperature (T(sub a)) is a critical variable in the energy and water cycle of the Earth.atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T(sub a) from satellite remotely sensed land surface temperature (T(sub s)) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T(sub a) and MODIS T(sub s). The relationships between the maximum T(sub a) and daytime T(sub s) depend significantly on land cover types, but the minimum T(sub a) and nighttime T(sub s) have little dependence on the land cover types. The largest difference between maximum T(sub a) and daytime T(sub s) appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T(sub a) were estimated from 1 km resolution MODIS T(sub s) under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T(sub a) were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T(sub a) varies from 2.4 C over closed shrublands to 3.2 C over grasslands, and the MAE of the estimated minimum Ta is about 3.0 C.

  1. Emission Controls Using Different Temperatures of Combustion Air

    PubMed Central

    Holubčík, Michal; Papučík, Štefan

    2014-01-01

    The effort of many manufacturers of heat sources is to achieve the maximum efficiency of energy transformation chemically bound in the fuel to heat. Therefore, it is necessary to streamline the combustion process and minimize the formation of emission during combustion. The paper presents an analysis of the combustion air temperature to the heat performance and emission parameters of burning biomass. In the second part of the paper the impact of different dendromass on formation of emissions in small heat source is evaluated. The measured results show that the regulation of the temperature of the combustion air has an effect on concentration of emissions from the combustion of biomass. PMID:24971376

  2. Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau.

    PubMed

    Shen, Miaogen; Piao, Shilong; Chen, Xiaoqiu; An, Shuai; Fu, Yongshuo H; Wang, Shiping; Cong, Nan; Janssens, Ivan A

    2016-09-01

    Understanding vegetation responses to climate change on the Tibetan Plateau (TP) helps in elucidating the land-atmosphere energy exchange, which affects air mass movement over and around the TP. Although the TP is one of the world's most sensitive regions in terms of climatic warming, little is known about how the vegetation responds. Here, we focus on how spring phenology and summertime greenness respond to the asymmetric warming, that is, stronger warming during nighttime than during daytime. Using both in situ and satellite observations, we found that vegetation green-up date showed a stronger negative partial correlation with daily minimum temperature (Tmin ) than with maximum temperature (Tmax ) before the growing season ('preseason' henceforth). Summer vegetation greenness was strongly positively correlated with summer Tmin , but negatively with Tmax . A 1-K increase in preseason Tmin advanced green-up date by 4 days (P < 0.05) and in summer enhanced greenness by 3.6% relative to the mean greenness during 2000-2004 (P < 0.01). In contrast, increases in preseason Tmax did not advance green-up date (P > 0.10) and higher summer Tmax even reduced greenness by 2.6% K(-1) (P < 0.05). The stimulating effects of increasing Tmin were likely caused by reduced low temperature constraints, and the apparent negative effects of higher Tmax on greenness were probably due to the accompanying decline in water availability. The dominant enhancing effect of nighttime warming indicates that climatic warming will probably have stronger impact on TP ecosystems than on apparently similar Arctic ecosystems where vegetation is controlled mainly by Tmax . Our results are crucial for future improvements of dynamic vegetation models embedded in the Earth System Models which are being used to describe the behavior of the Asian monsoon. The results are significant because the state of the vegetation on the TP plays an important role in steering the monsoon. PMID:27103613

  3. Variability of Winter Air Temperature in Mid-Latitude Europe

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Ardizzone, J.; Atlas, R.; Bungato, D.; Cierniewski, J.; Jusem, J. C.; Przybylak, R.; Schubert, S.; Starr, D.; Walczewski, J.

    2002-01-01

    The aim of this paper is to report extreme winter/early-spring air temperature (hereinafter temperature) anomalies in mid-latitude Europe, and to discuss the underlying forcing to these interannual fluctuations. Warm advection from the North Atlantic in late winter controls the surface-air temperature, as indicated by the substantial correlation between the speed of the surface southwesterlies over the eastern North Atlantic (quantified by a specific Index Ina) and the 2-meter level air temperatures (hereinafter Ts) over Europe, 45-60 deg N, in winter. In mid-March and subsequently, the correlation drops drastically (quite often it is negative). This change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature: absorption of insolation replaces the warm advection as the dominant control. This forcing by maritime-air advection in winter was demonstrated in a previous publication, and is re-examined here in conjunction with extreme fluctuations of temperatures in Europe. We analyze here the interannual variability at its extreme by comparing warm-winter/early-spring of 1989/90 with the opposite scenario in 1995/96. For these two December-to-March periods the differences in the monthly mean temperature in Warsaw and Torun, Poland, range above 10 C. Short-term (shorter than a month) fluctuations of the temperature are likewise very strong. We conduct pentad-by-pentad analysis of the surface-maximum air temperature (hereinafter Tmax), in a selected location, examining the dependence on Ina. The increased cloudiness and higher amounts of total precipitable water, corollary effects to the warm low-level advection. in the 1989/90 winter, enhance the positive temperature anomalies. The analysis of the ocean surface winds is based on the Special Sensor Microwave/Imager (SSM/I) dataset; ascent rates, and over land wind data are from the European Centre for Medium-Range Weather Forecasts (ECMWF); maps of 2-m temperature, cloud

  4. Effect of atmospheric mixing layer depth variations on urban air quality and daily mortality during Saharan dust outbreaks

    PubMed Central

    Pandolfi, M.; Tobias, A.; Alastuey, A.; Sunyer, J.; Schwartz, J.; Lorente, J.; Pey, J.; Querol, X.

    2016-01-01

    Several epidemiological studies have shown that the outbreaks of Saharan dust over southern European countries can cause negative health effects. The reasons for the increased toxicity of airborne particles during dust storms remain to be understood although the presence of biogenic factors carried by dust particles or the interaction between dust and man-made air pollution have been hypothesized as possible causes. Intriguingly, recent findings have also demonstrated that during Saharan dust outbreaks the local man-made particulates can have stronger effects on health than during days without outbreaks. We show that the thinning of the mixing layer (ML) during Saharan dust outbreaks, systematically described here for the first time, can trigger the observed higher toxicity of ambient local air. The mixing layer height (MLH) progressively reduced with increasing intensity of dust outbreaks thus causing a progressive accumulation of anthropogenic pollutants and favouring the formation of new fine particles or specific relevant species likely from condensation of accumulated gaseous precursors on dust particles surface. Overall, statistically significant associations of MLH with all-cause daily mortality were observed. Moreover, as the MLH reduced, the risk of mortality associated with the same concentration of particulate matter increased due to the observed pollutants accumulation. The association of MLH with daily mortality and the effect of ML thinning on particle toxicity exacerbated when Saharan dust outbreaks occurred suggesting a synergic effect of atmospheric pollutants on health which was amplified during dust outbreaks. Moreover, the results may reflect higher toxicity of primary particles which predominate on low MLH days. PMID:25051327

  5. Combination of spaceborne sensor(s) and 3-D aerosol models to assess global daily near-surface air quality

    NASA Astrophysics Data System (ADS)

    Kacenelenbogen, M.; Redemann, J.; Russell, P. B.

    2009-12-01

    Aerosol Particulate Matter (PM), measured by ground-based monitoring stations, is used as a standard by the EPA (Environmental Protection Agency) to evaluate daily air quality. PM monitoring is particularly important for human health protection because the exposure to suspended particles can contribute, among others, to lung and respiratory diseases and even premature death. However, most of the PM monitoring stations are located close to cities, leaving large areas without any operational data. Satellite remote sensing is well suited for a global coverage of the aerosol load and can provide an independent and supplemental data source to in situ monitoring. Nevertheless, PM at the ground cannot easily be determined from satellite AOD (Aerosol Optical Depth) without additional information on the optical/microphysical properties and vertical distribution of the aerosols. The objective of this study is to explore the efficacy and accuracy of combining a 3-D aerosol transport model and satellite remote sensing as a cost-effective approach for estimating ground-level PM on a global and daily basis. The estimation of the near-surface PM will use the vertical distribution (and, if possible, the physicochemical properties) of the aerosols inferred from a transport model and the measured total load of particles in the atmospheric column retrieved by satellite sensor(s). The first step is to select a chemical transport model (CTM) that provides “good” simulated aerosol vertical profiles. A few global (e.g., WRF-Chem-GOCART) or regional (e.g., MM5-CMAQ, PM-CAMx) CTM will be compared during selected airborne campaigns like ARCTAS-CARB (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites- California Air Resources Board). The next step will be to devise an algorithm that combines the satellite and model data to infer PM mass estimates at the ground, after evaluating different spaceborne instruments and possible multi-sensor combinations.

  6. Pulsed positive streamer discharges in air at high temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Kamakura, Taku

    2016-08-01

    Atmospheric-pressure air pulsed positive streamer discharges are generated in a 13 mm point-plane gap in the temperature range of 293 K–1136 K, and the effect of temperature on the streamer discharges is studied. When the temperature is increased, the product of applied voltage and temperature VT proportional to the reduced electric field can be used as a primary parameter that determines some discharge parameters regardless of temperature. For a given VT, the transferred charge per pulse, streamer diameter, product of discharge energy and temperature, and length of secondary streamer are almost constant regardless of T, whereas the streamer velocity decreases with increasing T and the decay rate of the discharge current is proportional to 1/T. The N2(C) emission intensity is approximately determined by the discharge energy independent of T. These results are useful to predict the streamer discharge and its reactive species production when the ambient temperature is increased.

  7. Effects of air flow directions on composting process temperature profile

    SciTech Connect

    Kulcu, Recep; Yaldiz, Osman

    2008-07-01

    In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO{sub 2} and O{sub 2} ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperature distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2.

  8. Temperature gradients and clear-air turbulence probabilities

    NASA Technical Reports Server (NTRS)

    Bender, M. A.; Panofsky, H. A.; Peslen, C. A.

    1976-01-01

    In order to forecast clear-air turbulence (CAT) in jet aircraft flights, a study was conducted in which the data from a special-purpose instrument aboard a Boeing 747 jet airliner were compared with satellite-derived radiance gradients, conventional temperature gradients from analyzed maps, and temperature gradients obtained from a total air temperature sensor on the plane. The advantage of making use of satellite-derived data is that they are available worldwide without the need for radiosonde observations, which are scarce in many parts of the world. Major conclusions are that CAT probabilities are significantly higher over mountains than flat terrain, and that satellite radiance gradients appear to discriminate between CAT and no CAT better than conventional temperature gradients over flat lands, whereas the reverse is true over mountains, the differences between the two techniques being not large over mountains.

  9. Spatio-temporal behavior of brightness temperature in Tel-Aviv and its application to air temperature monitoring.

    PubMed

    Pelta, Ran; Chudnovsky, A Alexandra; Schwartz, Joel

    2016-01-01

    This study applies remote sensing technology to assess and examine the spatial and temporal Brightness Temperature (BT) profile in the city of Tel-Aviv, Israel over the last 30 years using Landsat imagery. The location of warmest and coldest zones are constant over the studied period. Distinct diurnal and temporal BT behavior divide the city into four different segments. As an example of future application, we applied mixed regression models with daily random slopes to correlate Landsat BT data with monitored air temperature (Tair) measurements using 14 images for 1989-2014. Our preliminary results show a good model performance with R(2) = 0.81. Furthermore, based on the model's results, we analyzed the spatial profile of Tair within the study domain for representative days. PMID:26499933

  10. Homogenisation of minimum and maximum air temperature in northern Portugal

    NASA Astrophysics Data System (ADS)

    Freitas, L.; Pereira, M. G.; Caramelo, L.; Mendes, L.; Amorim, L.; Nunes, L.

    2012-04-01

    Homogenization of minimum and maximum air temperature has been carried out for northern Portugal for the period 1941-2010. The database corresponds to the values of the monthly arithmetic averages calculated from daily values observed at stations within the network of stations managed by the national Institute of Meteorology (IM). Some of the weather stations of IM's network are collecting data for more than a century; however, during the entire observing period, some factors have affected the climate series and have to be considered such as, changes in the station surroundings and changes related to replacement of manually operated instruments. Besides these typical changes, it is of particular interest the station relocation to rural areas or to the urban-rural interface and the installation of automatic weather stations in the vicinity of the principal or synoptic stations with the aim of replacing them. The information from these relocated and new stations was merged to produce just one but representative time series of that site. This process starts at the end 90's and the information of the time series fusion process constitutes the set of metadata used. Two basic procedures were performed: (i) preliminary statistical and quality control analysis; and, (ii) detection and correction of problems of homogeneity. In the first case, was developed and used software for quality control, specifically dedicated for the detection of outliers, based on the quartile values of the time series itself. The analysis of homogeneity was performed using the MASH (Multiple Analysis of Series for Homogenisation) and HOMER, which is a software application developed and recently made available within the COST Action ES0601 (COST-ES0601, 2012). Both methods provide a fast quality control of the original data and were developed for automatic processing, analyzing, homogeneity testing and adjusting of climatological data, but manual usage is also possible. Obtained results with both

  11. Evaluation of high-resolution simulations of daily-scale temperature and precipitation over the United States

    NASA Astrophysics Data System (ADS)

    Walker, Megan D.; Diffenbaugh, Noah S.

    2009-12-01

    Extreme climate events have been increasing over much of the world, and dynamical models predict further increases in response to enhanced greenhouse forcing. We examine the ability of a high-resolution nested climate model, RegCM3, to capture the statistics of daily-scale temperature and precipitation events over the conterminous United States, using observational and reanalysis data for comparison. Our analyses reveal that RegCM3 captures the pattern of mean, interannual variability, and trend in the tails of the daily temperature and precipitation distributions. However, consistent biases do exist, including wet biases in the topographically-complex regions of the western United States and hot biases in the southern and central United States. The biases in heavy precipitation in the western United States are associated with excessively strong surface and low-level winds. The biases in daily-scale temperature and precipitation in the southcentral United States are at least partially driven by biases in circulation and moisture fields. Further, the areas of agreement and disagreement with the observational data are not intuitive from analyzing the simulated mean seasonal temperature and precipitation fields alone. Our evaluation should enable more informed application and improvement of high-resolution climate models for the study of future changes in socially- and economically-relevant temperature and precipitation events.

  12. The Effects of Air Pollution and Temperature on COPD.

    PubMed

    Hansel, Nadia N; McCormack, Meredith C; Kim, Victor

    2016-06-01

    Chronic Obstructive Pulmonary Disease (COPD) affects 12-16 million people in the United States and is the third-leading cause of death. In developed countries, smoking is the greatest risk factor for the development of COPD, but other exposures also contribute to the development and progression of the disease. Several studies suggest, though are not definitive, that outdoor air pollution exposure is linked to the prevalence and incidence of COPD. Among individuals with COPD, outdoor air pollutants are associated with loss of lung function and increased respiratory symptoms. In addition, outdoor air pollutants are also associated with COPD exacerbations and mortality. There is much less evidence for the impact of indoor air on COPD, especially in developed countries in residences without biomass exposure. The limited existing data suggests that indoor particulate matter and nitrogen dioxide concentrations are linked to increased respiratory symptoms among patients with COPD. In addition, with the projected increases in temperature and extreme weather events in the context of climate change there has been increased attention to the effects of heat exposure. Extremes of temperature-both heat and cold-have been associated with increased respiratory morbidity in COPD. Some studies also suggest that temperature may modify the effect of pollution exposure and though results are not conclusive, understanding factors that may modify susceptibility to air pollution in patients with COPD is of utmost importance. PMID:26683097

  13. Experimental and theoretical analysis results for high temperature air combustion

    SciTech Connect

    Tanigawa, Tadashi; Morita, Mitsunobu

    1998-07-01

    With Japan's preparation of its Action program to prevent global warming in 1990 and the holding of the United National Conference on Environment and Development (the Earth Summit) in 1992 as a backdrop, reflecting the global effort to protect the environment, a high performance industrial furnace development project was launched in 1993 by the New Energy and Industrial Technology Development Organization (NEDO). This project focuses on the development of a combustion technology which uses air that is preheated to extremely high temperatures (above 1,000 C), heretofore considered impossible. Not only can this technology reduce carbon dioxide emission, thought to cause the greenhouse effect, by over 30%, but it can also reduce nitrogen oxide emission by nearly half. This new technology makes use of the recently-developed high-cycle regenerative heat exchanger, for preheating the furnace air supply. This exchanger preheats air to above 1,000 C, much higher than for conventional furnaces, and then this air is injected with fuel. R and D data have shown that CO{sub 2} and NO{sub x} emissions can be reduced markedly. However, the theoretical analysis is yet to be made, thereby hampering efforts to have this advanced technology become widely adopted. This project accumulated new data related to uniform temperature distribution, high energy heat transfer and low NO{sub x} as common characteristics of high temperature air combustion.

  14. Flame Speeds of Methane-Air, Propane-Air, and Ethylene-Air Mixtures at Low Initial Temperatures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L; Heimel, Sheldon

    1952-01-01

    Flame speeds were determined for methane-air, propane-air, and ethylene-air mixtures at -73 C and for methane-air mixtures at -132 C. The data extend the curves of maximum flame speed against initial mixture temperature previously established for the range from room temperature to 344 C. Empirical equations for maximum flame speed u(cm/ sec) as a function of initial mixture temperature T(sub O) were determined to be as follows: for methane, for T(sub O) from 141 to 615 K, u = 8 + 0.000160 T(sub O)(exp 2.11); for propane, for T(sub O) from 200 to 616 K, u = 10 + 0.000342 T(sub O)(exp 2.00); for ethylene, for T(sub O) from 200 to 617 K, u = 10 + 0.00259 T(sub O)(exp 1.74). Relative flame speeds at low initial temperatures were predicted within approximately 20 percent by either the thermal theory as presented by Semenov or by the diffusion theory of Tanford and Pease. The same order was found previously for high initial temperatures. The low-temperature data were also found to extend the linear correlations between maximum flame speed and calculated equilibrium active-radical concentrations, which were established by the previously reported high-temperature data.

  15. Analysis of a resistance-energy balance method for estimating daily evaporation from wheat plots using one-time-of-day infrared temperature observations

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Idso, S. B.; Reginato, R. J.

    1986-01-01

    Accurate estimates of evaporation over field-scale or larger areas are needed in hydrologic studies, irrigation scheduling, and meteorology. Remotely sensed surface temperature might be used in a model to calculate evaporation. A resistance-energy balance model, which combines an energy balance equation, the Penman-Monteith (1981) evaporation equation, and van den Honert's (1948) equation for water extraction by plant roots, is analyzed for estimating daily evaporation from wheat using postnoon canopy temperature measurements. Additional data requirements are half-hourly averages of solar radiation, air and dew point temperatures, and wind speed, along with reasonable estimates of canopy emissivity, albedo, height, and leaf area index. Evaporation fluxes were measured in the field by precision weighing lysimeters for well-watered and water-stressed wheat. Errors in computed daily evaporation were generally less than 10 percent, while errors in cumulative evaporation for 10 clear sky days were less than 5 percent for both well-watered and water-stressed wheat. Some results from sensitivity analysis of the model are also given.

  16. Geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppälä, A.; Randall, C. E.; Clilverd, M. A.; Rozanov, E.; Rodger, C. J.

    2009-10-01

    Here we use the ERA-40 and ECMWF operational surface level air temperature data sets from 1957 to 2006 to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the A p index. Previous modeling work has suggested that NO x produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in surface air temperatures (SATs). We find that during winter months, polar SATs in years with high A p index are different than in years with low A p index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, depending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings (SSWs) are excluded. We take into account solar irradiance variations, unlike previous analyses of geomagnetic effects in ERA-40 and operational data. Although we cannot conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating wintertime surface air temperatures. We tested our SAT results against variation in the Quasi Biennial Oscillation, the El Niño Southern Oscillation and the Southern Annular Mode. The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode, and we cannot robustly exclude a chance linkage between sea surface temperature variability and geomagnetic activity.

  17. Drier Air, Lower Temperatures, and Triggering of Paroxysmal Atrial Fibrillation

    PubMed Central

    Nguyen, Jennifer L.; Link, Mark S.; Luttmann-Gibson, Heike; Laden, Francine; Schwartz, Joel; Wessler, Benjamin S.; Mittleman, Murray A.; Gold, Diane R.; Dockery, Douglas W.

    2015-01-01

    Background The few previous studies on the onset of paroxysmal atrial fibrillation and meteorologic conditions have focused on outdoor temperature and hospital admissions, but hospital admissions are a crude indicator of atrial fibrillation incidence, and studies have found other weather measures in addition to temperature to be associated with cardiovascular outcomes. Methods Two hundred patients with dual chamber implantable cardioverter-defibrillators were enrolled and followed prospectively from 2006 to 2010 for new onset episodes of atrial fibrillation. The date and time of arrhythmia episodes documented by the implanted cardioverter-defibrillators were linked to meteorologic data and examined using a case-crossover analysis. We evaluated associations with outdoor temperature, apparent temperature, air pressure, and three measures of humidity (relative humidity, dew point, and absolute humidity). Results Of the 200 enrolled patients, 49 patients experienced 328 atrial fibrillation episodes lasting ≥30 seconds. Lower temperatures in the prior 48 hours were positively associated with atrial fibrillation. Lower absolute humidity (ie, drier air) had the strongest and most consistent association: each 0.5 g/m3 decrease in the prior 24 hours increased the odds of atrial fibrillation by 4% (95% confidence interval [CI]: 0%, 7%) and by 5% (95% CI: 2%, 8%) for exposure in the prior 2 hours. Results were similar for dew point but slightly weaker. Conclusions Recent exposure to drier air and lower temperatures were associated with the onset of atrial fibrillation among patients with known cardiac disease, supporting the hypothesis that meteorologic conditions trigger acute cardiovascular episodes. PMID:25756220

  18. Advances in Fast Response Acoustically Derived Air Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Bogoev, Ivan; Jacobsen, Larry; Horst, Thomas; Conrad, Benjamin

    2016-04-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity. The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  19. Influence of Climate on Emergency Department Visits for Syncope: Role of Air Temperature Variability

    PubMed Central

    Galli, Andrea; Barbic, Franca; Borella, Marta; Costantino, Giorgio; Perego, Francesca; Dipaola, Franca; Casella, Francesco; Duca, Pier Giorgio; Diedrich, Andrè; Raj, Satish; Robertson, David; Porta, Alberto; Furlan, Raffaello

    2011-01-01

    Background Syncope is a clinical event characterized by a transient loss of consciousness, estimated to affect 6.2/1000 person-years, resulting in remarkable health care and social costs. Human pathophysiology suggests that heat may promote syncope during standing. We tested the hypothesis that the increase of air temperatures from January to July would be accompanied by an increased rate of syncope resulting in a higher frequency of Emergency Department (ED) visits. We also evaluated the role of maximal temperature variability in affecting ED visits for syncope. Methodology/Principal Findings We included 770 of 2775 consecutive subjects who were seen for syncope at four EDs between January and July 2004. This period was subdivided into three epochs of similar length: 23 January–31 March, 1 April–31 May and 1 June–31 July. Spectral techniques were used to analyze oscillatory components of day by day maximal temperature and syncope variability and assess their linear relationship. There was no correlation between daily maximum temperatures and number of syncope. ED visits for syncope were lower in June and July when maximal temperature variability declined although the maximal temperatures themselves were higher. Frequency analysis of day by day maximal temperature variability showed a major non-random fluctuation characterized by a ∼23-day period and two minor oscillations with ∼3- and ∼7-day periods. This latter oscillation was correlated with a similar ∼7-day fluctuation in ED visits for syncope. Conclusions/Significance We conclude that ED visits for syncope were not predicted by daily maximal temperature but were associated with increased temperature variability. A ∼7-day rhythm characterized both maximal temperatures and ED visits for syncope variability suggesting that climate changes may have a significant effect on the mode of syncope occurrence. PMID:21818372

  20. A data centred method to estimate and map changes in the full distribution of daily surface temperature

    NASA Astrophysics Data System (ADS)

    Chapman, Sandra; Stainforth, David; Watkins, Nicholas

    2016-04-01

    Characterizing how our climate is changing includes local information which can inform adaptation planning decisions. This requires quantifying the geographical patterns in changes at specific quantiles or thresholds in distributions of variables such as daily surface temperature. Here we focus on these local changes and on a model independent method to transform daily observations into patterns of local climate change. Our method [1] is a simple mathematical deconstruction of how the difference between two observations from two different time periods can be assigned to the combination of natural statistical variability and/or the consequences of secular climate change. This deconstruction facilitates an assessment of how fast different quantiles of the distributions are changing. This involves both determining which quantiles and geographical locations show the greatest change but also, those at which any change is highly uncertain. For temperature, changes in the distribution itself can yield robust results [2]. We demonstrate how the fundamental timescales of anthropogenic climate change limit the identification of societally relevant aspects of changes. We show that it is nevertheless possible to extract, solely from observations, some confident quantified assessments of change at certain thresholds and locations [3]. We demonstrate this approach using E-OBS gridded data [4] timeseries of local daily surface temperature from specific locations across Europe over the last 60 years. [1] Chapman, S. C., D. A. Stainforth, N. W. Watkins, On estimating long term local climate trends, Phil. Trans. Royal Soc., A,371 20120287 (2013) [2] Stainforth, D. A. S. C. Chapman, N. W. Watkins, Mapping climate change in European temperature distributions, ERL 8, 034031 (2013) [3] Chapman, S. C., Stainforth, D. A., Watkins, N. W. Limits to the quantification of local climate change, ERL 10, 094018 (2015) [4] Haylock M. R. et al ., A European daily high-resolution gridded dataset of

  1. Analysis of maximum and minimum daily temperatures recorded at Fabra Observatory (Barcelona, NE Spain) in the period 1917-1998

    NASA Astrophysics Data System (ADS)

    Serra, C.; Burgueño, A.; Lana, X.

    2001-04-01

    Daily maximum and minimum temperatures recorded without interruption at Fabra Observatory (Barcelona) from 1917 to 1998 are analysed studying their homogeneity, randomness, possible trends and their statistical significance, and time irregularities detected by means of concepts of entropy and spectral power analysis. The homogeneity of the series is tested on a monthly scale using the adaptive Kolmogorov-Zurbenko filter. With respect to the randomness of the time series, the von Neumann ratio test is applied to standardized values of extreme temperatures in four different time-scales (daily, monthly, seasonal and annual). The statistical significance of trends is quantified by applying the Spearman and Mann-Kendall tests to daily, monthly and seasonal data. The Mann-Kendall sequential test also leads to the detection of sharp changes in the time series when monthly data is analysed. The quantification of irregularities through entropy is investigated for standardized temperatures on daily, monthly and seasonal scales, based on the concept of mathematical information theory. Periodicities derived from spectral power analyses are checked with the hypothesis of white-noise and Markov red-noise stochastic processes. The most notable features, common to maximum and minimum temperatures, are the lack of randomness of the series for all the time-scales considered and the different trends obtained for the periods 1917-1980 and 1917-1998, which are confirmed by the Spearman and sequential Mann-Kendall tests. Nevertheless, the maximum and minimum temperature series show quite a different behaviour from the point of view of results concerning time irregularities in terms of entropy and periodicities. The main features of the results are discussed by comparing them with those obtained for other areas of the Mediterranean domain.

  2. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  3. CARS Temperature and Species Measurements For Air Vehicle Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Gord, James R.; Grisch, Frederic; Klimenko, Dmitry; Clauss, Walter

    2005-01-01

    The coherent anti-Stokes Raman spectroscopy (CARS) method has recently been used in the United States and Europe to probe several different types of propulsion systems for air vehicles. At NASA Langley Research Center in the United States, CARS has been used to simultaneously measure temperature and the mole fractions of N2, O2 and H2 in a supersonic combustor, representative of a scramjet engine. At Wright- Patterson Air Force Base in the United States, CARS has been used to simultaneously measure temperature and mole fractions of N2, O2 and CO2, in the exhaust stream of a liquid-fueled, gas-turbine combustor. At ONERA in France and the DLR in Germany researchers have used CARS to measure temperature and species concentrations in cryogenic LOX-H2 rocket combustion chambers. The primary aim of these measurements has been to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.

  4. Microwave temperature profiler for clear air turbulence prediction

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    1992-01-01

    A method is disclosed for determining Richardson Number, Ri, or its reciprocal, RRi, for clear air prediction using measured potential temperature and determining the vertical gradient of potential temperature, d(theta)/dz. Wind vector from the aircraft instrumentation versus potential temperature, dW/D(theta), is determined and multiplies by d(theta)/dz to obtain dW/dz. Richardson number or its reciprocal is then determined from the relationship Ri = K(d theta)/dz divided by (dW/dz squared) for use in detecting a trend toward a threshold value for the purpose of predicting clear air turbulence. Other equations for this basic relationship are disclosed together with the combination of other atmospheric observables using multiple regression techniques.

  5. Symmetric scaling properties in global surface air temperature anomalies

    NASA Astrophysics Data System (ADS)

    Varotsos, Costas A.; Efstathiou, Maria N.

    2015-08-01

    We have recently suggested "long-term memory" or internal long-range correlation within the time-series of land-surface air temperature (LSAT) anomalies in both hemispheres. For example, an increasing trend in the LSAT anomalies is followed by another one at a different time in a power-law fashion. However, our previous research was mainly focused on the overall long-term persistence, while in the present study, the upward and downward scaling dynamics of the LSAT anomalies are analysed, separately. Our results show that no significant fluctuation differences were found between the increments and decrements in LSAT anomalies, over the whole Earth and over each hemisphere, individually. On the contrary, the combination of land-surface air and sea-surface water temperature anomalies seemed to cause a departure from symmetry and the increments in the land and sea surface temperature anomalies appear to be more persistent than the decrements.

  6. Fiber optic distributed temperature sensing for the determination of air temperature

    NASA Astrophysics Data System (ADS)

    de Jong, S. A. P.; Slingerland, J. D.; van de Giesen, N. C.

    2015-01-01

    This paper describes a method to correct for the effect of solar radiation in atmospheric distributed temperature sensing (DTS) applications. By using two cables with different diameters, one can determine what temperature a zero diameter cable would have. Such a virtual cable would not be affected by solar heating and would take on the temperature of the surrounding air. With two unshielded cable pairs, one black pair and one white pair, good results were obtained given the general consensus that shielding is needed to avoid radiation errors (WMO, 2010). The correlations between standard air temperature measurements and air temperatures derived from both cables of colors had a high correlation coefficient (r2=0.99) and a RMSE of 0.38 °C, compared to a RMSE of 2.40 °C for a 3.0 mm uncorrected black cable. A thin white cable measured temperatures that were close to air temperature measured with a nearby shielded thermometer (RMSE of 0.61 °C). The temperatures were measured along horizontal cables with an eye to temperature measurements in urban areas, but the same method can be applied to any atmospheric DTS measurements, and for profile measurements along towers or with balloons and quadcopters.

  7. The Effects of Air Pollution and Temperature on COPD

    PubMed Central

    Hansel, Nadia N.; McCormack, Meredith C.; Kim, Victor

    2016-01-01

    Chronic Obstructive Pulmonary Disease (COPD) affects 12–16 million people in the United States and is the third-leading cause of death. In developed countries, smoking is the greatest risk factor for the development of COPD, but other exposures also contribute to the development and progression of the disease. Several studies suggest, though are not definitive, that outdoor air pollution exposure is linked to the prevalence and incidence of COPD. Among individuals with COPD, outdoor air pollutants are associated with loss of lung function and increased respiratory symptoms. In addition, outdoor air pollutants are also associated with COPD exacerbations and mortality. There is much less evidence for the impact of indoor air on COPD, especially in developed countries in residences without biomass exposure. The limited existing data suggests that indoor particulate matter and nitrogen dioxide concentrations are linked to increased respiratory symptoms among patients with COPD. In addition, with the projected increases in temperature and extreme weather events in the context of climate change there has been increased attention to the effects of heat exposure. Extremes of temperature—both heat and cold—have been associated with increased respiratory morbidity in COPD. Some studies also suggest that temperature may modify the effect of pollution exposure and though results are not conclusive, understanding factors that may modify susceptibility to air pollution in patients with COPD is of utmost importance. PMID:26683097

  8. Effect of daily oscillation in temperature and increased suspended sediment on growth and smolting in juvenile chinook salmon, Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Shrimpton, J.M.; Zydlewski, J.D.; Heath, J.W.

    2007-01-01

    We examined the effect of temperature oscillation and increased suspended sediment concentration on growth and smolting in juvenile ocean-type chinook salmon (Oncorhynchus tshawytscha). Fish were ponded on February 26; each treatment group had three replicates of 250 fish. Mean temperatures for the entire experiment were 12.3????C for all tanks with a total of 1348 and 1341 degree days for the constant temperature and oscillating temperature tanks, respectively. Daily fluctuation in temperature averaged 7.5????C in the variable temperature groups and less than 1????C for the constant temperature group. Starting on April 5, bentonite clay was added each day to tanks as a pulse event to achieve a suspended sediment concentration of 200??mg l- 1; clay cleared from the tanks within approximately 8??h. Fish were sampled at approximately two??week intervals from ponding until mid-June. On the last sample date, June 12, a single gill arch was removed and fixed for histological examination of gill morphology. By early May, significant differences were seen in size between the groups; control > temperature = sediment > (temperature ?? sediment). This relationship was consistent throughout the experiment except for the last sample date when the temperature group had a mean weight significantly greater than the sediment group. Gill Na+,K+-ATPase activity was not affected by daily temperature oscillations, but groups subjected to increased suspended sediment had significantly lower enzyme activities compared to controls. Mean cell size for gill chloride cells did not differ between groups. Plasma cortisol increased significantly during the spring, but there were no significant differences between groups. ?? 2007 Elsevier B.V. All rights reserved.

  9. Parametric time series analysis of cold and hot spells in daily temperature: An application in Southern Italy

    SciTech Connect

    Macchiato, M. ); Serio, C. ); Lapenna, V. ); Rotonda, L.La. )

    1993-07-01

    The statistical analysis of cold air temperatures (cold spells) and hot air temperatures (hot spells) is discussed. Air temperature time series observed at 50 stations in southern Italy are investigated. The deterministic and stochastic components of the time series are identified and described by a dynamic-stochastic model that is periodic in the deterministic part (the annual cycle) and Markovian (first-order autoregressive) in the stochastic part. The annual cycle is described by only a few Fourier coefficients. Based on the model fitted to the data, the theoretical probability of cold (hot) spells is computed and compared to that estimated from the observed data. Spatial patterns of identified that make it possible to extrapolate the probability of cold (hot) spells at locations where no direct observations are available. 19 refs., 13 figs., 2 tabs.

  10. Temperature modifies the association between particulate air pollution and mortality: A multi-city study in South Korea.

    PubMed

    Kim, Satbyul Estella; Lim, Youn-Hee; Kim, Ho

    2015-08-15

    Substantial epidemiologic literature has demonstrated the effects of air pollution and temperature on mortality. However, there is inconsistent evidence regarding the temperature modification effect on acute mortality due to air pollution. Herein, we investigated the effects of temperature on the relationship between air pollution and mortality due to non-accidental, cardiovascular, and respiratory death in seven cities in South Korea. We applied stratified time-series models to the data sets in order to examine whether the effects of particulate matter <10 μm (PM10) on mortality were modified by temperature. The effect of PM10 on daily mortality was first quantified within different ranges of temperatures at each location using a time-series model, and then the estimates were pooled through a random-effects meta-analysis using the maximum likelihood method. From all the data sets, 828,787 non-accidental deaths were registered from 2000-2009. The highest overall risk between PM10 and non-accidental or cardiovascular mortality was observed on extremely hot days (daily mean temperature: >99th percentile) in individuals aged <65 years. In those aged ≥65 years, the highest overall risk between PM10 and non-accidental or cardiovascular mortality was observed on very hot days and not on extremely hot days (daily mean temperature: 95-99th percentile). There were strong harmful effects from PM10 on non-accidental mortality with the highest temperature range (>99th percentile) in men, with a very high temperature range (95-99th percentile) in women. Our findings showed that temperature can affect the relationship between the PM10 levels and cause-specific mortality. Moreover, the differences were apparent after considering the age and sex groups. PMID:25920070

  11. Requirements for high-temperature air-cooled central receivers

    SciTech Connect

    Wright, J.D.; Copeland, R.J.

    1983-12-01

    The design of solar thermal central receivers will be shaped by the end user's need for energy. This paper identifies the requirements for receivers supplying heat for industrial processes or electric power generation in the temperature range 540 to 1000/sup 0/C and evaluates the effects of the requirements on air-cooled central receivers. Potential IPH applications are identified as large baseload users that are located some distance from the receiver. In the electric power application, the receiver must supply heat to a pressurized gas power cycle. The difficulty in providing cost-effective thermal transport and thermal storage for air-cooled receivers is a critical problem.

  12. Can air temperature be used to project influences of climate change on stream temperature?

    USGS Publications Warehouse

    Arismendi, Ivan; Safeeq, Mohammad; Dunham, Jason B.; Johnson, Sherri L.

    2014-01-01

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To address this knowledge gap, we examined the performance of two widely used linear and nonlinear regression models that predict stream temperatures based on air temperatures. We evaluated model performance and temporal stability of model parameters in a suite of regulated and unregulated streams with 11–44 years of stream temperature data. Although such models may have validity when predicting stream temperatures within the span of time that corresponds to the data used to develop them, model predictions did not transfer well to other time periods. Validation of model predictions of most recent stream temperatures, based on air temperature–stream temperature relationships from previous time periods often showed poor performance when compared with observed stream temperatures. Overall, model predictions were less robust in regulated streams and they frequently failed in detecting the coldest and warmest temperatures within all sites. In many cases, the magnitude of errors in these predictions falls within a range that equals or exceeds the magnitude of future projections of climate-related changes in stream temperatures reported for the region we studied (between 0.5 and 3.0 °C by 2080). The limited ability of regression-based statistical models to accurately project stream temperatures over time likely stems from the fact that underlying processes at play, namely the heat budgets of air and water, are distinctive in each medium and vary among localities and through time.

  13. Trends in extreme daily temperatures and humidex index in the United Arab Emirates over 1948-2014.

    NASA Astrophysics Data System (ADS)

    Yang, H. W.; Ouarda, T.

    2015-12-01

    This study deals with the analysis of the characteristics of extreme temperature events in the Middle East, using NCEP reanalysis gridded data, for the summer (May-October) and winter (November-April) seasons. Trends in the occurrences of three types of heat spells during 1948-2014 are studied by both Linear Regression (LR) and Mann-Kendall (MK) test. Changes in the diurnal temperature range (DTR) are also investigated. To better understand the effects of heat spells on public health, the Humidex, a combination index of ambient temperature and relative humidity, is also used. Using percentile threshold, temperature (Humidex) Type-A and Type-B heat spells are defined respectively by daily maximum and minimum temperature (Humidex). Type-C heat spells are defined as the joint occurrence of Type-A and Type-B heat spells at the same time. In the Middle East, it is found that no coherent trend in temperature Type-A heat spells is observed. However, the occurrences of temperature Type-B and C heat spells have consistently increased since 1948. For Humidex heat spells, coherently increased activities of all three types of heat spells are observed in the area. During the summer, the magnitude of the positive trends in Humidex heat spells are generally stronger than temperature heat spells. More than half of the locations in the area show significantly negative DTR trends in the summer, but the trends vary according to the region in the winter. Annual mean temperature has increased an average by 0.5°C, but it is mainly associated with the daily minimum temperature which has warmed up by 0.84°C.Daily maximum temperature showed no significant trends. The warming is hence stronger in minimum temperatures than in maximum temperatures resulting in a decrease in DTR by 0.16 °C per decade. This study indicates hence that the UAE has not become hotter, but it has become less cold during 1948 to 2014.

  14. Historical changes in air temperature are evident in temperature fluxes measured in the sub-soil.

    NASA Astrophysics Data System (ADS)

    Fraser, Fiona; McCormick, Benjamin; Hallett, Paul; Wookey, Philip; Hopkins, David

    2013-04-01

    Warming trends in soil temperature have implications for a plethora of soil processes, including exacerbated climate change through the net release of greenhouse gases. Whereas long-term datasets of air temperature changes are abundant, a search of scientific literature reveals a lack of information on soil temperature changes and their specific consequences. We analysed five long-term data series collected in the UK (Dundee and Armagh) and Canada (Charlottetown, Ottawa and Swift Current). They show that the temperatures of soils at 5 - 20 cm depth, and sub-soils at 30 - 150 cm depth, increased in line with air temperature changes over the period 1958 - 2003. Differences were found, however, between soil and air temperatures when data were sub-divided into seasons. In spring, soil temperature warming ranged from 0.19°C at 30 cm in Armagh to 4.30°C at 50 cm in Charlottetown. In summer, however, the difference was smaller and ranged from 0.21°C at 10 cm in Ottawa to 3.70°C at 50 cm in Charlottetown. Winter temperatures were warmer in soil and ranged from 0.45°C at 5 cm in Charlottetown to 3.76°C at 150 cm in Charlottetown. There were significant trends in changes to soil temperature over time, whereas air temperature trends tended only to be significant in winter (changes range from 1.27°C in Armagh to 3.35°C in Swift Current). Differences in the seasonal warming patterns between air and soil temperatures have potential implications for the parameterization of models of biogeochemical cycling.

  15. RELATIONSHIP BETWEEN WATER TEMPERATURES AND AIR TEMPERATURES FOR CENTRAL US STREAMS

    EPA Science Inventory

    An analysis of the relationship between air and stream water temperature records for 11 rivers located in the central United States was conducted. he reliability of commonly available water temperature records was shown to be of unequal quality. imple linear relationships between...

  16. Evaluation of Downscaled CMIP5 Model Skill in Simulating Daily Maximum Temperature Over the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Keellings, D.

    2015-12-01

    Downscaled CMIP5 climate projections of maximum daily temperature from the Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections archive are examined regionally over the southeastern U.S. Three measures of model skill (means-based, distribution-based, extreme-based) are utilized to assess the ability of 15 downscaled models to simulate daily maximum temperature observations. A new test is proposed to determine statistical significance of the probability density function based skill measures. Skill scores are found to be generally high for all three measures throughout the study region, but lower scores are present in coastal and mountainous areas. Application of the significance test shows that while the skill scores may be high they are not significantly higher than could be expected at random in some areas. The distribution-based skill scores are not significant in much of Florida and the Appalachians. The extreme-based skill scores are not significant in more than 90% of the region for all models investigated. The findings suggest that although the downscaled models have simulated observed means well and are a good match to the entire distribution of observations, they are not simulating the occurrence of extreme (above 90th percentile) maximum daily temperatures.

  17. Effects of Resveratrol on Daily Rhythms of Locomotor Activity and Body Temperature in Young and Aged Grey Mouse Lemurs

    PubMed Central

    Dal-Pan, Alexandre; Languille, Solène; Aujard, Fabienne

    2013-01-01

    In several species, resveratrol, a polyphenolic compound, activates sirtuin proteins implicated in the regulation of energy balance and biological clock processes. To demonstrate the effect of resveratrol on clock function in an aged primate, young and aged mouse lemurs (Microcebus murinus) were studied over a 4-week dietary supplementation with resveratrol. Spontaneous locomotor activity and daily variations in body temperature were continuously recorded. Reduction in locomotor activity onset and changes in body temperature rhythm in resveratrol-supplemented aged animals suggest an improved synchronisation on the light-dark cycle. Resveratrol could be a good candidate to restore the circadian rhythms in the elderly. PMID:23983895

  18. Daily temperature and mortality: a study of distributed lag non-linear effect and effect modification in Guangzhou

    PubMed Central

    2012-01-01

    Background Although many studies have documented health effects of ambient temperature, little evidence is available in subtropical or tropical regions, and effect modifiers remain uncertain. We examined the effects of daily mean temperature on mortality and effect modification in the subtropical city of Guangzhou, China. Methods A Poisson regression model combined with distributed lag non-linear model was applied to assess the non-linear and lag patterns of the association between daily mean temperature and mortality from 2003 to 2007 in Guangzhou. The case-only approach was used to determine whether the effect of temperature was modified by individual characteristics, including sex, age, educational attainment and occupation class. Results Hot effect was immediate and limited to the first 5 days, with an overall increase of 15.46% (95% confidence interval: 10.05% to 20.87%) in mortality risk comparing the 99th and the 90th percentile temperature. Cold effect persisted for approximately 12 days, with a 20.39% (11.78% to 29.01%) increase in risk comparing the first and the 10th percentile temperature. The effects were especially remarkable for cardiovascular and respiratory mortality. The effects of both hot and cold temperatures were greater among the elderly. Females suffered more from hot-associated mortality than males. We also found significant effect modification by educational attainment and occupation class. Conclusions There are significant mortality effects of hot and cold temperatures in Guangzhou. The elderly, females and subjects with low socioeconomic status have been identified as especially vulnerable to the effect of ambient temperatures. PMID:22974173

  19. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect

    Waye, S.; Musselman, M.; King, C.

    2014-09-01

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  20. Global surface air temperature variations: 1851-1984

    SciTech Connect

    Jones, P.D.; Raper, S.C.B.; Kelly, P.M.

    1986-11-01

    Many attempts have been made to combine station surface air temperature data into an average for the Northern Hemisphere. Fewer attempts have been made for the Southern Hemisphere because of the unavailability of data from the Antarctic mainland before the 1950s and the uncertainty of making a hemispheric estimate based solely on land-based analyses for a hemisphere that is 80% ocean. Past estimates have been based largely on data from the World Weather Records (Smithsonian Institution, 1927, 1935, 1947, and U.S. Weather Bureau, 1959-82) and have been made without considerable effort to detect and correct station inhomogeneities. Better estimates for the Southern Hemisphere are now possible because of the availability of 30 years of climatological data from Antarctica. The mean monthly surface air temperature anomalies presented in this package for the than those previously published because of the incorporation of data previously hidden away in archives and the analysis of station homogeneity before estimation.

  1. Fractal structure and predictive strategy of the daily extreme temperature residuals at Fabra Observatory (NE Spain, years 1917-2005)

    NASA Astrophysics Data System (ADS)

    Lana, X.; Burgueño, A.; Serra, C.; Martínez, M. D.

    2015-07-01

    A compilation of daily extreme temperatures recorded at the Fabra Observatory (Catalonia, NE Spain) since 1917 up to 2005 has permitted an exhaustive analysis of the fractal behaviour of the daily extreme temperature residuals, DTR, defined as the difference between the observed daily extreme temperature and the daily average value. The lacunarity characterises the lag distribution on the residual series for several thresholds. Hurst, H, and Hausdorff, Ha, exponents, together with the exponent β of the decaying power law, describing the evolution of power spectral density with frequency, permit to characterise the persistence, antipersistence or randomness of the residual series. The self-affine character of DTR series is verified, and additionally, they are simulated by means of fractional Gaussian noise, fGn. The reconstruction theorem leads to the quantification of the complexity (correlation dimension, μ*, and Kolmogorov entropy, κ) and predictive instability (Lyapunov exponents, λ, and Kaplan-Yorke dimension, D KY) of the residual series. All fractal parameters are computed for consecutive and independent segments of 5-year lengths. This strategy permits to obtain a high enough number of fractal parameter samples to estimate time trends, including their statistical significance. Comparisons are made between results of predictive algorithms based on fGn models and an autoregressive autoregressive integrated moving average (ARIMA) process, with the latter leading to slightly better results than the former. Several dynamic atmospheric mechanisms and local effects, such as local topography and vicinity to the Mediterranean coast, are proposed to explain the complex and instable predictability of DTR series. The memory of the physical system (Kolmogorov entropy) would be attributed to the interaction with the Mediterranean Sea.

  2. Industrial applications of MHD high temperature air heater technology

    NASA Astrophysics Data System (ADS)

    Saari, D. P.; Fenstermacher, J. E.; White, L. R.; Marksberry, C. L.

    1981-12-01

    The MHD high temperature air heater (HTAH) requires technology beyond the current state-of-the-art of industrial regenerative heaters. Specific aspects of HTAH technology which may find other application include refractory materials and valves resistant to the high temperature, corrosive, slag-bearing gas, materials resistant to cyclic thermal stresses, high temperature support structures for the cored brick bed, regenerative heater operating techniques for preventing accumulation of slag in the heater, and analytical tools for computing regenerative heater size, cost, and performance. Areas where HTAH technology may find application include acetylene/ethylene production processes, flash pyrolysis of coal, high temperature gas reactors, coal gasification processes, various metallurgical processes, waste incineration, and improvements to existing regenerator technology such as blast furnace stoves and glass tank regenerators.

  3. Evidence of Lunar Phase Influence on Global Surface Air Temperatures

    NASA Technical Reports Server (NTRS)

    Anyamba, Ebby; Susskind, Joel

    2000-01-01

    Intraseasonal oscillations appearing in a newly available 20-year record of satellite-derived surface air temperature are composited with respect to the lunar phase. Polar regions exhibit strong lunar phase modulation with higher temperatures occurs near full moon and lower temperatures at new moon, in agreement with previous studies. The polar response to the apparent lunar forcing is shown to be most robust in the winter months when solar influence is minimum. In addition, the response appears to be influenced by ENSO events. The highest mean temperature range between full moon and new moon in the polar region between 60 deg and 90 deg latitude was recorded in 1983, 1986/87, and 1990/91. Although the largest lunar phase signal is in the polar regions, there is a tendency for meridional equatorward progression of anomalies in both hemispheres so that the warning in the tropics occurs at the time of the new moon.

  4. Antarctic Sea ice variations and seasonal air temperature relationships

    NASA Technical Reports Server (NTRS)

    Weatherly, John W.; Walsh, John E.; Zwally, H. J.

    1991-01-01

    Data through 1987 are used to determine the regional and seasonal dependencies of recent trends of Antarctic temperature and sea ice. Lead-lag relationships involving regional sea ice and air temperature are systematically evaluated, with an eye toward the ice-temperature feedbacks that may influence climatic change. Over the 1958-1087 period the temperature trends are positive in all seasons. For the 15 years (l973-l987) for which ice data are available, the trends are predominantly positive only in winter and summer, and are most strongly positive over the Antarctic Peninsula. The spatially aggregated trend of temperature for this latter period is small but positive, while the corresponding trend of ice coverage is small but negative. Lag correlations between seasonal anomalies of the two variables are generally stronger with ice lagging the summer temperatures and with ice leading the winter temperatures. The implication is that summer temperatures predispose the near-surface waters to above-or below-normal ice coverage in the following fall and winter.

  5. Mesoscale climatic simulation of surface air temperature cooling by highly reflective greenhouses in SE Spain.

    PubMed

    Campra, Pablo; Millstein, Dev

    2013-01-01

    A long-term local cooling trend in surface air temperature has been monitored at the largest concentration of reflective greenhouses in the world, at the Province of Almeria, SE Spain, associated with a dramatic increase in surface albedo in the area. The availability of reliable long-term climatic field data at this site offers a unique opportunity to test the skill of mesoscale meteorological models describing and predicting the impacts of land use change on local climate. Using the Weather Research and Forecast (WRF) mesoscale model, we have run a sensitivity experiment to simulate the impact of the observed surface albedo change on monthly and annual surface air temperatures. The model output showed a mean annual cooling of 0.25 °C associated with a 0.09 albedo increase, and a reduction of 22.8 W m(-2) of net incoming solar radiation at surface. Mean reduction of summer daily maximum temperatures was 0.49 °C, with the largest single-day decrease equal to 1.3 °C. WRF output was evaluated and compared with observations. A mean annual warm bias (MBE) of 0.42 °C was estimated. High correlation coefficients (R(2) > 0.9) were found between modeled and observed values. This study has particular interest in the assessment of the potential for urban temperature cooling by cool roofs deployment projects, as well as in the evaluation of mesoscale climatic models performance. PMID:24074145

  6. Tractor-Maintenance: Operation & Daily Care [and] Servicing Air Cleaner & Lubrication. Student Materials. V. A. III. [V-C-1 through V-C-4].

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    Designed for use by students in vocational agricultural classes, this manual deals with tractor maintenance. Operation and daily care are the topics of the first section. Safety is also covered. In the final part of the manual, servicing the air cleaner and lubricating the engine are discussed. Both sections conclude with a quiz. (PLB)

  7. Regional climates in the GISS general circulation model: Surface air temperature

    NASA Technical Reports Server (NTRS)

    Hewitson, Bruce

    1994-01-01

    One of the more viable research techniques into global climate change for the purpose of understanding the consequent environmental impacts is based on the use of general circulation models (GCMs). However, GCMs are currently unable to reliably predict the regional climate change resulting from global warming, and it is at the regional scale that predictions are required for understanding human and environmental responses. Regional climates in the extratropics are in large part governed by the synoptic-scale circulation and the feasibility of using this interscale relationship is explored to provide a way of moving to grid cell and sub-grid cell scales in the model. The relationships between the daily circulation systems and surface air temperature for points across the continental United States are first developed in a quantitative form using a multivariate index based on principal components analysis (PCA) of the surface circulation. These relationships are then validated by predicting daily temperature using observed circulation and comparing the predicted values with the observed temperatures. The relationships predict surface temperature accurately over the major portion of the country in winter, and for half the country in summer. These relationships are then applied to the surface synoptic circulation of the Goddard Institute for Space Studies (GISS) GCM control run, and a set of surface grid cell temperatures are generated. These temperatures, based on the larger-scale validated circulation, may now be used with greater confidence at the regional scale. The generated temperatures are compared to those of the model and show that the model has regional errors of up to 10 C in individual grid cells.

  8. Use of a Weather Generator for analysis of projections of future daily temperature and its validation with climate change indices

    NASA Astrophysics Data System (ADS)

    Di Piazza, A.; Cordano, E.; Eccel, E.

    2012-04-01

    The issue of climate change detection is considered a major challenge. In particular, high temporal resolution climate change scenarios are required in the evaluation of the effects of climate change on agricultural management (crop suitability, yields, risk assessment, etc.) energy production and water management. In this work, a "Weather Generator" technique was used for downscaling climate change scenarios for temperature. An R package (RMAWGEN, Cordano and Eccel, 2011 - available on http://cran.r-project.org) was developed aiming to generate synthetic daily weather conditions by using the theory of vectorial auto-regressive models (VAR). The VAR model was chosen for its ability in maintaining the temporal and spatial correlations among variables. In particular, observed time series of daily maximum and minimum temperature are transformed into "new" normally-distributed variable time series which are used to calibrate the parameters of a VAR model by using ordinary least square methods. Therefore the implemented algorithm, applied to monthly mean climatic values downscaled by Global Climate Model predictions, can generate several stochastic daily scenarios where the statistical consistency among series is saved. Further details are present in RMAWGEN documentation. An application is presented here by using a dataset with daily temperature time series recorded in 41 different sites of Trentino region for the period 1958-2010. Temperature time series were pre-processed to fill missing values (by a site-specific calibrated Inverse Distance Weighting algorithm, corrected with elevation) and to remove inhomogeneities. Several climatic indices were taken into account, useful for several impact assessment applications, and their time trends within the time series were analyzed. The indices go from the more classical ones, as annual mean temperatures, seasonal mean temperatures and their anomalies (from the reference period 1961-1990) to the climate change indices

  9. Spatial and temporal variation in daily temperature indices in summer and winter seasons over India (1969-2012)

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh; Jaswal, A. K.; Mohapatra, M.; Kore, P. A.

    2016-06-01

    Spatial and temporal variations in summer and winter extreme temperature indices are studied by using daily maximum and minimum temperatures data from 227 surface meteorological stations well distributed over India for the period 1969-2012. For this purpose, time series for six extreme temperature indices namely, hot days (HD), very hot days (VHD), extremely hot days (EHD), cold nights (CN), very cold nights (VCN), and extremely cold nights (ECN) are calculated for all the stations. In addition, time series for mean extreme temperature indices of summer and winter seasons are also analyzed. Study reveals high variability in spatial distribution of threshold temperatures of extreme temperature indices over the country. In general, increasing trends are observed in summer hot days indices and decreasing trends in winter cold night indices over most parts of the country. The results obtained in this study indicate warming in summer maximum and winter minimum temperatures over India. Averaged over India, trends in summer hot days indices HD, VHD, and EHD are significantly increasing (+1.0, +0.64, and +0.32 days/decade, respectively) and winter cold night indices CN, VCN, and ECN are significantly decreasing (-0.93, -0.47, and -0.15 days/decade, respectively). Also, it is observed that the impact of extreme temperature is higher along the west coast for summer and east coast for winter.

  10. Oral temperatures of the elderly in nursing homes in summer and winter in relation to activities of daily living

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Tanaka, Masatoshi; Motohashi, Yutaka; Maeda, Akira

    This study was conducted to clarify the seasonal difference in body temperature in summer and winter, and to document the thermal environment of the elderly living in nursing homes. The subjects were 57 healthy elderly people aged >=63 years living in two nursing homes in Japan. One of the homes was characterized by subjects with low levels of activities of daily living (ADL). Oral temperatures were measured in the morning and afternoon, with simultaneous recording of ambient temperature and relative humidity. Oral temperatures in summer were higher than in winter, with statistically significant differences (P<0.05) of 0.25 (SD 0.61) °C in the morning and 0.24 (SD 0.50) °C in the afternoon. Differences between oral temperatures in summer and winter tended to be greater in subjects with low ADL scores, even when their room temperature was well-controlled. In conclusion, the oral temperatures of the elderly are lower in winter than summer, particularly in physically inactive people. It appears that those with low levels of ADL are more vulnerable to large changes in ambient temperature.

  11. Controls of air temperature variability over an Alpine Glacier

    NASA Astrophysics Data System (ADS)

    Shaw, Thomas; Brock, Ben; Ayala, Álvaro; Rutter, Nick

    2016-04-01

    Near surface air temperature (Ta) is one of the most important controls on energy exchange between a glacier surface and the overlying atmosphere. However, not enough detail is known about the controls on Ta across a glacier due to sparse data availability. Recent work has provided insights into variability of Ta along glacier centre-lines in different parts of the world, yet there is still a limited understanding of off-centreline variability in Ta and how best to estimate it from distant off-glacier locations. We present a new dataset of distributed 2m Ta records for the Tsanteleina Glacier in Northwest Italy from July-September, 2015. Data provide detailed information of lateral (across-glacier) and centre-line variations in Ta, with ~20,000 hourly observations from 17 locations. The suitability of different vertical temperature gradients (VTGs) in estimating air temperature is considered under a range of meteorological conditions and from different forcing locations. A key finding is that local VTGs account for a lot of Ta variability under a broad range of climatic conditions. However, across-glacier variability is found to be significant, particularly for high ambient temperatures and for localised topographic depressions. The relationship of spatial Ta patterns with regional-scale reanalysis data and alternative Ta estimation methodologies are also presented. This work improves the knowledge of local scale Ta variations and their importance to melt modelling.

  12. High efficiency power generation from coal and wastes utilizing high temperature air combustion technology (Part 2: Thermal performance of compact high temperature air preheater and MEET boiler)

    SciTech Connect

    Iwahashi, Takashi; Kosaka, Hitoshi; Yoshida, Nobuhiro

    1998-07-01

    The compact high temperature air preheater and the MEET boiler, which are critical components of the MEET system, are the direct evolutions of the high temperature air combustion technology. Innovative hardware concept for a compact high temperature air preheater has been proposed, and preliminary experiment using the MEET-I high temperature air preheater based on this concept successfully demonstrated continuous high temperature air generation with almost no temperature fluctuation. A preliminary heat transfer calculation for the MEET boiler showed that regenerative combustion using high temperature air is quite effective for radiative heat transfer augmentation in a boiler, which will lead to significant downsizing of a boiler. The heat transfer characteristics in the MEET boiler were experimentally measured and the heat transfer promotion effect and the uniform heat transfer field were confirmed. Moreover, it was understood that excellent combustion with the low BTU gas of about 3,000 kcal/m{sup 3} was done.

  13. Hourly air temperature driven using multi-layer perceptron and radial basis function networks in arid and semi-arid regions

    NASA Astrophysics Data System (ADS)

    Rezaeian-Zadeh, Mehdi; Zand-Parsa, Shahrookh; Abghari, Hirad; Zolghadr, Masih; Singh, Vijay P.

    2012-08-01

    This study employed two artificial neural network (ANN) models, including multi-layer perceptron (MLP) and radial basis function (RBF), as data-driven methods of hourly air temperature at three meteorological stations in Fars province, Iran. MLP was optimized using the Levenberg-Marquardt (MLP_LM) training algorithm with a tangent sigmoid transfer function. Both time series (TS) and randomized (RZ) data were used for training and testing of ANNs. Daily maximum and minimum air temperatures (MM) and antecedent daily maximum and minimum air temperatures (AMM) constituted the input for ANNs. The ANN models were evaluated using the root mean square error (RMSE), the coefficient of determination ( R 2) and the mean absolute error. The use of AMM led to a more accurate estimation of hourly temperature compared with the use of MM. The MLP-ANN seemed to have a higher estimation efficiency than the RBF ANN. Furthermore, the ANN testing using randomized data showed more accurate estimation. The RMSE values for MLP with RZ data using daily maximum and minimum air temperatures for testing phase were equal to 1.2°C, 1.8°C, and 1.7°C, respectively, at Arsanjan, Bajgah, and Kooshkak stations. The results of this study showed that hourly air temperature driven using ANNs (proposed models) had less error than the empirical equation.

  14. Air Temperature estimation from Land Surface temperature and solar Radiation parameters

    NASA Astrophysics Data System (ADS)

    Lazzarini, Michele; Eissa, Yehia; Marpu, Prashanth; Ghedira, Hosni

    2013-04-01

    Air Temperature (AirT) is a fundamental parameter in a wide range of applications such as climate change studies, weather forecast, energy balance modeling, efficiency of Photovoltaic (PV) solar cells, etc. Air temperature data are generally obtained through regular measurements from meteorological stations. The distribution of these stations is normally sparse, so the spatial pattern of this parameter cannot be accurately estimated by interpolation methods. This work investigated the relationship between Air Temperature measured at meteorological stations and spatially contiguous measurements derived from Remote Sensing techniques, such as Land Surface Temperature (LST) maps, emissivity maps and shortwave radiation maps with the aim of creating a continuous map of AirT. For LST and emissivity, MSG-SEVIRI LST product from Land Surface Analysis Satellite Applications Facility (LSA-SAF) has been used. For shortwave radiation maps, an Artificial Neural Networks ensemble model has been developed and previously tested to create continuous maps from Global Horizontal Irradiance (GHI) point measurements, utilizing six thermal channels of MSG-SEVIRI. The testing sites corresponded to three meteorological stations located in the United Arab Emirates (UAE), where in situ measurements of Air Temperature were available. From the starting parameters, energy fluxes and net radiation have been calculated, in order to have information on the incoming and outgoing long-wave radiation and the incoming short-wave radiation. The preliminary analysis (day and Night measurements, cloud free) showed a strong negative correlation (0.92) between Outgoing long-wave radiation - GHI and LST- AirT, with a RMSE of 1.84 K in the AirT estimation from the initial parameters. Regression coefficients have been determined and tested on all the ground stations. The analysis also demonstrated the predominant impact of the incoming short-wave radiation in the AirT hourly variation, while the incoming

  15. On extreme rainfall intensity increases with air temperature

    NASA Astrophysics Data System (ADS)

    Molnar, Peter; Fatichi, Simone; Paschalis, Athanasios; Gaal, Ladislav; Szolgay, Jan; Burlando, Paolo

    2016-04-01

    The water vapour holding capacity of air increases at about 7% per degree C according to the Clausius-Clapeyron (CC) relation. This is one of the arguments why a warmer future atmosphere, being able to hold more moisture, will generate higher extreme precipitation intensities. However, several empirical studies have recently demonstrated an increase in extreme rain intensities with air temperature above CC rates, in the range 7-14% per degree C worldwide (called super-CC rates). This was observed especially for shorter duration rainfall, i.e. in hourly and finer resolution data (e.g. review in Westra et al., 2014). The super-CC rate was attributed to positive feedbacks between water vapour and the updraft dynamics in convective clouds and lateral supply (convergence) of moisture. In addition, mixing of storm types was shown to be potentially responsible for super-CC rates in empirical studies. Assuming that convective events are accompanied by lightning, we will show on a large rainfall dataset in Switzerland (30 year records of 10-min and 1-hr data from 59 stations) that while the average rate of increase in extreme rainfall intensity (95th percentile) is 6-7% in no-lightning events and 8-9% in lightning events, it is 11-13% per degree C when all events are combined (Molnar et al., 2015). These results are relevant for climate change studies which predict shifts in storm types in a warmer climate in some parts of the world. The observation that extreme rain intensity and air temperature are positively correlated has consequences for the stochastic modelling of rainfall. Most current stochastic models do not explicitly include a direct rain intensity-air temperature dependency beyond applying factors of change predicted by climate models to basic statistics of precipitation. Including this dependency explicitly in stochastic models will allow, for example in the nested modelling approach of Paschalis et al. (2014), the random cascade disaggregation routine to be

  16. Control of continuous irradiation injury on potatoes with daily temperature cycling

    NASA Technical Reports Server (NTRS)

    Tibbitts, T. W.; Bennett, S. M.; Cao, W.

    1990-01-01

    Two controlled-environment experiments were conducted to determine the effects of temperature fluctuations under continuous irradiation on growth and tuberization of two potato (Solanum tuberosum L.) cultivars, Kennebec and Superior. These cultivars had exhibited chlorotic and stunted growth under continuous irradiation and constant temperatures. The plants were grown for 4 weeks in the first experiment and for 6 weeks in the second experiment. Each experiment was conducted under continuous irradiation of 400 micromoles per square meter per second of photosynthetic photon flux and included two temperature treatments: constant 18 degrees C and fluctuating 22 degrees C/14 degrees C on a 12-hour cycle. A common vapor pressure deficit of 0.62 kilopascal was maintained at all temperatures. Plants under constant 18 degrees C were stunted and had chlorotic and abscised leaves and essentially no tuber formation. Plants grown under the fluctuating temperature treatment developed normally, were developing tubers, and had a fivefold or greater total dry weight as compared with those under the constant temperature. These results suggest that a thermoperiod can allow normal plant growth and tuberization in potato cultivars that are unable to develop effectively under continuous irradiation.

  17. Multisite multivariate modeling of daily precipitation and temperature in the Canadian Prairie Provinces using generalized linear models

    NASA Astrophysics Data System (ADS)

    Asong, Zilefac E.; Khaliq, M. N.; Wheater, H. S.

    2016-02-01

    Based on the Generalized Linear Model (GLM) framework, a multisite stochastic modelling approach is developed using daily observations of precipitation and minimum and maximum temperatures from 120 sites located across the Canadian Prairie Provinces: Alberta, Saskatchewan and Manitoba. Temperature is modeled using a two-stage normal-heteroscedastic model by fitting mean and variance components separately. Likewise, precipitation occurrence and conditional precipitation intensity processes are modeled separately. The relationship between precipitation and temperature is accounted for by using transformations of precipitation as covariates to predict temperature fields. Large scale atmospheric covariates from the National Center for Environmental Prediction Reanalysis-I, teleconnection indices, geographical site attributes, and observed precipitation and temperature records are used to calibrate these models for the 1971-2000 period. Validation of the developed models is performed on both pre- and post-calibration period data. Results of the study indicate that the developed models are able to capture spatiotemporal characteristics of observed precipitation and temperature fields, such as inter-site and inter-variable correlation structure, and systematic regional variations present in observed sequences. A number of simulated weather statistics ranging from seasonal means to characteristics of temperature and precipitation extremes and some of the commonly used climate indices are also found to be in close agreement with those derived from observed data. This GLM-based modelling approach will be developed further for multisite statistical downscaling of Global Climate Model outputs to explore climate variability and change in this region of Canada.

  18. Linking geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppala, Annika

    ERA-40 and ECMWF operational surface level air temperature (SAT) data sets from 1957 to 2006 were used to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the Ap index. Previous modelling work has suggested that NOx produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in polar SATs. We find that during winter months, ERA-40 and ECMWF polar SATs in years with high Ap index are different than in years with low Ap index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, de-pending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings are excluded. Solar irradiance variations were taken into account in the analysis. Although using the re-analysis and operational data sets it was not possible to conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating polar wintertime surface air temperature patterns. The SAT results were tested against variation in the Quasi Biennial Oscillation (QBO), the El Niño Southern Oscillation (ENSO) and the Southern Annular Mode n (SAM). The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode (NAM) and we could not robustly exclude a chance linkage between sea surface temperature (SST) variability and geomagnetic activity. Examining the physical link between geomagnetic activity and polar surface temperature variability patterns using atmospheric models is an ongoing task.

  19. Measuring subcutaneous temperature and differential rates of rewarming from hibernation and daily torpor in two species of bats.

    PubMed

    Currie, Shannon E; Körtner, Gerhard; Geiser, Fritz

    2015-12-01

    Prolonged and remote measurement of body temperature (Tb) in undisturbed small hibernators was not possible in the past because of technological limitations. Although passive integrated transponders (PITs) have been used previously to measure subcutaneous temperature (Tsub) during daily torpor in a small marsupial, no study has attempted to use these devices at Tbs below 10°C. Therefore, we investigated whether subcutaneous interscapular PITs can be used as a viable tool for measuring Tb in a small hibernating bat (Nyctophilus gouldi; Ng) and compared it with measurements of Tb during daily torpor in a heterothermic bat (Syconycteris australis; Sa). The precision of transponders was investigated as a function of ambient temperature (Ta) and remote Tsub readings enabled us to quantify Tsub-Tb differentials during steady-state torpor and arousal. Transponders functioned well outside the manufacturer's recommended range, down to ~5°C. At rest, Tsub and rectal Tb (Trec) were strongly correlated for both bat species (Ng r(2)=0.88; Sa r(2)=0.95) and this was also true for N. gouldi in steady-state torpor (r(2)=0.93). During induced rewarming Tsub increased faster than Trec in both species. Our results demonstrate that transponders can be used to provide accurate remote measurement of Tb in two species of bats during different physiological states, both during steady-state conditions and throughout dynamic phases such as rewarming from torpor. We show that, at least during rewarming, regional heterothermy common to larger hibernators and other hibernating bats is also present in bats capable of daily torpor. PMID:26300411

  20. Generation of low-temperature air plasma for food processing

    NASA Astrophysics Data System (ADS)

    Stepanova, Olga; Demidova, Maria; Astafiev, Alexander; Pinchuk, Mikhail; Balkir, Pinar; Turantas, Fulya

    2015-11-01

    The project is aimed at developing a physical and technical foundation of generating plasma with low gas temperature at atmospheric pressure for food industry needs. As known, plasma has an antimicrobial effect on the numerous types of microorganisms, including those that cause food spoilage. In this work an original experimental setup has been developed for the treatment of different foods. It is based on initiating corona or dielectric-barrier discharge in a chamber filled with ambient air in combination with a certain helium admixture. The experimental setup provides various conditions of discharge generation (including discharge gap geometry, supply voltage, velocity of gas flow, content of helium admixture in air and working pressure) and allows for the measurement of the electrical discharge parameters. Some recommendations on choosing optimal conditions of discharge generation for experiments on plasma food processing are developed.

  1. Impact of aerosol on air temperature in Kuwait

    NASA Astrophysics Data System (ADS)

    Sabbah, I.

    2010-08-01

    This work uses MODIS aerosol optical thickness (AOT) data observed over Kuwait during the 7-year interval 2000-2007. The values of AOT and the Ångström wavelength exponent ( α) show a clear annual cycle. These data are categorized into two catalogues in terms of the values of the AOT of the 870 nm channel ( τ870). One catalogue (71 days) includes days with high values of AOT ( τ870 ≥ 0.75). The most probable "modal" value of α for these days is 0.52. The other catalogue (1162 days) consists of the background days with a modal value ~ 1.1 for the exponent α. This analysis is extended to include water vapor content (WVC), surface wind speed (V), visibility (Vis) and the diurnal temperature range (DTR). Chree's method of superposed-epoch analysis is applied to these parameters in order to compare the variation in the daily averages during days with high AOT values with respect to background days. The high values of AOT during the 71 days are positively correlated with aerosol size, near-surface winds and poor visibility. This concludes that the aerosol particles during these days were mostly dust. The mean daily value of the DTR (Δ T) and visibility reduced significantly during these days. This reduction on DTR is a direct result of increasing the atmospheric opacity due to the presence of dust.

  2. The Trends of Soil Temperature Change Associated with Air Temperature Change in Korea from 1973 to 2012

    NASA Astrophysics Data System (ADS)

    Lee, Bo-Hyun; Park, Byeong-Hak; Koh, Eun-Hee; Lee, Kang-Kun

    2015-04-01

    Examining long-term trends of the soil temperature can contribute to assessing subsurface thermal environment. The recent 40-year (1973-2012) meteorological data from 14 Korea Meteorological Administration (KMA) stations was analyzed in this study to estimate the temporal variations of air and soil temperatures (at depths 0.5 and 1.0m) in Korea and their relations. The information on regional characteristics of study sites was also collected to investigate the local and regional features influencing the soil temperature. The long-term increasing trends of both air and soil temperatures were estimated by using simple linear regression analysis. The air temperature rise and soil temperature rise were compared for every site to reveal the relation between air and soil temperature changes. In most sites, the proportion of soil temperature rise to air temperature rise was nearly one to one except a few sites. The difference between the air and soil temperature trends at those sites may be attributed to the combined effect of soil properties such as thermal diffusivity and soil moisture content. The impact of urbanization on the air and soil temperature was also investigated in this study. Establishment of the relationship between the air and soil temperatures can help predicting the soil temperature change in a region where no soil temperature data is obtained by using air temperature data. For rigorous establishment of the relationship between soil and air temperatures, more thorough investigation on the soil thermal properties is necessary through additional monitoring and accompanied validation of the proposed relations. Keywords : Soil temperature, Air temperature, Cross-correlation analysis, Soil thermal diffusivity, Urbanization effect Acknowledgement This work was supported by the research project of "Advanced Technology for Groundwater Development and Application in Riversides (Geowater+)" in "Water Resources Management Program (code 11 Technology Innovation C05

  3. The relationship between changes in daily air pollution and hospitalizations in Perth, Australia 1992-1998: a case-crossover study.

    PubMed

    Hinwood, A L; De Klerk, N; Rodriguez, C; Jacoby, P; Runnion, T; Rye, P; Landau, L; Murray, F; Feldwick, M; Spickett, J

    2006-02-01

    A case-crossover study was undertaken to investigate the relationship between daily air pollutant concentrations and daily hospitalizations for selected disease categories in Perth, Western Australia. Daily measurements of particles (measured by nephelometry and PM2.5), photochemical oxidants (measured as ozone), nitrogen dioxide (NO2) and carbon monoxide (CO) concentrations were obtained from 1992 to 1998 via a metropolitan network of monitoring stations. Daily PM2.5 concentrations were estimated using monitored data, modelling and interpolation. Hospital morbidity data for respiratory, cardiovascular (CVD), gastrointestinal (GI) diseases, chronic obstructive pulmonary diseases (COPD) excluding asthma; pneumonia/influenza diseases; and asthma were obtained and categorized into all ages, less than 15 years and greater than 65 years. Gastrointestinal morbidity was used as a control disease. The data were analyzed using conditional logistic regression. The results showed a small number of significant associations for daily changes in particle concentrations, nitrogen dioxide and carbon monoxide for the respiratory diseases, CODP, pneumonia, asthma and CVD hospitalizations. Changes in ozone concentrations were not significantly associated with any disease outcomes. These data provide useful information on the potential health impacts of air pollution in an airshed with very low sulphur dioxide concentrations and lower nitrogen dioxide concentrations commonly found in many other cities. PMID:16507479

  4. Daily indoor-to-outdoor temperature and humidity relationships: a sample across seasons and diverse climatic regions.

    PubMed

    Nguyen, Jennifer L; Dockery, Douglas W

    2016-02-01

    The health consequences of heat and cold are usually evaluated based on associations with outdoor measurements collected at a nearby weather reporting station. However, people in the developed world spend little time outdoors, especially during extreme temperature events. We examined the association between indoor and outdoor temperature and humidity in a range of climates. We measured indoor temperature, apparent temperature, relative humidity, dew point, and specific humidity (a measure of moisture content in air) for one calendar year (2012) in a convenience sample of eight diverse locations ranging from the equatorial region (10 °N) to the Arctic (64 °N). We then compared the indoor conditions to outdoor values recorded at the nearest airport weather station. We found that the shape of the indoor-to-outdoor temperature and humidity relationships varied across seasons and locations. Indoor temperatures showed little variation across season and location. There was large variation in indoor relative humidity between seasons and between locations which was independent of outdoor airport measurements. On the other hand, indoor specific humidity, and to a lesser extent dew point, tracked with outdoor, airport measurements both seasonally and between climates, across a wide range of outdoor temperatures. These results suggest that, in general, outdoor measures of actual moisture content in air better capture indoor conditions than outdoor temperature and relative humidity. Therefore, in studies where water vapor is among the parameters of interest for examining weather-related health effects, outdoor measurements of actual moisture content can be more reliably used as a proxy for indoor exposure than the more commonly examined variables of temperature and relative humidity. PMID:26054827

  5. Daily indoor-to-outdoor temperature and humidity relationships: a sample across seasons and diverse climatic regions

    NASA Astrophysics Data System (ADS)

    Nguyen, Jennifer L.; Dockery, Douglas W.

    2016-02-01

    The health consequences of heat and cold are usually evaluated based on associations with outdoor measurements collected at a nearby weather reporting station. However, people in the developed world spend little time outdoors, especially during extreme temperature events. We examined the association between indoor and outdoor temperature and humidity in a range of climates. We measured indoor temperature, apparent temperature, relative humidity, dew point, and specific humidity (a measure of moisture content in air) for one calendar year (2012) in a convenience sample of eight diverse locations ranging from the equatorial region (10 °N) to the Arctic (64 °N). We then compared the indoor conditions to outdoor values recorded at the nearest airport weather station. We found that the shape of the indoor-to-outdoor temperature and humidity relationships varied across seasons and locations. Indoor temperatures showed little variation across season and location. There was large variation in indoor relative humidity between seasons and between locations which was independent of outdoor airport measurements. On the other hand, indoor specific humidity, and to a lesser extent dew point, tracked with outdoor, airport measurements both seasonally and between climates, across a wide range of outdoor temperatures. These results suggest that, in general, outdoor measures of actual moisture content in air better capture indoor conditions than outdoor temperature and relative humidity. Therefore, in studies where water vapor is among the parameters of interest for examining weather-related health effects, outdoor measurements of actual moisture content can be more reliably used as a proxy for indoor exposure than the more commonly examined variables of temperature and relative humidity.

  6. Utilization of an Enhanced Canonical Correlation Analysis (ECCA) to Predict Daily Precipitation and Temperature in a Semi-Arid Environment

    NASA Astrophysics Data System (ADS)

    Lopez, S. R.; Hogue, T. S.

    2011-12-01

    Global climate models (GCMs) are primarily used to generate historical and future large-scale circulation patterns at a coarse resolution (typical order of 50,000 km2) and fail to capture climate variability at the ground level due to localized surface influences (i.e topography, marine, layer, land cover, etc). Their inability to accurately resolve these processes has led to the development of numerous 'downscaling' techniques. The goal of this study is to enhance statistical downscaling of daily precipitation and temperature for regions with heterogeneous land cover and topography. Our analysis was divided into two periods, historical (1961-2000) and contemporary (1980-2000), and tested using sixteen predictand combinations from four GCMs (GFDL CM2.0, GFDL CM2.1, CNRM-CM3 and MRI-CGCM2 3.2a. The Southern California area was separated into five county regions: Santa Barbara, Ventura, Los Angeles, Orange and San Diego. Principle component analysis (PCA) was performed on ground-based observations in order to (1) reduce the number of redundant gauges and minimize dimensionality and (2) cluster gauges that behave statistically similarly for post-analysis. Post-PCA analysis included extensive testing of predictor-predictand relationships using an enhanced canonical correlation analysis (ECCA). The ECCA includes obtaining the optimal predictand sets for all models within each spatial domain (county) as governed by daily and monthly overall statistics. Results show all models maintain mean annual and monthly behavior within each county and daily statistics are improved. The level of improvement highly depends on the vegetation extent within each county and the land-to-ocean ratio within the GCM spatial grid. The utilization of the entire historical period also leads to better statistical representation of observed daily precipitation. The validated ECCA technique is being applied to future climate scenarios distributed by the IPCC in order to provide forcing data for

  7. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface temperature (LST) is a crucial parameter in investigating environmental, ecological processes and climate change at various scales, and is also valuable in the studies of evapotranspiration, soil moisture conditions, surface energy balance, and urban heat islands. These studies require ...

  8. Temperature, air pollution, and hospitalization for cardiovascular diseases among elderly people in Denver.

    PubMed Central

    Koken, Petra J M; Piver, Warren T; Ye, Frank; Elixhauser, Anne; Olsen, Lola M; Portier, Christopher J

    2003-01-01

    Daily measures of maximum temperature, particulate matter less than or equal to 10 micro m in aerodynamic diameter (PM10), and gaseous pollution (ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide) were collected in Denver, Colorado, in July and August between 1993 and 1997. We then compared these exposures with concurrent data on the number of daily hospital admissions for cardiovascular diseases in men and women > 65 years of age. Generalized linear models, assuming a Poisson error structure for the selected cardiovascular disease hospital admissions, were constructed to evaluate the associations with air pollution and temperature. After adjusting the admission data for yearly trends, day-of-week effects, ambient maximum temperature, and dew point temperature, we studied the associations of the pollutants in single-pollutant models with lag times of 0-4 days. The results suggest that O3 is associated with an increase in the risk of hospitalization for acute myocardial infarction, coronary atherosclerosis, and pulmonary heart disease. SO2 appears to be related to increased hospital stays for cardiac dysrhythmias, and CO is significantly associated with congestive heart failure. No association was found between particulate matter or NO2 and any of the health outcomes. Males tend to have higher numbers of hospital admissions than do females for all of the selected cardiovascular diseases, except for congestive heart failure. Higher temperatures appear to be an important factor in increasing the frequency of hospitalization for acute myocardial infarction and congestive heart failure, and are associated with a decrease in the frequency of visits for coronary atherosclerosis and pulmonary heart disease. PMID:12896852

  9. Complexity analysis of the air temperature and the precipitation time series in Serbia

    NASA Astrophysics Data System (ADS)

    Mimić, G.; Mihailović, D. T.; Kapor, D.

    2015-11-01

    In this paper, we have analyzed the time series of daily values for three meteorological elements, two continuous and a discontinuous one, i.e., the maximum and minimum air temperature and the precipitation. The analysis was done based on the observations from seven stations in Serbia from the period 1951-2010. The main aim of this paper was to quantify the complexity of the annual values for the mentioned time series and to calculate the rate of its change. For that purpose, we have used the sample entropy and the Kolmogorov complexity as the measures which can indicate the variability and irregularity of a given time series. Results obtained show that the maximum temperature has increasing trends in the given period which points out a warming, ranged in the interval 1-2 °C. The increasing temperature indicates the higher internal energy of the atmosphere, changing the weather patterns, manifested in the time series. The Kolmogorov complexity of the maximum temperature time series has statistically significant increasing trends, while the sample entropy has increasing but statistically insignificant trend. The trends of complexity measures for the minimum temperature depend on the location. Both complexity measures for the precipitation time series have decreasing trends.

  10. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  11. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  12. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  13. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  14. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  15. Daily precipitation and temperature extremes across the Iberian Peninsula, 1960-2011

    NASA Astrophysics Data System (ADS)

    Merino, Andrés; Fernández-Vaquero, Mario; López, Laura; Sánchez, José Luis; Hermida, Lucía; García-Ortega, Eduardo; Gascón, Estíbaliz; Fernández-González, Sergio; Marcos, José Luis

    2015-04-01

    The study of weather extremes is critical because of the great impact of extremely high or low temperatures and extremely dry or wet conditions on the environment, economy and society. Identification of areas at greater risk for extreme conditions, and of meteorological situations that give rise to such conditions, enhances understanding of climate risks and helps establish measures to reduce adverse impacts. In this paper, we analyzed the occurrence of very wet conditions and high/low temperature events in Spain between 1960 and 2011. Thresholds for determining severity of the events were defined using the 90th, 95th and 99th percentiles. First, we identified regions of extreme weather risk, and analyzed trends of extreme events in each weather observatory using the Mann-Kendall test. To better understand atmospheric processes associated with extreme weather events in each weather observatory, we analyzed synoptic-scale fields of events that exceeded the 99th percentile. By applying non-hierarchical K-means clustering, we defined large-scale atmospheric patterns under which extreme conditions of temperature and precipitation were produced on the Iberian Peninsula. The results show a clear ability to identify regions exposed to extreme weather hazards, which can assist decision-making toward minimizing vulnerability of those regions. In addition, correct identification of synoptic patterns associated with each type of weather extreme will help predict such events, thereby providing useful information for decision-making and warning systems.

  16. Comparing the Evolution of Fractal Encodings of Daily Streamflow and Temperature as a Tool to Assess Climate Change

    NASA Astrophysics Data System (ADS)

    Lal Maskey, Mahesh; Puente, Carlos E.; Sivakumar, Bellie

    2016-04-01

    The fractal-multifractal method (FM), a geometric approach based on the transformation of multifractal measures via fractal functions and requiring few geometric parameters, has recently been shown to produce faithful encodings of geophysical records. It is shown that such a procedure (and its variants): (i) closely represents daily streamflow and temperature records at the Sacramento River (Freeport), with maximum cumulative errors that are always less than 2.5% over a period of fifty years, and (ii) yields FM geometric parameters that allow visualizing the dynamics of both processes. A classification of FM parameters, based on clustering techniques, and a comparison between the attributes of streamflow and temperature is then presented in order to assess potential climatic trends and changes.

  17. Decadal power in land air temperatures: Is it statistically significant?

    NASA Astrophysics Data System (ADS)

    Thejll, Peter A.

    2001-12-01

    The geographical distribution and properties of the well-known 10-11 year signal in terrestrial temperature records is investigated. By analyzing the Global Historical Climate Network data for surface air temperatures we verify that the signal is strongest in North America and is similar in nature to that reported earlier by R. G. Currie. The decadal signal is statistically significant for individual stations, but it is not possible to show that the signal is statistically significant globally, using strict tests. In North America, during the twentieth century, the decadal variability in the solar activity cycle is associated with the decadal part of the North Atlantic Oscillation index series in such a way that both of these signals correspond to the same spatial pattern of cooling and warming. A method for testing statistical results with Monte Carlo trials on data fields with specified temporal structure and specific spatial correlation retained is presented.

  18. A new approach to quantifying soil temperature responses to changing air temperature and snow cover

    NASA Astrophysics Data System (ADS)

    Mackiewicz, Michael C.

    2012-08-01

    Seasonal snow cover provides an effective insulating barrier, separating shallow soil (0.25 m) from direct localized meteorological conditions. The effectiveness of this barrier is evident in a lag in the soil temperature response to changing air temperature. The causal relationship between air and soil temperatures is largely because of the presence or absence of snow cover, and is frequently characterized using linear regression analysis. However, the magnitude of the dampening effect of snow cover on the temperature response in shallow soils is obscured in linear regressions. In this study the author used multiple linear regression (MLR) with dummy predictor variables to quantify the degree of dampening between air and shallow soil temperatures in the presence and absence of snow cover at four Greenland sites. The dummy variables defining snow cover conditions were z = 0 for the absence of snow and z = 1 for the presence of snow cover. The MLR was reduced to two simple linear equations that were analyzed relative to z = 0 and z = 1 to enable validation of the selected equations. Compared with ordinary linear regression of the datasets, the MLR analysis yielded stronger coefficients of multiple determination and less variation in the estimated regression variables.

  19. Projected increases in near-surface air temperature over Ontario, Canada: a regional climate modeling approach

    NASA Astrophysics Data System (ADS)

    Wang, Xiuquan; Huang, Guohe; Liu, Jinliang

    2015-09-01

    As the biggest economy in Canada, the Province of Ontario is now suffering many consequences caused by or associated with global warming, such as frequent and intense heat waves, floods, droughts, and wind gust. Planning of mitigation and adaptation strategies against the changing climate, which requires a better understanding of possible future climate outcomes over the Province in the context of global warming, is of great interest to local policy makers, stakeholders, and development practitioners. Therefore, in this study, high-resolution projections of near-surface air temperature outcomes including mean, maximum, and minimum daily temperature over Ontario are developed, aiming at investigating how the global warming would affect the local climatology of the major cities as well as the spatial patterns of air temperature over the entire Province. The PRECIS modeling system is employed to carry out regional climate ensemble simulations driven by the boundary conditions of a five-member HadCM3-based perturbed-physics ensemble (i.e., HadCM3Q0, Q3, Q10, Q13, and Q15). The ensemble simulations are then synthesized through a Bayesian hierarchical model to develop probabilistic projections of future temperature outcomes with consideration of some uncertain parameters involved in the regional climate modeling process. The results suggest that there would be a consistent increasing trend in the near-surface air temperature with time periods from 2030s to 2080s. The most likely mean temperature in next few decades (i.e., 2030s) would be [-2, 2] °C in northern Ontario, [2, 6] °C in the middle, and [6, 12] °C in the south, afterwards the mean temperature is likely to keep rising by ~ 2 °C per 30-years period. The continuous warming across the Province would drive the lowest mean temperature up to 2 °C in the north and the highest mean temperature up to 16 °C in the south. In addition, the spread of the most likely ranges of future outcomes shows a consistent

  20. Daily average temperature and mortality among the elderly: a meta-analysis and systematic review of epidemiological evidence

    NASA Astrophysics Data System (ADS)

    Yu, Weiwei; Mengersen, Kerrie; Wang, Xiaoyu; Ye, Xiaofang; Guo, Yuming; Pan, Xiaochuan; Tong, Shilu

    2012-07-01

    The impact of climate change on the health of vulnerable groups such as the elderly has been of increasing concern. However, to date there has been no meta-analysis of current literature relating to the effects of temperature fluctuations upon mortality amongst the elderly. We synthesised risk estimates of the overall impact of daily mean temperature on elderly mortality across different continents. A comprehensive literature search was conducted using MEDLINE and PubMed to identify papers published up to December 2010. Selection criteria including suitable temperature indicators, endpoints, study-designs and identification of threshold were used. A two-stage Bayesian hierarchical model was performed to summarise the percent increase in mortality with a 1°C temperature increase (or decrease) with 95% confidence intervals in hot (or cold) days, with lagged effects also measured. Fifteen studies met the eligibility criteria and almost 13 million elderly deaths were included in this meta-analysis. In total, there was a 2-5% increase for a 1°C increment during hot temperature intervals, and a 1-2 % increase in all-cause mortality for a 1°C decrease during cold temperature intervals. Lags of up to 9 days in exposure to cold temperature intervals were substantially associated with all-cause mortality, but no substantial lagged effects were observed for hot intervals. Thus, both hot and cold temperatures substantially increased mortality among the elderly, but the magnitude of heat-related effects seemed to be larger than that of cold effects within a global context.

  1. Change point analysis of mean annual air temperature in Iran

    NASA Astrophysics Data System (ADS)

    Shirvani, A.

    2015-06-01

    The existence of change point in the mean of air temperature is an important indicator of climate change. In this study, Student's t parametric and Mann-Whitney nonparametric Change Point Models (CPMs) were applied to test whether a change point has occurred in the mean of annual Air Temperature Anomalies Time Series (ATATS) of 27 synoptic stations in different regions of Iran for the period 1956-2010. The Likelihood Ratio Test (LRT) was also applied to evaluate the detected change points. The ATATS of all stations except Bandar Anzali and Gorgan stations, which were serially correlated, were transformed to produce an uncorrelated pre-whitened time series as an input file for the CPMs and LRT. Both the Student's t and Mann-Whitney CPMs detected the change point in the ATATS of (a) Tehran Mehrabad, Abadan, Kermanshah, Khoramabad and Yazd in 1992, (b) Mashhad and Tabriz in 1993, (c) Bandar Anzali, Babolsar and Ramsar in 1994, (d) Kerman and Zahedan in 1996 at 5% significance level. The likelihood ratio test shows that the ATATS before and after detected change points in these 12 stations are normally distributed with different means. The Student's t and Mann-Whitney CPMs suggested different change points for individual stations in Bushehr, Bam, Shahroud, and Gorgan. However, the LRT confirmed the change points in these four stations as 1997, 1996, 1993, and 1996, respectively. No change points were detected in the remaining 11 stations.

  2. Effect of Ambient Design Temperature on Air-Cooled Binary Plant Output

    SciTech Connect

    Dan Wendt; Greg Mines

    2011-10-01

    Air-cooled binary plants are designed to provide a specified level of power production at a particular air temperature. Nominally this air temperature is the annual mean or average air temperature for the plant location. This study investigates the effect that changing the design air temperature has on power generation for an air-cooled binary plant producing power from a resource with a declining production fluid temperature and fluctuating ambient temperatures. This analysis was performed for plants operating both with and without a geothermal fluid outlet temperature limit. Aspen Plus process simulation software was used to develop optimal air-cooled binary plant designs for specific ambient temperatures as well as to rate the performance of the plant designs at off-design operating conditions. Results include calculation of annual and plant lifetime power generation as well as evaluation of plant operating characteristics, such as improved power generation capabilities during summer months when electric power prices are at peak levels.

  3. Assessing surface air temperature variability using quantile regression

    NASA Astrophysics Data System (ADS)

    Timofeev, A. A.; Sterin, A. M.

    2014-12-01

    Many researches in climate change currently involve linear trends, based on measured variables. And many of them only consider trends in mean values, whereas it is clear, that not only means, but also whole shape of distribution changes over time and requires careful assessment. For example extreme values including outliers may get bigger, while median has zero slope.Quantile regression provides a convenient tool, that enables detailed analysis of changes in full range of distribution by producing a vector of quantile trends for any given set of quantiles.We have applied quantile regression to surface air temperature observations made at over 600 weather stations across Russian Federation during last four decades. The results demonstrate well pronounced regions with similar values of significant trends in different parts of temperature value distribution (left tail, middle part, right tail). The uncertainties of quantile trend estimations for several spatial patterns of trends over Russia are estimated and analyzed for each of four seasons.For temperature trend estimation over vast territories, quantile regression is an effort consuming approach, but is more informative than traditional instrument, to assess decadal evolution of temperature values, including evolution of extremes.Partial support of ERA NET RUS ACPCA joint project between EU and RBRF 12-05-91656-ЭРА-А is highly appreciated.

  4. Daily Care

    MedlinePlus

    ... to Know Online Tools Enhancing Daily Life Daily Plan Activities Communication Food & Eating Music & Art Personal Care Incontinence Bathing ... Tweet Email | Print Create a Daily Routine Daily Plan Activities Communication Food/Eating Get Tips on Personal Care Bathing ...

  5. Heat waves frequency analysis and spatial-temporal variability of daily maximum temperature in southern Slovakia within the 1951, respectively 1961-2008 periods

    NASA Astrophysics Data System (ADS)

    Pecho, J.; Faško, P.; Mikulová, K.; Šâstný, P.

    2009-09-01

    Heat waves temporal and spatial analysis at selected meteorological stations in southern part of Slovakia within the 1951, respectively 1961-2008 periods is a goal of the presented contribution. It is expected that climate change in terms of global warming would amplify temporal frequency and spatial extension of extreme heat wave incidence in region of central Europe in the next few decades. The frequency of occurrence and amplitude of heat waves may be impacted by changes in the temperature regime. Heat waves can cause severe thermal environmental stress leading to higher hospital admission rates, health complications, and increased mortality. These effects arise because of one or more meteorology-related factors such as higher effective temperatures, sunshine, more consecutive hot days and nights, stagnation, increased humidity, increased pollutant emissions, and accelerated photochemical smog and particulate formation. Heat waves bring about higher temperatures, increased solar heating of buildings, inhibited ventilation, and a larger number of consecutive warm days and nights. All of these effects increase the thermal loads on buildings, reduce their ability to cool down, and increase indoor temperatures. The paper deals with analysis of temporal and spatial variability of heat waves occurrence at meteorological station Hurbanovo (time series of daily maximum air temperature available from at least 1901) and some other climatological stations in lowlands of southern Slovakia (Žiharec, Bratislava-airport, Jaslovské Bohunice, Kráľová pri Senci, etc.). We can characterize the heat waves by its magnitude and duration, hence both of these characteristics need to be investigated together using sophisticated statistical methods developed particularly for the analysis of extreme hydrological events. These methods are quite similar to the intensity-duration-frequency approach often used in the analysis of extreme precipitation events. The HDF-curves (heatwave

  6. Air Surface Temperature Correlation with Greenhouse Gases by Using Airs Data Over Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Rajab, Jasim Mohammed; MatJafri, M. Z.; Lim, H. S.

    2014-08-01

    The main objective of this study is to develop algorithms for calculating the air surface temperature (AST). This study also aims to analyze and investigate the effects of greenhouse gases (GHGs) on the AST value in Peninsular Malaysia. Multiple linear regression is used to achieve the objectives of the study. Peninsular Malaysia has been selected as the research area because it is among the regions of tropical Southeast Asia with the greatest humidity, pockets of heavy pollution, rapid economic growth, and industrialization. The predicted AST was highly correlated ( R = 0.783) with GHGs for the 6-year data (2003-2008). Comparisons of five stations in 2009 showed close agreement between the predicted AST and the observed AST from AIRS, especially in the wet season (within 1.3 K). The in situ data ranged from 1 to 2 K. Validation results showed that AST ( R = 0.776-0.878) has values nearly the same as the observed AST from AIRS. We found that O3 during the wet season was indicated by a strongly positive beta coefficient (0.264-0.992) with AST. The CO2 yields a reasonable relationship with temperature with low to moderate beta coefficient (-0.065 to 0.238). The O3, CO2, and environmental variables experienced different seasonal fluctuations that depend on weather conditions and topography. The concentration of gases and pollution were the highest over industrial zones and overcrowded cities, and the dry season was more polluted compared with the wet season. These results indicate the advantage of using the satellite AIRS data and a correlation analysis to investigate the effect of atmospheric GHGs on AST over Peninsular Malaysia. An algorithm that is capable of retrieving Peninsular Malaysian AST in all weather conditions with total uncertainties ranging from 1 to 2 K was developed.

  7. Spatiotemporal changes in extreme ground surface temperatures and the relationship with air temperatures in the Three-River Source Regions during 1980-2013

    NASA Astrophysics Data System (ADS)

    Luo, Dongliang; Jin, Huijun; Lü, Lanzhi; Zhou, Jian

    2016-02-01

    Climate changes are affecting plant growth, ecosystem evolution, hydrological processes, and water resources in the Three-River Source Regions (TRSR). Daily ground surface temperature (GST) and air temperature (Ta) recordings from 12 meteorological stations illustrated trends and characteristics of extreme GST and Ta in the TRSR during 1980-2013. We used the Mann-Kendall test and Sen's slope estimate to analyze 12 temperature extreme indices as recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI). The mean annual ground surface temperatures (MAGST) are 2.4-4.3 °C higher than the mean annual air temperatures (MAAT) in the TRSR. The increasing trends of the MAGST are all higher than those of the MAAT. The multi-year average maximum GST (28.1 °C) is much higher than that of the Ta (7.6 °C), while the minimum GST (-8.7 °C) is similar to that of the minimum Ta (-6.9 °C). The minimum temperature trends are more significant than those of the maximum temperature and are consistent with temperature trends in other regions of China. Different spatiotemporal patterns of GST extremes compared to those of Ta may result from greater warming of the ground surface. Consequently, the difference between the GST and Ta increased. These findings have implications for variations of surface energy balance, sensible heat flux, ecology, hydrology, and permafrost.

  8. Sampling Biases in Datasets of Historical Mean Air Temperature over Land

    NASA Astrophysics Data System (ADS)

    Wang, Kaicun

    2014-04-01

    Global mean surface air temperature (Ta) has been reported to have risen by 0.74°C over the last 100 years. However, the definition of mean Ta is still a subject of debate. The most defensible definition might be the integral of the continuous temperature measurements over a day (Td0). However, for technological and historical reasons, mean Ta over land have been taken to be the average of the daily maximum and minimum temperature measurements (Td1). All existing principal global temperature analyses over land rely heavily on Td1. Here, I make a first quantitative assessment of the bias in the use of Td1 to estimate trends of mean Ta using hourly Ta observations at 5600 globally distributed weather stations from the 1970s to 2013. I find that the use of Td1 has a negligible impact on the global mean warming rate. However, the trend of Td1 has a substantial bias at regional and local scales, with a root mean square error of over 25% at 5° × 5° grids. Therefore, caution should be taken when using mean Ta datasets based on Td1 to examine high resolution details of warming trends.

  9. Sampling biases in datasets of historical mean air temperature over land.

    PubMed

    Wang, Kaicun

    2014-01-01

    Global mean surface air temperature (Ta) has been reported to have risen by 0.74°C over the last 100 years. However, the definition of mean Ta is still a subject of debate. The most defensible definition might be the integral of the continuous temperature measurements over a day (Td0). However, for technological and historical reasons, mean Ta over land have been taken to be the average of the daily maximum and minimum temperature measurements (Td1). All existing principal global temperature analyses over land rely heavily on Td1. Here, I make a first quantitative assessment of the bias in the use of Td1 to estimate trends of mean Ta using hourly Ta observations at 5600 globally distributed weather stations from the 1970s to 2013. I find that the use of Td1 has a negligible impact on the global mean warming rate. However, the trend of Td1 has a substantial bias at regional and local scales, with a root mean square error of over 25% at 5° × 5° grids. Therefore, caution should be taken when using mean Ta datasets based on Td1 to examine high resolution details of warming trends. PMID:24717688

  10. Cyclic Oxidation of High-Temperature Alloy Wires in Air

    NASA Technical Reports Server (NTRS)

    Reigel, Marissa M.

    2004-01-01

    High-temperature alloy wires are proposed for use in seal applications for future re-useable space vehicles. These alloys offer the potential for improved wear resistance of the seals. The wires must withstand the high temperature environments the seals are subjected to as well as maintain their oxidation resistance during the heating and cooling cycles of vehicle re-entry. To model this, the wires were subjected to cyclic oxidation in stagnant air. of this layer formation is dependent on temperature. Slow growing oxides such as chromia and alumina are desirable. Once the oxide is formed it can prevent the metal from further reacting with its environment. Cyclic oxidation models the changes in temperature these wires will undergo in application. Cycling the temperature introduces thermal stresses which can cause the oxide layer to break off. Re-growth of the oxide layer consumes more metal and therefore reduces the properties and durability of the material. were used for cyclic oxidation testing. The baseline material, Haynes 188, has a Co base and is a chromia former while the other two alloys, Kanthal A1 and PM2000, both have a Fe base and are alumina formers. Haynes 188 and Kanthal A1 wires are 250 pm in diameter and PM2000 wires are 150 pm in diameter. The coiled wire has a total surface area of 3 to 5 sq cm. The wires were oxidized for 11 cycles at 1204 C, each cycle containing a 1 hour heating time and a minimum 20 minute cooling time. Weights were taken between cycles. After 11 cycles, one wire of each composition was removed for analysis. The other wire continued testing for 70 cycles. Post-test analysis includes X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) for phase identification and morphology.

  11. The Role of Auxiliary Variables in Deterministic and Deterministic-Stochastic Spatial Models of Air Temperature in Poland

    NASA Astrophysics Data System (ADS)

    Szymanowski, Mariusz; Kryza, Maciej

    2015-11-01

    Our study examines the role of auxiliary variables in the process of spatial modelling and mapping of climatological elements, with air temperature in Poland used as an example. The multivariable algorithms are the most frequently applied for spatialization of air temperature, and their results in many studies are proved to be better in comparison to those obtained by various one-dimensional techniques. In most of the previous studies, two main strategies were used to perform multidimensional spatial interpolation of air temperature. First, it was accepted that all variables significantly correlated with air temperature should be incorporated into the model. Second, it was assumed that the more spatial variation of air temperature was deterministically explained, the better was the quality of spatial interpolation. The main goal of the paper was to examine both above-mentioned assumptions. The analysis was performed using data from 250 meteorological stations and for 69 air temperature cases aggregated on different levels: from daily means to 10-year annual mean. Two cases were considered for detailed analysis. The set of potential auxiliary variables covered 11 environmental predictors of air temperature. Another purpose of the study was to compare the results of interpolation given by various multivariable methods using the same set of explanatory variables. Two regression models: multiple linear (MLR) and geographically weighted (GWR) method, as well as their extensions to the regression-kriging form, MLRK and GWRK, respectively, were examined. Stepwise regression was used to select variables for the individual models and the cross-validation method was used to validate the results with a special attention paid to statistically significant improvement of the model using the mean absolute error (MAE) criterion. The main results of this study led to rejection of both assumptions considered. Usually, including more than two or three of the most significantly

  12. Variation in the daily rhythm of body temperature of free-living Arabian oryx (Oryx leucoryx): does water limitation drive heterothermy?

    PubMed

    Hetem, Robyn Sheila; Strauss, Willem Maartin; Fick, Linda Gayle; Maloney, Shane Kevin; Meyer, Leith Carl Rodney; Shobrak, Mohammed; Fuller, Andrea; Mitchell, Duncan

    2010-10-01

    Heterothermy, a variability in body temperature beyond the limits of homeothermy, has been advanced as a key adaptation of Arabian oryx (Oryx leucoryx) to their arid-zone life. We measured body temperature using implanted data loggers, for a 1-year period, in five oryx free-living in the deserts of Saudi Arabia. As predicted for adaptive heterothermy, during hot months compared to cooler months, not only were maximum daily body temperatures higher (41.1 ± 0.3 vs. 39.7 ± 0.1°C, P = 0.0002) but minimum daily body temperatures also were lower (36.1 ± 0.3 vs. 36.8 ± 0.2°C, P = 0.04), resulting in a larger daily amplitude of the body temperature rhythm (5.0 ± 0.5 vs. 2.9 ± 0.2°C, P = 0.0007), while mean daily body temperature rose by only 0.4°C. The maximum daily amplitude of the body temperature rhythm reached 7.7°C for two of our oryx during the hot-dry period, the largest amplitude ever recorded for a large mammal. Body temperature variability was influenced not only by ambient temperature but also water availability, with oryx displaying larger daily amplitudes of the body temperature rhythm during warm-dry months compared to warm-wet months (3.6 ± 0.6 vs. 2.3 ± 0.3°C, P = 0.005), even though ambient temperatures were the same. Free-living Arabian oryx therefore employ heterothermy greater than that recorded in any other large mammal, but water limitation, rather than high ambient temperature, seems to be the primary driver of this heterothermy. PMID:20502901

  13. Staying cool in a changing landscape: the influence of maximum daily ambient temperature on grizzly bear habitat selection.

    PubMed

    Pigeon, Karine E; Cardinal, Etienne; Stenhouse, Gordon B; Côté, Steeve D

    2016-08-01

    To fulfill their needs, animals are constantly making trade-offs among limiting factors. Although there is growing evidence about the impact of ambient temperature on habitat selection in mammals, the role of environmental conditions and thermoregulation on apex predators is poorly understood. Our objective was to investigate the influence of ambient temperature on habitat selection patterns of grizzly bears in the managed landscape of Alberta, Canada. Grizzly bear habitat selection followed a daily and seasonal pattern that was influenced by ambient temperature, with adult males showing stronger responses than females to warm temperatures. Cutblocks aged 0-20 years provided an abundance of forage but were on average 6 °C warmer than mature conifer stands and 21- to 40-year-old cutblocks. When ambient temperatures increased, the relative change (odds ratio) in the probability of selection for 0- to 20-year-old cutblocks decreased during the hottest part of the day and increased during cooler periods, especially for males. Concurrently, the probability of selection for 21- to 40-year-old cutblocks increased on warmer days. Following plant phenology, the odds of selecting 0- to 20-year-old cutblocks also increased from early to late summer while the odds of selecting 21- to 40-year-old cutblocks decreased. Our results demonstrate that ambient temperatures, and therefore thermal requirements, play a significant role in habitat selection patterns and behaviour of grizzly bears. In a changing climate, large mammals may increasingly need to adjust spatial and temporal selection patterns in response to thermal constraints. PMID:27085998

  14. Trends in Daily and Extreme Temperature and Precipitation Indices for the Countries of the Western Indian Ocean, 1975-2008

    NASA Astrophysics Data System (ADS)

    Aguilar, Enric; Vincent, Lucie A.

    2010-05-01

    In the framework of the project "Renforcement des Capacités des Pays de la COI dans le Domaine de l'Adaptation au Changement Climatique (ACCLIMATE)" (Comission de l'Ocean Indien, COI), a workshop on homogenization of climate data and climate change indices analysis was held in Mauritius in October 2009, using the successful format prepared by the CCl/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices. Scientists from the five countries in Western Indian Ocean brought daily climatological data from their region for a meticulous assessment of the data quality and homogeneity, and for the preparation of climate change indices which can be used for analyses of changes in climate extremes. Although the period of analysis is very short, it represents a seminal step for the compilation of longer data set and allows us to examine the evolution of climate extremes in the area during the time period identified as the decades where anthropogenic warming es larger than natural forcings. This study first presents some results of the homogeneity assessment using the software package RHtestV3 (Wang and Feng 2009) which has been developed for the detection of changepoints in climatological datasets. Indices based on homogenized daily temperatures and precipitations were also prepared for the analysis of trends at more than 50 stations across the region. The results show an increase in the percentage of warm days and warm nights over 1975-2008 while changes in extreme precipitations are not as consistent.

  15. Polar microwave brightness temperatures from Nimbus-7 SMMR: Time series of daily and monthly maps from 1978 to 1987

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Zwally, H. Jay

    1989-01-01

    A time series of daily brightness temperature gridded maps (October 25, 1978 through August 15, 1987) were generated from all ten channels of the Nimbus-7 Scanning Multichannel Microwave Radiometer orbital data. This unique data set can be utilized in a wide range of applications including heat flux, ocean circulation, ice edge productivity, and climate studies. Two sets of data in polar stereographic format are created for the Arctic region: one with a grid size of about 30 km on a 293 by 293 array similar to that previously utilized for the Nimbus-5 Electrically Scanning Microwave Radiometer, while the other has a grid size of about 25 km on a 448 by 304 array identical to what is now being used for the DMSP Scanning Multichannel Microwave Imager. Data generated for the Antaractic region are mapped using the 293 by 293 grid only. The general technique for mapping, and a quality assessment of the data set are presented. Monthly and yearly averages are also generated from the daily data and sample geophysical ice images and products derived from the data are given. Contour plots of monthly ice concentrations derived from the data for October 1978 through August 1987 are presented to demonstrate spatial and temporal detail which this data set can offer, and to show potential research applications.

  16. Study of Ram-air Heat Exchangers for Reducing Turbine Cooling-air Temperature of a Supersonic Aircraft Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Diaguila, Anthony J; Livingood, John N B; Eckert, Ernst R G

    1956-01-01

    The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude of 70,000 feet. A compressor-bleed-air weight flow of 2.7 pounds per second was assumed for the coolant; ram air was considered as the other fluid. Pressure drops and inlet states of both fluids were prescribed, and ranges of compressor-bleed-air temperature reductions and of the ratio of compressor-bleed to ram-air weight flows were considered.

  17. What matters most: Are summer stream temperatures more sensitive to changing air temperature, changing discharge, or changing riparian vegetation under future climates?

    NASA Astrophysics Data System (ADS)

    Diabat, M.; Haggerty, R.; Wondzell, S. M.

    2012-12-01

    We investigated stream temperature responses to changes in both air temperature and stream discharge projected for 2040-2060 from downscaled GCMs and changes in the height and canopy density of streamside vegetation. We used Heat Source© calibrated for a 37 km section of the Middle Fork John Day River located in Oregon, USA. The analysis used the multiple-variable-at-a-time (MVAT) approach to simulate various combinations of changes: 3 levels of air warming, 5 levels of stream flow (higher and lower discharges), and 6 types of streamside vegetation. Preliminary results show that, under current discharge and riparian vegetation conditions, projected 2 to 4 °C increase in air temperature will increase the 7-day Average Daily Maximum Temperature (7dADM) by 1 to 2 °C. Changing stream discharge by ±30% changes stream temperature by ±0.5 °C, and the influence of changing discharge is greatest when the stream is poorly shaded. In contrast, the 7dADM could change by as much as 11°C with changes in riparian vegetation from unshaded conditions to heavily shaded conditions along the study section. The most heavily shaded simulations used uniformly dense riparian vegetation over the full 37-km reach, and this vegetation was composed of the tallest trees and densest canopies that can currently occur within the study reach. While this simulation represents an extreme case, it does suggest that managing riparian vegetation to substantially increase stream shade could decrease 7dADM temperatures relative to current temperatures, even under future climates when mean air temperatures have increased from 2 to 4 °C.

  18. Impacts of wind farms on surface air temperatures

    PubMed Central

    Baidya Roy, Somnath; Traiteur, Justin J.

    2010-01-01

    Utility-scale large wind farms are rapidly growing in size and numbers all over the world. Data from a meteorological field campaign show that such wind farms can significantly affect near-surface air temperatures. These effects result from enhanced vertical mixing due to turbulence generated by wind turbine rotors. The impacts of wind farms on local weather can be minimized by changing rotor design or by siting wind farms in regions with high natural turbulence. Using a 25-y-long climate dataset, we identified such regions in the world. Many of these regions, such as the Midwest and Great Plains in the United States, are also rich in wind resources, making them ideal candidates for low-impact wind farms. PMID:20921371

  19. Subseasonal variability of North American wintertime surface air temperature

    NASA Astrophysics Data System (ADS)

    Lin, Hai

    2015-09-01

    Using observational pentad data of the recent 34 Northern Hemisphere extended winters, subseasonal variability of surface air temperature (SAT) over North America is analyzed. The four leading modes of subseasonal SAT variability, that are identified with an empirical orthogonal function (EOF) analysis, account for about 60% of the total variance. The first (EOF1) and second (EOF2) modes are independent of other modes, and thus are likely controlled by distinct processes. The third (EOF3) and fourth (EOF4) modes, however, tend to have a phase shift to each other in space and time, indicating that part of their variability is related to a common process and represent a propagating pattern over North America. Lagged regression analysis is conducted to identify the precursors of large-scale atmospheric circulation for each mode a few pentads in advance, and to understand the processes that influence the subseasonal SAT variability and the predictability signal sources. EOF1 is found to be closely related to the Pacific-North American (PNA) circulation pattern and at least part of its variability is preceded by the East Asian cold surge. The cold surge leads to low-level convergence and enhanced convection in the tropical central Pacific which in turn induces the PNA. EOF2 tends to oscillate at a period of about 70 days, and is influenced by the low-frequency component of the Madden-Julian Oscillation (MJO). On the other hand, EOF3 and EOF4 are connected to the high-frequency part of the MJO which has a period range of 30-50 days. These findings would help understanding the mechanisms of subseasonal surface air temperature variability in North America and improving weather predictions on a subseasonal time scale.

  20. Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961-1998

    NASA Astrophysics Data System (ADS)

    Manton, M. J.; della-Marta, P. M.; Haylock, M. R.; Hennessy, K. J.; Nicholls, N.; Chambers, L. E.; Collins, D. A.; Daw, G.; Finet, A.; Gunawan, D.; Inape, K.; Isobe, H.; Kestin, T. S.; Lefale, P.; Leyu, C. H.; Lwin, T.; Maitrepierre, L.; Ouprasitwong, N.; Page, C. M.; Pahalad, J.; Plummer, N.; Salinger, M. J.; Suppiah, R.; Tran, V. L.; Trewin, B.; Tibig, I.; Yee, D.

    2001-03-01

    Trends in extreme daily temperature and rainfall have been analysed from 1961 to 1998 for Southeast Asia and the South Pacific. This 38-year period was chosen to optimize data availability across the region. Using high-quality data from 91 stations in 15 countries, significant increases were detected in the annual number of hot days and warm nights, with significant decreases in the annual number of cool days and cold nights. These trends in extreme temperatures showed considerable consistency across the region. Extreme rainfall trends were generally less spatially coherent than were those for extreme temperature. The number of rain days (with at least 2 mm of rain) has decreased significantly throughout Southeast Asia and the western and central South Pacific, but increased in the north of French Polynesia, in Fiji, and at some stations in Australia. The proportion of annual rainfall from extreme events has increased at a majority of stations. The frequency of extreme rainfall events has declined at most stations (but not significantly), although significant increases were detected in French Polynesia. Trends in the average intensity of the wettest rainfall events each year were generally weak and not significant.

  1. Effect of production microclimate on female thermal state with increased temperature and air humidity

    NASA Technical Reports Server (NTRS)

    Machablishvili, O. G.

    1980-01-01

    The thermal state of women during the effect of high air temperature and relative humidity with a varying degree of physical loads was studied. Parameters for air temperature, relative humidity, and air movement were established. It was established that in women the thermo-regulatory stress occurs at lower air temperatures and with lower physical loads than in men. The accumulation of heat in women was revealed with lower air temperature than in men. It is concluded that to preserve the normal physiological state of the female organism it is necessary to create more favorable microclimate conditions and decrease the physical loads.

  2. Estimating Air Temperature over the Tibetan Plateau Using MODIS Data

    NASA Astrophysics Data System (ADS)

    Huang, Fangfang; Ma, Weiqiang; Ma, Yaoming; Li, Maoshan; Hu, Zeyong

    2016-04-01

    Time series of MODIS land surface temperature (LST) data and normalized difference vegetation index (NDVI) data, combined with digital elevation model (DEM) and meterological data for 2001-2012, were used to estimate and map the spatial distribution of monthly mean air temperature over the Tibatan Plateau (TP). Time series and regression analysis of monthly mean land surface temperature (Ts) and air temperature (Ta) were both conducted by ordinary liner regression (OLR) and geographical weighted regression (GWR) methods. Analysis showed that GWR method had much better result (Adjusted R2 > 0.79, root mean square error (RMSE) is between 0.51° C and 1.12° C) for estimating Ta than OLR method. The GWR model, with MODIS LST, NDVI and altitude as independent variables, was used to estimate Ta over the Tibetan Plateau. All GWR models in each month were tested by F-test with significant level of α=0.01 and the regression coefficients were all tested by T-test with significant level of α=0.01. This illustrated that Ts, NDVI and altitude play an important role on estimating Ta over the Tibetan Plateau. Finally, the major conclusions are as follows: (1) GWR method has higher accuracy for estimating Ta than OLR (Adjusted R2=0.40˜0.78, RMSE=1.60˜4.38° C), and the Ta control precision can be up to 1.12° C. (2) Over the Northern TP, the range of Ta variation in January is -29.28 ˜ -5.0° C, and that in July is -0.53 ˜ 14.0° C. Ta in summer half year (from May to October) is between -15.92 ˜ 14.0° C. From October on, 0° C isothermal level is gradually declining from the altitude of 4˜5 kilometers, and hits the bottom with altitude of 3200 meters in December, and Ta is all under 0° C in January. 10° C isothermal level gradually starts rising from the altitude of 3200 meters from May, and reaches the highest level with altitude of 4˜5 kilometers in July. In addition, Ta in south slope of the Tanggula Mountains is obviously higher than that in the north slope. Ta

  3. Use of Quality Controlled AIRS Temperature Soundings to Improve Forecast Skill

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste; Iredell, Lena

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. Also included are the clear column radiances used to derive these products which are representative of the radiances AIRS would have seen if there were no clouds in the field of view. All products also have error estimates. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1K, and layer precipitable water with an rms error of 20 percent, in cases with up to 90 percent effective cloud cover. The products are designed for data assimilation purposes for the improvement of numerical weather prediction, as well as for the study of climate and meteorological processes. With regard to data assimilation, one can use either the products themselves or the clear column radiances from which the products were derived. The AIRS Version 5 retrieval algorithm is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates for retrieved quantities and clear column radiances, and the use of these error estimates for Quality Control. The temperature profile error estimates are used to determine a case-by-case characteristic pressure pbest, down to which the profile is considered acceptable for data assimilation purposes. The characteristic pressure p(sub best) is determined by comparing the case dependent error estimate (delta)T(p) to the threshold values (Delta)T(p). The AIRS Version 5 data set provides error estimates of T(p) at all levels, and also profile dependent values of pbest based

  4. Comparison of two homogenized datasets of daily maximum/mean/minimum temperature in China during 1960-2013

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Cao, Lijuan; Zhu, Yani; Yan, Zhongwei

    2016-02-01

    Two homogenized datasets of daily maximum temperature (Tmax), mean temperature (Tm), and minimum temperature (Tmin) series in China have recently been developed. One is CHTM3.0, based on the Multiple Analysis of Series for Homogenization (MASH) method, and includes 753 stations for the period 1960-2013. The other is CHHTD1.0, based on the Relative Homogenization test (RHtest), and includes 2419 stations over the period 1951-2011. The daily Tmax/Tm/Tmin series at 751 stations, which are in both datasets, are chosen and compared against the raw dataset, with regard to the number of breakpoints, long-term climate trends, and their geographical patterns. The results indicate that some robust break points associated with relocations can be detected, the inhomogeneities are removed by both the MASH and RHtest method, and the data quality is improved in both homogenized datasets. However, the differences between CHTM3.0 and CHHTD1.0 are notable. By and large, in CHHTD1.0, the break points detected are fewer, but the adjustments for inhomogeneities and the resultant changes of linear trend estimates are larger. In contrast, CHTM3.0 provides more reasonable geographical patterns of long-term climate trends over the region. The reasons for the differences between the datasets include: (1) different algorithms for creating reference series for adjusting the candidate series—more neighboring stations used in MASH and hence larger-scale regional signals retained; (2) different algorithms for calculating the adjustments—larger adjustments in RHtest in general, partly due to the individual local reference information used; and (3) different rules for judging inhomogeneity—all detected break points are adjusted in CHTM3.0, based on MASH, while a number of break points detected via RHtest but without supporting metadata are overlooked in CHHTD1.0. The present results suggest that CHTM3.0 is more suitable for analyses of large-scale climate change in China, while CHHTD1

  5. Topographic and spatial impacts of temperature inversions on air quality using mobile air pollution surveys.

    PubMed

    Wallace, Julie; Corr, Denis; Kanaroglou, Pavlos

    2010-10-01

    We investigated the spatial and topographic effects of temperature inversions on air quality in the industrial city of Hamilton, located at the western tip of Lake Ontario, Canada. The city is divided by a 90-m high topographic scarp, the Niagara Escarpment, and dissected by valleys which open towards Lake Ontario. Temperature inversions occur frequently in the cooler seasons, exacerbating the impact of emissions from industry and traffic. This study used pollution data gathered from mobile monitoring surveys conducted over a 3-year period, to investigate whether the effects of the inversions varied across the city. Temperature inversions were identified with vertical temperature data from a meteorological tower located within the study area. We divided the study area into an upper and lower zone separated by the Escarpment and further into six zones, based on location with respect to the Escarpment and industrial and residential areas, to explore variations across the city. The results identified clear differences in the responses of nitrogen dioxide (NO(2)) and fine particulate matter (PM2.5) to temperature inversions, based on the topographic and spatial criteria. We found that pollution levels increased as the inversion strengthened, in the lower city. However, the results also suggested that temperature inversions identified in the lower city were not necessarily experienced in the upper city with the same intensity. Further, pollution levels in the upper city appeared to decrease as the inversion deepened in the lower city, probably because of an associated change in prevailing wind direction and lower wind speeds, leading to decreased long-range transport of pollutants. PMID:20705328

  6. Increasing Minimum Daily Temperatures Are Associated with Enhanced Pesticide Use in Cultivated Soybean along a Latitudinal Gradient in the Mid-Western United States

    PubMed Central

    Ziska, Lewis H.

    2014-01-01

    Assessments of climate change and food security often do not consider changes to crop production as a function of altered pest pressures. Evaluation of potential changes may be difficult, in part, because management practices are routinely utilized in situ to minimize pest injury. If so, then such practices, should, in theory, also change with climate, although this has never been quantified. Chemical (pesticide) applications remain the primary means of managing pests in industrialized countries. While a wide range of climate variables can influence chemical use, minimum daily temperature (lowest 24 h recorded temperature in a given year) can be associated with the distribution and thermal survival of many agricultural pests in temperate regions. The current study quantifies average pesticide applications since 1999 for commercial soybean grown over a 2100 km North-South latitudinal transect for seven states that varied in minimum daily temperature (1999–2013) from −28.6°C (Minnesota) to −5.1°C (Louisiana). Although soybean yields (per hectare) did not vary by state, total pesticide applications (kg of active ingredient, ai, per hectare) increased from 4.3 to 6.5 over this temperature range. Significant correlations were observed between minimum daily temperatures and kg of ai for all pesticide classes. This suggested that minimum daily temperature could serve as a proxy for pesticide application. Longer term temperature data (1977–2013) indicated greater relative increases in minimum daily temperatures for northern relative to southern states. Using these longer-term trends to determine short-term projections of pesticide use (to 2023) showed a greater comparative increase in herbicide use for soybean in northern; but a greater increase in insecticide and fungicide use for southern states in a warmer climate. Overall, these data suggest that increases in pesticide application rates may be a means to maintain soybean production in response to rising

  7. A Novel Method making direct use of AIRS and IASI Calibrated Radiances for Measuring Trends in Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Aumann, H. H.; Ruzmaikin, A.

    2014-12-01

    Making unbiased measurements of trends in the surface temperatures, particularly on a gobal scale, is challenging: While the non-frozen oceans temperature measurements are plentiful and accurate, land and polar areas are much less accurately or fairly sampled. Surface temperature deduced from infrared radiometers on polar orbiting satellites (e.g. the Atmospheric Infrared Sounder (AIRS) at 1:30PM, the Interferometer Atmosphere Sounding Interferometer (IASI) at 9:30 AM and the MODerate resolution Imaging Spectro-radiometer (MODIS) at 1:30PM), can produce what appear to be well sampled data, but dealing with clouds either by cloud filtering (MODIS, IASI) or cloud-clearing (AIRS) can create sampling bias. We use a novel method: Random Nadir Sampling (RNS) combined with Probability Density Function (PDF) analysis. We analyze the trend in the PDF of st1231, the water vapor absorption corrected brightness temperatures measured in the 1231 cm-1 atmospheric window channel. The advantage of this method is that trends can be directly traced to the known, less than 3 mK/yr trend for AIRS, in st1231. For this study we created PDFs from 22,000 daily RNS from the AIRS and IASI data. We characterized the PDFs by its daily 90%tile value, st1231p90, and analysed the statistical properties of the this time series between 2002 and 2014. The method was validated using the daily NOAA SST (RTGSST) from the non-frozen oceans: The mean, seasonal variability and anomaly trend of st1231p90 agree with the corrsponding values from the RTGSST and the anomaly correlation is larger than 0.9. Preliminary results (August 2014) confirm the global hiatus in the increase of the globally averaged surface temperatures between 2002 and 2014, with a change of less than 10 mK/yr. This uncertainty is dominated by the large interannual variability related to El Niño events. Further insite is gained by analyzing land/ocean, day/night, artic and antarctic trends. We observe a massive warming trend in the

  8. Catchments by Major River Basins in the Conterminous United States: 30-Year Average Daily Minimum Temperature, 1971-2000

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents thecatchment-average for the 30-year (1971-2000) average daily minimum temperature in Celsius multiplied by 100 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data were the United States Average Monthly or Annual Minimum Temperature, 1971 - 2000 raster data set produced by the PRISM Group at Oregon State University. The MRB_E2RF1 catchments are based on a modified version of the Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  9. Combustion and gasification characteristics of pulverized coal using high-temperature air

    SciTech Connect

    Hanaoka, R.; Nakamura, M.; Kiga, T.; Kosaka, H.; Iwahashi, T.; Yoshikawa, K.; Sakai, M.; Muramatsu, K.; Mochida, S.

    1998-07-01

    In order to confirm performance of high-temperature-air combusting of pulverized coal, laboratory-scale combustion and gasification tests of coal were conducted changing air temperature and oxygen concentration in the air. Theses were conducted in a drop tube furnace of 200mm in inside diameter and 2,000mm in length. The furnace was heated by ceramic heater up to 1,300 C. A high-temperature air preheater utilizing the HRS (High Cycle Regenerative Combustion System) was used to obtain high-temperature combustion air. As the results, NOx emission was reduced when pulverized coal was fired with high-temperature-air. On the other hand, by lower oxygen concentration in combustion air diluted by nitrogen, NOx emission slightly decreased while became higher under staging condition.

  10. The effects of videotape modeling and daily feedback on residential electricity conservation, home temperature and humidity, perceived comfort, and clothing worn: Winter and summer

    PubMed Central

    Winett, Richard A.; Hatcher, Joseph W.; Fort, T. Richard; Leckliter, Ingrid N.; Love, Susan Q.; Riley, Anne W.; Fishback, James F.

    1982-01-01

    Two studies were conducted in all-electric townhouses and apartments in the winter (N = 83) and summer (N = 54) to ascertain how energy conservation strategies focusing on thermostat change and set-backs and other low-cost/no-cost approaches would affect overall electricity use and electricity used for heating and cooling, the home thermal environment, the perceived comfort of participants, and clothing that was worn. The studies assessed the effectiveness of videotape modeling programs that demonstrated these conservation strategies when used alone or combined with daily feedback on electricity use. In the winter, the results indicated that videotape modeling and/or feedback were effective relative to baseline and to a control group in reducing overall electricity use by about 15% and electricity used for heating by about 25%. Hygrothermographs, which accurately and continuously recorded temperature and humidity in the homes, indicated that participants were able to live with no reported loss in comfort and no change in attire at a mean temperature of about 62°F when home and about 59°F when asleep. The results were highly discrepant with prior laboratory studies indicating comfort at 75°F with the insulation value of the clothing worn by participants in this study. In the summer, a combination of strategies designed to keep a home cool with minimal or no air conditioning, in conjunction with videotape modeling and/or daily feedback, resulted in overall electricity reductions of about 15% with reductions on electricity for cooling of about 34%, but with feedback, and feedback and modeling more effective than modeling alone. Despite these electricity savings, hygrothermograph recordings indicated minimal temperature change in the homes, with no change in perceived comfort or clothing worn. The results are discussed in terms of discrepancies with laboratory studies, optimal combinations of video-media and personal contact to promote behavior change, and energy

  11. How the Plant Temperature Links to the Air Temperature in the Desert Plant Artemisia ordosica

    PubMed Central

    Yu, Ming-Han; Ding, Guo-Dong; Gao, Guang-Lei; Sun, Bao-Ping; Zhao, Yuan-Yuan; Wan, Li; Wang, De-Ying; Gui, Zi-Yang

    2015-01-01

    Plant temperature (Tp) is an important indicator of plant health. To determine the dynamics of plant temperature and self-cooling ability of the plant, we measured Tp in Artemisia ordosica in July, in the Mu Us Desert of Northwest China. Related factors were also monitored to investigate their effects on Tp, including environmental factors, such as air temperature (Ta), relative humidity, wind speed; and physiological factors, such as leaf water potential, sap flow, and water content. The results indicate that: 1) Tp generally changes in conjunction with Ta mainly, and varies with height and among the plant organs. Tp in the young branches is most constant, while it is the most sensitive in the leaves. 2) Correlations between Tp and environmental factors show that Tp is affected mainly by Ta. 3) The self-cooling ability of the plant was effective by midday, with Tp being lower than Ta. 4) Increasing sap flow and leaf water potential showed that transpiration formed part of the mechanism that supported self-cooling. Increased in water conductance and specific heat at midday may be additional factors that contribute to plant cooling ability. Therefore, our results confirmed plant self-cooling ability. The response to high temperatures is regulated by both transpiration speed and an increase in stem water conductance. This study provides quantitative data for plant management in terms of temperature control. Moreover, our findings will assist species selection with taking plant temperature as an index. PMID:26280557

  12. Environmentally sound thermal energy extraction from coal and wastes using high temperature air combustion technology

    SciTech Connect

    Yoshikawa, Kunio

    1999-07-01

    High temperature air combustion is one of promising ways of burning relatively low BTU gas obtained from gasification of low grade coal or wastes. In this report, the author proposes a new power generation system coupled with high temperature air gasification of coal/wastes and high temperature air combustion of the syngas from coal/wastes. This system is realized by employing Multi-staged Enthalpy Extraction Technology (MEET). The basic idea of the MEET system is that coal or wastes are gasified with high temperature air of about 1,000 C, then the generated syngas is cooled in a heat recovery boiler to be cleaned-up in a gas cleanup system (desulfurization, desalinization and dust removal). Part of thermal energy contained in this cleaned-up syngas is used for high temperature air preheating, and the complete combustion of the fuel gas is done using also high temperature air for driving gas turbines or steam generation in a boiler.

  13. Analysis of spanwise temperature distribution in three types of air-cooled turbine blade

    NASA Technical Reports Server (NTRS)

    Livingood, John N B; Brown, W Byron

    1950-01-01

    Methods for computing spanwise blade-temperature distributions are derived for air-cooled hollow blades, air-cooled hollow blades with inserts, and air-cooled blades containing internal cooling fins. Individual and combined effects on spanwise blade-temperature distributions of cooling-air and radial heat conduction are determined. In general, the effects of radiation and radial heat conduction were found to be small and the omission of these variations permitted the construction of nondimensional charts for use in determining spanwise temperature distribution through air-cooled turbine blades. An approximate method for determining the allowable stress-limited blade-temperature distribution is included, with brief accounts of a method for determining the maximum allowable effective gas temperatures and the cooling-air requirements. Numerical examples that illustrate the use of the various temperature-distribution equations and of the nondimensional charts are also included.

  14. The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data

    SciTech Connect

    Behrang, M.A.; Assareh, E.; Ghanbarzadeh, A.; Noghrehabadi, A.R.

    2010-08-15

    The main objective of present study is to predict daily global solar radiation (GSR) on a horizontal surface, based on meteorological variables, using different artificial neural network (ANN) techniques. Daily mean air temperature, relative humidity, sunshine hours, evaporation, and wind speed values between 2002 and 2006 for Dezful city in Iran (32 16'N, 48 25'E), are used in this study. In order to consider the effect of each meteorological variable on daily GSR prediction, six following combinations of input variables are considered: (I)Day of the year, daily mean air temperature and relative humidity as inputs and daily GSR as output. (II)Day of the year, daily mean air temperature and sunshine hours as inputs and daily GSR as output. (III)Day of the year, daily mean air temperature, relative humidity and sunshine hours as inputs and daily GSR as output. (IV)Day of the year, daily mean air temperature, relative humidity, sunshine hours and evaporation as inputs and daily GSR as output. (V)Day of the year, daily mean air temperature, relative humidity, sunshine hours and wind speed as inputs and daily GSR as output. (VI)Day of the year, daily mean air temperature, relative humidity, sunshine hours, evaporation and wind speed as inputs and daily GSR as output. Multi-layer perceptron (MLP) and radial basis function (RBF) neural networks are applied for daily GSR modeling based on six proposed combinations. The measured data between 2002 and 2005 are used to train the neural networks while the data for 214 days from 2006 are used as testing data. The comparison of obtained results from ANNs and different conventional GSR prediction (CGSRP) models shows very good improvements (i.e. the predicted values of best ANN model (MLP-V) has a mean absolute percentage error (MAPE) about 5.21% versus 10.02% for best CGSRP model (CGSRP 5)). (author)

  15. The impact of 9/11 on the association of ambient air pollution with daily respiratory hospital admissions in a Canada-US border city, Windsor, Ontario.

    PubMed

    Luginaah, Isaac; Fung, Karen Y; Gorey, Kevin M; Khan, Shahedul

    2006-08-01

    The 11 September 2001 (9/11) terrorist attacks in the United States resulted in long lines of trucks at the border crossing in Windsor, Ontario. Public concern about the potential impact of these trucks spewing toxic pollutants into the air drew attention to the need to investigate the impact of 9/11 on the daily levels of air pollutants and respiratory hospitalization. In this study, significant increases in respiratory admissions were found one month and 6 months post-9/11. Mean daily respiratory admission was also significantly higher than the same period one year earlier and one year later. SO(2) and CO concentration levels were found to be generally higher after 9/11 than one year before and immediately before. Relative risk estimates of respiratory hospitalization after 9/11 showed that SO(2) (RR̂ = 1.15 for two-day, RR̂ = 1.18 for three-day, and RR̂ = 1.21 for five-day averages), NO(2) (RR̂ = 1.10 for current day), and COH (RR̂ = 1.09 for current day, RR̂ = 1.10 for two-day average) had the most significant effects after 9/11. These results suggest the need for more stringent regulatory efforts in air quality in the region in response to the changing transportation dynamics at this Canada-US border crossing. PMID:21234298

  16. Warming spring air temperatures, but delayed spring streamflow in an Arctic headwater basin

    NASA Astrophysics Data System (ADS)

    Shi, Xiaogang; Marsh, Philip; Yang, Daqing

    2015-06-01

    This study will use the Mann-Kendall (MK) non-parametric trend test to examine timing changes in spring (early May to the end of June) streamflow records observed by the Water Survey of Canada during 1985-2011 in an Arctic headwater basin in the Western Canadian Arctic. The MK test shows a general delay in the five timing measures of springtime streamflow, which are based on the 5 percentile (Q5), 10 percentile (Q10), 50 percentile (Q50), 90 percentile (Q90), and 95 percentile (Q95) dates of spring runoff, respectively. However, much stronger trend signals were clearly noted for the high percentiles than that for the low and middle percentiles, indicating different effects of hydroclimate processes working on the timing of springtime streamflow. In contrast, the earlier snowmelt onset derived from daily mean temperatures was found over the 27-year study period. In addition, multiple relationships were correlated between these five timing measures of spring runoff and five hydroclimate indicators (total snowfall, snowmelt onset, spring temperature fluctuation, spring rainfall, and spring rainfall timing) in order to identify possible causes on the changes of springtime streamflow timing. The results indicate that the differences are due to the contradictory effects of winter-spring air temperature changes, temperature fluctuation during the melting period, and spring rainfall to spring runoff. The earlier snowmelt onset, which is attributed to the winter-spring warming, and spring temperature fluctuation that works in the opposite way, result in the minor timing changes of Q5, Q10, and Q50. The increase in spring rainfall and its delayed timing have a significant impact on the dates of Q90 and Q95. Moreover, the decreased total snow accumulation over the winter season only has a minor influence on the timing of springtime streamflow.

  17. Snow removal and ambient air temperature effects on forest soil temperatures in northern Vermont

    NASA Astrophysics Data System (ADS)

    Wang, D.; Decker, K. L.; Waite, C.; Scherbatskoy, T.

    2003-12-01

    We measured deciduous forest soil temperatures under control (unmanipulated) and snow-free (where snow is manually removed) conditions for four winters (at three soil depths) to determine effects of a snow cover reduction such as may occur as a result of climate change on Vermont forest soils. The four winters we studied were characterized as:`cold and snowy', `warm with low snow', `cold with low snow', and `cool with low snow'. Snow-free soils were colder than controls at 5 and 15 cm depth for all years, and at all depths in the two cold winters. Soil thermal variability generally decreased with both increased snow cover and soil depth. The effect of snow cover on soil freeze-thaw events was highly dependent on both the depth of snow and the soil temperature. Snow kept the soil warm and reduced soil temperature variability, but often this caused soil to remain near 0 deg C, resulting in more freeze-thaw events under snow at one or more soil depths. During the `cold snowy' winter, soils under snow had daily averages consistently >0 deg C, whereas snow-free soil temperatures commonly dropped below -3 deg C. During the `warm' year, temperatures of soil under snow were often lower than those of snow-free soils. The warmer winter resulted in less snow cover to insulate soil from freezing in the biologically active top 30 cm. The possible consequences of increased soil freezing include more root mortality and nutrient loss which would potentially alter ecosystem dynamics, decrease productivity of some tree species, and increase sugar maple mortality in northern hardwood forests.

  18. Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H

    1937-01-01

    Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.

  19. Apparatus for supplying conditioned air at a substantially constant temperature and humidity

    NASA Technical Reports Server (NTRS)

    Obler, H. D. (Inventor)

    1980-01-01

    The apparatus includes a supply duct coupled to a source of supply air for carrying the supply air therethrough. A return duct is coupled to the supply duct for carrying return conditioned air therethrough. A temperature reducing device is coupled to the supply duct for decreasing the temperature of the supply and return conditioned air. A by-pass duct is coupled to the supply duct for selectively directing portions of the supply and return conditioned air around the temperature reducing device. Another by-pass duct is coupled to the return duct for selectively directing portions of the return conditioned air around the supply duct and the temperature reduction device. Controller devices selectively control the flow and amount of mixing of the supply and return conditioned air.

  20. Daily Water Use in Nine Cities

    NASA Astrophysics Data System (ADS)

    Maidment, David R.; Miaou, Shaw-Pin

    1986-06-01

    Transfer functions are used to model the short-term response of daily municipal water use to rainfall and air temperature variations. Daily water use data from nine cities are studied, three cities each from Florida, Pennsylvania, and Texas. The dynamic response of water use to rainfall and air temperature is similar across the cities within each State; in addition the responses of the Texas and Florida cities are very similar to one another while the response of the Pennsylvania cities is more sensitive to air temperature and less to rainfall. There is little impact of city size on the response functions. The response of water use to rainfall depends first on the occurrence of rainfall and second on its magnitude. The occurrence of a rainfall more than 0.05 in./day (0.13 cm/day) causes a drop in the seasonal component of water use one day later that averages 38% for the Texas cities, 42% for the Florida cities, and 7% for the Pennsylvania cities. In Austin, Texas, a spatially averaged rainfall series shows a clearer relationship with water use than does rainfall data from a single gage. There is a nonlinear response of water use to air temperature changes with no response for daily maximum air temperatures between 40° and 70°F (4-21°C) an increase in water use with air temperature beyond 70°F; above 85°-90°F (29°-32°C) water use increases 3-5 times more per degree than below that limit in Texas and Florida. The model resulting from these studies can be used for daily water use forecasting and water conservation analysis.

  1. A Hybrid Framework to Bias Correct and Empirically Downscale Daily Temperature and Precipitation from Regional Climate Models

    NASA Astrophysics Data System (ADS)

    Tan, P.; Abraham, Z.; Winkler, J. A.; Perdinan, P.; Zhong, S. S.; Liszewska, M.

    2013-12-01

    Bias correction and statistical downscaling are widely used approaches for postprocessing climate simulations generated by global and/or regional climate models. The skills of these approaches are typically assessed in terms of their ability to reproduce historical climate conditions as well as the plausibility and consistency of the derived statistical indicators needed by end users. Current bias correction and downscaling approaches often do not adequately satisfy the two criteria of accurate prediction and unbiased estimation. To overcome this limitation, a hybrid regression framework was developed to both minimize prediction errors and preserve the distributional characteristics of climate observations. Specifically, the framework couples the loss functions of standard (linear or nonlinear) regression methods with a regularization term that penalizes for discrepancies between the predicted and observed distributions. The proposed framework can also be extended to generate physically-consistent outputs across multiple response variables, and to incorporate both reanalysis-driven and GCM-driven RCM outputs into a unified learning framework. The effectiveness of the framework is demonstrated using daily temperature and precipitation simulations from the North American Regional Climate Change Program (NARCCAP) . The accuracy of the framework is comparable to standard regression methods, but, unlike the standard regression methods, the proposed framework is able to preserve many of the distribution properties of the response variables, akin to bias correction approaches such as quantile mapping and bivariate geometric quantile mapping.

  2. Alternative ozone metrics and daily mortality in Suzhou: the China Air Pollution and Health Effects Study (CAPES).

    PubMed

    Yang, Chunxue; Yang, Haibing; Guo, Shu; Wang, Zongshuang; Xu, Xiaohui; Duan, Xiaoli; Kan, Haidong

    2012-06-01

    Controversy remains regarding the relationship between various metrics of ozone (O(3)) and mortality. In China, the largest developing country, there have been few studies investigating the acute effect of O(3) on death. We used three exposure metrics of O(3) (1-hour maximum, maximum 8-hour average and 24-hour average) to examine its short-term association with daily mortality in Suzhou, China. We used a Generalized Additive Model (GAM) with penalized splines to analyze the mortality, O(3), and covariate data. We examined the association by season, age group, sex and educational level. We found that the current level of O(3) in Suzhou is associated with death rates from all causes and cardiovascular diseases. Among various metrics of O(3), maximum 8-hour average and 1-hour maximum concentrations seem to be more strongly associated with increased mortality rate compared to 24-hour average concentrations. Using maximum 8-hour average, an inter-quartile range increase of 2-day average O(3) (lag 01) corresponds to 2.15% (95%CI, 0.36 to 3.93), 4.47% (95%CI, 1.43 to 7.51), -1.85% (95%CI, -6.91 to 3.22) increase in all-cause, cardiovascular, and respiratory mortality, respectively. The associations between O(3) and daily mortality appeared to be more evident in the cool season than in the warm season. In conclusion, maximum 8-hour average and 1-hour maximum concentrations of O(3) are associated with daily mortality in Suzhou. Our analyses strengthen the rationale for further limiting levels of O(3) pollution in the city. PMID:22521098

  3. Short-term effects of air temperature on plasma metabolite concentrations in patients undergoing cardiac cattheterization.

    EPA Science Inventory

    BACKGROUND: Epidemiological studies have shown associations between air temperature and cardiovascular health outcomes. Metabolic dysregulation might also play a role in the development of cardiovascular disease.OBJECTIVES: To investigate short-term temperature effects on metabol...

  4. Startup of air-cooled condensers and dry cooling towers at low temperatures of the cooling air

    NASA Astrophysics Data System (ADS)

    Milman, O. O.; Ptakhin, A. V.; Kondratev, A. V.; Shifrin, B. A.; Yankov, G. G.

    2016-05-01

    The problems of startup and performance of air-cooled condensers (ACC) and dry cooling towers (DCT) at low cooling air temperatures are considered. Effects of the startup of the ACC at sub-zero temperatures are described. Different options of the ACC heating up are analyzed, and examples of existing technologies are presented (electric heating, heating up with hot air or steam, and internal and external heating). The use of additional heat exchanging sections, steam tracers, in the DCT design is described. The need for high power in cases of electric heating and heating up with hot air is noted. An experimental stand for research and testing of the ACC startup at low temperatures is described. The design of the three-pass ACC unit is given, and its advantages over classical single-pass design at low temperatures are listed. The formation of ice plugs inside the heat exchanging tubes during the start-up of ACC and DCT at low cooling air temperatures is analyzed. Experimental data on the effect of the steam flow rate, steam nozzle distance from the heat-exchange surface, and their orientation in space on the metal temperature were collected, and test results are analyzed. It is noted that the surface temperature at the end of the heat up is almost independent from its initial temperature. Recommendations for the safe start-up of ACCs and DCTs are given. The heating flow necessary to sufficiently heat up heat-exchange surfaces of ACCs and DCTs for the safe startup is estimated. The technology and the process of the heat up of the ACC with the heating steam external supply are described by the example of the startup of the full-scale section of the ACC at sub-zero temperatures of the cooling air, and the advantages of the proposed start-up technology are confirmed.

  5. One-Component Pressure-Temperature Phase Diagrams in the Presence of Air

    ERIC Educational Resources Information Center

    Andrade-Gamboa, Julio; Martire, Daniel O.; Donati, Edgardo R.

    2010-01-01

    One-component phase diagrams are good approximations to predict pressure-temperature ("P-T") behavior of a substance in the presence of air, provided air pressure is not much higher than the vapor pressure. However, at any air pressure, and from the conceptual point of view, the use of a traditional "P-T" phase diagram is not strictly correct. In…

  6. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 34 2013-07-01 2013-07-01 false NOX intake-air humidity...

  7. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 33 2011-07-01 2011-07-01 false NOX intake-air humidity...

  8. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 32 2010-07-01 2010-07-01 false NOX intake-air humidity...

  9. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 34 2012-07-01 2012-07-01 false NOX intake-air humidity...

  10. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 33 2014-07-01 2014-07-01 false NOX intake-air humidity...

  11. The impact of heterogeneous surface temperatures on the 2-m air temperature over the Arctic Ocean in spring

    NASA Astrophysics Data System (ADS)

    Tetzlaff, A.; Kaleschke, L.; Lüpkes, C.; Ament, F.; Vihma, T.

    2012-07-01

    The influence of spatial surface temperature changes over the Arctic Ocean on the 2-m air temperature variability is estimated using backward trajectories based on ERA-Interim and the JRA25 wind fields. They are initiated at Alert, Barrow and at the Tara drifting station. Three different methods are used. The first one compares mean ice surface temperatures along the trajectories to the observed 2-m air temperatures at the stations. The second one correlates the observed temperatures to air temperatures obtained using a simple Lagrangian box model which only includes the effect of sensible heat fluxes. For the third method, mean sensible heat fluxes from the model are correlated with the difference of the air temperatures at the model starting point and the observed temperatures at the stations. The calculations are based on MODIS ice surface temperatures and four different sets of ice concentration derived from SSM/I and AMSR-E data. Under nearly cloud free conditions, up to 90% of the 2-m air temperature variance can be explained for Alert, and 60% for Barrow using these methods. The differences are attributed to the different ice conditions, which are characterized by high ice concentration around Alert and lower ice concentration near Barrow. These results are robust for the different sets of reanalyses and ice concentration data. Near-surface winds of both reanalyses show a large inconsistency in the Central Arctic, which leads to a large difference in the correlations between modeled and observed 2-m air temperatures at Tara. Explained variances amount to 70% using JRA and only 45% using ERA. The results also suggest that near-surface temperatures at a given site are influenced by the variability of surface temperatures in a domain of about 150 to 350 km radius around the site.

  12. A simplified physically-based model to calculate surface water temperature of lakes from air temperature in climate change scenarios

    NASA Astrophysics Data System (ADS)

    Piccolroaz, S.; Toffolon, M.

    2012-12-01

    Modifications of water temperature are crucial for the ecology of lakes, but long-term analyses are not usually able to provide reliable estimations. This is particularly true for climate change studies based on Global Circulation Models, whose mesh size is normally too coarse for explicitly including even some of the biggest lakes on Earth. On the other hand, modeled predictions of air temperature changes are more reliable, and long-term, high-resolution air temperature observational datasets are more available than water temperature measurements. For these reasons, air temperature series are often used to obtain some information about the surface temperature of water bodies. In order to do that, it is common to exploit regression models, but they are questionable especially when it is necessary to extrapolate current trends beyond maximum (or minimum) measured temperatures. Moreover, water temperature is influenced by a variety of processes of heat exchange across the lake surface and by the thermal inertia of the water mass, which also causes an annual hysteresis cycle between air and water temperatures that is hard to consider in regressions. In this work we propose a simplified, physically-based model for the estimation of the epilimnetic temperature in lakes. Starting from the zero-dimensional heat budget, we derive a simplified first-order differential equation for water temperature, primarily forced by a seasonally varying external term (mainly related to solar radiation) and an exchange term explicitly depending on the difference between air and water temperatures. Assuming annual sinusoidal cycles of the main heat flux components at the atmosphere-lake interface, eight parameters (some of them can be disregarded, though) are identified, which can be calibrated if two temporal series of air and water temperature are available. We note that such a calibration is supported by the physical interpretation of the parameters, which provide good initial

  13. Prototypical experiments relating to air oxidation of Zircaloy-4 at high temperatures

    NASA Astrophysics Data System (ADS)

    Steinbrück, Martin

    2009-08-01

    The mechanism of the reaction between Zircaloy-4 and air at temperatures from 800 to 1500 °C was studied. Air attack under prototypical conditions with air ingress during a hypothetic severe nuclear reactor accident was investigated. Oxidation in air and in air and nitrogen-containing atmospheres leads to a major degradation of the cladding material. The main mechanism is the formation of zirconium nitride and its re-oxidation. Pre-oxidation in steam prevents air attack as long as the oxide scale is intact. Under steam/oxygen starvation conditions, the oxide scale is reduced and significant external nitride formation takes place. When modeling air ingress in severe accident computer codes, parabolic correlations for oxidation in air may be applied only for high temperatures (>1400 °C) and for pre-oxidized cladding (⩾1100 °C). Under all other conditions, faster, rather linear reaction kinetics should be applied.

  14. Predicting seed cotton moisture content from changes in drying air temperature - second year

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A mathematical model was used to predict seed cotton moisture content in the overhead section of a cotton gin. The model took into account the temperature, mass flow, and specific heat of both the air and seed cotton. Air temperatures and mass flows were measured for a second year at a commercial g...

  15. Correction of Temperatures of Air-Cooled Engine Cylinders for Variation in Engine and Cooling Conditions

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Pinkel, Benjamin; Ellerbrock, Herman H , Jr

    1939-01-01

    Factors are obtained from semiempirical equations for correcting engine-cylinder temperatures for variation in important engine and cooling conditions. The variation of engine temperatures with atmospheric temperature is treated in detail, and correction factors are obtained for various flight and test conditions, such as climb at constant indicated air speed, level flight, ground running, take-off, constant speed of cooling air, and constant mass flow of cooling air. Seven conventional air-cooled engine cylinders enclosed in jackets and cooled by a blower were tested to determine the effect of cooling-air temperature and carburetor-air temperature on cylinder temperatures. The cooling air temperature was varied from approximately 80 degrees F. to 230 degrees F. and the carburetor-air temperature from approximately 40 degrees F. to 160 degrees F. Tests were made over a large range of engine speeds, brake mean effective pressures, and pressure drops across the cylinder. The correction factors obtained experimentally are compared with those obtained from the semiempirical equations and a fair agreement is noted.

  16. Effects of Outside Air Temperature on Movement of Phosphine Gas in Concrete Elevator Bins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies that measured the movement and concentration of phosphine gas in upright concrete bins over time indicated that fumigant movement was dictated by air currents, which in turn, were a function of the difference between the average grain temperature and the average outside air temperature durin...

  17. Prediction of air temperature in the aircraft cabin under different operational conditions

    NASA Astrophysics Data System (ADS)

    Volavý, F.; Fišer, J.; Nöske, I.

    2013-04-01

    This paper deals with the prediction of the air temperature in the aircraft cabin by means of Computational Fluid Dynamics. The simulations are performed on the CFD model which is based on geometry and cabin interior arrangement of the Flight Test Facility (FTF) located at Fraunhofer IBP, Germany. The experimental test flights under three different cabin temperatures were done in FTF and the various data were gathered during these flights. Air temperature in the cabin was measured on probes located near feet, torso and head of each passenger and also surface temperature and air temperature distributed from inlets were measured. The data were firstly analysed in order to obtain boundary conditions for cabin surfaces and inlets. Then the results of air temperature from the simulations were compared with measured data. The suitability and accuracy of the CFD approach for temperature prediction is discussed.

  18. Short term association between ambient air pollution and mortality and modification by temperature in five Indian cities

    NASA Astrophysics Data System (ADS)

    Dholakia, Hem H.; Bhadra, Dhiman; Garg, Amit

    2014-12-01

    Indian cities are among the most polluted areas globally, yet assessments of short term mortality impacts due to pollution have been limited. Furthermore, studies examining temperature - pollution interactions on mortality are largely absent. Addressing this gap remains important in providing research evidence to better link health outcomes and air quality standards for India. Daily all-cause mortality, temperature, humidity and particulate matter less than 10 microns (PM10) data were collected for five cities - Ahmedabad, Bangalore, Hyderabad, Mumbai and Shimla spanning 2005-2012. Poisson regression models were developed to study short term impacts of PM10 as well as temperature - pollution interactions on daily all-cause mortality. We find that excess risk of mortality associated with a 10 μg/m3 PM10 increase is highest for Shimla (1.36%, 95% CI = -0.38%-3.1%) and the least for Ahmedabad (0.16%, 95% CI = -0.31%-0.62%). The corresponding values for Bangalore, Hyderabad and Mumbai are 0.22% (-0.04%-0.49%), 0.85% (0.06%-1.63%) and 0.2% (0.1%-0.3%) respectively. The relative health benefits of reducing pollution are higher for cleaner cities (Shimla) as opposed to dirtier cities (Mumbai). Overall we find that temperature and pollution interactions do not significantly impact mortality for the cities studied. This is one of the first multi-city studies that assess heterogeneity of air pollution impacts and possible modification due to temperature in Indian cities that are spread across climatic regions and topographies. Our findings highlight the need for pursuing stringent pollution control policies in Indian cities to minimize health impacts.

  19. Uncertainties of satellite-derived surface skin temperatures in the polar oceans: MODIS, AIRS/AMSU, and AIRS only

    NASA Astrophysics Data System (ADS)

    Kang, H.-J.; Yoo, J.-M.; Jeong, M.-J.; Won, Y.-I.

    2015-10-01

    Uncertainties in the satellite-derived surface skin temperature (SST) data in the polar oceans during two periods (16-24 April and 15-23 September) 2003-2014 were investigated and the three data sets were intercompared as follows: MODerate Resolution Imaging Spectroradiometer Ice Surface Temperature (MODIS IST), the SST of the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A (AIRS/AMSU), and AIRS only. The AIRS only algorithm was developed in preparation for the degradation of the AMSU-A. MODIS IST was systematically warmer up to 1.65 K at the sea ice boundary and colder down to -2.04 K in the polar sea ice regions of both the Arctic and Antarctic than that of the AIRS/AMSU. This difference in the results could have been caused by the surface classification method. The spatial correlation coefficient of the AIRS only to the AIRS/AMSU (0.992-0.999) method was greater than that of the MODIS IST to the AIRS/AMSU (0.968-0.994). The SST of the AIRS only compared to that of the AIRS/AMSU had a bias of 0.168 K with a RMSE of 0.590 K over the Northern Hemisphere high latitudes and a bias of -0.109 K with a RMSE of 0.852 K over the Southern Hemisphere high latitudes. There was a systematic disagreement between the AIRS retrievals at the boundary of the sea ice, because the AIRS only algorithm utilized a less accurate GCM forecast over the seasonally varying frozen oceans than the microwave data. The three data sets (MODIS, AIRS/AMSU and AIRS only) showed significant warming rates (2.3 ± 1.7 ~ 2.8 ± 1.9 K decade-1) in the northern high regions (70-80° N) as expected from the ice-albedo feedback. The systematic temperature disagreement associated with surface type classification had an impact on the resulting temperature trends.

  20. Uncertainties of satellite-derived surface skin temperatures in the polar oceans: MODIS, AIRS/AMSU, and AIRS only

    NASA Astrophysics Data System (ADS)

    Kang, H.-J.; Yoo, J.-M.; Jeong, M.-J.; Won, Y.-I.

    2015-05-01

    Uncertainties in the satellite-derived Surface Skin Temperature (SST) data in the polar oceans during two periods (16-24 April and 15-23 September) of 2003-2014 were investigated and the three datasets were intercompared as follows: MODerate Resolution Imaging Spectroradiometer Ice Surface Temperature (MODIS IST), the SST of the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A (AIRS/AMSU), and AIRS only. AIRS only algorithm was developed in preparation for the degradation of the AMSU-A. MODIS IST was systematically up to 1.65 K warmer at the sea ice boundary and up to 2.04 K colder in the polar sea ice regions of both the Arctic and Antarctic than that of the AIRS/AMSU. This difference in the results could have been caused by the surface classification method. The spatial correlation coefficient of the AIRS only to the AIRS/AMSU (0.992-0.999) method was greater than that of the MODIS IST to the AIRS/AMSU (0.968-0.994). The SST of the AIRS only compared to that of the AIRS/AMSU had a bias of 0.168 K with a RMSE of 0.590 K over the Northern Hemisphere high latitudes and a bias of -0.109 K with a RMSE of 0.852 K over the Southern Hemisphere high latitudes. There was a systematic disagreement between the AIRS retrievals at the boundary of the sea ice, because the AIRS only algorithm utilized a~less accurate GCM forecast over the seasonally-varying frozen oceans than the microwave data. The three datasets (MODIS, AIRS/AMSU and AIRS only) showed significant warming rates (2.3 ± 1.7 ~2.8 ± 1.9 K decade-1) in the northern high latitude regions (70-80° N) as expected from the ice-albedo feedback. The systematic temperature disagreement associated with surface type classification had an impact on the resulting temperature trends.

  1. NMR-based investigation of the Drosophila melanogaster metabolome under the influence of daily cycles of light and temperature.

    PubMed

    Gogna, Navdeep; Singh, Viveka Jagdish; Sheeba, Vasu; Dorai, Kavita

    2015-12-01

    We utilized an NMR-based metabolomic approach to profile the metabolites in Drosophila melanogaster that cycle with a daily rhythm. 1H 1D and 2D NMR experiments were performed on whole-body extracts sampled from flies that experienced strong time cues in the form of both light and temperature cycles. Multivariate and univariate statistical analysis was used to identify those metabolites whose concentrations oscillate diurnally. We compared metabolite levels at two time points twelve hours apart, one close to the end of the day and the other close to the end of the night, and identified metabolites that differed significantly in their relative concentrations. We were able to identify 14 such metabolites whose concentrations differed significantly between the two time points. The concentrations of metabolites such as sterols, fatty acids, amino acids such as leucine, valine, isoleucine, alanine and lysine as well as other metabolites such as creatine, glucose, AMP and NAD were higher close to the end of the night, whereas the levels of lactic acid, and a few amino acids such as histidine and tryptophan were higher close to the end of the day. We compared signal intensities across 12 equally spaced time points for these 14 metabolites, in order to profile the changes in their levels across the day, since the NMR metabolite peak intensity is directly proportional to its molar concentration. Through this report we establish NMR-based metabolomics combined with multivariate statistical analysis as a useful method for future studies on the interactions between circadian clocks and metabolic processes. PMID:26422411

  2. Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures

    NASA Astrophysics Data System (ADS)

    Cowtan, Kevin; Hausfather, Zeke; Hawkins, Ed; Jacobs, Peter; Mann, Michael E.; Miller, Sonya K.; Steinman, Byron A.; Stolpe, Martin B.; Way, Robert G.

    2015-08-01

    The level of agreement between climate model simulations and observed surface temperature change is a topic of scientific and policy concern. While the Earth system continues to accumulate energy due to anthropogenic and other radiative forcings, estimates of recent surface temperature evolution fall at the lower end of climate model projections. Global mean temperatures from climate model simulations are typically calculated using surface air temperatures, while the corresponding observations are based on a blend of air and sea surface temperatures. This work quantifies a systematic bias in model-observation comparisons arising from differential warming rates between sea surface temperatures and surface air temperatures over oceans. A further bias arises from the treatment of temperatures in regions where the sea ice boundary has changed. Applying the methodology of the HadCRUT4 record to climate model temperature fields accounts for 38% of the discrepancy in trend between models and observations over the period 1975-2014.

  3. Modeling subcanopy incoming longwave radiation to seasonal snow using air and tree trunk temperatures

    NASA Astrophysics Data System (ADS)

    Webster, Clare; Rutter, Nick; Zahner, Franziska; Jonas, Tobias

    2016-02-01

    Data collected at three Swiss alpine forested sites over a combined 11 year period were used to evaluate the role of air temperature in modeling subcanopy incoming longwave radiation to the snow surface. Simulated subcanopy incoming longwave radiation is traditionally partitioned into that from the sky and that from the canopy, i.e., a two-part model. Initial uncertainties in predicting longwave radiation using the two-part model resulted from vertical differences in measured air temperature. Above-canopy (35 m) air temperatures were higher than those within (10 m) and below (2 m) canopy throughout four snow seasons (December-April), demonstrating how the forest canopy can act as a cold sink for air. Lowest model root-mean-square error (RMSE) was using above-canopy air temperature. Further investigation of modeling subcanopy longwave radiation using above-canopy air temperature showed underestimations, particularly during periods of high insolation. In order to explicitly account for canopy temperatures in modeling longwave radiation, the two-part model was improved by incorporating a measured trunk view component and trunk temperature. Trunk temperature measurements were up to 25°C higher than locally measured air temperatures. This three-part model reduced the RMSE by up to 7.7 W m-2 from the two-part air temperature model at all sensor positions across the 2014 snowmelt season and performed particularly well during periods of high insolation when errors from the two-part model were up to 40 W m-2. A parameterization predicting tree trunk temperatures using measured air temperature and incoming shortwave radiation demonstrate a simple method that can be applied to provide input to the three-part model across midlatitude coniferous forests.

  4. Relating trends in land surface-air temperature difference to soil moisture and evapotranspiration

    NASA Astrophysics Data System (ADS)

    Veal, Karen; Taylor, Chris; Gallego-Elvira, Belen; Ghent, Darren; Harris, Phil; Remedios, John

    2016-04-01

    Soil water is central to both physical and biogeochemical processes within the Earth System. Drying of soils leads to evapotranspiration (ET) becoming limited or "water-stressed" and is accompanied by rises in land surface temperature (LST), land surface-air temperature difference (delta T), and sensible heat flux. Climate models predict sizable changes to the global water cycle but there is variation between models in the time scale of ET decay during dry spells. The e-stress project is developing novel satellite-derived diagnostics to assess the ability of Earth System Models (ESMs) to capture behaviour that is due to soil moisture controls on ET. Satellite records of LST now extend 15 years or more. MODIS Terra LST is available from 2000 to the present and the Along-Track Scanning Radiometer (ATSR) LST record runs from 1995 to 2012. This paper presents results from an investigation into the variability and trends in delta T during the MODIS Terra mission. We use MODIS Terra and MODIS Aqua LST and ESA GlobTemperature ATSR LST with 2m air temperatures from reanalyses to calculate trends in delta T and "water-stressed" area. We investigate the variability of delta T in relation to soil moisture (ESA CCI Passive Daily Soil Moisture), vegetation (MODIS Monthly Normalized Difference Vegetation Index) and precipitation (TRMM Multi-satellite Monthly Precipitation) and compare the temporal and spatial variability of delta T with model evaporation data (GLEAM). Delta T anomalies show significant negative correlations with soil moisture, in different seasons, in several regions across the planet. Global mean delta T anomaly is small (magnitude mostly less than 0.2 K) between July 2002 and July 2008 and decreases to a minimum in early 2010. The reduction in delta T anomaly coincides with an increase in soil moisture anomaly and NDVI anomaly suggesting an increase in evapotranspiration and latent heat flux with reduced sensible heat flux. In conclusion there have been

  5. Comparison of MODIS Satellite Land Surface Temperature with Air Temperature along a 5000-metre Elevation Transect on Kilimanjaro, Tanzania.

    NASA Astrophysics Data System (ADS)

    Pepin, N. C.; Williams, R.; Maeda, E. E.

    2015-12-01

    There is concern that high elevations may be warming more rapidly than lower elevations, but there is a lack of observational data from weather stations in the high mountains. One alternative data source is satellite LST (Land Surface Temperature) which has extensive spatial coverage. This study compares instantaneous values of LST (1030 and 2230 local solar time) as measured by the MODIS MOD11A2 product at 1 km resolution with equivalent screen level air temperatures (in the same pixel) measured from a transect of 22 in situ weather stations across Kilimanjaro ranging in elevation from 990 to 5803 m. Data consists of 11 years on the SW slope and 3 years on the NE slope, equating to >500 and ~140 octtads (8-day periods) respectively. Results show substantial differences between LST and local air temperature, sometimes up to 20C. During the day the LST tends to be higher than air temperature and the reverse is true at night. The differences show large variance, particularly during the daytime, and tend to increase with elevation, particularly on the NE slope of the mountain which faces the sun when the daytime observations are taken (1030 LST). Differences between LST and air temperature are larger in the dry seasons (JF and JJAS), and reduce when conditions are more cloudy. Systematic relationships with cloud cover and vegetation characteristics (as measured by NDVI and MAIAC for the same pixel) are displayed. More vegetation reduces daytime surface heating above the air temperature, but this relationship weakens with elevation. Nighttime differences are more stable and show no relationship with vegetation indices. Therefore the predictability of the LST/air temperature differences reduces at high elevations and it is therefore much more challenging to use satellite data at high elevations to complement in situ air temperature measurements for climate change assessments, especially for daytime maximum temperatures.

  6. Evaluation of NASA satellite- and assimilation model-derived long-term daily temperature date over the continental US

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural research increasingly is expected to provide precise, quantitative information with an explicit geographic coverage. Limited availability of continuous daily meteorological records often constrains efforts to provide such information through integrated use of simulation models, spatial ...

  7. Skin sites to predict deep-body temperature while wearing firefighters' personal protective equipment during periodical changes in air temperature.

    PubMed

    Kim, Siyeon; Lee, Joo-Young

    2016-04-01

    The aim of this study was to investigate stable and valid measurement sites of skin temperatures as a non-invasive variable to predict deep-body temperature while wearing firefighters' personal protective equipment (PPE) during air temperature changes. Eight male firefighters participated in an experiment which consisted of 60-min exercise and 10-min recovery while wearing PPE without self-contained breathing apparatus (7.75 kg in total PPE mass). Air temperature was periodically fluctuated from 29.5 to 35.5 °C with an amplitude of 6 °C. Rectal temperature was chosen as a deep-body temperature, and 12 skin temperatures were recorded. The results showed that the forehead and chest were identified as the most valid sites to predict rectal temperature (R(2) = 0.826 and 0.824, respectively) in an environment with periodically fluctuated air temperatures. This study suggests that particular skin temperatures are valid as a non-invasive variable when predicting rectal temperature of an individual wearing PPE in changing ambient temperatures. Practitioner Summary: This study should offer assistance for developing a more reliable indirect indicating system of individual heat strain for firefighters in real time, which can be used practically as a precaution of firefighters' heat-related illness and utilised along with physiological monitoring. PMID:26214379

  8. Air-Cooled Design of a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization Systems

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.; Affleck, Dave L.; Rosen, Micha; LeVan, M. Douglas; Wang, Yuan; Cavalcante, Celio L.

    2004-01-01

    The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. We have a developed a temperature-swing adsorption compressor (TSAC) for performing these tasks that is energy efficient, quiet, and has no rapidly moving parts. This paper discusses the mechanical design and the results of thermal model validation tests of a TSAC that uses air as the cooling medium.

  9. Determination of needed parameters for measuring temperature fields in air by thermography

    NASA Astrophysics Data System (ADS)

    Pešek, Martin; Pavelek, Milan

    2012-04-01

    The aim of this article is the parameters determination of equipment for measuring temperature fields in air using an infrared camera. This method is based on the visualization of temperature fields in an auxiliary material, which is inserted into the non-isothermal air flow. The accuracy of air temperature measurement (or of surface temperature of supplies) by this method depends especially on (except for parameters of infrared camera) the determination of the static and the dynamic qualities of auxiliary material. The emissivity of support material is the static quality and the dynamic quality is time constant. Support materials with a high emissivity and a low time constant are suitable for the measurement. The high value of emissivity results in a higher measurement sensitivity and the radiation temperature independence. In this article the emissivity of examined kinds of auxiliary materials (papers and textiles) is determined by temperature measuring of heated samples by a calibrated thermocouple and by thermography, with the emissivity setting on the camera to 1 and with the homogeneous radiation temperature. Time constants are determined by a step change of air temperature in the surrounding of auxiliary material. The time constant depends mainly on heat transfer by the convection from the air into the auxiliary material. That is why the effect of air temperature is examined in this article (or a temperature difference towards the environmental temperature) and the flow velocity on the time constant with various types of auxiliary materials. The obtained results allow to define the conditions for using the method of measurement of temperature fields in air during various heating and air conditioning applications.

  10. Effect of pyrolysis temperature and air flow on toxicity of gases from a polycarbonate polymer

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Brick, V. E.; Brauer, D. P.

    1978-01-01

    A polycarbonate polymer was evaluated for toxicity of pyrolysis gases generated at various temperatures without forced air flow and with 1 L/min air flow, using the toxicity screening test method developed at the University of San Francisco. Time to various animal responses decreased with increasing pyrolysis temperature over the range from 500 C to 800 C. There appeared to be no significant toxic effects at 400 C and lower temperatures.

  11. Some Effects of Air and Fuel Oil Temperatures on Spray Penetration and Dispersion

    NASA Technical Reports Server (NTRS)

    Gelalles, A G

    1930-01-01

    Presented here are experimental results obtained from a brief investigation of the appearance, penetration, and dispersion of oil sprays injected into a chamber of highly heated air at atmospheric pressure. The development of single sprays injected into a chamber containing air at room temperature and at high temperature was recorded by spray photography equipment. A comparison of spray records showed that with the air at the higher temperature, the spray assumed the appearance of thin, transparent cloud, the greatest part of which rapidly disappeared from view. With the chamber air at room temperature, a compact spray with an opaque core was obtained. Measurements of the records showed a decrease in penetration and an increase in the dispersion of the spray injected into the heated air. No ignition of the fuel injected was observed or recorded until the spray particles came in contact with the much hotter walls of the chamber about 0.3 second after the start of injection.

  12. Validation of AIRS V6 Surface Temperature over Greenland with GCN and NOAA Stations

    NASA Technical Reports Server (NTRS)

    Lee, Jae N.; Hearty, Thomas; Cullather, Richard; Nowicki, Sophie; Susskind, Joel

    2016-01-01

    This work compares the temporal and spatial characteristics of the AIRSAMSU (Atmospheric Infrared Sounder Advanced Microwave Sounding Unit A) Version 6 and MODIS (Moderate resolution Imaging Spectroradiometer) Collection 5 derived surface temperatures over Greenland. To estimate uncertainties in space-based surface temperature measurements, we re-projected the MODIS Ice Surface Temperature (IST) to 0.5 by 0.5 degree spatial resolution. We also re-gridded AIRS Skin Temperature (Ts) into the same grid but classified with different cloud conditions and surface types. These co-located data sets make intercomparison between the two instruments relatively straightforward. Using this approach, the spatial comparison between the monthly mean AIRS Ts and MODIS IST is in good agreement with RMS 2K for May 2012. This approach also allows the detection of any long-term calibration drift and the careful examination of calibration consistency in the MODIS and AIRS temperature data record. The temporal correlations between temperature data are also compared with those from in-situ measurements from GC-Net (GCN) and NOAA stations. The coherent time series of surface temperature evident in the correlation between AIRS Ts and GCN temperatures suggest that at monthly time scales both observations capture the same climate signal over Greenland. It is also suggested that AIRS surface air temperature (Ta) can be used to estimate the boundary layer inversion.

  13. Daily Simulations of O3 and PM2.5 Over New York State: Seasonal and Interannual Differences and Comparison to Routine Air Quality Index (AQI) Forecasts

    NASA Astrophysics Data System (ADS)

    Hogrefe, C.; Hao, W.; Civerolo, K.; Ku, J.; Sistla, G.; Sedefian, L.; Gaza, R.; Schere, K.; Gilliland, A.; Mathur, R.

    2005-12-01

    This paper presents the application and evaluation of an air quality modeling system designed to simulate O3 and PM2.5 on a near-realtime basis over the northeastern United States with a focus on New York State. The air quality modeling system consists of operational weather forecasts from the National Weather Services (NWS) ETA model at a horizontal resolution of 12 km, the PREMAQ emissions and meteorology pre-processor, and the Community Multiscale Air Quality (CMAQ) model. The simulations are being performed as part of a pilot study between the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (EPA), and the New York State Department of Environmental Conservation (NYSDEC) utilizing resources from the operational NWS/NOAA/EPA air quality forecasts. To date, daily simulations have been performed for two summer seasons (2004 and 2005) and one winter season (2004). Model performance for PM2.5 is analyzed for intra- and interannual variability by comparing predictions from these three time periods against both continuous total PM2.5 mass measurements and speciation data. Results of this analysis indicate that the performance of the ETA/CMAQ modeling system is within the range of current regulatory air quality modeling studies employing meteorological data assimilation. Furthermore, there is no pronounced seasonality in model performance for total PM2.5 over New York State, but model performance for individual species shows seasonal behavior. The model evaluation results also reveal a significant overestimation of the inert PM2.5 species in New York State. Therefore, in an effort to improve model performance, we present the results of sensitivity simulations in which primary PM2.5 emissions were modified. Finally, ETA/CMAQ simulations of O3 and PM2.5 for New York State are compared against NYSDEC-issued non-model based routine air quality forecasts. This comparison focuses on the air quality index (AQI), a quantity used

  14. The influence of air-conditioning on street temperatures in the city of Paris

    NASA Astrophysics Data System (ADS)

    de Munck, C. S.; Pigeon, G.; Masson, V.; Marchadier, C.; Meunier, F.; Tréméac, B.; Merchat, M.

    2010-12-01

    A consequence of urban heat islands in summer is the increased use of air-conditioning during extreme heat events : the use of air-conditioning systems, while cooling the inside of buildings releases waste heat (as latent and sensible heat) in the lower part of the urban atmosphere, hence potentially increasing air street temperatures where the heat is released. This may lead locally to a further increase in air street temperatures, therefore increasing the air cooling demand, while at the same time lowering the efficiency of air-conditioning units. A coupled model consisting of a meso-scale meteorological model (MESO-NH) and an urban energy balance model (TEB) has been implemented with an air-conditioning module and used in combination to real spatialised datasets to understand and quantify potential increases in temperature due to air-conditioning heat releases for the city of Paris . In a first instance, the current types of air-conditioning systems co-existing in the city were simulated (underground chilled water network, wet cooling towers and individual air-conditioning units) to study the effects of latent and sensible heat releases on street temperatures. In a third instance, 2 scenarios were tested to characterise the impacts of likely future trends in air-conditioning equipment in the city : a first scenario for which current heat releases were converted to sensible heat, and a second based on 2030s projections of air-conditioning equipment at the scale of the city. All the scenarios showed an increase in street temperature which, as expected, was greater at night time than day time. For the first two scenarios, this increase in street temperatures was localised at or near the sources of air-conditioner heat releases, while the 2030s air-conditioning scenario impacted wider zones in the city. The amplitude of the increase in temperature varied from 0,25°C to 1°C for the air-conditioning current state, between 0,25°C and 2°C for the sensible heat

  15. A comparison of urban heat islands mapped using skin temperature, air temperature, and apparent temperature (Humidex), for the greater Vancouver area.

    PubMed

    Ho, Hung Chak; Knudby, Anders; Xu, Yongming; Hodul, Matus; Aminipouri, Mehdi

    2016-02-15

    Apparent temperature is more closely related to mortality during extreme heat events than other temperature variables, yet spatial epidemiology studies typically use skin temperature (also known as land surface temperature) to quantify heat exposure because it is relatively easy to map from satellite data. An empirical approach to map apparent temperature at the neighborhood scale, which relies on publicly available weather station observations and spatial data layers combined in a random forest regression model, was demonstrated for greater Vancouver, Canada. Model errors were acceptable (cross-validated RMSE=2.04 °C) and the resulting map of apparent temperature, calibrated for a typical hot summer day, corresponded well with past temperature research in the area. A comparison with field measurements as well as similar maps of skin temperature and air temperature revealed that skin temperature was poorly correlated with both air temperature (R(2)=0.38) and apparent temperature (R(2)=0.39). While the latter two were more similar (R(2)=0.87), apparent temperature was predicted to exceed air temperature by more than 5 °C in several urban areas as well as around the confluence of the Pitt and Fraser rivers. We conclude that skin temperature is not a suitable proxy for human heat exposure, and that spatial epidemiology studies could benefit from mapping apparent temperature, using an approach similar to the one reported here, to better quantify differences in heat exposure that exist across an urban landscape. PMID:26706765

  16. Modelling near subsurface temperature with mixed type boundary condition for transient air temperature and vertical groundwater flow

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev Ranjan; Ramana, D. V.; Singh, R. N.

    2012-10-01

    Near-subsurface temperatures have signatures of climate change. Thermal models of subsurface have been constructed by prescribing time dependent Dirichlet type boundary condition wherein the temperature at the soil surface is prescribed and depth distribution of temperature is obtained. In this formulation it is not possible to include the relationship between air temperatures and the temperature of soil surface. However, if one uses a Robin type boundary condition, a transfer coefficient relates the air and soil surface temperatures which helps to determine both the temperature at the surface and at depth given near surface air temperatures. This coefficient is a function of meteorological conditions and is readily available. We have developed such a thermal model of near subsurface region which includes both heat conduction and advection due to groundwater flows and have presented numerical results for changes in the temperature-depth profiles for different values of transfer coefficient and groundwater flux. There are significant changes in temperature and depth profiles due to changes in the transfer coefficient and groundwater flux. The analytical model will find applications in the interpretation of the borehole geothermal data to extract both climate and groundwater flow signals.

  17. Comparison of Near-Surface Air Temperatures and MODIS Ice-Surface Temperatures at Summit, Greenland (2008-2013)

    NASA Technical Reports Server (NTRS)

    Shuman, Christopher A.; Hall, Dorothy K.; DiGirolamo, Nicolo E.; Mefford, Thomas K.; Schnaubelt, Michael J.

    2014-01-01

    We have investigated the stability of the MODerate resolution Imaging Spectroradiometer (MODIS) infrared-derived ice surface temperature (IST) data from Terra for use as a climate quality data record. The availability of climate quality air temperature data (TA) from a NOAA Global Monitoring Division observatory at Greenlands Summit station has enabled this high temporal resolution study of MODIS ISTs. During a 5 year period (July 2008 to August 2013), more than 2500 IST values were compared with 3-minute average TA values derived from the 1-minute data from NOAAs primary 2 m air temperature sensor. These data enabled an expected small offset between air and surface temperatures at this the ice sheet location to be investigated over multiple annual cycles.

  18. Investigation of the impact of extreme air temperature on river water temperature: case study of the heat episode 2013.

    NASA Astrophysics Data System (ADS)

    Weihs, Philipp; Trimmel, Heidelinde; Goler, Robert; Formayer, Herbert; Holzapfel, Gerda; Rauch, Hans Peter

    2014-05-01

    Water stream temperature is a relevant factor for water quality since it is an important driver of water oxygen content and in turn also reduces or increases stress on the aquatic fauna. The water temperature of streams is determined by the source and inflow water temperature, by the energy balance at the stream surface and by the hydrological regime of the stream. Main factors driving the energy balance of streams are radiation balance and air temperature which influences the sensitive and latent heat flux. The present study investigates the impact of the heat episode of summer 2013 on water temperature of two lowland rivers in south eastern Austria. Within the scope of the project BIO_CLIC routine measurements of water temperature at 33 locations alongside the rivers Pinka and Lafnitz have been performed since spring 2012. In addition meteorological measurements of global shortwave and longwave radiation, air temperature, wind and air humidity have been carried out during this time. For the same time period, data of discharge and water levels of both rivers were provided by the public hydrological office. The heat episode of summer 2013 started, according to the Kysely- definition, on 18 July and lasted until 14 August. The highest air temperature ever recorded in Austria was reported on 8 August at 40.5°C. In Güssing, which is located within the project area, 40.0 °C were recorded. In the lower reaches of the river Pinka, at the station Burg the monthly mean water temperature of August 2013 was with more than 22°C, 1°C higher than the mean water temperature of the same period of the previous years. At the same station, the maximum water temperature of 27.1°C was recorded on 29 July, 9 days prior to the air temperature record. Analysis shows that at the downstream stations the main driving parameter is solar radiation whereas at the upstream stations a better correlation between air temperature and water temperature is obtained. Using the extensive data set

  19. Robust Comparison of Climate Models with Observations Using Blended Land Air and Ocean Sea Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Hausfather, Z.; Jacobs, P.; Cowtan, K.; Hawkins, E.; Mann, M. E.; Miller, S. K.; Steinman, B. A.; Way, R. G.; Stolpe, M.

    2015-12-01

    Model-observation comparisons provide an important test of climate models' ability to realistically simulate the transient evolution of the system. A great deal of attention has recently focused on the so-called "hiatus" period of the past ~15 years, when estimates of recent surface temperature evolution fall at the lower end of climate model projections. This work quantifies a systematic bias in model-observation comparisons arising from differential warming rates between sea surface temperatures and surface air temperatures over oceans. Global mean temperatures from climate model simulations are typically calculated using surface air temperatures, while the corresponding observations are based on a blend of air and sea surface temperatures. A further bias arises from the treatment of temperatures in regions where the sea ice boundary has changed. We discuss the magnitude of these biases, and their implications for the evaluation of climate model performance over the "hiatus" period and the full instrumental record.

  20. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    PubMed Central

    Lee, Jing-Nang; Lin, Tsung-Min

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system. PMID:25250390

  1. Polybrominated diphenyl ethers in the air and comparison of the daily intake and uptake through inhalation by Shanghai residents with those through other matrices and routes.

    PubMed

    Li, Chunlei; Zhao, Zhishen; Lei, Bingli; An, Jing; Zhang, Xinyu; Yu, Yingxin

    2015-02-01

    To obtain a comprehensive understanding of the main source and route of human exposure to polybrominated diphenyl ethers (PBDEs), the daily intake and uptakes through inhalation, ingestion, and dermal contact for Shanghai residents were estimated on the basis of the PBDE concentrations in the air obtained in the present study and previous data reported in the literature. The PBDE concentrations in the gas and particle phases collected in Shanghai were 0.99-57.5 and 0.1-234 pg/m(3), respectively. The contamination levels of PBDEs in the air in Shanghai were similar to or slightly lower than the data from other regions. The estimated total daily intakes of PBDEs through the three routes were 607 and 1,636 ng/day for children and adults, respectively, while they decreased to 63.0 and 93.1 ng/day when the uptake efficiency (which is the fraction of contaminants that reaches the systemic circulation) of PBDEs was added to calculation. The results showed that dust is the main source of human exposure to PBDEs when PBDE uptake efficiency was not considered. It accounted for 66.2-79.2 % of the total PBDE intake. However, food is the main source, which accounted for 66.6-75.1 %, when the uptake efficiency was added to calculation. Among the three routes, dermal contact (53.1-76.6 %) is the main pathway, whereas ingestion (84.7-92.9 %) is the main one when the uptake efficiency was considered. Furthermore, risk assessment showed that the PBDE exposure amount would not cause obvious non-cancer and cancer risks to local residents. PMID:25009095

  2. Oxide modified air electrode surface for high temperature electrochemical cells

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1992-01-01

    An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

  3. Stability limit of room air temperature of a VAV system

    SciTech Connect

    Matsuba, Tadahiko; Kamimura, Kazuyuki; Kasahara, Masato; Kimbara, Akiomi; Kurosu, Shigeru; Murasawa, Itaru; Hashimoto, Yukihiko

    1998-12-31

    To control heating, ventilating, and air-conditioning (HVAC) systems, it has been necessary to accept an analog system controlled mainly by proportional-plus-integral-plus-derivative (PID) action. However, when conventional PID controllers are replaced with new digital controllers by selecting the same PID parameters as before, the control loops have often got into hunting phenomena, which result in undamped oscillations. Unstable control characteristics (such as huntings) are thought to be one of the crucial problems faced by field operators. The PID parameters must be carefully selected to avoid instabilities. In this study, a room space is simulated as a thermal system that is air-conditioned by a variable-air-volume (VAV) control system. A dynamic room model without infiltration or exfiltration, which is directly connected to a simple air-handling unit without an economizer, is developed. To explore the possible existence of huntings, a numerical system model is formulated as a bilinear system with time-delayed feedback, and a parametric analysis of the stability limit is presented. Results are given showing the stability region affected by the selection of control and system parameters. This analysis was conducted to help us tune the PID controllers for optimal HVAC control.

  4. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  5. Combustion of Gaseous Fuels with High Temperature Air in Normal- and Micro-gravity Conditions

    NASA Technical Reports Server (NTRS)

    Wang, Y.; Gupta, A. K.

    2001-01-01

    The objective of this study is determine the effect of air preheat temperature on flame characteristics in normal and microgravity conditions. We have obtained qualitative (global flame features) and some quantitative information on the features of flames using high temperature combustion air under normal gravity conditions with propane and methane as the fuels. This data will be compared with the data under microgravity conditions. The specific focus under normal gravity conditions has been on determining the global flame features as well as the spatial distribution of OH, CH, and C2 from flames using high temperature combustion air at different equivalence ratio.

  6. Improved Temperature Sounding and Quality Control Methodology Using AIRS/AMSU Data: The AIRS Science Team Version 5 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John M.; Iredell, Lena; Keita, Fricky

    2009-01-01

    This paper describes the AIRS Science Team Version 5 retrieval algorithm in terms of its three most significant improvements over the methodology used in the AIRS Science Team Version 4 retrieval algorithm. Improved physics in Version 5 allows for use of AIRS clear column radiances in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of clear column radiances .R(sub i) for all channels. This new approach allows for the generation of more accurate values of .R(sub i) and T(p) under most cloud conditions. Secondly, Version 5 contains a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 also contains for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology, referred to as AIRS Version 5 AO, was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Results are shown comparing the relative performance of the AIRS Version 4, Version 5, and Version 5 AO for the single day, January 25, 2003. The Goddard DISC is now generating and distributing products derived using the AIRS Science Team Version 5 retrieval algorithm. This paper also described the Quality Control flags contained in the DISC AIRS/AMSU retrieval products and their intended use for scientific research purposes.

  7. Daily and hourly sourcing of metallic and mineral dust in urban air contaminated by traffic and coal-burning emissions

    NASA Astrophysics Data System (ADS)

    Moreno, T.; Karanasiou, A.; Amato, F.; Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M.; Coz, E.; Artíñano, B.; Lumbreras, J.; Borge, R.; Boldo, E.; Linares, C.; Alastuey, A.; Querol, X.; Gibbons, W.

    2013-04-01

    A multi-analytical approach to chemical analysis of inhalable urban atmospheric particulate matter (PM), integrating particle induced X-ray emission, inductively coupled plasma mass spectrometry/atomic emission spectroscopy, chromatography and thermal-optical transmission methods, allows comparison between hourly (Streaker) and 24-h (High volume sampler) data and consequently improved PM chemical characterization and source identification. In a traffic hot spot monitoring site in Madrid (Spain) the hourly data reveal metallic emissions (Zn, Cu, Cr, Fe) and resuspended mineral dust (Ca, Al, Si) to be closely associated with traffic flow. These pollutants build up during the day, emphasizing evening rush hour peaks, but decrease (especially their coarser fraction PM2.5-10) after nocturnal road washing. Positive matrix factorization (PMF) analysis of a large Streaker database additionally reveals two other mineral dust components (siliceous and sodic), marine aerosol, and minor, transient events which we attribute to biomass burning (K-rich) and industrial (incinerator?) Zn, Pb plumes. Chemical data on 24-h filters allows the measurement of secondary inorganic compounds and carbon concentrations and offers PMF analysis based on a limited number of samples but using fuller range of trace elements which, in the case of Madrid, identifies the continuing minor presence of a coal combustion source traced by As, Se, Ge and Organic Carbon. This coal component is more evident in the city air after the change to the winter heating season in November. Trace element data also allow use of discrimination diagrams such as V/Rb vs. La/Ce and ternary plots to illustrate variations in atmospheric chemistry (such as the effect of Ce-emissions from catalytic converters), with Madrid being an example of a city with little industrial pollution, recently reduced coal emissions, but serious atmospheric contamination by traffic emissions.

  8. Seasonal Prediction of Regional Surface Air Temperature and First-flowering Date in South Korea using Dynamical Downscaling

    NASA Astrophysics Data System (ADS)

    Ahn, J. B.; Hur, J.

    2015-12-01

    The seasonal prediction of both the surface air temperature and the first-flowering date (FFD) over South Korea are produced using dynamical downscaling (Hur and Ahn, 2015). Dynamical downscaling is performed using Weather Research and Forecast (WRF) v3.0 with the lateral forcing from hourly outputs of Pusan National University (PNU) coupled general circulation model (CGCM) v1.1. Gridded surface air temperature data with high spatial (3km) and temporal (daily) resolution are obtained using the physically-based dynamical models. To reduce systematic bias, simple statistical correction method is then applied to the model output. The FFDs of cherry, peach and pear in South Korea are predicted for the decade of 1999-2008 by applying the corrected daily temperature predictions to the phenological thermal-time model. The WRF v3.0 results reflect the detailed topographical effect, despite having cold and warm biases for warm and cold seasons, respectively. After applying the correction, the mean temperature for early spring (February to April) well represents the general pattern of observation, while preserving the advantages of dynamical downscaling. The FFD predictabilities for the three species of trees are evaluated in terms of qualitative, quantitative and categorical estimations. Although FFDs derived from the corrected WRF results well predict the spatial distribution and the variation of observation, the prediction performance has no statistical significance or appropriate predictability. The approach used in the study may be helpful in obtaining detailed and useful information about FFD and regional temperature by accounting for physically-based atmospheric dynamics, although the seasonal predictability of flowering phenology is not high enough. Acknowledgements This work was carried out with the support of the Rural Development Administration Cooperative Research Program for Agriculture Science and Technology Development under Grant Project No. PJ009953 and

  9. Comparison of the effects of extreme temperatures on daily mortality in Madrid (Spain), by age group: The need for a cold wave prevention plan.

    PubMed

    Díaz, J; Carmona, R; Mirón, I J; Ortiz, C; Linares, C

    2015-11-01

    A number of studies have shown that there is a time trend towards a reduction in the effects of heat on mortality. In the case of cold, however, there is practically no research of this type and so there is no clearly defined time trend of the impact of cold on mortality. Furthermore, no other specific studies have yet analysed the time trend of the impact of both thermal extremes by age group. We analysed data on daily mortality due to natural causes (ICD-10: A00-R99) in the city of Madrid across the period 2001-2009 and calculated the impact of extreme temperatures on mortality using Poisson regression models for specific age groups. The groups of age selected coinciding with the pre-existing age-groups analyzed in previous papers. For heat waves the groups of age used were: <10 years, 10-17 years, 18-44 years, 45-64 years, 65-74 years and over-75 years. For cold waves the groups of age used were: <1 year; 1-5 years, 6-17 years, 18-44 years, 45-64 years, 65-74 years and over-75 years. <1, 1-17, 18-44, 45-66, 65-74 and over-75 years. We controlled for confounding variables, such as air pollution, noise, influenza, pollen, pressure and relative humidity, trend of the series, as well as seasonalities and autoregressive components of the series. The results of these models were compared to those obtained for the same city during the period 1986-1997 and published in different studies. Our results show a lightly reduction in the effects of heat, especially in the over-45-year age group. In the case of cold, the behaviour pattern was the opposite, with an increase in its effect. Heat adaptation and socio-economic and public-health prevention and action measures may be behind this amelioration in the effects of heat, whereas the absence of such actions in respect of low temperatures may account for the increase in the effects of cold on mortality. From a public health point of view, the implementation of cold wave prevention plans covering all age groups is thus called

  10. Increasing influence of air temperature on upper Colorado River streamflow

    NASA Astrophysics Data System (ADS)

    Woodhouse, Connie A.; Pederson, Gregory T.; Morino, Kiyomi; McAfee, Stephanie A.; McCabe, Gregory J.

    2016-03-01

    This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture can result in flow deficits of similar magnitude, but recent droughts have been amplified by warmer temperatures that exacerbate the effects of relatively modest precipitation deficits. Since 1988, a marked increase in the frequency of warm years with lower flows than expected, given precipitation, suggests continued warming temperatures will be an increasingly important influence in reducing future UCRB water supplies.

  11. Increasing influence of air temperature on upper Colorado River streamflow

    USGS Publications Warehouse

    Woodhouse, Connie A.; Pederson, Gregory T.; Morino, Kiyomi; McAfee, Stephanie A.; McCabe, Gregory

    2016-01-01

    This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture can result in flow deficits of similar magnitude, but recent droughts have been amplified by warmer temperatures that exacerbate the effects of relatively modest precipitation deficits. Since 1988, a marked increase in the frequency of warm years with lower flows than expected, given precipitation, suggests continued warming temperatures will be an increasingly important influence in reducing future UCRB water supplies.

  12. Non-Gaussian Winter Daily Minimum and Maximum Temperatures in a Regional Climate Model: Downscaling of Reanalysis, Historical Simulations and Future Projections for the Southeast United States

    NASA Astrophysics Data System (ADS)

    Stefanova, L. B.; Sura, P.; Griffin, M.; Chan, S.; Misra, V.

    2011-12-01

    There is a marked interest in possible changes of the climate variability under future emission scenarios, and, in particular, in the potential for changes of the statistics of extreme weather. One statistical measure of extreme events is the non-Gaussianity of the variable under consideration. For the Southeast US, the non-Gaussianity of the local wintertime temperature distributions is of considerable interest to agriculture, energy, and ecosystem management. Therefore, our goal is to evaluate the expected changes of wintertime daily minimum and maximum temperature distributions in regional climate change projections in response to increased radiative forcing. First, we assess the ability of the regional model that we use - the National Centers for Environmental Prediction (NCEP)/Experimental Climate Prediction Center (ECPC) Regional Spectral Model (RSM) - to represent the observed distributions and their response to the ENSO phase. This analysis is based on the daily minimum and maximum temperatures from the COAPS Land-Atmosphere Regional Reanalysis for the Southeast at 10-km resolution (CLARReS10) obtained by dynamically downscaling the NCEP - Department of Energy (DOE) Reanalysis II (R2) and the European Centre for Medium-Range Weather Forecast (ECMWF) 40-year Reanalysis (ERA40) with the Regional Spectral Model (RSM) over the Southeast United States at a horizontal resolution of 10 km for the period 1979-2001. We demonstrate that with the near-perfect lateral boundary conditions provided by the R2 or ERA40, RSM produces daily min/max temperature distributions and distributions' sensitivity to ENSO in very good agreement with station observations. We then assess the winter daily min/max temperatures distribution generated by dynamically downscaling with RSM the historical (1970-2000) and projected (2040-2070) coupled ocean-atmosphere climate model simulations from select models from the Coupled Model Intercomparison Project Phase 3 (CMIP3).

  13. Comparison of correction methods of inhomogeneities in daily data on example of Central European temperature and precipitation series

    NASA Astrophysics Data System (ADS)

    Stepanek, P.; Gruber, Ch.; Zahradnicek, P.

    2009-04-01

    Prior any data analysis, data quality control and homogenization have to be undertaken to get rid of erroneous values in time series. In this work we focused especially on comparison of methods for daily data inhomogeneities correction. Two basic approaches for inhomogeneity adjustments were adopted and compared: (i) "delta" method - adjustment of monthly series and projection of estimated smoothed monthly adjustments into annual variation of daily adjustments and (ii) "variable" correction of daily values according to the corresponding percentiles. "Variable" correction methods were investigated more deeply and their results were mutually compared. The methods used were HOM of Paul Della-Marta, SPLIDHOM of Olivier Mestre and a new method of Petr Stepanek. For the calculation, the software ProClimDB has been combined with R software scripts containing HOM and SPLIDHOM and the different methodological approaches were applied to daily data of various meteorological elements measured in the area of the Czech Republic. The tool is open and freely available. Series were processed by means of the developed ProClimDB and AnClim software (www.climahom.eu).

  14. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region

    NASA Astrophysics Data System (ADS)

    Oikawa, P. Y.; Ge, C.; Wang, J.; Eberwein, J. R.; Liang, L. L.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-11-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality.

  15. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region.

    PubMed

    Oikawa, P Y; Ge, C; Wang, J; Eberwein, J R; Liang, L L; Allsman, L A; Grantz, D A; Jenerette, G D

    2015-01-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality. PMID:26556236

  16. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region

    PubMed Central

    Oikawa, P. Y.; Ge, C.; Wang, J.; Eberwein, J. R.; Liang, L. L.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-01-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality. PMID:26556236

  17. Regional Contrasts of the Warming Rate over Land Significantly Depend on the Calculation Methods of Mean Air Temperature

    PubMed Central

    Wang, Kaicun; Zhou, Chunlüe

    2015-01-01

    Global analyses of surface mean air temperature (Tm) are key datasets for climate change studies and provide fundamental evidences for global warming. However, the causes of regional contrasts in the warming rate revealed by such datasets, i.e., enhanced warming rates over the northern high latitudes and the “warming hole” over the central U.S., are still under debate. Here we show these regional contrasts depend on the calculation methods of Tm. Existing global analyses calculate Tm from daily minimum and maximum temperatures (T2). We found that T2 has a significant standard deviation error of 0.23 °C/decade in depicting the regional warming rate from 2000 to 2013 but can be reduced by two-thirds using Tm calculated from observations at four specific times (T4), which samples diurnal cycle of land surface air temperature more often. From 1973 to 1997, compared with T4, T2 significantly underestimated the warming rate over the central U.S. and overestimated the warming rate over the northern high latitudes. The ratio of the warming rate over China to that over the U.S. reduces from 2.3 by T2 to 1.4 by T4. This study shows that the studies of regional warming can be substantially improved by T4 instead of T2. PMID:26198976

  18. Regional Contrasts of the Warming Rate over Land Significantly Depend on the Calculation Methods of Mean Air Temperature

    NASA Astrophysics Data System (ADS)

    Wang, Kaicun; Zhou, Chunlüe

    2015-07-01

    Global analyses of surface mean air temperature (Tm) are key datasets for climate change studies and provide fundamental evidences for global warming. However, the causes of regional contrasts in the warming rate revealed by such datasets, i.e., enhanced warming rates over the northern high latitudes and the “warming hole” over the central U.S., are still under debate. Here we show these regional contrasts depend on the calculation methods of Tm. Existing global analyses calculate Tm from daily minimum and maximum temperatures (T2). We found that T2 has a significant standard deviation error of 0.23 °C/decade in depicting the regional warming rate from 2000 to 2013 but can be reduced by two-thirds using Tm calculated from observations at four specific times (T4), which samples diurnal cycle of land surface air temperature more often. From 1973 to 1997, compared with T4, T2 significantly underestimated the warming rate over the central U.S. and overestimated the warming rate over the northern high latitudes. The ratio of the warming rate over China to that over the U.S. reduces from 2.3 by T2 to 1.4 by T4. This study shows that the studies of regional warming can be substantially improved by T4 instead of T2.

  19. Regional Contrasts of the Warming Rate over Land Significantly Depend on the Calculation Methods of Mean Air Temperature

    NASA Astrophysics Data System (ADS)

    Wang, Kaicun; Zhou, Chunlüe

    2016-04-01

    Global analyses of surface mean air temperature (Tm) are key datasets for climate change studies and provide fundamental evidences for global warming. However, the causes of regional contrasts in the warming rate revealed by such datasets, i.e., enhanced warming rates over the northern high latitudes and the "warming hole" over the central U.S., are still under debate. Here we show these regional contrasts depends on the calculation methods of Tm. Existing global analyses calculated Tm from daily minimum and maximum temperatures (T2). We found that T2 has a significant standard deviation error of 0.23 °C/decade in depicting the regional warming rate from 2000 to 2013 but can be reduced by two-thirds using Tm calculated from observations at four specific times (T4), which samples diurnal cycle of land surface air temperature more often. From 1973 to 1997, compared with T4, T2 significantly underestimated the warming rate over the central U.S. and overestimated the warming rate over the northern high latitudes. The ratio of the warming rate over China to that over the U.S. reduces from 2.3 by T2 to 1.4 by T4. This study shows that the studies of regional warming can be substantially improved by T4 instead of T2.

  20. Regional Contrasts of the Warming Rate over Land Significantly Depend on the Calculation Methods of Mean Air Temperature.

    PubMed

    Wang, Kaicun; Zhou, Chunlüe

    2015-01-01

    Global analyses of surface mean air temperature (T(m)) are key datasets for climate change studies and provide fundamental evidences for global warming. However, the causes of regional contrasts in the warming rate revealed by such datasets, i.e., enhanced warming rates over the northern high latitudes and the "warming hole" over the central U.S., are still under debate. Here we show these regional contrasts depend on the calculation methods of T(m). Existing global analyses calculate T(m) from daily minimum and maximum temperatures (T2). We found that T2 has a significant standard deviation error of 0.23 °C/decade in depicting the regional warming rate from 2000 to 2013 but can be reduced by two-thirds using T(m) calculated from observations at four specific times (T4), which samples diurnal cycle of land surface air temperature more often. From 1973 to 1997, compared with T4, T2 significantly underestimated the warming rate over the central U.S. and overestimated the warming rate over the northern high latitudes. The ratio of the warming rate over China to that over the U.S. reduces from 2.3 by T2 to 1.4 by T4. This study shows that the studies of regional warming can be substantially improved by T4 instead of T2. PMID:26198976

  1. Effect of air preheat temperature and oxygen concentration on flame structure and emission

    SciTech Connect

    Bolz, S.; Gupta, A.K.

    1998-07-01

    The structure of turbulent diffusion flames with highly preheated combustion air (air preheat temperature in excess of 1,150 C) has been obtained using a specially designed regenerative combustion furnace. Propane gas was used as the fuel. Data have been obtained on the global flame features, spectral emission characteristics, spatial distribution of OH, CH and C{sub 2} species, and pollutants emission from the flames. The results have been obtained for various degrees of air preheat temperatures and O{sub 2} concentration in the air. The color of the flame was found to change from yellow to blue to bluish-green to green over the range of conditions examined. In some cases a hybrid color flame was also observed. The recorded images of the flame photographs were analyzed using color-analyzing software. The results show that thermal and chemical flame behavior strongly depends on the air preheat temperature and oxygen content in the air. The flame color was found to be bluish-green or green at very high air preheat temperatures and low-oxygen concentration. However, at high oxygen concentration the flame color was yellow. The flame volume was found to increase with increase in air-preheat temperature and decrease in oxygen concentration. The flame length showed a similar behavior. The concentrations of OH, CH and C{sub 2} increased with an increase in air preheat temperatures. These species exhibited a two-stage combustion behavior at low oxygen concentration and single stage combustion behavior at high oxygen concentration in the air. Stable flames were obtained for remarkably low equivalence ratios, which would not be possible with normal combustion air. Pollutants emission, including CO{sub 2} and NO{sub x} , was much lower with highly preheated combustion air at low O{sub 2} concentration than the normal air. The results also suggest uniform flow and flame thermal characteristics with conditioned highly preheated air. Highly preheated air combustion provides much

  2. Emperor penguin body surfaces cool below air temperature.

    PubMed

    McCafferty, D J; Gilbert, C; Thierry, A-M; Currie, J; Le Maho, Y; Ancel, A

    2013-06-23

    Emperor penguins Aptenodytes forsteri are able to survive the harsh Antarctic climate because of specialized anatomical, physiological and behavioural adaptations for minimizing heat loss. Heat transfer theory predicts that metabolic heat loss in this species will mostly depend on radiative and convective cooling. To examine this, thermal imaging of emperor penguins was undertaken at the breeding colony of Pointe Géologie in Terre Adélie (66°40' S 140° 01' E), Antarctica in June 2008. During clear sky conditions, most outer surfaces of the body were colder than surrounding sub-zero air owing to radiative cooling. In these conditions, the feather surface will paradoxically gain heat by convection from surrounding air. However, owing to the low thermal conductivity of plumage any heat transfer to the skin surface will be negligible. Future thermal imaging studies are likely to yield further insights into the adaptations of this species to the Antarctic climate. PMID:23466479

  3. Emperor penguin body surfaces cool below air temperature

    PubMed Central

    McCafferty, D. J.; Gilbert, C.; Thierry, A.-M.; Currie, J.; Le Maho, Y.; Ancel, A.

    2013-01-01

    Emperor penguins Aptenodytes forsteri are able to survive the harsh Antarctic climate because of specialized anatomical, physiological and behavioural adaptations for minimizing heat loss. Heat transfer theory predicts that metabolic heat loss in this species will mostly depend on radiative and convective cooling. To examine this, thermal imaging of emperor penguins was undertaken at the breeding colony of Pointe Géologie in Terre Adélie (66°40′ S 140° 01′ E), Antarctica in June 2008. During clear sky conditions, most outer surfaces of the body were colder than surrounding sub-zero air owing to radiative cooling. In these conditions, the feather surface will paradoxically gain heat by convection from surrounding air. However, owing to the low thermal conductivity of plumage any heat transfer to the skin surface will be negligible. Future thermal imaging studies are likely to yield further insights into the adaptations of this species to the Antarctic climate. PMID:23466479

  4. Statistical modeling of urban air temperature distributions under different synoptic conditions

    NASA Astrophysics Data System (ADS)

    Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Hald, Cornelius; Hartz, Uwe; Jacobeit, Jucundus; Richter, Katja; Schneider, Alexandra; Wolf, Kathrin

    2015-04-01

    Within urban areas air temperature may vary distinctly between different locations. These intra-urban air temperature variations partly reach magnitudes that are relevant with respect to human thermal comfort. Therefore and furthermore taking into account potential interrelations with other health related environmental factors (e.g. air quality) it is important to estimate spatial patterns of intra-urban air temperature distributions that may be incorporated into urban planning processes. In this contribution we present an approach to estimate spatial temperature distributions in the urban area of Augsburg (Germany) by means of statistical modeling. At 36 locations in the urban area of Augsburg air temperatures are measured with high temporal resolution (4 min.) since December 2012. These 36 locations represent different typical urban land use characteristics in terms of varying percentage coverages of different land cover categories (e.g. impervious, built-up, vegetated). Percentage coverages of these land cover categories have been extracted from different sources (Open Street Map, European Urban Atlas, Urban Morphological Zones) for regular grids of varying size (50, 100, 200 meter horizonal resolution) for the urban area of Augsburg. It is well known from numerous studies that land use characteristics have a distinct influence on air temperature and as well other climatic variables at a certain location. Therefore air temperatures at the 36 locations are modeled utilizing land use characteristics (percentage coverages of land cover categories) as predictor variables in Stepwise Multiple Regression models and in Random Forest based model approaches. After model evaluation via cross-validation appropriate statistical models are applied to gridded land use data to derive spatial urban air temperature distributions. Varying models are tested and applied for different seasons and times of the day and also for different synoptic conditions (e.g. clear and calm

  5. Accuracy comparison of spatial interpolation methods for estimation of air temperatures in South Korea

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Shim, K.; Jung, M.; Kim, S.

    2013-12-01

    Because of complex terrain, micro- as well as meso-climate variability is extreme by locations in Korea. In particular, air temperature of agricultural fields are influenced by topographic features of the surroundings making accurate interpolation of regional meteorological data from point-measured data. This study was conducted to compare accuracy of a spatial interpolation method to estimate air temperature in Korean Peninsula with the rugged terrains in South Korea. Four spatial interpolation methods including Inverse Distance Weighting (IDW), Spline, Kriging and Cokriging were tested to estimate monthly air temperature of unobserved stations. Monthly measured data sets (minimum and maximum air temperature) from 456 automatic weather station (AWS) locations in South Korea were used to generate the gridded air temperature surface. Result of cross validation showed that using Exponential theoretical model produced a lower root mean square error (RMSE) than using Gaussian theoretical model in case of Kriging and Cokriging and Spline produced the lowest RMSE of spatial interpolation methods in both maximum and minimum air temperature estimation. In conclusion, Spline showed the best accuracy among the methods, but further experiments which reflect topography effects such as temperature lapse rate are necessary to improve the prediction.

  6. Preliminary verification of instantaneous air temperature estimation for clear sky conditions based on SEBAL

    NASA Astrophysics Data System (ADS)

    Zhu, Shanyou; Zhou, Chuxuan; Zhang, Guixin; Zhang, Hailong; Hua, Junwei

    2016-03-01

    Spatially distributed near surface air temperature at the height of 2 m is an important input parameter for the land surface models. It is of great significance in both theoretical research and practical applications to retrieve instantaneous air temperature data from remote sensing observations. An approach based on Surface Energy Balance Algorithm for Land (SEBAL) to retrieve air temperature under clear sky conditions is presented. Taking the meteorological measurement data at one station as the reference and remotely sensed data as the model input, the research estimates the air temperature by using an iterative computation. The method was applied to the area of Jiangsu province for nine scenes by using MODIS data products, as well as part of Fujian province, China based on four scenes of Landsat 8 imagery. Comparing the air temperature estimated from the proposed method with that of the meteorological station measurement, results show that the root mean square error is 1.7 and 2.6 °C at 1000 and 30 m spatial resolution respectively. Sensitivity analysis of influencing factors reveals that land surface temperature is the most sensitive to the estimation precision. Research results indicate that the method has great potentiality to be used to estimate instantaneous air temperature distribution under clear sky conditions.

  7. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  8. A Review of the Thermodynamic, Transport, and Chemical Reaction Rate Properties of High-temperature Air

    NASA Technical Reports Server (NTRS)

    Hansen, C Frederick; Heims, Steve P

    1958-01-01

    Thermodynamic and transport properties of high temperature air, and the reaction rates for the important chemical processes which occur in air, are reviewed. Semiempirical, analytic expressions are presented for thermodynamic and transport properties of air. Examples are given illustrating the use of these properties to evaluate (1) equilibrium conditions following shock waves, (2) stagnation region heat flux to a blunt high-speed body, and (3) some chemical relaxation lengths in stagnation region flow.

  9. Levels, distributions and correlations of polybrominated diphenyl ethers in air and dust of household and workplace in Shanghai, China: implication for daily human exposure.

    PubMed

    Xu, Feng; Tang, Weibiao; Zhang, Wei; Liu, Lili; Lin, Kuangfei

    2016-02-01

    Polybrominated diphenyl ethers (PBDEs) were measured in air (TSP and PM2.5) and dust samples collected from 16 households and the corresponding workplaces of eight volunteer citizens in Shanghai, China. The PBDEs concentrations in the workplace air (mean: 281 ± 126 pg m(-3)) were over two times higher than those in the household (121 ± 44.0 pg m(-3)), while the mean levels of PBDEs in dust were 995 ± 547 and 544 ± 188 ng g(-1) for workplace and household, respectively. BDE209 was the most abundant congener in all samples. PBDEs appeared to be composed of mostly small particles. The C particle/C dust ratios of less brominated PBDEs in PM2.5 were higher than those in TSP, while the values were approximately constant for the more brominated PBDEs. A correlation analysis by network indicated different sources and behavior of the PBDE congeners. The results of a cluster analysis were displayed on a heat map that specified the source and abundance of each PBDE congener. The daily PBDE exposure via dust ingestion was the predominant part of the total intake and was more than 10 times higher than the intake via inhalation. PMID:26490892

  10. Ultraviolet Laser Raman Scattering for Temperature Measurement in Atmospheric Air Microdischarges

    NASA Astrophysics Data System (ADS)

    Caplinger, James; Adams, Steven; Williamson, James; Clark, Jerry

    2011-10-01

    Vibrational Raman scattering for temperature measurement within a dc microdischarge in atmospheric pressure air has been investigated using a pulsed ultraviolet laser. The Raman signal analysis method involved monitoring Q-branch signals originating from multiple N2(X) vibrational states populated in the microdischarge. The translational temperature of N2(X) in the microdischarge was calculated using the total Raman signal intensity calibrated with room temperature air. Also, the distribution of Q-branch intensities among vibrational states allowed for direct measurement of the vibrational temperature of N2(X). Raman scattering results are compared to passive optical emission spectral analyses of the N2 second positive system from which the rotational and vibrational temperatures of the N2(C) excited state were also calculated. A comparison of the N2(X) and N2(C) temperatures derived from Raman scattering and emission spectroscopy, respectively, is presented. This work was supported by the Air Force Office of Scientific Research.

  11. The characteristics of high temperature air combustion and its practical application to high performance industrial furnace

    SciTech Connect

    Sugiyama, Shunichi; Suzukawa, Yutaka; Hino, Yoshimichi

    1999-07-01

    An experimental regenerative continuous slab reheat furnace was used for the data acquisition of high temperature air combustion. Obtainable preheated air temperature, gas temperature distribution of combustion field, NOx concentration in waste gas, heating pattern, furnace height etc were studied for this purpose. Main results were (1) preheated air temperature close to furnace temperature can be obtained, (2) gas temperature distribution is relatively uniform in main combustion field, (3) NOx concentration in waste gas is significantly reduced, (4) there exists the appropriate combustion capacity of a burner for every furnace width, (5) the optimum furnace height for regenerative continuous slab reheat furnace from the thermal efficiency point of view is lower than the convention one by about 0.5m.

  12. Temperature and Humidity Independent Control Research on Ground Source Heat Pump Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Chen, G.; Wang, L. L.

    Taking green demonstration center building air conditioning system as an example, this paper presents the temperature and humidity independent control system combined with ground source heat pump system, emphasis on the design of dry terminal device system, fresh air system and ground source heat pump system.

  13. Biodiesel and Cold Temperature Effect on Speciated Mobile Source Air Toxics from Modern Diesel Trucks

    EPA Science Inventory

    Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...

  14. Biodiesel and Cold Temperature Effects on Speciated Mobile Source Air Toxics from Modern Diesel Trucks

    EPA Science Inventory

    Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...

  15. Air stability of low-temperature dehydrogenation of Pd-decorated Mg blades.

    PubMed

    Liu, Yu; Wang, Gwo-Ching

    2012-01-20

    We demonstrated that Pd-decorated Mg blades are air-stable for hydrogen storage with a low desorption temperature of 373 K. Pd-catalyst-decorated Mg blades were prepared by 64° oblique incident angle thermal deposition on a rotatable substrate with the rotation axis perpendicular to the substrate. The hydrogen desorption from Pd-decorated Mg blades was performed and recorded by temperature-programmed desorption (TPD) for repeated hydrogenation–dehydrogenation cycles. The near-surface structural and compositional changes were characterized in situ by reflection high energy electron diffraction (RHEED). The Mg blades were intentionally exposed to air at elevated temperatures (333 or 358 K) between certain cycles. It was found that the degradation of the storage capacity was affected weakly by the air exposure at moderate temperatures. The kinetics of the hydrogen desorption was sensitive to air exposure but recoverable through a replenishment of fresh catalyst Pd on the surface of the oxidized Mg blades. PMID:22166731

  16. Transport properties of high-temperature air in a magnetic field

    SciTech Connect

    Bruno, D.; Capitelli, M.; Catalfamo, C.; Giordano, D.

    2011-01-15

    Transport properties of equilibrium air plasmas in a magnetic field are calculated with the Chapman-Enskog method. The range considered for the temperature is [50-50 000] K and for the magnetic induction is [0-300] T.

  17. Apparatus and method for generating large mass flow of high temperature air at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Sabol, A. P.; Stewart, R. B. (Inventor)

    1973-01-01

    High temperature, high mass air flow and a high Reynolds number test air flow in the Mach number 8-10 regime of adequate test flow duration is attained by pressurizing a ceramic-lined storage tank with air to a pressure of about 100 to 200 atmospheres. The air is heated to temperatures of 7,000 to 8,000 R prior to introduction into the tank by passing the air over an electric arc heater means. The air cools to 5,500 to 6,000 R while in the tank. A decomposable gas such as nitrous oxide or a combustible gas such as propane is injected into the tank after pressurization and the heated pressurized air in the tank is rapidly released through a Mach number 8-10 nozzle. The injected gas medium upon contact with the heated pressurized air effects an exothermic reaction which maintains the pressure and temperature of the pressurized air during the rapid release.

  18. Improving forecast skill by assimilation of quality-controlled AIRS temperature retrievals under partially cloudy conditions

    NASA Astrophysics Data System (ADS)

    Reale, O.; Susskind, J.; Rosenberg, R.; Brin, E.; Liu, E.; Riishojgaard, L. P.; Terry, J.; Jusem, J. C.

    2008-04-01

    The National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite is now recognized as an important contributor towards the improvement of weather forecasts. At this time only a small fraction of the total data produced by AIRS is being used by operational weather systems. In fact, in addition to effects of thinning and quality control, the only AIRS data assimilated are radiance observations of channels unaffected by clouds. Observations in mid-lower tropospheric sounding AIRS channels are assimilated primarily under completely clear-sky conditions, thus imposing a very severe limitation on the horizontal distribution of the AIRS-derived information. In this work it is shown that the ability to derive accurate temperature profiles from AIRS observations in partially cloud-contaminated areas can be utilized to further improve the impact of AIRS observations in a global model and forecasting system. The analyses produced by assimilating AIRS temperature profiles obtained under partial cloud cover result in a substantially colder representation of the northern hemisphere lower midtroposphere at higher latitudes. This temperature difference has a strong impact, through hydrostatic adjustment, in the midtropospheric geopotential heights, which causes a different representation of the polar vortex especially over northeastern Siberia and Alaska. The AIRS-induced anomaly propagates through the model's dynamics producing improved 5-day forecasts.

  19. Improving Forecast Skill by Assimilation of Quality-controlled AIRS Temperature Retrievals under Partially Cloudy Conditions

    NASA Technical Reports Server (NTRS)

    Reale, O.; Susskind, J.; Rosenberg, R.; Brin, E.; Riishojgaard, L.; Liu, E.; Terry, J.; Jusem, J. C.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite has been long recognized as an important contributor towards the improvement of weather forecasts. At this time only a small fraction of the total data produced by AIRS is being used by operational weather systems. In fact, in addition to effects of thinning and quality control, the only AIRS data assimilated are radiance observations of channels unaffected by clouds. Observations in mid-lower tropospheric sounding AIRS channels are assimilated primarily under completely clear-sky conditions, thus imposing a very severe limitation on the horizontal distribution of the AIRS-derived information. In this work it is shown that the ability to derive accurate temperature profiles from AIRS observations in partially cloud-contaminated areas can be utilized to further improve the impact of AIRS observations in a global model and forecasting system. The analyses produced by assimilating AIRS temperature profiles obtained under partial cloud cover result in a substantially colder representation of the northern hemisphere lower midtroposphere at higher latitudes. This temperature difference has a strong impact, through hydrostatic adjustment, in the midtropospheric geopotential heights, which causes a different representation of the polar vortex especially over northeastern Siberia and Alaska. The AIRS-induced anomaly propagates through the model's dynamics producing improved 5-day forecasts.

  20. Assessing the Potential of the AIRS Retrieved Surface Temperature for 6-Hour Average Temperature Forecast in River Forecast Centers

    NASA Astrophysics Data System (ADS)

    Ding, F.; Theobald, M.; Vollmer, B.; Savtchenko, A. K.; Hearty, T. J.; Esfandiari, A. E.

    2012-12-01

    Producing timely and accurate water forecast and information is the mission of National Weather Service River Forecast Centers (NWS RFCs) of National Oceanic and Atmospheric Administration (NOAA). The river forecast system in RFCs requires average surface temperature in the fixed 6-hour period 000-0600, 0600-1200, 1200-1800, and 1200-0000 UTC. The current logic of RFC temperature forecast relies on ingest of point values of daytime maximum and nighttime minimum temperature. Meanwhile, the mean temperature for the 6-hour period is estimated from a weighted average of daytime maximum and nighttime minimum temperature. The Atmospheric Infrared Sounder (AIRS) in the first high spectral resolution infrared sounder on board the Aqua satellite which was launched in May 2002 and follows a Sun-synchronous polar orbit. It is aimed to produce high resolution atmospheric profile and surface atmospheric parameters. As Aqua crosses the equator at about 1330 and 0130 local time, the AIRS retrieved surface temperature may represent daytime maximum and nighttime minimum value. Comparing to point observation from surface weather stations which are often sparse over the less-populated area and are unevenly distributed, satellite may obtain better area averaged observation. This test study assesses the potential of using AIRS retrieved surface temperature to forecast 6-hour average temperature for NWS RFCs. The California Nevada RFC is selected due to the poor coverage of surface observation in the mountainous region and spring snow melting. The study focuses on the March to May spring season when water from snowpack melting often plays important role in flood. AIRS retrieved temperature and surface weather station data set will be used to derive statistical weighting coefficient for 6-hour average temperature forecast. The resulting forecast biases and errors will be the main indicators of the potential usage. All study results will be presented in the meeting.

  1. A time-series analysis of mortality and air temperature in Greater Beirut.

    PubMed

    El-Zein, Abbas; Tewtel-Salem, Mylene; Nehme, Gebran

    2004-09-01

    The literature on the association between health and weather in the temperate to semi-arid cities of the Eastern Mediterranean is scarce. The quantification of the relationship between temperature and daily mortality can be useful for developing policy interventions such as heat-warning systems. A time-series analysis of total daily mortality and weather data for the city of Beirut was carried out. The study covered the period between 1997 and 1999. Poisson auto-regressive models were constructed, with mean daily temperature and mean daily humidity as explanatory variables. Delayed effects, up to 2 weeks, were accounted for. The regression models were used next to assess the effect of an average increase in temperature on yearly mortality. The association between temperature and mortality was found to be significant. A relatively high minimum-mortality temperature (TMM) of 27.5 degrees C was calculated. A 1 degrees C rise in temperature yielded a 12.3% increase (95% confidence interval: 5.7-19.4%) and 2.9% decrease (95% confidence interval: 2-3.7%) in mortality, above and below TMM, respectively. Lag temperature variables were found to be significant below TMM but not above it. Where the temperature change was less than 0.5 degrees C, annual above-TMM losses were offset by below-TMM gains, within a 95% confidence interval. TMM for Beirut fell within the range usually associated with warm climates. However, the mild below-TMM and steep above-TMM slopes were more typical of cities with temperate to cold climates. Our findings suggest that heat-related mortality at moderately high temperatures can be a significant public health issue in countries with warm climate