Science.gov

Sample records for air temperature difference

  1. Temperature distribution of air source heat pump barn with different air flow

    NASA Astrophysics Data System (ADS)

    He, X.; Li, J. C.; Zhao, G. Q.

    2016-08-01

    There are two type of airflow form in tobacco barn, one is air rising, the other is air falling. They are different in the structure layout and working principle, which affect the tobacco barn in the distribution of temperature field and velocity distribution. In order to compare the temperature and air distribution of the two, thereby obtain a tobacco barn whose temperature field and velocity distribution are more uniform. Taking the air source heat pump tobacco barn as the investigated subject and establishing relevant mathematical model, the thermodynamics of the two type of curing barn was analysed and compared based on Fluent. Provide a reasonable evidence for chamber arrangement and selection of outlet for air source heat pump tobacco barn.

  2. [Temperature differences of air-rice plant under different irrigated water depths at spiking stage].

    PubMed

    Zhang, Bin; Zheng, Jian-chu; Huang, Shan; Tian, Yun-lu; Peng, Lan; Bian, Xin-min; Zhang, Wei-jian

    2008-01-01

    With rice cultivars Yangdao 6, Yangjing 9538 and Wuxiangjing 14 as test materials, field experiment was conducted to study the effects of 3 irrigated water depths (0 cm, 2-4 cm, and > 10 cm) on the temperature of different parts of rice plant at spiking stage. The results showed that from 10:30 to 15:00 on sunny days, irrigated water depth on paddy field had significant effects on the temperature of field surface, middle part of rice plant, and rice spike. The higher the water depth on field surface, the lower the temperature of rice plant and rice spike. At the water level > 10 cm, the average temperature differences between air and the rice spike, middle part of rice plant and field surface of these three cultivars were 1.37, 2.98 and 4.12 degrees C higher than those at the water depth of 0 cm, and 0.67, 1.59 and 2.17 degrees C higher than those at the water depth of 2-4 cm, respectively. In addition, the temperature differences were 0.71, 1.39 and 1.95 degrees C higher at the water depth of 2-4 cm than those at the water depth of 0 cm, respectively. Obvious temperature differences of air-rice plant were also observed among the three rice varieties under different irrigated water depths. The analysis of the characteristics of temperature transfer among field surface, middle part of plant and rice spike indicated that the temperature transfer patterns under all test water management regimes accorded with the principles of energy transfer, suggesting that keeping proper water depth on the field surface at rice spiking stage contributed great to the decrease of rice spike temperature and the alleviation of rice heat injury.

  3. Prediction of air temperature in the aircraft cabin under different operational conditions

    NASA Astrophysics Data System (ADS)

    Volavý, F.; Fišer, J.; Nöske, I.

    2013-04-01

    This paper deals with the prediction of the air temperature in the aircraft cabin by means of Computational Fluid Dynamics. The simulations are performed on the CFD model which is based on geometry and cabin interior arrangement of the Flight Test Facility (FTF) located at Fraunhofer IBP, Germany. The experimental test flights under three different cabin temperatures were done in FTF and the various data were gathered during these flights. Air temperature in the cabin was measured on probes located near feet, torso and head of each passenger and also surface temperature and air temperature distributed from inlets were measured. The data were firstly analysed in order to obtain boundary conditions for cabin surfaces and inlets. Then the results of air temperature from the simulations were compared with measured data. The suitability and accuracy of the CFD approach for temperature prediction is discussed.

  4. Temperature differences in the air layer close to a road surface

    NASA Astrophysics Data System (ADS)

    Bogren, Jörgen; Gustavsson, Torbjörn; Karlsson, Maria

    2001-12-01

    In this study, profiles of temperature and humidity (<250 cm above the road and 5 m into the surroundings) have been used to examine the development of temperature differences in the air layer close to the road. Temperature, humidity and wind profiles were measured, together with net radiation and observations of road surface state, at a test site at Road 45, Surte, Sweden. Measured temperature differences were compared with present weather, preceding weather, surface status, wind direction and other parameters thought to be important for the development of temperature differences. The results showed that large temperature differences (1-3 °C between 250 cm and 10 cm above the road) occurred when there was a high risk of slipperiness caused by hoarfrost, snow or ice on the road. The temperature differences between different levels were associated with the exchange of humidity and temperature between the air layer and the road surface. The 10 cm level reflected the surface processes well. Higher levels were influenced by the surroundings because of turbulence and advection. This study emphasises the need for measurements to be taken at a height and place that reflects the processes at the road surface.

  5. Photosynthesis of young apple trees in response to low sink demand under different air temperatures.

    PubMed

    Fan, Pei G; Li, Lian S; Duan, Wei; Li, Wei D; Li, Shao H

    2010-03-01

    Gas exchange, chlorophyll fluorescence, photosynthetic end products and related enzymes in source leaves in response to low sink demand after girdling to remove the root sink were assessed in young apple trees (Malus pumila) grown in two greenhouses with different air temperatures for 5 days. Compared with the non-girdled control in the low-temperature greenhouse (diurnal maximum air temperature <32 degrees C), low sink demand resulted in lower net photosynthetic rate (P(n)), stomatal conductance (g(s)) and transpiration rate (E) but higher leaf temperature on Day 5, while in the high-temperature greenhouse (diurnal maximum air temperature >36 degrees C), P(n), g(s) and E declined from Day 3 onwards. Moreover, gas exchange responded more to low sink demand in the high-temperature greenhouse than in the low-temperature greenhouse. Decreased P(n) at low sink demand was accompanied by lower intercellular CO(2) concentrations in the low-temperature greenhouse. However, decreased maximal photochemical efficiency, potential activity, efficiency of excitation capture, actual efficiency and photochemical quenching, with increased minimal fluorescence and non-photochemical quenching of photosystem II (PSII), were observed in low sink demand leaves only in the high-temperature greenhouse. In addition, low sink demand increased leaf starch and soluble carbohydrate content in both greenhouses but did not result in lower activity of enzymes involved in metabolism. Thus, decreased P(n) under low sink demand was independent of a direct effect of end-product feedback but rather depended on a high temperature threshold. The lower P(n) was likely due to stomatal limitation in the low-temperature greenhouse, but mainly due to non-stomatal limitation in the high-temperature greenhouse.

  6. Effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding.

    PubMed

    Secilmis, Asli; Bulbul, Mehmet; Sari, Tugrul; Usumez, Aslihan

    2013-01-01

    The neodymium/yttrium-aluminum-garnet (Nd/YAG) laser has been suggested to repair broken prostheses in the mouth. This study investigated the effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding. Three intact human maxillary molars were prepared for full-veneer crown. For each tooth, dentin thicknesses in mesiobuccal cusp was 2, 3, or 4 mm. Twenty dies were duplicated from each of the prepared teeth. For metal copings with 0.5-mm thickness, wax patterns were prepared with dip wax technique directly onto each of dies. All patterns were sprued and invested. The castings were made using a nickel-chromium alloy (Nicromed Premium, Neodontics). A hole with 0.5-mm diameter was prepared on the mesiobuccal cusp of each crown. The Nd/YAG laser (9.85 W; 1 Hz repetition rate; fluence, 1.230 J/cm(2); Fidelis Plus 3, Fotona) was used for welding with or without air cooling (n = 10). The temperature rise was measured in pulpal chamber with a J-type thermocouple wire that was connected to a data logger. Differences between start and highest temperature reading were taken, and temperature rise values were compared using two-way analysis of variance and Tukey's honestly significant difference tests (α = .05). Pulpal temperature rise varied significantly depending on the dentin thickness and air cooling (p < 0.05). The non-air cooling group induced significantly the highest temperature increases. There were no significant differences between 2- and 3-mm dentin thicknesses groups (p > 0.05); however, pulpal temperature rise was the lowest for 4-mm dentin thickness group (p < 0.05). The highest values of thermal increase were found in the pulp chamber (6.8°C) when no air cooling was used in 2-mm dentin thickness group. Laser welding on base metal castings with Nd/YAG laser can be applied with air cooling to avoid temperature rises known to adversely affect pulpal health when dentin thickness is 2 or 3 mm.

  7. Influence of Air Temperature Difference on the Snow Melting Simulation of SWAT Model

    NASA Astrophysics Data System (ADS)

    YAN, Y.; Onishi, T.

    2013-12-01

    The temperature-index models are commonly used to simulate the snowmelt process in mountain areas because of its good performance, low data requirements, and computational simplicity. Widely used distributed hydrological model: Soil and Water Assessment Tool (SWAT) model is also using a temperature-index module. However, the lack of monitoring air temperature data still involves uncertainties and errors in its simulation performance especially in data sparse area. Thus, to evaluate the different air temperature data influence on the snow melt of the SWAT model, five different air temperature data are applied in two different Russia basins (Birobidjan basin and Malinovka basin). The data include the monitoring air temperature data (TM), NCEP reanalysis data (TNCEP), the dataset created by inverse distance weighted interpolation (IDW) method (TIDW), the dataset created by improved IDW method considering the elevation influence (TIDWEle), and the dataset created by using linear regression and MODIS Land Surface Temperature (LST) data (TLST). Among these data, the TLST , the TIDW and TIDWEle data have the higher spatial density, while the TNCEP and TM DATA have the most valid monitoring value for daily scale. The daily simulation results during the snow melting seasons (March, April and May) showed reasonable results in both test basins for all air temperature data. While R2 and NSE in Birobidjan basin are around 0.6, these values in Malinovka basin are over 0.75. Two methods: Generalized Likelihood Uncertainty Estimation (GLUE) and Sequential Uncertainty Fitting, version. 2 (SUFI-2) were used for model calibration and uncertainty analysis. The evolution index is p-factor which means the percentage of measured data bracketed by the 95% Prediction Uncertainty (95PPU). The TLST dataset always obtained the best results in both basins compared with other datasets. On the other hand, the two IDW based method get the worst results among all the scenarios. Totally, the

  8. An improved method for correction of air temperature measured using different radiation shields

    NASA Astrophysics Data System (ADS)

    Cheng, Xinghong; Su, Debin; Li, Deping; Chen, Lu; Xu, Wenjing; Yang, Meilin; Li, Yongcheng; Yue, Zhizhong; Wang, Zijing

    2014-11-01

    The variation of air temperature measurement errors using two different radiation shields (DTR502B Vaisala, Finland, and HYTFZ01, Huayun Tongda Satcom, China) was studied. Datasets were collected in the field at the Daxing weather station in Beijing from June 2011 to May 2012. Most air temperature values obtained with these two commonly used radiation shields were lower than the reference records obtained with the new Fiber Reinforced Polymers (FRP) Stevenson screen. In most cases, the air temperature errors when using the two devices were smaller on overcast and rainy days than on sunny days; and smaller when using the imported rather than the Chinese shield. The measured errors changed sharply at sunrise and sunset, and reached maxima at noon. Their diurnal variation characteristics were, naturally, related to changes in solar radiation. The relationships between the record errors, global radiation, and wind speed were nonlinear. An improved correction method was proposed based on the approach described by Nakamura and Mahrt (2005) (NM05), in which the impact of the solar zenith angle (SZA) on the temperature error is considered and extreme errors due to changes in SZA can be corrected effectively. Measurement errors were reduced significantly after correction by either method for both shields. The error reduction rate using the improved correction method for the Chinese and imported shields were 3.3% and 40.4% higher than those using the NM05 method, respectively.

  9. The EUSTACE project: combining different components of the observing system to deliver global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Rayner, Nick

    2016-04-01

    Day-to-day variations in surface air temperature affect society in many ways and are fundamental information for many climate services; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, we must develop an understanding of the relationships between traditional surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we reflect on our experience so far within the Horizon 2020 project EUSTACE of using satellite skin temperature retrievals to help us to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types and developing new statistical models of how surface air temperature varies in a connected way from place to place. We will present plans and progress along this road in the EUSTACE project (2015-June 2018): - providing new, consistent, multi-component estimation of uncertainty in surface skin temperature retrievals from satellites; - identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; - estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; - using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  10. Universal predictive models on octanol-air partition coefficients at different temperatures for persistent organic pollutants.

    PubMed

    Chen, Jingwen; Harner, Tom; Ding, Guanghui; Quan, Xie; Schramm, Karl-Werner; Kettrup, Antonius

    2004-10-01

    Owing to the importance of octanol-air partition coefficients (KOA) in describing the partition of organic pollutants from air to environmental organic phases, the paucity of KOA data at different environmental temperatures, and the difficulty or high expenditures involved in experimental determination, the development of predictive models for KOA is necessary. Approaches such as this are greatly needed to evaluate the environmental fate of the ever-increasing list of production chemicals. Partial least squares (PLS) regression with 18 molecular structural descriptors was used to develop predictive models based on directly measured KOA values of selected chlorobenzenes, polychlorinated biphenyls (PCBs), polychlorinated naphthalenes, polychlorinated dibenzo-p-dioxins/dibenzofurans, polybrominated diphenyl ethers, polycyclic aromatic hydrocarbons, and organochlorine pesticides (OPs). An optimization procedure resulted in two temperature-dependent universal predictive models that explained at least 91 % of the variance of log KOA. Model 1 was the more general of the two models that could be used for all the persistent organic pollutant (POP) classes investigated. Although model 1 performed poorly for select OPs, this was attributed to wide variability in structural types within this subset of POPs and their diversity compared to the other POP classes that were investigated. The exclusion of the structurally complex OP subset resulted in a more precise model, model 5. Intermolecular dispersive interactions (induced dipole-induced dipole forces) between octanol and solute molecules play a decisive role in governing KOA and its temperature dependence. Further investigations are needed to better characterize the steric structures of the POPs under study, especially of OPs.

  11. Relating trends in land surface-air temperature difference to soil moisture and evapotranspiration

    NASA Astrophysics Data System (ADS)

    Veal, Karen; Taylor, Chris; Gallego-Elvira, Belen; Ghent, Darren; Harris, Phil; Remedios, John

    2016-04-01

    Soil water is central to both physical and biogeochemical processes within the Earth System. Drying of soils leads to evapotranspiration (ET) becoming limited or "water-stressed" and is accompanied by rises in land surface temperature (LST), land surface-air temperature difference (delta T), and sensible heat flux. Climate models predict sizable changes to the global water cycle but there is variation between models in the time scale of ET decay during dry spells. The e-stress project is developing novel satellite-derived diagnostics to assess the ability of Earth System Models (ESMs) to capture behaviour that is due to soil moisture controls on ET. Satellite records of LST now extend 15 years or more. MODIS Terra LST is available from 2000 to the present and the Along-Track Scanning Radiometer (ATSR) LST record runs from 1995 to 2012. This paper presents results from an investigation into the variability and trends in delta T during the MODIS Terra mission. We use MODIS Terra and MODIS Aqua LST and ESA GlobTemperature ATSR LST with 2m air temperatures from reanalyses to calculate trends in delta T and "water-stressed" area. We investigate the variability of delta T in relation to soil moisture (ESA CCI Passive Daily Soil Moisture), vegetation (MODIS Monthly Normalized Difference Vegetation Index) and precipitation (TRMM Multi-satellite Monthly Precipitation) and compare the temporal and spatial variability of delta T with model evaporation data (GLEAM). Delta T anomalies show significant negative correlations with soil moisture, in different seasons, in several regions across the planet. Global mean delta T anomaly is small (magnitude mostly less than 0.2 K) between July 2002 and July 2008 and decreases to a minimum in early 2010. The reduction in delta T anomaly coincides with an increase in soil moisture anomaly and NDVI anomaly suggesting an increase in evapotranspiration and latent heat flux with reduced sensible heat flux. In conclusion there have been

  12. Improving the energy efficiency of refrigeration plants by decreasing the temperature difference in air-cooled condensers

    NASA Astrophysics Data System (ADS)

    Shishov, V. V.; Talyzin, M. S.

    2015-09-01

    The electric energy consumption efficiency is estimated in comparing the real refrigeration machine cycle with the theoretical inverse Carnot cycle. The potential for saving electricity in using aircooled condensers with different values of temperature difference is shown. A procedure for calculating a refrigerating system with the evaporation temperature equal to -10°C, which corresponds at this temperature level to the thermal load of a standard supermarket, is described. The calculation was carried out taking into account the annual profile of temperatures in the indicated locality and based on the possibility of adjusting the condenser capacity for maintaining constant condensation temperature. The payback period in case of using condensers with different values of temperature difference is calculated; for example, in using condensers with a temperature difference of less than 15 K, the payback period will be less than one year. Decreasing the temperature difference results, on one hand, in a larger annual consumption of electric energy by the condenser fans, and on the other hand, it results in a lower condensation pressure, which leads to a smaller annual consumption of energy by the compressor unit. As a result, the total amount of energy consumed by the refrigeration system decreases so that despite a higher cost of condensers designed to operate at lower values of temperature difference, it becomes possible to achieve the above-mentioned payback period. Additionally, the payback period in case of using an air-cooled microchannel aluminum condenser was calculated: in case of using such a condenser with a temperature difference of 8 K instead of the condenser with the temperature difference equal to 15 K, the payback period will be less than half a year. Recommendations for designing new refrigeration systems equipped with air-cooled condensers are given.

  13. Stress effect of different temperatures and air exposure during transport on physiological profiles in the American lobster Homarus americanus.

    PubMed

    Lorenzon, S; Giulianini, P G; Martinis, M; Ferrero, E A

    2007-05-01

    Homarus americanus is an important commercial species that can survive 2-3 days out of water if kept cool and humid. Once caught for commercial purpose and shipped around the world, a lobster is likely to be subjected to a number of stressors, including emersion and air exposure, hypoxia, temperature changes and handling. This study focused on the effect of transport stress and specifically at different animal body temperature (6 and 15 degrees C) and air exposure during commercial transport and recovery process in water. Animals were monitored, by hemolymph bleeding, at different times: 0 h (arrival time at plant) 3 h, 12 h, 24 h and 96 h after immersion in the stocking tank with a water temperature of 6.5+/-1.5 degrees C. We analysed the effects by testing some physiological variables of the hemolymph: glucose, cHH, lactate, total protein, cholesterol, triglycerides, chloride and calcium concentration, pH and density. All these variables appeared to be influenced negatively by high temperature both in average of alteration from the physiological value and in recovering time. Blood glucose, lactate, total protein, cholesterol were significantly higher in the group with high body temperature compared to those with low temperature until 96 h after immersion in the recovery tank.

  14. Physical activity profile of 2014 FIFA World Cup players, with regard to different ranges of air temperature and relative humidity

    NASA Astrophysics Data System (ADS)

    Chmura, Paweł; Konefał, Marek; Andrzejewski, Marcin; Kosowski, Jakub; Rokita, Andrzej; Chmura, Jan

    2016-09-01

    The present study attempts to assess changes in soccer players' physical activity profiles under the simultaneous influence of the different combinations of ambient temperature and relative humidity characterising matches of the 2014 FIFA World Cup hosted by Brazil. The study material consisted of observations of 340 players representing 32 national teams taking part in the tournament. The measured indices included total distances covered; distances covered with low, moderate, or high intensity; numbers of sprints performed, and peak running speeds achieved. The analysis was carried out using FIFA official match data from the Castrol Performance Index system. Ultimately, consideration was given to a combination of three air temperature ranges, i.e. below 22 °C, 22-28 °C, and above 28 °C; and two relative humidity ranges below 60 % and above 60 %. The greatest average distance recorded (10.54 ± 0.91 km) covered by players at an air temperature below 22 °C and a relative humidity below 60 %, while the shortest (9.83 ± 1.08 km) characterised the same air temperature range, but conditions of relative humidity above 60 % (p ≤ 0.001). Two-way ANOVA revealed significant differences (p ≤ 0.001) in numbers of sprints performed by players, depending on whether the air temperature range was below 22 °C (40.48 ± 11.17) or above 28 °C (30.72 ± 9.40), but only where the relative humidity was at the same time below 60 %. Results presented indicate that the conditions most comfortable for physical activity on the part of players occur at 22 °C, and with relative humidity under 60 %.

  15. Physical activity profile of 2014 FIFA World Cup players, with regard to different ranges of air temperature and relative humidity.

    PubMed

    Chmura, Paweł; Konefał, Marek; Andrzejewski, Marcin; Kosowski, Jakub; Rokita, Andrzej; Chmura, Jan

    2017-04-01

    The present study attempts to assess changes in soccer players' physical activity profiles under the simultaneous influence of the different combinations of ambient temperature and relative humidity characterising matches of the 2014 FIFA World Cup hosted by Brazil. The study material consisted of observations of 340 players representing 32 national teams taking part in the tournament. The measured indices included total distances covered; distances covered with low, moderate, or high intensity; numbers of sprints performed, and peak running speeds achieved. The analysis was carried out using FIFA official match data from the Castrol Performance Index system. Ultimately, consideration was given to a combination of three air temperature ranges, i.e. below 22 °C, 22-28 °C, and above 28 °C; and two relative humidity ranges below 60 % and above 60 %. The greatest average distance recorded (10.54 ± 0.91 km) covered by players at an air temperature below 22 °C and a relative humidity below 60 %, while the shortest (9.83 ± 1.08 km) characterised the same air temperature range, but conditions of relative humidity above 60 % (p ≤ 0.001). Two-way ANOVA revealed significant differences (p ≤ 0.001) in numbers of sprints performed by players, depending on whether the air temperature range was below 22 °C (40.48 ± 11.17) or above 28 °C (30.72 ± 9.40), but only where the relative humidity was at the same time below 60 %. Results presented indicate that the conditions most comfortable for physical activity on the part of players occur at 22 °C, and with relative humidity under 60 %.

  16. Spatiotemporal variations in the difference between satellite-observed daily maximum land surface temperature and station-based daily maximum near-surface air temperature

    NASA Astrophysics Data System (ADS)

    Lian, Xu; Zeng, Zhenzhong; Yao, Yitong; Peng, Shushi; Wang, Kaicun; Piao, Shilong

    2017-02-01

    There is an increasing demand to integrate land surface temperature (LST) into climate research due to its global coverage, which requires a comprehensive knowledge of its distinctive characteristics compared to near-surface air temperature (Tair). Using satellite observations and in situ station-based data sets, we conducted a global-scale assessment of the spatial and seasonal variations in the difference between daily maximum LST and daily maximum Tair (δT, LST - Tair) during 2003-2014. Spatially, LST is generally higher than Tair over arid and sparsely vegetated regions in the middle-low latitudes, but LST is lower than Tair in tropical rainforests due to strong evaporative cooling, and in the high-latitude regions due to snow-induced radiative cooling. Seasonally, δT is negative in tropical regions throughout the year, while it displays a pronounced seasonality in both the midlatitudes and boreal regions. The seasonality in the midlatitudes is a result of the asynchronous responses of LST and Tair to the seasonal cycle of radiation and vegetation abundance, whereas in the boreal regions, seasonality is mainly caused by the change in snow cover. Our study identified substantial spatial heterogeneity and seasonality in δT, as well as its determinant environmental drivers, and thus provides a useful reference for monitoring near-surface air temperature changes using remote sensing, particularly in remote regions.

  17. Citizen science shows systematic changes in the temperature difference between air and inland waters with global warming

    PubMed Central

    Weyhenmeyer, Gesa A.; Mackay, Murray; Stockwell, Jason D.; Thiery, Wim; Grossart, Hans-Peter; Augusto-Silva, Pétala B.; Baulch, Helen M.; de Eyto, Elvira; Hejzlar, Josef; Kangur, Külli; Kirillin, Georgiy; Pierson, Don C.; Rusak, James A.; Sadro, Steven; Woolway, R. Iestyn

    2017-01-01

    Citizen science projects have a long history in ecological studies. The research usefulness of such projects is dependent on applying simple and standardized methods. Here, we conducted a citizen science project that involved more than 3500 Swedish high school students to examine the temperature difference between surface water and the overlying air (Tw-Ta) as a proxy for sensible heat flux (QH). If QH is directed upward, corresponding to positive Tw-Ta, it can enhance CO2 and CH4 emissions from inland waters, thereby contributing to increased greenhouse gas concentrations in the atmosphere. The students found mostly negative Tw-Ta across small ponds, lakes, streams/rivers and the sea shore (i.e. downward QH), with Tw-Ta becoming increasingly negative with increasing Ta. Further examination of Tw-Ta using high-frequency temperature data from inland waters across the globe confirmed that Tw-Ta is linearly related to Ta. Using the longest available high-frequency temperature time series from Lake Erken, Sweden, we found a rapid increase in the occasions of negative Tw-Ta with increasing annual mean Ta since 1989. From these results, we can expect that ongoing and projected global warming will result in increasingly negative Tw-Ta, thereby reducing CO2 and CH4 transfer velocities from inland waters into the atmosphere. PMID:28262715

  18. Citizen science shows systematic changes in the temperature difference between air and inland waters with global warming.

    PubMed

    Weyhenmeyer, Gesa A; Mackay, Murray; Stockwell, Jason D; Thiery, Wim; Grossart, Hans-Peter; Augusto-Silva, Pétala B; Baulch, Helen M; de Eyto, Elvira; Hejzlar, Josef; Kangur, Külli; Kirillin, Georgiy; Pierson, Don C; Rusak, James A; Sadro, Steven; Woolway, R Iestyn

    2017-03-06

    Citizen science projects have a long history in ecological studies. The research usefulness of such projects is dependent on applying simple and standardized methods. Here, we conducted a citizen science project that involved more than 3500 Swedish high school students to examine the temperature difference between surface water and the overlying air (Tw-Ta) as a proxy for sensible heat flux (QH). If QH is directed upward, corresponding to positive Tw-Ta, it can enhance CO2 and CH4 emissions from inland waters, thereby contributing to increased greenhouse gas concentrations in the atmosphere. The students found mostly negative Tw-Ta across small ponds, lakes, streams/rivers and the sea shore (i.e. downward QH), with Tw-Ta becoming increasingly negative with increasing Ta. Further examination of Tw-Ta using high-frequency temperature data from inland waters across the globe confirmed that Tw-Ta is linearly related to Ta. Using the longest available high-frequency temperature time series from Lake Erken, Sweden, we found a rapid increase in the occasions of negative Tw-Ta with increasing annual mean Ta since 1989. From these results, we can expect that ongoing and projected global warming will result in increasingly negative Tw-Ta, thereby reducing CO2 and CH4 transfer velocities from inland waters into the atmosphere.

  19. Citizen science shows systematic changes in the temperature difference between air and inland waters with global warming

    NASA Astrophysics Data System (ADS)

    Weyhenmeyer, Gesa A.; Mackay, Murray; Stockwell, Jason D.; Thiery, Wim; Grossart, Hans-Peter; Augusto-Silva, Pétala B.; Baulch, Helen M.; de Eyto, Elvira; Hejzlar, Josef; Kangur, Külli; Kirillin, Georgiy; Pierson, Don C.; Rusak, James A.; Sadro, Steven; Woolway, R. Iestyn

    2017-03-01

    Citizen science projects have a long history in ecological studies. The research usefulness of such projects is dependent on applying simple and standardized methods. Here, we conducted a citizen science project that involved more than 3500 Swedish high school students to examine the temperature difference between surface water and the overlying air (Tw-Ta) as a proxy for sensible heat flux (QH). If QH is directed upward, corresponding to positive Tw-Ta, it can enhance CO2 and CH4 emissions from inland waters, thereby contributing to increased greenhouse gas concentrations in the atmosphere. The students found mostly negative Tw-Ta across small ponds, lakes, streams/rivers and the sea shore (i.e. downward QH), with Tw-Ta becoming increasingly negative with increasing Ta. Further examination of Tw-Ta using high-frequency temperature data from inland waters across the globe confirmed that Tw-Ta is linearly related to Ta. Using the longest available high-frequency temperature time series from Lake Erken, Sweden, we found a rapid increase in the occasions of negative Tw-Ta with increasing annual mean Ta since 1989. From these results, we can expect that ongoing and projected global warming will result in increasingly negative Tw-Ta, thereby reducing CO2 and CH4 transfer velocities from inland waters into the atmosphere.

  20. Comparing the skill of different reanalyses and their ensembles as predictors for daily air temperature on a glaciated mountain (Peru)

    NASA Astrophysics Data System (ADS)

    Hofer, Marlis; Marzeion, Ben; Mölg, Thomas

    2012-10-01

    It is well known from previous research that significant differences exist amongst reanalysis products from different institutions. Here, we compare the skill of NCEP-R (reanalyses by the National Centers for Environmental Prediction, NCEP), ERA-int (the European Centre of Medium-range Weather Forecasts Interim), JCDAS (the Japanese Meteorological Agency Climate Data Assimilation System reanalyses), MERRA (the Modern Era Retrospective-Analysis for Research and Applications by the National Aeronautics and Space Administration), CFSR (the Climate Forecast System Reanalysis by the NCEP), and ensembles thereof as predictors for daily air temperature on a high-altitude glaciated mountain site in Peru. We employ a skill estimation method especially suited for short-term, high-resolution time series. First, the predictors are preprocessed using simple linear regression models calibrated individually for each calendar month. Then, cross-validation under consideration of persistence in the time series is performed. This way, the skill of the reanalyses with focus on intra-seasonal and inter-annual variability is quantified. The most important findings are: (1) ERA-int, CFSR, and MERRA show considerably higher skill than NCEP-R and JCDAS; (2) differences in skill appear especially during dry and intermediate seasons in the Cordillera Blanca; (3) the optimum horizontal scales largely vary between the different reanalyses, and horizontal grid resolutions of the reanalyses are poor indicators of this optimum scale; and (4) using reanalysis ensembles efficiently improves the performance of individual reanalyses.

  1. Impact of two-way air flow due to temperature difference on preventing the entry of outdoor particles using indoor positive pressure control method.

    PubMed

    Chen, Chun; Zhao, Bin; Yang, Xudong

    2011-02-28

    Maintaining positive pressure indoors using mechanical ventilation system is a popular control method for preventing the entry of outdoor airborne particles. The idea is, as long as the supply air flow rate is larger than return air flow rate, the pressure inside the ventilated room should be positive since the superfluous air flow must exfiltrate from air leakages or other openings of the room to the outdoors. Based on experimental and theoretical analyses this paper aims to show the impact of two-way air flow due to indoor/outdoor temperature difference on preventing the entry of outdoor particles using positive pressure control method. The indoor positive pressure control method is effective only when the size of the opening area is restricted to a certain level, opening degree less than 30° in this study, due to the two-way air flow effect induced by differential temperature. The theoretical model was validated using the experimental data. The impacts of two-way air flow due to temperature difference and the supply air flow rate were also analyzed using the theoretical model as well as experimental data. For real houses, it seems that the idea about the positive pressure control method for preventing the entry of outdoor particles has a blind side.

  2. Relationships Between the Bulk-Skin Sea Surface Temperature Difference, Wind, and Net Air-Sea Heat Flux

    NASA Technical Reports Server (NTRS)

    Emery, William J.; Castro, Sandra L.; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    The primary purpose of this project was to evaluate and improve models for the bulk-skin temperature difference to the point where they could accurately and reliably apply under a wide variety of environmental conditions. To accomplish this goal, work was conducted in three primary areas. These included production of an archive of available data sets containing measurements of the skin and bulk temperatures and associated environmental conditions, evaluation of existing skin layer models using the compiled data archive, and additional theoretical work on the development of an improved model using the data collected under diverse environmental conditions. In this work we set the basis for a new physical model of renewal type, and propose a parameterization for the temperature difference across the cool skin of the ocean in which the effects of thermal buoyancy, wind stress, and microscale breaking are all integrated by means of the appropriate renewal time scales. Ideally, we seek to obtain a model that will accurately apply under a wide variety of environmental conditions. A summary of the work in each of these areas is included in this report. A large amount of work was accomplished under the support of this grant. The grant supported the graduate studies of Sandra Castro and the preparation of her thesis which will be completed later this year. This work led to poster presentations at the 1999 American Geophysical Union Fall Meeting and 2000 IGARSS meeting. Additional work will be presented in a talk at this year's American Meteorological Society Air-Sea Interaction Meeting this May. The grant also supported Sandra Castro during a two week experiment aboard the R/P Flip (led by Dr. Andrew Jessup of the Applied Physics Laboratory) to help obtain additional shared data sets and to provide Sandra with a fundamental understanding of the physical processes needed in the models. In a related area, the funding also partially supported Dr. William Emery and Daniel

  3. Surface Temperature variability from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Dang, V. T.; Aumann, H. H.

    2015-12-01

    To address the existence and possible causes of the climate hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014for the day and night conditions. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We compare the satellite data with the new surface data produced by Karl et al. (2015) who denies the reality of the climate hiatus. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The day-night difference is an indicator of the anthropogenic trend. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  4. Measurement of gas species, temperatures, coal burnout, and wall heat fluxes in a 200 MWe lignite-fired boiler with different overfire air damper openings

    SciTech Connect

    Jianping Jing; Zhengqi Li; Guangkui Liu; Zhichao Chen; Chunlong Liu

    2009-07-15

    Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase, and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.

  5. Controlled-Temperature Hot-Air Gun

    NASA Technical Reports Server (NTRS)

    Munoz, M. C.

    1986-01-01

    Materials that find applications in wind tunnels first tested in laboratory. Hot-Air Gun differs from commercial units in that flow rate and temperature monitored and controlled. With typical compressed-airsupply pressure of 25 to 38 psi (170 to 260 kPa), flow rate and maximum temperature are 34 stdft3/min (0.96 stdm3/min) and 1,090 degrees F (590 degrees C), respectively. Resembling elaborate but carefully regulated hot-air gun, setup used to apply blasts of air temperatures above 1,500 degrees F (815 degrees C) to test specimens.

  6. Comparison of the weight loss and adherence of nine different polyimide films thermally aged at 315 C and 350 C in air. [high temperature lubricants

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1980-01-01

    Thermal exposure experiments at 315 and 350 C were performed in air on nine different types of polyimides applied to thin 304 stainless steel foils. The tests were conducted to determine which polyimide was the most thermally stable and adherent when subjected to long exposure times at elevated temperatures. One polyimide designated PIC-7 was found to be more thermally stable than the others; however, it did not possess the adherent properties of PIC-2 and PIC-5. It was concluded that as far as thermal stability and adherence are concerned, five of the polyimides are more suitable for high temperature applications than the other four.

  7. AIRS Retrieved Temperature Isotherms over Southern Europe

    NASA Technical Reports Server (NTRS)

    2002-01-01

    AIRS Retrieved Temperature Isotherms over Southern Europe viewed from the west, September 8, 2002. The isotherms in this map made from AIRS data show regions of the same temperature in the atmosphere.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  8. Study on the Conductance and Photo-Conductance of ZnO Thin Films at Different Temperatures in Air and N2-Atmosphere

    NASA Astrophysics Data System (ADS)

    Burruel-Ibarra, S. E.; Cruz-Vázquez, C.; Bernal, R.; Aceves, R.; Orante-Barrón, V. R.; Grijalva-Monteverde, H.; Piters, T. M.; Castaño, V. M.

    2016-01-01

    We report the photoconductance of ZnO thin films obtained from thermally treated ZnS films grown by a chemical bath deposition method. The measurements of photo-conductance were performed in an atmosphere of air or nitrogen (N2) at different temperatures between 300 K and 375 K. The augmented conductance after ultraviolet (UV) irradiation (330-380 nm) in air fades away slowly to its original value, whereas in a nitrogen atmosphere, a significant part of the augmented conductance remains. Measurements of electrical conductance as a function of temperature in N2 or air, in the dark or the light, seem to indicate that the donor concentration is increased during the UV irradiation, suggesting that oxygen vacancies and interstitials are created. An alternative model for the photoconduction in ZnO is proposed in which the slow increase of conduction during irradiation is explained by an increase of donors instead of photoelectrons. In this model, the photoelectrons would only play a role in the mechanism of the creation of donors.

  9. Modeling air temperature changes in Northern Asia

    NASA Astrophysics Data System (ADS)

    Onuchin, A.; Korets, M.; Shvidenko, A.; Burenina, T.; Musokhranova, A.

    2014-11-01

    Based on time series (1950-2005) of monthly temperatures from 73 weather stations in Northern Asia (limited by 70-180° EL and 48-75° NL), it is shown that there are statistically significant spatial differences in character and intensity of the monthly and yearly temperature trends. These differences are defined by geomorphological and geographical parameters of the area including exposure of the territory to Arctic and Pacific air mass, geographic coordinates, elevation, and distances to Arctic and Pacific oceans. Study area has been divided into six domains with unique groupings of the temperature trends based on cluster analysis. An original methodology for mapping of temperature trends has been developed and applied to the region. The assessment of spatial patterns of temperature trends at the regional level requires consideration of specific regional features in the complex of factors operating in the atmosphere-hydrosphere-lithosphere-biosphere system.

  10. Retrieval of the land surface-air temperature difference from high spatial resolution satellite observations over complex surfaces in the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Gao, Shiyang; Chen, Haishan; Yu, Jiahui; Tang, Qun

    2015-08-01

    The temperature difference between the surface and the air (dTsa) directly indicates the intensity and heat fluxes of land-atmosphere interaction. Considering the effects of surface characteristics and air condition on the surface temperature, using 1 km data from the MOD02 thermal infrared bands of the EOS/moderate-resolution imaging spectroradiometer (MODIS) on satellite Aqua, other MODIS products and temperatures observed from weather stations at 14:00 China standard time (CST), the study analyzes the relationships between dTsa and brightness temperature in the infrared atmospheric window band (Bt31 and Bt32), the water vapor band (Bt28), the atmospheric temperature band (Bt25), and the CO2 band (Bt34). A model estimating dTsa is built. The model coefficients are estimated for 96 stations representing 96 sets of surface and atmospheric conditions, and 71 sets of coefficients among them passing 90% confidence levels of estimating dTsa are selected as references. Combined with the probabilistic neural network (PNN) method and nine parameters reflecting surface characteristics in one season and month, the Tibetan Plateau surface is classified as 71 types with 71 sets of coefficients. PNN is certified an efficient classification method for multiple parameters and mass data. Based on PNN and estimated model, estimated dTsa shows 1.36°C root-mean-square error and a standard deviation of 0.74°C, and dTsa distribution exhibits all centers with peak value and valley value of European Centre for Medium-Range Weather Forecasts, MYD07, and simple regression model results, showing its superiority. The model is worthy of further exploration and application in an effort to advance the retrieval of surface energy fluxes from remote sensing.

  11. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James C. R.; Leijnse, Hidde; Steeneveld, Gert-Jan; Horn, Berthold K. P.; Uijlenhoet, Remko

    2014-05-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. It has been shown that a straightforward heat transfer model can be employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. The methodology has been applied to Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree

  12. The Relationship Between Air Temperature and Stream Temperature

    NASA Astrophysics Data System (ADS)

    Morrill, J. C.; Bales, R. C.; Conklin, M. H.

    2001-05-01

    This study examined the relationship, both linear and non-linear, between air temperature and stream temperature in order to determine if air temperature can be used as an accurate predictor of stream temperature, if general relationships could be developed that apply to a large number of streams, and how changes in stream temperature associated with climate variability or climate warming might affect the dissolved oxygen level, and thus the quality of life, in some of these streams. Understanding the relationship between air temperature and water temperature is important if we want to predict how stream temperatures are likely to respond to the increase in surface air temperature that is occurring. Data from over 50 streams in 13 countries, mostly gathered by K-12 students in the GLOBE program (Global Learning and Observations to Benefit the Environment), are examined. Only a few streams display a linear 1:1 air/water temperature trend. The majority of streams instead show an increase in water temperature of about 0.6 to 0.8 degrees for every 1-degree increase in air temperature. At some of these sites, where dissolved oxygen content is already low, an increase in summer stream temperatures of 2-3 degrees could cause the dissolved oxygen levels to fall into a critically low range. At some locations, such as near the source of a stream, water temperature does not change much despite wide ranges in air temperatures. The temperatures at these sites are likely to be least affected by surface warming. More data are needed in warmer climates, where the water temperature already gets above 25oC, in order to better examine the air/water temperature relationship under warmer conditions. Global average surface air temperature is expected to increase by 3-5oC by the middle of this century. Surface water temperature in streams, lakes and wetlands will likely increase as air temperature increases, although the change in water temperature may not be as large as the change in

  13. Temperature Dependence of Lithium Reactions with Air

    NASA Astrophysics Data System (ADS)

    Sherrod, Roman; Skinner, C. H.; Koel, Bruce

    2016-10-01

    Liquid lithium plasma facing components (PFCs) are being developed to handle long pulse, high heat loads in tokamaks. Wetting by lithium of its container is essential for this application, but can be hindered by lithium oxidation by residual gases or during tokamak maintenance. Lithium PFCs will experience elevated temperatures due to plasma heat flux. This work presents measurements of lithium reactions at elevated temperatures (298-373 K) when exposed to natural air. Cylindrical TZM wells 300 microns deep with 1 cm2 surface area were filled with metallic lithium in a glovebox containing argon with less than 1.6 ppm H20, O2, and N2. The wells were transferred to a hot plate in air, and then removed periodically for mass gain measurements. Changes in the surface topography were recorded with a microscope. The mass gain of the samples at elevated temperatures followed a markedly different behavior to that at room temperature. One sample at 373 K began turning red indicative of lithium nitride, while a second turned white indicative of lithium carbonate formation. Data on the mass gain vs. temperature and associated topographic changes of the surface will be presented. Science Undergraduate Laboratory Internship funded by Department of Energy.

  14. Is Air Temperature Enough to Predict Lake Surface Temperature?

    NASA Astrophysics Data System (ADS)

    Piccolroaz, S.; Toffolon, M.; Majone, B.

    2014-12-01

    Lake surface water (LST) is a key factor that controls most of the physical and ecological processes occurring in lakes. Reliable estimates are especially important in the light of recent studies, which revealed that inland water bodies are highly sensitive to climate, and are rapidly warming throughout the world. However, an accurate estimation of LST usually requires a significant amount of information that is not always available. In this work, we present an application of air2water, a lumped model that simulates LST as a function of air temperature only. In addition, air2water allows for a qualitative evaluation of the depth of the epilimnion during the annual stratification cycle. The model consists in a simplification of the complete heat budget of the well-mixed surface layer, and has a few parameters (from 4 to 8 depending on the version) that summarize the role of the different heat flux components. Model calibration requires only air and water temperature data, possibly covering sufficiently long historical periods in order to capture inter-annual variability and long-term trends. During the calibration procedure, the information included in input data is retrieved to directly inform model parameters, which can be used to classify the thermal behavior of the lake. In order to investigate how thermal dynamics are related to morphological features, the model has been applied to 14 temperate lakes characterized by different morphological and hydrological conditions, by different sources of temperature data (buoys, satellite), and by variable frequency of acquisition. A good agreement between observed and simulated LST has been achieved, with a RMSE in the order of 1°C, which is fully comparable to the performances of more complex process-based models. This application allowed for a deeper understanding of the thermal response of lakes as a function of their morphology, as well as for specific analyses as for example the investigation of the exceptional

  15. Honeybee flight metabolic rate: does it depend upon air temperature?

    PubMed

    Woods, William A; Heinrich, Bernd; Stevenson, Robert D

    2005-03-01

    Differing conclusions have been reached as to how or whether varying heat production has a thermoregulatory function in flying honeybees Apis mellifera. We investigated the effects of air temperature on flight metabolic rate, water loss, wingbeat frequency, body segment temperatures and behavior of honeybees flying in transparent containment outdoors. For periods of voluntary, uninterrupted, self-sustaining flight, metabolic rate was independent of air temperature between 19 and 37 degrees C. Thorax temperatures (T(th)) were very stable, with a slope of thorax temperature on air temperature of 0.18. Evaporative heat loss increased from 51 mW g(-1) at 25 degrees C to 158 mW g(-1) at 37 degrees C and appeared to account for head and abdomen temperature excess falling sharply over the same air temperature range. As air temperature increased from 19 to 37 degrees C, wingbeat frequency showed a slight but significant increase, and metabolic expenditure per wingbeat showed a corresponding slight but significant decrease. Bees spent an average of 52% of the measurement period in flight, with 19 of 78 bees sustaining uninterrupted voluntary flight for periods of >1 min. The fraction of time spent flying declined as air temperature increased. As the fraction of time spent flying decreased, the slope of metabolic rate on air temperature became more steeply negative, and was significant for bees flying less than 80% of the time. In a separate experiment, there was a significant inverse relationship of metabolic rate and air temperature for bees requiring frequent or constant agitation to remain airborne, but no dependence for bees that flew with little or no agitation; bees were less likely to require agitation during outdoor than indoor measurements. A recent hypothesis explaining differences between studies in the slope of flight metabolic rate on air temperature in terms of differences in metabolic capacity and thorax temperature is supported for honeybees in voluntary

  16. Trends in Surface Temperature from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Aumann, H. H.

    2014-12-01

    To address possible causes of the current hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We find a monotonic positive trend for the land temperature but not for the ocean temperature. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The results are compared with the model studies. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  17. Comparison of MODIS Land Surface Temperature and Air Temperature over the Continental USA Meteorological Stations

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Bounoua, Lahouari; Imhoff, Marc L.; Wolfe, Robert E.; Thome, Kurtis

    2014-01-01

    The National Land Cover Database (NLCD) Impervious Surface Area (ISA) and MODIS Land Surface Temperature (LST) are used in a spatial analysis to assess the surface-temperature-based urban heat island's (UHIS) signature on LST amplitude over the continental USA and to make comparisons to local air temperatures. Air-temperature-based UHIs (UHIA), calculated using the Global Historical Climatology Network (GHCN) daily air temperatures, are compared with UHIS for urban areas in different biomes during different seasons. NLCD ISA is used to define urban and rural temperatures and to stratify the sampling for LST and air temperatures. We find that the MODIS LST agrees well with observed air temperature during the nighttime, but tends to overestimate it during the daytime, especially during summer and in nonforested areas. The minimum air temperature analyses show that UHIs in forests have an average UHIA of 1 C during the summer. The UHIS, calculated from nighttime LST, has similar magnitude of 1-2 C. By contrast, the LSTs show a midday summer UHIS of 3-4 C for cities in forests, whereas the average summer UHIA calculated from maximum air temperature is close to 0 C. In addition, the LSTs and air temperatures difference between 2006 and 2011 are in agreement, albeit with different magnitude.

  18. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, A.; Robinson, J. C. R.; Leijnse, H.; Steeneveld, G. J.; Horn, B. K. P.; Uijlenhoet, R.

    2013-08-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. A straightforward heat transfer model is employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas.

  19. Method for Calculation of Laminar Heat Transfer in Air Flow Around Cylinders of Arbitrary Cross Section (including Large Temperature Differences and Transpiration Cooling)

    NASA Technical Reports Server (NTRS)

    Eckert, E R; Livingood, John N B

    1953-01-01

    The solution of heat-transfer problems has become vital for many aeronautical applications. The shapes of objects to be cooled can often be approximated by cylinders of various cross sections with flow normal to the axis as, for instance heat transfer on gas-turbine blades and on air foils heated for deicing purposes. A laminar region always exists near the stagnation point of such objects. A method previously presented by E. R. G. Eckert permits the calculation of local heat transfer around the periphery of cylinders of arbitrary cross section in the laminar region for flow of a fluid with constant property values with an accuracy sufficient for engineering purposes. The method is based on exact solutions of the boundary-layer equations for incompressible wedge-type flow and on the postulate that at any point on the cylinder the boundary-layer growth is the same as that on a wedge with comparable flow conditions. This method is extended herein to take into account the influence of large temperature differences between the cylinder wall and the flow as well as the influence of transpiration cooling when the same medium as the outside flow is used as coolant.

  20. Air separation with temperature and pressure swing

    DOEpatents

    Cassano, Anthony A.

    1986-01-01

    A chemical absorbent air separation process is set forth which uses a temperature swing absorption-desorption cycle in combination with a pressure swing wherein the pressure is elevated in the desorption stage of the process.

  1. Air Temperature in the Undulator Hall

    SciTech Connect

    Not Available

    2010-12-07

    Various analyses have been performed recently to estimate the performance of the air conditioning (HVAC) system planned for the Undulator Hall. This reports summarizes the results and provides an upgrade plan to be used if new requirements are needed in the future. The estimates predict that with the planned loads the tunnel air temperature will be well within the allowed tolerance during normal operation.

  2. Monitored summer peak attic air temperatures in Florida residences

    SciTech Connect

    Parker, D.S.; Sherwin, J.R.

    1998-12-31

    The Florida Solar Energy Center (FSEC) has analyzed measured summer attic air temperature data taken for some 21 houses (three with two different roof configurations) over the last several years. The analysis is in support of the calculation within ASHRAE Special Project 152P, which will be used to estimate duct system conductance gains that are exposed to the attic space. Knowledge of prevailing attic thermal conditions are critical to the duct heat transfer calculations for estimation of impacts on residential cooling system sizing. The field data were from a variety of residential monitoring projects that were classified according to intrinsic differences in roofing configurations and characteristics. The sites were occupied homes spread around the state of Florida. There were a variety of different roofing construction types, roof colors, and ventilation configurations. Data at each site were obtained from June 1 to September 30 according to the ASHRAE definition of summer. The attic air temperature and ambient air temperature were used for the data analysis. The attic air temperature was measured with a shielded type-T thermocouple at mid-attic height, halfway between the decking and insulation surface. The ambient air temperature was obtained at each site by thermocouples located inside a shielded exterior enclosure at a 3 to 4 m (10--12 ft) height. The summer 15-minute data from each site were sorted by the average ambient air temperature into the top 2.5% of the observations of the highest temperature. Within this limited group of observations, the average outside air temperature, attic air temperature, and coincident difference were reported.

  3. Nowcasting daily minimum air and grass temperature.

    PubMed

    Savage, M J

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient (b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  4. Nowcasting daily minimum air and grass temperature

    NASA Astrophysics Data System (ADS)

    Savage, M. J.

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient ( b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  5. Temperature Tunable Air-Gap Etalon Filter

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Stephen, Mark A.; Lunt, David L.

    1998-01-01

    We report on experimental measurements of a temperature tuned air-gap etalon filter. The filter exhibits temperature dependent wavelength tuning of 54 pm/C. It has a nominal center wavelength of 532 nm. The etalon filter has a 27 pm optical bandpass and 600 pm free spectral range (finesse approximately 22). The experimental results are in close agreement with etalon theory.

  6. Undulator Hall Air Temperature Fault Scenarios

    SciTech Connect

    Sevilla, J.; Welch, J.; /SLAC

    2010-11-17

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  7. Modeling monthly mean air temperature for Brazil

    NASA Astrophysics Data System (ADS)

    Alvares, Clayton Alcarde; Stape, José Luiz; Sentelhas, Paulo Cesar; de Moraes Gonçalves, José Leonardo

    2013-08-01

    Air temperature is one of the main weather variables influencing agriculture around the world. Its availability, however, is a concern, mainly in Brazil where the weather stations are more concentrated on the coastal regions of the country. Therefore, the present study had as an objective to develop models for estimating monthly and annual mean air temperature for the Brazilian territory using multiple regression and geographic information system techniques. Temperature data from 2,400 stations distributed across the Brazilian territory were used, 1,800 to develop the equations and 600 for validating them, as well as their geographical coordinates and altitude as independent variables for the models. A total of 39 models were developed, relating the dependent variables maximum, mean, and minimum air temperatures (monthly and annual) to the independent variables latitude, longitude, altitude, and their combinations. All regression models were statistically significant ( α ≤ 0.01). The monthly and annual temperature models presented determination coefficients between 0.54 and 0.96. We obtained an overall spatial correlation higher than 0.9 between the models proposed and the 16 major models already published for some Brazilian regions, considering a total of 3.67 × 108 pixels evaluated. Our national temperature models are recommended to predict air temperature in all Brazilian territories.

  8. High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to

  9. Variation in the urban vegetation, surface temperature, air temperature nexus.

    PubMed

    Shiflett, Sheri A; Liang, Liyin L; Crum, Steven M; Feyisa, Gudina L; Wang, Jun; Jenerette, G Darrel

    2017-02-01

    Our study examines the urban vegetation - air temperature (Ta) - land surface temperature (LST) nexus at micro- and regional-scales to better understand urban climate dynamics and the uncertainty in using satellite-based LST for characterizing Ta. While vegetated cooling has been repeatedly linked to reductions in urban LST, the effects of vegetation on Ta, the quantity often used to characterize urban heat islands and global warming, and on the interactions between LST and Ta are less well characterized. To address this need we quantified summer temporal and spatial variation in Ta through a network of 300 air temperature sensors in three sub-regions of greater Los Angeles, CA, which spans a coastal to desert climate gradient. Additional sensors were placed within the inland sub-region at two heights (0.1m and 2m) within three groundcover types: bare soil, irrigated grass, and underneath citrus canopy. For the entire study region, we acquired new imagery data, which allowed calculation of the normalized difference vegetation index (NDVI) and LST. At the microscale, daytime Ta measured along a vertical gradient, ranged from 6 to 3°C cooler at 0.1 and 2m, underneath tall canopy compared to bare ground respectively. At the regional scale NDVI and LST were negatively correlated (p<0.001). Relationships between diel variation in Ta and daytime LST at the regional scale were progressively weaker moving away from the coast and were generally limited to evening and nighttime hours. Relationships between NDVI and Ta were stronger during nighttime hours, yet effectiveness of mid-day vegetated cooling increased substantially at the most arid region. The effectiveness of vegetated Ta cooling increased during heat waves throughout the region. Our findings suggest an important but complex role of vegetation on LST and Ta and that vegetation may provide a negative feedback to urban climate warming.

  10. Modeling of global surface air temperature

    NASA Astrophysics Data System (ADS)

    Gusakova, M. A.; Karlin, L. N.

    2012-04-01

    A model to assess a number of factors, such as total solar irradiance, albedo, greenhouse gases and water vapor, affecting climate change has been developed on the basis of Earth's radiation balance principle. To develop the model solar energy transformation in the atmosphere was investigated. It's a common knowledge, that part of the incoming radiation is reflected into space from the atmosphere, land and water surfaces, and another part is absorbed by the Earth's surface. Some part of outdoing terrestrial radiation is retained in the atmosphere by greenhouse gases (carbon dioxide, methane, nitrous oxide) and water vapor. Making use of the regression analysis a correlation between concentration of greenhouse gases, water vapor and global surface air temperature was obtained which, it is turn, made it possible to develop the proposed model. The model showed that even smallest fluctuations of total solar irradiance intensify both positive and negative feedback which give rise to considerable changes in global surface air temperature. The model was used both to reconstruct the global surface air temperature for the 1981-2005 period and to predict global surface air temperature until 2030. The reconstructions of global surface air temperature for 1981-2005 showed the models validity. The model makes it possible to assess contribution of the factors listed above in climate change.

  11. An Optimization Approach to Analyzing the Effect of Supply Water and Air Temperatures in Planning an Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Karino, Naoki; Shiba, Takashi; Yokoyama, Ryohei; Ito, Koichi

    In planning an air conditioning system, supply water and air temperatures are important factors from the viewpoint of cost reduction. For example, lower temperature supply water and air reduce the coefficient of performance of a refrigeration machine, and increase the thickness of heat insulation material. However, they enable larger temperature differences, and reduce equipment sizes and power demand. The purposes of this paper are to propose an optimal planning method for a cold air distribution system, and to analyze the effect of supply water and air temperatures on the long-term economics through a numerical study for an office building. As a result, it is shown that the proposed method effectively determines supply water and air temperatures for a cold air distribution system, and that the influence of supply air temperature is larger than that of supply water temperature on the long-term economics.

  12. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  13. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  14. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  15. Energy from low temperature differences

    NASA Astrophysics Data System (ADS)

    Parsons, B. K.

    1985-05-01

    A number of energy conservation and alternative energy approaches utilize a low temperature heat source. Applications in this category include: solar ponds, ocean thermal energy conversion (OTEC), low temperature solar thermal, geothermal, and waste heat recovery and bottoming cycles. Low temperature power extraction techniques are presented and the differences between closed and open Rankine power cycles are discussed. Specific applications and technical areas of current research in OTEC along with a breakdown of plant operating conditions and a rough cost estimate illustrate how the use of low temperature power conversion technology can be cost effective.

  16. Improving Forecast Skill by Assimilation of AIRS Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The AIRS Version 5 retrieval algorithm, is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates delta T(p) for retrieved quantities and the use of these error estimates for Quality Control. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 deg. latitude X 0.67 deg longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates delta (p) were used as the uncertainty for each measurement in the data assimilation process. We compared forecasts analyses generated from the analyses done by assimilation of AIRS temperature profiles with three different sets of thresholds; Standard, Medium, and Tight. Assimilation of Quality Controlled AIRS temperature profiles significantly improve 5-7 day forecast skill compared to that obtained without the benefit of AIRS data in all of the cases studied. In addition, assimilation of Quality Controlled AIRS temperature soundings performs better than assimilation of AIRS observed radiances. Based on the experiments shown, Tight Quality Control of AIRS temperature profile performs best

  17. Temperature and Transpiration Resistances of Xanthium Leaves as Affected by Air Temperature, Humidity, and Wind Speed 1

    PubMed Central

    Drake, B. G.; Raschke, K.; Salisbury, F. B.

    1970-01-01

    Transpiration and temperatures of single, attached leaves of Xanthium strumarium L. were measured in high intensity white light (1.2 calories per square centimeter per minute on a surface normal to the radiation), with abundant water supply, at wind speeds of 90, 225, and 450 centimeters per second, and during exposure to moist and dry air. Partitioning of absorbed radiation between transpiration and convection was determined, and transpiration resistances were computed. Leaf resistances decreased with increasing temperature (down to a minimum of 0.36 seconds per centimeter). Silicone rubber replicas of leaf surfaces proved that the decrease was due to increased stomatal apertures. At constant air temperature, leaf resistances were higher in dry than in moist air with the result that transpiration varied less than would have been predicted on the basis of the water-vapor pressure difference between leaf and air. The dependence of stomatal conductance on temperature and moisture content of the air caused the following effects. At air temperatures below 35 C, average leaf temperatures were above air temperature by an amount dependent on wind velocity; increasing wind diminished transpiration. At air temperatures above 35 C, leaf temperatures were below air temperatures, and increasing wind markedly increased transpiration. Leaf temperatures equaled air temperature near 35 C at all wind speeds and in moist as well as in dry air. PMID:16657458

  18. Air Pollution Simulation based on different seasons

    NASA Astrophysics Data System (ADS)

    Muhaimin

    2017-01-01

    Simulation distribution of pollutants (SOx and NOx) emitted from Cirebon power plant activities have been carried out. Gaussian models and scenarios are used to predict the concentration of pollutant gasses. The purposes of this study were to determine the distribution of the flue gas from the power plant activity and differences pollutant gas concentrations in the wet and dry seasons. The result showed that the concentration of pollutant gasses in the dry season was higher than the wet season. The difference of pollutant concentration because of wind speed, gas flow rate, and temperature of the gas that flows out of the chimney. The maximum concentration of pollutant gasses in wet season for SOx is 30.14 µg/m3, while NOx is 26.35 µg/m3. Then, The simulation of air pollution in the dry season for SOx is 42.38 µg/m3, while NOx is 34.78 µg/m3.

  19. Correlation of air temperature above water-air sections with the forecasted low level clouds

    NASA Astrophysics Data System (ADS)

    Huseynov, N. Sh.; Malikov, B. M.

    2009-04-01

    As a case study approach the development of low clouds forecasting methods in correlation with air temperature transformational variations on the sections "water-air" is surveyed. It was evident, that transformational variations of air temperature mainly depend on peculiarities and value of advective variations of temperature. DT is the differences of initial temperature on section water-air in started area, from contrast temperature of water surface along a trajectory of movement of air masses and from the temperature above water surface in a final point of a trajectory. Main values of transformational variations of air temperature at advection of a cold masses is 0.530C•h, and at advection of warm masses is -0.370C•h. There was dimensionless quantity K determined and implemented into practice which was characterized with difference of water temperature in forecasting point and air temperature in an initial point in the ratio of dew-points deficiency at the forecasting area. It follows, that the appropriate increasing or decreasing of K under conditions of cold and warm air masses advection, contributes decreasing of low clouds level. References: Abramovich K.G.: Conditions of development and forecasting of low level clouds. vol. #78, 124 pp., Hydrometcenter USSR 1973. Abramovich K.G.: Variations of low clouds level // Meteorology and Hydrology, vol. # 5, 30-41, Moscow, 1968. Budiko M.I.: Empirical assessment of climatic changes toward the end of XX century // Meteorology and Hydrology, vol. #12, 5-13, Moscow, 1999. Buykov M.V.: Computational modeling of daily evolutions of boundary layer of atmosphere at the presence of clouds and fog // Meteorology and Hydrology, vol. # 4, 35-44, Moscow, 1981. Huseynov N.Sh. Transformational variations of air temperature above Caspian Sea / Proceedings of Conference On Climate And Protection of Environment, 118-120, Baku, 1999. Huseynov N.Sh.: Consideration of advective and transformational variations of air temperature in

  20. Temperature effect on titanium nitride nanometer thin film in air

    NASA Astrophysics Data System (ADS)

    Cen, Z. H.; Xu, B. X.; Hu, J. F.; Ji, R.; Toh, Y. T.; Ye, K. D.; Hu, Y. F.

    2017-02-01

    Titanium nitride (TiN) is a promising alternative plasmonic material to conventional novel metals. For practical plasmonic applications under the influence of air, the temperature-dependent optical properties of TiN thin films in air and its volume variation are essential. Ellipsometric characterizations on a TiN thin film at different increasing temperatures in ambient air were conducted, and optical constants along with film thickness were retrieved. Below 200 °C, the optical properties varied linearly with temperature, in good agreement with other temperature dependent studies of TiN films in vacuum. The thermal expansion coefficient of the TiN thin film was determined to be 10.27  ×  10‑6 °C‑1. At higher temperatures, the TiN thin film gradually loses its metallic characteristics and has weaker optical absorption, impairing its plasmonic performance. In addition, a sharp increase in film thickness was observed at the same time. Changes in the optical properties and film thickness with temperatures above 200 °C were revealed to result from TiN oxidation in air. For the stability of TiN-based plasmonic devices, operation temperatures of lower than 200 °C, or measures to prevent oxidation, are required. The present study is important to fundamental physics and technological applications of TiN thin films.

  1. Global surface air temperatures - Update through 1987

    NASA Technical Reports Server (NTRS)

    Hansen, James; Lebedeff, Sergej

    1988-01-01

    Data from meteorological stations show that surface air temperatures in the 1980s are the warmest in the history of instrumental records. The four warmest years on record are all in the 1980s, with the warmest years in the analysis being 1981 and 1987. The rate of warming between the mid-1960s and the present is higher than that which occurrred in the previous period of rapid warming between the 1880s and 1940.

  2. Global trends of measured surface air temperature

    NASA Technical Reports Server (NTRS)

    Hansen, James; Lebedeff, Sergej

    1987-01-01

    The paper presents the results of surface air temperature measurements from available meteorological stations for the period of 1880-1985. It is shown that the network of meteorological stations is sufficient to yield reliable long-term, decadal, and interannual temperature changes for both the Northern Hemisphere and the Southern Hemisphere, despite the fact that most stations are located on the continents. The results indicate a global warming of about 0.5-0.7 C in the past century, with warming of similar magnitude in both hemispheres. A strong warming trend between 1965 and 1980 raised the global mean temperature in 1980 and 1981 to the highest level in the period of instrumental records. Selected graphs of the temperature change in each of the eight latitude zones are included.

  3. Validation of Interannual Differences of AIRS Monthly Mean Parameters

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Iredell, Lena; Keita, Fricky; Molnar, Gyula

    2005-01-01

    Monthly mean fields of select geophysical parameters derived from analysis of AIRS/AMSU data, and their interannual differences, are shown and compared with analogous fields derived from other sources. All AIRS fields are derived using the AIRS Science Team Version 4 algorithm. Monthly mean results are shown for January 2004, as are interannual differences between January 2004 and January 2003. AIRS temperature and water vapor profile fields are compared with monthly mean collocated ECMWF 3 hour forecast and monthly mean TOVS Pathfinder Path A data. AIRS Tropospheric and Stratospheric coarse climate indicators are compared with analogous MSU products derived by Spencer and christy and found in the TOVS Pathfinder Path A data set. Total ozone is compared with results produced by TOMS. OLR is compared with OLR derived using CERES data and found in the TOVS Pathfinder Path A data set. AIRS results agree well in all cases, especially in the interannual difference sense.

  4. Modeling daily average stream temperature from air temperature and watershed area

    NASA Astrophysics Data System (ADS)

    Butler, N. L.; Hunt, J. R.

    2012-12-01

    Habitat restoration efforts within watersheds require spatial and temporal estimates of water temperature for aquatic species especially species that migrate within watersheds at different life stages. Monitoring programs are not able to fully sample all aquatic environments within watersheds under the extreme conditions that determine long-term habitat viability. Under these circumstances a combination of selective monitoring and modeling are required for predicting future geospatial and temporal conditions. This study describes a model that is broadly applicable to different watersheds while using readily available regional air temperature data. Daily water temperature data from thirty-eight gauges with drainage areas from 2 km2 to 2000 km2 in the Sonoma Valley, Napa Valley, and Russian River Valley in California were used to develop, calibrate, and test a stream temperature model. Air temperature data from seven NOAA gauges provided the daily maximum and minimum air temperatures. The model was developed and calibrated using five years of data from the Sonoma Valley at ten water temperature gauges and a NOAA air temperature gauge. The daily average stream temperatures within this watershed were bounded by the preceding maximum and minimum air temperatures with smaller upstream watersheds being more dependent on the minimum air temperature than maximum air temperature. The model assumed a linear dependence on maximum and minimum air temperature with a weighting factor dependent on upstream area determined by error minimization using observed data. Fitted minimum air temperature weighting factors were consistent over all five years of data for each gauge, and they ranged from 0.75 for upstream drainage areas less than 2 km2 to 0.45 for upstream drainage areas greater than 100 km2. For the calibration data sets within the Sonoma Valley, the average error between the model estimated daily water temperature and the observed water temperature data ranged from 0.7

  5. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  6. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  7. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  8. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  9. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  10. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  11. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  12. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  13. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  14. Effects of air flow directions on composting process temperature profile

    SciTech Connect

    Kulcu, Recep; Yaldiz, Osman

    2008-07-01

    In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO{sub 2} and O{sub 2} ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperature distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2.

  15. Historical Air Temperatures Across the Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Kagawa-Viviani, A.; Giambelluca, T. W.

    2015-12-01

    This study focuses on an analysis of daily temperature from over 290 ground-based stations across the Hawaiian Islands from 1905-2015. Data from multiple stations were used to model environmental lapse rates by fitting linear regressions of mean daily Tmax and Tmin on altitude; piecewise regressions were also used to model the discontinuity introduced by the trade wind inversion near 2150m. Resulting time series of both model coefficients and lapse rates indicate increasing air temperatures near sea level (Tmax: 0.09°C·decade-1 and Tmin: 0.23°C·decade-1 over the most recent 65 years). Evaluation of lapse rates during this period suggest Tmax lapse rates (~0.6°C·100m-1) are decreasing by 0.006°C·100m-1decade-1 due to rapid high elevation warming while Tmin lapse rates (~0.8°C·100m-1) are increasing by 0.002°C·100m-1decade-1 due to the stronger increase in Tmin at sea level versus at high elevation. Over the 110 year period, temperatures tend to vary coherently with the PDO index. Our analysis verifies warming trends and temperature variability identified earlier by analysis of selected index stations. This method also provides temperature time series we propose are more robust to station inhomogeneities.

  16. Variability of Winter Air Temperature in Mid-Latitude Europe

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Ardizzone, J.; Atlas, R.; Bungato, D.; Cierniewski, J.; Jusem, J. C.; Przybylak, R.; Schubert, S.; Starr, D.; Walczewski, J.

    2002-01-01

    The aim of this paper is to report extreme winter/early-spring air temperature (hereinafter temperature) anomalies in mid-latitude Europe, and to discuss the underlying forcing to these interannual fluctuations. Warm advection from the North Atlantic in late winter controls the surface-air temperature, as indicated by the substantial correlation between the speed of the surface southwesterlies over the eastern North Atlantic (quantified by a specific Index Ina) and the 2-meter level air temperatures (hereinafter Ts) over Europe, 45-60 deg N, in winter. In mid-March and subsequently, the correlation drops drastically (quite often it is negative). This change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature: absorption of insolation replaces the warm advection as the dominant control. This forcing by maritime-air advection in winter was demonstrated in a previous publication, and is re-examined here in conjunction with extreme fluctuations of temperatures in Europe. We analyze here the interannual variability at its extreme by comparing warm-winter/early-spring of 1989/90 with the opposite scenario in 1995/96. For these two December-to-March periods the differences in the monthly mean temperature in Warsaw and Torun, Poland, range above 10 C. Short-term (shorter than a month) fluctuations of the temperature are likewise very strong. We conduct pentad-by-pentad analysis of the surface-maximum air temperature (hereinafter Tmax), in a selected location, examining the dependence on Ina. The increased cloudiness and higher amounts of total precipitable water, corollary effects to the warm low-level advection. in the 1989/90 winter, enhance the positive temperature anomalies. The analysis of the ocean surface winds is based on the Special Sensor Microwave/Imager (SSM/I) dataset; ascent rates, and over land wind data are from the European Centre for Medium-Range Weather Forecasts (ECMWF); maps of 2-m temperature, cloud

  17. Climate change and river temperature sensitivity to warmer nighttime vs. warmer daytime air temperatures

    NASA Astrophysics Data System (ADS)

    Diabat, M.; Haggerty, R.; Wondzell, S. M.

    2011-12-01

    We investigated the July river temperature response to atmospheric warming over the diurnal cycle in a 36 km reach of the upper Middle Fork John Day River of Oregon, USA. The physical model Heat Source was calibrated and used to run 3 different cases of increased air temperature during July: 1) uniform increase over the whole day ("delta method"), 2) warmer daytime, and 3) warmer nighttime. All 3 cases had the same mean daily air temperatures - a 4 °C increase relative to 2002. Results show that the timing of air temperature increases has a significant effect on the magnitude, timing and duration of changes in water temperatures relative to current conditions. In all cases, river temperatures in the lower reach increased by at least 1.1 °C . For the delta case, water temperature increases never exceeded 2.3 °C. In contrast, under the warmer daytime case, water temperature increases exceeded 2.3 °C for 6.6 hours/day on average, with the largest increases occurring during mid-day. In the warmer night case the river temperature increases exceeded 2.3 °C for 4.3 hours/day on average with the largest increases occurring around midnight. In addition, an average increase of 4 °C in air temperature under the delta case increased the water temperature by an average of 1.9 °C uniformly during daytime and nighttime. Still, an average increase of 4 °C in air temperature under the warmer daytime case increased water temperature by an average of at least 1.6 °C during the daytime and by an average of up to 2.5 °C during the nighttime, while an average increase of 4 °C in air temperature under the warmer nighttime case increased the water temperature by an average of at least 1.4 °C during the nighttime and by an average of up to 2.4 °C during the daytime. The spatial response of temperature was different for each case. The lower 13 rkm warmed by at least 1.1 °C with the delta case, while only the lower 6 rkm warmed by at least 1.1 °C with the warmer daytime case

  18. Evaluating CMIP5 models using AIRS tropospheric air temperature and specific humidity climatology

    NASA Astrophysics Data System (ADS)

    Tian, Baijun; Fetzer, Eric J.; Kahn, Brian H.; Teixeira, Joao; Manning, Evan; Hearty, Thomas

    2013-01-01

    This paper documents the climatological mean features of the Atmospheric Infrared Sounder (AIRS) monthly mean tropospheric air temperature (ta, K) and specific humidity (hus, kg/kg) products as part of the Obs4MIPs project and compares them to those from NASA's Modern Era Retrospective analysis for Research and Applications (MERRA) for validation and 16 models from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) for CMIP5 model evaluation. MERRA is warmer than AIRS in the free troposphere but colder in the boundary layer with differences typically less than 1 K. MERRA is also drier (~10%) than AIRS in the tropical boundary layer but wetter (~30%) in the tropical free troposphere and the extratropical troposphere. In particular, the large MERRA-AIRS specific humidity differences are mainly located in the deep convective cloudy regions indicating that the low sampling of AIRS in the cloudy regions may be the main reason for these differences. In comparison to AIRS and MERRA, the sixteen CMIP5 models can generally reproduce the climatological features of tropospheric air temperature and specific humidity well, but several noticeable biases exist. The models have a tropospheric cold bias (around 2 K), especially in the extratropical upper troposphere, and a double-ITCZ problem in the troposphere from 1000 hPa to 300 hPa, especially in the tropical Pacific. The upper-tropospheric cold bias exists in the most (13 of 16) models, and the double-ITCZ bias is found in all 16 CMIP5 models. Both biases are independent of the reference dataset used (AIRS or MERRA).

  19. CARS Temperature and Species Measurements For Air Vehicle Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Gord, James R.; Grisch, Frederic; Klimenko, Dmitry; Clauss, Walter

    2005-01-01

    The coherent anti-Stokes Raman spectroscopy (CARS) method has recently been used in the United States and Europe to probe several different types of propulsion systems for air vehicles. At NASA Langley Research Center in the United States, CARS has been used to simultaneously measure temperature and the mole fractions of N2, O2 and H2 in a supersonic combustor, representative of a scramjet engine. At Wright- Patterson Air Force Base in the United States, CARS has been used to simultaneously measure temperature and mole fractions of N2, O2 and CO2, in the exhaust stream of a liquid-fueled, gas-turbine combustor. At ONERA in France and the DLR in Germany researchers have used CARS to measure temperature and species concentrations in cryogenic LOX-H2 rocket combustion chambers. The primary aim of these measurements has been to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.

  20. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  1. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  2. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  3. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  4. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  5. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  6. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  7. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  8. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  9. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  10. Air temperature variation across the seed cotton dryer mixpoint

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eighteen tests were conducted in six gins in the fall of 2008 to measure air temperature variation within various heated air seed cotton drying systems with the purpose of: checking validation of recommendations by a professional engineering society and measuring air temperature variation across the...

  11. AIR TEMPERATURE DISTRIBUTION IN SEED COTTON DRYING SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ten tests were conducted in the fall of 2007 to measure air temperature variation within various heated air seed cotton drying systems with the purpose of: checking validation of recommendations by a professional engineering society and measuring air temperature variation across the airflow ductwork...

  12. Possible Economies in Air-Conditioning by Accepting Temperature Swings.

    ERIC Educational Resources Information Center

    Loudon, A. G.; Petherbridge, P.

    Public building air conditioning systems, which use constant and varying heat and cooling loads, are compared and investigated. Experiments indicated that constant temperature controls based on outside air temperature alone were inefficient. Ventilating a building with outside air and the methods of doing so are cited as being the most economical…

  13. Discovery about temperature fluctuations in turbulent air flows

    NASA Astrophysics Data System (ADS)

    1985-02-01

    The law of spatial fluctuations of temperature in a turbulent flow in the atmosphere was studied. The turbulent movement of air in the atmosphere manifests itself in random changes in wind velocity and in the dispersal of smoke. If a miniature thermometer with sufficient sensitivity and speed of response were placed in a air flow, its readings would fluctuate chaotically against the background of average temperature. This is Characteristic of practically every point of the flow. The temperature field forms as a result of the mixing of the air. A method using the relation of the mean square of the difference in temperatures of two points to the distance between these points as the structural characteristic of this field was proposed. It was found that the dissipation of energy in a flow and the equalization of temperatures are connected with the breaking up of eddies in a turbulent flow into smaller ones. Their energy in turn is converted into heat due to the viscosity of the medium. The law that has been discovered makes for a much broader field of application of physical methods of analyzing atmospheric phenomena.

  14. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  15. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  16. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  17. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  18. Local temperature differences in relation to weather parameters

    NASA Astrophysics Data System (ADS)

    Bogren, J.; Gustavsson, T.; Postgård, U.

    2000-02-01

    The objective of this paper is to focus on the influence of clouds and wind on air and road surface temperature variations between different types of local climate environments. The study area covers 160×130 km2 and includes 35 field stations in the Swedish Road Weather Information System (RWIS) and two synoptic weather stations. By combining data from the two sources, the spatial and temporal variations in air and road surface temperature have been analysed. In the first part of this paper the theoretical influence of different weather parameters is determined. In the empirical part of the study, a validation of the theoretical result is assessed using temperature and weather data from the study area. The results show that it is possible to calculate the temperature variations in relation to topographical siting and different weather factors. During day-time conditions, the effect of screening from the sun has a significant influence on the road surface temperature, even with cloudiness amounting to 4-6 octas, provided that the solar elevation is high. During night-time, the potential for pooling of cold air is determined by cloud cover and wind speed. When cloudy situations prevail during night-time, neutral stability is dominant resulting in a decrease with increasing altitude for both air and surface temperatures. Road surface temperatures, however, have a lower correlation with altitude than air temperature. The variation in surface temperature decreases with altitude is also larger and has a more even distribution than the air temperature decrease with altitude. Wind speed was not an important factor for the variation in surface temperature decrease with altitude, but insolation from the sun during day-time is one parameter to consider.

  19. Effects of Outside Air Temperature on Movement of Phosphine Gas in Concrete Elevator Bins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies that measured the movement and concentration of phosphine gas in upright concrete bins over time indicated that fumigant movement was dictated by air currents, which in turn, were a function of the difference between the average grain temperature and the average outside air temperature durin...

  20. Air temperature "singularities" as a tool for the comprehension of the climate diversity in Europe

    NASA Astrophysics Data System (ADS)

    Jarzyna, Krzysztof

    2014-05-01

    Air temperature "singularities" were used to study climate diversity in Europe. The basis of analysis were data of mean daily air temperature for 50-years period (1951-2000) from 66 European meteorological stations. Multiyear mean air temperature values were counted for the each day of the year at first (29th February was omitted). Next a theoretical sine curve of annual air temperature course was created with help of the Fourier's analysis for the each station. Differences between theoretical and observed mean vales of daily air temperatures were counted in the next step. The biggest of these differences (below the lower quartile and above the upper quartile) lasting at least 3 days can be treated as thermal "singularities". A cluster analysis was used to find similarities of the singularities occurrence in analyzed stations. As a result 8 clusters were distinguished representing regions with different thermal "singularities" occurrence pattern.

  1. Daily Air Temperature and Electricity Load in Spain.

    NASA Astrophysics Data System (ADS)

    Valor, Enric; Meneu, Vicente; Caselles, Vicente

    2001-08-01

    Weather has a significant impact on different sectors of the economy. One of the most sensitive is the electricity market, because power demand is linked to several weather variables, mainly the air temperature. This work analyzes the relationship between electricity load and daily air temperature in Spain, using a population-weighted temperature index. The electricity demand shows a significant trend due to socioeconomic factors, in addition to daily and monthly seasonal effects that have been taken into account to isolate the weather influence on electricity load. The results indicate that the relationship is nonlinear, showing a `comfort interval' of ±3°C around 18°C and two saturation points beyond which the electricity load no longer increases. The analysis has also revealed that the sensitivity of electricity load to daily air temperature has increased along time, in a higher degree for summer than for winter, although the sensitivity in the cold season is always more significant than in the warm season. Two different temperature-derived variables that allow a better characterization of the observed relationship have been used: the heating and cooling degree-days. The regression of electricity data on them defines the heating and cooling demand functions, which show correlation coefficients of 0.79 and 0.87, and predicts electricity load with standard errors of estimate of ±4% and ±2%, respectively. The maximum elasticity of electricity demand is observed at 7 cooling degree-days and 9 heating degree-days, and the saturation points are reached at 11 cooling degree-days and 13 heating degree-days, respectively. These results are helpful in modeling electricity load behavior for predictive purposes.

  2. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

  3. Generation of low-temperature air plasma for food processing

    NASA Astrophysics Data System (ADS)

    Stepanova, Olga; Demidova, Maria; Astafiev, Alexander; Pinchuk, Mikhail; Balkir, Pinar; Turantas, Fulya

    2015-11-01

    The project is aimed at developing a physical and technical foundation of generating plasma with low gas temperature at atmospheric pressure for food industry needs. As known, plasma has an antimicrobial effect on the numerous types of microorganisms, including those that cause food spoilage. In this work an original experimental setup has been developed for the treatment of different foods. It is based on initiating corona or dielectric-barrier discharge in a chamber filled with ambient air in combination with a certain helium admixture. The experimental setup provides various conditions of discharge generation (including discharge gap geometry, supply voltage, velocity of gas flow, content of helium admixture in air and working pressure) and allows for the measurement of the electrical discharge parameters. Some recommendations on choosing optimal conditions of discharge generation for experiments on plasma food processing are developed.

  4. Microclimatic Temperature Relationships over Different Surfaces.

    ERIC Educational Resources Information Center

    Williams, Thomas B.

    1991-01-01

    Describes a study of temperature variations over different surfaces in an urban campus setting. Explains that researchers sampled temperatures over grass, bare soil, gravel, concrete, and blacktop. Reports that grassy areas registered the highest morning temperatures and lowest afternoon temperatures. (SG)

  5. Impact of Atlantic sea surface temperatures on the warmest global surface air temperature of 1998

    NASA Astrophysics Data System (ADS)

    Lu, Riyu

    2005-03-01

    The year 1998 is the warmest year in the record of instrumental measurements. In this study, an atmospheric general circulation model is used to investigate the role of sea surface temperatures (SSTs) in this warmth, with a focus on the role of the Atlantic Ocean. The model forced with the observed global SSTs captures the main features of land surface air temperature anomalies in 1998. A sensitivity experiment shows that in comparison with the global SST anomalies, the Atlantic SST anomalies can explain 35% of the global mean surface air temperature (GMAT) anomaly, and 57% of the land surface air temperature anomaly in 1998. The mechanisms through which the Atlantic Ocean influences the GMAT are likely different from season to season. Possible detailed mechanisms involve the impact of SST anomalies on local convection in the tropical Atlantic region, the consequent excitation of a Rossby wave response that propagates into the North Atlantic and the Eurasian continent in winter and spring, and the consequent changes in tropical Walker circulation in summer and autumn that induce changes in convection over the tropical Pacific. This in turn affects climate in Asia and Australia. The important role of the Atlantic Ocean suggests that attention should be paid not only to the tropical Pacific Ocean, but also to the tropical Atlantic Ocean in understanding the GMAT variability and its predictability.

  6. Retrieval of air temperatures from crowd-sourced battery temperatures of cell phones

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James; Leijnse, Hidde; Uijlenhoet, Remko; Steeneveld, Gert-Jan; Horn, Berthold K. P.

    2013-04-01

    Accurate air temperature observations are important for urban meteorology, for example to study the urban heat island and adverse effects of high temperatures on human health. The number of available temperature observations is often relatively limited. A new development is presented to derive temperature information for the urban canopy from an alternative source: cell phones. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. Results are presented for Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree Celsius. This shows that monitoring air temperatures employing an Android application holds great promise. Since 75% of the world's population has a cell phone, 20% of the land surface of the earth has cellular telephone coverage, and 500 million devices use the Android operating system, there is a huge potential for measuring air temperatures employing cell phones. This could eventually lead to real-time world-wide temperature maps.

  7. Thermal Coupling Between Air and Ground Temperatures in the CMIP5 Historical and Future Simulations

    NASA Astrophysics Data System (ADS)

    García-García, A.; Cuesta-Valero, F. J.; Smerdon, J. E.; Beltrami, H.

    2015-12-01

    The thermal coupling between air and ground temperatures is investigated herein for General Circulation Models (GCMs) that participated in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). For each simulation, we evaluate the regional relationship between air and ground temperatures to study surface energy fluxes and the attenuation of the annual temperature signal across the air-ground interface and into the shallow subsurface for North America. Our results show that the transport of energy across the air-ground interface and into the shallow subsurface is different across GCMs and is dependent on the land surface models that each employs. The variability of the difference between air and ground temperatures is high among simulations and is not dependent on the depth of the bottom boundary of the subsurface soil model. The difference between air and ground temperatures differs significantly from observations. Additionally, while the variability among GCMs can be explained by the physics of the land surface models, the regional variability of the air-ground coupling is associated with the model treatment of soil properties as well as snow and vegetation processes within GCMs. The difference between air and ground temperatures at high latitudes within the majority of the CMIP5 models is directly proportional to the amount of snow on the ground, due to the insulating effect of snow cover. On the other hand, the difference between air and ground temperatures at low latitudes within some of the CMIP5 models is inversely proportional to the vegetation cover (leaf area index), due to changes in latent and sensible heat fluxes. The large variability among GCMs and the marked dependency of the results on the choice of the land-surface model illustrates the need for improving the simulation of air-ground coupling in land-surface models towards a robust simulation of near-surface processes, such as permafrost and soil carbon stability within GCMs.

  8. Daily Cycle of Air Temperature and Surface Temperature in Stone Forest

    NASA Astrophysics Data System (ADS)

    Wang, K.; Li, Y.; Wang, X.; Yuan, M.

    2013-12-01

    Urbanization is one of the most profound human activities that impact on climate change. In cities, where are highly artificial areas, the conflict between human activity and natural climate is particularly prominent. Urban areas always have the larger area of impervious land, the higher consumption of greenhouse gases, more emissions of anthropogenic heat and air pollution, all contribute to the urban warming phenomena. Understanding the mechanisms causing a variety of phenomena involved in the urban warming is critical to distinguish the anthropogenic effect and natural variation in the climate change. However, the exact dynamics of urban warming were poorly understood, and effective control strategies are not available. Here we present a study of the daily cycle of air temperature and surface temperature in Stone Forest. The specific heat of the stones in the Stone Forest and concrete of the man-made structures within the cities are approximate. Besides, the height of the Stone Forest and the height of buildings within the city are also similar. As a scenic area, the Stone Forest is being preserved and only opened for sightseeing. There is no anthropogenic heat, as well air pollution within the Stone Forest. The thermal environment in Stone Forest can be considered to be a simulation of thermal environment in the city, which can reveal the effect of man-made structures on urban thermal environment. We conducted the field studies and numerical analysis in the Stone Forest for 4 typical urban morphology and environment scenarios, including high-rise compact cities, low-rise sparse cities, garden cities and isolated single stone. Air temperature and relative humidity were measured every half an hour in 15 different locations, which within different spatial distribution of stones and can represent the four urban scenarios respectively. At the same time, an infrared camera was used to take thermal images and get the hourly surface temperatures of stones and

  9. Pd-modified Reactive Air Braze for Increased Melting Temperature

    SciTech Connect

    Hardy, John S.; Weil, K. Scott; Kim, Jin Yong Y.; Darsell, Jens T.

    2005-03-01

    Complex high temperature devices such as planar solid oxide fuel cell (pSOFC) stacks often require a two-step sealing process. For example, in pSOFC stacks the oxide ceramic fuel cell plates might be sealed into metallic support frames in one step. Then the frames with the fuel plates sealed to them would be joined together in a separate sealing step to form the fuel cell stack. In this case, the initial seal should have a sufficiently high solidus temperature that it will not begin to remelt at the sealing temperature of the material used for the subsequent sealing step. Previous experience has indicated that, when heated at a rate of 10°C/min, Ag-CuO reactive air braze (RAB) compositions have solidus and liquidus temperatures in the approximate range of 925 to 955°C. Therefore, compositionally modifying the original Ag-CuO braze with Pd-additions such that the solidus temperature of the new braze is between 1025 and 1050°C would provide two RAB compositions with a difference in melting points large enough to allow reactive air brazing of both sets of seals in the fuel cell stack. This study determines the appropriate ratio of Pd to Ag in RAB required to achieve a solidus in the desired range and discusses the wettability of the resulting Pd-Ag-CuO brazes on YSZ substrates. The interfacial microstructures and flexural strengths of Pd-Ag-CuO joints in YSZ will also be presented.

  10. Solar Eclipse Effect on Shelter Air Temperature

    NASA Technical Reports Server (NTRS)

    Segal, M.; Turner, R. W.; Prusa, J.; Bitzer, R. J.; Finley, S. V.

    1996-01-01

    Decreases in shelter temperature during eclipse events were quantified on the basis of observations, numerical model simulations, and complementary conceptual evaluations. Observations for the annular eclipse on 10 May 1994 over the United States are presented, and these provide insights into the temporal and spatial changes in the shelter temperature. The observations indicated near-surface temperature drops of as much as 6 C. Numerical model simulations for this eclipse event, which provide a complementary evaluation of the spatial and temporal patterns of the temperature drops, predict similar decreases. Interrelationships between the temperature drop, degree of solar irradiance reduction, and timing of the peak eclipse are also evaluated for late spring, summer, and winter sun conditions. These simulations suggest that for total eclipses the drops in shelter temperature in midlatitudes can be as high as 7 C for a spring morning eclipse.

  11. Solar activity influence on air temperature regimes in caves

    NASA Astrophysics Data System (ADS)

    Stoeva, Penka; Mikhalev, Alexander; Stoev, Alexey

    Cave atmospheres are generally included in the processes that happen in the external atmosphere as circulation of the cave air is connected with the most general circulation of the air in the earth’s atmosphere. Such isolated volumes as the air of caves are also influenced by the variations of solar activity. We discuss cave air temperature response to climate and solar and geomagnetic activity for four show caves in Bulgaria studied for a period of 46 years (1968 - 2013). Everyday noon measurements in Ledenika, Saeva dupka, Snezhanka and Uhlovitsa cave have been used. Temperatures of the air in the zone of constant temperatures (ZCT) are compared with surface temperatures recorded at meteorological stations situated near about the caves - in the towns of Vratsa, Lovech, Peshtera and Smolyan, respectively. For comparison, The Hansen cave, Middle cave and Timpanogos cave from the Timpanogos Cave National Monument, Utah, USA situated nearly at the same latitude have also been examined. Our study shows that the correlation between cave air temperature time series and sunspot number is better than that between the cave air temperature and Apmax indices; that t°ZCT is rather connected with the first peak in geomagnetic activity, which is associated with transient solar activity (CMEs) than with the second one, which is higher and connected with the recurrent high speed streams from coronal holes. Air temperatures of all examined show caves, except the Ledenika cave, which is ice cave show decreasing trends. On the contrary, measurements at the meteorological stations show increasing trends in the surface air temperatures. The trend is decreasing for the Timpanogos cave system, USA. The conclusion is that surface temperature trends depend on the climatic zone, in which the cave is situated, and there is no apparent relation between temperatures inside and outside the caves. We consider possible mechanism of solar cosmic rays influence on the air temperatures in caves

  12. Modeling subcanopy incoming longwave radiation to seasonal snow using air and tree trunk temperatures

    NASA Astrophysics Data System (ADS)

    Webster, Clare; Rutter, Nick; Zahner, Franziska; Jonas, Tobias

    2016-02-01

    Data collected at three Swiss alpine forested sites over a combined 11 year period were used to evaluate the role of air temperature in modeling subcanopy incoming longwave radiation to the snow surface. Simulated subcanopy incoming longwave radiation is traditionally partitioned into that from the sky and that from the canopy, i.e., a two-part model. Initial uncertainties in predicting longwave radiation using the two-part model resulted from vertical differences in measured air temperature. Above-canopy (35 m) air temperatures were higher than those within (10 m) and below (2 m) canopy throughout four snow seasons (December-April), demonstrating how the forest canopy can act as a cold sink for air. Lowest model root-mean-square error (RMSE) was using above-canopy air temperature. Further investigation of modeling subcanopy longwave radiation using above-canopy air temperature showed underestimations, particularly during periods of high insolation. In order to explicitly account for canopy temperatures in modeling longwave radiation, the two-part model was improved by incorporating a measured trunk view component and trunk temperature. Trunk temperature measurements were up to 25°C higher than locally measured air temperatures. This three-part model reduced the RMSE by up to 7.7 W m-2 from the two-part air temperature model at all sensor positions across the 2014 snowmelt season and performed particularly well during periods of high insolation when errors from the two-part model were up to 40 W m-2. A parameterization predicting tree trunk temperatures using measured air temperature and incoming shortwave radiation demonstrate a simple method that can be applied to provide input to the three-part model across midlatitude coniferous forests.

  13. Associations of endothelial function and air temperature in diabetic subjects

    EPA Science Inventory

    Background and Objective: Epidemiological studies consistently show that air temperature is associated with changes in cardiovascular morbidity and mortality. However, the biological mechanisms underlying the association remain largely unknown. As one index of endothelial functio...

  14. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... must be made within 100 cm of the air-intake of the engine. The measurement location must be either in... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test...

  15. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... must be made within 100 cm of the air-intake of the engine. The measurement location must be either in... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test...

  16. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... location must be within 10 cm of the engine intake system (i.e., the air cleaner, for most engines.) (b... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19...

  17. Attribution of precipitation changes on ground-air temperature offset: Granger causality analysis

    NASA Astrophysics Data System (ADS)

    Cermak, Vladimir; Bodri, Louise

    2016-06-01

    This work examines the causal relationship between the value of the ground-air temperature offset and the precipitation changes for monitored 5-min data series together with their hourly and daily averages obtained at the Sporilov Geophysical Observatory (Prague). Shallow subsurface soil temperatures were monitored under four different land cover types (bare soil, sand, short-cut grass and asphalt). The ground surface temperature (GST) and surface air temperature (SAT) offset, ΔT(GST-SAT), is defined as the difference between the temperature measured at the depth of 2 cm below the surface and the air temperature measured at 5 cm above the surface. The results of the Granger causality test did not reveal any evidence of Granger causality for precipitation to ground-air temperature offsets on the daily scale of aggregation except for the asphalt pavement. On the contrary, a strong evidence of Granger causality for precipitation to the ground-air temperature offsets was found on the hourly scale of aggregation for all land cover types except for the sand surface cover. All results are sensitive to the lag choice of the autoregressive model. On the whole, obtained results contain valuable information on the delay time of ΔT(GST-SAT) caused by the rainfall events and confirmed the importance of using autoregressive models to understand the ground-air temperature relationship.

  18. Interactive short-term effects of equivalent temperature and air pollution on human mortality in Berlin and Lisbon.

    PubMed

    Burkart, Katrin; Canário, Paulo; Breitner, Susanne; Schneider, Alexandra; Scherber, Katharina; Andrade, Henrique; Alcoforado, Maria João; Endlicher, Wilfried

    2013-12-01

    There is substantial evidence that both temperature and air pollution are predictors of mortality. Thus far, few studies have focused on the potential interactive effects between the thermal environment and different measures of air pollution. Such interactions, however, are biologically plausible, as (extreme) temperature or increased air pollution might make individuals more susceptible to the effects of each respective predictor. This study investigated the interactive effects between equivalent temperature and air pollution (ozone and particulate matter) in Berlin (Germany) and Lisbon (Portugal) using different types of Poisson regression models. The findings suggest that interactive effects exist between air pollutants and equivalent temperature. Bivariate response surface models and generalised additive models (GAMs) including interaction terms showed an increased risk of mortality during periods of elevated equivalent temperatures and air pollution. Cold effects were mostly unaffected by air pollution. The study underscores the importance of air pollution control in mitigating heat effects.

  19. Effectiveness of an air-cooled vest using selected air temperature and humidity combinations.

    PubMed

    Pimental, N A; Cosimini, H M; Sawka, M N; Wenger, C B

    1987-02-01

    We evaluated the effectiveness of an air-cooled vest in reducing thermal strain of subjects exercising in the heat (49 degrees C dry bulb (db), 20 degrees C dew point (dp] in chemical protective clothing. Four male subjects attempted 300-min heat exposures at two metabolic rates (175 and 315 W) with six cooling combinations--control (no vest) and five different db and dp combinations. Air supplied to the vest at 15 scfm ranged from 20-27 degrees C db, 7-18 degrees C dp; theoretical cooling capacities were 498-687 W. Without the vest, endurance times were 118 min (175 W) and 73 min (315 W). Endurance times with the vest were 300 min (175 W) and 242-300 min (315 W). The five cooling combinations were similarly effective in reducing thermal strain and extending endurance time, although there was a trend for the vest to be more effective when supplied with air at the lower dry bulb temperature. At 175 W, subjects maintained a constant body temperature; at 315 W, the vest's ability to extend endurance is limited to about 5 hours.

  20. Comparing model predictions and experimental data for the response of stomatal conductance and guard cell turgor to manipulations of cuticular conductance, leaf-to-air vapour pressure difference and temperature: feedback mechanisms are able to account for all observations.

    PubMed

    Eamus, Derek; Taylor, Daniel T; Macinnis-Ng, Catriona M O; Shanahan, Steve; De Silva, Lionel

    2008-03-01

    Stomata respond to increasing leaf-to-air vapour pressure difference (LAVPD) (D) by closing. The mechanism by which this occurs is debated. A role for feedback and peristomatal transpiration has been proposed. In this paper, we apply a recent mechanistic model of stomatal behaviour, and compare model and experimental data for the influence of increasing D on stomatal conductance. We manipulated cuticular conductance (g(c)) by three independent methods. First, we increased g(c) by using a solvent mixture applied to both leaf surfaces prior to determining stomatal responses to D; second, we increased g(c) by increasing leaf temperature at constant D; and third, we coated a small area of leaf with a light oil to decrease g(c). In all three experiments, experimental data and model outputs showed very close agreement. We conclude, from the close agreement between model and experimental data and the fact that manipulations of g(c), and hence cuticular transpiration, influenced g(s) in ways consistent with a feedback mechanism, that feedback is central in determining stomatal responses to D.

  1. Combustion of Gaseous Fuels with High Temperature Air in Normal- and Micro-gravity Conditions

    NASA Technical Reports Server (NTRS)

    Wang, Y.; Gupta, A. K.

    2001-01-01

    The objective of this study is determine the effect of air preheat temperature on flame characteristics in normal and microgravity conditions. We have obtained qualitative (global flame features) and some quantitative information on the features of flames using high temperature combustion air under normal gravity conditions with propane and methane as the fuels. This data will be compared with the data under microgravity conditions. The specific focus under normal gravity conditions has been on determining the global flame features as well as the spatial distribution of OH, CH, and C2 from flames using high temperature combustion air at different equivalence ratio.

  2. Assessing surface air temperature variability using quantile regression

    NASA Astrophysics Data System (ADS)

    Timofeev, A. A.; Sterin, A. M.

    2014-12-01

    Many researches in climate change currently involve linear trends, based on measured variables. And many of them only consider trends in mean values, whereas it is clear, that not only means, but also whole shape of distribution changes over time and requires careful assessment. For example extreme values including outliers may get bigger, while median has zero slope.Quantile regression provides a convenient tool, that enables detailed analysis of changes in full range of distribution by producing a vector of quantile trends for any given set of quantiles.We have applied quantile regression to surface air temperature observations made at over 600 weather stations across Russian Federation during last four decades. The results demonstrate well pronounced regions with similar values of significant trends in different parts of temperature value distribution (left tail, middle part, right tail). The uncertainties of quantile trend estimations for several spatial patterns of trends over Russia are estimated and analyzed for each of four seasons.For temperature trend estimation over vast territories, quantile regression is an effort consuming approach, but is more informative than traditional instrument, to assess decadal evolution of temperature values, including evolution of extremes.Partial support of ERA NET RUS ACPCA joint project between EU and RBRF 12-05-91656-ЭРА-А is highly appreciated.

  3. A comparison of urban heat islands mapped using skin temperature, air temperature, and apparent temperature (Humidex), for the greater Vancouver area.

    PubMed

    Ho, Hung Chak; Knudby, Anders; Xu, Yongming; Hodul, Matus; Aminipouri, Mehdi

    2016-02-15

    Apparent temperature is more closely related to mortality during extreme heat events than other temperature variables, yet spatial epidemiology studies typically use skin temperature (also known as land surface temperature) to quantify heat exposure because it is relatively easy to map from satellite data. An empirical approach to map apparent temperature at the neighborhood scale, which relies on publicly available weather station observations and spatial data layers combined in a random forest regression model, was demonstrated for greater Vancouver, Canada. Model errors were acceptable (cross-validated RMSE=2.04 °C) and the resulting map of apparent temperature, calibrated for a typical hot summer day, corresponded well with past temperature research in the area. A comparison with field measurements as well as similar maps of skin temperature and air temperature revealed that skin temperature was poorly correlated with both air temperature (R(2)=0.38) and apparent temperature (R(2)=0.39). While the latter two were more similar (R(2)=0.87), apparent temperature was predicted to exceed air temperature by more than 5 °C in several urban areas as well as around the confluence of the Pitt and Fraser rivers. We conclude that skin temperature is not a suitable proxy for human heat exposure, and that spatial epidemiology studies could benefit from mapping apparent temperature, using an approach similar to the one reported here, to better quantify differences in heat exposure that exist across an urban landscape.

  4. The EUSTACE project: delivering global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Morice, C. P.; Rayner, N. A.; Auchmann, R.; Bessembinder, J.; Bronnimann, S.; Brugnara, Y.; Conway, E. A.; Ghent, D.; Good, E.; Herring, K.; Kennedy, J.; Lindgren, F.; Madsen, K. S.; Merchant, C. J.; van der Schrier, G.; Stephens, A.; Tonboe, R. T.; Waterfall, A. M.; Mitchelson, J.; Woolway, I.

    2015-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, we must develop an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. These relationships can be derived either empirically or with the help of a physical model.Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals would be used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. As the data volumes involved are considerable, such work needs to include development of new "Big Data" analysis methods.We will present plans and progress along this road in the EUSTACE project (2015-June 2018), i.e.: • providing new, consistent, multi-component estimates of uncertainty in surface skin temperature retrievals from satellites; • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras.Information will also be given on how interested users can become

  5. Validation of AIRS V6 Surface Temperature over Greenland with GCN and NOAA Stations

    NASA Technical Reports Server (NTRS)

    Lee, Jae N.; Hearty, Thomas; Cullather, Richard; Nowicki, Sophie; Susskind, Joel

    2016-01-01

    This work compares the temporal and spatial characteristics of the AIRSAMSU (Atmospheric Infrared Sounder Advanced Microwave Sounding Unit A) Version 6 and MODIS (Moderate resolution Imaging Spectroradiometer) Collection 5 derived surface temperatures over Greenland. To estimate uncertainties in space-based surface temperature measurements, we re-projected the MODIS Ice Surface Temperature (IST) to 0.5 by 0.5 degree spatial resolution. We also re-gridded AIRS Skin Temperature (Ts) into the same grid but classified with different cloud conditions and surface types. These co-located data sets make intercomparison between the two instruments relatively straightforward. Using this approach, the spatial comparison between the monthly mean AIRS Ts and MODIS IST is in good agreement with RMS 2K for May 2012. This approach also allows the detection of any long-term calibration drift and the careful examination of calibration consistency in the MODIS and AIRS temperature data record. The temporal correlations between temperature data are also compared with those from in-situ measurements from GC-Net (GCN) and NOAA stations. The coherent time series of surface temperature evident in the correlation between AIRS Ts and GCN temperatures suggest that at monthly time scales both observations capture the same climate signal over Greenland. It is also suggested that AIRS surface air temperature (Ta) can be used to estimate the boundary layer inversion.

  6. Electron temperature differences and double layers

    NASA Technical Reports Server (NTRS)

    Chan, C.; Hershkowitz, N.; Lonngren, K. E.

    1983-01-01

    Electron temperature differences across plasma double layers are studied experimentally. It is shown that the temperature differences across a double layer can be varied and are not a result of thermalization of the bump-on-tail distribution. The implications of these results for electron thermal energy transport in laser-pellet and tandem-mirror experiments are also discussed.

  7. Ambient air temperature effects on the temperature of sewage sludge composting process.

    PubMed

    Huang, Qi-fei; Chen, Tong-bin; Gao, Ding; Huang, Ze-chun

    2005-01-01

    Using data obtained with a full-scale sewage sludge composting facility, this paper studied the effects of ambient air temperature on the composting temperature with varying volume ratios of sewage sludge and recycled compost to bulking agent. Two volume ratios were examined experimentally, 1: 0: 1 and 3: 1: 2. The results show that composting temperature was influenced by ambient air temperature and the influence was more significant when composting was in the temperature rising process: composting temperature changed 2.4-6.5 degrees C when ambient air temperature changed 13 degrees C. On the other hand, the influence was not significant when composting was in the high-temperature and/or temperature falling process: composting temperature changed 0.75-1.3 degrees C when ambient air temperature changed 8-15 degrees C. Hysteresis effect was observed in composting temperature's responses to ambient air temperature. When the ventilation capability of pile was excellent (at a volume ratio of 1:0:1), the hysteresis time was short and ranging 1.1-1.2 h. On the contrary, when the proportion of added bulking agent was low, therefore less porosity in the substrate (at a volume ratio of 3:1:2), the hysteresis time was long and ranging 1.9-3.1 h.

  8. Startup of air-cooled condensers and dry cooling towers at low temperatures of the cooling air

    NASA Astrophysics Data System (ADS)

    Milman, O. O.; Ptakhin, A. V.; Kondratev, A. V.; Shifrin, B. A.; Yankov, G. G.

    2016-05-01

    The problems of startup and performance of air-cooled condensers (ACC) and dry cooling towers (DCT) at low cooling air temperatures are considered. Effects of the startup of the ACC at sub-zero temperatures are described. Different options of the ACC heating up are analyzed, and examples of existing technologies are presented (electric heating, heating up with hot air or steam, and internal and external heating). The use of additional heat exchanging sections, steam tracers, in the DCT design is described. The need for high power in cases of electric heating and heating up with hot air is noted. An experimental stand for research and testing of the ACC startup at low temperatures is described. The design of the three-pass ACC unit is given, and its advantages over classical single-pass design at low temperatures are listed. The formation of ice plugs inside the heat exchanging tubes during the start-up of ACC and DCT at low cooling air temperatures is analyzed. Experimental data on the effect of the steam flow rate, steam nozzle distance from the heat-exchange surface, and their orientation in space on the metal temperature were collected, and test results are analyzed. It is noted that the surface temperature at the end of the heat up is almost independent from its initial temperature. Recommendations for the safe start-up of ACCs and DCTs are given. The heating flow necessary to sufficiently heat up heat-exchange surfaces of ACCs and DCTs for the safe startup is estimated. The technology and the process of the heat up of the ACC with the heating steam external supply are described by the example of the startup of the full-scale section of the ACC at sub-zero temperatures of the cooling air, and the advantages of the proposed start-up technology are confirmed.

  9. Air Surface Temperature Correlation with Greenhouse Gases by Using Airs Data Over Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Rajab, Jasim Mohammed; MatJafri, M. Z.; Lim, H. S.

    2014-08-01

    The main objective of this study is to develop algorithms for calculating the air surface temperature (AST). This study also aims to analyze and investigate the effects of greenhouse gases (GHGs) on the AST value in Peninsular Malaysia. Multiple linear regression is used to achieve the objectives of the study. Peninsular Malaysia has been selected as the research area because it is among the regions of tropical Southeast Asia with the greatest humidity, pockets of heavy pollution, rapid economic growth, and industrialization. The predicted AST was highly correlated ( R = 0.783) with GHGs for the 6-year data (2003-2008). Comparisons of five stations in 2009 showed close agreement between the predicted AST and the observed AST from AIRS, especially in the wet season (within 1.3 K). The in situ data ranged from 1 to 2 K. Validation results showed that AST ( R = 0.776-0.878) has values nearly the same as the observed AST from AIRS. We found that O3 during the wet season was indicated by a strongly positive beta coefficient (0.264-0.992) with AST. The CO2 yields a reasonable relationship with temperature with low to moderate beta coefficient (-0.065 to 0.238). The O3, CO2, and environmental variables experienced different seasonal fluctuations that depend on weather conditions and topography. The concentration of gases and pollution were the highest over industrial zones and overcrowded cities, and the dry season was more polluted compared with the wet season. These results indicate the advantage of using the satellite AIRS data and a correlation analysis to investigate the effect of atmospheric GHGs on AST over Peninsular Malaysia. An algorithm that is capable of retrieving Peninsular Malaysian AST in all weather conditions with total uncertainties ranging from 1 to 2 K was developed.

  10. Effect of Initial Mixture Temperature on Flame Speed of Methane-Air, Propane-Air, and Ethylene-Air Mixtures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L

    1952-01-01

    Flame speeds based on the outer edge of the shadow cast by the laminar Bunsen cone were determined as functions of composition for methane-air mixtures at initial mixture temperatures ranging from -132 degrees to 342 degrees c and for propane-air and ethylene-air mixtures at initial mixture temperatures ranging from -73 degrees to 344 degrees c. The data showed that maximum flame speed increased with temperature at an increasing rate. The percentage change in flame speed with change in initial temperature for the three fuels followed the decreasing order, methane, propane, and ethylene. Empirical equations were determined for maximum flame speed as a function of initial temperature over the temperature range covered for each fuel. The observed effect of temperature on flame speed for each of the fuels was reasonably well predicted by either the thermal theory as presented by Semenov or the square-root law of Tanford and Pease.

  11. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... temperature measurement must be made within 122 cm of the engine. The measurement location must be made either... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES...

  12. Analysis of surface air temperature variations and local urbanization effects on central Yunnan Plateau, SW China

    NASA Astrophysics Data System (ADS)

    He, Yunling; Wu, Zhijie; Liu, Xuelian; Deng, Fuying

    2016-10-01

    With the surface air temperature (SAT) data at 37 stations on Central Yunnan Plateau (CYP) for 1961-2010 and the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light data, the temporal-spatial patterns of the SAT trends are detected using Sen's Nonparametric Estimator of Slope approach and MK test, and the impact of urbanization on surface warming is analyzed by comparing the differences between the air temperature change trends of urban stations and their corresponding rural stations. Results indicated that annual mean air temperature showed a significant warming trend, which is equivalent to a rate of 0.17 °C/decade during the past 50 years. Seasonal mean air temperature presents a rising trend, and the trend was more significant in winter (0.31 °C/decade) than in other seasons. Annual/seasonal mean air temperature tends to increase in most areas, and higher warming trend appeared in urban areas, notably in Kunming city. The regional mean air temperature series was significantly impacted by urban warming, and the urbanization-induced warming contributed to approximately 32.3-62.9 % of the total regional warming during the past 50 years. Meantime, the urbanization-induced warming trend in winter and spring was more significant than that in summer and autumn. Since 1985, the urban heat island (UHI) intensity has gradually increased. And the urban temperatures always rise faster than rural temperatures on the CYP.

  13. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  14. Temperature transport in Lysimeters – comparison of different setups

    NASA Astrophysics Data System (ADS)

    Weller, Ulrich; Weber, Katja; Seyfarth, Manfred; Reth, Sascha

    2015-04-01

    Lysimeter studies are designed to mimick the undisturbed soil for the study of soil processes. Ecological and chemical processes are influenced by temperature and therefore it is mandatory that the temperature regime in the lysimeter follows closely the natural conditions. Unfortunately the lysimeter has a lower boundary that cuts off the natural dampening temperature flux. Also the walls of the vessel can transport temperature in a higher rate than the soil would do. And the exchange with the surrounding air at the installation facility may add a bias to the temperature regime in the lysimeter vessels. To test the influence of the wall and the lower boundary we have set up a lysimeter experiment with three different lysimeters. These are all 1m² surface by 2 m depth vessels, identically filled with a sandy loam. All three were instrumented with temperature sensors in 4 depths, and at each depth with 4 sensors, with a distance of 2,5 cm; 5 cm; 10 cm and 15 cm from the wall. In addition, temperature sensors in the surrounding soil and air temperature in the lysimeter containment are available. The three vessels differ in their setup and material. One vessel is a standard stainless steel vessel with seepage boundary, the second is stainless steel with isolation and a controlled lower boundary. This vessel has a tube system at the bottom that circulates water in the vessel and the surrounding soil at the same depth. The control ascertains that the bottom temperature of the lysimeter vessel is always the same as in the surrounding soil. The third vessel is made of PE, in order to minimize temperature transport in the wall material. The data so far shows little difference between the alternative setup. It seems that in a well closed lysimeter containment the temperature regime is sufficiently close to the natural soil. This is especially true for the top soil where most biological and chemical processes occur.

  15. Soil temperature prediction from air temperature for alluvial soils in lower Indo-Gangetic plain

    NASA Astrophysics Data System (ADS)

    Barman, D.; Kundu, D. K.; Pal, Soumen; Pal, Susanto; Chakraborty, A. K.; Jha, A. K.; Mazumdar, S. P.; Saha, R.; Bhattacharyya, P.

    2017-01-01

    Soil temperature is an important factor in biogeochemical processes. On-site monitoring of soil temperature is limited in spatiotemporal scale as compared to air temperature data inventories due to various management difficulties. Therefore, empirical models were developed by taking 30-year long-term (1985-2014) air and soil temperature data for prediction of soil temperatures at three depths (5, 15, 30 cm) in morning (0636 Indian standard time) and afternoon (1336 Indian standard time) for alluvial soils in lower Indo-Gangetic plain. At 5 cm depth, power and exponential regression models were best fitted for daily data in morning and afternoon, respectively, but it was reverse at 15 cm. However, at 30 cm, exponential models were best fitted for both the times. Regression analysis revealed that in morning for all three depths and in afternoon for 30 cm depth, soil temperatures (daily, weekly, and monthly) could be predicted more efficiently with the help of corresponding mean air temperature than that of maximum and minimum. However, in afternoon, prediction of soil temperature at 5 and 15 cm depths were more precised for all the time intervals when maximum air temperature was used, except for weekly soil temperature at 15 cm, where the use of mean air temperature gave better prediction.

  16. Improving Forecast Skill by Assimilation of Quality-controlled AIRS Temperature Retrievals under Partially Cloudy Conditions

    NASA Technical Reports Server (NTRS)

    Reale, O.; Susskind, J.; Rosenberg, R.; Brin, E.; Riishojgaard, L.; Liu, E.; Terry, J.; Jusem, J. C.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite has been long recognized as an important contributor towards the improvement of weather forecasts. At this time only a small fraction of the total data produced by AIRS is being used by operational weather systems. In fact, in addition to effects of thinning and quality control, the only AIRS data assimilated are radiance observations of channels unaffected by clouds. Observations in mid-lower tropospheric sounding AIRS channels are assimilated primarily under completely clear-sky conditions, thus imposing a very severe limitation on the horizontal distribution of the AIRS-derived information. In this work it is shown that the ability to derive accurate temperature profiles from AIRS observations in partially cloud-contaminated areas can be utilized to further improve the impact of AIRS observations in a global model and forecasting system. The analyses produced by assimilating AIRS temperature profiles obtained under partial cloud cover result in a substantially colder representation of the northern hemisphere lower midtroposphere at higher latitudes. This temperature difference has a strong impact, through hydrostatic adjustment, in the midtropospheric geopotential heights, which causes a different representation of the polar vortex especially over northeastern Siberia and Alaska. The AIRS-induced anomaly propagates through the model's dynamics producing improved 5-day forecasts.

  17. Improving forecast skill by assimilation of quality-controlled AIRS temperature retrievals under partially cloudy conditions

    NASA Astrophysics Data System (ADS)

    Reale, O.; Susskind, J.; Rosenberg, R.; Brin, E.; Liu, E.; Riishojgaard, L. P.; Terry, J.; Jusem, J. C.

    2008-04-01

    The National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite is now recognized as an important contributor towards the improvement of weather forecasts. At this time only a small fraction of the total data produced by AIRS is being used by operational weather systems. In fact, in addition to effects of thinning and quality control, the only AIRS data assimilated are radiance observations of channels unaffected by clouds. Observations in mid-lower tropospheric sounding AIRS channels are assimilated primarily under completely clear-sky conditions, thus imposing a very severe limitation on the horizontal distribution of the AIRS-derived information. In this work it is shown that the ability to derive accurate temperature profiles from AIRS observations in partially cloud-contaminated areas can be utilized to further improve the impact of AIRS observations in a global model and forecasting system. The analyses produced by assimilating AIRS temperature profiles obtained under partial cloud cover result in a substantially colder representation of the northern hemisphere lower midtroposphere at higher latitudes. This temperature difference has a strong impact, through hydrostatic adjustment, in the midtropospheric geopotential heights, which causes a different representation of the polar vortex especially over northeastern Siberia and Alaska. The AIRS-induced anomaly propagates through the model's dynamics producing improved 5-day forecasts.

  18. Air temperature distribution over a debris covered glacier in the Nepalese Himalayas

    NASA Astrophysics Data System (ADS)

    Pellicciotti, Francesca; Petersen, Lene; Wicki, Simon; Carenzo, Marco; Immerzeel, Walter

    2013-04-01

    Air temperature is a key control in the exchange of energy fluxes at the glacier-atmosphere interface and also the main input variable in many of the melt models (both energy balance or temperature-index type of models) currently used to predict glacier melt across a variety of scales. The commonly used approach to derive distributed temperature inputs is extrapolation from point measurements, often located outside the glacier surface, with a lapse rate that is assumed to be constant in time and uniform in space. Previous work for debris free glaciers has shown that lapse rates depend on several factors such as katabatic wind, humidity and the presence of clouds and that they vary in space and time. A dominant control however seems to be the presence of katabatic wind. For debris covered glaciers, the driving forces of air temperature are likely to be different but little is known because of the scarcity of field observations. Few preliminary studies have suggested that there is a strong coupling between surface and 2 m air temperature, while strong katabatic wind does not develop on debris covered tongues. In this study, we examine the variability in air temperature and lapse rates, as well as its atmospheric controls under different meteorological settings for the debris covered Lirung Glacier in the Nepalese Himalayas. We use a recently collected data set of air and surface temperature at a network of locations on the glacier tongue during the pre-monsoon season and the entire monsoon season of 2012. Additionally an AWS was installed on the glacier allowing the collection of meteorological observations. We investigate differences in air temperature during different climatic conditions (monsoon vs. dry period, upvalley vs. downvalley wind, cloudy vs. clear-sky, etc.). We identify the main controls on temperature and discuss how appropriate the application of a temperature lapse rate is over a debris covered glacier by investigating the correlation between

  19. Thermal Coupling between Air and Ground Temperatures in the CMIP5 Historical and Future Simulations

    NASA Astrophysics Data System (ADS)

    García-García, Almudena; José Cuesta-Valero, Francisco; Beltrami, Hugo; Smerdon, Jason

    2016-04-01

    The decadal-scale thermal coupling between air and ground temperatures across North America is examined for 32 General Circulation Models (GCMs) from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). For each simulation, we evaluate the relationship between air and ground temperatures. Our results show that the transport of energy across the air-ground interface differs from observations, and among GCMs depending on each model's land-surface component. While the decadal variability among GCMs can be explained by the physics and parameterizations of each land-surface model, the spatial variability of the air-ground coupling for the historical and future simulations is associated with model treatment of the soil thermal properties as well as with processes associated with snow and vegetation cover within GCMs. The difference between air and ground temperatures at high latitudes within the majority of the CMIP5 models is related to the insulating effect of snow cover. On the other hand, the difference between air and ground temperatures at low latitudes within some of the CMIP5 models is inversely proportional to the leaf area index, due to changes in latent and sensible heat fluxes. The large variability among GCMs and the marked dependency of the results on the choice of the land-surface model illustrates the need for improving the simulation of air-ground coupling in land-surface models towards a robust simulation of near-surface processes, such as permafrost and soil carbon stability within GCMs.

  20. Heat tolerance of higher plants cenosis to damaging air temperatures

    NASA Astrophysics Data System (ADS)

    Ushakova, Sofya; Shklavtsova, Ekaterina

    Designing sustained biological-technical life support systems (BTLSS) including higher plants as a part of a photosynthesizing unit, it is important to foresee the multi species cenosis reaction on either stress-factors. Air temperature changing in BTLSS (because of failure of a thermoregulation system) up to the values leading to irreversible damages of photosynthetic processes is one of those factors. However, it is possible to increase, within the certain limits, the plant cenosis tolerance to the unfavorable temperatures’ effect due to the choice of the higher plants possessing resistance both to elevated and to lowered air temperatures. Besides, the plants heat tolerance can be increased when subjecting them during their growing to the hardening off temperatures’ effect. Thus, we have come to the conclusion that it is possible to increase heat tolerance of multi species cenosis under the damaging effect of air temperature of 45 (°) СC.

  1. AIRS Sea Surface Temperature and Pacific Decadal Oscillation

    NASA Astrophysics Data System (ADS)

    Chen, L. L.

    2015-12-01

    Atmospheric Infrared Sounder (AIRS) has been providing necessary measurements for long term atmospheric and surface processes aboard NASA' s Aqua polar orbiter since May 2002. Here, we use time series of AIRS sea surface temperature (SST) anomalies to show the time evolution of Pacific Decadal Oscillation (PDO) in the Gulf of Alaska (lon:-144.5, lat:54.5) from 2003 to 2014. PDO is connected to the first mode of North Pacific SST variability and is tele-connected to ENSO in the tropics. Further analysis of AIRS data can provide clarification of Pacific climate variability.

  2. Analysis of nocturnal air temperature in districts using mobile measurements and a cooling indicator

    NASA Astrophysics Data System (ADS)

    Leconte, François; Bouyer, Julien; Claverie, Rémy; Pétrissans, Mathieu

    2016-08-01

    The urban heat island phenomenon is generally defined as an air temperature difference between a city center and the non-urbanized rural areas nearby. However, this description does not encompass the intra-urban temperature differences that exist between neighborhoods in a city. This study investigates the air temperature dynamics of neighborhoods for meteorological conditions that lead to important urban heat island amplitude. Local climate zones (LCZs) have been determined in Nancy, France, and mobile screen-height air temperature measurements are performed using an instrumented vehicle. Initially, hourly measurements are performed within four different LCZs. These results show that air temperature within LCZ demonstrates a nocturnal cooling in two phases, i.e., a first phase between 1 to 3 h before sunset and 3 to 5 h after sunset, and a second phase from 3 to 5 h after sunset to sunrise. During phase 1, neighborhoods exhibit different cooling rate values and air temperature gaps develop between districts, while during phase 2, cooling rates tend to be analogous. Then, a larger meteorological data set is used to investigate these two phases for a selection of 13 LCZs. Normalized cooling rates are calculated between daytime measures and nighttime measures in order to quantify the air temperature dynamics of the studied areas during phase 1. Considering this indicator, three groups are emerging: LCZ compact midrise and open midrise with mean normalized cooling rate values of 0.09 h -1 LCZ large lowrise and open lowrise/sparsely built with mean normalized cooling rate values of 0.011 h -1 LCZ low plants with mean normalized cooling rate values of 0.014 h -1 Results indicate that the relative position of LCZ within the conurbation does not drive air temperature dynamics during phase 1. In addition, measures performed during phase 2 tend to illustrate that cooling rates are similar to all LCZ during this period.

  3. Uncertainties of satellite-derived surface skin temperatures in the polar oceans: MODIS, AIRS/AMSU, and AIRS only

    NASA Astrophysics Data System (ADS)

    Kang, H.-J.; Yoo, J.-M.; Jeong, M.-J.; Won, Y.-I.

    2015-05-01

    Uncertainties in the satellite-derived Surface Skin Temperature (SST) data in the polar oceans during two periods (16-24 April and 15-23 September) of 2003-2014 were investigated and the three datasets were intercompared as follows: MODerate Resolution Imaging Spectroradiometer Ice Surface Temperature (MODIS IST), the SST of the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A (AIRS/AMSU), and AIRS only. AIRS only algorithm was developed in preparation for the degradation of the AMSU-A. MODIS IST was systematically up to 1.65 K warmer at the sea ice boundary and up to 2.04 K colder in the polar sea ice regions of both the Arctic and Antarctic than that of the AIRS/AMSU. This difference in the results could have been caused by the surface classification method. The spatial correlation coefficient of the AIRS only to the AIRS/AMSU (0.992-0.999) method was greater than that of the MODIS IST to the AIRS/AMSU (0.968-0.994). The SST of the AIRS only compared to that of the AIRS/AMSU had a bias of 0.168 K with a RMSE of 0.590 K over the Northern Hemisphere high latitudes and a bias of -0.109 K with a RMSE of 0.852 K over the Southern Hemisphere high latitudes. There was a systematic disagreement between the AIRS retrievals at the boundary of the sea ice, because the AIRS only algorithm utilized a~less accurate GCM forecast over the seasonally-varying frozen oceans than the microwave data. The three datasets (MODIS, AIRS/AMSU and AIRS only) showed significant warming rates (2.3 ± 1.7 ~2.8 ± 1.9 K decade-1) in the northern high latitude regions (70-80° N) as expected from the ice-albedo feedback. The systematic temperature disagreement associated with surface type classification had an impact on the resulting temperature trends.

  4. Uncertainties of satellite-derived surface skin temperatures in the polar oceans: MODIS, AIRS/AMSU, and AIRS only

    NASA Astrophysics Data System (ADS)

    Kang, H.-J.; Yoo, J.-M.; Jeong, M.-J.; Won, Y.-I.

    2015-10-01

    Uncertainties in the satellite-derived surface skin temperature (SST) data in the polar oceans during two periods (16-24 April and 15-23 September) 2003-2014 were investigated and the three data sets were intercompared as follows: MODerate Resolution Imaging Spectroradiometer Ice Surface Temperature (MODIS IST), the SST of the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A (AIRS/AMSU), and AIRS only. The AIRS only algorithm was developed in preparation for the degradation of the AMSU-A. MODIS IST was systematically warmer up to 1.65 K at the sea ice boundary and colder down to -2.04 K in the polar sea ice regions of both the Arctic and Antarctic than that of the AIRS/AMSU. This difference in the results could have been caused by the surface classification method. The spatial correlation coefficient of the AIRS only to the AIRS/AMSU (0.992-0.999) method was greater than that of the MODIS IST to the AIRS/AMSU (0.968-0.994). The SST of the AIRS only compared to that of the AIRS/AMSU had a bias of 0.168 K with a RMSE of 0.590 K over the Northern Hemisphere high latitudes and a bias of -0.109 K with a RMSE of 0.852 K over the Southern Hemisphere high latitudes. There was a systematic disagreement between the AIRS retrievals at the boundary of the sea ice, because the AIRS only algorithm utilized a less accurate GCM forecast over the seasonally varying frozen oceans than the microwave data. The three data sets (MODIS, AIRS/AMSU and AIRS only) showed significant warming rates (2.3 ± 1.7 ~ 2.8 ± 1.9 K decade-1) in the northern high regions (70-80° N) as expected from the ice-albedo feedback. The systematic temperature disagreement associated with surface type classification had an impact on the resulting temperature trends.

  5. Passive radiative cooling below ambient air temperature under direct sunlight.

    PubMed

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day.

  6. Topographic and spatial impacts of temperature inversions on air quality using mobile air pollution surveys.

    PubMed

    Wallace, Julie; Corr, Denis; Kanaroglou, Pavlos

    2010-10-01

    We investigated the spatial and topographic effects of temperature inversions on air quality in the industrial city of Hamilton, located at the western tip of Lake Ontario, Canada. The city is divided by a 90-m high topographic scarp, the Niagara Escarpment, and dissected by valleys which open towards Lake Ontario. Temperature inversions occur frequently in the cooler seasons, exacerbating the impact of emissions from industry and traffic. This study used pollution data gathered from mobile monitoring surveys conducted over a 3-year period, to investigate whether the effects of the inversions varied across the city. Temperature inversions were identified with vertical temperature data from a meteorological tower located within the study area. We divided the study area into an upper and lower zone separated by the Escarpment and further into six zones, based on location with respect to the Escarpment and industrial and residential areas, to explore variations across the city. The results identified clear differences in the responses of nitrogen dioxide (NO(2)) and fine particulate matter (PM2.5) to temperature inversions, based on the topographic and spatial criteria. We found that pollution levels increased as the inversion strengthened, in the lower city. However, the results also suggested that temperature inversions identified in the lower city were not necessarily experienced in the upper city with the same intensity. Further, pollution levels in the upper city appeared to decrease as the inversion deepened in the lower city, probably because of an associated change in prevailing wind direction and lower wind speeds, leading to decreased long-range transport of pollutants.

  7. Dependence of radon levels in Postojna Cave on outside air temperature

    NASA Astrophysics Data System (ADS)

    Gregorič, A.; Zidanšek, A.; Vaupotič, J.

    2011-05-01

    Postojna Cave is the largest of 21 show caves in Slovenia. The radon concentration there was measured continuously in the Great Mountain hall from July 2005 to October 2009 and ranged from about 200 Bq m-3 in winter to about 3 kBq m-3 in summer. The observed seasonal pattern of radon concentration is governed by air movement due to the difference in external and internal air densities, controlled mainly by air temperature. The cave behaves as a large chimney and in the cold period, the warmer cave air is released vertically through cracks and fissures to the colder outside atmosphere, enabling the inflow of fresh air with low radon levels. In summer the ventilation is minimal or reversed and the air flows from the higher to the lower openings of the cave. Our calculations have shown that the effect of the difference between outside and cave air temperatures on radon concentration is delayed for four days, presumably because of the distance of the measurement point from the lower entrance (ca. 2 km). A model developed for predicting radon concentration on the basis of outside air temperature has been checked and found to be successful.

  8. Pulsed positive streamer discharges in air at high temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Kamakura, Taku

    2016-08-01

    Atmospheric-pressure air pulsed positive streamer discharges are generated in a 13 mm point-plane gap in the temperature range of 293 K-1136 K, and the effect of temperature on the streamer discharges is studied. When the temperature is increased, the product of applied voltage and temperature VT proportional to the reduced electric field can be used as a primary parameter that determines some discharge parameters regardless of temperature. For a given VT, the transferred charge per pulse, streamer diameter, product of discharge energy and temperature, and length of secondary streamer are almost constant regardless of T, whereas the streamer velocity decreases with increasing T and the decay rate of the discharge current is proportional to 1/T. The N2(C) emission intensity is approximately determined by the discharge energy independent of T. These results are useful to predict the streamer discharge and its reactive species production when the ambient temperature is increased.

  9. Arctic air may become cleaner as temperatures rise

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2011-10-01

    The air in the Arctic is cleaner during summer than during winter. Previous studies have shown that for light-scattering pollutants, this seasonal cycle is due mainly to summer precipitation removing pollutants from the air during atmospheric transport from midlatitude industrial and agricultural sources. With new measurements from Barrow, Alaska, and Alert, Nunavut, Canada, Garrett et al. extended previous research to show that light-absorbing aerosols such as black carbon are also efficiently removed by seasonal precipitation. Precipitation removes these particles from the air most efficiently at high humidities and relatively warm temperatures, suggesting that as the Arctic gets warmer and wetter in the future, the air and snow might also become cleaner.

  10. Flame Speeds of Methane-Air, Propane-Air, and Ethylene-Air Mixtures at Low Initial Temperatures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L; Heimel, Sheldon

    1952-01-01

    Flame speeds were determined for methane-air, propane-air, and ethylene-air mixtures at -73 C and for methane-air mixtures at -132 C. The data extend the curves of maximum flame speed against initial mixture temperature previously established for the range from room temperature to 344 C. Empirical equations for maximum flame speed u(cm/ sec) as a function of initial mixture temperature T(sub O) were determined to be as follows: for methane, for T(sub O) from 141 to 615 K, u = 8 + 0.000160 T(sub O)(exp 2.11); for propane, for T(sub O) from 200 to 616 K, u = 10 + 0.000342 T(sub O)(exp 2.00); for ethylene, for T(sub O) from 200 to 617 K, u = 10 + 0.00259 T(sub O)(exp 1.74). Relative flame speeds at low initial temperatures were predicted within approximately 20 percent by either the thermal theory as presented by Semenov or by the diffusion theory of Tanford and Pease. The same order was found previously for high initial temperatures. The low-temperature data were also found to extend the linear correlations between maximum flame speed and calculated equilibrium active-radical concentrations, which were established by the previously reported high-temperature data.

  11. Advances in Fast Response Acoustically Derived Air Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Bogoev, Ivan; Jacobsen, Larry; Horst, Thomas; Conrad, Benjamin

    2016-04-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity. The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  12. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    SciTech Connect

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue Fang, Jing

    2015-10-15

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  13. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue; Fang, Jing

    2015-10-01

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  14. Characteristics of Gaseous Diffusion Flames with High Temperature Combustion Air in Microgravity

    NASA Technical Reports Server (NTRS)

    Ghaderi, M.; Gupta, A. K.

    2003-01-01

    The characteristics of gaseous diffusion flames have been obtained using high temperature combustion air under microgravity conditions. The time resolved flame images under free fall microgravity conditions were obtained from the video images obtained. The tests results reported here were conducted using propane as the fuel and about 1000 C combustion air. The burner included a 0.686 mm diameter central fuel jet injected into the surrounding high temperature combustion air. The fuel jet exit Reynolds number was 63. Several measurements were taken at different air preheats and fuel jet exit Reynolds number. The resulting hybrid color flame was found to be blue at the base of the flame followed by a yellow color flame. The length and width of flame during the entire free fall conditions has been examined. Also the relative flame length and width for blue and yellow portion of the flame has been examined under microgravity conditions. The results show that the flame length decreases and width increases with high air preheats in microgravity condition. In microgravity conditions the flame length is larger with normal temperature combustion air than high temperature air.

  15. An Air Temperature Cloud Height Precipitation Phase Determination Scheme for Surface Based Modeling

    NASA Astrophysics Data System (ADS)

    Feiccabrino, J. M.

    2015-12-01

    Many hydrological and ecological models use simple surface temperature threshold equations rather than coupling with a complex meteorological model to determine if precipitation is rain or snow. Some comparative studies have found, the most common rain/snow threshold variable, air temperature to have more precipitation phase error than dew-point or wet-bulb temperature, which account for the important secondary role of humidity in the melting and sublimation processes. However, just like surface air temperature, surface humidity is often effected by soil conditions and vegetation and is therefore not always representative of the atmospheric humidity precipitation falls through. A viable alternative to using surface humidity as a proxy for atmospheric moisture would be to adjust the rain snow threshold for changes in cloud height. The height of a cloud base above the ground gives the depth of an unsaturated layer. An unsaturated atmospheric layer should have much different melting and sublimation rates than a saturated cloud layer. Therefore, rain and snow percentages at a given surface air temperature should change with the height of the lowest cloud base. This study uses hourly observations from 12 U.S. manually augmented meteorological stations located in the Great Plains and Midwest upwind or away from major water bodies in relatively flat areas in an attempt to limit geographical influences. The surface air temperature threshold for the ground to 200 feet (under 100m) was 0.0°C, 0.6°C for 300-600 feet (100-200m), 1.1°C for 700-1200 feet (300-400m), 1.7°C for 1300-2000 feet (500-600m), and 2.2°C for 2100-3300 feet (700-1000m). Total precipitation error for these cloud height air temperature thresholds reduced the error from the single air temperature threshold 1.1°C by 15% from 14% to 12% total error between -2.2°C and 3.9°C. These air temperature cloud height thresholds resulted in 1.5% less total error than the dew-point temperature threshold 0.0

  16. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  17. Assessment of two-temperature kinetic model for ionizing air

    NASA Technical Reports Server (NTRS)

    Park, Chul

    1987-01-01

    A two-temperature chemical-kinetic model for air is assessed by comparing theoretical results with existing experimental data obtained in shock-tubes, ballistic ranges, and flight experiments. In the model, named the TTv model, one temperature (T) is assumed to characterize the heavy-particle translational and molecular rotational energies, and another temperature (Tv) to characterize the molecular vibrational, electron translational, and electronic excitation energies. The theoretical results for nonequilibrium air flow in shock tubes are obtained using the computer code STRAP (Shock-Tube Radiation Program), and for flow along the stagnation streamline in the shock layer over spherical bodies using the newly developed code STRAP (Stagnation-Point Radiation Program). Substantial agreement is shown between the theoretical and experimental results for relaxation times and radiative heat fluxes. At very high temperatures the spectral calculations need further improvement. The present agreement provides strong evidence that the two-temperature model characterizes principal features of nonequilibrium air flow. New theoretical results using the model are presented for the radiative heat fluxes at the stagnation point of a 6-m-radius sphere, representing an aeroassisted orbital transfer vehicle, over a range of free-stream conditions. Assumptions, approximations, and limitations of the model are discussed.

  18. The mass and speed dependence of meteor air plasma temperatures.

    PubMed

    Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  19. Can air temperature be used to project influences of climate change on stream temperature?

    USGS Publications Warehouse

    Arismendi, Ivan; Safeeq, Mohammad; Dunham, Jason B.; Johnson, Sherri L.

    2014-01-01

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To address this knowledge gap, we examined the performance of two widely used linear and nonlinear regression models that predict stream temperatures based on air temperatures. We evaluated model performance and temporal stability of model parameters in a suite of regulated and unregulated streams with 11–44 years of stream temperature data. Although such models may have validity when predicting stream temperatures within the span of time that corresponds to the data used to develop them, model predictions did not transfer well to other time periods. Validation of model predictions of most recent stream temperatures, based on air temperature–stream temperature relationships from previous time periods often showed poor performance when compared with observed stream temperatures. Overall, model predictions were less robust in regulated streams and they frequently failed in detecting the coldest and warmest temperatures within all sites. In many cases, the magnitude of errors in these predictions falls within a range that equals or exceeds the magnitude of future projections of climate-related changes in stream temperatures reported for the region we studied (between 0.5 and 3.0 °C by 2080). The limited ability of regression-based statistical models to accurately project stream temperatures over time likely stems from the fact that underlying processes at play, namely the heat budgets of air and water, are distinctive in each medium and vary among localities and through time.

  20. Microwave temperature profiler for clear air turbulence prediction

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    1992-01-01

    A method is disclosed for determining Richardson Number, Ri, or its reciprocal, RRi, for clear air prediction using measured potential temperature and determining the vertical gradient of potential temperature, d(theta)/dz. Wind vector from the aircraft instrumentation versus potential temperature, dW/D(theta), is determined and multiplies by d(theta)/dz to obtain dW/dz. Richardson number or its reciprocal is then determined from the relationship Ri = K(d theta)/dz divided by (dW/dz squared) for use in detecting a trend toward a threshold value for the purpose of predicting clear air turbulence. Other equations for this basic relationship are disclosed together with the combination of other atmospheric observables using multiple regression techniques.

  1. Impacts of Lowered Urban Air Temperatures on Precursor Emission and Ozone Air Quality.

    PubMed

    Taha, Haider; Konopacki, Steven; Akbari, Hashem

    1998-09-01

    Meteorological, photochemical, building-energy, and power plant simulations were performed to assess the possible precursor emission and ozone air quality impacts of decreased air temperatures that could result from implementing the "cool communities" concept in California's South Coast Air Basin (SoCAB). Two pathways are considered. In the direct pathway, a reduction in cooling energy use translates into reduced demand for generation capacity and, thus, reduced precursor emissions from electric utility power plants. In the indirect pathway, reduced air temperatures can slow the atmospheric production of ozone as well as precursor emission from anthropogenic and biogenic sources. The simulations suggest small impacts on emissions following implementation of cool communities in the SoCAB. In summer, for example, there can be reductions of up to 3% in NOx emissions from in-basin power plants. The photochemical simulations suggest that the air quality impacts of these direct emission reductions are small. However, the indirect atmospheric effects of cool communities can be significant. For example, ozone peak concentrations can decrease by up to 11% in summer and population-weighted exceedance exposure to ozone above the California and National Ambient Air Quality Standards can decrease by up to 11 and 17%, respectively. The modeling suggests that if these strategies are combined with others, such as mobile-source emission control, the improvements in ozone air quality can be substantial.

  2. The Effects of Air Pollution and Temperature on COPD

    PubMed Central

    Hansel, Nadia N.; McCormack, Meredith C.; Kim, Victor

    2016-01-01

    Chronic Obstructive Pulmonary Disease (COPD) affects 12–16 million people in the United States and is the third-leading cause of death. In developed countries, smoking is the greatest risk factor for the development of COPD, but other exposures also contribute to the development and progression of the disease. Several studies suggest, though are not definitive, that outdoor air pollution exposure is linked to the prevalence and incidence of COPD. Among individuals with COPD, outdoor air pollutants are associated with loss of lung function and increased respiratory symptoms. In addition, outdoor air pollutants are also associated with COPD exacerbations and mortality. There is much less evidence for the impact of indoor air on COPD, especially in developed countries in residences without biomass exposure. The limited existing data suggests that indoor particulate matter and nitrogen dioxide concentrations are linked to increased respiratory symptoms among patients with COPD. In addition, with the projected increases in temperature and extreme weather events in the context of climate change there has been increased attention to the effects of heat exposure. Extremes of temperature—both heat and cold—have been associated with increased respiratory morbidity in COPD. Some studies also suggest that temperature may modify the effect of pollution exposure and though results are not conclusive, understanding factors that may modify susceptibility to air pollution in patients with COPD is of utmost importance. PMID:26683097

  3. Identifying anthropogenic anomalies in air, surface and groundwater temperatures in Germany.

    PubMed

    Benz, Susanne A; Bayer, Peter; Blum, Philipp

    2017-04-15

    Human activity directly influences ambient air, surface and groundwater temperatures. The most prominent phenomenon is the urban heat island effect, which has been investigated particularly in large and densely populated cities. This study explores the anthropogenic impact on the thermal regime not only in selected urban areas, but on a countrywide scale for mean annual temperature datasets in Germany in three different compartments: measured surface air temperature, measured groundwater temperature, and satellite-derived land surface temperature. Taking nighttime lights as an indicator of rural areas, the anthropogenic heat intensity is introduced. It is applicable to each data set and provides the difference between measured local temperature and median rural background temperature. This concept is analogous to the well-established urban heat island intensity, but applicable to each measurement point or pixel of a large, even global, study area. For all three analyzed temperature datasets, anthropogenic heat intensity grows with increasing nighttime lights and declines with increasing vegetation, whereas population density has only minor effects. While surface anthropogenic heat intensity cannot be linked to specific land cover types in the studied resolution (1km×1km) and classification system, both air and groundwater show increased heat intensities for artificial surfaces. Overall, groundwater temperature appears most vulnerable to human activity, albeit the different compartments are partially influenced through unrelated processes; unlike land surface temperature and surface air temperature, groundwater temperatures are elevated in cultivated areas as well. At the surface of Germany, the highest anthropogenic heat intensity with 4.5K is found at an open-pit lignite mine near Jülich, followed by three large cities (Munich, Düsseldorf and Nuremberg) with annual mean anthropogenic heat intensities >4K. Overall, surface anthropogenic heat intensities >0K and

  4. The relationship between radiant heat, air temperature and thermal comfort at rest and exercise.

    PubMed

    Guéritée, Julien; Tipton, Michael J

    2015-02-01

    The aims of the present work were to investigate the relationships between radiant heat load, air velocity and body temperatures with or without coincidental exercise to determine the physiological mechanisms that drive thermal comfort and thermoregulatory behaviour. Seven male volunteers wearing swimming trunks in 18°C, 22°C or 26°C air were exposed to increasing air velocities up to 3 m s(-1) and self-adjusted the intensity of the direct radiant heat received on the front of the body to just maintain overall thermal comfort, at rest or when cycling (60 W, 60 rpm). During the 30 min of the experiments, skin and rectal temperatures were continuously recorded. We hypothesized that mean body temperature should be maintained stable and the intensity of the radiant heat and the mean skin temperatures would be lower when cycling. In all conditions, mean body temperature was lower when facing winds of 3 m s(-1) than during the first 5 min, without wind. When facing winds, in all but the 26°C air, the radiant heat was statistically higher at rest than when exercising. In 26°C air mean skin temperature was lower at rest than when exercising. No other significant difference was observed. In all air temperatures, high correlation coefficients were observed between the air velocity and the radiant heat load. Other factors that we did not measure may have contributed to the constant overall thermal comfort status despite dropping mean skin and body temperatures. It is suggested that the allowance to behaviourally adjust the thermal environment increases the tolerance of cold discomfort.

  5. Requirements for high-temperature air-cooled central receivers

    NASA Astrophysics Data System (ADS)

    Wright, J. D.; Copeland, R. J.

    1983-12-01

    The design of solar thermal central receivers will be shaped by the end user's need for energy. This paper identifies the requirements for receivers supplying heat for industrial processes or electric power generation in the temperature range 540 to 1000(0)C and evaluates the effects of the requirements on air cooled central receivers. Potential IPH applications are identified as large baseload users that are located some distance from the receiver. In the electric power application, the receiver must supply heat to a pressurized gas power cycle. The difficulty in providing cost effective thermal transport and thermal storage for air cooled receivers is a critical problem.

  6. The comparative performance of an aviation engine at normal and high inlet air temperatures

    NASA Technical Reports Server (NTRS)

    Gardiner, Arthur W; Schey, Oscar W

    1928-01-01

    This report presents some results obtained during an investigation to determine the effect of high inlet air temperature on the performance of a Liberty 12 aviation engine. The purpose of this investigation was to ascertain, for normal service carburetor adjustments and a fixed ignition advance, the relation between power and temperature for the range of carburetor air temperatures that may be encountered when supercharging to sea level pressure at altitudes of over 20,000 feet and without intercooling when using plain aviation gasoline and mixtures of benzol and gasoline. The results show that for the conditions of test, both the brake and indicated power decrease with increase in air temperature at a faster rate than given by the theoretical assumption that power varies inversely as the square root of the absolute temperature. On a brake basis, the order of the difference in power for a temperature difference of 120 degrees F. Is 3 to 5 per cent. The observed relation between power and temperature when using the 30-70 blend was found to be linear. But, although these differences are noted, the above theoretical assumption may be considered as generally applicable except where greater precision over a wide range of temperatures is desired, in which case it appears necessary to test the particular engine under the given conditions. (author)

  7. Record low surface air temperature at Vostok station, Antarctica

    NASA Astrophysics Data System (ADS)

    Turner, John; Anderson, Phil; Lachlan-Cope, Tom; Colwell, Steve; Phillips, Tony; Kirchgaessner, AméLie; Marshall, Gareth J.; King, John C.; Bracegirdle, Tom; Vaughan, David G.; Lagun, Victor; Orr, Andrew

    2009-12-01

    The lowest recorded air temperature at the surface of the Earth was a measurement of -89.2°C made at Vostok station, Antarctica, at 0245 UT on 21 July 1983. Here we present the first detailed analysis of this event using meteorological reanalysis fields, in situ observations and satellite imagery. Surface temperatures at Vostok station in winter are highly variable on daily to interannual timescales as a result of the great sensitivity to intrusions of maritime air masses as Rossby wave activity changes around the continent. The record low temperature was measured following a near-linear cooling of over 30 K over a 10 day period from close to mean July temperatures. The event occurred because of five specific conditions that arose: (1) the temperature at the core of the midtropospheric vortex was at a near-record low value; (2) the center of the vortex moved close to the station; (3) an almost circular flow regime persisted around the station for a week resulting in very little warm air advection from lower latitudes; (4) surface wind speeds were low for the location; and (5) no cloud or diamond dust was reported above the station for a week, promoting the loss of heat to space via the emission of longwave radiation. We estimate that should a longer period of isolation occur the surface temperature at Vostok could drop to around -96°C. The higher site of Dome Argus is typically 5-6 K colder than Vostok so has the potential to record an even lower temperature.

  8. Influence of metallic vapours on thermodynamic and transport properties of two-temperature air plasma

    NASA Astrophysics Data System (ADS)

    Zhong, Linlin; Wang, Xiaohua; Cressault, Yann; Teulet, Philippe; Rong, Mingzhe

    2016-09-01

    The metallic vapours (i.e., copper, iron, and silver in this paper) resulting from walls and/or electrode surfaces can significantly affect the characteristics of air plasma. Different from the previous works assuming local thermodynamic equilibrium, this paper investigates the influence of metallic vapours on two-temperature (2 T) air plasma. The 2 T compositions of air contaminated by Cu, Fe, and Ag are first determined based on Saha's and Guldberg-Waage's laws. The thermodynamic properties (including mass density, specific enthalpy, and specific heat) are then calculated according to their definitions. After determining the collision integrals for each pair of species in air-metal mixtures using the newly published methods and source data, the transport coefficients (including electrical conductivity, viscosity, and thermal conductivity) are calculated for air-Cu, air-Fe, and air-Ag plasmas with different non-equilibrium degree θ (Te/Th). The influences of metallic contamination as well as non-equilibrium degree are discussed. It is found that copper, iron, and silver exist mainly in the form of Cu2, FeO, and AgO at low temperatures. Generally, the metallic vapours increase mass density at most temperatures, reduce the specific enthalpy and specific heat in the whole temperature range, and affect the transport properties remarkably from 5000 K to 20 000 K. The effect arising from the type of metals is little except for silver at certain temperatures. Besides, the departure from thermal equilibrium results in the delay of dissociation and ionization reactions, leading to the shift of thermodynamic and transport properties towards a higher temperature.

  9. Assimilation of Quality Controlled AIRS Temperature Profiles using the NCEP GFS

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste; Iredell, Lena; Rosenberg, Robert

    2013-01-01

    We have previously conducted a number of data assimilation experiments using AIRS Version-5 quality controlled temperature profiles as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The data assimilation and forecast system we used was the Goddard Earth Observing System Model , Version-5 (GEOS-5) Data Assimilation System (DAS), which represents a combination of the NASA GEOS-5 forecast model with the National Centers for Environmental Prediction (NCEP) operational Grid Point Statistical Interpolation (GSI) global analysis scheme. All analyses and forecasts were run at a 0.5deg x 0.625deg spatial resolution. Data assimilation experiments were conducted in four different seasons, each in a different year. Three different sets of data assimilation experiments were run during each time period: Control; AIRS T(p); and AIRS Radiance. In the "Control" analysis, all the data used operationally by NCEP was assimilated, but no AIRS data was assimilated. Radiances from the Aqua AMSU-A instrument were also assimilated operationally by NCEP and are included in the "Control". The AIRS Radiance assimilation adds AIRS observed radiance observations for a select set of channels to the data set being assimilated, as done operationally by NCEP. In the AIRS T(p) assimilation, all information used in the Control was assimilated as well as Quality Controlled AIRS Version-5 temperature profiles, i.e., AIRS T(p) information was substituted for AIRS radiance information. The AIRS Version-5 temperature profiles were presented to the GSI analysis as rawinsonde profiles, assimilated down to a case-by-case appropriate pressure level p(sub best) determined using the Quality Control procedure. Version-5 also determines case-by-case, level-by-level error estimates of the temperature profiles, which were used as the uncertainty of each temperature measurement. These experiments using GEOS-5 have shown that forecasts

  10. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Virbulis, J.

    2016-04-01

    Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  11. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect

    Waye, S.; Musselman, M.; King, C.

    2014-09-01

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  12. Temperature Variations Recorded During Interinstitutional Air Shipments of Laboratory Mice

    PubMed Central

    Syversen, Eric; Pineda, Fernando J; Watson, Julie

    2008-01-01

    Despite extensive guidelines and regulations that govern most aspects of rodent shipping, few data are available on the physical environment experienced by rodents during shipment. To document the thermal environment experienced by mice during air shipments, we recorded temperatures at 1-min intervals throughout 103 routine interinstitutional shipments originating at our institution. We found that 49.5% of shipments were exposed to high temperatures (greater than 29.4 °C), 14.6% to low temperatures (less than 7.2 °C), and 61% to temperature variations of 11 °C or more. International shipments were more likely than domestic shipments to experience temperature extremes and large variations in temperature. Freight forwarders using passenger airlines rather than their own airplanes were more likely to have shipments that experienced temperature extremes or variations. Temperature variations were most common during stopovers. Some airlines were more likely than others to experience inflight temperature extremes or swings. Most domestic shipments lasted at least 24 h, whereas international shipments lasted 48 to 72 h. Despite exposure to high and low temperatures, animals in all but 1 shipment arrived alive. We suggest that simple measures, such as shipping at night during hot weather, provision of nesting material in shipping crates, and specifying aircraft cargo-hold temperatures that are suitable for rodents, could reduce temperature-induced stress. Measures such as additional training for airport ground crews, as previously recommended by the American Veterinary Medical Association, could further reduce exposure of rodents to extreme ambient temperatures during airport stopovers. PMID:18210996

  13. Global surface air temperature variations: 1851-1984

    SciTech Connect

    Jones, P.D.; Raper, S.C.B.; Kelly, P.M.

    1986-11-01

    Many attempts have been made to combine station surface air temperature data into an average for the Northern Hemisphere. Fewer attempts have been made for the Southern Hemisphere because of the unavailability of data from the Antarctic mainland before the 1950s and the uncertainty of making a hemispheric estimate based solely on land-based analyses for a hemisphere that is 80% ocean. Past estimates have been based largely on data from the World Weather Records (Smithsonian Institution, 1927, 1935, 1947, and U.S. Weather Bureau, 1959-82) and have been made without considerable effort to detect and correct station inhomogeneities. Better estimates for the Southern Hemisphere are now possible because of the availability of 30 years of climatological data from Antarctica. The mean monthly surface air temperature anomalies presented in this package for the than those previously published because of the incorporation of data previously hidden away in archives and the analysis of station homogeneity before estimation.

  14. Air conditioner operation behaviour based on students' skin temperature in a classroom.

    PubMed

    Song, Gook-Sup; Lim, Jae-Han; Ahn, Tae-Kyung

    2012-01-01

    A total of 25 college students participated in a study to determine when they would use an air conditioner during a lecture in a university classroom. The ambient temperature and relative humidity were measured 75 cm above the floor every minute. Skin temperatures were measured every minute at seven points, according to the recommendation of Hardy and Dubois. The average clothing insulation value (CLO) of subjects was 0.53 ± 0.07 CLO. The mean air velocity in the classroom was 0.13 ± 0.028 m/s. When the subjects turned the air conditioner both on and off, the average ambient temperatures, relative humidity and mean skin temperatures were 27.4 and 23.7 °C (p = 0.000), 40.9 and 40.0% (p = 0.528) and 32.7 and 32.2 °C (p = 0.024), respectively. When the status of the air conditioner was changed, the differences of skin temperatures in core body parts (head, abdomen and thigh) were not statistically significant. However, in the extremities (mid-lower arm, hand, shin and instep), the differences were statistically significant. Subjects preferred a fluctuating environment to a constant temperature condition. We found that a changing environment does not affect classroom study.

  15. Evidence of Lunar Phase Influence on Global Surface Air Temperatures

    NASA Technical Reports Server (NTRS)

    Anyamba, Ebby; Susskind, Joel

    2000-01-01

    Intraseasonal oscillations appearing in a newly available 20-year record of satellite-derived surface air temperature are composited with respect to the lunar phase. Polar regions exhibit strong lunar phase modulation with higher temperatures occurs near full moon and lower temperatures at new moon, in agreement with previous studies. The polar response to the apparent lunar forcing is shown to be most robust in the winter months when solar influence is minimum. In addition, the response appears to be influenced by ENSO events. The highest mean temperature range between full moon and new moon in the polar region between 60 deg and 90 deg latitude was recorded in 1983, 1986/87, and 1990/91. Although the largest lunar phase signal is in the polar regions, there is a tendency for meridional equatorward progression of anomalies in both hemispheres so that the warning in the tropics occurs at the time of the new moon.

  16. Multi-fractal scaling comparison of the Air Temperature and the Surface Temperature over China

    NASA Astrophysics Data System (ADS)

    Jiang, Lei; Zhang, Jiping; Liu, Xinwei; Li, Fei

    2016-11-01

    The spatial and temporal multi-scaling behaviors between the daily Air Temperature (AT) and the Surface Temperature (ST) over China are compared in about 60-yr observations by Multi-fractal Detrended Fluctuation Analysis (MF-DFA) method. The different fractal phenomena and diversity features in the geographic distribution are found for the AT and ST series using MF-DFA. There are more multi-fractal features for the AT records but less for ST. The respective geographic sites show important scaling differences when compared to the multi-fractal signatures of AT with ST. An interval threshold for 95% confidence level is obtained by shuffling the AT records and the ST records. For the AT records, 93% of all observed stations shows the strong multi-fractal behaviors. In addition, the multi-fractal characteristics decrease with increasing latitude in South China and are obviously strong along the coast. The multi-fractal behaviors of the AT records between the Yangtze River and Yellow River basin and in most regions of Northwest China seem to be weak and not significant, even single mono-fractal features. However, for the ST records, the geographical distributions of multi-fractal phenomenon seem to be in disorder which account for 81% of the stations. The weak multi-fractal behaviors of the ST records are concentrated in North China, most regions of Northeast China.

  17. Improving Forecast Skill by Assimilation of Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2009-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of cloud cleared radiances R(sub i). This approach allows for the generation of accurate values of R(sub i) and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel error estimates for R(sub i). These error estimates are used for Quality Control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of Quality Control using the NASA GEOS-5 data assimilation system. Assimilation of Quality Controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done operationally by ECMWF and NCEP. Forecast resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.

  18. Data Assimilation Experiments using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    SUsskind, Joel

    2008-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 pm C02 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 pm C02 observations are now used primarily in the generation of cloud cleared radiances Ri. This approach allows for the generation of accurate values of Ri and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by- channel error estimates for Ri. These error estimates are used for quality control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of quality control using the NASA GEOS-5 data assimilation system. Assimilation of quality controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done Operationally by ECMWF and NCEP. Forecasts resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.

  19. Antarctic Sea ice variations and seasonal air temperature relationships

    NASA Technical Reports Server (NTRS)

    Weatherly, John W.; Walsh, John E.; Zwally, H. J.

    1991-01-01

    Data through 1987 are used to determine the regional and seasonal dependencies of recent trends of Antarctic temperature and sea ice. Lead-lag relationships involving regional sea ice and air temperature are systematically evaluated, with an eye toward the ice-temperature feedbacks that may influence climatic change. Over the 1958-1087 period the temperature trends are positive in all seasons. For the 15 years (l973-l987) for which ice data are available, the trends are predominantly positive only in winter and summer, and are most strongly positive over the Antarctic Peninsula. The spatially aggregated trend of temperature for this latter period is small but positive, while the corresponding trend of ice coverage is small but negative. Lag correlations between seasonal anomalies of the two variables are generally stronger with ice lagging the summer temperatures and with ice leading the winter temperatures. The implication is that summer temperatures predispose the near-surface waters to above-or below-normal ice coverage in the following fall and winter.

  20. Estimating daily air temperatures over the Tibetan Plateau by dynamically integrating MODIS LST data

    NASA Astrophysics Data System (ADS)

    Zhang, Hongbo; Zhang, Fan; Ye, Ming; Che, Tao; Zhang, Guoqing

    2016-10-01

    Recently, remotely sensed land surface temperature (LST) data have been used to estimate air temperatures because of the sparseness of station measurements in remote mountainous areas. Due to the availability and accuracy of Moderate Resolution Imaging Spectroradiometer (MODIS) LST data, the use of a single term or a fixed combination of terms (e.g., Terra/Aqua night and Terra/Aqua day), as used in previous estimation methods, provides only limited practical application. Furthermore, the estimation accuracy may be affected by different combinations and variable data quality among the MODIS LST terms and models. This study presents a method that dynamically integrates the available LST terms to estimate the daily mean air temperature and simultaneously considers model selection, data quality, and estimation accuracy. The results indicate that the differences in model performance are related to the combinations of LST terms and their data quality. The spatially averaged cloud cover of 14% for the developed product between 2003 and 2010 is much lower than the 35-54% for single LST terms. The average cross-validation root-mean-square difference values are approximately 2°C. This study identifies the best LST combinations and statistical models and provides an efficient method for daily air temperature estimation with low cloud blockage over the Tibetan Plateau (TP). The developed data set and the method proposed in this study can help alleviate the problem of sparse air temperature data over the TP.

  1. Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Chunlin; Wu, Yi; Chen, Zhexin; Yang, Fei; Feng, Ying; Rong, Mingzhe; Zhang, Hantian

    2016-07-01

    Air plasma has been widely applied in industrial manufacture. In this paper, both dry and humid air plasmas' thermodynamic and transport properties are calculated in temperature 300-100000 K and pressure 0.1-100 atm. To build a more precise model of real air plasma, over 70 species are considered for composition. Two different methods, the Gibbs free energy minimization method and the mass action law method, are used to determinate the composition of the air plasma in a different temperature range. For the transport coefficients, the simplified Chapman-Enskog method developed by Devoto has been applied using the most recent collision integrals. It is found that the presence of CO2 has almost no effect on the properties of air plasma. The influence of H2O can be ignored except in low pressure air plasma, in which the saturated vapor pressure is relatively high. The results will serve as credible inputs for computational simulation of air plasma. supported by the National Key Basic Research Program of China (973 Program)(No. 2015CB251002), National Natural Science Foundation of China (Nos. 51521065, 51577145), the Science and Technology Project Funds of the Grid State Corporation (SGTYHT/13-JS-177), the Fundamental Research Funds for the Central Universities, and State Grid Corporation Project (GY71-14-004)

  2. Quantitative reconstruction of paleoclimate - Air and ground temperature tracking from Emigrant Pass Observatory

    NASA Astrophysics Data System (ADS)

    Chapman, D. S.; Bartlett, M. G.; Harris, R. N.

    2004-12-01

    Borehole temperature-depth profiles contain information about surface ground temperatures histories and provide a useful complement to proxy indicators of climate change. An inherent assumption in borehole temperature reconstructions is that air and ground temperatures are coupled through heat diffusion track each other at annual and longer periods. The Emigrant Pass Observatory (EPO), located in the Grouse Creek Mountains of northwestern Utah, is designed to test ground-air temperature tracking. Analyses of 10 years of observations at EPO demonstrate the following: 1) Ground temperatures track air temperatures at annual and longer periods exceptionally well at the site. Divergence between the observed temperatures at 1 m in the subsurface and air temperatures modeled as a boundary layer forcing is less than 0.04 K per annum. 2) Seasonal variations in incident solar radiation are ~200 Wm-2 leading to an average annual difference between ground and air temperatures, Δ Tg-a, of 2.55 K (±0.01) from 1993-2003. The temperature difference varies from -5 K to +10 K when averaged over a diurnal cycle, and from 2.50 K to 2.60 K over an annual cycle. However, inter-annual variations in insulation are less than 1 Wm-2; consequently, solar radiation is not observed to affect the inter-annual tracking at the site. 3) Model studies snow-ground thermal interactions at EPO demonstrate that seasonal snow cover can either warm or cool the ground relative to the annual mean air temperature and that the winter snow effect is an order of magnitude smaller than the summer radiation effect at the site. 4) Temperature observations at various depths within the granite and soils at the site allow us to make estimates of in-situ thermal diffusivity and its changes with time. The "apparent" thermal diffusivity of the upper meter of granite at EPO ranges from 0.88-0.98 x 10-6 m2s-1 while the soil varies from 0.57-0.68 x 10-6 m2s-1. The accumulation of data at EPO leads to a quantitative

  3. Local air temperature tolerance: a sensible basis for estimating climate variability

    NASA Astrophysics Data System (ADS)

    Kärner, Olavi; Post, Piia

    2016-11-01

    The customary representation of climate using sample moments is generally biased due to the noticeably nonstationary behaviour of many climate series. In this study, we introduce a moment-free climate representation based on a statistical model fitted to a long-term daily air temperature anomaly series. This model allows us to separate the climate and weather scale variability in the series. As a result, the climate scale can be characterized using the mean annual cycle of series and local air temperature tolerance, where the latter is computed using the fitted model. The representation of weather scale variability is specified using the frequency and the range of outliers based on the tolerance. The scheme is illustrated using five long-term air temperature records observed by different European meteorological stations.

  4. [Environment of high temperature or air particle matter pollution, and health promotion of exercise].

    PubMed

    Zhao, Jie-xiu; Xu, Min-xiao; Wu, Zhao-zhao

    2014-10-01

    It is important to keep human health in special environment, since the special environment has different effects on health. In this review, we focused on high temperature and air particle matter environment, and health promotion of exercise. Exercise and high temperature are the main non-pharmacological therapeutic interventions of insulin resistance (IR). PGC-1α is key regulatory factor in health promotion of exercise and high temperature. The novel hormone Irisin might be the important pathway through which heat and exercise could have positive function on IR. Air particle matter (PM) is associated with onset of many respiratory diseases and negative effects of exerciser performance. However, regular exercise plays an important role in improving health of respiratory system and lowering the risk induced by PM. Furthermore, free radicals and inflammatory pathways are included in the possible mechanisms of positive physiological effects induced by exercise in air particle matter environment.

  5. A new approach for highly resolved air temperature measurements in urban areas

    NASA Astrophysics Data System (ADS)

    Buttstädt, M.; Sachsen, T.; Ketzler, G.; Merbitz, H.; Schneider, C.

    2011-02-01

    In different fields of applied local climate investigation, highly resolved data of air temperature are of great importance. As a part of the research programme entitled City2020+, which deals with future climate conditions in agglomerations, this study focuses on increasing the quantity of urban air temperature data intended for the analysis of their spatial distribution. A new measurement approach using local transport buses as "riding thermometers" is presented. By this means, temperature data with a very high temporal and spatial resolution could be collected during scheduled bus rides. The data obtained provide the basis for the identification of thermally affected areas and for the investigation of factors in urban structure which influence the thermal conditions. Initial results from the ongoing study, which show the temperature distribution along different traverses through the city of Aachen, are presented.

  6. Sensitivity of New England Stream Temperatures to Air Temperature and Precipitation Under Projected Climate

    NASA Astrophysics Data System (ADS)

    Huang, T.; Samal, N. R.; Wollheim, W. M.; Stewart, R. J.; Zuidema, S.; Prousevitch, A.; Glidden, S.

    2015-12-01

    The thermal response of streams and rivers to changing climate will influence aquatic habitat. This study examines the impact that changing climate has on stream temperatures in the Merrimack River, NH/MA USA using the Framework for Aquatic Modeling in the Earth System (FrAMES), a spatially distributed river network model driven by air temperature, air humidity, wind speed, precipitation, and solar radiation. Streamflow and water temperatures are simulated at a 45-second (latitude x longitude) river grid resolution for 135 years under historical and projected climate variability. Contemporary streamflow (Nash-Sutcliffe Coefficient = 0.77) and river temperatures (Nash-Sutcliffe Coefficient = 0.89) matched at downstream USGS gauge data well. A suite of model runs were made in combination with uniformly increased daily summer air temperatures by 2oC, 4 oC and 6 oC as well as adjusted precipitation by -40%, -30%, -20%, -10% and +10% as a sensitivity analysis to explore a broad range of potential future climates. We analyzed the summer stream temperatures and the percent of river length unsuitable for cold to warm water fish habitats. Impacts are greatest in large rivers due to the accumulation of river temperature warming throughout the entire river network. Cold water fish (i.e. brook trout) are most strongly affected while, warm water fish (i.e. largemouth bass) aren't expected to be impacted. The changes in stream temperatures under various potential climate scenarios will provide a better understanding of the specific impact that air temperature and precipitation have on aquatic thermal regimes and habitat.

  7. Quantifying the impact of land cover composition on intra-urban air temperature variations at a mid-latitude city.

    PubMed

    Yan, Hai; Fan, Shuxin; Guo, Chenxiao; Hu, Jie; Dong, Li

    2014-01-01

    The effects of land cover on urban-rural and intra-urban temperature differences have been extensively documented. However, few studies have quantitatively related air temperature to land cover composition at a local scale which may be useful to guide landscape planning and design. In this study, the quantitative relationships between air temperature and land cover composition at a neighborhood scale in Beijing were investigated through a field measurement campaign and statistical analysis. The results showed that the air temperature had a significant positive correlation with the coverage of man-made surfaces, but the degree of correlation varied among different times and seasons. The different land cover types had different effects on air temperature, and also had very different spatial extent dependence: with increasing buffer zone size (from 20 to 300 m in radius), the correlation coefficient of different land cover types varied differently, and their relative impacts also varied among different times and seasons. At noon in summer, ∼ 37% of the variations in temperature were explained by the percentage tree cover, while ∼ 87% of the variations in temperature were explained by the percentage of building area and the percentage tree cover on summer night. The results emphasize the key role of tree cover in attenuating urban air temperature during daytime and nighttime in summer, further highlighting that increasing vegetation cover could be one effective way to ameliorate the urban thermal environment.

  8. Myoglobin solvent structure at different temperatures

    SciTech Connect

    Daniels, B.V.; Korszun, Z.R.; Schoenborn, B.P.

    1994-12-31

    The structure of the solvent surrounding myoglobin crystals has been analyzed using neutron diffraction data, and the results indicate that the water around the protein is not disordered, but rather lies in well-defined hydration shells. We have analyzed the structure of the solvent surrounding the protein by collecting neutron diffraction data at four different temperatures, namely, 80, 130, 180, and 240K. Relative Wilson Statistics applied to low resolution data showed evidence of a phase transition in the region of 180K. A plot of the liquidity factor, B{sub sn}, versus distance from the protein surface begins with a high plateau near the surface of the protein and drops to two minima at distances from the protein surface of about 2.35{Angstrom} and 3.85{Angstrom}. Two distinct hydration shells are observed. Both hydration shells are observed to expand as the temperature is increased.

  9. On extreme rainfall intensity increases with air temperature

    NASA Astrophysics Data System (ADS)

    Molnar, Peter; Fatichi, Simone; Paschalis, Athanasios; Gaal, Ladislav; Szolgay, Jan; Burlando, Paolo

    2016-04-01

    The water vapour holding capacity of air increases at about 7% per degree C according to the Clausius-Clapeyron (CC) relation. This is one of the arguments why a warmer future atmosphere, being able to hold more moisture, will generate higher extreme precipitation intensities. However, several empirical studies have recently demonstrated an increase in extreme rain intensities with air temperature above CC rates, in the range 7-14% per degree C worldwide (called super-CC rates). This was observed especially for shorter duration rainfall, i.e. in hourly and finer resolution data (e.g. review in Westra et al., 2014). The super-CC rate was attributed to positive feedbacks between water vapour and the updraft dynamics in convective clouds and lateral supply (convergence) of moisture. In addition, mixing of storm types was shown to be potentially responsible for super-CC rates in empirical studies. Assuming that convective events are accompanied by lightning, we will show on a large rainfall dataset in Switzerland (30 year records of 10-min and 1-hr data from 59 stations) that while the average rate of increase in extreme rainfall intensity (95th percentile) is 6-7% in no-lightning events and 8-9% in lightning events, it is 11-13% per degree C when all events are combined (Molnar et al., 2015). These results are relevant for climate change studies which predict shifts in storm types in a warmer climate in some parts of the world. The observation that extreme rain intensity and air temperature are positively correlated has consequences for the stochastic modelling of rainfall. Most current stochastic models do not explicitly include a direct rain intensity-air temperature dependency beyond applying factors of change predicted by climate models to basic statistics of precipitation. Including this dependency explicitly in stochastic models will allow, for example in the nested modelling approach of Paschalis et al. (2014), the random cascade disaggregation routine to be

  10. Air-sea interactions in sea surface temperature frontal region

    NASA Astrophysics Data System (ADS)

    Pianezze, Joris; Redelsperger, Jean-Luc; Ardhuin, Fabrice; Reynaud, Thierry; Marié, Louis; Bouin, Marie-Noelle; Garnier, Valerie

    2015-04-01

    Representation of air-sea exchanges in coastal, regional and global models represent a challenge firstly due to the small scale of acting turbulent processes comparatively to the resolved scales of these models. Beyond this subgrid parameterization issue, a comprehensive understanding of air-sea interactions at the turbulent process scales is still lacking. Many successful efforts are dedicated to measure the energy and mass exchanges between atmosphere and ocean, including the effect of surface waves. In comparison less efforts are brought to understand the interactions between the atmospheric boundary layer and the oceanic mixing layer. In this regard, we are developing research mainly based on ideal and realistic numerical simulations which resolve very small scales (horizontal resolutions from 1 to 100 meters) in using grid nesting technics and coupled ocean-wave-atmosphere models. As a first step, the impact of marked gradients in sea surface temperatures (SST) on air-sea exchanges has been explored through realistic numerical simulations at 100m horizontal resolution. Results from simulations of a case observed during the FROMVAR experiment will be shown. The talk will mainly focus on the marked impact of SST front on the atmospheric boundary layer (stability and winds), the air-sea exchanges and surface parameters (rugosity, drag coefficient) Results will be also shown on the strong impact on the simulated atmosphere of small scale variability of SST field.

  11. Kinetic mechanism of molecular energy transfer and chemical reactions in low-temperature air-fuel plasmas.

    PubMed

    Adamovich, Igor V; Li, Ting; Lempert, Walter R

    2015-08-13

    This work describes the kinetic mechanism of coupled molecular energy transfer and chemical reactions in low-temperature air, H2-air and hydrocarbon-air plasmas sustained by nanosecond pulse discharges (single-pulse or repetitive pulse burst). The model incorporates electron impact processes, state-specific N(2) vibrational energy transfer, reactions of excited electronic species of N(2), O(2), N and O, and 'conventional' chemical reactions (Konnov mechanism). Effects of diffusion and conduction heat transfer, energy coupled to the cathode layer and gasdynamic compression/expansion are incorporated as quasi-zero-dimensional corrections. The model is exercised using a combination of freeware (Bolsig+) and commercial software (ChemKin-Pro). The model predictions are validated using time-resolved measurements of temperature and N(2) vibrational level populations in nanosecond pulse discharges in air in plane-to-plane and sphere-to-sphere geometry; temperature and OH number density after nanosecond pulse burst discharges in lean H(2)-air, CH(4)-air and C(2)H(4)-air mixtures; and temperature after the nanosecond pulse discharge burst during plasma-assisted ignition of lean H2-mixtures, showing good agreement with the data. The model predictions for OH number density in lean C(3)H(8)-air mixtures differ from the experimental results, over-predicting its absolute value and failing to predict transient OH rise and decay after the discharge burst. The agreement with the data for C(3)H(8)-air is improved considerably if a different conventional hydrocarbon chemistry reaction set (LLNL methane-n-butane flame mechanism) is used. The results of mechanism validation demonstrate its applicability for analysis of plasma chemical oxidation and ignition of low-temperature H(2)-air, CH(4)-air and C(2)H(4)-air mixtures using nanosecond pulse discharges. Kinetic modelling of low-temperature plasma excited propane-air mixtures demonstrates the need for development of a more accurate

  12. Maximum vehicle cabin temperatures under different meteorological conditions

    NASA Astrophysics Data System (ADS)

    Grundstein, Andrew; Meentemeyer, Vernon; Dowd, John

    2009-05-01

    A variety of studies have documented the dangerously high temperatures that may occur within the passenger compartment (cabin) of cars under clear sky conditions, even at relatively low ambient air temperatures. Our study, however, is the first to examine cabin temperatures under variable weather conditions. It uses a unique maximum vehicle cabin temperature dataset in conjunction with directly comparable ambient air temperature, solar radiation, and cloud cover data collected from April through August 2007 in Athens, GA. Maximum cabin temperatures, ranging from 41-76°C, varied considerably depending on the weather conditions and the time of year. Clear days had the highest cabin temperatures, with average values of 68°C in the summer and 61°C in the spring. Cloudy days in both the spring and summer were on average approximately 10°C cooler. Our findings indicate that even on cloudy days with lower ambient air temperatures, vehicle cabin temperatures may reach deadly levels. Additionally, two predictive models of maximum daily vehicle cabin temperatures were developed using commonly available meteorological data. One model uses maximum ambient air temperature and average daily solar radiation while the other uses cloud cover percentage as a surrogate for solar radiation. From these models, two maximum vehicle cabin temperature indices were developed to assess the level of danger. The models and indices may be useful for forecasting hazardous conditions, promoting public awareness, and to estimate past cabin temperatures for use in forensic analyses.

  13. Maximum vehicle cabin temperatures under different meteorological conditions.

    PubMed

    Grundstein, Andrew; Meentemeyer, Vernon; Dowd, John

    2009-05-01

    A variety of studies have documented the dangerously high temperatures that may occur within the passenger compartment (cabin) of cars under clear sky conditions, even at relatively low ambient air temperatures. Our study, however, is the first to examine cabin temperatures under variable weather conditions. It uses a unique maximum vehicle cabin temperature dataset in conjunction with directly comparable ambient air temperature, solar radiation, and cloud cover data collected from April through August 2007 in Athens, GA. Maximum cabin temperatures, ranging from 41-76 degrees C, varied considerably depending on the weather conditions and the time of year. Clear days had the highest cabin temperatures, with average values of 68 degrees C in the summer and 61 degrees C in the spring. Cloudy days in both the spring and summer were on average approximately 10 degrees C cooler. Our findings indicate that even on cloudy days with lower ambient air temperatures, vehicle cabin temperatures may reach deadly levels. Additionally, two predictive models of maximum daily vehicle cabin temperatures were developed using commonly available meteorological data. One model uses maximum ambient air temperature and average daily solar radiation while the other uses cloud cover percentage as a surrogate for solar radiation. From these models, two maximum vehicle cabin temperature indices were developed to assess the level of danger. The models and indices may be useful for forecasting hazardous conditions, promoting public awareness, and to estimate past cabin temperatures for use in forensic analyses.

  14. Exploration of health risks related to air pollution and temperature in three Latin American cities.

    PubMed

    Romero-Lankao, Patricia; Qin, Hua; Borbor-Cordova, Mercy

    2013-04-01

    This paper explores whether the health risks related to air pollution and temperature extremes are spatially and socioeconomically differentiated within three Latin American cities: Bogota, Colombia, Mexico City, Mexico, and Santiago, Chile. Based on a theoretical review of three relevant approaches to risk analysis (risk society, environmental justice, and urban vulnerability as impact), we hypothesize that health risks from exposure to air pollution and temperature in these cities do not necessarily depend on socio-economic inequalities. To test this hypothesis, we gathered, validated, and analyzed temperature, air pollution, mortality and socioeconomic vulnerability data from the three study cities. Our results show the association between air pollution levels and socioeconomic vulnerabilities did not always correlate within the study cities. Furthermore, the spatial differences in socioeconomic vulnerabilities within cities do not necessarily correspond with the spatial distribution of health impacts. The present study improves our understanding of the multifaceted nature of health risks and vulnerabilities associated with global environmental change. The findings suggest that health risks from atmospheric conditions and pollutants exist without boundaries or social distinctions, even exhibiting characteristics of a boomerang effect (i.e., affecting rich and poor alike) on a smaller scale such as areas within urban regions. We used human mortality, a severe impact, to measure health risks from air pollution and extreme temperatures. Public health data of better quality (e.g., morbidity, hospital visits) are needed for future research to advance our understanding of the nature of health risks related to climate hazards.

  15. Exploration of health risks related to air pollution and temperature in three Latin American cities

    NASA Astrophysics Data System (ADS)

    Romero-Lankao, P.; Borbor Cordova, M.; Qin, H.

    2013-12-01

    We explore whether the health risks related to air pollution and temperature extremes are spatially and socioeconomically differentiated within three Latin American cities: Bogota, Colombia, Mexico City, Mexico, and Santiago, Chile. Based on a theoretical review of three relevant approaches to risk analysis (risk society, environmental justice, and urban vulnerability as impact), we hypothesize that health risks from exposure to air pollution and temperature in these cities do not necessarily depend on socio-economic inequalities. To test this hypothesis, we gathered, validated, and analyzed temperature, air pollution, mortality and socioeconomic vulnerability data from the three study cities. Our results show the association between air pollution levels and socioeconomic vulnerabilities did not always correlate within the study cities. Furthermore, the spatial differences in socioeconomic vulnerabilities within cities do not necessarily correspond with the spatial distribution of health impacts. The present study improves our understanding of the multifaceted nature of health risks and vulnerabilities associated with global environmental change. The findings suggest that health risks from atmospheric conditions and pollutants exist without boundaries or social distinctions, even exhibiting characteristics of a boomerang effect (i.e., affecting rich and poor alike) on a smaller scale such as areas within urban regions. We used human mortality, a severe impact, to measure health risks from air pollution and extreme temperatures. Public health data of better quality (e.g., morbidity, hospital visits) are needed for future research to advance our understanding of the nature of health risks related to climate hazards.

  16. Meaning of temperature in different thermostatistical ensembles.

    PubMed

    Hänggi, Peter; Hilbert, Stefan; Dunkel, Jörn

    2016-03-28

    Depending on the exact experimental conditions, the thermodynamic properties of physical systems can be related to one or more thermostatistical ensembles. Here, we survey the notion of thermodynamic temperature in different statistical ensembles, focusing in particular on subtleties that arise when ensembles become non-equivalent. The 'mother' of all ensembles, the microcanonical ensemble, uses entropy and internal energy (the most fundamental, dynamically conserved quantity) to derive temperature as a secondary thermodynamic variable. Over the past century, some confusion has been caused by the fact that several competing microcanonical entropy definitions are used in the literature, most commonly the volume and surface entropies introduced by Gibbs. It can be proved, however, that only the volume entropy satisfies exactly the traditional form of the laws of thermodynamics for a broad class of physical systems, including all standard classical Hamiltonian systems, regardless of their size. This mathematically rigorous fact implies that negative 'absolute' temperatures and Carnot efficiencies more than 1 are not achievable within a standard thermodynamical framework. As an important offspring of microcanonical thermostatistics, we shall briefly consider the canonical ensemble and comment on the validity of the Boltzmann weight factor. We conclude by addressing open mathematical problems that arise for systems with discrete energy spectra.

  17. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  18. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  19. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  20. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  1. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  2. On The Suitability of Air Temperature as a Predictive Tool for Lake Surface Temperature in a Changing Climate: A Case Study for Lake Tahoe, USA

    NASA Astrophysics Data System (ADS)

    Healey, N.; Piccolroaz, S.; Hook, S. J.; Toffolon, M.; Lenters, J. D.; Schladow, G.

    2015-12-01

    The ability to predict surface water temperature is essential toward understanding how future climate scenarios will impact inland water bodies such as lakes. Numerous predictive models have been developed to perform this task although many require inputs whose future model prediction is usually associated with large uncertainties, such as e.g., precipitation, cloudiness, wind and radiative fluxes. Conversely, air temperature is one of the most widely available variables in projections from Global Climate Models (GCMs). The predictive model air2water relies solely on air temperature data to predict lake surface temperature. The objective of this study is to demonstrate that air2water can be used as a predictive tool for climate change scenarios through a case study focused on Lake Tahoe, CA/NV, USA. Lake Tahoe has been selected due to extensive historical in-situ measurements that have been collected at that location since 1967 which we utilize to calibrate and validate air2water, and evaluate its performance. For model runs, we utilize different sources of air temperature data (buoys, land-based weather stations, GCMs) to establish how robustly air2water performs. We employ air temperature data from a combination of global gridded datasets including Climate Research Unit (CRU) TS3.21 (historical), and GCM output from the Coupled Model Intercomparison Project, Phase 5 (CMIP5) Community Climate System Model, version 4 (CCSM4) model (future) with representative concentration pathways of 4.5 and 8.5. Here, we present results from air2water predictions of the relationship between air and water temperature that demonstrate how this model is able to replicate trends on seasonal and interannual timescales. This finding shows promise toward understanding the impacts of future climate change on lakes and to expanding our study to lake surface temperatures globally.

  3. Model-based estimation of changes in air temperature seasonality

    NASA Astrophysics Data System (ADS)

    Barbosa, Susana; Trigo, Ricardo

    2010-05-01

    Seasonality is a ubiquitous feature in climate time series. Climate change is expected to involve not only changes in the mean of climate parameters but also changes in the characteristics of the corresponding seasonal cycle. Therefore the identification and quantification of changes in seasonality is a highly relevant topic in climate analysis, particularly in a global warming context. However, the analysis of seasonality is far from a trivial task. A key challenge is the discrimination between long-term changes in the mean and long-term changes in the seasonal pattern itself, which requires the use of appropriate statistical approaches in order to be able to distinguish between overall trends in the mean and trends in the seasons. Model based approaches are particularly suitable for the analysis of seasonality, enabling to assess uncertainties in the amplitude and phase of seasonal patterns within a well defined statistical framework. This work addresses the changes in the seasonality of air temperature over the 20th century. The analysed data are global air temperature values close to surface (2m above ground) and mid-troposphere (500 hPa geopotential height) from the recently developed 20th century reanalysis. This new 3-D Reanalysis dataset is available since 1891, considerably extending all other Reanalyses currently in use (e.g. NCAR, ECWMF), and was obtained with the Ensemble Filter (Compo et al., 2006) by assimilation of pressure observations into a state-of-the-art atmospheric general circulation model that includes the radiative effects of historical time-varying CO2 concentrations, volcanic aerosol emissions and solar output variations. A modeling approach based on autoregression (Barbosa et al, 2008; Barbosa, 2009) is applied within a Bayesian framework for the estimation of a time varying seasonal pattern and further quantification of changes in the amplitude and phase of air temperature over the 20th century. Barbosa, SM, Silva, ME, Fernandes, MJ

  4. Spatial distribution of air temperature in Toruń (Central Poland) and its causes

    NASA Astrophysics Data System (ADS)

    Przybylak, Rajmund; Uscka-Kowalkowska, Joanna; Araźny, Andrzej; Kejna, Marek; Kunz, Mieczysław; Maszewski, Rafał

    2017-01-01

    In this article, the results of an investigation into the air temperature pattern and development (including the urban heat island (UHI)) in Toruń (central Poland) are presented. For the analysis, daily mean temperature (Ti) as well as daily maximum (Tmax) and minimum (Tmin) temperatures for 2012 gathered for 20 sites, evenly distributed in the area of city, have been taken as source data. Additionally, in order to provide more extensive characteristics of the diversity of the air temperature in the study area, the diurnal temperature range (DTR) and the number of the so-called characteristic days were calculated as well. The impact of weather conditions (cloudiness and wind speed), atmospheric circulation, urban morphological parameters and land cover on the UHI in the study area was investigated. In Toruń, according to the present study, the average UHI intensity in 2012 was equal to 1.0 °C. The rise of cloudiness and wind speed led to a decrease of the magnitude of the UHI. Generally, in most cases, anticyclonic situations favour increased thermal contrast between rural and city areas, particularly in summer. Warm western circulation types significantly reduced temperature differences in the western side of the city and enlarged them in the eastern side of the city. Eastern cold types also have a similar influence on air temperature differences. Positive and statistically significant correlations have been found between the percentage of built-up areas (sealing factor) and air temperature. Conversely, sky view factor (SVF) reveals negative correlations which are statistically significant only for Tmin.

  5. Temperature measurements behind reflected shock waves in air. [radiometric measurement of gas temperature in self-absorbing gas flow

    NASA Technical Reports Server (NTRS)

    Bader, J. B.; Nerem, R. M.; Dann, J. B.; Culp, M. A.

    1972-01-01

    A radiometric method for the measurement of gas temperature in self-absorbing gases has been applied in the study of shock tube generated flows. This method involves making two absolute intensity measurements at identical wavelengths, but for two different pathlengths in the same gas sample. Experimental results are presented for reflected shock waves in air at conditions corresponding to incident shock velocities from 7 to 10 km/s and an initial driven tube pressure of 1 torr. These results indicate that, with this technique, temperature measurements with an accuracy of + or - 5 percent can be carried out. The results also suggest certain facility related problems.

  6. Comparative evaluation of air cell and eggshell temperature measurement methodologies used in broiler hatching eggs during late incubation.

    PubMed

    Peebles, E D; Zhai, W; Gerard, P D

    2012-07-01

    The current study was conducted to compare and contrast the uses of 2 devices (temperature transponder or infrared thermometer) and their locations (inner air cell membrane or outer eggshell surface) in Ross × Ross 708 broiler hatching eggs. The air cells of 14 embryonated and 10 nonembryonated eggs were implanted with temperature transponders on d 13.5 of incubation. Likewise, for these same eggs, eggshell surface temperature was detected with the use of transponders and an infrared thermometer. Temperatures were recorded every 12 h between 14.5 and 18 d of incubation, and graphs and corresponding regression values were used to track the temperatures over these time periods. The temperature readings using all methods in embryonated and nonembryonated eggs were positively correlated. In nonembryonated eggs, temperatures in the air cell and on the eggshell surface using transponders were higher than those on the eggshell surface using an infrared thermometer. Mean air cell temperature readings of embryonated eggs using transponders were higher than those of the eggshell, as determined with the use of transponders or an infrared thermometer. Furthermore, the differences in air cell temperature using transponders and eggshell temperature using an infrared thermometer in embryonated eggs increased with embryonic age. These readings confirmed increased embryo heat production during the incubational period examined. It was further concluded that when compared with actual embryo body temperatures determined in previous studies, the use of transponders in the air cells of broiler hatching eggs detected a higher and closer temperature than eggshell surface temperature. It is suggested that the air cell transponders in embryonated eggs circumvented the confounding effects of the thermal barrier properties of the eggshell and the flow of air across its surface.

  7. Studies of silicon quantum dots prepared at different substrate temperatures

    NASA Astrophysics Data System (ADS)

    Al-Agel, Faisal A.; Suleiman, Jamal; Khan, Shamshad A.

    2017-03-01

    In this research work, we have synthesized silicon quantum dots at different substrate temperatures 193, 153 and 123 K at a fixed working pressure 5 Torr. of Argon gas. The structural studies of these silicon quantum dots have been undertaken using X-ray diffraction, Field Emission Scanning Electron Microscopy (FESEM) and High Resolution Transmission Electron Microscopy (HRTEM). The optical and electrical properties have been studied using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Fluorescence spectroscopy and I-V measurement system. X-ray diffraction pattern of Si quantum dots prepared at different temperatures show the amorphous nature except for the quantum dots synthesized at 193 K which shows polycrystalline nature. FESEM images of samples suggest that the size of quantum dots varies from 2 to 8 nm. On the basis of UV-visible spectroscopy measurements, a direct band gap has been observed for Si quantum dots. FTIR spectra suggest that as-grown Si quantum dots are partially oxidized which is due exposure of as-prepared samples to air after taking out from the chamber. PL spectra of the synthesized silicon quantum dots show an intense peak at 444 nm, which may be attributed to the formation of Si quantum dots. Temperature dependence of dc conductivity suggests that the dc conductivity enhances exponentially by raising the temperature. On the basis above properties i.e. direct band gap, high absorption coefficient and high conductivity, these silicon quantum dots will be useful for the fabrication of solar cells.

  8. Effect of Ambient Design Temperature on Air-Cooled Binary Plant Output

    SciTech Connect

    Dan Wendt; Greg Mines

    2011-10-01

    Air-cooled binary plants are designed to provide a specified level of power production at a particular air temperature. Nominally this air temperature is the annual mean or average air temperature for the plant location. This study investigates the effect that changing the design air temperature has on power generation for an air-cooled binary plant producing power from a resource with a declining production fluid temperature and fluctuating ambient temperatures. This analysis was performed for plants operating both with and without a geothermal fluid outlet temperature limit. Aspen Plus process simulation software was used to develop optimal air-cooled binary plant designs for specific ambient temperatures as well as to rate the performance of the plant designs at off-design operating conditions. Results include calculation of annual and plant lifetime power generation as well as evaluation of plant operating characteristics, such as improved power generation capabilities during summer months when electric power prices are at peak levels.

  9. Increasing influence of air temperature on upper Colorado River streamflow

    USGS Publications Warehouse

    Woodhouse, Connie A.; Pederson, Gregory T.; Morino, Kiyomi; McAfee, Stephanie A.; McCabe, Gregory

    2016-01-01

    This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture can result in flow deficits of similar magnitude, but recent droughts have been amplified by warmer temperatures that exacerbate the effects of relatively modest precipitation deficits. Since 1988, a marked increase in the frequency of warm years with lower flows than expected, given precipitation, suggests continued warming temperatures will be an increasingly important influence in reducing future UCRB water supplies.

  10. Increasing influence of air temperature on upper Colorado River streamflow

    NASA Astrophysics Data System (ADS)

    Woodhouse, Connie A.; Pederson, Gregory T.; Morino, Kiyomi; McAfee, Stephanie A.; McCabe, Gregory J.

    2016-03-01

    This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture can result in flow deficits of similar magnitude, but recent droughts have been amplified by warmer temperatures that exacerbate the effects of relatively modest precipitation deficits. Since 1988, a marked increase in the frequency of warm years with lower flows than expected, given precipitation, suggests continued warming temperatures will be an increasingly important influence in reducing future UCRB water supplies.

  11. Air temperature evolution during dry spells and its relation to prevailing soil moisture regimes

    NASA Astrophysics Data System (ADS)

    Schwingshackl, Clemens; Hirschi, Martin; Seneviratne, Sonia I.

    2015-04-01

    The complex interplay between land and atmosphere makes accurate climate predictions very challenging, in particular with respect to extreme events. More detailed investigations of the underlying dynamics, such as the identification of the drivers regulating the energy exchange at the land surface and the quantification of fluxes between soil and atmosphere over different land types, are thus necessary. The recently started DROUGHT-HEAT project (funded by the European Research Council) aims to provide better understanding of the processes governing the land-atmosphere exchange. In the first phase of the project, different datasets and methods are used to investigate major drivers of land-atmosphere dynamics leading to droughts and heatwaves. In the second phase, these findings will be used for reducing uncertainties and biases in earth system models. Finally, the third part of the project will focus on the application of the previous findings and use them for the attribution of extreme events to land processes and possible mitigation through land geoengineering. One of the major questions in land-atmosphere exchange is the relationship between air temperature and soil moisture. Different studies show that especially during dry spells soil moisture has a strong impact on air temperature and the amplification of hot extremes. Whereas in dry and wet soil moisture regimes variations in latent heat flux during rain-free periods are expected to be small, this is not the case in transitional soil moisture regimes: Due to decreasing soil moisture content latent heat flux reduces with time, which causes in turn an increase in sensible heat flux and, subsequently, higher air temperatures. The investigation of air temperature evolution during dry spells can thus help to detect different soil moisture regimes and to provide insights on the effect of different soil moisture levels on air temperature. Here we assess the underlying relationships using different observational and

  12. DDT in fuel air mixtures at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Card, J.; Rival, D.; Ciccarelli, G.

    2005-11-01

    An experimental study was carried out to investigate flame acceleration and deflagration-to-detonation transition (DDT) in fuel air mixtures at initial temperatures up to 573 K and pressures up to 2 atm. The fuels investigated include hydrogen, ethylene, acetylene and JP-10 aviation fuel. The experiments were performed in a 3.1-m long, 10-cm inner-diameter heated detonation tube equipped with equally spaced orifice plates. Ionization probes were used to measure the flame time-of-arrival from which the average flame velocity versus propagation distance could be obtained. The DDT composition limits and the distance required for the flame to transition to detonation were obtained from this flame velocity data. The correlation developed by Veser et al. (run-up distance to supersonic flames in obstacle-laden tubes. In the proceedings of the 4th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions, France (2002)) for the flame choking distance proved to work very well for correlating the detonation run-up distance measured in the present study. The only exception was for the hydrogen air data at elevated initial temperatures which tended to fall outside the scatter of the hydrocarbon mixture data. The DDT limits obtained at room temperature were found to follow the classical d/λ = 1 correlation, where d is the orifice plate diameter and λ is the detonation cell size. Deviations found for the high-temperature data could be attributed to the one-dimensional ZND detonation structure model used to predict the detonation cell size for the DDT limit mixtures. This simple model was used in place of actual experimental data not currently available.

  13. Elevation of nasal mucosal temperature increases the ability of the nose to warm and humidify air.

    PubMed

    Abbott, D J; Baroody, F M; Naureckas, E; Naclerio, R M

    2001-01-01

    The nose functions to warm and humidify inspired air. The factors that influence these functions have been studied to a limited degree. We have developed a method for measuring the temperature and relative humidity of the air before and after nasal conditioning to study nasal function. In this experiment we studied the effects of raising the mucosal surface temperature by immersion of the feet in warm water. Six subjects (avg. age = 27.0 years) were randomized to immersion of the feet in 30 degrees C and 40 degrees C water. The nasal mucosal temperature increased significantly from the 32.2+/-1.3 degrees C during immersion in the 30 degrees C water to the 33.1+/-1.2 degrees C during immersion in 40 degrees water (p < 0.05). No significant difference in nasal volume was noted between the 30 degrees (17.8+/-4.5 cc) and the 40 degrees (17.7+/-5.3 cc) immersions. There was a significant increase in the conditioning capacity of the nose (as measured by total water content of inspired air) in response to cold-air challenge during the 40 degrees immersion (1669+/-312 mg water) when compared to the 30 degrees immersion (1324+/-152 mg water). From these data we deduce that warming of the nasal mucosa improves the ability of the nose to condition inspired air without a significant change in the volume of the nasal cavity.

  14. Near Decade Long Tropospheric Air Temperature and Specific Humidity Records from AIRS for CMIP5 Model Evaluation

    NASA Astrophysics Data System (ADS)

    Tian, B.; Fetzer, E.; Kahn, B. H.; Teixeira, J.; Manning, E.; Hearty, T. J.

    2012-12-01

    The peer-reviewed analyses of multi-model outputs from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) experiments will be the most important basis for the next Intergovernmental Panel on Climate Change (IPCC) Assessment Report (AR5). To increase the fidelity of the IPCC AR5, an Obs4MIPs project has been initiated to collect some well-established and well-documented datasets, to organize them according to the CMIP5 model output requirements, and makes them available to the science community for CMIP5 model evaluation. The NASA Atmospheric Infrared Sounder (AIRS) project has produced monthly mean tropospheric air temperature (ta, K) and specific humidity (hus, kg/kg) products as part of the Obs4MIPS project. In this paper, we first describe these two AIRS datasets in terms of data description, origin, validation and caveats for model-observation comparison. We then document the climatological mean features of these two AIRS datasets and compare them to those from NASA's Modern Era Retrospective analysis for Research and Applications (MERRA) for AIRS data validation and CMIP5 model simulations for CMIP5 model evaluation. As expected, the 9-year AIRS data show several well-known climatological features of tropospheric ta and hus, such as the strong meridional and vertical gradients of tropospheric ta and hus and strong zonal gradient of tropospheric hus. AIRS data also show the strong connections between the tropospheric hus, atmospheric circulation and deep convection. In comparison to MERRA, AIRS seems to be colder in the free troposphere but warmer in the boundary layer with differences typically less than 1 K. AIRS is wetter (~10%) in the tropical boundary layer but drier (around 30%) in the tropical free troposphere and the extratropical troposphere. In particular, the large AIRS-MERRA hus differences are mainly located in the cloudy regions, such as the Intertropical Convergence Zone (ITCZ), the South Pacific Convergence Zone (SPCZ) and the

  15. Estimation of Surface Air Temperature Over Central and Eastern Eurasia from MODIS Land Surface Temperature

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.

    2011-01-01

    Surface air temperature (T(sub a)) is a critical variable in the energy and water cycle of the Earth.atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T(sub a) from satellite remotely sensed land surface temperature (T(sub s)) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T(sub a) and MODIS T(sub s). The relationships between the maximum T(sub a) and daytime T(sub s) depend significantly on land cover types, but the minimum T(sub a) and nighttime T(sub s) have little dependence on the land cover types. The largest difference between maximum T(sub a) and daytime T(sub s) appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T(sub a) were estimated from 1 km resolution MODIS T(sub s) under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T(sub a) were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T(sub a) varies from 2.4 C over closed shrublands to 3.2 C over grasslands, and the MAE of the estimated minimum Ta is about 3.0 C.

  16. Cloud-induced uncertainties in AIRS and ECMWF temperature and specific humidity

    NASA Astrophysics Data System (ADS)

    Wong, Sun; Fetzer, Eric J.; Schreier, Mathias; Manipon, Gerald; Fishbein, Evan F.; Kahn, Brian H.; Yue, Qing; Irion, Fredrick W.

    2015-03-01

    The uncertainties of the Atmospheric Infrared Sounder (AIRS) Level 2 version 6 specific humidity (q) and temperature (T) retrievals are quantified as functions of cloud types by comparison against Integrated Global Radiosonde Archive radiosonde measurements. The cloud types contained in an AIRS/Advanced Microwave Sounding Unit footprint are identified by collocated Moderate Resolution Imaging Spectroradiometer retrieved cloud optical depth (COD) and cloud top pressure. We also report results of similar validation of q and T from European Centre for Medium-Range Weather Forecasts (ECMWF) forecasts (EC) and retrievals from the AIRS Neural Network (NNW), which are used as the initial state for AIRS V6 physical retrievals. Differences caused by the variation in the measurement locations and times are estimated using EC, and all the comparisons of data sets against radiosonde measurements are corrected by these estimated differences. We report in detail the validation results for AIRS GOOD quality control, which is used for the AIRS Level 3 climate products. AIRS GOOD quality q reduces the dry biases inherited from the NNW in the middle troposphere under thin clouds but enhances dry biases in thick clouds throughout the troposphere (reaching -30% at 850 hPa near deep convective clouds), likely because the information contained in AIRS retrievals is obtained in cloud-cleared areas or above clouds within the field of regard. EC has small moist biases (~5-10%), which are within the uncertainty of radiosonde measurements, in thin and high clouds. Temperature biases of all data are within ±1 K at altitudes above the 700 hPa level but increase with decreasing altitude. Cloud-cleared retrievals lead to large AIRS cold biases (reaching about -2 K) in the lower troposphere for large COD, enhancing the cold biases inherited from the NNW. Consequently, AIRS GOOD quality T root-mean-squared errors (RMSEs) are slightly smaller than the NNW errors in thin clouds (1.5-2.5 K) but

  17. Storage corrosion of materials and equipment: Temperature-humidity and aerochemical regimes indoors and in the open air

    SciTech Connect

    Strekalov, P.V.

    1994-07-01

    The following storage factors are considered: (1) the temperature-humidity complex (THC) in the open air at representative sites with cold, moderate, and subtropical humid climate; (2) the temperature and humidity differences between the open air and an atmospheric of semiclosed spaces; (3) the THC inside storage-spaces in a humid tropical climate; (4) the concentration of SO{sub 2} and Cl{sup -} in the open air and in different storage-spaces; (5) the categories of corrosivity of the atmosphere and methods for its evaluation indoors and outdoors.

  18. On the sensitive measurement of horizontal temperature gradients of air near an astrometric instrument for correcting anomalous refraction.

    NASA Astrophysics Data System (ADS)

    Hu, N.; Wang, Z.; Jiang, X.

    Anomalous refraction is believed to be the main error source for classical astrometry. This paper suggests that by measuring the small difference of two average temperature values for two long air columns, which are close to the star light beam, then the anomalous refraction taking place between these two air columns can be obtained in real-time. Suitable measuring equipment with a sensitivity of 0.003°C in measuring the temperature difference of air columns corresponding to a sensitivity of 0arcsec.008 in determining the anomalous refraction are under development.

  19. Precipitation and Air Temperature Impact on Seasonal Variations of Groundwater Levels

    NASA Astrophysics Data System (ADS)

    Vitola, Ilva; Vircavs, Valdis; Abramenko, Kaspars; Lauva, Didzis; Veinbergs, Arturs

    2012-12-01

    The aim of this study is to clarify seasonal effects of precipitation and temperature on groundwater level changes in monitoring stations of the Latvia University of Agriculture - Mellupīte, Bērze and Auce. Groundwater regime and level fluctuations depend on climatic conditions such as precipitation intensity, evapotranspiration, surface runoff and drainage, as well as other hydrological factors. The relationship between precipitation, air temperature and groundwater level fluctuations could also lead and give different perspective of possible changes in groundwater quality. Using mathematical statistics and graphic-analytic methods it is concluded that autumn and winter precipitation has the dominant impact on groundwater level fluctuations, whereas spring and summer season fluctuations are more dependent on the air temperature.

  20. Transient performance and temperature field of a natural convection air dehumidifier loop

    NASA Astrophysics Data System (ADS)

    Fazilati, Mohammad Ali; Sedaghat, Ahmad; Alemrajabi, Ali-Akbar

    2017-02-01

    In this paper, transient performance of the previously introduced natural convection heat and mass transfer loop is investigated for an air dehumidifier system. The performance of the loop is studied in different conditions of heat source/heat sink temperature and different startup desiccant concentrations. Unlike conventional loops, it is observed that natural convection of the fluid originates from the heat sink towards the heat source. The proper operation of the cycle is highly dependent on the heat sink/heat source temperatures. To reduce the time constant of the system, a proper desiccant concentration should be adopted for charge of the loop.

  1. Temperature profile and producer gas composition of high temperature air gasification of oil palm fronds

    NASA Astrophysics Data System (ADS)

    Guangul, F. M.; Sulaiman, S. A.; Ramli, A.

    2013-06-01

    Environmental pollution and scarcity of reliable energy source are the current pressing global problems which need a sustainable solution. Conversion of biomass to a producer gas through gasification process is one option to alleviate the aforementioned problems. In the current research the temperature profile and composition of the producer gas obtained from the gasification of oil palm fronds by using high temperature air were investigated and compared with unheated air. By preheating the gasifying air at 500°C the process temperature were improved and as a result the concentration of combustible gases and performance of the process were improved. The volumetric percentage of CO, CH4 and H2 were improved from 22.49, 1.98, and 9.67% to 24.98, to 2.48% and 13.58%, respectively. In addition, HHV, carbon conversion efficiency and cold gas efficiency were improver from 4.88 MJ/Nm3, 83.8% and 56.1% to 5.90 MJ/Nm3, 87.3% and 62.4%, respectively.

  2. Cyclic Oxidation of High-Temperature Alloy Wires in Air

    NASA Technical Reports Server (NTRS)

    Reigel, Marissa M.

    2004-01-01

    High-temperature alloy wires are proposed for use in seal applications for future re-useable space vehicles. These alloys offer the potential for improved wear resistance of the seals. The wires must withstand the high temperature environments the seals are subjected to as well as maintain their oxidation resistance during the heating and cooling cycles of vehicle re-entry. To model this, the wires were subjected to cyclic oxidation in stagnant air. of this layer formation is dependent on temperature. Slow growing oxides such as chromia and alumina are desirable. Once the oxide is formed it can prevent the metal from further reacting with its environment. Cyclic oxidation models the changes in temperature these wires will undergo in application. Cycling the temperature introduces thermal stresses which can cause the oxide layer to break off. Re-growth of the oxide layer consumes more metal and therefore reduces the properties and durability of the material. were used for cyclic oxidation testing. The baseline material, Haynes 188, has a Co base and is a chromia former while the other two alloys, Kanthal A1 and PM2000, both have a Fe base and are alumina formers. Haynes 188 and Kanthal A1 wires are 250 pm in diameter and PM2000 wires are 150 pm in diameter. The coiled wire has a total surface area of 3 to 5 sq cm. The wires were oxidized for 11 cycles at 1204 C, each cycle containing a 1 hour heating time and a minimum 20 minute cooling time. Weights were taken between cycles. After 11 cycles, one wire of each composition was removed for analysis. The other wire continued testing for 70 cycles. Post-test analysis includes X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) for phase identification and morphology.

  3. Global Distribution and Variability of Surface Skin and Surface Air Temperatures as Depicted in the AIRS Version-6 Data Set

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2014-01-01

    In this presentation, we will briefly describe the significant improvements made in the AIRS Version-6 retrieval algorithm, especially as to how they affect retrieved surface skin and surface air temperatures. The global distribution of seasonal 1:30 AM and 1:30 PM local time 12 year climatologies of Ts,a will be presented for the first time. We will also present the spatial distribution of short term 12 year anomaly trends of Ts,a at 1:30 AM and 1:30 PM, as well as the spatial distribution of temporal correlations of Ts,a with the El Nino Index. It will be shown that there are significant differences between the behavior of 1:30 AM and 1:30 PM Ts,a anomalies in some arid land areas.

  4. Study of Ram-air Heat Exchangers for Reducing Turbine Cooling-air Temperature of a Supersonic Aircraft Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Diaguila, Anthony J; Livingood, John N B; Eckert, Ernst R G

    1956-01-01

    The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude of 70,000 feet. A compressor-bleed-air weight flow of 2.7 pounds per second was assumed for the coolant; ram air was considered as the other fluid. Pressure drops and inlet states of both fluids were prescribed, and ranges of compressor-bleed-air temperature reductions and of the ratio of compressor-bleed to ram-air weight flows were considered.

  5. Effect of production microclimate on female thermal state with increased temperature and air humidity

    NASA Technical Reports Server (NTRS)

    Machablishvili, O. G.

    1980-01-01

    The thermal state of women during the effect of high air temperature and relative humidity with a varying degree of physical loads was studied. Parameters for air temperature, relative humidity, and air movement were established. It was established that in women the thermo-regulatory stress occurs at lower air temperatures and with lower physical loads than in men. The accumulation of heat in women was revealed with lower air temperature than in men. It is concluded that to preserve the normal physiological state of the female organism it is necessary to create more favorable microclimate conditions and decrease the physical loads.

  6. Impact of air velocity, temperature, humidity, and air on long-term voc emissions from building products

    NASA Astrophysics Data System (ADS)

    Wolkoff, Peder

    The emissions of two volatile organic compounds (VOCs) of concern from five building products (BPs) were measured in the field and laboratory emission cell (FLEC) up to 250 d. The BPs (VOCs selected on the basis of abundance and low human odor thresholds) were: nylon carpet with latex backing (2-ethylhexanol, 4-phenylcyclohexene), PVC flooring (2-ethylhexanol, phenol), floor varnish on pretreated beechwood parquet (butyl acetate, N-methylpyrrolidone), sealant (hexane, dimethyloctanols), and waterborne wall paint on gypsum board (1,2-propandiol, Texanol). Ten different climate conditions were tested: four different air velocities from ca. 1 cm s -1 to ca. 9 cm s -1, three different temperatures (23, 35, and 60°C), two different relative humidities (0% and 50% RH), and pure nitrogen instead of clean air supply. Additionally, two sample specimen and two different batches were compared for repeatability and homogeneity. The VOCs were sampled on Tenax TA and determined by thermal desorption and gas chromatography (FID). Quantification was carried out by individual calibration of each VOC of concern. Concentration/time profiles of the selected VOCs (i.e. their concentration decay curves over time) in a standard room were used for comparison. Primary source emissions were not affected by the air velocity after a few days to any great extent. Both the temperature and relative humidity affected the emission rates, but depended strongly on the type of BP and type of VOC. Secondary (oxidative) source emissions were only observed for the PVC and for dimethyloctanols from the sealant. The time to reach a given concentration (emission rate) appears to be a good approach for future interlaboratory comparisons of BP's VOC emissions.

  7. Piglets’ Surface Temperature Change at Different Weights at Birth

    PubMed Central

    Caldara, Fabiana Ribeiro; dos Santos, Luan Sousa; Machado, Sivanilza Teixeira; Moi, Marta; de Alencar Nääs, Irenilza; Foppa, Luciana; Garcia, Rodrigo Garófallo; de Kássia Silva dos Santos, Rita

    2014-01-01

    The study was carried out in order to verify the effects of piglets’ weight at birth on their surface temperature change (ST) after birth, and its relationship with ingestion time of colostrum. Piglets from four different sows were weighed at birth and divided into a totally randomized design with three treatments according to birth weight (PBW): T1 - less than 1.00 kg, T2 - 1.00 to 1.39 kg, and T3 - higher than or equal to 1.40 kg. The time spent for the first colostrum ingestion was recorded (TFS). Images of piglets’ surface by thermal imaging camera were recorded at birth (STB) and 15, 30, 45, 60, and 120 min after birth. The air temperature and relative humidity were recorded every 30 min and the indexes of temperature and humidity (THI) were calculated. A ST drop after 15 min from birth was observed, increasing again after sixty minutes. Positive correlations were found between the PBW and the ST at 30 and 45 min after birth. The PBW was negatively correlated with the TFS. The THI showed high negative correlations (−0.824 and −0.815) with STB and after 15 min from birth. The piglet’s surface temperature at birth was positively correlated with temperature thereof to 15 min, influencing therefore the temperatures in the interval of 45 to 120 min. The birth weight contributes significantly to postnatal hypothermia and consequently to the time it takes for piglets ingest colostrum, requiring special attention to those of low birth weight. PMID:25049971

  8. Piglets' surface temperature change at different weights at birth.

    PubMed

    Caldara, Fabiana Ribeiro; Dos Santos, Luan Sousa; Machado, Sivanilza Teixeira; Moi, Marta; de Alencar Nääs, Irenilza; Foppa, Luciana; Garcia, Rodrigo Garófallo; de Kássia Silva Dos Santos, Rita

    2014-03-01

    The study was carried out in order to verify the effects of piglets' weight at birth on their surface temperature change (ST) after birth, and its relationship with ingestion time of colostrum. Piglets from four different sows were weighed at birth and divided into a totally randomized design with three treatments according to birth weight (PBW): T1 - less than 1.00 kg, T2 - 1.00 to 1.39 kg, and T3 - higher than or equal to 1.40 kg. The time spent for the first colostrum ingestion was recorded (TFS). Images of piglets' surface by thermal imaging camera were recorded at birth (STB) and 15, 30, 45, 60, and 120 min after birth. The air temperature and relative humidity were recorded every 30 min and the indexes of temperature and humidity (THI) were calculated. A ST drop after 15 min from birth was observed, increasing again after sixty minutes. Positive correlations were found between the PBW and the ST at 30 and 45 min after birth. The PBW was negatively correlated with the TFS. The THI showed high negative correlations (-0.824 and -0.815) with STB and after 15 min from birth. The piglet's surface temperature at birth was positively correlated with temperature thereof to 15 min, influencing therefore the temperatures in the interval of 45 to 120 min. The birth weight contributes significantly to postnatal hypothermia and consequently to the time it takes for piglets ingest colostrum, requiring special attention to those of low birth weight.

  9. Study on different characteristics of doped tri calcium phosphate at different sintering temperatures

    NASA Astrophysics Data System (ADS)

    Samanta, Sujan Krishna; Chanda, Abhijit

    2016-04-01

    Pure β-tricalcium phosphate (β-TCP), Zn-doped (3wt %) β-TCP and Mg- doped (3wt %) β-TCP samples were prepared by using a wet chemical precipitation synthesis technique, followed by calcination at 800 °C in air. The developed materials were subjected to sintering at different temperatures. Density and porosity were compared. The X-ray diffractometry (XRD) and Fourier-transformed infrared (FTIR) spectrometer were used to examine the changes in crystalline phases and presence of functional groups of TCP ceramics. The scanning electron microscopy (SEM) was used to study the pore formation, pore size, grain size.

  10. On the different regimes of gas heating in air plasmas

    NASA Astrophysics Data System (ADS)

    Pintassilgo, Carlos D.; Guerra, Vasco

    2015-10-01

    Simulations of the gas temperature in air (N2-20%O2) plasma discharges are presented for different values of the reduced electric field, E/N g, electron density n e, pressure and tube radius. This study is based on the solutions to the time-dependent gas thermal balance in a cylindrical geometry coupled to the electron, vibrational and chemical kinetics, for E/{{N}\\text{g}}=50 and 100 Td (1 Td = 10-17 V cm2), 109  ⩽  n e  ⩽  1011 cm-3, pressure in the range 1-20 Torr, and also considering different tube radius, 0.5, 1 and 1.5 cm. The competing role of different gas heating mechanisms is discussed in detail within the time range 0.01-100 ms. For times below 1 ms, gas heating occurs from O2 dissociation by electron impact through pre-dissociative excited states, e + O2  →  e + \\text{O}2*   →  e + 2O(3P) and …  →  e + O(3P) + O(1D), as well as through the quenching of N2 electronically excited states by O2. For longer times, simulation results show that gas heating comes from processes N(4S) + NO(X)  →  N2(X, v ~ 3) + O, N2(A) + O  →  NO(X) + N(2D), V-T N2-O collisions and the recombination of oxygen atoms at the wall. Depending on the given E/N g and n e values, each one of these processes can be an important gas-heating channel. The contribution of V-T N2-O exchanges to gas heating is important in the analysis of the gas temperature for different pressures and values of the tube radius. A global picture of these effects is given by the study of the fraction of the discharge power spent on gas heating, which is always ~15%. The values for the fractional power transferred to gas heating from vibrational and electronic excitation are also presented and discussed.

  11. Impacts of wind farms on surface air temperatures

    PubMed Central

    Baidya Roy, Somnath; Traiteur, Justin J.

    2010-01-01

    Utility-scale large wind farms are rapidly growing in size and numbers all over the world. Data from a meteorological field campaign show that such wind farms can significantly affect near-surface air temperatures. These effects result from enhanced vertical mixing due to turbulence generated by wind turbine rotors. The impacts of wind farms on local weather can be minimized by changing rotor design or by siting wind farms in regions with high natural turbulence. Using a 25-y-long climate dataset, we identified such regions in the world. Many of these regions, such as the Midwest and Great Plains in the United States, are also rich in wind resources, making them ideal candidates for low-impact wind farms. PMID:20921371

  12. Impacts of wind farms on surface air temperatures.

    PubMed

    Baidya Roy, Somnath; Traiteur, Justin J

    2010-10-19

    Utility-scale large wind farms are rapidly growing in size and numbers all over the world. Data from a meteorological field campaign show that such wind farms can significantly affect near-surface air temperatures. These effects result from enhanced vertical mixing due to turbulence generated by wind turbine rotors. The impacts of wind farms on local weather can be minimized by changing rotor design or by siting wind farms in regions with high natural turbulence. Using a 25-y-long climate dataset, we identified such regions in the world. Many of these regions, such as the Midwest and Great Plains in the United States, are also rich in wind resources, making them ideal candidates for low-impact wind farms.

  13. Dynamic Stiffness and Damping Characteristics of a High-Temperature Air Foil Journal Bearing

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; DellaCorte, Christopher; Valco, Mark J.; Prahl, Joseph M.; Heshmat, Hooshang

    2001-01-01

    Using a high-temperature optically based displacement measurement system, a foil air bearing's stiffness and damping characteristics were experimentally determined. Results were obtained over a range of modified Sommerfeld Number from 1.5E6 to 1.5E7, and at temperatures from 25 to 538 C. An Experimental procedure was developed comparing the error in two curve fitting functions to reveal different modes of physical behavior throughout the operating domain. The maximum change in dimensionless stiffness was 3.0E-2 to 6.5E-2 over the Sommerfeld Number range tested. Stiffness decreased with temperature by as much as a factor of two from 25 to 538 C. Dimensionless damping was a stronger function of Sommerfeld Number ranging from 20 to 300. The temperature effect on damping being more qualitative, showed the damping mechanism shifted from viscous type damping to frictional type as temperature increased.

  14. Effect of low air velocities on thermal homeostasis and comfort during exercise at space station operational temperature and humidity

    NASA Technical Reports Server (NTRS)

    Beumer, Ronald J.

    1989-01-01

    The effectiveness of different low air velocities in maintaining thermal comfort and homeostasis during exercise at space station operational temperature and humidity was investigated. Five male subjects exercised on a treadmill for successive ten minute periods at 60, 71, and 83 percent of maximum oxygen consumption at each of four air velocities, 30, 50, 80, and 120 ft/min, at 22 C and 62 percent relative humidity. No consistent trends or statistically significant differences between air velocities were found in body weight loss, sweat accumulation, or changes in rectal, skin, and body temperatures. Occurrence of the smallest body weight loss at 120 ft/min, the largest sweat accumulation at 30 ft/min, and the smallest rise in rectal temperature and the greatest drop in skin temperature at 120 ft/min all suggested more efficient evaporative cooling at the highest velocity. Heat storage at all velocities was evidenced by increased rectal and body temperatures; skin temperatures declined or increased only slightly. Body and rectal temperature increases corresponded with increased perception of warmth and slight thermal discomfort as exercise progressed. At all air velocities, mean thermal perception never exceeded warm and mean discomfort, greatest at 30 ft/min, was categorized at worst as uncomfortable; sensation of thermal neutrality and comfort returned rapidly after cessation of exercise. Suggestions for further elucidation of the effects of low air velocities on thermal comfort and homeostasis include larger numbers of subjects, more extensive skin temperature measurements and more rigorous analysis of the data from this study.

  15. Flash flood events recorded by air temperature changes in caves: A case study in Covadura Cave (SE Spain)

    NASA Astrophysics Data System (ADS)

    Gázquez, Fernando; Calaforra, José María; Fernández-Cortés, Ángel

    2016-10-01

    On 28th September 2012, more than 150 mm rain fell in just two hours in some points of southeastern Spain, triggering intense flash floods that resulted in the death of ten people and widespread material damage. In the gypsum karst of Sorbas, rainfall intensity reached 33 mm/h. Air temperature monitoring in different levels of Covadura Cave, down to 85 m depth, enabled the effect of this extreme episode on the cave microclimate to be evaluated in real time. The cave air temperature increased by between 0.9 and 4.1 °C as a result of water flow into the cavity and intense mixing of air masses, in addition to the displacement of deeper air masses toward shallower levels produced by fast recharge of the surrounding karst aquifer. The lag between peak rainfall intensity and the highest cave air temperature was 5-6 h, indicating the response time of the karst to this rainfall event. No trends with depth were observed, suggesting that water not only flowed in through the main cave entrance but also through secondary accesses and fractures. Furthermore, the size of the cave passages and the intensity of air turbulence generated by waterfalls in the cave played an important role in producing these temperature differences. Even though the rainfall event lasted 10 h, cave air temperature did not return to pre-flash flood values until more than 20 days later. This indicates that, while waterflow through the cave might stop a few hours after the rainfall event, cave air temperature can be affected over a longer period. This can be explained by slow groundwater level decreasing of the surrounding karst aquifer and latent heat liberation produced by moisture condensation on the cave walls. Our results show how continuous monitoring of air temperature in caves can be a useful tool for evaluating the short-term effects of flash floods in subterranean karst systems.

  16. Differences in creep performance of a HIPed silicon nitride in ambient air and inert environments

    SciTech Connect

    Wereszczak, A.A.; Kirkland, T.P.; Ferber, M.K.

    1995-04-01

    High temperature tensile creep studies of a commercially available hot isostatically pressed (HIPed) silicon nitride were conducted in ambient air and argon environments. The creep performance of this HIPed silicon nitride was found to be different in these environments. The material crept faster (and had a consequential shorter lifetime) in argon than in ambient air at 1370{degrees}C at tensile stresses between 110-140 MPa. The stress dependence of the minimum creep rate was found to be {approx} 6 in argon and {approx} 3.5 in air, while the minimum creep rates were almost an order of magnitude faster in argon than in air at equivalent tensile stresses. Differences in the creep performance are explained with reference to the presence or absence of oxygen in the two environments.

  17. Influence of intake air temperature on internal combustion engine operation

    NASA Astrophysics Data System (ADS)

    Birtok-Băneasă, C.; Raţiu, S.; Hepuţ, T.

    2017-01-01

    This paper presents three methods for reduce thermal losses in the intake system with improvement of airflow and thermal protection. In the experiment are involved two patented devices conceived by the author and one PhD theme device: 1- Dynamic device for air transfer, 2-Integrated thermal deflector, and, 3-Advanced thermal protection. The tests were carried on different vehicle running in real traffic and in the Internal Combustion Engines Laboratory, within the specialization “Road vehicle” belonging to the Faculty of Engineering Hunedoara, component of Politehnica University of Timişoara. The results have been processed and compared whit the ones obtained without these devices.

  18. Meristem temperature substantially deviates from air temperature even in moderate environments: is the magnitude of this deviation species-specific?

    PubMed

    Savvides, Andreas; van Ieperen, Wim; Dieleman, Janneke A; Marcelis, Leo F M

    2013-11-01

    Meristem temperature (Tmeristem ) drives plant development but is hardly ever quantified. Instead, air temperature (Tair ) is usually used as its approximation. Meristems are enclosed within apical buds. Bud structure and function may differ across species. Therefore, Tmeristem may deviate from Tair in a species-specific way. Environmental variables (air temperature, vapour pressure deficit, radiation, and wind speed) were systematically varied to quantify the response of Tmeristem . This response was related to observations of bud structure and transpiration. Tomato and cucumber plants were used as model plants as they are morphologically distinct and usually growing in similar environments. Tmeristem substantially deviated from Tair in a species-specific manner under moderate environments. This deviation ranged between -2.6 and 3.8 °C in tomato and between -4.1 and 3.0 °C in cucumber. The lower Tmeristem observed in cucumber was linked with the higher transpiration of the bud foliage sheltering the meristem when compared with tomato plants. We here indicate that for properly linking growth and development of plants to temperature in future applications, for instance in climate change scenarios studies, Tmeristem should be used instead of Tair , as a species-specific trait highly reliant on various environmental factors.

  19. Data Assimilation Experiments using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2008-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AlRS data. Version 5 contains accurate case-by-case error estimates for most derived products, which are also used for quality control. We have conducted forecast impact experiments assimilating AlRS quality controlled temperature profiles using the NASA GEOS-5 data assimilation system, consisting of the NCEP GSI analysis coupled with the NASA FVGCM. Assimilation of quality controlled temperature profiles resulted in significantly improved forecast skill in both the Northern Hemisphere and Southern Hemisphere Extra-Tropics, compared to that obtained from analyses obtained when all data used operationally by NCEP except for AlRS data is assimilated. Experiments using different Quality Control thresholds for assimilation of AlRS temperature retrievals showed that a medium quality control threshold performed better than a tighter threshold, which provided better overall sounding accuracy; or a looser threshold, which provided better spatial coverage of accepted soundings. We are conducting more experiments to further optimize this balance of spatial coverage and sounding accuracy from the data assimilation perspective. In all cases, temperature soundings were assimilated well below cloud level in partially cloudy cases. The positive impact of assimilating AlRS derived atmospheric temperatures all but vanished when only AIRS stratospheric temperatures were assimilated. Forecast skill resulting from assimilation of AlRS radiances uncontaminated by clouds, instead of AlRS temperature soundings, was only slightly better than that resulting from assimilation of only stratospheric AlRS temperatures. This reduction in forecast skill is most likely the result of significant loss of tropospheric information when only AIRS radiances unaffected by clouds are used in the data assimilation process.

  20. Combustion and gasification characteristics of pulverized coal using high-temperature air

    SciTech Connect

    Hanaoka, R.; Nakamura, M.; Kiga, T.; Kosaka, H.; Iwahashi, T.; Yoshikawa, K.; Sakai, M.; Muramatsu, K.; Mochida, S.

    1998-07-01

    In order to confirm performance of high-temperature-air combusting of pulverized coal, laboratory-scale combustion and gasification tests of coal were conducted changing air temperature and oxygen concentration in the air. Theses were conducted in a drop tube furnace of 200mm in inside diameter and 2,000mm in length. The furnace was heated by ceramic heater up to 1,300 C. A high-temperature air preheater utilizing the HRS (High Cycle Regenerative Combustion System) was used to obtain high-temperature combustion air. As the results, NOx emission was reduced when pulverized coal was fired with high-temperature-air. On the other hand, by lower oxygen concentration in combustion air diluted by nitrogen, NOx emission slightly decreased while became higher under staging condition.

  1. Experiments on the transition from the steady to the oscillatory marangoni convection of a floating-zone under various cold wall temperatures and various ambient air temperature effects

    NASA Astrophysics Data System (ADS)

    Selver, Ramazan

    2005-12-01

    The transition from the steady to the oscillatory Marangoni convection of a floating-zone under various cold wall temperatures and various ambient air temperature effects have been investigated experimentally by heating the sample from above (opposite direction of Marangoni convection and buoyant forces). The heat transfer takes place mainly through conduction as well as the natural convection of the air around the cylindrical liquid bridge. The ambient airflow in the present work is varied by varying the cold wall temperature and ambient air temperature. In this study, the transition from the steady to the oscillatory Marangoni convection flow of a high Prandtl number fluid in a floating half-zone is visualized by means of the already proven method of the "light-cut-technique". The test fluid zone is held in ambient air at +4 °C, +10 °C, +16 °C, +23 °C, and +28 °C. The onset of oscillations, the oscillation level, and oscillation pattern are investigated under various conditions. It is found that the critical temperature difference (ΔTCr) varies substantially when the cold wall temperature and the ambient air temperature are varied.

  2. Experimental study of the decrease in the temperature of an air/water-cooled turbine blade

    NASA Astrophysics Data System (ADS)

    Ryzhov, A. A.; Sereda, A. V.; Shaiakberov, V. F.; Iskakov, K. M.; Shatalov, Iu. S.

    Results of the full-scale testing of an air/water-cooled deflector-type turbine blade are reported. Data on the decrease in the temperature of the cooling air and of the blade are presented and compared with the calculated values. An analysis of the results indicates that the use of air/water cooling makes it possible to significantly reduce the temperature of the cooling air and of the blade with practically no increase in the engine weight and dimensions.

  3. A Further Study of High Air Pollution Episodes in Taiwan Using the Microwave Temperature Profiler (MTP-5HE)

    NASA Astrophysics Data System (ADS)

    Chang, Che-Ming; Chang, Long-Nan; Hsiao, Hui-Chuan; Lu, Fang-Chuan; Shieh, Ping-Fei; Chen, Chi-Nan; Lu, Shish-Chong

    In the metropolitan areas of Taiwan with high population density, heavy traffic, and/or zones of heavy industries, serious air pollution episodes may occur during stable weather conditions. The information of mixing height is therefore essential to the air pollution control in this area. In this study, diurnal variation of the mixing height derived using the newly established EPA-Taiwan microwave temperature profiler (MTP-5HE) and that obtained through the CWB soundings are compared. The relationships between the air quality and the diurnal variation of the mixing height is discussed during different air pollution episodes.

  4. How the Plant Temperature Links to the Air Temperature in the Desert Plant Artemisia ordosica.

    PubMed

    Yu, Ming-Han; Ding, Guo-Dong; Gao, Guang-Lei; Sun, Bao-Ping; Zhao, Yuan-Yuan; Wan, Li; Wang, De-Ying; Gui, Zi-Yang

    2015-01-01

    Plant temperature (Tp) is an important indicator of plant health. To determine the dynamics of plant temperature and self-cooling ability of the plant, we measured Tp in Artemisia ordosica in July, in the Mu Us Desert of Northwest China. Related factors were also monitored to investigate their effects on Tp, including environmental factors, such as air temperature (Ta), relative humidity, wind speed; and physiological factors, such as leaf water potential, sap flow, and water content. The results indicate that: 1) Tp generally changes in conjunction with Ta mainly, and varies with height and among the plant organs. Tp in the young branches is most constant, while it is the most sensitive in the leaves. 2) Correlations between Tp and environmental factors show that Tp is affected mainly by Ta. 3) The self-cooling ability of the plant was effective by midday, with Tp being lower than Ta. 4) Increasing sap flow and leaf water potential showed that transpiration formed part of the mechanism that supported self-cooling. Increased in water conductance and specific heat at midday may be additional factors that contribute to plant cooling ability. Therefore, our results confirmed plant self-cooling ability. The response to high temperatures is regulated by both transpiration speed and an increase in stem water conductance. This study provides quantitative data for plant management in terms of temperature control. Moreover, our findings will assist species selection with taking plant temperature as an index.

  5. Air Quality Forecasting through Different Statistical and Artificial Intelligence Techniques

    NASA Astrophysics Data System (ADS)

    Mishra, D.; Goyal, P.

    2014-12-01

    Urban air pollution forecasting has emerged as an acute problem in recent years because there are sever environmental degradation due to increase in harmful air pollutants in the ambient atmosphere. In this study, there are different types of statistical as well as artificial intelligence techniques are used for forecasting and analysis of air pollution over Delhi urban area. These techniques are principle component analysis (PCA), multiple linear regression (MLR) and artificial neural network (ANN) and the forecasting are observed in good agreement with the observed concentrations through Central Pollution Control Board (CPCB) at different locations in Delhi. But such methods suffers from disadvantages like they provide limited accuracy as they are unable to predict the extreme points i.e. the pollution maximum and minimum cut-offs cannot be determined using such approach. Also, such methods are inefficient approach for better output forecasting. But with the advancement in technology and research, an alternative to the above traditional methods has been proposed i.e. the coupling of statistical techniques with artificial Intelligence (AI) can be used for forecasting purposes. The coupling of PCA, ANN and fuzzy logic is used for forecasting of air pollutant over Delhi urban area. The statistical measures e.g., correlation coefficient (R), normalized mean square error (NMSE), fractional bias (FB) and index of agreement (IOA) of the proposed model are observed in better agreement with the all other models. Hence, the coupling of statistical and artificial intelligence can be use for the forecasting of air pollutant over urban area.

  6. Environmentally sound thermal energy extraction from coal and wastes using high temperature air combustion technology

    SciTech Connect

    Yoshikawa, Kunio

    1999-07-01

    High temperature air combustion is one of promising ways of burning relatively low BTU gas obtained from gasification of low grade coal or wastes. In this report, the author proposes a new power generation system coupled with high temperature air gasification of coal/wastes and high temperature air combustion of the syngas from coal/wastes. This system is realized by employing Multi-staged Enthalpy Extraction Technology (MEET). The basic idea of the MEET system is that coal or wastes are gasified with high temperature air of about 1,000 C, then the generated syngas is cooled in a heat recovery boiler to be cleaned-up in a gas cleanup system (desulfurization, desalinization and dust removal). Part of thermal energy contained in this cleaned-up syngas is used for high temperature air preheating, and the complete combustion of the fuel gas is done using also high temperature air for driving gas turbines or steam generation in a boiler.

  7. Variable air temperature response of gas-phase atmospheric polychlorinated biphenyls near a former manufacturing facility.

    PubMed

    Hermanson, Mark H; Scholten, Cheryl A; Compher, Kevin

    2003-09-15

    Many investigations of gas-phase atmospheric PCB show a strong relationship between concentration and air temperature, especially near PCB sources. Comparative gas-phase atmospheric PCB trends during an annual temperature regime at two sites near a former PCB manufacturing plant and nearby PCB landfills in Anniston, AL, indicate a departure from this trend. The Mars Hill sampling site, located closest to the plant and landfills, shows an annual average sigmaPCB concentration of 27 ng m(-3) (ranging from 8.7 to 82 ng m(-3)) three times the average at Carter, 1.5 km away (9 ng m(-3), ranging from 1.1 to 39). However, total PCB and congener concentrations vary more with air temperature at Carter where PCB are evaporating from surfaces during warmer weather. The slopes of the Clausius-Clapeyron plots of 18 of the most concentrated congeners representing dichloro- through heptachlorobiphenyl homologues are significantly higher at the Carter site. While some of the atmospheric PCB at Mars Hill is derived from ground surface evaporation, the source of much of it apparently is the material buried in the landfills, which has different thermal properties than surface materials and is not in equilibrium with air temperature.

  8. Detecting and adjusting temporal inhomogeneity in Chinese mean surface air temperature data

    NASA Astrophysics Data System (ADS)

    Li, Qingxiang; Liu, Xiaoning; Zhang, Hongzheng; Thomas C., Peterson; David R., Easterling

    2004-04-01

    Adopting the Easterling-Peterson (EP) techniques and considering the reality of Chinese meteorological observations, this paper designed several tests and tested for inhomogeneities in all Chinese historical surface air temperature series from 1951 to 2001. The result shows that the time series have been widely impacted by inhomogeneities resulting from the relocation of stations and changes in local environment such as urbanization or some other factors. Among these factors, station relocations caused the largest magnitude of abrupt changes in the time series, and other factors also resulted in inhomogeneities to some extent. According to the amplitude of change of the difference series and the monthly distribution features of surface air temperatures, discontinuities identified by applying both the E-P technique and supported by China’s station history records, or by comparison with other approaches, have been adjusted. Based on the above processing, the most significant temporal inhomogeneities were eliminated, and China’s most homogeneous surface air temperature series has thus been created. Results show that the inhomogeneity testing captured well the most important change of the stations, and the adjusted dataset is more reliable than ever. This suggests that the adjusted temperature dataset has great value of decreasing the uncertaities in the study of observed climate change in China.

  9. Temporal and spatial assessments of minimum air temperature using satellite surface temperature measurements in Massachusetts, USA

    PubMed Central

    Kloog, Itai; Chudnovsky, Alexandra; Koutrakis, Petros; Schwartz, Joel

    2015-01-01

    Although meteorological stations provide accurate air temperature observations, their spatial coverage is limited and thus often insufficient for epidemiological studies. Satellite data expand spatial coverage, enhancing our ability to estimate near surface air temperature (Ta). However, the derivation of Ta from surface temperature (Ts) measured by satellites is far from being straightforward. In this study, we present a novel approach that incorporates land use regression, meteorological variables and spatial smoothing to first calibrate between Ts and Ta on a daily basis and then predict Ta for days when satellite Ts data were not available. We applied mixed regression models with daily random slopes to calibrate Moderate Resolution Imaging Spectroradiometer (MODIS) Ts data with monitored Ta measurements for 2003. Then, we used a generalized additive mixed model with spatial smoothing to estimate Ta in days with missing Ts. Out-of-sample tenfold cross-validation was used to quantify the accuracy of our predictions. Our model performance was excellent for both days with available Ts and days without Ts observations (mean out-of-sample R2=0.946 and R2=0.941 respectively). Furthermore, based on the high quality predictions we investigated the spatial patterns of Ta within the study domain as they relate to urban vs. non-urban land uses. PMID:22721687

  10. Temporal and spatial assessments of minimum air temperature using satellite surface temperature measurements in Massachusetts, USA.

    PubMed

    Kloog, Itai; Chudnovsky, Alexandra; Koutrakis, Petros; Schwartz, Joel

    2012-08-15

    Although meteorological stations provide accurate air temperature observations, their spatial coverage is limited and thus often insufficient for epidemiological studies. Satellite data expand spatial coverage, enhancing our ability to estimate near surface air temperature (Ta). However, the derivation of Ta from surface temperature (Ts) measured by satellites is far from being straightforward. In this study, we present a novel approach that incorporates land use regression, meteorological variables and spatial smoothing to first calibrate between Ts and Ta on a daily basis and then predict Ta for days when satellite Ts data were not available. We applied mixed regression models with daily random slopes to calibrate Moderate Resolution Imaging Spectroradiometer (MODIS) Ts data with monitored Ta measurements for 2003. Then, we used a generalized additive mixed model with spatial smoothing to estimate Ta in days with missing Ts. Out-of-sample tenfold cross-validation was used to quantify the accuracy of our predictions. Our model performance was excellent for both days with available Ts and days without Ts observations (mean out-of-sample R(2)=0.946 and R(2)=0.941 respectively). Furthermore, based on the high quality predictions we investigated the spatial patterns of Ta within the study domain as they relate to urban vs. non-urban land uses.

  11. Personality Differences Among Men In Selected Air Force Specialties

    ERIC Educational Resources Information Center

    Wigington, John H.; Apostal, Robert A.

    1973-01-01

    The results of the analyses of variance indicate that differences exist among the examined Air Force specialties on four VPI scales; realistic intellectual self-control, and status. These results might be considered by school, college, and military counselors in their vocational counseling of prospective and enlisted airmen. (Author)

  12. Rapid fluctuations of the air and surface temperature in the city of Bucharest (Romania)

    NASA Astrophysics Data System (ADS)

    Cheval, Sorin; Dumitrescu, Alexandru; Hustiu, Mihaita-Cristinel

    2016-04-01

    Urban areas derive significant changes of the ambient temperature generating specific challenges for society and infrastructure. Extreme temperature events, heat and cold waves affect the human comfort, increase the health risk, and require specific building regulations and emergency preparedness, strongly related to the magnitude and frequency of the thermal hazards. Rapid changes of the temperature put a particular stress for the urban settlements, and the topic has been approached constantly in the scientific literature. Due to its geographical position in a plain area with a temperate climate and noticeable continental influence, the city of Bucharest (Romania) deals with high seasonal and daily temperature variations. However, rapid fluctuations also occur at sub-daily scale caused by cold or warm air advections or by very local effects (e.g. radiative heat exchange, local precipitation). For example, in the area of Bucharest, the cold fronts of the warm season may trigger temperature decreasing up to 10-15 centigrades / hour, while warm advections lead to increasing of 1-2 centigrades / hour. This study focuses on the hourly and sub-hourly temperature variations over the period November 2014 - February 2016, using air temperature data collected from urban sensors and meteorological stations of the national network, and land surface temperature data obtained from satellite remote sensing. The analysis returns different statistics, such as magnitude, intensity, frequency, simultaneous occurrence and areal coverage of the rapid temperature fluctuations. Furthermore, the generating factors for each case study are assessed, and the results are used to define some preliminary patterns and enhance the urban temperature forecast at fine scale. The study was funded by the Romanian Programme Partnership in Priority Domains, PN - II - PCCA - 2013 - 4 - 0509 - Reducing UHI effects to improve urban comfort and balance energy consumption in Bucharest (REDBHI).

  13. Simultaneous Measurement of Air Temperature and Humidity Based on Sound Velocity and Attenuation Using Ultrasonic Probe

    NASA Astrophysics Data System (ADS)

    Motegi, Takahiro; Mizutani, Koichi; Wakatsuki, Naoto

    2013-07-01

    In this paper, an acoustic technique for air temperature and humidity measurement in moist air is described. The previous ultrasonic probe can enable the estimation of temperature from sound velocity in dry air by making use of the relationship between sound velocity and temperature. However, temperature measurement using the previous ultrasonic probe is not suitable in moist air because sound velocity also depends on humidity, and the temperature estimated from the sound velocity measured in moist air must be adjusted. Moreover, a method of humidity measurement by using only an ultrasonic probe has not been established. Thus, we focus on sound attenuation, which depends on temperature and humidity. Our proposed technique utilizes two parameters, sound velocity and attenuation, and can measure both temperature and humidity simultaneously. The acoustic technique for temperature and humidity measurement has the advantages that instantaneous temperature and humidity can be measured, and the measurement is not affected by thermal radiation because air itself is used as a sensing element. As an experiment, temperature and humidity are measured in a chamber, and compared with the reference values. The experimental results indicate the achievement of a practical temperature measurement accuracy of within +/-0.5 K in moist air, of which the temperature is 293-308 K and relative humidity (RH) is 50-90% RH, and the simultaneous measurement of temperature and humidity.

  14. Instructions for observing air temperature, humidity, and direction and force of wind

    USGS Publications Warehouse

    ,

    1892-01-01

    Description of instruments.-The temperature and humidity of the air are obtained from the simultaneous observation of a pair of mercurial thermometers termed the dry and the wet bulb. The air temperature is given by the dry-bulb thermometer, and the humidity is obtained from the combined readings of both. The wet-bulb thermometer differs from the dry-bulb thermometer only in having its bulb covered with thin muslin, which is wetted in pure water at each observation.The two thermometers are fastened in a light metal 'or wooden frame. To this frame is to be attached a stout cord for the whirling of the thermometers, which is an essential part of every observation.

  15. Differences between near-surface equivalent temperature and temperature trends for the Eastern United States. Equivalent temperature as an alternative measure of heat content

    USGS Publications Warehouse

    Davey, C.A.; Pielke, R.A.; Gallo, K.P.

    2006-01-01

    There is currently much attention being given to the observed increase in near-surface air temperatures during the last century. The proper investigation of heating trends, however, requires that we include surface heat content to monitor this aspect of the climate system. Changes in heat content of the Earth's climate are not fully described by temperature alone. Moist enthalpy or, alternatively, equivalent temperature, is more sensitive to surface vegetation properties than is air temperature and therefore more accurately depicts surface heating trends. The microclimates evident at many surface observation sites highlight the influence of land surface characteristics on local surface heating trends. Temperature and equivalent temperature trend differences from 1982-1997 are examined for surface sites in the Eastern U.S. Overall trend differences at the surface indicate equivalent temperature trends are relatively warmer than temperature trends in the Eastern U.S. Seasonally, equivalent temperature trends are relatively warmer than temperature trends in winter and are relatively cooler in the fall. These patterns, however, vary widely from site to site, so local microclimate is very important. ?? 2006 Elsevier B.V. All rights reserved.

  16. Dynamics of Air Temperature, Velocity and Ammonia Emissions in Enclosed and Conventional Pig Housing Systems

    PubMed Central

    Song, J. I.; Park, K.-H.; Jeon, J. H.; Choi, H. L.; Barroga, A. J.

    2013-01-01

    This study aimed to compare the dynamics of air temperature and velocity under two different ventilation and housing systems during summer and winter in Korea. The NH3 concentration of both housing systems was also investigated in relation to the pig’s growth. The ventilation systems used were; negative pressure type for the enclosed pig house (EPH) and natural airflow for the conventional pig house (CPH). Against a highly fluctuating outdoor temperature, the EPH was able to maintain a stable temperature at 24.8 to 29.1°C during summer and 17.9 to 23.1°C during winter whilst the CPH had a wider temperature variance during summer at 24.7 to 32.3°C. However, the temperature fluctuation of the CPH during winter was almost the same with that of EPH at 14.5 to 18.2°C. The NH3 levels in the CPH ranged from 9.31 to 16.9 mg/L during summer and 5.1 to 19.7 mg/L during winter whilst that of the EPH pig house was 7.9 to 16.1 mg/L and 3.7 to 9.6 mg/L during summer and winter, respectively. These values were less than the critical ammonia level for pigs with the EPH maintaining a lower level than the CPH in both winter and summer. The air velocity at pig nose level in the EPH during summer was 0.23 m/s, enough to provide comfort because of the unique design of the inlet feature. However, no air movement was observed in almost all the lower portions of the CPH during winter because of the absence of an inlet feature. There was a significant improvement in weight gain and feed intake of pigs reared in the EPH compared to the CPH (p<0.05). These findings proved that despite the difference in the housing systems, a stable indoor temperature was necessary to minimize the impact of an avoidable and highly fluctuating outdoor temperature. The EPH consistently maintained an effective indoor airspeed irrespective of season; however the CPH had defective and stagnant air at pig nose level during winter. Characteristics of airflow direction and pattern were consistent relative to

  17. Air pollution, lagged effects of temperature, and mortality: The Netherlands 1979-87.

    PubMed Central

    Mackenbach, J P; Looman, C W; Kunst, A E

    1993-01-01

    OBJECTIVE--To explore whether the apparent low threshold for the mortality effects of air pollution could be the result of confounding. DESIGN--The associations between mortality and sulphur dioxide (SO2) were analysed taking into account potential confounding factors. SETTING--The Netherlands, 1979-87. MEASUREMENTS AND MAIN RESULTS--The number of deaths listed by the day on which the death occurred and by the cause of death were obtained from the Netherlands Central Bureau of Statistics. Mortality from all causes and mortality from four large groups of causes (neoplasms, cardiovascular diseases, respiratory diseases, and external causes) were related to the daily levels of SO2 air pollution and potential confounders (available from various sources) using log-linear regression analysis. Variables considered as potential confounders were: average temperature; difference between maximum and minimum temperatures; amount of precipitation; air humidity; wind speed; influenza incidence; and calendar year, month, and weekday. Both lagged and unlagged effects of the meteorological and influenza variables were considered. Average temperature was represented by two variables--'cold', temperatures below 16.5 degrees C, and 'warm', those above 16.5 degrees C--to allow for the V shaped relation between temperature and mortality. The positive regression coefficient for the univariate effect of SO2 density on mortality from all causes dwindles to close to zero when all potential confounding variables are taken into account. The most important of these represents the lagged (one to five days) effect of low temperatures. Low temperatures have strong lagged effects on mortality, and often precede relatively high SO2 densities in the Netherlands. Results were similar for separate causes of death. While univariate associations suggest an effect of air pollution on mortality in all four cause of death groups, multivariate analyses show these effects, including that on mortality from

  18. Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H

    1937-01-01

    Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.

  19. Using Machine learning method to estimate Air Temperature from MODIS over Berlin

    NASA Astrophysics Data System (ADS)

    Marzban, F.; Preusker, R.; Sodoudi, S.; Taheri, H.; Allahbakhshi, M.

    2015-12-01

    Land Surface Temperature (LST) is defined as the temperature of the interface between the Earth's surface and its atmosphere and thus it is a critical variable to understand land-atmosphere interactions and a key parameter in meteorological and hydrological studies, which is involved in energy fluxes. Air temperature (Tair) is one of the most important input variables in different spatially distributed hydrological, ecological models. The estimation of near surface air temperature is useful for a wide range of applications. Some applications from traffic or energy management, require Tair data in high spatial and temporal resolution at two meters height above the ground (T2m), sometimes in near-real-time. Thus, a parameterization based on boundary layer physical principles was developed that determines the air temperature from remote sensing data (MODIS). Tair is commonly obtained from synoptic measurements in weather stations. However, the derivation of near surface air temperature from the LST derived from satellite is far from straight forward. T2m is not driven directly by the sun, but indirectly by LST, thus T2m can be parameterized from the LST and other variables such as Albedo, NDVI, Water vapor and etc. Most of the previous studies have focused on estimating T2m based on simple and advanced statistical approaches, Temperature-Vegetation index and energy-balance approaches but the main objective of this research is to explore the relationships between T2m and LST in Berlin by using Artificial intelligence method with the aim of studying key variables to allow us establishing suitable techniques to obtain Tair from satellite Products and ground data. Secondly, an attempt was explored to identify an individual mix of attributes that reveals a particular pattern to better understanding variation of T2m during day and nighttime over the different area of Berlin. For this reason, a three layer Feedforward neural networks is considered with LMA algorithm

  20. Computational Fluid Dynamics Analyses on Very High Temperature Reactor Air Ingress

    SciTech Connect

    Chang H Oh; Eung S. Kim; Richard Schultz; David Petti; Hyung S. Kang

    2009-07-01

    A preliminary computational fluid dynamics (CFD) analysis was performed to understand density-gradient-induced stratified flow in a Very High Temperature Reactor (VHTR) air-ingress accident. Various parameters were taken into consideration, including turbulence model, core temperature, initial air mole-fraction, and flow resistance in the core. The gas turbine modular helium reactor (GT-MHR) 600 MWt was selected as the reference reactor and it was simplified to be 2-D geometry in modeling. The core and the lower plenum were assumed to be porous bodies. Following the preliminary CFD results, the analysis of the air-ingress accident has been performed by two different codes: GAMMA code (system analysis code, Oh et al. 2006) and FLUENT CFD code (Fluent 2007). Eventually, the analysis results showed that the actual onset time of natural convection (~160 sec) would be significantly earlier than the previous predictions (~150 hours) calculated based on the molecular diffusion air-ingress mechanism. This leads to the conclusion that the consequences of this accident will be much more serious than previously expected.

  1. Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay; Zavodsky, Brad; Blackwell, William

    2014-01-01

    Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. This paper will describe the bias correction technique and results from forecasts evaluated by validation against a Total Precipitable Water (TPW) product from CIRA and against Global Forecast System (GFS) analyses.

  2. Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity

    NASA Technical Reports Server (NTRS)

    Blakenship, Clay; Zavodsky, Bradley; Blackwell, William

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. Forecasts are against ERA reanalyses.

  3. The relationship of air temperature variations over the northern hemisphere during the secular and 11-year solar cycles

    NASA Technical Reports Server (NTRS)

    Ryzhakov, L. Y.; Tomskaya, A. S.

    1978-01-01

    A comparison was made of air temperature anomaly maps for the months of January and July against a background of high and low secular solar activity, with and without regard for the 11 year cycle. By comparing temperature variations during the 11 year and secular cycles, it is found that the 11 year cycle influences thermal conditions more strongly than the secular cycle, and that temperature differences between extreme phases of the solar cycles are greater in January than in July.

  4. Radically Different Kinetics at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Sims, Ian

    2014-06-01

    The use of the CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, or Reaction Kinetics in Uniform Supersonic Flow) technique coupled with pulsed laser photochemical kinetics methods has shown that reactions involving radicals can be very rapid at temperatures down to 10 K or below. The results have had a major impact in astrochemistry and planetology, as well as proving an exacting test for theory. The technique has also been applied to the formation of transient complexes of interest both in atmospheric chemistry and combustion. Until now, all of the chemical reactions studied in this way have taken place on attractive potential energy surfaces with no overall barrier to reaction. The F + H2 {→} HF + H reaction does possess a substantial energetic barrier ({\\cong} 800 K), and might therefore be expected to slow to a negligible rate at very low temperatures. In fact, this H-atom abstraction reaction does take place efficiently at low temperatures due entirely to tunneling. I will report direct experimental measurements of the rate of this reaction down to a temperature of 11 K, in remarkable agreement with state-of-the-art quantum reactive scattering calculations by François Lique (Université du Havre) and Millard Alexander (University of Maryland). It is thought that long chain cyanopolyyne molecules H(C2)nCN may play an important role in the formation of the orange haze layer in Titan's atmosphere. The longest carbon chain molecule observed in interstellar space, HC11N, is also a member of this series. I will present new results, obtained in collaboration with Jean-Claude Guillemin (Ecole de Chimie de Rennes) and Stephen Klippenstein (Argonne National Labs), on reactions of C2H, CN and C3N radicals (using a new LIF scheme by Hoshina and Endo which contribute to the low temperature formation of (cyano)polyynes. H. Sabbah, L. Biennier, I. R. Sims, Y. Georgievskii, S. J. Klippenstein, I. W. M. Smith, Science 317, 102 (2007). S. D. Le Picard, M

  5. Eccentric variation of corneal sensitivity to pneumatic stimulation at different temperatures and with CO2.

    PubMed

    Situ, P; Simpson, T L; Fonn, D

    2007-09-01

    The purpose was to measure corneal sensitivity at multiple corneal positions using pneumatic stimuli, at room temperature and at ocular surface temperature (with and without CO(2) added), in 15 healthy participants. Sensitivity of central, mid-peripheral, and peripheral cornea was measured using a computer-controlled modified Belmonte esthesiometer to deliver pneumatic cool (air at 20 degrees C), mechanical (air at 50 degrees C), and chemical stimuli (air at 50 degrees C with CO(2) added). The ascending method of limits and method of constant stimuli were adopted to determine the threshold to these stimuli at each location. Sensitivity across the cornea using pneumatic stimuli at different temperatures and chemical stimuli varied only slightly. These patterns of variation are different to what has been previously reported using Cochet-Bonnet esthesiometry.

  6. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    Johnson, R. K.

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  7. The spatial and temporal behavior of brightness temperature in Tel-Aviv and its application to air temperature monitoring

    PubMed Central

    Pelta, Ran; Chudnovsky, A. Alexandra; Schwarts, Joel

    2016-01-01

    This study applies remote sensing technology to assess and examine the spatial and temporal Brightness Temperature (BT) profile in the city of Tel-Aviv, Israel over the last 30 years using Landsat imagery. The location of warmest and coldest zones are constant over the studied period. Distinct diurnal and temporal BT behavior divide the city into four different segments. As an example of future application, we applied mixed regression models with daily random slopes to correlate Landsat BT data with monitored air temperature (Tair) measurements using 14 images for 1989–2014. Our preliminary results show a good model performance with R2 = 0.81. Furthermore, based on the model’s results, we analyzed the spatial profile of Tair within the study domain for representative days. PMID:26499933

  8. Short-term effects of air temperature on plasma metabolite concentrations in patients undergoing cardiac cattheterization.

    EPA Science Inventory

    BACKGROUND: Epidemiological studies have shown associations between air temperature and cardiovascular health outcomes. Metabolic dysregulation might also play a role in the development of cardiovascular disease.OBJECTIVES: To investigate short-term temperature effects on metabol...

  9. Effects of CO2/N2 dilution on laminar burning velocity of stoichiometric DME-air mixture at elevated temperatures.

    PubMed

    Mohammed, Abdul Naseer; Juhany, Khalid A; Kumar, Sudarshan; Kishore, V Ratna; Mohammad, Akram

    2017-03-21

    The laminar burning velocity of CO2/N2 diluted stoichiometric dimethyl ether (DME) air mixtures is determined experimentally at atmospheric pressure and elevated mixture temperatures using a mesoscale high aspect-ratio diverging channel with inlet dimensions of 25mm×2mm. In this method, planar flames at different initial temperatures (Tu) were stabilized inside the channel using an external electric heater. The magnitude of burning velocities was acquired by measuring the flame position and initial temperature. The mass conservation of the mixture entering the inlet and the stationary planar flame front is applied to obtain the laminar burning velocity. Laminar burning velocity at different initial mixture temperatures is plotted with temperature ratio (Tu/Tu,o), where a reference temperature (Tu,o) of 300K is used. Enhancement in the laminar burning velocity is observed with mixture temperature for DME-air mixtures with CO2 and N2 dilutions. A significant decrease in the burning velocity and slight increase in temperature exponent of the stoichiometric DME-air mixture was observed with dilution at same temperatures. The addition of CO2 has profound influence when compared to N2 addition on both burning velocity and temperature exponent.

  10. Development rates of two Xenopsylla flea species in relation to air temperature and humidity.

    PubMed

    Krasnov, B R; Khokhlova, I S; Fielden, L J; Burdelova, N V

    2001-09-01

    The rate of development of immature fleas, Xenopsylla conformis Wagner and Xenopsylla ramesis Rothschild (Siphonaptera: Xenopsyllidae) was studied in the laboratory at 25 degrees C and 28 degrees C with 40, 55, 75 and 92% relative humidity (RH). These fleas are separately associated with the host jird Meriones crassus Sundevall in different microhabitats of the Ramon erosion cirque, Negev Highlands, Israel. This study of basic climatic factors in relation to flea bionomics provides the basis for ecological investigations to interpret reasons for paratopic local distributions of these two species of congeneric fleas on the same host. Both air temperature and RH were positively correlated with duration of egg and larval stages in both species. Change of humidity between egg and larval environments did not affect duration of larval development at any temperature. At each temperature and RH, the eggs and larvae of X. ramesis did not differ between males and females in the duration of their development, whereas female eggs and larvae of X. conformis usually developed significantly faster than those of males. For both species, male pupae developed slower than female pupae at the same air temperature and RH. Air temperature, but not RH, affected the duration of pupal development. At each humidity, duration of the pupal stage was significantly longer at 25 degrees C than at 28 degrees C: 15.3+/-1.7 vs. 11.7+/-1.2 days in X. conformis; 14.1+/-2.0 vs. 11.5+/-1.7 days in X. ramesis, with a significantly shorter pupal period of the latter species at 25 degrees C. These limited interspecific bionomic contrasts in relation to basic climatic factors appear insufficient to explain the differential habitat distributions of X. conformis and X. ramesis.

  11. Rainfall Prediction using Soil and Air Temperature in a Tropical Station

    NASA Astrophysics Data System (ADS)

    Chacko, Tessy P.; Renuka, G.

    2007-07-01

    An attempt is made to establish a linkage between soil and air temperature and south-west monsoon rainfall at Pillicode (12°12'N,75°10'E) a tropical station in north Kerala. The dependence of monsoon rainfall on pre-monsoon soil temperature decreases as the depth of the soil increases. A regression equation has been developed for the estimation of monsoon rainfall using pre-monsoon soil and air temperature. The results show that sub soil temperature along with air temperature can be used for forecasting the monsoon level.

  12. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 34 2013-07-01 2013-07-01 false NOX intake-air humidity...

  13. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 32 2010-07-01 2010-07-01 false NOX intake-air humidity...

  14. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 33 2014-07-01 2014-07-01 false NOX intake-air humidity...

  15. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 33 2011-07-01 2011-07-01 false NOX intake-air humidity...

  16. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 34 2012-07-01 2012-07-01 false NOX intake-air humidity...

  17. One-Component Pressure-Temperature Phase Diagrams in the Presence of Air

    ERIC Educational Resources Information Center

    Andrade-Gamboa, Julio; Martire, Daniel O.; Donati, Edgardo R.

    2010-01-01

    One-component phase diagrams are good approximations to predict pressure-temperature ("P-T") behavior of a substance in the presence of air, provided air pressure is not much higher than the vapor pressure. However, at any air pressure, and from the conceptual point of view, the use of a traditional "P-T" phase diagram is not strictly correct. In…

  18. Comparison of forced-air warming and electric heating pad for maintenance of body temperature during total knee replacement.

    PubMed

    Ng, V; Lai, A; Ho, V

    2006-11-01

    We conducted a randomised controlled trial to compare the efficacy of forced-air warming (Bair Hugger(trade mark), Augustine Medical model 500/OR, Prairie, MN) with that of an electric heating pad (Operatherm 202, KanMed, Sweden) for maintenance of intra-operative body temperature in 60 patients undergoing total knee replacement under combined spinal-epidural anaesthesia. Intra-operative tympanic and rectal temperatures and verbal analogue score for thermal comfort were recorded. There were no differences in any measurements between the two groups, with mean (SD) final rectal temperatures of 36.8 (0.4) degrees C with forced-air warming and 36.9 (0.4) degrees C with the electric pad. The heating pad is as effective as forced-air warming for maintenance of intra-operative body temperature.

  19. Correction of Temperatures of Air-Cooled Engine Cylinders for Variation in Engine and Cooling Conditions

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Pinkel, Benjamin; Ellerbrock, Herman H , Jr

    1939-01-01

    Factors are obtained from semiempirical equations for correcting engine-cylinder temperatures for variation in important engine and cooling conditions. The variation of engine temperatures with atmospheric temperature is treated in detail, and correction factors are obtained for various flight and test conditions, such as climb at constant indicated air speed, level flight, ground running, take-off, constant speed of cooling air, and constant mass flow of cooling air. Seven conventional air-cooled engine cylinders enclosed in jackets and cooled by a blower were tested to determine the effect of cooling-air temperature and carburetor-air temperature on cylinder temperatures. The cooling air temperature was varied from approximately 80 degrees F. to 230 degrees F. and the carburetor-air temperature from approximately 40 degrees F. to 160 degrees F. Tests were made over a large range of engine speeds, brake mean effective pressures, and pressure drops across the cylinder. The correction factors obtained experimentally are compared with those obtained from the semiempirical equations and a fair agreement is noted.

  20. Predicting seed cotton moisture content from changes in drying air temperature - second year

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A mathematical model was used to predict seed cotton moisture content in the overhead section of a cotton gin. The model took into account the temperature, mass flow, and specific heat of both the air and seed cotton. Air temperatures and mass flows were measured for a second year at a commercial g...

  1. System and method for air temperature control in an oxygen transport membrane based reactor

    DOEpatents

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  2. Air-sea fluxes and surface layer turbulence around a sea surface temperature front

    NASA Technical Reports Server (NTRS)

    Friehe, C. A.; Shaw, W. J.; Davidson, K. L.; Rogers, D. P.; Large, W. G.; Stage, S. A.; Crescenti, G. H.; Khalsa, S. J. S.; Greenhut, G. K.; Li, F.

    1991-01-01

    The observed effects of sharp changes in sea surface temperature (SST) on the air-sea fluxes, surface roughness, and the turbulence structure in the surface layer and the marine atmospheric boundary layer are discussed. In situ flux and turbulence observations were carried out from three aircraft and two ships within the FASINEX framework. Three other aircraft used remote sensors to measure waves, microwave backscatter, and lidar signatures of cloud tops. Descriptions of the techniques, intercomparison of aircraft and ship flux data, and use of different methods for analyzing the fluxes from the aircraft data are described. Changing synoptic weather on three successive days yielded cases of wind direction both approximately parallel and perpendicular to a surface temperature front. For the wind perpendicular to the front, wind over both cold-to-warm and warm-to-cold surface temperatures occurred. Model results consistent with the observations suggest that an internal boundary layer forms at the SST.

  3. Impact of Surface Air Temperature and Snow Cover Depth on the Upper Soil Temperature Variations in Russia

    NASA Astrophysics Data System (ADS)

    Sherstyukov, A. B.; Sherstyukov, B. G.; Groisman, P. Y.

    2007-12-01

    A study of the impact of climate changes during for the last four decades on soil temperatures at depths up to 3.2 meters has been conducted for the territory of Russia. For the 1965-2004 period, we compiled and analyzed data from all Russian meteorological stations with long-term soil temperature observations at depths 80, 160 and 320 cm. Traditionally, these stations also observe a complete set of standard meteorological variables (that include surface air temperature and extensive monitoring of snow cover characteristics). This allowed us to investigate the impact of surface air temperatures and snow depth variations on soil temperatures in the upper soil layer, to quantify it using statistical analyses of multi-dimensional 40-year-long time series at 164 locations throughout the country, and assess the representativeness of the obtained results. Three-dimensional spatial distributions of regression and correlation coefficients were mapped for warm and cold seasons separately as well as for the entire year, and thereafter analyzed. In the permafrost zone we found special features in these fields that distinctively separate the permafrost zone from the remaining territory. In this zone, soil temperatures are practically uncorrelated with surface air temperatures and variations of the snow depth controls soil temperature variations (with R2 up to 0.5) Quantitative estimates of the contribution of mid-annual air temperature and snow cover depth in the long-term changes of mid-annual soil temperatures across the Russia territory were received. We found that the prevailing influence on soil temperature variations in the European part was surface air temperatures and in the Asian part of Russia was snow cover depth. Furthermore, increase of the winter snow depth in the permafrost zone (by preserving the heat accumulated in the warm season) promotes annual soil temperature increase and therefore may foster the further permafrost degradation associated with ongoing

  4. Heat Dissipation from a Finned Cylinder at Different Fin-Plane/Air-stream Angles

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Biermann, Arnold E

    1932-01-01

    This report gives the results of an experimental determination of the temperature distribution in and the heat dissipation from a cylindrical finned surface for various fin-plane/air-stream angles. A steel cylinder 4.5 inches in diameter having slightly tapered fins of 0.30-inch pitch and 0.6 -inch width was equipped with an electrical heating unit furnishing 13 to 248 B.T.U. per hour per square inch of inside wall area. Air at speeds form 30 to 150 miles per hour was directed at seven different angles from 0 degrees to 90 degrees with respect to the fin planes. The tests show the best angle for cooling at all air speeds to be about 45 degrees. With the same temperature for the two conditions and with an air speed of 76 miles per hour, the heat input to the cylinder can be increased 50 percent at 45 degrees fin-plane/air-stream angle over that at 0 degrees.

  5. Long-term dynamics of atmospheric circulation over Siberia and its relationship with air temperature

    NASA Astrophysics Data System (ADS)

    Podnebesnykh, N. V.; Ippolitov, I. I.

    2012-12-01

    The main objective of this study is the investigation of cyclone characteristics variability in the region bounded by the coordinates 50°-70° N, 60°-110° W which includes Western Siberia and the part of Eastern Siberia for the time interval 1976-2006, as well as the establishment of statistical relationships between the temperature conditions and the atmospheric circulation. For the dynamics of the climatic characteristics of cyclones and anticyclones over Siberia surface synoptic maps were used, and to study the trends of air temperature daily data from 169 ground-based meteorological stations and posts located in the study area were analyzed. During the period of the modern warming the territory of Siberia was characterized by rapidly temperature increase: average annual value was 0.36°C/10 years, and average monthly value was 0.83°C/10 years. The positive trend of temperature increasing is shown for all months except November. The total number of cyclones over the territory of under study for the period of 1976-2006 has decreased at a rate of 1.4 cyclone/10 years. For further analysis all cyclones were divided into three groups, according to their directions: north, west and south. It was found the number of south and west cyclones decreased, whole the number of cyclone from north directions increased. Such multidirectional dynamics of cyclones from different directions can be associated with the processes of strengthening and weakening of the Polar and Arctic fronts in the Atlantic sector of the Northern Hemisphere. Among characteristics of vortex activity the pressure in the centers of cyclones and anticyclones has the greatest influence on the air temperature and the total number of cyclones has the smallest. Multiple regression models have shown that in different months of a year the circulation can describe from 54% to 82% of temperature variability.

  6. Simulation of Air and Ground Temperatures in PMIP3/CMIP5 Last Millennium Simulations: Implications for Climate Reconstructions from Borehole Temperature Profiles

    NASA Astrophysics Data System (ADS)

    Beltrami, Hugo; García-García, Almudena; José Cuesta-Valero, Francisco; Smerdon, Jason

    2016-04-01

    For General Circulation Models (GCMs) to simulate the continental energy storage of the Earth's energy budget it is crucial that they correctly capture the processes that partition energy across the land-atmosphere boundary. We evaluate herein the characteristics of these processes as simulated by models in the third phase of the Paleoclimate Modelling Intercomparison Project and the fifth phase of the Coupled Model Intercomparison Project (PMIP3/CMIP5). We examine the seasonal differences between air and ground temperatures within PMIP3 last-millennium simulations concatenated with historical simulations from the CMIP5 archive. We find a strong air-ground coupling during the summer from 850 to 2000 CE. During the winter, the insulating effect of snow and latent heat exchanges produce a decoupling between air and ground temperatures in the northern high latitudes. Additionally, we use the simulated temperature trends as an upper boundary condition to force a one-dimensional conductive model to derive synthetic temperature-depth profiles for each PMIP3/CMIP5 simulation. The inversions of these subsurface profiles yield temperature trends that retain the surface temperature variations of the last millennium for all the PMIP3/CMIP5 simulations. These results support the use of underground temperatures to reconstruct past changes in ground surface temperature and to estimate the continental energy storage.

  7. Air breathing in the Arctic: influence of temperature, hypoxia, activity and restricted air access on respiratory physiology of the Alaska blackfish Dallia pectoralis

    PubMed Central

    Lefevre, Sjannie; Damsgaard, Christian; Pascale, Desirae R.; Nilsson, Göran E.; Stecyk, Jonathan A. W.

    2014-01-01

    The Alaska blackfish (Dallia pectoralis) is an air-breathing fish native to Alaska and the Bering Sea islands, where it inhabits lakes that are ice-covered in the winter, but enters warm and hypoxic waters in the summer to forage and reproduce. To understand the respiratory physiology of this species under these conditions and the selective pressures that maintain the ability to breathe air, we acclimated fish to 5°C and 15°C and used respirometry to measure: standard oxygen uptake () in normoxia (19.8 kPa PO2) and hypoxia (2.5 kPa), with and without access to air; partitioning of standard in normoxia and hypoxia; maximum and partitioning after exercise; and critical oxygen tension (Pcrit). Additionally, the effects of temperature acclimation on haematocrit, haemoglobin oxygen affinity and gill morphology were assessed. Standard was higher, but air breathing was not increased, at 15°C or after exercise at both temperatures. Fish acclimated to 5°C or 15°C increased air breathing to compensate and fully maintain standard in hypoxia. Fish were able to maintain through aquatic respiration when air was denied in normoxia, but when air was denied in hypoxia, standard was reduced by ∼30–50%. Pcrit was relatively high (5 kPa) and there were no differences in Pcrit, gill morphology, haematocrit or haemoglobin oxygen affinity at the two temperatures. Therefore, Alaska blackfish depends on air breathing in hypoxia and additional mechanisms must thus be utilised to survive hypoxic submergence during the winter, such as hypoxia-induced enhancement in the capacities for carrying and binding blood oxygen, behavioural avoidance of hypoxia and suppression of metabolic rate. PMID:25394628

  8. Air breathing in the Arctic: influence of temperature, hypoxia, activity and restricted air access on respiratory physiology of the Alaska blackfish Dallia pectoralis.

    PubMed

    Lefevre, Sjannie; Damsgaard, Christian; Pascale, Desirae R; Nilsson, Göran E; Stecyk, Jonathan A W

    2014-12-15

    The Alaska blackfish (Dallia pectoralis) is an air-breathing fish native to Alaska and the Bering Sea islands, where it inhabits lakes that are ice-covered in the winter, but enters warm and hypoxic waters in the summer to forage and reproduce. To understand the respiratory physiology of this species under these conditions and the selective pressures that maintain the ability to breathe air, we acclimated fish to 5°C and 15°C and used respirometry to measure: standard oxygen uptake (Ṁ(O₂)) in normoxia (19.8 kPa P(O₂)) and hypoxia (2.5 kPa), with and without access to air; partitioning of standard Ṁ(O₂) in normoxia and hypoxia; maximum Ṁ(O₂) and partitioning after exercise; and critical oxygen tension (P(crit)). Additionally, the effects of temperature acclimation on haematocrit, haemoglobin oxygen affinity and gill morphology were assessed. Standard Ṁ(O₂) was higher, but air breathing was not increased, at 15°C or after exercise at both temperatures. Fish acclimated to 5°C or 15°C increased air breathing to compensate and fully maintain standard Ṁ(O₂) in hypoxia. Fish were able to maintain Ṁ(O₂) through aquatic respiration when air was denied in normoxia, but when air was denied in hypoxia, standard Ṁ(O₂) was reduced by ∼30-50%. P(crit) was relatively high (5 kPa) and there were no differences in P(crit), gill morphology, haematocrit or haemoglobin oxygen affinity at the two temperatures. Therefore, Alaska blackfish depends on air breathing in hypoxia and additional mechanisms must thus be utilised to survive hypoxic submergence during the winter, such as hypoxia-induced enhancement in the capacities for carrying and binding blood oxygen, behavioural avoidance of hypoxia and suppression of metabolic rate.

  9. Pyrolysis of polymeric materials. I - Effect of chemical structure, temperature, heating rate, and air flow on char yield and toxicity

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Casey, C. J.

    1979-01-01

    Various polymeric materials, including synthetic polymers and cellulosic materials, were evaluated at different temperatures, heating rates and air flow rates for thermophysical and toxicological responses. It is shown that char yields appeared to be a function of air access as much as of the chemical structure of the material. It is stated that the sensitivity of the apparent thermal stability of some materials to air access is so marked that thermogravimetric studies in oxygen-free atmospheres may be a consistently misleading approach to comparing synthetic polymers intended to increase fire safety. Toxicity also appeared to be a function of temperature and air access as much as of the chemical structure of the material. Toxicity of the gases evolved seemed to increase with increasing char yield for some polymers.

  10. Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes

    NASA Technical Reports Server (NTRS)

    Frankignoul, C.

    1985-01-01

    Current analytical models for large-scale air-sea interactions in the middle latitudes are reviewed in terms of known sea-surface temperature (SST) anomalies. The scales and strength of different atmospheric forcing mechanisms are discussed, along with the damping and feedback processes controlling the evolution of the SST. Difficulties with effective SST modeling are described in terms of the techniques and results of case studies, numerical simulations of mixed-layer variability and statistical modeling. The relationship between SST and diabatic heating anomalies is considered and a linear model is developed for the response of the stationary atmosphere to the air-sea feedback. The results obtained with linear wave models are compared with the linear model results. Finally, sample data are presented from experiments with general circulation models into which specific SST anomaly data for the middle latitudes were introduced.

  11. Temperature Characterization of Different Urban Microhabitats of Aedes albopictus (Diptera Culicidae) in Central-Northern Italy.

    PubMed

    Vallorani, Roberto; Angelini, Paola; Bellini, Romeo; Carrieri, Marco; Crisci, Alfonso; Mascali Zeo, Silvia; Messeri, Gianni; Venturelli, Claudio

    2015-08-01

    Aedes albopictus (Skuse) is an invasive mosquito species that has spread to many countries in temperate regions bordering the Mediterranean basin, where it is becoming a major public health concern. A good knowledge of the thermal features of the most productive breeding sites for Ae. albopictus is crucial for a better estimation of the mosquitoes' life cycle and developmental rates. In this article, we address the problem of predicting air temperature in three microhabitats common in urban and suburban areas and the air and water temperature inside an ordinary catch basin, which is considered the most productive breeding site for Ae. albopictus in Italy. Temperature differences were statistically proven between the three microhabitats and between the catch basin external and internal temperature. The impacts on the developmental rates for each life stage of Ae. albopictus were tested through a parametric function of the temperature, and the aquatic stages resulted as being the most affected using the specific temperature inside a typical catch basin instead of a generic air temperature. The impact of snow cover on the catch basin internal temperature, and consequently on the mortality of diapausing eggs, was also evaluated. These data can be useful to improve epidemiological models for a better prediction of Ae. albopictus seasonal and population dynamics in central-northern Italian urban areas.

  12. Temperature influences on water permeability and chlorpyrifos uptake in aquatic insects with differing respiratory strategies

    USGS Publications Warehouse

    Buchwalter, D.B.; Jenkins, J.J.; Curtis, L.R.

    2003-01-01

    Aquatic insects have evolved diverse respiratory strategies that range from breathing atmospheric air to breathing dissolved oxygen. These strategies result in vast morphological differences among taxa in terms of exchange epithelial surface areas that are in direct contact with the surrounding water that, in turn, affect physiological processes. This paper examines the effects of acute temperature shifts on water permeability and chlorpyrifos uptake in aquatic insects with different respiratory strategies. While considerable differences existed in water permeability among the species tested, acute temperature shifts raised water influx rates similarly in air-breathing and gill-bearing taxa. This contrasts significantly with temperature-shift effects on chlorpyrifos uptake. Temperature shifts of 4.5??C increased 14C-chlorpyrifos accumulation rates in the gill-bearing mayfly Cinygma sp. and in the air-breathing hemipteran Sigara washingtonensis. However, the temperature-induced increase in 14C-chlorpyrifos uptake after 8 h of exposure was 2.75-fold higher in Cinygma than in Sigara. Uptake of 14C-chlorpyrifos was uniformly higher in Cinygma than in Sigara in all experiments. These findings suggest that organisms with relatively large exchange epithelial surface areas are potentially more vulnerable to both osmoregulatory distress as well as contaminant accumulation. Temperature increases appear more likely to impact organisms that have relatively large exchange epithelial surface areas, both as an individual stressor and in combination with additional stressors such as contaminants.

  13. Use of Quality Controlled AIRS Temperature Soundings to Improve Forecast Skill

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste; Iredell, Lena

    2010-01-01

    on use of a Standard profile dependent threshold (Delta)T(p). These Standard thresholds were designed as a compromise between optimal use for data assimilation purposes, which requires highest accuracy (tighter Quality Control), and climate purposes, which requires more spatial coverage (looser Quality Control). Subsequent research using Version 5 sounding and error estimates showed that tighter Quality Control performs better for data assimilation proposes, while looser Quality Control better spatial coverage) performs better for climate purposes. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 degree latitude x 0.67 degree longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates (delta)T(p) were used as the uncertainty for each measurement in the data assimilation process.

  14. Estimation of whole lemon mass transfer parameters during hot air drying using different modelling methods

    NASA Astrophysics Data System (ADS)

    Torki-Harchegani, Mehdi; Ghanbarian, Davoud; Sadeghi, Morteza

    2015-08-01

    To design new dryers or improve existing drying equipments, accurate values of mass transfer parameters is of great importance. In this study, an experimental and theoretical investigation of drying whole lemons was carried out. The whole lemons were dried in a convective hot air dryer at different air temperatures (50, 60 and 75 °C) and a constant air velocity (1 m s-1). In theoretical consideration, three moisture transfer models including Dincer and Dost model, Bi- G correlation approach and conventional solution of Fick's second law of diffusion were used to determine moisture transfer parameters and predict dimensionless moisture content curves. The predicted results were then compared with the experimental data and the higher degree of prediction accuracy was achieved by the Dincer and Dost model.

  15. Air-Cooled Design of a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization Systems

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.; Affleck, Dave L.; Rosen, Micha; LeVan, M. Douglas; Wang, Yuan; Cavalcante, Celio L.

    2004-01-01

    The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. We have a developed a temperature-swing adsorption compressor (TSAC) for performing these tasks that is energy efficient, quiet, and has no rapidly moving parts. This paper discusses the mechanical design and the results of thermal model validation tests of a TSAC that uses air as the cooling medium.

  16. Some Effects of Air and Fuel Oil Temperatures on Spray Penetration and Dispersion

    NASA Technical Reports Server (NTRS)

    Gelalles, A G

    1930-01-01

    Presented here are experimental results obtained from a brief investigation of the appearance, penetration, and dispersion of oil sprays injected into a chamber of highly heated air at atmospheric pressure. The development of single sprays injected into a chamber containing air at room temperature and at high temperature was recorded by spray photography equipment. A comparison of spray records showed that with the air at the higher temperature, the spray assumed the appearance of thin, transparent cloud, the greatest part of which rapidly disappeared from view. With the chamber air at room temperature, a compact spray with an opaque core was obtained. Measurements of the records showed a decrease in penetration and an increase in the dispersion of the spray injected into the heated air. No ignition of the fuel injected was observed or recorded until the spray particles came in contact with the much hotter walls of the chamber about 0.3 second after the start of injection.

  17. An assessment of precipitation and surface air temperature over China by regional climate models

    NASA Astrophysics Data System (ADS)

    Wang, Xueyuan; Tang, Jianping; Niu, Xiaorui; Wang, Shuyu

    2016-12-01

    An analysis of a 20-year summer time simulation of present-day climate (1989-2008) over China using four regional climate models coupled with different land surface models is carried out. The climatic means, interannual variability, linear trends, and extremes are examined, with focus on precipitation and near surface air temperature. The models are able to reproduce the basic features of the observed summer mean precipitation and temperature over China and the regional detail due to topographic forcing. Overall, the model performance is better for temperature than that of precipitation. The models reasonably grasp the major anomalies and standard deviations over China and the five subregions studied. The models generally reproduce the spatial pattern of high interannual variability over wet regions, and low variability over the dry regions. The models also capture well the variable temperature gradient increase to the north by latitude. Both the observed and simulated linear trend of precipitation shows a drying tendency over the Yangtze River Basin and wetting over South China. The models capture well the relatively small temperature trends in large areas of China. The models reasonably simulate the characteristics of extreme precipitation indices of heavy rain days and heavy precipitation fraction. Most of the models also performed well in capturing both the sign and magnitude of the daily maximum and minimum temperatures over China.

  18. Investigation of the impact of extreme air temperature on river water temperature: case study of the heat episode 2013.

    NASA Astrophysics Data System (ADS)

    Weihs, Philipp; Trimmel, Heidelinde; Goler, Robert; Formayer, Herbert; Holzapfel, Gerda; Rauch, Hans Peter

    2014-05-01

    Water stream temperature is a relevant factor for water quality since it is an important driver of water oxygen content and in turn also reduces or increases stress on the aquatic fauna. The water temperature of streams is determined by the source and inflow water temperature, by the energy balance at the stream surface and by the hydrological regime of the stream. Main factors driving the energy balance of streams are radiation balance and air temperature which influences the sensitive and latent heat flux. The present study investigates the impact of the heat episode of summer 2013 on water temperature of two lowland rivers in south eastern Austria. Within the scope of the project BIO_CLIC routine measurements of water temperature at 33 locations alongside the rivers Pinka and Lafnitz have been performed since spring 2012. In addition meteorological measurements of global shortwave and longwave radiation, air temperature, wind and air humidity have been carried out during this time. For the same time period, data of discharge and water levels of both rivers were provided by the public hydrological office. The heat episode of summer 2013 started, according to the Kysely- definition, on 18 July and lasted until 14 August. The highest air temperature ever recorded in Austria was reported on 8 August at 40.5°C. In Güssing, which is located within the project area, 40.0 °C were recorded. In the lower reaches of the river Pinka, at the station Burg the monthly mean water temperature of August 2013 was with more than 22°C, 1°C higher than the mean water temperature of the same period of the previous years. At the same station, the maximum water temperature of 27.1°C was recorded on 29 July, 9 days prior to the air temperature record. Analysis shows that at the downstream stations the main driving parameter is solar radiation whereas at the upstream stations a better correlation between air temperature and water temperature is obtained. Using the extensive data set

  19. Comparison of Near-Surface Air Temperatures and MODIS Ice-Surface Temperatures at Summit, Greenland (2008-2013)

    NASA Technical Reports Server (NTRS)

    Shuman, Christopher A.; Hall, Dorothy K.; DiGirolamo, Nicolo E.; Mefford, Thomas K.; Schnaubelt, Michael J.

    2014-01-01

    We have investigated the stability of the MODerate resolution Imaging Spectroradiometer (MODIS) infrared-derived ice surface temperature (IST) data from Terra for use as a climate quality data record. The availability of climate quality air temperature data (TA) from a NOAA Global Monitoring Division observatory at Greenlands Summit station has enabled this high temporal resolution study of MODIS ISTs. During a 5 year period (July 2008 to August 2013), more than 2500 IST values were compared with 3-minute average TA values derived from the 1-minute data from NOAAs primary 2 m air temperature sensor. These data enabled an expected small offset between air and surface temperatures at this the ice sheet location to be investigated over multiple annual cycles.

  20. Multitechnique characterisation of 304L surface states oxidised at high temperature in steam and air atmospheres

    NASA Astrophysics Data System (ADS)

    Mamede, Anne-Sophie; Nuns, Nicolas; Cristol, Anne-Lise; Cantrel, Laurent; Souvi, Sidi; Cristol, Sylvain; Paul, Jean-François

    2016-04-01

    In case of a severe accident occurring in a nuclear reactor, surfaces of the reactor coolant system (RCS), made of stainless steel (304L) rich in Cr (>10%) and Ni (8-12%), are oxidised. Fission products (FPs) are released from melt fuel and flow through the RCS. A part of them is deposited onto surfaces either by vapour condensation or by aerosol deposition mechanisms. To be able to understand the nature of interactions between these FPs and the RCS surfaces, a preliminary step is to characterize the RSC surface states in steam and air atmosphere at high temperatures. Pieces of 304L stainless steel have been treated in a flow reactor at two different temperatures (750 °C and 950 °C) for two different exposition times (24 h and 72 h). After surfaces analysing by a unique combination of surface analysis techniques (XPS, ToF-SIMS and LEIS), for 304L, the results show a deep oxide scale with multi layers and the outer layer is composed of chromium and manganese oxides. Oxide profiles differ in air or steam atmosphere. Fe2O3 oxide is observed but in minor proportion and in all cases no nickel is detected near the surface. Results obtained are discussed and compared with the literature data.

  1. Thermal equilibrium and temperature differences among body regions in European plethodontid salamanders.

    PubMed

    Lunghi, Enrico; Manenti, Raoul; Canciani, Giancarlo; Scarì, Giorgio; Pennati, Roberta; Ficetola, Gentile Francesco

    2016-08-01

    Information on species thermal physiology is extremely important to understand species responses to environmental heterogeneity and changes. Thermography is an emerging technology that allows high resolution and accurate measurement of body temperature, but until now it has not been used to study thermal physiology of amphibians in the wild. Hydromantes terrestrial salamanders are strongly depending on ambient temperature for their activity and gas exchanges, but information on their body temperature is extremely limited. In this study we tested if Hydromantes salamanders are thermoconform, we assessed whether there are temperature differences among body regions, and evaluated the time required to reach the thermal equilibrium. During summers of 2014 and 2015 we analysed 56 salamanders (Hydromantes ambrosii and Hydromantes italicus) using infrared thermocamera. We photographed salamanders at the moment in which we found them and 1, 2, 3, 4, 5 and 15min after having kept them in the hands. Body temperature was equal to air temperature; salamanders attained the equilibrium with air temperature in about 8min, the time required to reach equilibrium was longer in individuals with large body size. We detected small temperature differences between body parts, the head being slightly warmer than the body and the tail (mean difference: 0.05°C). These salamanders quickly reach the equilibrium with the environment, thus microhabitat measurement allows obtaining accurate information on their tolerance limits.

  2. Daily air temperature interpolated at high spatial resolution over a large mountainous region

    USGS Publications Warehouse

    Dodson, R.; Marks, D.

    1997-01-01

    Two methods are investigated for interpolating daily minimum and maximum air temperatures (Tmin and Tmax) at a 1 km spatial resolution over a large mountainous region (830 000 km2) in the U.S. Pacific Northwest. The methods were selected because of their ability to (1) account for the effect of elevation on temperature and (2) efficiently handle large volumes of data. The first method, the neutral stability algorithm (NSA), used the hydrostatic and potential temperature equations to convert measured temperatures and elevations to sea-level potential temperatures. The potential temperatures were spatially interpolated using an inverse-squared-distance algorithm and then mapped to the elevation surface of a digital elevation model (DEM). The second method, linear lapse rate adjustment (LLRA), involved the same basic procedure as the NSA, but used a constant linear lapse rate instead of the potential temperature equation. Cross-validation analyses were performed using the NSA and LLRA methods to interpolate Tmin and Tmax each day for the 1990 water year, and the methods were evaluated based on mean annual interpolation error (IE). The NSA method showed considerable bias for sites associated with vertical extrapolation. A correction based on climate station/grid cell elevation differences was developed and found to successfully remove the bias. The LLRA method was tested using 3 lapse rates, none of which produced a serious extrapolation bias. The bias-adjusted NSA and the 3 LLRA methods produced almost identical levels of accuracy (mean absolute errors between 1.2 and 1.3??C), and produced very similar temperature surfaces based on image difference statistics. In terms of accuracy, speed, and ease of implementation, LLRA was chosen as the best of the methods tested.

  3. The Role of Auxiliary Variables in Deterministic and Deterministic-Stochastic Spatial Models of Air Temperature in Poland

    NASA Astrophysics Data System (ADS)

    Szymanowski, Mariusz; Kryza, Maciej

    2017-02-01

    Our study examines the role of auxiliary variables in the process of spatial modelling and mapping of climatological elements, with air temperature in Poland used as an example. The multivariable algorithms are the most frequently applied for spatialization of air temperature, and their results in many studies are proved to be better in comparison to those obtained by various one-dimensional techniques. In most of the previous studies, two main strategies were used to perform multidimensional spatial interpolation of air temperature. First, it was accepted that all variables significantly correlated with air temperature should be incorporated into the model. Second, it was assumed that the more spatial variation of air temperature was deterministically explained, the better was the quality of spatial interpolation. The main goal of the paper was to examine both above-mentioned assumptions. The analysis was performed using data from 250 meteorological stations and for 69 air temperature cases aggregated on different levels: from daily means to 10-year annual mean. Two cases were considered for detailed analysis. The set of potential auxiliary variables covered 11 environmental predictors of air temperature. Another purpose of the study was to compare the results of interpolation given by various multivariable methods using the same set of explanatory variables. Two regression models: multiple linear (MLR) and geographically weighted (GWR) method, as well as their extensions to the regression-kriging form, MLRK and GWRK, respectively, were examined. Stepwise regression was used to select variables for the individual models and the cross-validation method was used to validate the results with a special attention paid to statistically significant improvement of the model using the mean absolute error (MAE) criterion. The main results of this study led to rejection of both assumptions considered. Usually, including more than two or three of the most significantly

  4. Geographical and Geomorphological Effects on Air Temperatures in the Columbia Basin's Signature Vineyards

    NASA Astrophysics Data System (ADS)

    Olson, L.; Pogue, K. R.; Bader, N.

    2012-12-01

    The Columbia Basin of Washington and Oregon is one of the most productive grape-growing areas in the United States. Wines produced in this region are influenced by their terroir - the amalgamation of physical and cultural elements that influence grapes grown at a particular vineyard site. Of the physical factors, climate, and in particular air temperature, has been recognized as a primary influence on viticulture. Air temperature directly affects ripening in the grapes. Proper fruit ripening, which requires precise and balanced levels of acid and sugar, and the accumulation of pigment in the grape skin, directly correlates with the quality of wine produced. Many features control air temperature within a particular vineyard. Elevation, latitude, slope, and aspect all converge to form complex relationships with air temperatures; however, the relative degree to which these attributes affect temperatures varies between regions and is not well understood. This study examines the influence of geography and geomorphology on air temperatures within the American Viticultural Areas (AVAs) of the Columbia Basin in eastern Washington and Oregon. The premier vineyards within each AVA, which have been recognized for producing high-quality wine, were equipped with air temperature monitoring stations that collected hourly temperature measurements. A variety of temperature statistics were calculated, including daily average, maximum, and minimum temperatures. From these values, average diurnal variation and growing degree-days (10°C) were calculated. A variety of other statistics were computed, including date of first and last frost and time spent below a minimum temperature threshold. These parameters were compared to the vineyard's elevation, latitude, slope, aspect, and local topography using GPS, ArcCatalog, and GIS in an attempt to determine their relative influences on air temperatures. From these statistics, it was possible to delineate two trends of temperature variation

  5. AIRS satellite observations of meridional temperature gradient over Indian summer monsoon region

    NASA Astrophysics Data System (ADS)

    Dhaka, S. K.; Gupta, A.; Panwar, V.; Bhatnagar, R.

    2011-12-01

    To investigate temperature changes in the upper troposphere over Indian region covering from Arabian Sea (AS) to Bay of Bengal (BOB), analysis is carried out during both summer (May-June-July-August) and winter (November-December-January-February) using AIRS data at a high spatial (1×1 lat long) resolution over sea and land spanned over 2005-2010. This is done to examine the similarities and differences in the meridional temperature gradient during Asian summer monsoon and winter. During May, there is an increase in temperature latitudinal from 3oN to 20oN by ~ 2.5 K in the all the years, however, temperature is decreased gradually (~ 0.15 K per deg latitude) by ~3 K during June-July-Aug (JJA). Thus, there is a contrast behavior observed in the meridional variation of temperature during May with that of JJA. The study further suggests the latitudinal change in temperature occurs due to low OLR (convection) and its northward progression during summer. Similar analysis for the winter months (NDJF) shows the existence of latitudinal variation in temperature which has an increasing tendency from 3oN to 20oN. The change in temperature is larger (~4-5K) for winter months as compared to the summer months, the apparent change is caused by the presence of monsoon during summer months (high humidity and water vapors). During winter, the variability in temperature for Nov and Dec is found larger as compared to Jan and Feb because of increased convection (low OLR) at low latitudes (3-10oN) in the former months and latter being the dry months with no convection.

  6. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    PubMed Central

    Lee, Jing-Nang; Lin, Tsung-Min

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system. PMID:25250390

  7. Modeling validation and control analysis for controlled temperature and humidity of air conditioning system.

    PubMed

    Lee, Jing-Nang; Lin, Tsung-Min; Chen, Chien-Chih

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14 °C, 0006 kg(w)/kg(da) in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  8. Detonation cell size measurements in high-temperature hydrogen-air-steam mixtures at the BNL high-temperature combustion facility

    SciTech Connect

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.L.

    1997-11-01

    The High-Temperature Combustion Facility (HTCF) was designed and constructed with the objective of studying detonation phenomena in mixtures of hydrogen-air-steam at initially high temperatures. The central element of the HTCF is a 27-cm inner-diameter, 21.3-m long cylindrical test vessel capable of being heating to 700K {+-} 14K. A unique feature of the HTCF is the {open_quotes}diaphragmless{close_quotes} acetylene-oxygen gas driver which is used to initiate the detonation in the test gas. Cell size measurements have shown that for any hydrogen-air-steam mixture, increasing the initial mixture temperature, in the range of 300K to 650K, while maintaining the initial pressure of 0.1 MPa, decreases the cell size and thus makes the mixture more detonable. The effect of steam dilution on cell size was tested in stoichiometric and off-stoichiometric (e.g., equivalence ratio of 0.5) hydrogen-air mixtures. Increasing the steam dilution in hydrogen-air mixtures at 0.1 MPa initial pressure increases the cell size, irrespective of initial temperature. It is also observed that the desensitizing effect of steam diminished with increased initial temperature. A 1-dimensional, steady-state Zel`dovich, von Neumann, Doring (ZND) model, with full chemical kinetics, has been used to predict cell size for hydrogen-air-steam mixtures at different initial conditions. Qualitatively the model predicts the overall trends observed in the measured cell size versus mixture composition and initial temperature and pressure. It was found that the proportionality constant used to predict detonation cell size from the calculated ZND model reaction zone varies between 10 and 100 depending on the mixture composition and initial temperature. 32 refs., 35 figs.

  9. Perceiving nasal patency through mucosal cooling rather than air temperature or nasal resistance.

    PubMed

    Zhao, Kai; Blacker, Kara; Luo, Yuehao; Bryant, Bruce; Jiang, Jianbo

    2011-01-01

    Adequate perception of nasal airflow (i.e., nasal patency) is an important consideration for patients with nasal sinus diseases. The perception of a lack of nasal patency becomes the primary symptom that drives these patients to seek medical treatment. However, clinical assessment of nasal patency remains a challenge because we lack objective measurements that correlate well with what patients perceive. The current study examined factors that may influence perceived patency, including air temperature, humidity, mucosal cooling, nasal resistance, and trigeminal sensitivity. Forty-four healthy subjects rated nasal patency while sampling air from three facial exposure boxes that were ventilated with untreated room air, cold air, and dry air, respectively. In all conditions, air temperature and relative humidity inside each box were recorded with sensors connected to a computer. Nasal resistance and minimum airway cross-sectional area (MCA) were measured using rhinomanometry and acoustic rhinometry, respectively. General trigeminal sensitivity was assessed through lateralization thresholds to butanol. No significant correlation was found between perceived patency and nasal resistance or MCA. In contrast, air temperature, humidity, and butanol threshold combined significantly contributed to the ratings of patency, with mucosal cooling (heat loss) being the most heavily weighted predictor. Air humidity significantly influences perceived patency, suggesting that mucosal cooling rather than air temperature alone provides the trigeminal sensation that results in perception of patency. The dynamic cooling between the airstream and the mucosal wall may be quantified experimentally or computationally and could potentially lead to a new clinical evaluation tool.

  10. The influence of coal particles on self-ignition of methane-air mixture at temperatures 950-1200 K

    NASA Astrophysics Data System (ADS)

    Leschevich, V. V.; Penyazkov, O. G.; Shimchenko, S. Yu; Yaumenchykau, M. L.

    2016-11-01

    This paper represents experimental investigation of ignition of combustible gaseous mixture with reactive particles in the rapid compression machine at temperatures 950-1200 K and pressures 1.5-2.0 MPa. The experiments were carried out with stoichiometric methane-air mixture in the presence of coal particles with size 20-32 μm. It was found that the presence of these particles not only reduces ignition time but influences on the ignition temperature of mixture. It is ascertained that ignition time of methane in pure air is longer than with same mixture with addition coal dust. This difference is explained to preignition of methane near burning particles. It is shown that ignition of coal dust originates at the temperature of oxidant higher 850 K. Temperature of particles burning in methane-air and air environment heated by compression was measured. The mean temperature is 2500 K. It indicates possibility of premature ignition of gas mixture heated by compression to temperature 1000-1100 K by addition of coal particles.

  11. Comparison of Vertical Soundings and Sidewall Air Temperature Measurements in a Small Alpine Basin.

    NASA Astrophysics Data System (ADS)

    Whiteman, C. David; Eisenbach, Stefan; Pospichal, Bernhard; Steinacker, Reinhold

    2004-11-01

    Tethered balloon soundings from two sites on the floor of a 1-km-diameter limestone sinkhole in the eastern Alps are compared with pseudovertical temperature “soundings” from three lines of temperature dataloggers on the basin's northwest, southwest, and southeast sidewalls. Under stable nighttime conditions with low background winds, the pseudovertical profiles from all three lines were good proxies for free air temperature soundings over the basin center, with a mean nighttime cold temperature bias of about 0.4°C and a standard deviation of 0.4°C. Cold biases were highest in the upper basin where relatively warm air subsides to replace air that spills out of the basin through the lowest-altitude saddle. On a windy night, standard deviations increased to 1° 2°C. After sunrise, the varying exposures of the dataloggers to sunlight made the pseudovertical profiles less useful as proxies for free air soundings. The good correspondence between sidewall and free air temperatures during high-static-stability conditions suggests that sidewall soundings can be used to monitor temperatures, temperature gradients, and temperature inversion evolution in the sinkhole. Sidewall soundings can produce more frequent profiles at lower cost than can tethersondes or rawinsondes, and extension of these findings to other enclosed or semienclosed topographies may enhance future basic meteorological research or support applications studies in agriculture, forestry, air pollution, and land use planning.


  12. Stream air temperature relations to classify stream ground water interactions in a karst setting, central Pennsylvania, USA

    NASA Astrophysics Data System (ADS)

    O'Driscoll, Michael A.; DeWalle, David R.

    2006-09-01

    SummaryStream-ground water interactions in karst vary from complete losses through swallow holes, to reemergences from springs. Our study objective was to compare stream-air temperature and energy exchange relationships across various stream-ground water relationships in a carbonate watershed. It was hypothesized that ground water-fed stream segments could be distinguished from perched/losing segments using stream-air temperature relationships. Two types of computations were conducted: (1) comparisons of stream-air temperature relationships for the period of October 1999-September 2002 at 12 sites in the Spring Creek drainage and (2) detailed energy budget computations for the same period for ground water-dominated Thompson Run and Lower Buffalo Run, a stream with negligible ground water inputs. Weekly average air temperatures and stream temperatures were highly correlated, but slopes and intercepts of the relationship varied for the 12 sites. Slopes ranged from 0.19 to 0.67 and intercepts ranged from 3.23 to 9.07 °C. A two-component mixing model with end members of ground water and actual stream temperatures indicated that the slope and intercept of the stream-air temperature relationship was controlled by ground water inputs. Streams with large ground water inputs had greater intercepts and lesser slopes than streams that were seasonally losing, perched, and/or distant from ground water inputs. Energy fluxes across the air-water interface were greatest for the ground water-fed stream due to increased longwave, latent, and sensible heat losses from the stream in winter when large temperature and vapor pressure differences existed between the stream and air. Advection of ground water was an important source and sink for heat in the ground water-fed stream, depending on season. In contrast, along the seasonally losing stream reach, advection was of minimal importance and stream temperatures were dominated by energy exchange across the air- water interface. Overall

  13. Implications of Air Ingress Induced by Density-Difference Driven Stratified Flow

    SciTech Connect

    Chang Oh; Eung Soo Kim; Richard Schultz; David Petti; C. P. Liou

    2008-06-01

    One of the design basis accidents for the Next Generation Nuclear Plant (NGNP), a high temperature gas-cooled reactor, is air ingress subsequent to a pipe break. Following a postulated double-ended guillotine break in the hot duct, and the subsequent depressurization to nearly reactor cavity pressure levels, air present in the reactor cavity will enter the reactor vessel via density-gradient-driven-stratified flow. Because of the significantly higher molecular weight and lower initial temperature of the reactor cavity air-helium mixture, in contrast to the helium in the reactor vessel, the air-helium mixture in the cavity always has a larger density than the helium discharging from the reactor vessel through the break into the reactor cavity. In the later stages of the helium blowdown, the momentum of the helium flow decreases sufficiently for the heavier cavity air-helium mixture to intrude into the reactor vessel lower plenum through the lower portion of the break. Once it has entered, the heavier gas will pool at the bottom of the lower plenum. From there it will move upwards into the core via diffusion and density-gradient effects that stem from heating the air-helium mixture and from the pressure differences between the reactor cavity and the reactor vessel. This scenario (considering density-gradient-driven stratified flow) is considerably different from the heretofore commonly used scenario that attributes movement of air into the reactor vessel and from thence to the core region via diffusion. When density-gradient-driven stratified flow is considered as a contributing phenomena for air ingress into the reactor vessel, the following factors contribute to a much earlier natural circulation-phase in the reactor vessel: (a) density-gradient-driven stratified flow is a much more rapid mechanism (at least one order of magnitude) for moving air into the reactor vessel lower plenum than diffusion, and consequently, (b) the diffusion dominated phase begins with a

  14. Use of remotely sensed land surface temperature as a proxy for air temperatures at high elevations: Findings from a 5000 m elevational transect across Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Pepin, N. C.; Maeda, E. E.; Williams, R.

    2016-09-01

    High elevations are thought to be warming more rapidly than lower elevations, but there is a lack of air temperature observations in high mountains. This study compares instantaneous values of land surface temperature (10:30/22:30 and 01:30/13:30 local solar time) as measured by Moderate Resolution Imaging Spectroradiometer MOD11A2/MYD11A2 at 1 km resolution from the Terra and Aqua platforms, respectively, with equivalent screen-level air temperatures (in the same pixel). We use a transect of 22 in situ weather stations across Kilimanjaro ranging in elevation from 990 to 5803 m, one of the biggest elevational ranges in the world. There are substantial differences between LST and Tair, sometimes up to 20°C. During the day/night land surface temperature tends to be higher/lower than Tair. LST-Tair differences (ΔT) show large variance, particularly during the daytime, and tend to increase with elevation, particularly on the NE slope which faces the morning Sun. Differences are larger in the dry seasons (JF and JJAS) and reduce in cloudy seasons. Healthier vegetation (as measured by normalized difference vegetation index) and increased humidity lead to reduced daytime surface heating above air temperature and lower ΔT, but these relationships weaken with elevation. At high elevations transient snow cover cools LST more than Tair. The predictability of ΔT therefore reduces. It will therefore be challenging to use satellite data at high elevations as a proxy for in situ air temperatures in climate change assessments, especially for daytime Tmax. ΔT is smaller and more consistent at night, so it will be easier to use LST to monitor changes in Tmin.

  15. Multichannel temperature controller for hot air solar house

    NASA Technical Reports Server (NTRS)

    Currie, J. R.

    1979-01-01

    This paper describes an electronic controller that is optimized to operate a hot air solar system. Thermal information is obtained from copper constantan thermocouples and a wall-type thermostat. The signals from the thermocouples are processed through a single amplifier using a multiplexing scheme. The multiplexing reduces the component count and automatically calibrates the thermocouple amplifier. The processed signals connect to some simple logic that selects one of the four operating modes. This simple, inexpensive, and reliable scheme is well suited to control hot air solar systems.

  16. High-precision diode-laser-based temperature measurement for air refractive index compensation

    SciTech Connect

    Hieta, Tuomas; Merimaa, Mikko; Vainio, Markku; Seppae, Jeremias; Lassila, Antti

    2011-11-01

    We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements, it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlen equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilizes direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well-matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially nonhomogeneous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using a 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement.

  17. Effect of optimizing supply water temperature and air volume on a VAV system

    SciTech Connect

    Karino, Naoki; Shiba, Takashi; Ito, Koichi; Yokoyama, Ryohei

    1999-07-01

    An optimal planning method is proposed for an air conditioning system composed of heat pump chillers and variable air volume (VAV) units. Supply water temperature, supply air volume, and thickness of heat insulation material are determined optimally so as to minimize the annual total cost of the system in consideration of equipment capacities and annual operation for the cooling load varying through a year. Through a numerical study on the system planned for an office building, influences of supply water/air temperatures and air volume on the system are investigated from the viewpoint of long-term economics. As a result, it is shown that the annual energy charge of the optimal VAV system can be reduced considerably in comparison with that of the optimal constant air volume (CAV) system, and that the effect of the energy conservation of the former system is large enough.

  18. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region

    PubMed Central

    Oikawa, P. Y.; Ge, C.; Wang, J.; Eberwein, J. R.; Liang, L. L.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-01-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality. PMID:26556236

  19. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region.

    PubMed

    Oikawa, P Y; Ge, C; Wang, J; Eberwein, J R; Liang, L L; Allsman, L A; Grantz, D A; Jenerette, G D

    2015-11-10

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality.

  20. Performance evaluation of radiant cooling system integrated with air system under different operational strategies

    SciTech Connect

    Khan, Yasin; Khare, Vaibhav Rai; Mathur, Jyotirmay; Bhandari, Mahabir

    2015-03-26

    The paper describes a parametric study developed to estimate the energy savings potential of a radiant cooling system installed in a commercial building in India. The study is based on numerical modeling of a radiant cooling system installed in an Information Technology (IT) office building sited in the composite climate of Hyderabad. To evaluate thermal performance and energy consumption, simulations were carried out using the ANSYS FLUENT and EnergyPlus softwares, respectively. The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption of a building using a conventional all-air system to determine the proportional energy savings. For proper handling of the latent load, a dedicated outside air system (DOAS) was used as an alternative to Fan Coil Unit (FCU). A comparison of energy consumption calculated that the radiant system was 17.5 % more efficient than a conventional all-air system and that a 30% savings was achieved by using a DOAS system compared with a conventional system. Computational Fluid Dynamics (CFD) simulation was performed to evaluate indoor air quality and thermal comfort. It was found that a radiant system offers more uniform temperatures, as well as a better mean air temperature range, than a conventional system. To further enhance the energy savings in the radiant system, different operational strategies were analyzed based on thermal analysis using EnergyPlus. Lastly, the energy savings achieved in this parametric run were more than 10% compared with a conventional all-air system.

  1. Performance evaluation of radiant cooling system integrated with air system under different operational strategies

    DOE PAGES

    Khan, Yasin; Khare, Vaibhav Rai; Mathur, Jyotirmay; ...

    2015-03-26

    The paper describes a parametric study developed to estimate the energy savings potential of a radiant cooling system installed in a commercial building in India. The study is based on numerical modeling of a radiant cooling system installed in an Information Technology (IT) office building sited in the composite climate of Hyderabad. To evaluate thermal performance and energy consumption, simulations were carried out using the ANSYS FLUENT and EnergyPlus softwares, respectively. The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption of a building usingmore » a conventional all-air system to determine the proportional energy savings. For proper handling of the latent load, a dedicated outside air system (DOAS) was used as an alternative to Fan Coil Unit (FCU). A comparison of energy consumption calculated that the radiant system was 17.5 % more efficient than a conventional all-air system and that a 30% savings was achieved by using a DOAS system compared with a conventional system. Computational Fluid Dynamics (CFD) simulation was performed to evaluate indoor air quality and thermal comfort. It was found that a radiant system offers more uniform temperatures, as well as a better mean air temperature range, than a conventional system. To further enhance the energy savings in the radiant system, different operational strategies were analyzed based on thermal analysis using EnergyPlus. Lastly, the energy savings achieved in this parametric run were more than 10% compared with a conventional all-air system.« less

  2. Oxide modified air electrode surface for high temperature electrochemical cells

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1992-01-01

    An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

  3. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  4. Improved Temperature Sounding and Quality Control Methodology Using AIRS/AMSU Data: The AIRS Science Team Version 5 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John M.; Iredell, Lena; Keita, Fricky

    2009-01-01

    This paper describes the AIRS Science Team Version 5 retrieval algorithm in terms of its three most significant improvements over the methodology used in the AIRS Science Team Version 4 retrieval algorithm. Improved physics in Version 5 allows for use of AIRS clear column radiances in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of clear column radiances .R(sub i) for all channels. This new approach allows for the generation of more accurate values of .R(sub i) and T(p) under most cloud conditions. Secondly, Version 5 contains a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 also contains for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology, referred to as AIRS Version 5 AO, was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Results are shown comparing the relative performance of the AIRS Version 4, Version 5, and Version 5 AO for the single day, January 25, 2003. The Goddard DISC is now generating and distributing products derived using the AIRS Science Team Version 5 retrieval algorithm. This paper also described the Quality Control flags contained in the DISC AIRS/AMSU retrieval products and their intended use for scientific research purposes.

  5. Preliminary verification of instantaneous air temperature estimation for clear sky conditions based on SEBAL

    NASA Astrophysics Data System (ADS)

    Zhu, Shanyou; Zhou, Chuxuan; Zhang, Guixin; Zhang, Hailong; Hua, Junwei

    2017-02-01

    Spatially distributed near surface air temperature at the height of 2 m is an important input parameter for the land surface models. It is of great significance in both theoretical research and practical applications to retrieve instantaneous air temperature data from remote sensing observations. An approach based on Surface Energy Balance Algorithm for Land (SEBAL) to retrieve air temperature under clear sky conditions is presented. Taking the meteorological measurement data at one station as the reference and remotely sensed data as the model input, the research estimates the air temperature by using an iterative computation. The method was applied to the area of Jiangsu province for nine scenes by using MODIS data products, as well as part of Fujian province, China based on four scenes of Landsat 8 imagery. Comparing the air temperature estimated from the proposed method with that of the meteorological station measurement, results show that the root mean square error is 1.7 and 2.6 °C at 1000 and 30 m spatial resolution respectively. Sensitivity analysis of influencing factors reveals that land surface temperature is the most sensitive to the estimation precision. Research results indicate that the method has great potentiality to be used to estimate instantaneous air temperature distribution under clear sky conditions.

  6. A Review of the Thermodynamic, Transport, and Chemical Reaction Rate Properties of High-temperature Air

    NASA Technical Reports Server (NTRS)

    Hansen, C Frederick; Heims, Steve P

    1958-01-01

    Thermodynamic and transport properties of high temperature air, and the reaction rates for the important chemical processes which occur in air, are reviewed. Semiempirical, analytic expressions are presented for thermodynamic and transport properties of air. Examples are given illustrating the use of these properties to evaluate (1) equilibrium conditions following shock waves, (2) stagnation region heat flux to a blunt high-speed body, and (3) some chemical relaxation lengths in stagnation region flow.

  7. Effects of animal activity and air temperature on methane and ammonia emissions from a naturally ventilated building for dairy cows

    NASA Astrophysics Data System (ADS)

    Ngwabie, N. M.; Jeppsson, K.-H.; Gustafsson, G.; Nimmermark, S.

    2011-12-01

    Knowledge of how different factors affect gas emissions from animal buildings can be useful for emission prediction purposes and for the improvement of emission abatement techniques. In this study, the effects of dairy cow activity and indoor air temperature on gas emissions were examined. The concentrations of CH 4, NH 3, CO 2 and N 2O inside and outside a dairy cow building were measured continuously between February and May together with animal activity and air temperature. The building was naturally ventilated and had a solid concrete floor which sloped towards a central urine gutter. Manure was scraped from the floor once every hour in the daytime and once every second hour at night into a partly covered indoor pit which was emptied daily at 6 a.m. and at 5 p.m. Gas emissions were calculated from the measured gas concentrations and ventilation rates estimated by the CO 2 balance method. The animal activity and emission rates of CH 4 and NH 3 showed significant diurnal variations with two peaks which were probably related to the feeding routine. On an average day, CH 4 emissions ranged from 7 to 15 g LU -1 h -1 and NH 3 emissions ranged from 0.4 to 1.5 g LU -1 h -1 (1 LU = 500 kg animal weight). Mean emissions of CH 4 and NH 3 were 10.8 g LU -1 h -1 and 0.81 g LU -1 h -1, respectively. The NH 3 emissions were comparable to emissions from tied stall buildings and represented a 4% loss in manure nitrogen. At moderate levels, temperature seems to affect the behaviour of dairy cows and in this study where the daily indoor air temperature ranged from about 5 up to about 20 °C, the daily activity of the cows decreased with increasing indoor air temperature ( r = -0.78). Results suggest that enteric fermentation is the main source of CH 4 emissions from systems of the type in this study, while NH 3 is mainly emitted from the manure. Daily CH 4 emissions increased significantly with the activity of the cows ( r = 0.61) while daily NH 3 emissions increased

  8. Assessing the Potential of the AIRS Retrieved Surface Temperature for 6-Hour Average Temperature Forecast in River Forecast Centers

    NASA Astrophysics Data System (ADS)

    Ding, F.; Theobald, M.; Vollmer, B.; Savtchenko, A. K.; Hearty, T. J.; Esfandiari, A. E.

    2012-12-01

    Producing timely and accurate water forecast and information is the mission of National Weather Service River Forecast Centers (NWS RFCs) of National Oceanic and Atmospheric Administration (NOAA). The river forecast system in RFCs requires average surface temperature in the fixed 6-hour period 000-0600, 0600-1200, 1200-1800, and 1200-0000 UTC. The current logic of RFC temperature forecast relies on ingest of point values of daytime maximum and nighttime minimum temperature. Meanwhile, the mean temperature for the 6-hour period is estimated from a weighted average of daytime maximum and nighttime minimum temperature. The Atmospheric Infrared Sounder (AIRS) in the first high spectral resolution infrared sounder on board the Aqua satellite which was launched in May 2002 and follows a Sun-synchronous polar orbit. It is aimed to produce high resolution atmospheric profile and surface atmospheric parameters. As Aqua crosses the equator at about 1330 and 0130 local time, the AIRS retrieved surface temperature may represent daytime maximum and nighttime minimum value. Comparing to point observation from surface weather stations which are often sparse over the less-populated area and are unevenly distributed, satellite may obtain better area averaged observation. This test study assesses the potential of using AIRS retrieved surface temperature to forecast 6-hour average temperature for NWS RFCs. The California Nevada RFC is selected due to the poor coverage of surface observation in the mountainous region and spring snow melting. The study focuses on the March to May spring season when water from snowpack melting often plays important role in flood. AIRS retrieved temperature and surface weather station data set will be used to derive statistical weighting coefficient for 6-hour average temperature forecast. The resulting forecast biases and errors will be the main indicators of the potential usage. All study results will be presented in the meeting.

  9. Coupling Between Air and Ground Temperatures in PMIP3/CMIP5 Last Millennium Simulations and the Implications for Climate Reconstructions from Borehole Temperature Profiles

    NASA Astrophysics Data System (ADS)

    Beltrami, H.; García-García, A.; Cuesta-Valero, F. J.; Smerdon, J. E.

    2015-12-01

    The continental energy storage for the second half of the 20th20^{th} century has been estimated from geothermal data to be about 7±1×1021J7 ± 1 × 10^{21} J under the assumption that there exists a long-term coupling between the lower atmosphere and the continental subsurface. For General Circulation Models (GCMs) to simulate the continental energy storage of the Earth's energy budget, however, it is crucial that they correctly capture the processes that partition energy across the land-atmosphere boundary. We evaluate herein the characteristics of these processes as simulated by models in the third phase of the Paleoclimate Modelling Intercomparison Project and the fifth phase of the Coupled Model Intercomparison Project (PMIP33/CMIP55). We examine the seasonal differences between air and ground temperatures within PMIP3 last-millennium simulations concatenated with historical simulations from the CMIP5 archive. We find a strong air-ground coupling during the summer from 850850 to 20002000 CE. During the winter, the insulating effect of snow and latent heat exchanges produce a decoupling between air and ground temperatures in the northern high latitudes. These seasonal differences decrease with depth, supporting the central assumption of climate reconstructions from borehole temperature profiles. Additionally, we use the simulated temperature trends as an upper boundary condition to force a one-dimensional conductive model to derive synthetic temperature-depth profiles for each PMIP3/CMIP5 simulation. The inversions of these subsurface profiles yield temperature trends that retain the surface temperature variations of the last millennium for all the PMIP3/CMIP5 simulations. These results support the use of underground temperatures to reconstruct past changes in ground surface temperature and to estimate the continental energy storage. Results also provide guidance for improving the land-surface components of GCMs.

  10. Transport properties of high-temperature air in a magnetic field

    SciTech Connect

    Bruno, D.; Capitelli, M.; Catalfamo, C.; Giordano, D.

    2011-01-15

    Transport properties of equilibrium air plasmas in a magnetic field are calculated with the Chapman-Enskog method. The range considered for the temperature is [50-50 000] K and for the magnetic induction is [0-300] T.

  11. Biodiesel and Cold Temperature Effects on Speciated Mobile Source Air Toxics from Modern Diesel Trucks

    EPA Science Inventory

    Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...

  12. Biodiesel and Cold Temperature Effect on Speciated Mobile Source Air Toxics from Modern Diesel Trucks

    EPA Science Inventory

    Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...

  13. High-temperature stabilization by air of a pyrophoric catalyst for the synthesis of ammonia

    SciTech Connect

    Krylova, A.V.; Ustimenko, G.A.

    1982-12-01

    The reaction of a catalyst for the synthesis of ammonia with air at 480 to 520/sup 0/C leads to the formation on the surface of a thin protective oxide structure that eliminates its pyrophoric character. High-temperature stabilization by air is a considerably faster process than passivation and leads to the production of catalysts with increased resistance to oxidation.

  14. Temperature and Humidity Independent Control Research on Ground Source Heat Pump Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Chen, G.; Wang, L. L.

    Taking green demonstration center building air conditioning system as an example, this paper presents the temperature and humidity independent control system combined with ground source heat pump system, emphasis on the design of dry terminal device system, fresh air system and ground source heat pump system.

  15. Coral Sr/Ca-based sea surface temperature and air temperature variability from the inshore and offshore corals in the Seribu Islands, Indonesia.

    PubMed

    Cahyarini, Sri Yudawati; Zinke, Jens; Troelstra, Simon; Suharsono; Aldrian, Edvin; Hoeksema, B W

    2016-09-30

    The ability of massive Porites corals to faithfully record temperature is assessed. Porites corals from Kepulauan Seribu were sampled from one inshore and one offshore site and analyzed for their Sr/Ca variation. The results show that Sr/Ca of the offshore coral tracked SST, while Sr/Ca variation of the inshore coral tracked ambient air temperature. In particular, the inshore SST variation is related to air temperature anomalies of the urban center of Jakarta. The latter we relate to air-sea interactions modifying inshore SST associated with the land-sea breeze mechanism and/or monsoonal circulation. The correlation pattern of monthly coral Sr/Ca with the Niño3.4 index and SEIO-SST reveals that corals in the Seribu islands region respond differently to remote forcing. An opposite response is observed for inshore and offshore corals in response to El Niño onset, yet similar to El Niño mature phase (December to February). SEIO SSTs co-vary strongly with SST and air temperature variability across the Seribu island reef complex. The results of this study clearly indicate that locations of coral proxy record in Indonesia need to be chosen carefully in order to identify the seasonal climate response to local and remote climate and anthropogenic forcing.

  16. Modelling the impact of room temperature on concentrations of polychlorinated biphenyls (PCBs) in indoor air.

    PubMed

    Lyng, Nadja Lynge; Clausen, Per Axel; Lundsgaard, Claus; Andersen, Helle Vibeke

    2016-02-01

    Buildings contaminated with polychlorinated biphenyls (PCBs) are a health concern for the building occupants. Inhalation exposure is linked to indoor air concentrations of PCBs, which are known to be affected by indoor temperatures. In this study, a highly PCB contaminated room was heated to six temperature levels between 20 and 30 C, i.e. within the normal fluctuation of indoor temperatures, while the air exchange rate was constant. The steady-state air concentrations of seven PCBs were determined at each temperature level. A model based on Clausius-Clapeyron equation, ln(P) = -ΔH/RT + a(0), where changes in steady-state air concentrations in relation to temperature, was tested. The model was valid for PCB-28, PCB-52 and PCB-101; the four other congeners were sporadic or non-detected. For each congener, the model described a large proportion (R(2)>94%) of the variation in indoor air PCB levels. The results showed that one measured concentration of PCB at a known steady-state temperature can be used to predict the steady-state concentrations at other temperatures under circumstances where e.g. direct sunlight does not influence temperatures and the air exchange rate is constant. The model was also tested on field data from a PCB remediation case in an apartment in another contaminated building complex where PCB concentrations and temperature were measured simultaneously and regularly throughout one year. The model fitted relatively well with the regression of measured PCB air concentrations, ln(P) vs. 1/T, at varying temperature between 16.3 and 28.2 °C, even though the measurements were carried out under uncontrolled environmental condition.

  17. An artificial neural network approach for the forecast of ambient air temperature

    NASA Astrophysics Data System (ADS)

    Philippopoulos, Kostas; Deligiorgi, Despina; Kouroupetroglou, Georgios

    2014-05-01

    based on a combination of correlation and difference statistical measures. An insight of the statistically derived input-output transfer functions is obtained by utilizing the ANN weights method, which quantifies the relative importance of the predictor variables. The assessment also includes a seasonal and monthly analysis of the model residuals along with their corresponding distributions. A general remark is that the optimum Tmax ANN architecture contains more hidden layer neurons compared to the Tmin and is related with higher forecasting errors, which is attributed to the increased complexity of estimating the Tmax at the given site. The ANN models in both cases exhibit very good performance and the method can be useful in the field of air temperature forecasting. This research was partially funded by the University of Athens Special Account of Research Grants.

  18. Rate constants for chemical reactions in high-temperature nonequilibrium air

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.

    1986-01-01

    In the nonequilibrium atmospheric chemistry regime that will be encountered by the proposed Aeroassisted Orbital Transfer Vehicle in the upper atmosphere, where air density is too low for thermal and chemical equilibrium to be maintained, the detailed high temperature air chemistry plays a critical role in defining radiative and convective heating loads. Although vibrational and electronic temperatures remain low (less than 15,000 K), rotational and translational temperatures may reach 50,000 K. Attention is presently given to the effects of multiple temperatures on the magnitudes of various chemical reaction rate constants, for the cases of both bimolecular exchange reactions and collisional excitation and dissociation reactions.

  19. Emperor penguin body surfaces cool below air temperature

    PubMed Central

    McCafferty, D. J.; Gilbert, C.; Thierry, A.-M.; Currie, J.; Le Maho, Y.; Ancel, A.

    2013-01-01

    Emperor penguins Aptenodytes forsteri are able to survive the harsh Antarctic climate because of specialized anatomical, physiological and behavioural adaptations for minimizing heat loss. Heat transfer theory predicts that metabolic heat loss in this species will mostly depend on radiative and convective cooling. To examine this, thermal imaging of emperor penguins was undertaken at the breeding colony of Pointe Géologie in Terre Adélie (66°40′ S 140° 01′ E), Antarctica in June 2008. During clear sky conditions, most outer surfaces of the body were colder than surrounding sub-zero air owing to radiative cooling. In these conditions, the feather surface will paradoxically gain heat by convection from surrounding air. However, owing to the low thermal conductivity of plumage any heat transfer to the skin surface will be negligible. Future thermal imaging studies are likely to yield further insights into the adaptations of this species to the Antarctic climate. PMID:23466479

  20. Cavity Ring Down Absorption of Oxygen in Air as a Temperature Sensor

    NASA Astrophysics Data System (ADS)

    Manzanares, Carlos; Nyaupane, Parashu R.

    2016-06-01

    The A-band of oxygen has been measured at low resolution at temperatures between 90 K and 373 K using the phase shift cavity ring down (PS-CRD) technique. For temperatures between 90 K and 295 K, the PS-CRD technique presented here involves an optical cavity attached to a cryostat. The static cell and mirrors of the optical cavity are all inside a vacuum chamber at the same temperature of the cryostat. The temperature of the cell can be changed between 77 K and 295 K. For temperatures above 295 K, a hollow glass cylindrical tube without windows has been inserted inside an optical cavity to measure the temperature of air flowing through the tube. The cavity consists of two highly reflective mirrors which are mounted parallel to each other and separated by a distance of 93 cm. In this experiment, air is passed through a heated tube. The temperature of the air flowing through the tube is determined by measuring the intensity of the oxygen absorption as a function of the wavenumber. The A-band of oxygen is measured between 298 K and 373 K, with several air flow rates. Accuracy of the temperature measurement is determined by comparing the calculated temperature from the spectra with the temperature obtained from a calibrated thermocouple inserted at the center of the tube.

  1. Improving snow process modeling with satellite-based estimation of near-surface-air-temperature lapse rate

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Sun, Litao; Shrestha, Maheswor; Li, Xiuping; Liu, Wenbin; Zhou, Jing; Yang, Kun; Lu, Hui; Chen, Deliang

    2016-10-01

    In distributed hydrological modeling, surface air temperature (Tair) is of great importance in simulating cold region processes, while the near-surface-air-temperature lapse rate (NLR) is crucial to prepare Tair (when interpolating Tair from site observations to model grids). In this study, a distributed biosphere hydrological model with improved snow physics (WEB-DHM-S) was rigorously evaluated in a typical cold, large river basin (e.g., the upper Yellow River basin), given a mean monthly NLRs. Based on the validated model, we have examined the influence of the NLR on the simulated snow processes and streamflows. We found that the NLR has a large effect on the simulated streamflows, with a maximum difference of greater than 24% among the various scenarios for NLRs considered. To supplement the insufficient number of monitoring sites for near-surface-air-temperature at developing/undeveloped mountain regions, the nighttime Moderate Resolution Imaging Spectroradiometer land surface temperature is used as an alternative to derive the approximate NLR at a finer spatial scale (e.g., at different elevation bands, different land covers, different aspects, and different snow conditions). Using satellite-based estimation of NLR, the modeling of snow processes has been greatly refined. Results show that both the determination of rainfall/snowfall and the snowpack process were significantly improved, contributing to a reduced summer evapotranspiration and thus an improved streamflow simulation.

  2. Estimating the Urban Bias of Surface Shelter Temperatures Using Upper-Air and Satellite Data

    NASA Astrophysics Data System (ADS)

    Epperson, David Lee

    An alternative method is presented for estimating the urban bias of surface shelter temperatures due to the effect of the urban heat island Multivariate regression techniques were utilized to predict surface shelter temperatures for the time period 1986-89 using upper-air data from the European Centre for Medium-Range Weather Forecasting (ECMWF) to represent the background climate, site-specific data to represent the local landscape, and satellite-derived data--the Normalized Difference Vegetation Index (NDVI) and the Defense Meteorological Satellite Program (DMSP) nighttime brightness data--to represent the urban landscape. Models for the United States (US) were developed for mean monthly maximum, mean, and minimum temperatures using data from over 1000 stations in the US Co-operative (COOP) Network and over 1150 stations in the Global Historical Climate Network (GHCN, mean temperatures only). Urban biases for the US and for individual stations were calculated and compared with the results of other research. The urban bias of US temperatures, as derived from all US stations (urban and rural) used in the models, averaged near 0.40 ^circC for minimum temperatures, near 0.25^circC for mean temperatures, and near 0.10^circC for maximum temperatures. On an annual basis, the urban biases of minimum temperatures for individual stations ranged from near -1.1^circC for rural stations to 2.4^circC for stations from the largest urban areas. The urban bias of US mean temperatures in this study (0.25^ circC) was shown to be larger than the US (0.05-0.15^circC) and global (0.01-0.10^circC) urban biases from other studies, where the confidence in the estimated urban biases was less. Thus, there is a need to assess the urban bias that is present in the global temperature record using the methodology presented in this study. The results of this study indicate minimal problems for global application, once the global NDVI and DMSP data become available, as opposed to other studies

  3. Statistical temperature profile retrievals in clear-air using passive 118-GHz O2 observations

    NASA Technical Reports Server (NTRS)

    Gasiewski, A. J.; Johnson, J. T.

    1993-01-01

    The clean-air temperature profile accuracy yielded by a localized linear statistical retrieval operator applied to passive aircraft-based 118-GHz spectra is demonstrated. A comparison of the statistically and physically derived correlation coefficients of antenna temperature and kinetic temperature furnishes a physical justification of the statistical retrieval technique. The atmospheric temperature mean and covariance significantly depend on such geophysical parameters as latitude, longitude, local season, and time, as well as the prevailing meteorological state and orographic effects.

  4. Seasonal variation of air temperature at the Mendel Station, James Ross Island in the period of 2006-2009

    NASA Astrophysics Data System (ADS)

    Laska, Kamil; Prošek, Pavel; Budík, Ladislav

    2010-05-01

    Key words: air temperature, seasonal variation, James Ross Island, Antarctic Peninsula Recently, significant role of the atmospheric and oceanic circulation variation on positive trend of near surface air temperature along the Antarctic Peninsula has been reported by many authors. However, small number of the permanent meteorological stations located on the Peninsula coast embarrasses a detail analysis. It comprises analysis of spatiotemporal variability of climatic conditions and validation of regional atmospheric climate models. However, geographical location of the Czech Johann Gregor Mendel Station (hereafter Mendel Station) newly established on the northern ice-free part of the James Ross Island provides an opportunity to fill the gap. There are recorded important meteorological characteristics which allow to evaluate specific climatic regime of the region and their impact on the ice-shelf disintegration and glacier retreat. Mendel Station (63°48'S, 57°53'W) is located on marine terrace at the altitude of 7 m. In 2006, a monitoring network of several automatic weather stations was installed at different altitudes ranging from the seashore level up to mesas and tops of glaciers (514 m a.s.l.). In this contribution, a seasonal variation of near surface air temperature at the Mendel Station in the period of 2006-2009 is presented. Annual mean air temperature was -7.2 °C. Seasonal mean temperature ranged from +1.4 °C (December-February) to -17.7 °C (June-August). Frequently, the highest temperature occurred in the second half of January. It reached maximum of +8.1 °C. Sudden changes of atmospheric circulation pattern during winter caused a large interdiurnal variability of air temperature with the amplitude of 30 °C.

  5. [Air negative charge ion concentration and its relationships with meteorological factors in different ecological functional zones of Hefei City].

    PubMed

    Wei, Chaoling; Wang, Jingtao; Jiang, Yuelin; Zhang, Qingguo

    2006-11-01

    Air negative charge ion concentration (ANCIC) has a close relationship with air quality. The observations on the ANCIC, sunlight intensity, air temperature, and air relative humidity in different ecological functional zones of Hefei City from 2003 to 2004 showed that the diurnal change pattern of ANCIC was of single peak in sightseeing and habitation zones, dual peak in industrial zone, and complicated in commercial zone. Different ecological functional zones had different appearance time of their daily ANCIC extremum. The diurnal fluctuation of ANCIC was in the order of commercial zone > industrial zone > habitation zone and sightseeing zone. The annual change pattern of ANCIC in these zones was similar, being the highest in summer and lowest in winter, and the mean annual ANCIC was 819, 340, 149 and 126 ions x cm(-3), respectively. The most important meteorological factor affecting the ANCIC in Hefei City was air relative humidity, followed by sunlight intensity and air temperature. There was an exponential relationship between ANCIC and air relative humidity.

  6. Factors controlling air quality in different European subway systems.

    PubMed

    Martins, Vânia; Moreno, Teresa; Mendes, Luís; Eleftheriadis, Konstantinos; Diapouli, Evangelia; Alves, Célia A; Duarte, Márcio; de Miguel, Eladio; Capdevila, Marta; Querol, Xavier; Minguillón, María Cruz

    2016-04-01

    Sampling campaigns using the same equipment and methodology were conducted to assess and compare the air quality at three South European subway systems (Barcelona, Athens and Oporto), focusing on concentrations and chemical composition of PM2.5 on subway platforms, as well as PM2.5 concentrations inside trains. Experimental results showed that the mean PM2.5 concentrations widely varied among the European subway systems, and even among different platforms within the same underground system, which might be associated to distinct station and tunnel designs and ventilation systems. In all cases PM2.5 concentrations on the platforms were higher than those in the urban ambient air, evidencing that there is generation of PM2.5 associated with the subway systems operation. Subway PM2.5 consisted of elemental iron, total carbon, crustal matter, secondary inorganic compounds, insoluble sulphate, halite and trace elements. Of all metals, Fe was the most abundant, accounting for 29-43% of the total PM2.5 mass (41-61% if Fe2O3 is considered), indicating the existence of an Fe source in the subway system, which could have its origin in mechanical friction and wear processes between rails, wheels and brakes. The trace elements with the highest enrichment in the subway PM2.5 were Ba, Cu, Mn, Zn, Cr, Sb, Sr, Ni, Sn, Co, Zr and Mo. Similar PM2.5 diurnal trends were observed on platforms from different subway systems, with higher concentrations during subway operating hours than during the transport service interruption, and lower levels on weekends than on weekdays. PM2.5 concentrations depended largely on the operation and frequency of the trains and the ventilation system, and were lower inside the trains, when air conditioning system was operating properly, than on the platforms. However, the PM2.5 concentrations increased considerably when the train windows were open. The PM2.5 levels inside the trains decreased with the trains passage in aboveground sections.

  7. Temperature modifies the association between particulate air pollution and mortality: A multi-city study in South Korea.

    PubMed

    Kim, Satbyul Estella; Lim, Youn-Hee; Kim, Ho

    2015-08-15

    Substantial epidemiologic literature has demonstrated the effects of air pollution and temperature on mortality. However, there is inconsistent evidence regarding the temperature modification effect on acute mortality due to air pollution. Herein, we investigated the effects of temperature on the relationship between air pollution and mortality due to non-accidental, cardiovascular, and respiratory death in seven cities in South Korea. We applied stratified time-series models to the data sets in order to examine whether the effects of particulate matter <10 μm (PM10) on mortality were modified by temperature. The effect of PM10 on daily mortality was first quantified within different ranges of temperatures at each location using a time-series model, and then the estimates were pooled through a random-effects meta-analysis using the maximum likelihood method. From all the data sets, 828,787 non-accidental deaths were registered from 2000-2009. The highest overall risk between PM10 and non-accidental or cardiovascular mortality was observed on extremely hot days (daily mean temperature: >99th percentile) in individuals aged <65 years. In those aged ≥65 years, the highest overall risk between PM10 and non-accidental or cardiovascular mortality was observed on very hot days and not on extremely hot days (daily mean temperature: 95-99th percentile). There were strong harmful effects from PM10 on non-accidental mortality with the highest temperature range (>99th percentile) in men, with a very high temperature range (95-99th percentile) in women. Our findings showed that temperature can affect the relationship between the PM10 levels and cause-specific mortality. Moreover, the differences were apparent after considering the age and sex groups.

  8. Glaciation temperatures of convective clouds ingesting desert dust, air pollution and smoke from forest fires

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Daniel; Yu, Xing; Liu, Guihua; Xu, Xiaohong; Zhu, Yannian; Yue, Zhiguo; Dai, Jin; Dong, Zipeng; Dong, Yan; Peng, Yan

    2011-11-01

    Heavy aerosol loads have been observed to suppress warm rain by reducing cloud drop size and slowing drop coalescence. The ice forming nuclei (IFN) activity of the same aerosols glaciate the clouds and create ice precipitation instead of the suppressed warm rain. Satellite observations show that desert dust and heavy air pollution over East Asia have similar ability to glaciate the tops of growing convective clouds at glaciation temperature of Tg < ˜ -20°C, whereas similarly heavy smoke from forest fires in Siberia without dust or industrial pollution glaciated clouds at Tg ≤ -33°C. The observation that both smoke and air pollution have same effect on reducing cloud drop size implies that the difference in Tg is due to the IFN activity. This dependence of Tg on aerosol types appears only for clouds with re-5 < 12 μm (re-5 is the cloud drop effective radius at the -5°C isotherm, above which ice rarely forms in cloud tops). For the rest of the clouds the glaciation temperature increases strongly with re-5 with little relation to the aerosol types, reaching Tg> ˜ -15°C for the largest re-5, which are typical to marine clouds in pristine atmosphere.

  9. Data Assimilation Experiments Using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2009-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains a number of significant improvements over Version 4. Two very significant improvements are described briefly below. 1) The AIRS Science Team Radiative Transfer Algorithm (RTA) has now been upgraded to accurately account for effects of non-local thermodynamic equilibrium on the AIRS observations. This allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval algorithm during both day and night. Following theoretical considerations, tropospheric temperature profile information is obtained almost exclusively from clear column radiances in the 4.3 micron CO2 band in the AIRS Version 5 temperature profile retrieval step. These clear column radiances are a derived product that are indicative of radiances AIRS channels would have seen if the field of view were completely clear. Clear column radiances for all channels are determined using tropospheric sounding 15 micron CO2 observations. This approach allows for the generation of accurate values of clear column radiances and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel clear column radiances. These error estimates are used for quality control of the retrieved products. Based on error estimate thresholds, each temperature profiles is assigned a characteristic pressure, pg, down to which the profile is characterized as good for use for data assimilation purposes. We have conducted forecast impact experiments assimilating AIRS quality controlled temperature profiles using the NASA GEOS-5 data assimilation system, consisting of the NCEP GSI analysis coupled with the

  10. Two major volcanic cooling episodes derived from global marine air temperature, AD 1807-1827

    NASA Astrophysics Data System (ADS)

    Chenoweth, Michael

    A new data set of global marine air temperature data for the years 1807-1827 is used to show the impact of volcanic eruptions in ˜ 1809 (unlocated) and 1815 (Tambora, Indonesia). Both eruptions produced cooling exceeding that after Krakatoa, Indonesia (1883) and Pinatubo, Philippines (1991). The ˜1809 eruption is dated to March-June 1808 based on a sudden cooling in Malaysian temperature data and maximum cooling of marine air temperature in 1809. Two large-scale calibrated proxy temperature records, one from tree-ring-density data, the other using multi-proxy sources are compared to the marine air temperature data. Correlation is highest with maximum latewood density data and lowest with the multi-proxy data.

  11. Meteorology (Temperature)

    Atmospheric Science Data Center

    2014-09-25

    Air Temperature (° C)   Daily Temperature Range (° C) Difference between the average daily maximum ... The monthly accumulation of degrees when the daily mean temperature is above 18° C.   Heating Degree Days below 18° C ...

  12. Comfort air temperature influence on heating and cooling loads of a residential building

    NASA Astrophysics Data System (ADS)

    Stanciu, C.; Șoriga, I.; Gheorghian, A. T.; Stanciu, D.

    2016-08-01

    The paper presents the thermal behavior and energy loads of a two-level residential building designed for a family of four, two adults and two students, for different inside comfort levels reflected by the interior air temperature. Results are intended to emphasize the different thermal behavior of building elements and their contribution to the building's external load. The most important contributors to the building thermal loss are determined. Daily heating and cooling loads are computed for 12 months simulation in Bucharest (44.25°N latitude) in clear sky conditions. The most important aspects regarding sizing of thermal energy systems are emphasized, such as the reference months for maximum cooling and heating loads and these loads’ values. Annual maximum loads are encountered in February and August, respectively, so these months should be taken as reference for sizing thermal building systems, in Bucharest, under clear sky conditions.

  13. Comparison of Vertical Soundings and Sidewall Air Temperature Measurements in a Small Alpine Basin

    SciTech Connect

    Whiteman, Charles D.; Eisenbach, Stefan; Pospichal, Bernhard; Steinacker, Reinhold

    2004-11-01

    Tethered balloon soundings from two sites on the floor of a 1-km diameter limestone sinkhole in the Eastern Alps are compared with pseudo-vertical temperature ‘soundings’ from three lines of temperature data loggers on the basin’s northwest, southwest and southeast sidewalls. Under stable nighttime conditions with low background winds, the pseudo-vertical profiles from all three lines were good proxies for free air temperature soundings over the basin center, with a mean nighttime cold temperature bias of about 0.4°C and a standard deviation of 0.4°C. Cold biases were highest in the upper basin where relatively warm air subsides to replace air that spills out of the basin through the lowest altitude saddle. On a windy night, standard deviations increased to 1 - 2°C. After sunrise, the varying exposures of the data loggers to sunlight made the pseudo-vertical profiles less useful as proxies for free air soundings. The good correspondence between sidewall and free air temperatures during high static stability conditions suggests that sidewall soundings will prove useful in monitoring temperatures and vertical temperature gradients in the sinkhole. The sidewall soundings can produce more frequent profiles at less cost than tethersondes or rawinsondes, and provide valuable advantages for some types of meteorological analyses.

  14. Application of high temperature air heaters to advanced power generation cycles

    SciTech Connect

    Thompson, T R; Boss, W H; Chapman, J N

    1992-03-01

    Recent developments in ceramic composite materials open up the possibility of recuperative air heaters heating air to temperatures well above the feasible with metal tubes. A high temperature air heater (HTAH) has long been recognized as a requirement for the most efficient MHD plants in order to reach high combustor flame temperatures. The application of gas turbines in coal-fired plants of all types has been impeded because of the problems in cleaning exhaust gas sufficiently to avoid damage to the turbine. With a possibility of a HTAH, such plants may become feasible on the basis of air turbine cycles, in which air is compressed and heated in the HTAH before being applied to turbine. The heat exchanger eliminates the need for the hot gas cleanup system. The performance improvement potential of advanced cycles with HTAH application including the air turbine cycle in several variations such as the DOE program on ``Coal-Fired Air Furnace Combined Cycle...,`` variations originated by the authors, and the MHD combined cycle are presented. The status of development of ceramic air heater technology is included.

  15. Modeling of non-equilibrium and non-thermal plasma discharge in air: Three temperature modeling approach

    NASA Astrophysics Data System (ADS)

    Mahamud, Rajib; Farouk, Tanvir

    2014-10-01

    The rapid progress in atmospheric pressure non-thermal plasma discharge has made air to be a preferable choice for feed gas. Despite the ease of operation of such discharges in air, the preference of air provides added complexity to modeling and simulations in terms of kinetics and different temperature modes. The diatomic nature of both N2 and O2 contributes to this complexity. In this work we report simulation results from a one-dimensional multi-physics model. A dc driven air plasma discharge operating at atmospheric and higher pressure is simulated. The model considers 50 species and 200 elementary reactions. The reaction scheme considers electron introduced and heavy particle reactions for N2 and O2 as well as interactions between nitrogen and oxygen. In addition to the species conservation equations, poisson's equation three different temperature's are resolved - electron, vibrational and translational. A special focus has been the coupling between the different temperatures to accurately resolve the energy cascade. The predictions from the model are found to be in good qualitative agreement against experimental measurements available in the literature. Work was supported by DARPA under Army Research Office (ARO) Grant No. W911NF1210007.

  16. Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels: The AIRS Version 6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002 together with ASMU-A and HSB to form a next generation polar orbiting infrared and microwave atmosphere sounding system (Pagano et al 2003). The theoretical approach used to analyze AIRS/AMSU/HSB data in the presence of clouds in the AIRS Science Team Version 3 at-launch algorithm, and that used in the Version 4 post-launch algorithm, have been published previously. Significant theoretical and practical improvements have been made in the analysis of AIRS/AMSU data since the Version 4 algorithm. Most of these have already been incorporated in the AIRS Science Team Version 5 algorithm (Susskind et al 2010), now being used operationally at the Goddard DISC. The AIRS Version 5 retrieval algorithm contains three significant improvements over Version 4. Improved physics in Version 5 allowed for use of AIRS clear column radiances (R(sub i)) in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations were used primarily in the generation of clear column radiances (R(sub i)) for all channels. This new approach allowed for the generation of accurate Quality Controlled values of R(sub i) and T(p) under more stressing cloud conditions. Secondly, Version 5 contained a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 contained for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Susskind et al 2010 shows that Version 5 AIRS Only sounding are only slightly degraded from the AIRS/AMSU soundings, even at large fractional cloud

  17. Apparatus and Method for Measuring Air Temperature Ahead of an Aircraft for Controlling a Variable Inlet/Engine Assembly

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    2001-01-01

    The apparatus and method employ remote sensing to measure the air temperature a sufficient distance ahead of the aircraft to allow time for a variable inlet/engine assembly to be reconfigured in response to the measured temperature, to avoid inlet unstart and/or engine compressor stall. In one embodiment, the apparatus of the invention has a remote sensor for measuring at least one air temperature ahead of the vehicle and an inlet control system for varying the inlet. The remote sensor determines a change in temperature value using at least one temperature measurement and prior temperature measurements corresponding to the location of the aircraft. The control system uses the change in air temperature value to vary the inlet configuration to maintain the position of the shock wave during the arrival of the measured air in the inlet. In one embodiment, the method of the invention includes measuring at least one air temperature ahead of the vehicle, determining an air temperature at the vehicle from prior air temperature measurements, determining a change in temperature value using the air temperature at the vehicle and the at least one air temperature measurement ahead of the vehicle, and using the change in temperature value to-reposition the airflow inlet, to cause the shock wave to maintain substantially the same position within the inlet as the airflow temperature changes within the inlet.

  18. Ground surface temperature simulation for different land covers

    NASA Astrophysics Data System (ADS)

    Herb, William R.; Janke, Ben; Mohseni, Omid; Stefan, Heinz G.

    2008-07-01

    SummaryA model for predicting temperature time series for dry and wet land surfaces is described, as part of a larger project to assess the impact of urban development on the temperature of surface runoff and coldwater streams. Surface heat transfer processes on impervious and pervious land surfaces were investigated for both dry and wet weather periods. The surface heat transfer equations were combined with a numerical approximation of the 1-D unsteady heat diffusion equation to calculate pavement and soil temperature profiles to a depth of 10 m. Equations to predict the magnitude of the radiative, convective, conductive and evaporative heat fluxes at a dry or wet surface, using standard climate data as input, were developed. A model for the effect of plant canopies on surface heat transfer was included for vegetated land surfaces. Given suitable climate data, the model can simulate the land surface and sub-surface temperatures continuously throughout a six month time period or for a single rainfall event. Land surface temperatures have been successfully simulated for pavements, bare soil, short and tall grass, a forest, and two agricultural crops (corn and soybeans). The simulations were run for three different locations in US, and different years as imposed by the availability of measured soil temperature and climate data. To clarify the effect of land use on surface temperatures, the calibrated coefficients for each land use and the same soil coefficients were used to simulate surface temperatures for a six year climate data set from Albertville, MN. Asphalt and concrete give the highest surface temperatures, as expected, while vegetated surfaces gave the lowest. Bare soil gives surface temperatures that lie between those for pavements and plant-covered surfaces. The soil temperature model predicts hourly surface temperatures of bare soil and pavement with root-mean-square errors (RMSEs) of 1-2 °C, and hourly surface temperatures of vegetation-covered surfaces

  19. ATMOSPHERIC CIRCULATION OF HOT JUPITERS: DAYSIDE–NIGHTSIDE TEMPERATURE DIFFERENCES

    SciTech Connect

    Komacek, Thaddeus D.; Showman, Adam P.

    2016-04-10

    The full-phase infrared light curves of low-eccentricity hot Jupiters show a trend of increasing dayside-to-nightside brightness temperature difference with increasing equilibrium temperature. Here, we present a three-dimensional model that explains this relationship, in order to provide insight into the processes that control heat redistribution in tidally locked planetary atmospheres. This three-dimensional model combines predictive analytic theory for the atmospheric circulation and dayside–nightside temperature differences over a range of equilibrium temperatures, atmospheric compositions, and potential frictional drag strengths with numerical solutions of the circulation that verify this analytic theory. The theory shows that the longitudinal propagation of waves mediates dayside–nightside temperature differences in hot Jupiter atmospheres, analogous to the wave adjustment mechanism that regulates the thermal structure in Earth’s tropics. These waves can be damped in hot Jupiter atmospheres by either radiative cooling or potential frictional drag. This frictional drag would likely be caused by Lorentz forces in a partially ionized atmosphere threaded by a background magnetic field, and would increase in strength with increasing temperature. Additionally, the amplitude of radiative heating and cooling increases with increasing temperature, and hence both radiative heating/cooling and frictional drag damp waves more efficiently with increasing equilibrium temperature. Radiative heating and cooling play the largest role in controlling dayside–nightside temperature differences in both our analytic theory and numerical simulations, with frictional drag only being important if it is stronger than the Coriolis force. As a result, dayside–nightside temperature differences in hot Jupiter atmospheres increase with increasing stellar irradiation and decrease with increasing pressure.

  20. Atmospheric Circulation of Hot Jupiters: Dayside-Nightside Temperature Differences

    NASA Astrophysics Data System (ADS)

    Komacek, Thaddeus D.; Showman, Adam P.

    2016-04-01

    The full-phase infrared light curves of low-eccentricity hot Jupiters show a trend of increasing dayside-to-nightside brightness temperature difference with increasing equilibrium temperature. Here, we present a three-dimensional model that explains this relationship, in order to provide insight into the processes that control heat redistribution in tidally locked planetary atmospheres. This three-dimensional model combines predictive analytic theory for the atmospheric circulation and dayside-nightside temperature differences over a range of equilibrium temperatures, atmospheric compositions, and potential frictional drag strengths with numerical solutions of the circulation that verify this analytic theory. The theory shows that the longitudinal propagation of waves mediates dayside-nightside temperature differences in hot Jupiter atmospheres, analogous to the wave adjustment mechanism that regulates the thermal structure in Earth’s tropics. These waves can be damped in hot Jupiter atmospheres by either radiative cooling or potential frictional drag. This frictional drag would likely be caused by Lorentz forces in a partially ionized atmosphere threaded by a background magnetic field, and would increase in strength with increasing temperature. Additionally, the amplitude of radiative heating and cooling increases with increasing temperature, and hence both radiative heating/cooling and frictional drag damp waves more efficiently with increasing equilibrium temperature. Radiative heating and cooling play the largest role in controlling dayside-nightside temperature differences in both our analytic theory and numerical simulations, with frictional drag only being important if it is stronger than the Coriolis force. As a result, dayside-nightside temperature differences in hot Jupiter atmospheres increase with increasing stellar irradiation and decrease with increasing pressure.

  1. BOREAS RSS-17 Stem, Soil, and Air Temperature Data

    NASA Technical Reports Server (NTRS)

    Zimmerman, Reiner; McDonald, Kyle C.; Way, JoBea; Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS RSS-17 team collected several data sets in support of its research in monitoring and analyzing environmental and phenological states using radar data. This data set consists of tree bole and soil temperature measurements from various BOREAS flux tower sites. Temperatures were measured with thermistors implanted in the hydroconductive tissue of the trunks of several trees at each site and at various depths in the soil. Data were stored on a data logger at intervals of either 1 or 2 hours. The majority of the data were acquired between early 1994 and early 1995. The primary product of this data set is the diurnal stem temperature measurements acquired for selected trees at five BOREAS tower sites. The data are provided in tabular ASCII format. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  2. Effects of a Circulating-water Garment and Forced-air Warming on Body Heat Content and Core Temperature

    PubMed Central

    Taguchi, Akiko; Ratnaraj, Jebadurai; Kabon, Barbara; Sharma, Neeru; Lenhardt, Rainer; Sessler, Daniel I.

    2005-01-01

    Background: Forced-air warming is sometimes unable to maintain perioperative normothermia. We therefore compared heat transfer, regional heat distribution, and core rewarming of forced-air warming with a novel circulating-water garment. Methods: Nine volunteers were each evaluated on two randomly ordered study days. They were anesthetized and cooled to a core temperature near 34°C. The volunteers were subsequently warmed for 2.5 hours with either a circulating-water garment or forced-air cover. Overall, heat balance was determined from the difference between cutaneous heat loss (thermal flux transducers) and metabolic heat production (oxygen consumption). Average arm and leg (peripheral) tissue temperatures were determined from 18 intramuscular needle thermocouples, 15 skin thermal flux transducers, and “deep” arm and foot thermometers. Results: Heat production (≈ 60 kcal/h) and loss (≈45 kcal/h) were similar with each treatment before warming. The increase in heat transfer across anterior portions of the skin surface was similar with each warming system (≈65 kcal/h). Forced-air warming had no effect on posterior heat transfer whereas circulating-water transferred 21 ± 9 kcal/h through the posterior skin surface after a half hour of warming. Over 2.5 h, circulating-water thus increased body heat content 56% more than forced air. Core temperatures thus increased faster than with circulating water than forced air, especially during the first hour, with the result that core temperature was 1.1 ± 0.7°C greater after 2.5 h (P < 0.001). Peripheral tissue heat content increased twice as much as core heat content with each device, but the core-to-peripheral tissue temperature gradient remained positive throughout the study. Conclusions: The circulating-water system transferred more heat than forced air, with the difference resulting largely from posterior heating. Circulating water rewarmed patients 0.4°C/h faster than forced air. A substantial peripheral

  3. Simultaneous measurement of temperature and velocity of air flow over 1000°C using two color phosphor thermometry

    NASA Astrophysics Data System (ADS)

    Fukuta, Masatoshi; Someya, Satoshi; Munakata, Tetsuo; LCS Team

    2016-11-01

    Thermal barrier coatings were applied to the gas turbines and the internal combustion engines for the high thermal efficiency. The evaluation and the improvement of coatings require to measure transient gaseous flow near the wall with coatings. An aim of this study is to combine a two color phosphor thermometry with the PIV to measure simultaneously temperature and velocity of the gas over 1000°C. The temperature and velocity distribution of an impinging jet of high temperature air was simultaneously visualized in experiments. The temperature was estimated from an intensity ratio of luminescent in different ranges of wavelength, 500 600 nm and 400 480 nm. Uncertainty of measured temperature was less than 10°C. Temperatures measured by the developed method and by thermocouples were agreed well. The measured velocity by the PIV with phosphor particles were also agreed well with the velocity measured by a Laser Doppler Velocimeter.

  4. Changes in winter air temperatures near Lake Michigan, 1851-1993, as determined from regional lake-ice records

    USGS Publications Warehouse

    Assel, R.A.; Robertson, Dale M.

    1995-01-01

    Records of freezeup and breakup dates for Grand Traverse Bay, Michigan, and Lake Mendota, Wisconsin, are among the longest ice records available near the Great Lakes, beginning in 185 1 and 1855, respectively. The timing of freezeup and breakup results from an integration of meteorological conditions (primarily air temperature) that occur before these events. Changes in the average timing of these ice-events are translated into changes in air temperature by the use of empirical and process-driven models. The timing of freezeup and breakup at the two locations represents an integration of air temperatures over slightly different seasons (months). Records from both locations indicate that the early winter period before about 1890 was - 15°C cooler than the early winter period after that time; the mean temperature has, however, remained relatively constant since about 1890. Changes in breakup dates demonstrate a similar 1.0-1 .5”C increase in late winter and early spring air temperatures about 1890. More recent average breakup dates at both locations have been earlier than during 1890-1940, indicating an additional warming of 1.2”C in March since about 1940 and a warming of 1 . 1°C in January-March since about 1980. Ice records at these sites will continue to provide an early indication of the anticipated climatic warming, not only because of the large response of ice cover to small changes in air temperature but also because these records integrate climatic conditions during the seasons (winter-spring) when most warming is forecast to occur. Future reductions in ice cover may strongly affect the winter ecology of the Great Lakes by reducing the stable environment required by various levels of the food chain. 

  5. Summertime Temperatures in Buildings Without Air-Conditioning.

    ERIC Educational Resources Information Center

    Loudon, A. G.

    Many modern buildings become uncomfortably warm during sunny spells in the summer, and until recently there was no simple, reliable method of assessing at the design stage whether a building would become overheated. This paper describes a method of calculating summertime temperatures which was developed at the Building Research Station, and gives…

  6. Estimation of daily mean air temperature from satellite derived radiometric data

    NASA Technical Reports Server (NTRS)

    Phinney, D.

    1976-01-01

    The Screwworm Eradication Data System (SEDS) at JSC utilizes satellite derived estimates of daily mean air temperature (DMAT) to monitor the effect of temperature on screwworm populations. The performance of the SEDS screwworm growth potential predictions depends in large part upon the accuracy of the DMAT estimates.

  7. Temperature Rise during Resin Composite Polymerization under Different Ceramic Restorations

    PubMed Central

    Yondem, Isa; Altintas, Subutay Han; Usumez, Aslihan

    2011-01-01

    Objectives: The purpose of this study was to measure temperature increase induced by various light polymerizing units during resin composite polymerization beneath one of three types of ceramic restorations. Methods: The resin composite (Variolink II) was polymerized between one of three different ceramic specimens (zirconium oxide, lithium disilicate, feldspathic) (diameter 5 mm, height 2 mm) and a dentin disc (diameter 5 mm, height 1 mm) with a conventional halogen light, a high intensity halogen light, or an LED unit. The temperature rise was measured under the dentin disc with a J-type thermocouple wire connected to a data logger. Ten measurements were carried out for each group. The difference between the initial and highest temperature readings was taken and the 10 calculated temperature changes were averaged to determine the mean value in temperature rise. Two way analysis of variance (ANOVA) was used to analyze the data (polymerizing unit, ceramic brand) for significant differences. The Tukey HSD test was used to perform multiple comparisons (α=.05). Results: Temperature rise did not vary significantly depending on the light polymerizing unit used (P=.16), however, the type of ceramic system showed a significant effect on temperature increases (P<.01). There were no statistically significant differences between lithium disilicate and feldspathic ceramic systems (P >.05); in comparison, the resin composite polymerized under the zirconium oxide ceramic system induced a significantly lower temperature increase than the other ceramic systems tested (P<.05) Conclusions: The resin composite polymerized beneath zirconium oxide ceramic system induced significantly smaller temperature changes. The maximal temperature increase detected in all groups in this study was not viewed as critical for pulpal health. PMID:21769272

  8. [Verification of exhaled air temperature and heat flux in respiratory diseases as useful biomarker].

    PubMed

    Ito, Wataru; Chihara, Junichi

    2008-12-01

    Asthma, chronic obstructive pulmonary disease, and diffuse panbronchiolitis are syndromes associated with chronic airway inflammation. In the conventional definition of inflammation, local pyrexia at the site of inflammation should be observed. However, there are very few reports that have evaluated the "heat" in inflammatory respiratory diseases. We considered that the evaluation of allergic airway inflammation such as asthma might be possible by measuring the exhaled air temperature, and devised an original device that stabilizes the flow rate, which is a very important factor for the direct measurement of heat. Moreover, an expiratory heat flux meter, which can detect a change in air temperature more precisely and immediately, was also incorporated into our original device. As a result, we succeeded in the measurement and evaluation of the heat flux and air temperature in healthy subjects and asthmatic patients, and, further, the air temperature was straightforwardly evaluated by a portable spirometer including a temperature sensor. These findings suggest that the heat flux and temperature of exhaled air can be used to objectively monitor airway inflammation noninvasively, and assist in the diagnosis/monitoring of inflammatory respiratory diseases, including asthma.

  9. Effects of ambient room temperature on cold air cooling during laser hair removal.

    PubMed

    Ram, Ramin; Rosenbach, Alan

    2007-09-01

    Forced air cooling is a well-established technique that protects the epidermis during laser heating of deeper structures, thereby allowing for increased laser fluences. The goal of this prospective study was to identify whether an elevation in ambient room temperature influences the efficacy of forced air cooling. Skin surface temperatures were measured on 24 sites (12 subjects) during cold air exposure in examination rooms with ambient temperatures of 72 degrees F (22.2 degrees C) and 82 degrees F (27.8 degrees C), respectively. Before cooling, mean skin surface temperature was 9 degrees F (5 degrees C) higher in the warmer room (P < 0.01). Immediately after exposure to forced air cooling (within 1 s), the skin surface temperature remained considerably higher (10.75 degrees F, or 5.8 degrees C, P < 0.01) in the warmer room. We conclude that forced air cooling in a room with an ambient temperature of 82 degrees F (27.8 degrees C) is not as effective as in a room that is at 72 degrees F (22.2 degrees C).

  10. Natural and forced air temperature variability in the Labrador region of Canada during the past century

    NASA Astrophysics Data System (ADS)

    Way, Robert G.; Viau, Andre E.

    2015-08-01

    Evaluation of Labrador air temperatures over the past century (1881-2011) shows multi-scale climate variability and strong linkages with ocean-atmospheric modes of variability and external forcings. The Arctic Oscillation, Atlantic Multidecadal Oscillation, and El Nino Southern Oscillation are shown to be the dominant seasonal and interannual drivers of regional air temperature variability for most of the past century. Several global climate models show disagreement with observations on the rate of recent warming which suggests that models are currently unable to reproduce regional climate variability in Labrador air temperature. Using a combination of empirical statistical modeling and global climate models, we show that 33 % of the variability in annual Labrador air temperatures over the period 1881-2011 can be explained by natural factors alone; however, the inclusion of anthropogenic forcing increases the explained variance to 65 %. Rapid warming over the past 17 years is shown to be linked to both natural and anthropogenic factors with several anomalously warm years being primarily linked to recent anomalies in the Arctic Oscillation and North Atlantic sea surface temperatures. Evidence is also presented that both empirical statistical models and global climate models underestimate the regional air temperature response to ocean salinity anomalies and volcanic eruptions. These results provide important insight into the predictability of future regional climate impacts for the Labrador region.

  11. Prediction of air temperature for thermal comfort of people using sleeping bags: a review

    NASA Astrophysics Data System (ADS)

    Huang, Jianhua

    2008-11-01

    Six models for determining air temperatures for thermal comfort of people using sleeping bags were reviewed. These models were based on distinctive metabolic rates and mean skin temperatures. All model predictions of air temperatures are low when the insulation values of the sleeping bag are high. Nevertheless, prediction variations are greatest for the sleeping bags with high insulation values, and there is a high risk of hypothermia if an inappropriate sleeping bag is chosen for the intended conditions of use. There is, therefore, a pressing need to validate the models by wear trial and determine which one best reflects ordinary consumer needs.

  12. The temperature fields measurement of air in the car cabin by infrared camera

    NASA Astrophysics Data System (ADS)

    Pešek, M.

    2013-04-01

    The article deals with the temperature fields measurement of air using the Jenoptic Variocam infrared camera inside the car Škoda Octavia Combi II. The temperature fields with the use of auxiliary material with a high emissivity value were visualized. The measurements through the viewing window with a high transmissivity value were performed. The viewing windows on the side car door were placed. In the rear car area, the temperature fields of air on the spacious sheet of auxiliary material were visualized which is a suitable method for 2D airstreams. In the front car area, the temperature fields in the air were measured with the use of the measuring net which is suitable for 3D airstreams measuring.

  13. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  14. Dayside-Nightside Temperature Differences in Hot Jupiter Atmospheres

    NASA Astrophysics Data System (ADS)

    Komacek, Thaddeus D.; Showman, Adam P.

    2015-12-01

    The infrared phase curves of low-eccentricity transiting hot Jupiters show a trend of increasing flux amplitude, or increasing day-night temperature difference, with increasing equilibrium temperature. Here we utilize atmospheric circulation modeling and analytic theory to understand this trend, and the more general question: what processes control heat redistribution in tidally-locked giant planet atmospheres? We performed a wide range of 3D numerical simulations of the atmospheric circulation with simplified forcing, and constructed an analytic theory that explains the day-night temperature differences in these simulations over a wide parameter space. Our analytic theory shows that day-night temperature differences in tidally-locked planet atmospheres are mediated by wave propagation. If planetary-scale waves are free to propagate longitudinally, they will efficiently flatten isentropes and lessen day-night temperature differences. If these waves are damped, the day-night temperature differences will necessarily be larger. We expect that wave propagation in hot Jupiter atmospheres can be damped in two ways: by either radiative cooling or frictional drag. Both of these processes increase in efficacy with increasing equilibrium temperature, as radiative cooling is directly related to the cube of temperature and magnetically-induced (Lorentz) drag becomes stronger with increasing partial ionization and hence temperature. We find that radiative cooling plays the largest role in damping wave propagation and hence plays the biggest role in controlling day-night temperature differences. As a result, day-night temperature differences in hot Jupiter atmospheres decrease with increasing pressure and increase with increasing stellar flux. One can apply this result to phase curve observations of individual hot Jupiters in multiple bandpasses, as varying flux amplitudes between wavelengths implies that different photospheric pressure levels are being probed. Namely, a larger

  15. Values identified in different groups of Air Force nurses.

    PubMed

    Hutchison, B G; All, A C; Loving, G L; Nishikawa, H A

    2001-02-01

    Fundamental personal values are reflected in the choices and decisions made in every aspect of our lives. This descriptive study identified values held by a convenience sample of 224 Air Force nurses stationed at four U.S. Air Force medical facilities. Study participants identified seven of eight literature-supported values in the categories "important" or "very important" across the demographic factors of age, gender, educational level, military rank, marital status, and years of Air Force or civilian nursing experience. These seven values were ability utilization, achievement, altruism, autonomy, economic reward, economic security, and personal development. Personnel using this information may ease the transition process to military nursing, facilitate job placement to positions reflecting personally held values, and provide valuable insight for Air Force nurse recruiters who have limited knowledge of the nursing profession. In all, this would promote job satisfaction and Air Force nurse retention.

  16. The upper explosion limit of lower alkanes and alkenes in air at elevated pressures and temperatures.

    PubMed

    Van den Schoor, F; Verplaetsen, F

    2006-01-16

    The upper explosion limit (UEL) of ethane-air, propane-air, n-butane-air, ethylene-air and propylene-air mixtures is determined experimentally at initial pressures up to 30 bar and temperatures up to 250 degrees C. The experiments are performed in a closed spherical vessel with an internal diameter of 200 mm. The mixtures are ignited by fusing a coiled tungsten wire, placed at the centre of the vessel, by electric current. Flame propagation is said to have taken place if there is a pressure rise of at least 1% of the initial pressure after ignition of the mixture. In the pressure-temperature range investigated, a linear dependence of UEL on temperature and a bilinear dependence on pressure are found except in the vicinity of the auto-ignition range. A comparison of the UEL data of the lower alkanes shows that the UEL expressed as equivalence ratio (the actual fuel/air ratio divided by the stoichiometric fuel/air ratio) increases with increasing carbon number in the homologous series of alkanes.

  17. Association between blood pressure changes during self-paced outdoor walking and air temperature.

    PubMed

    Otsuki, Takeshi; Ishii, Nanako

    2017-03-01

    Exaggerated elevation of systolic blood pressure (SBP) during exercise is a risk factor for future cardiovascular disease. Although there are differences between the outdoor exercise and exercise tests in the laboratory setting, there is little information regarding SBP changes during practical outdoor exercise. We investigated SBP changes during self-paced outdoor walking and the relationship to air temperature. Subjects (n = 109, 47-83 years) walked outdoors at their own pace wearing a blood pressure monitor on their wrist. SBP increased during walking compared to rest, but was higher at the 1 km mark than both the 2 and 3 km marks (rest, 124 ± 14 mmHg; 1 km, 140 ± 16 mmHg; 2 km, 136 ± 18 mmHg; 3 km, 135 ± 18 mmHg). SBP at rest, air temperature, body mass index (BMI) and walking intensity during the first 1 km were identified as predictors of SBP at the 1 km mark in the stepwise regression analysis, independent of other confounders (R(2)  = 0·606). SBP at the 1 km mark was higher in the lower temperature group (11·6-14·3°C, 145 ± 14 mmHg) than in the intermediate (15·1-16·7°C, 140 ± 18 mmHg) and higher (17·0-19·6°C, 136 ± 16 mmHg) temperature groups, independent of SBP at rest, BMI and walking intensity. These results suggest that increases in SBP are higher on lower temperature days and are greater at 1 km than at 2 and 3 km. It is therefore recommended that measures are taken against the cold on lower temperature days to attenuate the SBP response during onset of walking.

  18. Fault diagnosis and temperature sensor recovery for an air-handling unit

    SciTech Connect

    Lee, W.Y.; Shin, D.R.; House, J.M.

    1997-12-31

    The presence of faults and the influence they have on system operation is a real concern in the heating, ventilating, and air-conditioning (HVAC) community. A fault can be defined as an inadmissible or unacceptable property of a system or a component. Unless corrected, faults can lead to increased energy use, shorter equipment life, and uncomfortable and/or unhealthy conditions for building occupants. This paper describes the use of a two-stage artificial neural network for fault diagnosis in a simulated air-handling unit. The stage one neural network is trained to identify the subsystem in which a fault occurs. The stage two neural network is trained to diagnose the specific cause of a fault at the subsystem level. Regression equations for the supply and mixed-air temperatures are obtained from simulation data and are used to compute input parameters to the neutral networks. Simulation results are presented that demonstrate that, after a successful diagnosis of a supply air temperature sensor fault, the recovered estimate of the supply air temperature obtained from the regression equation can be used in a feedback control loop to bring the supply air temperature back to the setpoint value. Results are also presented that illustrate the evolution of the diagnosis of the two-stage artificial neural network from normal operation to various fault modes of operation.

  19. Simulation of soil temperature dynamics with models using different concepts.

    PubMed

    Sándor, Renáta; Fodor, Nándor

    2012-01-01

    This paper presents two soil temperature models with empirical and mechanistic concepts. At the test site (calcaric arenosol), meteorological parameters as well as soil moisture content and temperature at 5 different depths were measured in an experiment with 8 parcels realizing the combinations of the fertilized, nonfertilized, irrigated, nonirrigated treatments in two replicates. Leaf area dynamics was also monitored. Soil temperature was calculated with the original and a modified version of CERES as well as with the HYDRUS-1D model. The simulated soil temperature values were compared to the observed ones. The vegetation reduced both the average soil temperature and its diurnal amplitude; therefore, considering the leaf area dynamics is important in modeling. The models underestimated the actual soil temperature and overestimated the temperature oscillation within the winter period. All models failed to account for the insulation effect of snow cover. The modified CERES provided explicitly more accurate soil temperature values than the original one. Though HYDRUS-1D provided more accurate soil temperature estimations, its superiority to CERES is not unequivocal as it requires more detailed inputs.

  20. An ultrasonic air temperature measurement system with self-correction function for humidity

    NASA Astrophysics Data System (ADS)

    Tsai, Wen-Yuan; Chen, Hsin-Chieh; Liao, Teh-Lu

    2005-02-01

    This paper proposes an ultrasonic measurement system for air temperature with high accuracy and instant response. It can measure the average temperature of the environmental air by detecting the changes of the speed of the ultrasound in the air. The changes of speed of sound are computed from combining variations of time-of-flight (TOF) from a binary frequency shift-keyed (BFSK) ultrasonic signal and phase shift from continuous waves [11]. In addition, another proposed technique for the ultrasonic air temperature measurement is the self-correction functionality within a highly humid environment. It utilizes a relative humidity/water vapour sensor and applies the theory of how sound speed changes in a humid environment. The proposed new ultrasonic air temperature measurement has the capability of self-correction for the environment variable of humidity. Especially under the operational environment with high fluctuations of various humidity levels, the proposed system can accurately self-correct the errors on the conventional ultrasonic thermometer caused by the changing density of the vapours in the air. Including the high humidity effect, a proof-of-concept experiment demonstrates that in dry air (relative humidity, RH = 10%) without humidity correction, it is accurate to ±0.4 °C from 0 °C to 80 °C, while in highly humid air (relative humidity, RH = 90%) with self-correction functionality, it is accurate to ±0.3 °C from 0 °C to 80 °C with 0.05% resolution and temperature changes are instantly reflected within 100 ms.

  1. Global circuit response to seasonal variations in global surface air temperature

    NASA Technical Reports Server (NTRS)

    Williams, Earle R.

    1994-01-01

    Comparisons are made between the seasonal behavior of the global electrical circuit and the surface air temperature for the Tropics and for the globe. Positive correlations between global circuit parameters and temperature are identified on both semiannual and annual timescales. Lightning is the global circuit quantity found most responsive to temperature, with a sensitivity of the order of 10% per 1 C. These findings lend further validity to the use of global circuit measurements as a diagnostic for global change.

  2. Growth and yield response of field-grown tropical rice to increasing carbon dioxide and air temperature

    SciTech Connect

    Ziska, L.H.; Namuco, O.; Moya, T.; Quilang, J.

    1997-01-01

    Although the response of rice (Oryza sativa L.) to increasing atmospheric CO{sub 2} concentration and air temperature has been examined at the greenhouse or growth chamber level, no field studies have been conducted under the tropical, irrigated conditions where the bulk of the world`s rice is grown. At the International Rice Research Institute, rice (cv. IR 72) was grown from germination until maturity for the 1994 wet and 1995 dry seasons at three different CO{sub 2} concentrations (ambient, ambient + 200, and ambient + 300 {mu}L L{sup {minus}1}) resulted in a significant increase in total plant biomass (+31%, +40%) and crop yield (+15%, + 27%) compared with the ambient control. The increase in crop yield was associated with an increase in the number of panicles per square meter and a greater percentage of filled spikelets. Simultaneous increases in CO{sub 2} and air temperature did not alter the biomass at maturity (relative to elevated CO{sub 2} alone), but plant development was accelerated at the higher growth temperature regardless of CO{sub 2} concentration. Grain yield, however, became insensitive to CO{sub 2} concentration at the higher growth temperature. Increasing both CO{sub 2} and air temperature also reduced grain quality (e.g., protein content). The combination of CO{sub 2} and temperature effects suggests that, in warmer regions (i.e., >34{degrees}C) where rice is grown, quantitative and qualitative changes in rice supply are possible if both CO{sub 2} and air temperature continue to increase. 24 refs., 6 figs., 4 tabs.

  3. Impact of Surface Air Temperature and Snow Cover Depth on the Upper Soil Temperature Variations in Russia

    NASA Astrophysics Data System (ADS)

    Sherstyukov, B. G.; Sherstyukov, A. B.; Groisman, P. Y.

    2008-12-01

    For the 1965-2004 period, data from all Russian meteorological stations with long-term soil temperature observations at depths 80, 160 and 320 cm were compiled and analyzed. It was found that the prevailing influence on soil temperature variations in the European part of Russia was surface air temperature and in the Asian part of Russia - snow cover depth. By preserving the heat accumulated in the warm season, an observed increase of the winter snow depth in the permafrost zone (cf., Bulygina et al. 2007) promotes annual soil temperature increase and therefore may foster the further permafrost degradation associated with ongoing regional warming. The impact of long-term changes in surface air temperatures on soil temperatures in the central regions of the permafrost zone is weak throughout the year. However, in the regions with intermittent permafrost, this impact is substantial. The impact of snow depth on soil temperatures is observed throughout the entire permafrost zone of Russia. Reference cited: Bulygina O.N., N.N. Korshunova, and V.N. Razuvaev, 2007: Variations in snow characteristics over the Russian territory in the recent decades. Transactions of RIHMI-WDC, 173, 41-46.

  4. Effect of green roofs on air temperature; measurement study of well-watered and dry conditions

    NASA Astrophysics Data System (ADS)

    Solcerova, Anna; van de Ven, Frans; Wang, Mengyu; van de Giesen, Nick

    2016-04-01

    Rapid urbanization and increasing number and duration of heat waves poses a need for understanding urban climate and ways to mitigate extremely high temperatures. One of repeatedly suggested and often investigated methods to moderate the so called urban heat island are green roofs. This study investigates several extensive green roofs in Utrecht (NL) and their effect on air temperature right above the roof surface. Air temperature was measured 15 and 30 cm above the roof surface and also in the substrate. We show that under normal condition is air above green roof, compared to white gravel roof, colder at night and warmer during day. This suggest that green roofs might help decrease air temperatures at night, when the urban heat island is strongest, but possibly contribute to high temperatures during daytime. We also measured situation when the green roofs wilted and dried out. Under such conditions green roof exhibits more similar behavior to conventional white gravel roof. Interestingly, pattern of soil temperature remains almost the same for both dry and well-prospering green roof, colder during day and warmer at night. As such, green roof works as a buffer of diurnal temperature changes.

  5. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity.

    PubMed

    Bugbee, B; Monje, O; Tanner, B

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  6. Ambient air pollution, temperature and out-of-hospital coronary deaths in Shanghai, China.

    PubMed

    Dai, Jinping; Chen, Renjie; Meng, Xia; Yang, Changyuan; Zhao, Zhuohui; Kan, Haidong

    2015-08-01

    Few studies have evaluated the effects of ambient air pollution and temperature in triggering out-of-hospital coronary deaths (OHCDs) in China. We evaluated the associations of air pollution and temperature with daily OHCDs in Shanghai, China from 2006 to 2011. We applied an over-dispersed generalized additive model and a distributed lag nonlinear model to analyze the effects of air pollution and temperature, respectively. A 10 μg/m(3) increase in the present-day PM10, PM2.5, SO2, NO2 and CO were associated with increases in OHCD mortality of 0.49%, 0.68%, 0.88%, 1.60% and 0.08%, respectively. A 1 °C decrease below the minimum-mortality temperature corresponded to a 3.81% increase in OHCD mortality on lags days 0-21, and a 1 °C increase above minimum-mortality temperature corresponded to a 4.61% increase over lag days 0-3. No effects were found for in-hospital coronary deaths. This analysis suggests that air pollution, low temperature and high temperature may increase the risk of OHCDs.

  7. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  8. Watershed geomorphology and snowmelt control stream thermal sensitivity to air temperature

    NASA Astrophysics Data System (ADS)

    Lisi, Peter J.; Schindler, Daniel E.; Cline, Timothy J.; Scheuerell, Mark D.; Walsh, Patrick B.

    2015-05-01

    How local geomorphic and hydrologic features mediate the sensitivity of stream thermal regimes to variation in climatic conditions remains a critical uncertainty in understanding aquatic ecosystem responses to climate change. We used stable isotopes of hydrogen and oxygen to estimate contributions of snow and rainfall to 80 boreal streams and show that differences in snow contribution are controlled by watershed topography. Time series analysis of stream thermal regimes revealed that streams in rain-dominated, low-elevation watersheds were 5-8 times more sensitive to variation in summer air temperature compared to streams draining steeper topography whose flows were dominated by snowmelt. This effect was more pronounced across the landscape in early summer and less distinct in late summer. Thus, the impact of climate warming on freshwater thermal regimes will be spatially heterogeneous across river basins as controlled by geomorphic features. However, thermal heterogeneity may be lost with reduced snowpack and increased ratios of rain to snow in stream discharge.

  9. Measuring centimeter-resolution air temperature profiles above land and water using fiber-optic Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Sigmund, Armin; Pfister, Lena; Olesch, Johannes; Thomas, Christoph K.

    2016-04-01

    The precise determination of near-surface air temperature profiles is of special importance for the characterization of airflows (e.g. cold air) and the quantification of sensible heat fluxes according to the flux-gradient similarity approach. In contrast to conventional multi-sensor techniques, measuring temperature profiles using fiber-optic Distributed Temperature Sensing (DTS) provides thousands of measurements referenced to a single calibration standard at much reduced costs. The aim of this work was to enhance the vertical resolution of Raman scatter DTS measurements up to the centimeter-scale using a novel approach for atmospheric applications: the optical fiber was helically coiled around a meshed fabric. In addition to testing the new fiber geometry, we quantified the measurement uncertainty and demonstrated the benefits of the enhanced-resolution profiles. The fiber-optic cable was coiled around a hollow column consisting of white reinforcing fabric supported by plexiglass rings every meter. Data from two columns of this type were collected for 47 days to measure air temperature vertically over 3.0 and 5.1 m over a gently inclined meadow and over and in a small lake, respectively. Both profiles had a vertical resolution of 1 cm in the lower section near the surface and 5 cm in the upper section with an along-fiber instrument-specific averaging of 1.0 m and a temporal resolution of 30 s. Measurement uncertainties, especially from conduction between reinforcing fabric and fiber-optic cable, were estimated by modeling the fiber temperature via a detailed energy balance approach. Air temperature, wind velocity and radiation components were needed as input data and measured separately. The temperature profiles revealed valuable details, especially in the lowest 1 m above surface. This was best demonstrated for nighttime observations when artefacts due to solar heating did not occur. For example, the dynamics of a cold air layer was detected in a clear night

  10. Temperature Dependences of Air-Broadening and Shift Parameters in the ν_3 Band of Ozone

    NASA Astrophysics Data System (ADS)

    Smith, Mary Ann H.; Devi, V. Malathy; Benner, D. Chris

    2015-06-01

    Line parameter errors can contribute significantly to the total errors in retrievals of terrestrial atmospheric ozone concentration profiles using the strong 9.6-μm band, particularly for nadir-viewing experiments Detailed knowledge of the interfering ozone signal is also needed for retrievals of other atmospheric species in this spectral region. We have determined Lorentz air-broadening and pressure-induced shift coefficients along with their temperature dependences for a number of transitions in the ν_3 fundamental band of 16O_3. These results were obtained by applying the multispectrum nonlinear least-squares fitting technique to a set of 31 high-resolution infrared absorption spectra of O_3 recorded at temperatures between 160 and 300 K with several different room-temperature and coolable sample cells at the McMath-Pierce Fourier transform spectrometer at the National Solar Observatory on Kitt Peak. We compare our results with other available measurements and with the ozone line parameters in the HITRAN database. J.~Worden et al., J.~Geophys.~Res. 109 (2004) 9308-9319. R.~Beer et al., Geophys.~Res.~Lett. 35 (2008) L09801. D.~Chris Benner et al., JQSRT 53 (1995) 705-721. Rothman et al., J. Quant. Spectrosc. Radiat. Transfer 130 (2013) 4. JQSRT 130 (2013) 4-50.

  11. Usefulness of AIRS-Derived OLR, Temperature, Water Vapor and Cloudiness Anomaly Trends for GCM Validation

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula I.; Susskind, Joel; Iredell, Lena F.

    2010-01-01

    Mainly due to their global nature, satellite observations can provide a very useful basis for GCM validations. In particular, satellite sounders such as AIRS provide 3-D spatial information (most useful for GCMs), so the question arises: can we use AIRS datasets for climate variability assessments? We show that the recent (September 2002 February 2010) CERES-observed negative trend in OLR of approx.-0.1 W/sq m/yr averaged over the globe is found in the AIRS OLR data as well. Most importantly, even minute details (down to 1 x 1 degree GCM-scale resolution) of spatial and temporal anomalies and trends of OLR as observed by CERES and computed based on AIRS-retrieved surface and atmospheric geophysical parameters over this time period are essentially the same. The correspondence can be seen even in the very large spatial variations of these trends with local values ranging from -2.6 W/sq m/yr to +3.0 W/sq m/yr in the tropics, for example. This essentially perfect agreement of OLR anomalies and trends derived from observations by two different instruments, in totally independent and different manners, implies that both sets of results must be highly accurate, and indirectly validates the anomalies and trends of other AIRS derived products as well. These products show that global and regional anomalies and trends of OLR, water vapor and cloud cover over the last 7+ years are strongly influenced by EI-Nino-La Nina cycles . We have created climate parameter anomaly datasets using AIRS retrievals which can be compared directly with coupled GCM climate variability assessments. Moreover, interrelationships of these anomalies and trends should also be similar between the observed and GCM-generated datasets, and, in cases of discrepancies, GCM parameterizations could be improved based on the relationships observed in the data. First, we assess spatial "trends" of variability of climatic parameter anomalies [since anomalies relative to the seasonal cycle are good proxies of

  12. Effects of foliage plants on human physiological and psychological responses at different temperatures

    NASA Astrophysics Data System (ADS)

    Jumeno, Desto; Matsumoto, Hiroshi

    2015-02-01

    Escalation of task demands and time pressures tends to make a worker run into work stress, which leads to mental fatigue and depression. The mental fatigue can be reduced when attention capacity is restored. Nature can serve as a source of fascination which can restore the attention capacity. People bring plants indoors so they can experience nature in their workplace. The stress and fatigue are also affected by air temperatures. The increase or decrease of temperatures from the comfort zone may induce the stress and fatigue. The objective of this study is to investigate the intervention of using foliage plants placed inside a building at different air temperature levels. The effects of foliage plants on human stress and fatigue were measured by human physiological responses such as heart rate, amylase level, electroencephalography (EEG), and the secondary task-reaction time. Several different tasks, namely typing, math and logical sequences are included in the investigation of these studies. Fifteen subjects, with the age ranged from 22 to 38 years old have participated in the study using within subject design. From the study, it is revealed that the presence of foliage plants at several temperatures have different effects on meditation, secondary task reaction time and typing accuracy. This study also revealed that the presence of plants on several types of tasks has different effects of attention which are useful for increasing work performance.

  13. The influence of snow depth and surface air temperature on satellite-derived microwave brightness temperature. [central Russian steppes, and high plains of Montana, North Dakota, and Canada

    NASA Technical Reports Server (NTRS)

    Foster, J. L.; Hall, D. K.; Chang, A. T. C.; Rango, A.; Allison, L. J.; Diesen, B. C., III

    1980-01-01

    Areas of the steppes of central Russia, the high plains of Montana and North Dakota, and the high plains of Canada were studied in an effort to determine the relationship between passive microwave satellite brightness temperature, surface air temperature, and snow depth. Significant regression relationships were developed in each of these homogeneous areas. Results show that sq R values obtained for air temperature versus snow depth and the ratio of microwave brightness temperature and air temperature versus snow depth were not as the sq R values obtained by simply plotting microwave brightness temperature versus snow depth. Multiple regression analysis provided only marginal improvement over the results obtained by using simple linear regression.

  14. A comparison of the temperature difference according to the placement of a nasopharyngeal temperature probe

    PubMed Central

    Lim, Hyungsun; Kim, Boram; Kim, Dong-Chan; Lee, Sang-Kyi

    2016-01-01

    Background The purpose of this study was to compare temperatures measured at three different sites where a nasopharyngeal temperature probe is commonly placed. Methods Eighty elective abdominal surgical patients were enrolled. After anesthesia induction, four temperature probes were placed at the nasal cavity, upper portion of the nasopharynx, oropharynx, and the esophagus. The placement of the nasopharyngeal temperature probes was evaluated using a flexible nasendoscope, and the depth from the nares was measured. The four temperatures were simultaneously recorded at 10-minute intervals for 60 minutes. Results The average depths of the probes that were placed in the nasal cavity, upper nasopharynx, and the oropharynx were respectively 5.7 ± 0.9 cm, 9.9 ± 0.7 cm, and 13.6 ± 1.7 cm from the nares. In the baseline temperatures, the temperature differences were significantly greater in the nasal cavity 0.32 (95% CI; 0.27-0.37)℃ than in the nasopharynx 0.02 (0.01–0.04)℃, and oropharynx 0.02 (−0.01 to 0.05)℃ compared with the esophagus (P < 0.001). These differences were maintained for 60 minutes. Twenty patients showed a 0.5℃ or greater temperature difference between the nasal cavity and the esophagus, but no patient showed such a difference at the nasopharynx and oropharynx. Conclusions During general anesthesia, the temperatures measured at the upper nasopharynx and the oropharynx, but not the nasal cavity, reflected the core temperature. Therefore, the authors recommend that a probe should be placed at the nasopharynx (≈ 10 cm) or oropharynx (≈ 14 cm) with mucosal attachment for accurate core temperature measurement. PMID:27482312

  15. The temperature difference across the cool skin of the ocean

    NASA Astrophysics Data System (ADS)

    Paulson, C. A.; Simpson, J. J.

    1981-11-01

    The temperature difference ΔT across the cool skin of the ocean was determined from radiometric measurements of surface brightness temperature and conventional measurements of temperature at a depth of 1 m. Eleven days of measurements were made from the R/P Flip in February 1974 about 800 miles north of Hawaii (35°N, 155°W). The surface brightness temperature was corrected for nonblackness of the surface to obtain an estimate of the true surface temperature. The constant λ in Saunders' (1967a) formula, ΔT = λvQ/kU* was found to be λ = 6.5±0.6, where v is kinematic viscosity, Q the upward heat flux just below, the interface, k the thermal conductivity, and U* the friction velocity. The constant is independent of wind speed for winds ranging from 3 to 11 m/s. The use of subsurface rather than surface temperature in the bulk aerodynamic formulas results in an increase in the sum of the sensible and latent heat fluxes equal to 4-5% of Q. However, the percentage change in sensible and latent heat fluxes may be much greater. Spectra of surface and subsurface sea temperature exhibit a peak at low frequencies and fall off approximately proportional to ƒ-3/2; with increasing frequency ƒ. The variability of sea surface temperature was caused about equally by the variability of subsurface temperature and the variability of ΔT. Caution should therefore be exercised in the interpretation of radiometric surface temperature measurements as representative of subsurface temperature.

  16. Drying rate and temperature profile for superheated steam vacuum drying and moist air drying of softwood lumber

    SciTech Connect

    Pang, S.; Dakin, M.

    1999-07-01

    Two charges of green radiata pine sapwood lumber were dried, ether using superheated steam under vacuum (90 C, 0.2 bar abs.) or conventionally using hot moist air (90/60 C). Due to low density of the drying medium under vacuum, the circulation velocity used was 10 m/s for superheated steam drying and 5.0 m/s for moist air drying, and in both cases, the flow was unidirectional. In drying, stack drying rate and wood temperatures were measured to examine the differences between the superheated steam drying and drying using hot moist air. The experimental results have shown that the stack edge board in superheated steam drying dried faster than in the hot moist air drying. Once again due to the low density of the steam under vacuum, a prolonged maximum temperature drop across load (TDAL) was observed in the superheated steam drying, however, the whole stack dried slower and the final moisture content distribution was more variable than for conventional hot moist air drying.

  17. Effect of drying temperature and air flow on the production and retention of secondary metabolites in saffron.

    PubMed

    Gregory, Matthew J; Menary, Robert C; Davies, Noel W

    2005-07-27

    Safranal is the compound most responsible for the aroma of saffron spice and is, together with the suite of crocin pigments, the major determinant of the product quality. The content of safranal and pigments in saffron is determined by the method of postharvest treatment of the Crocus stigmas. A range of drying treatments involving different temperatures, with or without air flow, was applied to stigmas from three harvest dates. Dual solvent extractions combined with quantitative measurement using GC and HPLC-UV-vis techniques were used to analyze the secondary metabolite contents of the products. It was demonstrated that these methods overcame the previously reported problems in measuring the concentration of both pigments and safranal in saffron caused by the very different polarities and thus solubilities of these compounds. The results showed that a brief (20 min) initial period at a relatively high temperature (between 80 and 92 degrees C) followed by continued drying at a lower temperature (43 degrees C) produced saffron with a safranal content up to 25 times that of saffron dried only at lower temperatures. Evidence was provided suggesting that drying with significant air flow reduced the safranal concentration. The results, moreover, indicated that high-temperature treatment had allowed greater retention of crocin pigments than in saffron dried at intermediate temperatures (46-58 degrees C). The biochemical implications of the various treatments are discussed in relation to the potential for optimizing color and fragrance quality in the product.

  18. Comparison of toluene removal in air at atmospheric conditions by different corona discharges.

    PubMed

    Schiorlin, Milko; Marotta, Ester; Rea, Massimo; Paradisi, Cristina

    2009-12-15

    Different types of corona discharges, produced by DC of either polarity (+/-DC) and positive pulsed (+pulsed) high voltages, were applied to the removal of toluene via oxidation in air at room temperature and atmospheric pressure. Mechanistic insight was obtained through comparison of the three different corona regimes with regard to process efficiency, products, response to the presence of humidity and, for DC coronas, current/voltage characteristics coupled with ion analysis. Process efficiency increases in the order +DC < -DC < +pulsed, with pulsed processing being remarkably efficient compared to recently reported data for related systems. With -DC, high toluene conversion and product selectivity were achieved, CO(2) and CO accounting for about 90% of all reacted carbon. Ion analysis, performed by APCI-MS (Atmospheric Pressure Chemical Ionization-Mass Spectrometry), provides a powerful rationale for interpreting current/voltage characteristics of DC coronas. All experimental findings are consistent with the proposal that in the case of +DC corona toluene oxidation is initiated by reactions with ions (O(2)(+*), H(3)O(+) and their hydrates, NO(+)) both in dry as well as in humid air. In contrast, with -DC no evidence is found for any significant reaction of toluene with negative ions. It is also concluded that in humid air OH radicals are involved in the initial stage of toluene oxidation induced both by -DC and +pulsed corona.

  19. Human local and total heat losses in different temperature.

    PubMed

    Wang, Lijuan; Yin, Hui; Di, Yuhui; Liu, Yanfeng; Liu, Jiaping

    2016-04-01

    This study investigates the effects of operative temperature on the local and total heat losses, and the relationship between the heat loss and thermal sensation. 10 local parts of head, neck, chest, abdomen, upper arm, forearm, hand, thigh, leg and foot are selected. In all these parts, convection, radiation, evaporation, respiration, conduction and diffusion heat losses are analyzed when operative temperature is 23, 28, 33 and 37 °C. The local heat losses show that the radiation and convection heat losses are mainly affected by the area of local body, and the heat loss of the thigh is the most in the ten parts. The evaporation heat loss is mainly affected by the distribution of sweat gland, and the heat loss of the chest is the most. The total heat loss of the local body shows that in low temperature, the thigh, leg and chest have much heat loss, while in high temperature, the chest, abdomen, thigh and head have great heat loss, which are useful for clothing design. The heat losses of the whole body show that as the operative temperature increases, the radiation and convection heat losses decrease, the heat losses of conduction, respiration, and diffusion are almost constant, and the evaporation heat loss increases. By comparison, the heat loss ratios of the radiation, convection and sweat evaporation, are in agreement with the previous researches. At last, the formula about the heat loss ratio of convection and radiation is derived. It's useful for thermal comfort evaluation and HVAC (heating, ventilation and air conditioning) design.

  20. Opportunities to Reduce Air-Conditioning Loads Through Lower Cabin Soak Temperatures

    SciTech Connect

    Farrington, R.; Cuddy, M.; Keyser, M.; Rugh, J.

    1999-07-12

    Air-conditioning loads can significantly reduce electric vehicle (EV) range and hybrid electric vehicle (HEV) fuel economy. In addition, a new U. S. emissions procedure, called the Supplemental Federal Test Procedure (SFTP), has provided the motivation for reducing the size of vehicle air-conditioning systems in the United States. The SFTP will measure tailpipe emissions with the air-conditioning system operating. If the size of the air-conditioning system is reduced, the cabin soak temperature must also be reduced, with no penalty in terms of passenger thermal comfort. This paper presents the impact of air-conditioning on EV range and HEV fuel economy, and compares the effectiveness of advanced glazing and cabin ventilation. Experimental and modeled results are presented.

  1. Water temperature effect on upward air-water flow in a vertical pipe: Local measurements database using four-sensor conductivity probes and LDA

    NASA Astrophysics Data System (ADS)

    Monrós-Andreu, G.; Chiva, S.; Martínez-Cuenca, R.; Torró, S.; Juliá, J. E.; Hernández, L.; Mondragón, R.

    2013-04-01

    Experimental work was carried out to study the effects of temperature variation in bubbly, bubbly to slug transition. Experiments were carried out in an upward air-water flow configuration. Four sensor conductivity probes and LDA techniques was used together for the measurement of bubble parameters. The aim of this paper is to provide a bubble parameter experimental database using four-sensor conductivity probes and LDA technique for upward air-water flow at different temperatures and also show transition effect in different temperatures under the boiling point.

  2. Regional differences in temperature sensation and thermal comfort in humans.

    PubMed

    Nakamura, Mayumi; Yoda, Tamae; Crawshaw, Larry I; Yasuhara, Saki; Saito, Yasuyo; Kasuga, Momoko; Nagashima, Kei; Kanosue, Kazuyuki

    2008-12-01

    Sensations evoked by thermal stimulation (temperature-related sensations) can be divided into two categories, "temperature sensation" and "thermal comfort." Although several studies have investigated regional differences in temperature sensation, less is known about the sensitivity differences in thermal comfort for the various body regions. In the present study, we examined regional differences in temperature-related sensations with special attention to thermal comfort. Healthy male subjects sitting in an environment of mild heat or cold were locally cooled or warmed with water-perfused stimulators. Areas stimulated were the face, chest, abdomen, and thigh. Temperature sensation and thermal comfort of the stimulated areas were reported by the subjects, as was whole body thermal comfort. During mild heat exposure, facial cooling was most comfortable and facial warming was most uncomfortable. On the other hand, during mild cold exposure, neither warming nor cooling of the face had a major effect. The chest and abdomen had characteristics opposite to those of the face. Local warming of the chest and abdomen did produce a strong comfort sensation during whole body cold exposure. The thermal comfort seen in this study suggests that if given the chance, humans would preferentially cool the head in the heat, and they would maintain the warmth of the trunk areas in the cold. The qualitative differences seen in thermal comfort for the various areas cannot be explained solely by the density or properties of the peripheral thermal receptors and thus must reflect processing mechanisms in the central nervous system.

  3. Short-term effects of air temperature on mortality and effect modification by air pollution in three cities of Bavaria, Germany: A time-series analysis

    EPA Science Inventory

    Background: Air temperature has been shown to be associated with mortality; however, only very few studies have been conducted in Germany. This study examined the association between daily air temperature and cause-specific mortality in Bavaria, Southern Germany. Moreover, we inv...

  4. Prediction of air temperature for thermal comfort of people in outdoor environments

    NASA Astrophysics Data System (ADS)

    Huang, Jianhua

    2007-05-01

    Current thermal comfort indices do not take into account the effects of wind and body movement on the thermal resistance and vapor resistance of clothing. This may cause public health problem, e.g. cold-related mortality. Based on the energy balance equation and heat exchanges between a clothed body and the outdoor environment, a mathematical model was developed to determine the air temperature at which an average adult, wearing a specific outdoor clothing and engaging in a given activity, attains thermal comfort under outdoor environment condition. The results indicated low clothing insulation, less physical activity and high wind speed lead to high air temperature prediction for thermal comfort. More accurate air temperature prediction is able to prevent wearers from hypothermia under cold conditions.

  5. The effect of air temperature on the sappan wood extract drying

    NASA Astrophysics Data System (ADS)

    Djaeni, M.; Triyastuti, M. S.; Asiah, N.; Annisa, A. N.; Novita, D. A.

    2015-12-01

    The sappan wood extract contain natural colour called brazilin that can be used as a food colouring and antioxidant. The product is commonly found as a dry extract powder for consummer convenience. The spray dryer with air dehumidification can be an option to retain the colour and antioxidant agent. This paper discusses the effect of air temperature on sappan wood extract drying that was mixed with maltodextrin. As responses, the particle size, final moisture content, and extract solubility degradation were observed. In all cases, the process conducted in temperature ranging 90 - 110°C can retain the brazilin quality as seen in solubility and particle size. In addition, the sappan wood extract can be fully dried with moisture content below 2%. Moreover, with the increase of air temperature, the particle size of dry extract can be smaller.

  6. Design and Development of an air-cooled Temperature-Swing Adsorption Compressor for Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.

    2003-01-01

    The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. We have a developed a temperature-swing adsorption compressor (TSAC) for performing these tasks that is energy efficient, quiet, and has no wearing parts. This paper discusses the design features of a TSAC hardware that uses air as the cooling medium and has Space Station application.

  7. Development of Dermanyssus gallinae (Acari: Dermanyssidae) at different temperatures.

    PubMed

    Tucci, E C; Prado, A P; Araújo, R P

    2008-08-01

    The development, viability, and life cycle parameters of Dermanyssus gallinae at five different temperatures (15, 20, 25, 30 and 35 degrees C), and at relative humidity 70-85% were evaluated. Life cycle duration was 690.75 h (28 days) at 15 degrees C, 263.12h (11 days) at 20 degrees C, 164.63 h (7 days) at 25 degrees C, 140.69 h (6 days) at 30 degrees C and 172.04 h (7 days) at 35 degrees C. The optimal development temperature for D. gallinae was 30 degrees C, with the greatest survival in all stages and the shortest development time. High mortality at 35 degrees C indicated that this temperature had adverse effects on development of D. gallinae, and that in field conditions D. gallinae populations may decrease or even disappear due to the negative impact of high temperature on development. There were no significant differences in the pre-oviposition period among the four temperatures 20-35 degrees C, indicating that temperature did not affect this part of the life cycle.

  8. Impact of aerosol on air temperature in Kuwait

    NASA Astrophysics Data System (ADS)

    Sabbah, I.

    2010-08-01

    This work uses MODIS aerosol optical thickness (AOT) data observed over Kuwait during the 7-year interval 2000-2007. The values of AOT and the Ångström wavelength exponent ( α) show a clear annual cycle. These data are categorized into two catalogues in terms of the values of the AOT of the 870 nm channel ( τ870). One catalogue (71 days) includes days with high values of AOT ( τ870 ≥ 0.75). The most probable "modal" value of α for these days is 0.52. The other catalogue (1162 days) consists of the background days with a modal value ~ 1.1 for the exponent α. This analysis is extended to include water vapor content (WVC), surface wind speed (V), visibility (Vis) and the diurnal temperature range (DTR). Chree's method of superposed-epoch analysis is applied to these parameters in order to compare the variation in the daily averages during days with high AOT values with respect to background days. The high values of AOT during the 71 days are positively correlated with aerosol size, near-surface winds and poor visibility. This concludes that the aerosol particles during these days were mostly dust. The mean daily value of the DTR (Δ T) and visibility reduced significantly during these days. This reduction on DTR is a direct result of increasing the atmospheric opacity due to the presence of dust.

  9. Depicting the Dependency of Isoprene in Ambient Air and from Plants on Temperature and Solar Radiation by Using Regression Analysis

    NASA Astrophysics Data System (ADS)

    Saxena, Pallavi; Ghosh, Chirashree

    2016-07-01

    Among all sources of volatile organic compounds, isoprene emission from plants is an important part of the atmospheric hydrocarbon budget. In the present study, isoprene emission capacity at the bottom of the canopies of plant species viz. Dalbergia sissoo and Nerium oleander and in ambient air at different sites selected on the basis of land use pattern viz. near to traffic intersection with dense vegetation, away from traffic intersection with dense vegetation under floodplain area (Site I) and away from traffic intersection with dense vegetation under hilly ridge area (Site II) during three different seasons (monsoon, winter and summer) in Delhi were measured. In order to find out the dependence of isoprene emission rate on temperature and solar radiation, regression analysis has been performed. In case of dependency of isoprene in ambient air on temperature and solar radiation in selected seasons it has been found that high isoprene was found during summer season as compared to winter and monsoon seasons. Thus, positive linear relationship gives the best fit between temperature, solar rdaiation and isoprene during summer season as compared to winter and monsoon season. On the other hand, in case of isoprene emission from selected plant species, it has been found that high temperature and solar radiation promotes high isoprene emission rates during summer season as compared to winter and monsoon seasons in D. sissoo. Thus, positive linear relationship gives the best fit between temperature, solar radiation and isoprene emission rate during summer season as compared to winter and monsoon season. In contrast, in case of Nerium oleander, no such appropriate relationship was obtained. The study concludes that in ambient air, isoprene concentration was found to be high during summer season as compared to other seasons and gives best fit between temperature, solar radiation and isoprene. In case of plants, Dalbergia sissoo comes under high isoprene emission category

  10. Luminescence characteristics of nanoporous anodic alumina annealed at different temperatures

    NASA Astrophysics Data System (ADS)

    Ilin, D. O.; Vokhmintsev, A. S.; Weinstein, I. A.

    2016-09-01

    Anodic aluminum oxide (AAO) membranes with 100 µm thickness were synthesized in oxalic acid solution under constant current density. Grown samples were annealed in 500-1250 °C range for 5 h in air. Average pore diameter was evaluated using quantitative analysis of SEM images and appeared to be within 78-86 nm diapason. It was found there was a broad emission band in the 350-620 nm region of photoluminescence (PL) spectra in amorphous membranes which is attributed to F-type oxygen deficient centers or oxalic ions. It was shown that intensive red emission caused by Cr3+ (696 nm) and Mn4+ (680 nm) impurities dominates in PL of AAO samples with crystalline α- and δ-phases after annealing at 1100-1250 °C temperatures.

  11. Do sudden air temperature and pressure changes affect cardiovascular morbidity and mortality?

    NASA Astrophysics Data System (ADS)

    Plavcová, E.; Davídkovová, H.; Kyselý, J.

    2012-04-01

    Previous studies have shown that sudden changes in weather (usually represented by air temperature and/or pressure) are associated with increases in daily mortality. Little is understood about physiological mechanisms responsible for the impacts of weather changes on mortality, and whether similar patterns appear for morbidity as well. Relatively little is known also about differences in the magnitude of the mortality response in provincial regions and in cities, where the impacts may be exacerbated by air pollution effects and/or heat island. The present study examines the effects of sudden air temperature and pressure changes on morbidity (represented by hospital admissions) and mortality due to cardiovascular diseases in the population of the Czech Republic (approx. 10 million inhabitants) and separately in the city of Prague (1.2 million inhabitants). The events are selected from data covering 1994-2009 using the methodology introduced by Plavcová and Kyselý (2010), and they are compared with the datasets on hospital admissions and daily mortality (both standardized to account for long-term changes and the seasonal and weekly cycles). Relative deviations of morbidity/mortality from the baseline were averaged over the selected events for days D-2 (2 days before a change) up to D+7 (7 days after), and their statistical significance was tested by means of the Monte Carlo method. The study aims at (i) identifying those weather changes associated with increased cardiovascular morbidity/mortality, separately in summer and winter, (ii) comparing the effects of weather changes on morbidity and mortality, (iii) identifying whether urban population of Prague is more/less vulnerable in comparison to the population of the whole Czech Republic, (iv) comparing the effects for different cardiovascular diseases (ischaemic heart diseases, ICD-10 codes I20-I25; cerebrovascular diseases, I60-I69; hypertension, I10; atherosclerosis, I70) and individual population groups (by age

  12. Dayside-Nightside Temperature Differences in Hot Jupiter Atmospheres

    NASA Astrophysics Data System (ADS)

    Komacek, T. D.; Showman, A. P.

    2015-12-01

    The full-phase light curves of individual close-in extrasolar giant planets, or "hot Jupiters," show a trend of increasing fractional amplitude with increasing planetary equilibrium temperature. The attached figure shows this trend for 7 transiting low-eccentricity hot Jupiters. For these planets, this trend can be realized as a trend of increasing dayside-to-nightside temperature difference with increasing equilibrium temperature, as these planets are expected to be tidally locked. Here we examine this trend, in order to shed insight on the physical processes that regulate heat redistribution in tidally-locked planet atmospheres. We utilize a combination of analytic theory to predict how heat is redistributed from day to night over a range of equilibrium temperature, atmospheric composition, and potential frictional drag strengths, and confirm the theory using numerical circulation modeling. Our theory identifies that the transition from low to high day-night temperature differences is mediated by wave adjustment, the same process that regulates heat redistribution in the tropics of Earth. Due to their low rotation rate and hence large Rossby deformation radius, tidally locked planets allow for wave propagation to occur over a much larger latitude range than on Earth. Hence, wave adjustment processes play a key role in the the global, not just equatorial, heat redistribution in hot Jupiter atmospheres. Wave propagation can be damped in hot Jupiter atmospheres by either radiative cooling to space or potential frictional drag. This frictional drag, if present, would likely be caused by Lorentz forces in a partially ionized atmosphere threaded by a planetary-scale magnetic field. The radiative cooling timescale is inversely related to the cube of temperature, and any Lorentz drag would increase with temperature due to the increasing ionization fraction of the atmosphere. Hence, both of these processes damp waves more effectively as equilibrium temperature increases

  13. Different annealing temperature suitable for different Mg doped P-GaN

    NASA Astrophysics Data System (ADS)

    Liu, S. T.; Yang, J.; Zhao, D. G.; Jiang, D. S.; Liang, F.; Chen, P.; Zhu, J. J.; Liu, Z. S.; Li, X.; Liu, W.; Zhang, L. Q.; Long, H.; Li, M.

    2017-04-01

    In this work, epitaxial GaN with different Mg doping concentration annealed at different temperature is investigated. Through Hall and PL spectra measurement we found that when Mg doping concentration is different, different annealing temperature is needed for obtaining the best p-type conduction of GaN, and this difference comes from the different influence of annealing on compensated donors. For ultra-heavily Mg doped sample, the process of Mg related donors transferring to non-radiative recombination centers is dominated, so the performance of P-GaN deteriorates with temperature increase. But for low Mg doped sample, the process of Mg related donors transfer to non-raditive recombination is weak compare to the Mg acceptor activation, so along the annealing temperature increase the performance GaN gets better.

  14. Influence of the mode geometry on the strain and temperature sensitivity of different fibers

    NASA Astrophysics Data System (ADS)

    Murawski, M.; Holdynski, Z.; Szymanski, M.; Tenderenda, T.; Ostrowski, L.; Łukowski, A.; Krisch, H.; Napierała, M.; Jaroszewicz, L. R.; Nasilowski, T.

    2013-05-01

    Sensitivity of optical fibers to the temperature, longitudinal strain or pressure, is a very important feature in many applications, such as sensors or telecommunication. The most common way to modify (depending on application - either mitigate or strengthen,) this sensitivity is changing the fiber material properties by appropriate glass doping or by employing appropriate microstructure in the fiber. In some cases the precise adjustment of a doping level and sophisticated design of air-holes arrangement is needed to obtain required features of the fiber. In this paper, for the first time, to the best of our knowledge, we report the investigation of the mode area and geometry influence on the fiber temperature and mechanical sensitivities. To do so, we engaged a dedicated all-fiber interferometer which enables the measurement of the temperature and longitudinal strain sensitivities of different fiber types, including conventional and microstructured fibers with different core diameters.

  15. CO2 CH4 flux Air temperature Soil temperature and Soil moisture, Barrow, Alaska 2013 ver. 1

    DOE Data Explorer

    Margaret Torn

    2015-01-14

    This dataset consists of field measurements of CO2 and CH4 flux, as well as soil properties made during 2013 in Areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) measurements of CO2 and CH4 flux made from June to September (ii) Calculation of corresponding Gross Primary Productivity (GPP) and CH4 exchange (transparent minus opaque) between atmosphere and the ecosystem (ii) Measurements of Los Gatos Research (LGR) chamber air temperature made from June to September (ii) measurements of surface layer depth, type of surface layer, soil temperature and soil moisture from June to September.

  16. Development of a high-temperature air-blown gasification system.

    PubMed

    Pian, C C; Yoshikawa, K

    2001-09-01

    Current status of high-temperature air-blown gasification technology development is reviewed. This advanced gasification system utilizes preheated air to convert coal and waste-derived fuels into synthetic fuel gas and value-added byproducts. A series of demonstrated, independent technologies are combined to form the core of this gasification system. A high-temperature, rapid devolatilization process is used to enhance the volatile yields from the fuel and to improve the gasification efficiency. A high-temperature pebble bed filter is used to remove to the slag and particulates from the synthetic fuel gas. Finally, a novel regenerative heater is used to supply the high-temperature air for the gasifier. Component development tests have shown that higher gasification efficiencies can be obtained at more fuel-rich operating conditions when high-temperature air is used as the gasification agent. Test results also demonstrated the flex-fuel capabilities of the gasifier design. Potential uses of this technology range from large-scale integrated gasification power plants to small-scale waste-to-energy applications.

  17. Long-term air temperature variation in the Karkonosze mountains according to atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Migała, Krzysztof; Urban, Grzegorz; Tomczyński, Karol

    2016-07-01

    The results of meteorological measurements carried out continuously on Mt Śnieżka in Karkonosze mountains since 1880 well document the warming observed on a global scale. Data analysis indicates warming expressed by an increase in the mean annual air temperature of 0.8 °C/100 years. A much higher temperature increase was recorded in the last two decades at the turn of the twenty-first century. Mean decade air temperatures increased from -0.1 to 1.5 °C. It has been shown that there are relationships between air temperature at Mt Śnieżka and global mechanisms of atmospheric and oceanic circulation. Thermal conditions of the Karkonosze (Mt Śnieżka) accurately reflect global climate trends and impact of the North Atlantic Oscillation (NAO) index, macrotypes of atmospheric circulation in Europe (GWL) and Atlantic Multidecadal Oscillation (AMO). The increase in air temperature during the 1989-2012 solar magnetic cycle may reveal a synergy effect to which astrophysical effects and atmospheric and oceanic circulation effects contribute, modified by constantly increasing anthropogenic factors.

  18. Temperature-and airflow-related effects of ozone production by surface dielectric barrier discharge in air

    NASA Astrophysics Data System (ADS)

    Pekárek, Stanislav; Mikeš, Jan

    2014-10-01

    Discharge ozone production depends on different quantities and the effect of one quantity on this process cannot be separated from the effects of other quantities. Thus the temperature influences the reaction rates of individual reactions involved in ozone generation and destruction, the thermodynamic properties, and the density of the feeding gas. The density of the feeding gas influences the reduced electric field, which affects ionization of the gas, production of electrons and consequently the electrical parameters of the discharge. Taking into account these considerations we investigated the effect of temperature and various arrangements of the input and output of the feeding gas to and from the discharge chamber together with related changes of electrical parameters of the surface dielectric barrier discharge on its ozone production for the temperatures in which commercial ozone generators function. We found that if the temperature of air at the output from the discharge chamber is increased from 15.0 ± 0.5 to 25.0 ± 0.5 °C, the discharge ozone production and peak discharge voltage decrease. Both the discharge ozone production and the peak discharge voltage are also affected by the way in which the feeding air is supplied to and leaves the discharge chamber. We also showed that for all ways in which the feeding air is supplied to and leaves the discharge chamber the discharge nitrogen dioxide production follows the same trends as discharge ozone production.

  19. Minimization of temperature ranges between the top and bottom of an air flow controlling device through hybrid control in a plant factory.

    PubMed

    Moon, Seung-Mi; Kwon, Sook-Youn; Lim, Jae-Hyun

    2014-01-01

    To maintain the production timing, productivity, and product quality of plant factories, it is necessary to keep the growth environment uniform. A vertical multistage type of plant factory involves different levels of growing trays, which results in the problem of difference in temperature among vertically different locations. To address it, it is necessary to install air flow devices such as air flow fan and cooling/heating device at the proper locations in order to facilitate air circulation in the facility as well as develop a controlling technology for efficient operation. Accordingly, this study compares the temperature and air distribution within the space of a vertical multistage closed-type plant factory by controlling cooling/heating devices and air flow fans harmoniously by means of the specially designed testbed. The experiment results indicate that in the hybrid control of cooling and heating devices and air flow fans, the difference in temperature decreased by as much as 78.9% compared to that when only cooling and heating devices were operated; the air distribution was improved by as much as 63.4%.

  20. Minimization of Temperature Ranges between the Top and Bottom of an Air Flow Controlling Device through Hybrid Control in a Plant Factory

    PubMed Central

    2014-01-01

    To maintain the production timing, productivity, and product quality of plant factories, it is necessary to keep the growth environment uniform. A vertical multistage type of plant factory involves different levels of growing trays, which results in the problem of difference in temperature among vertically different locations. To address it, it is necessary to install air flow devices such as air flow fan and cooling/heating device at the proper locations in order to facilitate air circulation in the facility as well as develop a controlling technology for efficient operation. Accordingly, this study compares the temperature and air distribution within the space of a vertical multistage closed-type plant factory by controlling cooling/heating devices and air flow fans harmoniously by means of the specially designed testbed. The experiment results indicate that in the hybrid control of cooling and heating devices and air flow fans, the difference in temperature decreased by as much as 78.9% compared to that when only cooling and heating devices were operated; the air distribution was improved by as much as 63.4%. PMID:25013867

  1. An improved model for soil surface temperature from air temperature in permafrost regions of Qinghai-Xizang (Tibet) Plateau of China

    NASA Astrophysics Data System (ADS)

    Hu, Guojie; Wu, Xiaodong; Zhao, Lin; Li, Ren; Wu, Tonghua; Xie, Changwei; Pang, Qiangqiang; Cheng, Guodong

    2016-06-01

    Soil temperature plays a key role in hydro-thermal processes in environments and is a critical variable linking surface structure to soil processes. There is a need for more accurate temperature simulation models, particularly in Qinghai-Xizang (Tibet) Plateau (QXP). In this study, a model was developed for the simulation of hourly soil surface temperatures with air temperatures. The model incorporated the thermal properties of the soil, vegetation cover, solar radiation, and water flux density and utilized field data collected from Qinghai-Xizang (Tibet) Plateau (QXP). The model was used to simulate the thermal regime at soil depths of 5 cm, 10 cm and 20 cm and results were compared with those from previous models and with experimental measurements of ground temperature at two different locations. The analysis showed that the newly developed model provided better estimates of observed field temperatures, with an average mean absolute error (MAE), root mean square error (RMSE), and the normalized standard error (NSEE) of 1.17 °C, 1.30 °C and 13.84 %, 0.41 °C, 0.49 °C and 5.45 %, 0.13 °C, 0.18 °C and 2.23 % at 5 cm, 10 cm and 20 cm depths, respectively. These findings provide a useful reference for simulating soil temperature and may be incorporated into other ecosystem models requiring soil temperature as an input variable for modeling permafrost changes under global warming.

  2. Simplified universal method for determining electrolyte temperatures in a capillary electrophoresis instrument with forced-air cooling.

    PubMed

    Patel, Kevin H; Evenhuis, Christopher J; Cherney, Leonid T; Krylov, Sergey N

    2012-03-01

    Temperature increase due to resistive electrical heating is an inherent limitation of capillary electrophoresis (CE). Active cooling systems are used to decrease the temperature of the capillary, but their capacity is limited; and in addition, they leave "hot spots" at the detection interface and at the capillary ends. Until recently, the matter was complicated by the lack of a fast and generic method for temperature determination in efficiently and inefficiently cooled regions of the capillary. Our group recently introduced such a method, termed "Universal Method for determining Electrolyte Temperatures" (UMET). UMET is a probe-less approach that requires only measuring current versus voltage for different voltages and processing the data using an iterative algorithm. Here, we apply UMET to develop a Simplified Universal Method of Temperature Determination (SUMET) for a CE instrument with a forced-air cooling system using an Agilent 7100 CE instrument (Agilent Technologies, Saint Laurent, Quebec, Canada) as an example. We collected a wide set of empirical voltage-current data for a variety of buffers and capillary diameters. We further constructed empirical equations for temperature calculation in efficiently and inefficiently cooled parts of the capillary that require only the data from a single 1-min voltage-current measurement. The equations are specific for the Agilent 7100 CE instrument (Agilent Technologies) but can be applied to all kinds of capillaries and buffers. Similar SUMET approaches can be developed for other CE instruments with forced-air cooling using our approach.

  3. Influence of Temperature, Relative Humidity, and Soil Properties on the Soil-Air Partitioning of Semivolatile Pesticides: Laboratory Measurements and Predictive Models.

    PubMed

    Davie-Martin, Cleo L; Hageman, Kimberly J; Chin, Yu-Ping; Rougé, Valentin; Fujita, Yuki

    2015-09-01

    Soil-air partition coefficient (Ksoil-air) values are often employed to investigate the fate of organic contaminants in soils; however, these values have not been measured for many compounds of interest, including semivolatile current-use pesticides. Moreover, predictive equations for estimating Ksoil-air values for pesticides (other than the organochlorine pesticides) have not been robustly developed, due to a lack of measured data. In this work, a solid-phase fugacity meter was used to measure the Ksoil-air values of 22 semivolatile current- and historic-use pesticides and their degradation products. Ksoil-air values were determined for two soils (semiarid and volcanic) under a range of environmentally relevant temperature (10-30 °C) and relative humidity (30-100%) conditions, such that 943 Ksoil-air measurements were made. Measured values were used to derive a predictive equation for pesticide Ksoil-air values based on temperature, relative humidity, soil organic carbon content, and pesticide-specific octanol-air partition coefficients. Pesticide volatilization losses from soil, calculated with the newly derived Ksoil-air predictive equation and a previously described pesticide volatilization model, were compared to previous results and showed that the choice of Ksoil-air predictive equation mainly affected the more-volatile pesticides and that the way in which relative humidity was accounted for was the most critical difference.

  4. Effects of a ceramic coating on metal temperatures of an air-cooled turbine vane

    NASA Astrophysics Data System (ADS)

    Gladden, H. J.; Liebert, C. H.

    1980-02-01

    The metal temperatures of air cooled turbine vanes both uncoated and coated with the NASA thermal barrier system were studied experimentally. Current and advanced gas turbine engine conditions were simulated at reduced temperatures and pressures. Airfoil metal temperatures were significantly reduced, both locally and on the average, by use of the the coating. However, at low gas Reynolds number, the ceramic coating tripped a laminar boundary layer on the suction surface, and the resulting higher heat flux increased the metal temperatures. Simulated coating loss was also investigated and shown to increase local metal temperatures. However, the metal temperatures in the leading edge region remained below those of the uncoated vane tested at similar conditions. Metal temperatures in the trailing edge region exceeded those of the uncoated vane.

  5. Effects of a ceramic coating on metal temperatures of an air-cooled turbine vane

    NASA Technical Reports Server (NTRS)

    Gladden, H. J.; Liebert, C. H.

    1980-01-01

    The metal temperatures of air cooled turbine vanes both uncoated and coated with the NASA thermal barrier system were studied experimentally. Current and advanced gas turbine engine conditions were simulated at reduced temperatures and pressures. Airfoil metal temperatures were significantly reduced, both locally and on the average, by use of the the coating. However, at low gas Reynolds number, the ceramic coating tripped a laminar boundary layer on the suction surface, and the resulting higher heat flux increased the metal temperatures. Simulated coating loss was also investigated and shown to increase local metal temperatures. However, the metal temperatures in the leading edge region remained below those of the uncoated vane tested at similar conditions. Metal temperatures in the trailing edge region exceeded those of the uncoated vane.

  6. Measurement of air exchange rates in different indoor environments using continuous CO2 sensors.

    PubMed

    You, Yan; Niu, Can; Zhou, Jian; Liu, Yating; Bai, Zhipeng; Zhang, Jiefeng; He, Fei; Zhang, Nan

    2012-01-01

    A new air exchange rate (AER) monitoring method using continuous CO2 sensors was developed and validated through both laboratory experiments and field studies. Controlled laboratory simulation tests were conducted in a 1-m3 environmental chamber at different AERs (0.1-10.0 hr(-1)). AERs were determined using the decay method based on box model assumptions. Field tests were conducted in classrooms, dormitories, meeting rooms and apartments during 2-5 weekdays using CO2 sensors coupled with data loggers. Indoor temperature, relative humidity (RH), and CO2 concentrations were continuously monitored while outdoor parameters combined with on-site climate conditions were recorded. Statistical results indicated that good laboratory performance was achieved: duplicate precision was within 10%, and the measured AERs were 90%-120% of the real AERs. Average AERs were 1.22, 1.37, 1.10, 1.91 and 0.73 hr(-1) in dormitories, air-conditioned classrooms, classrooms with an air circulation cooling system, reading rooms, and meeting rooms, respectively. In an elderly particulate matter exposure study, all the homes had AER values ranging from 0.29 to 3.46 hr(-1) in fall, and 0.12 to 1.39 hr(-1) in winter with a median AER of 1.15.

  7. An Experimental Investigation Into the Temperature Profile of a Compliant Foil Air Bearing

    NASA Technical Reports Server (NTRS)

    Radil, Kevin; Zeszotek, Michelle

    2004-01-01

    A series of tests was performed to determine the internal temperature profile in a compliant bump-type foil journal air bearing operating at room temperature under various speeds and load conditions. The temperature profile was collected by instrumenting a foil bearing with nine, type K thermocouples arranged in the center and along the bearing s edges in order to measure local temperatures and estimate thermal gradients in the axial and circumferential directions. To facilitate the measurement of maximum temperatures from viscous shearing in the air film, the thermocouples were tack welded to the backside of the bumps that were in direct contact with the top foil. The mating journal was coated with a high temperature solid lubricant that, together with the bearing, underwent high temperature start-stop cycles to produce a smooth, steady-state run-in surface. Tests were conducted at speeds from 20 to 50 krpm and loads ranging from 9 to 222 N. The results indicate that, over the conditions tested, both journal rotational speed and radial load are responsible for heat generation with speed playing a more significant role in the magnitude of the temperatures. The temperature distribution was nearly symmetric about the bearing center at 20 and 30 krpm but became slightly skewed toward one side at 40 and 50 krpm. Surprisingly, the maximum temperatures did not occur at the bearing edge where the minimum film thickness is expected but rather in the middle of the bearing where analytical investigations have predicted the air film to be much thicker. Thermal gradients were common during testing and were strongest in the axial direction from the middle of the bearing to its edges, reaching 3.78 8C/mm. The temperature profile indicated the circumferential thermal gradients were negligible.

  8. Estimation of daily minimum land surface air temperature using MODIS data in southern Iran

    NASA Astrophysics Data System (ADS)

    Didari, Shohreh; Norouzi, Hamidreza; Zand-Parsa, Shahrokh; Khanbilvardi, Reza

    2016-10-01

    Land surface air temperature (LSAT) is a key variable in agricultural, climatological, hydrological, and environmental studies. Many of their processes are affected by LSAT at about 5 cm from the ground surface (LSAT5cm). Most of the previous studies tried to find statistical models to estimate LSAT at 2 m height (LSAT2m) which is considered as a standardized height, and there is not enough study for LSAT5cm estimation models. Accurate measurements of LSAT5cm are generally acquired from meteorological stations, which are sparse in remote areas. Nonetheless, remote sensing data by providing rather extensive spatial coverage can complement the spatiotemporal shortcomings of meteorological stations. The main objective of this study was to find a statistical model from the previous day to accurately estimate spatial daily minimum LSAT5cm, which is very important in agricultural frost, in Fars province in southern Iran. Land surface temperature (LST) data were obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua and Terra satellites at daytime and nighttime periods with normalized difference vegetation index (NDVI) data. These data along with geometric temperature and elevation information were used in a stepwise linear model to estimate minimum LSAT5cm during 2003-2011. The results revealed that utilization of MODIS Aqua nighttime data of previous day provides the most applicable and accurate model. According to the validation results, the accuracy of the proposed model was suitable during 2012 (root mean square difference (RMSD) = 3.07 °C, {R}_{adj}^2 = 87 %). The model underestimated (overestimated) high (low) minimum LSAT5cm. The accuracy of estimation in the winter time was found to be lower than the other seasons (RMSD = 3.55 °C), and in summer and winter, the errors were larger than in the remaining seasons.

  9. Retrieval of surface temperature by remote sensing. [of earth surface using brightness temperature of air pollutants

    NASA Technical Reports Server (NTRS)

    Gupta, S. K.; Tiwari, S. N.

    1976-01-01

    A simple procedure and computer program were developed for retrieving the surface temperature from the measurement of upwelling infrared radiance in a single spectral region in the atmosphere. The program evaluates the total upwelling radiance at any altitude in the region of the CO fundamental band (2070-2220 1/cm) for several values of surface temperature. Actual surface temperature is inferred by interpolation of the measured upwelling radiance between the computed values of radiance for the same altitude. Sensitivity calculations were made to determine the effect of uncertainty in various surface, atmospheric and experimental parameters on the inferred value of surface temperature. It is found that the uncertainties in water vapor concentration and surface emittance are the most important factors affecting the accuracy of the inferred value of surface temperature.

  10. SIRS: An Experiment to Measure the Free Air Temperature from a Satellite.

    PubMed

    Wark, D Q

    1970-08-01

    The Satellite Infrared Spectrometer (SIRS) on the Nimbus III satellite was designed to measure the earth's spectral radiances in the 15-microm band of carbon dioxide. From simultaneous measurements of spectral radiances it is possible to obtain the vertical temperature profile of the atmosphere. The measurements are approximated by the integral equation of radiative transfer, modified by one or two layers of clouds. A solution requires that the surface radiative temperature and the surface air temperature be known. By iteration, a solution based upon the statistical behavior of the atmosphere is obtained for the free air temperature and the cloud heights and amounts. Examples are presented, comparing the SIRS soundings with coincident radiosonde soundings. The results from this experiment indicate that the technique can be applied as a routine observing tool for meteorological use.

  11. Spatiotemporal Divergence of the Warming Hiatus over Land Based on Different Definitions of Mean Temperature.

    PubMed

    Zhou, Chunlüe; Wang, Kaicun

    2016-08-17

    Existing studies of the recent warming hiatus over land are primarily based on the average of daily minimum and maximum temperatures (T2). This study compared regional warming rates of mean temperature based on T2 and T24 calculated from hourly observations available from 1998 to 2013. Both T2 and T24 show that the warming hiatus over land is apparent in the mid-latitudes of North America and Eurasia, especially in cold seasons, which is closely associated with the negative North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) and cold air propagation by the Arctic-original northerly wind anomaly into mid-latitudes. However, the warming rates of T2 and T24 are significantly different at regional and seasonal scales because T2 only samples air temperature twice daily and cannot accurately reflect land-atmosphere and incoming radiation variations in the temperature diurnal cycle. The trend has a standard deviation of 0.43 °C/decade for T2 and 0.41 °C/decade for T24, and 0.38 °C/decade for their trend difference in 5° × 5° grids. The use of T2 amplifies the regional contrasts of the warming rate, i.e., the trend underestimation in the US and overestimation at high latitudes by T2.

  12. Spatiotemporal Divergence of the Warming Hiatus over Land Based on Different Definitions of Mean Temperature

    PubMed Central

    Zhou, Chunlüe; Wang, Kaicun

    2016-01-01

    Existing studies of the recent warming hiatus over land are primarily based on the average of daily minimum and maximum temperatures (T2). This study compared regional warming rates of mean temperature based on T2 and T24 calculated from hourly observations available from 1998 to 2013. Both T2 and T24 show that the warming hiatus over land is apparent in the mid-latitudes of North America and Eurasia, especially in cold seasons, which is closely associated with the negative North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) and cold air propagation by the Arctic-original northerly wind anomaly into mid-latitudes. However, the warming rates of T2 and T24 are significantly different at regional and seasonal scales because T2 only samples air temperature twice daily and cannot accurately reflect land-atmosphere and incoming radiation variations in the temperature diurnal cycle. The trend has a standard deviation of 0.43 °C/decade for T2 and 0.41 °C/decade for T24, and 0.38 °C/decade for their trend difference in 5° × 5° grids. The use of T2 amplifies the regional contrasts of the warming rate, i.e., the trend underestimation in the US and overestimation at high latitudes by T2. PMID:27531421

  13. Spatiotemporal Divergence of the Warming Hiatus over Land Based on Different Definitions of Mean Temperature

    NASA Astrophysics Data System (ADS)

    Zhou, Chunlüe; Wang, Kaicun

    2016-08-01

    Existing studies of the recent warming hiatus over land are primarily based on the average of daily minimum and maximum temperatures (T2). This study compared regional warming rates of mean temperature based on T2 and T24 calculated from hourly observations available from 1998 to 2013. Both T2 and T24 show that the warming hiatus over land is apparent in the mid-latitudes of North America and Eurasia, especially in cold seasons, which is closely associated with the negative North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) and cold air propagation by the Arctic-original northerly wind anomaly into mid-latitudes. However, the warming rates of T2 and T24 are significantly different at regional and seasonal scales because T2 only samples air temperature twice daily and cannot accurately reflect land-atmosphere and incoming radiation variations in the temperature diurnal cycle. The trend has a standard deviation of 0.43 °C/decade for T2 and 0.41 °C/decade for T24, and 0.38 °C/decade for their trend difference in 5° × 5° grids. The use of T2 amplifies the regional contrasts of the warming rate, i.e., the trend underestimation in the US and overestimation at high latitudes by T2.

  14. The large volcanic eruptions at different latitude bands and patterns of winter temperature changes over China

    NASA Astrophysics Data System (ADS)

    Hao, Zhixin; Sun, Di

    2016-04-01

    Based on the chronology of 29 large volcanic eruptions events (Volcanic Explosivity Index≥4) since 1951 and gridded temperature dataset from China Meteorological Data Sharing Service System, we identified the patterns of winter temperature changes over China after the large volcanic eruptions, comparing with the mean temperature within the five years before, then we analyzed the related dynamic mechanisms of different patterns by NCEP reanalysis data and model output data from Community Earth System Model (CESM). The results showed that the winter temperature decreased more than 1°C in East China after volcanic eruptions on middle-lower latitudes and equatorial bands. After volcanic eruptions on different latitudes, the temperature spatial patterns were summarized as two types, which included that temperature was cooling centered on Northeast and warming in Tibets, and its opposite pattern. The first pattern was usually detected after tropical volcanic eruptions in spring/summer and it also appeared after volcanic eruptions on high latitudes in spring/autumn. After middle-lower latitude volcanic eruptions, the variation of geopotential height on 500hPa showed that the positive anomaly was existed at the East of Ural mountain, which caused the temperature decreased in Northwest , Central East and Southeast when east asian trough was intensified. After high latitudes volcanic eruptions, the zonal circulation was more obvious at middle latitudes, the cold air was not easy to transport,therefore winter temperature increased in China except for the Yangtze River Basin. The result of full forcing experiments by CESM showed that temperature decreased at most regions after large volcanic eruptions on equatorial /high bands, and troughs and wedges were developed on 500 hPa. The variation of geopotential height was nearly reversed after volcanic eruptions on high latitudes, only the temperature of Tibetan Plateau decreased. But how the variation of geopotential height

  15. The large volcanic eruptions at different latitude bands and patterns of winter temperature changes over China

    NASA Astrophysics Data System (ADS)

    Sun, D.; Hao, Z.; Zheng, J.

    2015-12-01

    Based on the chronology of 29 large volcanic eruptions events (Volcanic Explosivity Index≥4) since 1951 and gridded temperature dataset from China Meteorological Data Sharing Service System, we identified the patterns of winter temperature changes over China after the large volcanic eruptions, comparing with the mean temperature within the five years before, then we analyzed the related dynamic mechanisms of different patterns by NCEP reanalysis data and model output data from Community Earth System Model (CESM). The results showed that the winter temperature decreased more than 1°C in East China after volcanic eruptions on middle-lower latitudes and equatorial bands. After volcanic eruptions on different latitudes, the temperature spatial patterns were summarized as two types, which included that temperature was cooling centered on Northeast and warming in Tibets, and its opposite pattern. The first pattern was usually detected after equatorial volcanic eruptions in spring/summer and it also appeared after volcanic eruptions on high latitudes in spring/autumn. After middle-lower latitude volcanic eruptions, the variation of geopotential height on 500hPa showed that the positive anomaly was existed at the East of Ural mountain, which caused the temperature decreased in Northwest , Central East and Southeast when east asian trough was intensified. After high latitudes volcanic eruptions, the zonal circulation was more obvious at middle latitudes, the cold air was not easy to transport therefore winter temperature increased in China except for the Yangtze River Basin. The result of full forcing experiments by CESM showed that temperature decreased at most regions after large volcanic eruptions on equatorial /high bands, and troughs and wedges were developed on 500 hPa. The variation of geopotential height was nearly reversed after volcanic eruptions on high latitudes, only the temperature of Tibetan Plateau decreased. But how the variation of geopotential height

  16. A Neural Network Based Intelligent Predictive Sensor for Cloudiness, Solar Radiation and Air Temperature

    PubMed Central

    Ferreira, Pedro M.; Gomes, João M.; Martins, Igor A. C.; Ruano, António E.

    2012-01-01

    Accurate measurements of global solar radiation and atmospheric temperature, as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight and portable sensor was developed, using artificial neural network models as the time-series predictor mechanisms. These have been identified with the aid of a procedure based on the multi-objective genetic algorithm. As cloudiness is the most significant factor affecting the solar radiation reaching a particular location on the Earth surface, it has great impact on the performance of predictive solar radiation models for that location. This work also represents one step towards the improvement of such models by using ground-to-sky hemispherical colour digital images as a means to estimate cloudiness by the fraction of visible sky corresponding to clouds and to clear sky. The implementation of predictive models in the prototype has been validated and the system is able to function reliably, providing measurements and four-hour forecasts of cloudiness, solar radiation and air temperature. PMID:23202230

  17. A neural network based intelligent predictive sensor for cloudiness, solar radiation and air temperature.

    PubMed

    Ferreira, Pedro M; Gomes, João M; Martins, Igor A C; Ruano, António E

    2012-11-12

    Accurate measurements of global solar radiation and atmospheric temperature,as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight and portable sensor was developed, using artificial neural network models as the time-series predictor mechanisms. These have been identified with the aid of a procedure based on the multi-objective genetic algorithm. As cloudiness is the most significant factor affecting the solar radiation reaching a particular location on the Earth surface, it has great impact on the performance of predictive solar radiation models for that location. This work also represents one step towards the improvement of such models by using ground-to-sky hemispherical colour digital images as a means to estimate cloudiness by the fraction of visible sky corresponding to clouds and to clear sky. The implementation of predictive models in the prototype has been validated and the system is able to function reliably, providing measurements and four-hour forecasts of cloudiness, solar radiation and air temperature.

  18. Emissions of an AVCO Lycoming 0-320-DIAD air cooled light aircraft engine as a function of fuel-air ratio, timing, and air temperature and humidity

    NASA Technical Reports Server (NTRS)

    Meng, P. R.; Skorobatckyi, M.; Cosgrove, D. V.; Kempke, E. E., Jr.

    1976-01-01

    A carbureted aircraft engine was operated over a range of test conditions to establish the exhaust levels over the EPA seven-mode emissions cycle. Baseline (full rich production limit) exhaust emissions at an induction air temperature of 59 F and near zero relative humidity were 90 percent of the EPA standard for HC, 35 percent for NOx, and 161 percent for CO. Changes in ignition timing around the standard 25 deg BTDC from 30 deg BTDC to 20 deg BTDC had little effect on the exhaust emissions. Retarding the timing to 15 deg BTDC increased both the HC and CO emissions and decreased NOx emissions. HC and CO emissions decreased as the carburetor was leaned out, while NOx emissions increased. The EPA emission standards were marginally achieved at two leanout conditions. Variations in the quantity of cooling air flow over the engine had no effect on exhaust emissions. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased.

  19. Stabilized three-stage oxidation of DME/air mixture in a micro flow reactor with a controlled temperature profile

    SciTech Connect

    Oshibe, Hiroshi; Nakamura, Hisashi; Tezuka, Takuya; Hasegawa, Susumu; Maruta, Kaoru

    2010-08-15

    Ignition and combustion characteristics of a stoichiometric dimethyl ether (DME)/air mixture in a micro flow reactor with a controlled temperature profile which was smoothly ramped from room temperature to ignition temperature were investigated. Special attention was paid to the multi-stage oxidation in low temperature condition. Normal stable flames in a mixture flow in the high velocity region, and non-stationary pulsating flames and/or repetitive extinction and ignition (FREI) in the medium velocity region were experimentally confirmed as expected from our previous study on a methane/air mixture. In addition, stable double weak flames were observed in the low velocity region for the present DME/air mixture case. It is the first observation of stable double flames by the present methodology. Gas sampling was conducted to obtain major species distributions in the flow reactor. The results indicated that existence of low-temperature oxidation was conjectured by the production of CH{sub 2}O occured in the upstream side of the experimental first luminous flame, while no chemiluminescence from it was seen. One-dimensional computation with detailed chemistry and transport was conducted. At low mixture velocities, three-stage oxidation was confirmed from profiles of the heat release rate and major chemical species, which was broadly in agreement with the experimental results. Since the present micro flow reactor with a controlled temperature profile successfully presented the multi-stage oxidations as spatially separated flames, it is shown that this flow reactor can be utilized as a methodology to separate sets of reactions, even for other practical fuels, at different temperature. (author)

  20. Cool Roofs in Guangzhou, China: Outdoor Air Temperature Reductions during Heat Waves and Typical Summer Conditions.

    PubMed

    Cao, Meichun; Rosado, Pablo; Lin, Zhaohui; Levinson, Ronnen; Millstein, Dev

    2015-12-15

    In this paper, we simulate temperature reductions during heat-wave events and during typical summer conditions from the installation of highly reflective "cool" roofs in the Chinese megacity of Guangzhou. We simulate temperature reductions during six of the strongest historical heat-wave events over the past decade, finding average urban midday temperature reductions of 1.2 °C. In comparison, we simulate 25 typical summer weeks between 2004 and 2008, finding average urban midday temperature reductions of 0.8 °C, indicating that air temperature sensitivity to urban albedo in Guangzhou varies with meteorological conditions. We find that roughly three-fourths of the variance in air temperature reductions across all episodes can be accounted for by a linear regression, including only three basic properties related to the meteorological conditions: mean daytime temperature, humidity, and ventilation to the greater Guangzhou urban area. While these results highlight the potential for cool roofs to mitigate peak temperatures during heat waves, the temperature reductions reported here are based on the upper bound case, which increases albedos of all roofs (but does not modify road albedo or wall albedo).

  1. Equatorial range limits of an intertidal ectotherm are more linked to water than air temperature.

    PubMed

    Seabra, Rui; Wethey, David S; Santos, António M; Gomes, Filipa; Lima, Fernando P

    2016-10-01

    As climate change is expected to impose increasing thermal stress on intertidal organisms, understanding the mechanisms by which body temperatures translate into major biogeographic patterns is of paramount importance. We exposed individuals of the limpet Patella vulgata Linnaeus, 1758, to realistic experimental treatments aimed at disentangling the contribution of water and air temperature for the buildup of thermal stress. Treatments were designed based on temperature data collected at the microhabitat level, from 15 shores along the Atlantic European coast spanning nearly 20° of latitude. Cardiac activity data indicated that thermal stress levels in P. vulgata are directly linked to elevated water temperature, while high air temperature is only stressful if water temperature is also high. In addition, the analysis of the link between population densities and thermal regimes at the studied locations suggests that the occurrence of elevated water temperature may represent a threshold P. vulgata is unable to tolerate. By combining projected temperatures with the temperature threshold identified, we show that climate change will likely result in the westward expansion of the historical distribution gap in the Bay of Biscay (southwest France), and northward contraction of the southern range limit in south Portugal. These findings suggest that even a minor relaxing of the upwelling off northwest Iberia could lead to a dramatic increase in thermal stress, with major consequences for the structure and functioning of the intertidal communities along Iberian rocky shores.

  2. Benchmark analysis of forecasted seasonal temperature over different climatic areas

    NASA Astrophysics Data System (ADS)

    Giunta, G.; Salerno, R.; Ceppi, A.; Ercolani, G.; Mancini, M.

    2015-12-01

    From a long-term perspective, an improvement of seasonal forecasting, which is often exclusively based on climatology, could provide a new capability for the management of energy resources in a time scale of just a few months. This paper regards a benchmark analysis in relation to long-term temperature forecasts over Italy in the year 2010, comparing the eni-kassandra meteo forecast (e-kmf®) model, the Climate Forecast System-National Centers for Environmental Prediction (CFS-NCEP) model, and the climatological reference (based on 25-year data) with observations. Statistical indexes are used to understand the reliability of the prediction of 2-m monthly air temperatures with a perspective of 12 weeks ahead. The results show how the best performance is achieved by the e-kmf® system which improves the reliability for long-term forecasts compared to climatology and the CFS-NCEP model. By using the reliable high-performance forecast system, it is possible to optimize the natural gas portfolio and management operations, thereby obtaining a competitive advantage in the European energy market.

  3. Effect of Different Cooling Regimes on the Mechanical Properties of Cementitious Composites Subjected to High Temperatures

    PubMed Central

    Yu, Jiangtao; Weng, Wenfang; Yu, Kequan

    2014-01-01

    The influence of different cooling regimes (quenching in water and cooling in air) on the residual mechanical properties of engineered cementitious composite (ECC) subjected to high temperature up to 800°C was discussed in this paper. The ECC specimens are exposed to 100, 200, 400, 600, and 800°C with the unheated specimens for reference. Different cooling regimens had a significant influence on the mechanical properties of postfire ECC specimens. The microstructural characterization was examined before and after exposure to fire deterioration by using scanning electron microscopy (SEM). Results from the microtest well explained the mechanical properties variation of postfire specimens. PMID:25161392

  4. [Effects of sudden air temperature and pressure changes on mortality in the Czech Republic].

    PubMed

    Plavcová, E; Kyselý, J

    2009-04-01

    We have developed an algorithm for identifying sudden changes in air pressure and temperature over the Czech Republic. Such events were retrieved from the data covering in 1986-2005 and were matched with the daily numbers of all-cause deaths and deaths due to cardiovascular diseases from the national database, separately for the whole population and that aged 70 years and over. Excess daily mortality was determined by calculating deviations of the observed number of deaths from the expected number of deaths for each day in the respective groups. The relative deviation of the mortality the mean was calculated as the ratio of the excess mortality to the expected number of deaths. We used 3-hour air pressure data from 10 meteorological stations and hourly air temperature data from 9 stations representative of the Czech Republic. Pressure changes were evaluated on time scales of 3, 6 and 12 hours, separately for summer and winter time. Temperature changes were evaluated on a 24-hour time scale, separately for summer and winter season. Events characterized by pressure or temperature changes above the critical threshold and recorded within 24 hours at more than 50% of meteorological stations were retrieved. The critical thresholds were defined separately for each station using quantiles of distributions of air pressure and temperature changes. Relative mortality deviations for days D-2 (2 days before the change) to D+7 (7 days after the change) were averaged over the retrieved events. Statistical significance of the mean relative deviation was tested using the Monte Carlo method. Increased mortality followed large temperature increases and large pressure drops both in summer and winter months. Decreased mortality was observed after large pressure increases and large temperature drops in summer. Mortality variations are usually more pronounced in the population aged 70 years and over, and cardiovascular diseases account for most deaths after sudden temperature changes.

  5. GSOD Based Daily Global Mean Surface Temperature and Mean Sea Level Air Pressure (1982-2011)

    SciTech Connect

    Xuan Shi, Dali Wang

    2014-05-05

    This data product contains all the gridded data set at 1/4 degree resolution in ASCII format. Both mean temperature and mean sea level air pressure data are available. It also contains the GSOD data (1982-2011) from NOAA site, contains station number, location, temperature and pressures (sea level and station level). The data package also contains information related to the data processing methods

  6. Effects of light intensity light quality and air velocity on temperature in plant reproductive organs

    NASA Astrophysics Data System (ADS)

    Kitaya, Y.; Hirai, H.

    Excess temperature increase in plant reproductive organs such as anthers and stigmata could cause fertility impediments and thus produce sterile seeds under artificial lighting conditions in closed plant growth facilities There is a possibility that the aberration was caused by an excess increase in temperatures of reproductive organs in Bioregenerative Life Support Systems under microgravity conditions in space The fundamental study was conducted to know the thermal situation of the plant reproductive organs as affected by light intensity light quality and air velocity on the earth and to estimate the excess temperature increase in the reproductive organs in closed plant growth facilities in space Thermal images of reproductive organs of rice and strawberry were captured using infrared thermography at an air temperature of 10 r C The temperatures in flowers at 300 mu mol m -2 s -1 PPFD under the lights from red LEDs white LEDs blue LEDs fluorescent lamps and incandescent lamps increased by 1 4 1 7 1 9 6 0 and 25 3 r C respectively for rice and by 2 8 3 4 4 1 7 8 and 43 4 r C respectively for strawberry The flower temperatures increased with increasing PPFD levels The temperatures in petals anthers and stigmas of strawberry at 300 mu mol m -2 s -1 PPFD under incandescent lamps increased by 32 7 29 0 and 26 6 r C respectively at 0 1 m s -1 air velocity and by 20 6 18 5 and 15 9 r C respectively at 0 8 m s -1 air velocity The temperatures of reproductive organs decreased with increasing

  7. Heat Exchange with Air and Temperature Profile of a Moving Oversize Tire

    NASA Astrophysics Data System (ADS)

    Grinchuk, P. S.; Fisenko, S. P.

    2016-11-01

    A one-dimensional mathematical model of heat transfer in a tire with account for the deformation energy dissipation and heat exchange of a moving tire with air has been developed. The mean temperature profiles are calculated and transition to a stationary thermal regime is considered. The influence of the rate of energy dissipation and of effective thermal conductivity of rubber on the temperature field is investigated quantitatively.

  8. Combined effects of wind and solar irradiance on the spatial variation of midday air temperature over a mountainous terrain

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Ock; Kim, Jin-Hee; Kim, Dae-Jun; Shim, Kyo Moon; Yun, Jin I.

    2015-08-01

    When the midday temperature distribution in a mountainous region was estimated using data from a nearby weather station, the correction of elevation difference based on temperature lapse caused a large error. An empirical approach reflecting the effects of solar irradiance and advection was suggested in order to increase the reliability of the results. The normalized slope irradiance, which was determined by normalizing the solar irradiance difference between a horizontal surface and a sloping surface from 1100 to 1500 LST on a clear day, and the deviation relationship between the horizontal surface and the sloping surface at the 1500 LST temperature on each day were presented as simple empirical formulas. In order to simulate the phenomenon that causes immigrant air parcels to push out or mix with the existing air parcels in order to decrease the solar radiation effects, an advection correction factor was added to exponentially reduce the solar radiation effect with an increase in wind speed. In order to validate this technique, we estimated the 1500 LST air temperatures on 177 clear days in 2012 and 2013 at 10 sites with different slope aspects in a mountainous catchment and compared these values to the actual measured data. The results showed that this technique greatly improved the error bias and the overestimation of the solar radiation effect in comparison with the existing methods. By applying this technique to the Korea Meteorological Administration's 5-km grid data, it was possible to determine the temperature distribution at a 30-m resolution over a mountainous rural area south of Jiri Mountain National Park, Korea.

  9. Regional change in snow water equivalent-surface air temperature relationship over Eurasia during boreal spring

    NASA Astrophysics Data System (ADS)

    Wu, Renguang; Chen, Shangfeng

    2016-10-01

    Present study investigates local relationship between surface air temperature and snow water equivalent (SWE) change over mid- and high-latitudes of Eurasia during boreal spring. Positive correlation is generally observed around the periphery of snow covered region, indicative of an effect of snow on surface temperature change. In contrast, negative correlation is usually found over large snow amount area, implying a response of snow change to wind-induced surface temperature anomalies. With the seasonal retreat of snow covered region, region of positive correlation between SWE and surface air temperature shifts northeastward from March to May. A diagnosis of surface heat flux anomalies in April suggests that the snow impact on surface air temperature is dominant in east Europe and west Siberia through modulating surface shortwave radiation. In contrast, atmospheric effect on SWE is important in Siberia and Russia Far East through wind-induced surface sensible heat flux change. Further analysis reveals that atmospheric circulation anomalies in association with snowmelt over east Siberia may be partly attributed to sea surface temperature anomalies in the North Atlantic and the atmospheric circulation anomaly pattern associated with snowmelt over Russia Far East has a close association with the Arctic Oscillation.

  10. Computational Fluid Dynamics Analysis on Radiation Error of Surface Air Temperature Measurement

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Liu, Qing-Quan; Ding, Ren-Hui

    2017-01-01

    Due to solar radiation effect, current air temperature sensors inside a naturally ventilated radiation shield may produce a measurement error that is 0.8 K or higher. To improve air temperature observation accuracy and correct historical temperature of weather stations, a radiation error correction method is proposed. The correction method is based on a computational fluid dynamics (CFD) method and a genetic algorithm (GA) method. The CFD method is implemented to obtain the radiation error of the naturally ventilated radiation shield under various environmental conditions. Then, a radiation error correction equation is obtained by fitting the CFD results using the GA method. To verify the performance of the correction equation, the naturally ventilated radiation shield and an aspirated temperature measurement platform are characterized in the same environment to conduct the intercomparison. The aspirated temperature measurement platform serves as an air temperature reference. The mean radiation error given by the intercomparison experiments is 0.23 K, and the mean radiation error given by the correction equation is 0.2 K. This radiation error correction method allows the radiation error to be reduced by approximately 87 %. The mean absolute error and the root mean square error between the radiation errors given by the correction equation and the radiation errors given by the experiments are 0.036 K and 0.045 K, respectively.

  11. Intricacies of using temperature of different niches for assessing impact on malaria transmission

    PubMed Central

    Singh, Poonam; Yadav, Yogesh; Saraswat, Shweta; Dhiman, Ramesh C.

    2016-01-01

    Background & objectives: The influence of temperature on the life cycle of mosquitoes as well as on development of malaria parasite in mosquitoes is well studied. Most of the studies use outdoor temperature for understanding the transmission dynamics and providing projections of malaria. As the mosquitoes breed in water and rest usually indoors, it is logical to relate the transmission dynamics with temperature of micro-niche. The present study was, therefore, undertaken to understand the influence of different formats of temperature of different micro-niches on transmission of malaria for providing more realistic projections. Methods: The study was conducted in one village each of Assam and Uttarakhand States of India. Temperatures recorded from outdoor (air) as well as indoor habitats (resting place of mosquito) were averaged into daily, fortnightly and monthly and were used for determination of transmission windows (TWs) for Plasmodium vivax (Pv) and P. falciparum (Pf) based on minimum temperature threshold required for transmission. Results: The daily temperature was found more useful for calculation of sporogony than fortnightly and monthly temperatures. Monthly TWs were further refined using fortnightly temperature, keeping in view the completion of more than one life cycle of malaria vectors and sporogony of malaria parasite in a month. A linear regression equation was generated to find out the relationship between outdoor and indoor temperatures and R2 to predict the percentage of variation in indoor temperature as a function of outdoor temperature at both localities. Interpretation & conclusions: The study revealed that the indoor temperature was more than outdoors in stable malarious area (Assam) but fluctuating in low endemic area like Uttarakhand. Transmission windows of malaria should be determined by transforming outdoor data to indoor and preferably at fortnightly interval. With daily recorded temperature, sporogonic and gonotrophic cycles can also

  12. Temperature profiles of different cooling methods in porcine pancreas procurement.

    PubMed

    Weegman, Bradley P; Suszynski, Thomas M; Scott, William E; Ferrer Fábrega, Joana; Avgoustiniatos, Efstathios S; Anazawa, Takayuki; O'Brien, Timothy D; Rizzari, Michael D; Karatzas, Theodore; Jie, Tun; Sutherland, David E R; Hering, Bernhard J; Papas, Klearchos K

    2014-01-01

    Porcine islet xenotransplantation is a promising alternative to human islet allotransplantation. Porcine pancreas cooling needs to be optimized to reduce the warm ischemia time (WIT) following donation after cardiac death, which is associated with poorer islet isolation outcomes. This study examines the effect of four different cooling Methods on core porcine pancreas temperature (n = 24) and histopathology (n = 16). All Methods involved surface cooling with crushed ice and chilled irrigation. Method A, which is the standard for porcine pancreas procurement, used only surface cooling. Method B involved an intravascular flush with cold solution through the pancreas arterial system. Method C involved an intraductal infusion with cold solution through the major pancreatic duct, and Method D combined all three cooling Methods. Surface cooling alone (Method A) gradually decreased core pancreas temperature to <10 °C after 30 min. Using an intravascular flush (Method B) improved cooling during the entire duration of procurement, but incorporating an intraductal infusion (Method C) rapidly reduced core temperature 15-20 °C within the first 2 min of cooling. Combining all methods (Method D) was the most effective at rapidly reducing temperature and providing sustained cooling throughout the duration of procurement, although the recorded WIT was not different between Methods (P = 0.36). Histological scores were different between the cooling Methods (P = 0.02) and the worst with Method A. There were differences in histological scores between Methods A and C (P = 0.02) and Methods A and D (P = 0.02), but not between Methods C and D (P = 0.95), which may highlight the importance of early cooling using an intraductal infusion. In conclusion, surface cooling alone cannot rapidly cool large (porcine or human) pancreata. Additional cooling with an intravascular flush and intraductal infusion results in improved core porcine pancreas temperature profiles during procurement and

  13. Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature

    PubMed Central

    Wu, Chih-Da; Lung, Shih-Chun Candice

    2016-01-01

    The lack of appropriate methodologies and indicators to quantify three-dimensional (3-D) building constructions poses challenges to authorities and urban planners when formulating polices to reduce health risks due to heat stress. This study evaluated the applicability of an innovative three-dimensional Urbanization Index (3DUI), based on remote sensing database, with a 5 m spatial resolution of 3-D man-made constructions to representing intra-urban variability of air temperature by assessing correlation of 3DUI with air temperature from a 3-D perspective. The results showed robust high correlation coefficients, ranging from 0.83 to 0.85, obtained within the 1,000 m circular buffer around weather stations regardless of season, year, or spatial location. Our findings demonstrated not only the strength of 3DUI in representing intra-urban air-temperature variability, but also its great potential for heat stress assessment within cities. In view of the maximum correlation between building volumes within the 1,000 m circular buffer and ambient air temperature, urban planning should consider setting ceilings for man-made construction volume in each 2 × 2 km2 residential community for thermal environment regulation, especially in Asian metropolis with high population density in city centers. PMID:27079537

  14. Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature

    NASA Astrophysics Data System (ADS)

    Wu, Chih-Da; Lung, Shih-Chun Candice

    2016-04-01

    The lack of appropriate methodologies and indicators to quantify three-dimensional (3-D) building constructions poses challenges to authorities and urban planners when formulating polices to reduce health risks due to heat stress. This study evaluated the applicability of an innovative three-dimensional Urbanization Index (3DUI), based on remote sensing database, with a 5 m spatial resolution of 3-D man-made constructions to representing intra-urban variability of air temperature by assessing correlation of 3DUI with air temperature from a 3-D perspective. The results showed robust high correlation coefficients, ranging from 0.83 to 0.85, obtained within the 1,000 m circular buffer around weather stations regardless of season, year, or spatial location. Our findings demonstrated not only the strength of 3DUI in representing intra-urban air-temperature variability, but also its great potential for heat stress assessment within cities. In view of the maximum correlation between building volumes within the 1,000 m circular buffer and ambient air temperature, urban planning should consider setting ceilings for man-made construction volume in each 2 × 2 km2 residential community for thermal environment regulation, especially in Asian metropolis with high population density in city centers.

  15. Response of sugarcane to carbon dioxide enrichment and elevated air temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four sugarcane cultivars (CP 72-2086, CP 73-1547, CP 88-1508, and CP 80-1827) were grown in elongated temperature-gradient greenhouses (TGG) at ambient or elevated carbon dioxide (CO2) of 360 or 720 µmol CO2 mol-1 air (ppm, mole fraction basis), respectively. Elevated CO2 was maintained by injection...

  16. Room temperature, air crystallized perovskite film for high performance solar cells

    SciTech Connect

    Dubey, Ashish; Kantack, Nicholas; Adhikari, Nirmal; Reza, Khan Mamun; Venkatesan, Swaminathan; Kumar, Mukesh; Khatiwada, Devendra; Darling, Seth; Qiao, Qiquan

    2016-05-31

    For the first time, room temperature heating free growth and crystallization of perovskite films in ambient air without the use of thermal annealing is reported. Highly efficient perovskite nanorod-based solar cells were made using ITO/PEDOT:PSS/CH3NH3PbI3 nanorods/PC60BM/rhodamine/Ag. All the layers except PEDOT:PSS were processed at room temperature thereby eliminating the need for thermal treatment. Perovskite films were spin coated inside a N-2 filled glovebox and immediately were taken outside in air having 40% relative humidity (RH). Exposure to humid air was observed to promote the crystallization process in perovskite films even at room temperature. Perovskite films kept for 5 hours in ambient air showed nanorod-like morphology having high crystallinity, with devices exhibiting the highest PCE of 16.83%, which is much higher than the PCE of 11.94% for traditional thermally annealed perovskite film based devices. Finally, it was concluded that moisture plays an important role in room temperature crystallization of pure perovskite nanorods, showing improved optical and charge transport properties, which resulted in high performance solar cells.

  17. Room temperature, air crystallized perovskite film for high performance solar cells

    DOE PAGES

    Dubey, Ashish; Kantack, Nicholas; Adhikari, Nirmal; ...

    2016-05-31

    For the first time, room temperature heating free growth and crystallization of perovskite films in ambient air without the use of thermal annealing is reported. Highly efficient perovskite nanorod-based solar cells were made using ITO/PEDOT:PSS/CH3NH3PbI3 nanorods/PC60BM/rhodamine/Ag. All the layers except PEDOT:PSS were processed at room temperature thereby eliminating the need for thermal treatment. Perovskite films were spin coated inside a N-2 filled glovebox and immediately were taken outside in air having 40% relative humidity (RH). Exposure to humid air was observed to promote the crystallization process in perovskite films even at room temperature. Perovskite films kept for 5 hours inmore » ambient air showed nanorod-like morphology having high crystallinity, with devices exhibiting the highest PCE of 16.83%, which is much higher than the PCE of 11.94% for traditional thermally annealed perovskite film based devices. Finally, it was concluded that moisture plays an important role in room temperature crystallization of pure perovskite nanorods, showing improved optical and charge transport properties, which resulted in high performance solar cells.« less

  18. Rheological characterization of novel physically crosslinked terpolymeric hydrogels at different temperatures

    NASA Astrophysics Data System (ADS)

    Malana, Muhammad Aslam; Zohra, Rubab; Khan, Muhammad Saleem

    2012-09-01

    The main objective of this research work is to reveal the detailed and extensive rheological characterization of terpolymeric hydrogel formulations using a variety of monomers having different concentrations of acrylic acid and applying a range of temperatures. The hydrogels with the different concentrations of acrylic acid were prepared in the absence of air using three different monomers, by free radical polymerization, gradually increasing the temperature up to polymerization point, using ethyl alcohol as solvent. Different shear measurements were performed to study rheological properties, temperature dependence, and yield strength of acrylic acid pharmaceutical hydrogels. Various models were applied to analyze the rheological behavior of the gels. The acrylic acid pharmaceutical gels having physical cross links in the gel networks, exhibit remarkable temperature dependence especially with relatively higher concentration of acrylic acid at greater shear rate. Flow curves plotted at various temperatures indicate that these gels exhibit a reasonable pseudoplastic behavior. All these hydrogels require appropriate yield strength to break their network structures. The gel samples exhibit the best fit to the Modified Bingham model, which can explain the overall flow behavior of these topical gels. The rheological analysis indicates that these gels may be used as topical gels for targeted and controlled drug delivery at a specific site.

  19. Using Satellite-Based Spatiotemporal Resolved Air Temperature Exposure to Study the Association between Ambient Air Temperature and Birth Outcomes in Massachusetts

    PubMed Central

    Melly, Steven J.; Coull, Brent A.; Nordio, Francesco; Schwartz, Joel D.

    2015-01-01

    Background Studies looking at air temperature (Ta) and birth outcomes are rare. Objectives We investigated the association between birth outcomes and daily Ta during various prenatal exposure periods in Massachusetts (USA) using both traditional Ta stations and modeled addresses. Methods We evaluated birth outcomes and average daily Ta during various prenatal exposure periods in Massachusetts (USA) using both traditional Ta stations and modeled address Ta. We used linear and logistic mixed models and accelerated failure time models to estimate associations between Ta and the following outcomes among live births > 22 weeks: term birth weight (≥ 37 weeks), low birth weight (LBW; < 2,500 g at term), gestational age, and preterm delivery (PT; < 37 weeks). Models were adjusted for individual-level socioeconomic status, traffic density, particulate matter ≤ 2.5 μm (PM2.5), random intercept for census tract, and mother’s health. Results Predicted Ta during multiple time windows before birth was negatively associated with birth weight: Average birth weight was 16.7 g lower (95% CI: –29.7, –3.7) in association with an interquartile range increase (8.4°C) in Ta during the last trimester. Ta over the entire pregnancy was positively associated with PT [odds ratio (OR) = 1.02; 95% CI: 1.00, 1.05] and LBW (OR = 1.04; 95% CI: 0.96, 1.13). Conclusions Ta during pregnancy was associated with lower birth weight and shorter gestational age in our study population. Citation Kloog I, Melly SJ, Coull BA, Nordio F, Schwartz JD. 2015. Using satellite-based spatiotemporal resolved air temperature exposure to study the association between ambient air temperature and birth outcomes in Massachusetts. Environ Health Perspect 123:1053–1058; http://dx.doi.org/10.1289/ehp.1308075 PMID:25850104

  20. Laminar Flame Velocity and Temperature Exponent of Diluted DME-Air Mixture

    NASA Astrophysics Data System (ADS)

    Naseer Mohammed, Abdul; Anwar, Muzammil; Juhany, Khalid A.; Mohammad, Akram

    2017-03-01

    In this paper, the laminar flame velocity and temperature exponent diluted dimethyl ether (DME) air mixtures are reported. Laminar premixed mixture of DME-air with volumetric dilutions of carbon dioxides (CO2) and nitrogen (N2) are considered. Experiments were conducted using a preheated mesoscale high aspect-ratio diverging channel with inlet dimensions of 25 mm × 2 mm. In this method, flame velocities are extracted from planar flames that were stabilized near adiabatic conditions inside the channel. The flame velocities are then plotted against the ratio of mixture temperature and the initial reference temperature. A non-linear power law regression is observed suitable. This regression analysis gives the laminar flame velocity at the initial reference temperature and temperature exponent. Decrease in the laminar flame velocity and increase in temperature exponent is observed for CO2 and N2 diluted mixtures. The addition of CO2 has profound influence when compared to N2 addition on both flame velocity and temperature exponent. Numerical prediction of the similar mixture using a detailed reaction mechanism is obtained. The computational mechanism predicts higher magnitudes for laminar flame velocity and smaller magnitudes of temperature exponent compared to experimental data.