Science.gov

Sample records for air temperature distribution

  1. AIR TEMPERATURE DISTRIBUTION IN SEED COTTON DRYING SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ten tests were conducted in the fall of 2007 to measure air temperature variation within various heated air seed cotton drying systems with the purpose of: checking validation of recommendations by a professional engineering society and measuring air temperature variation across the airflow ductwork...

  2. Fiber optic distributed temperature sensing for the determination of air temperature

    NASA Astrophysics Data System (ADS)

    de Jong, S. A. P.; Slingerland, J. D.; van de Giesen, N. C.

    2015-01-01

    This paper describes a method to correct for the effect of solar radiation in atmospheric distributed temperature sensing (DTS) applications. By using two cables with different diameters, one can determine what temperature a zero diameter cable would have. Such a virtual cable would not be affected by solar heating and would take on the temperature of the surrounding air. With two unshielded cable pairs, one black pair and one white pair, good results were obtained given the general consensus that shielding is needed to avoid radiation errors (WMO, 2010). The correlations between standard air temperature measurements and air temperatures derived from both cables of colors had a high correlation coefficient (r2=0.99) and a RMSE of 0.38 °C, compared to a RMSE of 2.40 °C for a 3.0 mm uncorrected black cable. A thin white cable measured temperatures that were close to air temperature measured with a nearby shielded thermometer (RMSE of 0.61 °C). The temperatures were measured along horizontal cables with an eye to temperature measurements in urban areas, but the same method can be applied to any atmospheric DTS measurements, and for profile measurements along towers or with balloons and quadcopters.

  3. Analysis of spanwise temperature distribution in three types of air-cooled turbine blade

    NASA Technical Reports Server (NTRS)

    Livingood, John N B; Brown, W Byron

    1950-01-01

    Methods for computing spanwise blade-temperature distributions are derived for air-cooled hollow blades, air-cooled hollow blades with inserts, and air-cooled blades containing internal cooling fins. Individual and combined effects on spanwise blade-temperature distributions of cooling-air and radial heat conduction are determined. In general, the effects of radiation and radial heat conduction were found to be small and the omission of these variations permitted the construction of nondimensional charts for use in determining spanwise temperature distribution through air-cooled turbine blades. An approximate method for determining the allowable stress-limited blade-temperature distribution is included, with brief accounts of a method for determining the maximum allowable effective gas temperatures and the cooling-air requirements. Numerical examples that illustrate the use of the various temperature-distribution equations and of the nondimensional charts are also included.

  4. Statistical modeling of urban air temperature distributions under different synoptic conditions

    NASA Astrophysics Data System (ADS)

    Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Hald, Cornelius; Hartz, Uwe; Jacobeit, Jucundus; Richter, Katja; Schneider, Alexandra; Wolf, Kathrin

    2015-04-01

    Within urban areas air temperature may vary distinctly between different locations. These intra-urban air temperature variations partly reach magnitudes that are relevant with respect to human thermal comfort. Therefore and furthermore taking into account potential interrelations with other health related environmental factors (e.g. air quality) it is important to estimate spatial patterns of intra-urban air temperature distributions that may be incorporated into urban planning processes. In this contribution we present an approach to estimate spatial temperature distributions in the urban area of Augsburg (Germany) by means of statistical modeling. At 36 locations in the urban area of Augsburg air temperatures are measured with high temporal resolution (4 min.) since December 2012. These 36 locations represent different typical urban land use characteristics in terms of varying percentage coverages of different land cover categories (e.g. impervious, built-up, vegetated). Percentage coverages of these land cover categories have been extracted from different sources (Open Street Map, European Urban Atlas, Urban Morphological Zones) for regular grids of varying size (50, 100, 200 meter horizonal resolution) for the urban area of Augsburg. It is well known from numerous studies that land use characteristics have a distinct influence on air temperature and as well other climatic variables at a certain location. Therefore air temperatures at the 36 locations are modeled utilizing land use characteristics (percentage coverages of land cover categories) as predictor variables in Stepwise Multiple Regression models and in Random Forest based model approaches. After model evaluation via cross-validation appropriate statistical models are applied to gridded land use data to derive spatial urban air temperature distributions. Varying models are tested and applied for different seasons and times of the day and also for different synoptic conditions (e.g. clear and calm

  5. Measurement of temperature distributions in a methane-air flame by moire deflectometry

    SciTech Connect

    Bar-Ziv, E.; Sgulim, S.; Kafri, O.; Keren, E.

    1982-01-01

    The temperature mapping of an axially symmetric premixed methane-air flame was determined by moire deflectometry. From the analysis of the moire data detailed information on the temperature distribution is obtained. The radial profile of the temperature shows a minimum at the center of the flame which gradually disappears when proceeding downstream, as expected. The main advantage of moire deflectometry over other techniques is that the temperature distribution of the entire flame is obtained with no need for a three dimensional scanning. We have shown that the technique provides valuable and detailed information which could lead to a better understanding of combustion mechanisms. The limitations of the method are discussed.

  6. Global Distribution and Variability of Surface Skin and Surface Air Temperatures as Depicted in the AIRS Version-6 Data Set

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2014-01-01

    In this presentation, we will briefly describe the significant improvements made in the AIRS Version-6 retrieval algorithm, especially as to how they affect retrieved surface skin and surface air temperatures. The global distribution of seasonal 1:30 AM and 1:30 PM local time 12 year climatologies of Ts,a will be presented for the first time. We will also present the spatial distribution of short term 12 year anomaly trends of Ts,a at 1:30 AM and 1:30 PM, as well as the spatial distribution of temporal correlations of Ts,a with the El Nino Index. It will be shown that there are significant differences between the behavior of 1:30 AM and 1:30 PM Ts,a anomalies in some arid land areas.

  7. Spatial distribution of air temperature in Toruń (Central Poland) and its causes

    NASA Astrophysics Data System (ADS)

    Przybylak, Rajmund; Uscka-Kowalkowska, Joanna; Araźny, Andrzej; Kejna, Marek; Kunz, Mieczysław; Maszewski, Rafał

    2015-09-01

    In this article, the results of an investigation into the air temperature pattern and development (including the urban heat island (UHI)) in Toruń (central Poland) are presented. For the analysis, daily mean temperature (Ti) as well as daily maximum (Tmax) and minimum (Tmin) temperatures for 2012 gathered for 20 sites, evenly distributed in the area of city, have been taken as source data. Additionally, in order to provide more extensive characteristics of the diversity of the air temperature in the study area, the diurnal temperature range (DTR) and the number of the so-called characteristic days were calculated as well. The impact of weather conditions (cloudiness and wind speed), atmospheric circulation, urban morphological parameters and land cover on the UHI in the study area was investigated. In Toruń, according to the present study, the average UHI intensity in 2012 was equal to 1.0 °C. The rise of cloudiness and wind speed led to a decrease of the magnitude of the UHI. Generally, in most cases, anticyclonic situations favour increased thermal contrast between rural and city areas, particularly in summer. Warm western circulation types significantly reduced temperature differences in the western side of the city and enlarged them in the eastern side of the city. Eastern cold types also have a similar influence on air temperature differences. Positive and statistically significant correlations have been found between the percentage of built-up areas (sealing factor) and air temperature. Conversely, sky view factor (SVF) reveals negative correlations which are statistically significant only for Tmin.

  8. Measuring centimeter-resolution air temperature profiles above land and water using fiber-optic Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Sigmund, Armin; Pfister, Lena; Olesch, Johannes; Thomas, Christoph K.

    2016-04-01

    The precise determination of near-surface air temperature profiles is of special importance for the characterization of airflows (e.g. cold air) and the quantification of sensible heat fluxes according to the flux-gradient similarity approach. In contrast to conventional multi-sensor techniques, measuring temperature profiles using fiber-optic Distributed Temperature Sensing (DTS) provides thousands of measurements referenced to a single calibration standard at much reduced costs. The aim of this work was to enhance the vertical resolution of Raman scatter DTS measurements up to the centimeter-scale using a novel approach for atmospheric applications: the optical fiber was helically coiled around a meshed fabric. In addition to testing the new fiber geometry, we quantified the measurement uncertainty and demonstrated the benefits of the enhanced-resolution profiles. The fiber-optic cable was coiled around a hollow column consisting of white reinforcing fabric supported by plexiglass rings every meter. Data from two columns of this type were collected for 47 days to measure air temperature vertically over 3.0 and 5.1 m over a gently inclined meadow and over and in a small lake, respectively. Both profiles had a vertical resolution of 1 cm in the lower section near the surface and 5 cm in the upper section with an along-fiber instrument-specific averaging of 1.0 m and a temporal resolution of 30 s. Measurement uncertainties, especially from conduction between reinforcing fabric and fiber-optic cable, were estimated by modeling the fiber temperature via a detailed energy balance approach. Air temperature, wind velocity and radiation components were needed as input data and measured separately. The temperature profiles revealed valuable details, especially in the lowest 1 m above surface. This was best demonstrated for nighttime observations when artefacts due to solar heating did not occur. For example, the dynamics of a cold air layer was detected in a clear night

  9. Air temperature field distribution estimations over a Chinese mega-city using MODIS land surface temperature data: the case of Shanghai

    NASA Astrophysics Data System (ADS)

    Ma, Weichun; Zhou, Liguo; Zhang, Hao; Zhang, Yan; Dai, Xiaoyan

    2016-03-01

    The capability of obtaining spatially distributed air temperature data from remote sensing measurements is an improvement for many environmental applications focused on urban heat island, carbon emissions, climate change, etc. This paper is based on the MODIS/Terra and Aqua data utilized to study the effect of the urban atmospheric heat island in Shanghai, China. The correlation between retrieved MODIS land surface temperature (LST) and air temperature measured at local weather stations was initially studied at different temporal and spatial scales. Secondly, the air temperature data with spatial resolutions of 250 m and 1 km were estimated from MODIS LST data and in-situ measured air temperature. The results showed that there is a slightly higher correlation between air temperature and MODIS LST at a 250m resolution in spring and autumn on an annual scale than observed at a 1 km resolution. Although the distribution pattern of the air temperature thermal field varies in different seasons, the urban heat island (UHI) in Shanghai is characterized by a distribution pattern of multiple centers, with the central urban area as the primary center and the built-up regions in each district as the subcenters. This study demonstrates the potential not only for estimating the distribution of the air temperature thermal field from MODIS LST with 250 m resolution in spring and autumn in Shanghai, but also for providing scientific and effective methods for monitoring and studying UHI effect in a Chinese mega-city such as Shanghai.

  10. Simulation of effects of direction and air flow speed on temperature distribution in the room covered by various roof materials

    NASA Astrophysics Data System (ADS)

    Sukanto, H.; Budiana, E. P.; Putra, B. H. H.

    2016-03-01

    The objective of this research is to get a comparison of the distribution of the room temperature by using three materials, namely plastic-rubber composite, clay, and asbestos. The simulation used Ansys Fluent to get the temperature distribution. There were two conditions in this simulations, first the air passing beside the room and second the air passing in front of the room. Each condition will be varied with the air speed of 1 m/s, 2 m/s, 3 m/s, 4 m/s, 5 m/s for each material used. There are three heat transfers in this simulation, namely radiation, convection, and conduction. Based on the ANSI/ ASHRAE Standard 55-2004, the results of the simulation showed that the best temperature distribution was the roof of plastic-rubber composites.

  11. Evaluating the Adequacy of Simulating Maximum and Minimum Daily Air Temperature with the Normal Distribution.

    NASA Astrophysics Data System (ADS)

    Harmel, R. D.; Richardson, C. W.; Hanson, C. L.; Johnson, G. L.

    2002-07-01

    Weather simulation models are commonly used to generate synthetic daily weather for use in studies of crop growth, water quality, water availability, soil erosion, climate change, and so on. Synthetic weather sequences are needed if long-term measured data are not available, measured data contain missing records, collection of actual data is cost or time prohibitive, or when necessary to simulate impacts of future climate scenarios. Most weather generators are capable of producing one or more components of weather such as precipitation, temperature, solar radiation, humidity, and wind speed. This study focused on one generation component, the procedure commonly used by weather simulation models to generate daily maximum and minimum temperature. The normal distribution is used by most weather generators (including USCLIMATE, WXGEN, LARS-WG, CLIMGEN, and CLIGEN) to generate daily maximum and minimum temperature values. The objective of this study was to analyze the adequacy of generating temperature data from the normal distribution. To accomplish this objective, the assumption of normality in measured daily temperatures was evaluated by testing the hypothesis that daily minimum and maximum temperature are normally distributed for each month. In addition, synthetic temperature records generated with the normal distribution were compared with measured temperature records. Based on these analyses, it was determined that measured daily maximum and minimum temperature are generally not normally distributed in each month but often are slightly skewed, which contradicts the assumption of normality used by most weather generators. In addition, generating temperature from the normal distribution resulted in several physically improbable values.

  12. The effect of air flow on the temperature distribution and the harmonic conversion efficiency of the ADP crystal with large aperture in the temperature control scheme

    NASA Astrophysics Data System (ADS)

    Sun, Fuzhong; Zhang, Peng; Lu, Lihua; Xiang, Yong; Bai, Qingshun

    2016-03-01

    This paper presented a temperature control scheme for ammonium dihydrogen phosphate (ADP) crystal of Ф80 mm in diameter, and the influence of the air flow was also studied. This research aims to obtain the high energy, high frequency laser with large aperture under the non-critical phase matching (NCPM). Firstly, thermal analysis was carried out to investigate the air flow property in the cavity, as well as the effect of ambient temperature was analyzed. Secondly, the temperature distributions of air flow were achieved using the Finite Volume Method (FVM), and this prediction was validated by the experiment results. Finally, the effect of air flow in the cavity was obtained from the heating method, and the variation of harmonic conversion efficiency caused by the ambient temperature was also highlighted.

  13. Within-Crop Air Temperature and Humidity Outcomes on Spatio-Temporal Distribution of the Key Rose Pest Frankliniella occidentalis.

    PubMed

    Fatnassi, Hicham; Pizzol, Jeannine; Senoussi, Rachid; Biondi, Antonio; Desneux, Nicolas; Poncet, Christine; Boulard, Thierry

    2015-01-01

    Frankliniella occidentalis (Pergande) is a key pest of various crops worldwide. In this study, we analyse the dependence of the infestation of this pest on spatially distributed micro climatic factors in a rose greenhouse. Despite the importance of this subject, the few existing studies have been realized in laboratory rather than in greenhouse conditions. However, recent progress on greenhouse microclimate characterisation has highlighted the strong indoor climate heterogeneity that may influence the within-crop pest distribution. In this study, both microclimate (air temperature and humidity) and thrips distribution were simultaneously mapped in a rose greenhouse. The measurements were sensed in a horizontal plane situated at mid-height of the rose crop inside the greenhouse. Simultaneously, thrips population dynamics were assessed after an artificial and homogeneous infestation of the rose crop. The spatio-temporal distribution of climate and thrips within the greenhouse were compared, and links between thrips infestation and climatic conditions were investigated. A statistical model was used to define the favourable climate conditions for thrips adults and larvae. Our results showed that (i) the air temperature and air humidity were very heterogeneously distributed within the crop, (ii) pest populations aggregated in the most favourable climatic areas and (iii) the highest population density of thrips adults and larvae were recorded at 27°C and 22°C for temperature and 63% and 86% for humidity, respectively. These findings confirm, in real rose cropping conditions, previous laboratory studies on the F. occidentalis climatic optimum and provide a solid scientific support for climatic-based control methods against this pest. PMID:26011275

  14. Within-Crop Air Temperature and Humidity Outcomes on Spatio-Temporal Distribution of the Key Rose Pest Frankliniella occidentalis

    PubMed Central

    Fatnassi, Hicham; Pizzol, Jeannine; Senoussi, Rachid; Biondi, Antonio; Desneux, Nicolas; Poncet, Christine; Boulard, Thierry

    2015-01-01

    Frankliniella occidentalis (Pergande) is a key pest of various crops worldwide. In this study, we analyse the dependence of the infestation of this pest on spatially distributed micro climatic factors in a rose greenhouse. Despite the importance of this subject, the few existing studies have been realized in laboratory rather than in greenhouse conditions. However, recent progress on greenhouse microclimate characterisation has highlighted the strong indoor climate heterogeneity that may influence the within-crop pest distribution. In this study, both microclimate (air temperature and humidity) and thrips distribution were simultaneously mapped in a rose greenhouse. The measurements were sensed in a horizontal plane situated at mid-height of the rose crop inside the greenhouse. Simultaneously, thrips population dynamics were assessed after an artificial and homogeneous infestation of the rose crop. The spatio-temporal distribution of climate and thrips within the greenhouse were compared, and links between thrips infestation and climatic conditions were investigated. A statistical model was used to define the favourable climate conditions for thrips adults and larvae. Our results showed that (i) the air temperature and air humidity were very heterogeneously distributed within the crop, (ii) pest populations aggregated in the most favourable climatic areas and (iii) the highest population density of thrips adults and larvae were recorded at 27°C and 22°C for temperature and 63% and 86% for humidity, respectively. These findings confirm, in real rose cropping conditions, previous laboratory studies on the F. occidentalis climatic optimum and provide a solid scientific support for climatic-based control methods against this pest. PMID:26011275

  15. Computational simulation of temperature and velocity distribution in human upper respiratory airway during inhalation of hot air.

    PubMed

    Goodarzi-Ardakani, V; Taeibi-Rahni, M; Salimi, M R; Ahmadi, G

    2016-03-01

    The present study provides an accurate simulation of velocity and temperature distributions of inhalation thermal injury in a human upper airway, including vestibule, nasal cavity, paranasal sinuses, nasopharynx, oropharynx, larynx, and upper part of main bronchus. To this end, a series of CT scan images, taken from an adult woman, was used to construct a three dimensional model. The airway walls temperature was adjusted according to existing in vivo temperature measurements. Also, in order to cover all breathing activities, five different breathing flow rates (10, 15, 20, 30, and 40 l/min) and different ambient air temperatures (100, 200, 300, 400, and 500 °C) were studied. Different flow regimes, including laminar, transitional, and turbulence were considered and the simulations were validated using reliable experimental data. The results show that nostrils, vestibule, and nasal cavity are damaged more than other part of airway. Finally, In order to obtain the heat flux through the walls, correlations for Nusselt number for each individual parts of airway (vestibule, main upper airway, nasopharynx etc.,) are proposed. PMID:26777422

  16. Solar cycle signal in air temperature in North America - Amplitude, gradient, phase and distribution

    NASA Technical Reports Server (NTRS)

    Currie, R. G.

    1981-01-01

    The considered investigation was motivated by three factors. One is related to an extension of single-channel MESA to multi-channel by Strand (1977), Morf et al. (1978), and Jones (1978). MESA is a high-resolution signal processing and spectrum analysis technique due to Burg (1975). The considered developments resulted in the discovery of the 11-year solar cycle signal in the change of the length of day by Currie (1980, 1981). They also led Currie (1981) to study the phase spectrum of the 11-year term in height H of sea level. The investigation tries to clarify the phase relations among the involved parameters. The second factor is connected with an application of the linear time domain technique used by Currie (1981) to temperature records to obtain more accurate information regarding the signal amplitude. The third factor of motivation is related to increases in the number of stations available for an analysis, the greater average length of the records, and the more accurate data set.

  17. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution

    NASA Astrophysics Data System (ADS)

    Sabbah, Rami; Kizilel, R.; Selman, J. R.; Al-Hallaj, S.

    The effectiveness of passive cooling by phase change materials (PCM) is compared with that of active (forced air) cooling. Numerical simulations were performed at different discharge rates, operating temperatures and ambient temperatures of a compact Li-ion battery pack suitable for plug-in hybrid electric vehicle (PHEV) propulsion. The results were also compared with experimental results. The PCM cooling mode uses a micro-composite graphite-PCM matrix surrounding the array of cells, while the active cooling mode uses air blown through the gaps between the cells in the same array. The results show that at stressful conditions, i.e. at high discharge rates and at high operating or ambient temperatures (for example 40-45 °C), air-cooling is not a proper thermal management system to keep the temperature of the cell in the desirable operating range without expending significant fan power. On the other hand, the passive cooling system is able to meet the operating range requirements under these same stressful conditions without the need for additional fan power.

  18. Novel insights into the dynamics of cold-air drainage and pooling on a gentle slope from fiber-optic distributed temperature sensing

    NASA Astrophysics Data System (ADS)

    Pfister, Lena; Sigmund, Armin; Olesch, Johannes; Thomas, Christoph

    2016-04-01

    Urban climate can benefit from cold-air drainage as it may help alleviate the urban heat island. In contrast, stable cold-air pools can damage plants especially in rural areas. In this study, we examined the dynamics of cold-air drainage and pooling in a peri-urban setting over a period of 47 days along a 170 m long slope with an inclination of 1.3° located in the Ecological Botany Gardens of the University of Bayreuth. Air and soil temperatures were measured using distributed temperature sensing of an 2-dimensional fiber-optic array at six heights (-2 cm to 100 cm) along the slope sampling every 1 min and every 1 m. Ancillary measurements of winds, turbulence intensity and momentum exchange were collected using two ultrasonic anemometers installed at 0.1 m and 17 m height at the center of the transect. We hypothesized that cold-air drainage, here defined as a gravity-driven density flow near the bottom originating from local radiative cooling of the surface, is decoupled from non-local flows and can thus be predicted from the local topography. The nocturnal data were stratified by classes of longwave radiation balance, wind speed, and wind direction at 0.1 m agl. The four most abundant classes were tested further for decoupling of wind velocities and directions between 17 and 0.1 m. We further computed the vertical and horizontal temperature perturbations of the fiber-optic array as evaluated for these cases, as well as subject the temperature data to a multiresolution decomposition to investigate the spatial two-point correlation coefficient along the transect. Finally, the cold pool intensity was calculated. The results revealed none of the four most abundant classes followed classical textbook knowledge of locally produced cold-air drainage. Instead, we found that the near-surface flow was strongly forced by two possibly competing non-local flow modes. The first mode caused weak (< 0.4 ms‑1) near-surface winds directed perpendicular to the local slope and

  19. Simultaneous measurement of 2-dimensional H2O concentration and temperature distribution in premixed methane/air flame using TDLAS-based tomography technology

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Wu, Qi; Huang, Qunxing; Zhang, Haidan; Yan, Jianhua; Cen, Kefa

    2015-07-01

    An innovative tomographic method using tunable diode laser absorption spectroscopy (TDLAS) and algebraic reconstruction technique (ART) is presented in this paper for detecting two-dimensional distribution of H2O concentration and temperature in a premixed flame. The collimated laser beam emitted from a low cost diode laser module was delicately split into 24 sub-beams passing through the flame from different angles and the acquired laser absorption signals were used to retrieve flame temperature and H2O concentration simultaneously. The efficiency of the proposed reconstruction system and the effect of measurement noise were numerically evaluated. The temperature and H2O concentration in flat methane/air premixed flames under three different equivalence ratios were experimentally measured and reconstruction results were compared with model calculations. Numerical assessments indicate that the TDLAS tomographic system is capable for temperature and H2O concentration profiles detecting even the noise strength reaches 3% of absorption signal. Experimental results under different combustion conditions are well demonstrated along the vertical direction and the distribution profiles are in good agreement with model calculation. The proposed method exhibits great potential for 2-D or 3-D combustion diagnostics including non-uniform flames.

  20. Modeling monthly mean air temperature for Brazil

    NASA Astrophysics Data System (ADS)

    Alvares, Clayton Alcarde; Stape, José Luiz; Sentelhas, Paulo Cesar; de Moraes Gonçalves, José Leonardo

    2013-08-01

    Air temperature is one of the main weather variables influencing agriculture around the world. Its availability, however, is a concern, mainly in Brazil where the weather stations are more concentrated on the coastal regions of the country. Therefore, the present study had as an objective to develop models for estimating monthly and annual mean air temperature for the Brazilian territory using multiple regression and geographic information system techniques. Temperature data from 2,400 stations distributed across the Brazilian territory were used, 1,800 to develop the equations and 600 for validating them, as well as their geographical coordinates and altitude as independent variables for the models. A total of 39 models were developed, relating the dependent variables maximum, mean, and minimum air temperatures (monthly and annual) to the independent variables latitude, longitude, altitude, and their combinations. All regression models were statistically significant ( α ≤ 0.01). The monthly and annual temperature models presented determination coefficients between 0.54 and 0.96. We obtained an overall spatial correlation higher than 0.9 between the models proposed and the 16 major models already published for some Brazilian regions, considering a total of 3.67 × 108 pixels evaluated. Our national temperature models are recommended to predict air temperature in all Brazilian territories.

  1. Two-dimensional model of the air flow and temperature distribution in a cavity-type heat receiver of a solar stirling engine

    SciTech Connect

    Makhkamov, K.K.; Ingham, D.B.

    1999-11-01

    A theoretical study on the air flow and temperature in the heat receiver, affected by free convection, of a Stirling Engine for a Dish/Stirling Engine Power System is presented. The standard {kappa}-{epsilon} turbulence model for the fluid flow has been used and the boundary conditions employed were obtained using a second level mathematical model of the Stirling Engine working cycle. Physical models for the distribution of the solar insolation from the Concentrator on the bottom and side walls of the cavity-type heat receiver have been taken into account. The numerical results show that most of the heat losses in the receiver are due to re-radiation from the cavity and conduction through the walls of the cavity. It is in the region of the boundary of the input window of the heat receiver where there is a sensible reduction in the temperature in the shell of the heat exchangers and this is due to the free convection of the air. Further, the numerical results show that convective heat losses increase with decreasing tilt angle.

  2. Investigations of Air-Cooled Turbine Rotors for Turbojet Engines. 1: Experimental Disk Temperature Distribution in Modified J33 Split-Disk Rotor at Speeds up to 6000 RPM

    NASA Technical Reports Server (NTRS)

    Schramm, Wilson B.; Ziemer, Robert R.

    1952-01-01

    An experimental investigation is being conducted at the Lewis laboratory to establish general principles for the design of noncritical turbine rotor configurations. This investigation includes evaluation of cooling effectiveness, structural stability, cooling-air flow distribution characteristics, and methods of supplying cooling air to the turbine rotor blades. Prior to design of a noncritical rotor, a standard turbine rotor of a commerical turbojet engine was split in the plane of rotation and machined to provide a passage for distributing cooling air to the base of each blade. The rotor was fitted with nontwisted, hollow, aircooled blades containing nine tubes in the coolant passage. In the investigation reported herein, the modified turbine rotor operated successfully up to speeds of 6000 rpm with ratios of cooling-air to combustion-gas flow as low as 0.02. The disk temperatures observed at these conditions were below 450 0 F when cooling air at 100 F was used from the laboratory air system. The calculated disk temperatures based on the correlation method presented for rated engine conditions were well below 1000 F at a cooling-air flow ratio of 0.02, which is considered adequate for a noncritical rotor. An appreciable difference in temperature level existed between the forward and rear disks. This temperature difference probably introduced undesirable disk stress distributions as a result of the relative elongations of the two disks. This investigation was terminated at 6000 rpm so that slight changes in the engine configuration could be made to relieve this condition.

  3. Alternative Air Conditioning Technologies: Underfloor AirDistribution (UFAD)

    SciTech Connect

    Webster, Tom

    2004-06-01

    Recent trends in today's office environment make it increasingly more difficult for conventional centralized HVAC systems to satisfy the environmental preferences of individual officer workers using the standardized approach of providing a single uniform thermal and ventilation environment. Since its original introduction in West Germany during the 1950s, the open plan office containing modular workstation furniture and partitions is now the norm. Thermostatically controlled zones in open plan offices typically encompass relatively large numbers of workstations in which a diverse work population having a wide range of preferred temperatures must be accommodated. Modern office buildings are also being impacted by a large influx of heat-generating equipment (computers, printers, etc.) whose loads may vary considerably from workstation to workstation. Offices are often reconfigured during the building's lifetime to respond to changing tenant needs, affecting the distribution of within-space loads and the ventilation pathways among and over office partitions. Compounding this problem, there has been a growing awareness of the importance of the comfort, health, and productivity of individual office workers, giving rise to an increased demand among employers and employees for a high-quality work environment. During recent years an increasing amount of attention has been paid to air distribution systems that individually condition the immediate environments of office workers within their workstations to address the issues outlined above. As with task/ambient lighting systems, the controls for the ''task'' components of these systems are partially or entirely decentralized and under the control of the occupants. Typically, the occupant has control over the speed and direction, and in some cases the temperature, of the incoming air supply. Variously called ''task/ambient conditioning,'' ''localized thermal distribution,'' and ''personalized air conditioning'' systems, these

  4. Surface Temperature variability from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Dang, V. T.; Aumann, H. H.

    2015-12-01

    To address the existence and possible causes of the climate hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014for the day and night conditions. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We compare the satellite data with the new surface data produced by Karl et al. (2015) who denies the reality of the climate hiatus. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The day-night difference is an indicator of the anthropogenic trend. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  5. Model of phase distribution of hydrophobic organic chemicals in cyclodextrin-water-air-solid sorbent systems as a function of salinity, temperature, and the presence of multiple CDs

    NASA Astrophysics Data System (ADS)

    Blanford, W. J.

    2013-12-01

    Environmental and other applications of cyclodextrins (CD) often require usage of high concentra- tion aqueous solutions of derivatized CDs. In an effort to reduce the costs, these studies also typically use technical grades where the purity of the CD solution and the degree of substitution has not been reported. Further, this grade of CD often included high levels of salt and it is commonly applied in high salinity systems. The mathematical models for water and air partitioning coefficients of hydrophobic organic chemicals (HOC) with CDs that have been used in these studies under-estimate the level of HOC within CDs. This is because those models (1) do not take into account that high concentrations of CDs result in significantly lower levels of water in solution and (2) they do not account for the reduction in HOC aqueous solubility due to the presence of salt. Further, because they have poor knowledge of the CD molar concentration in their solu- tions, it is difficult to draw comparisons between studies. Herein is developed a mathematical model where cyclo- dextrin is treated as a separate phase whose relative volume is calculated from its apparent molar volume in solution and the CD concentration of the solution. The model also accounts for the affects of temperature and the presence of salt in solution through inclusion of modified versions of the Van't Hoff and Setschenow equations. With these capabilities, additional equations have been developed for calculating HOC phase distribution in air-water-CD-solid sorbent systems for a single HOC and between water and CD for a system containing multiple HOCs as well as multiple types of cyclodextrin.

  6. Strategy Guideline. Compact Air Distribution Systems

    SciTech Connect

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  7. Strategy Guideline: Compact Air Distribution Systems

    SciTech Connect

    Burdick, A.

    2013-06-01

    This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward the exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  8. a Study of Liquid - of Atomization Droplet Size Velocity and Temperature Distribution via Information Theory Spray Interaction with Ambient Air Motion.

    NASA Astrophysics Data System (ADS)

    Li, Xianguo

    Linear temporal instability analysis of a moving thin viscous liquid sheet of uniform thickness in an inviscid gas medium shows that surface tension always opposes, while surrounding gas and relative velocity between the sheet and gas favour the onset and development of instability. For gas Weber number smaller than the density ratio of gas to liquid, liquid viscosity enhances instability; If gas Weber number is slightly larger, aerodynamic and viscosity -induced instabilities interact with each other, displaying complicated effects of viscosity via Ohnesorge number; For much larger values of gas Weber numbers, aerodynamic instability dominates, liquid viscosity reduces disturbance growth rate and increases the dominant wavelength. Droplet probability distribution function (PDF) in sprays is formulated through information theory without resorting to the details of atomization processes. The derived analytical droplet size PDF is Nukiyama-Tanasawa type if conservation of mass is considered alone. If conservation of mass, momentum and energy is all taken into account, the joint droplet size and velocity PDF depends on Weber number, and compares favourably with measurements. Droplet velocity PDF is truncated Gaussian for any specific droplet size. Mean velocity approaches a constant value and velocity variance decreases as droplet size increases. Mean droplet diameters calculated agree well with observations. The computation indicates that atomization efficiency is very low, usually less than 1%. Droplet size, velocity and temperature PDF in sprays under combusting environment has also been derived. Effects of combustion on PDF occur mainly through the heat transferred into liquid sheet prior to its breakup. Experimental studies identify three modes of spray behaviours due to its interaction with various annular air flows, and show that bluff-body type of combustor has ability and easement to control aerodynamically spray angle, shape and droplet trajectories. It is

  9. Advanced Strategy Guideline: Air Distribution Basics and Duct Design

    SciTech Connect

    Burdick, A.

    2011-12-01

    This report discusses considerations for designing an air distribution system for an energy efficient house that requires less air volume to condition the space. Considering the HVAC system early in the design process will allow adequate space for equipment and ductwork and can result in cost savings. Principles discussed that will maximize occupant comfort include delivery of the proper amount of conditioned air for appropriate temperature mixing and uniformity without drafts, minimization of system noise, the impacts of pressure loss, efficient return air duct design, and supply air outlet placement, as well as duct layout, materials, and sizing.

  10. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James C. R.; Leijnse, Hidde; Steeneveld, Gert-Jan; Horn, Berthold K. P.; Uijlenhoet, Remko

    2014-05-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. It has been shown that a straightforward heat transfer model can be employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. The methodology has been applied to Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree

  11. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, A.; Robinson, J. C. R.; Leijnse, H.; Steeneveld, G. J.; Horn, B. K. P.; Uijlenhoet, R.

    2013-08-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. A straightforward heat transfer model is employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas.

  12. Controlled-Temperature Hot-Air Gun

    NASA Technical Reports Server (NTRS)

    Munoz, M. C.

    1986-01-01

    Materials that find applications in wind tunnels first tested in laboratory. Hot-Air Gun differs from commercial units in that flow rate and temperature monitored and controlled. With typical compressed-airsupply pressure of 25 to 38 psi (170 to 260 kPa), flow rate and maximum temperature are 34 stdft3/min (0.96 stdm3/min) and 1,090 degrees F (590 degrees C), respectively. Resembling elaborate but carefully regulated hot-air gun, setup used to apply blasts of air temperatures above 1,500 degrees F (815 degrees C) to test specimens.

  13. High-resolution distributed temperature sensing: a new tool to study the space-time dynamics of transient cold-air pools in the weak-wind stable boundary layer

    NASA Astrophysics Data System (ADS)

    Thomas, C. K.; Selker, J. S.; Zeeman, M. J.

    2011-12-01

    We present a novel approach to observing the two-dimensional thermal structure of atmospheric near-surface turbulent and non-turbulent flows by measuring air temperatures in a vertical plane at a high resolution (0.25 m, every approximately 2 s) using distributed temperature sensing (DTS). Air temperature observations obtained from a fiber optics array of approximate dimensions 8 by 8 m and sonic anemometer data from two levels were collected for a period of 23 days over a short grass field located in the flat bottom of a wide valley with moderate surface heterogeneity. In addition to evaluating the DTS technique to resolve the rapidly changing gradients and small-scale perturbations associated with turbulence in the atmosphere for convective and stable boundary layers, the objective was to analyze the space-time dynamics of transient cold-air pools in the stable boundary layer. The time response and precision of the fiber temperatures were adequate to resolve individual sub-meter sized turbulent and non-turbulent structures of time scales >= 3 s and enabled calculation of meaningful sensible heat fluxes when combined with vertical wind observations. The small turbulence scales associated with strong vertical shear and low measurement heights pose limitations to the technique. The top of the transient cold-air pool was highly non-stationary. The thermal structure of the near-surface air is generally a superposition of various perturbations of different time and length scales, whereas no preferred scales were identified. Vertical length scales for turbulence in the strongly stratified transient cold-air pool directly derived from the DTS data agreed well with buoyancy length scales parameterized using the vertical velocity variance and the Brunt-Vaisala frequency, while scales for weak stratification disagreed. The high-resolution DTS technique opens a new window into spatially sampling geophysical fluid flows including turbulent energy exchange with a broad

  14. Air separation with temperature and pressure swing

    DOEpatents

    Cassano, Anthony A.

    1986-01-01

    A chemical absorbent air separation process is set forth which uses a temperature swing absorption-desorption cycle in combination with a pressure swing wherein the pressure is elevated in the desorption stage of the process.

  15. Crowdsourcing urban air temperature measurements using smartphones

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-10-01

    Crowdsourced data from cell phone battery temperature sensors could be used to contribute to improved real-time, high-resolution air temperature estimates in urban areas, a new study shows. Temperature observations in cities are in some cases currently limited to a few weather stations, but there are millions of smartphone users in many cities. The batteries in cell phones have temperature sensors to avoid damage to the phone.

  16. Effects of air flow directions on composting process temperature profile

    SciTech Connect

    Kulcu, Recep; Yaldiz, Osman

    2008-07-01

    In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO{sub 2} and O{sub 2} ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperature distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2.

  17. Nowcasting daily minimum air and grass temperature

    NASA Astrophysics Data System (ADS)

    Savage, M. J.

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient ( b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  18. Nowcasting daily minimum air and grass temperature.

    PubMed

    Savage, M J

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient (b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  19. Temperature Tunable Air-Gap Etalon Filter

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Stephen, Mark A.; Lunt, David L.

    1998-01-01

    We report on experimental measurements of a temperature tuned air-gap etalon filter. The filter exhibits temperature dependent wavelength tuning of 54 pm/C. It has a nominal center wavelength of 532 nm. The etalon filter has a 27 pm optical bandpass and 600 pm free spectral range (finesse approximately 22). The experimental results are in close agreement with etalon theory.

  20. Lateral distribution of electrons of air showers

    NASA Technical Reports Server (NTRS)

    Asakimori, K.; Maeda, T.; Kameda, T.; Mizushima, K.; Misaki, Y.

    1985-01-01

    The lateral distribution of electrons (LDE) of the air showers of size 10 to the 5th power to 10 to the 6th power was studied within one MU. It was found that the LDE of the air showers observed is well represented by NKG function except for vicinity of the core. It was also found that LDE measured by thin scintillators does not differ from that measured by thick ones of 50mm thickness.

  1. Performance of underfloor air distribution: Results of a field study

    SciTech Connect

    Fisk, William; Faulkner, David; Sullivan, Douglas

    2004-09-02

    Underfloor air distribution (UFAD) is a new method of supplying heated or cooled air throughout a building. Reported advantages of UFAD include easy relocation of air supply diffusers, energy savings, and improved indoor air quality (IAQ). We measured several aspects of the performance of an UFAD system installed in a medium-size office building. The measured air change effectiveness was very close to unity, which is comparable to that measured in buildings with typical overhead air distribution. The pollutant removal efficiency for carbon dioxide was 13 percent higher than expected in a space with well-mixed air, suggesting a 13 percent reduction in exposures to occupant generated pollutants. The increase in indoor air temperatures with height above the floor was only 1 to 2 C (2-4 F). This amount of thermal stratification could reduce the sensible energy requirements for cooling of outdoor air by approximately 10 percent. The occupants level of satisfaction with thermal conditions w as well above average and this high satisfaction rating could possibly be due, in all or part, to the use of a UFAD system. The results of this study provide some evidence of moderate energy and IAQ-related benefits of UFAD. Before general conclusions are drawn, the benefits need to be confirmed in other studies.

  2. Undulator Hall Air Temperature Fault Scenarios

    SciTech Connect

    Sevilla, J.; Welch, J.; /SLAC

    2010-11-17

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  3. Development of a distributed air pollutant dry deposition modeling framework.

    PubMed

    Hirabayashi, Satoshi; Kroll, Charles N; Nowak, David J

    2012-12-01

    A distributed air pollutant dry deposition modeling system was developed with a geographic information system (GIS) to enhance the functionality of i-Tree Eco (i-Tree, 2011). With the developed system, temperature, leaf area index (LAI) and air pollutant concentration in a spatially distributed form can be estimated, and based on these and other input variables, dry deposition of carbon monoxide (CO), nitrogen dioxide (NO(2)), sulfur dioxide (SO(2)), and particulate matter less than 10 microns (PM10) to trees can be spatially quantified. Employing nationally available road network, traffic volume, air pollutant emission/measurement and meteorological data, the developed system provides a framework for the U.S. city managers to identify spatial patterns of urban forest and locate potential areas for future urban forest planting and protection to improve air quality. To exhibit the usability of the framework, a case study was performed for July and August of 2005 in Baltimore, MD. PMID:22858662

  4. Performance of underfloor air distribution in a fieldsetting

    SciTech Connect

    Fisk, W.J.; Faulkner, D.; Sullivan, D.P.; Chao, C.; Wan, M.P.; Zagreus, L.; Webster, T.

    2005-10-01

    Underfloor air distribution (UFAD) is a new method of supplying heated or cooled air throughout a building. Reported advantages of UFAD include energy savings and improved indoor air quality (IAQ). We measured several aspects of the performance of an UFAD system installed in a medium-size office building. The measured air change effectiveness was very close to unity, which is comparable to that measured in buildings with typical overhead air distribution. The pollutant removal efficiency for carbon dioxide was 13% higher than expected in a space with well-mixed air, suggesting a 13% reduction in exposures to occupant generated pollutants. The increase in indoor air temperatures with height above the floor was only 1 to 2 C. This amount of thermal stratification could reduce the sensible energy requirements for cooling of outdoor air by approximately 10%. The occupant's level of satisfaction with thermal conditions was well above average and this high satisfaction rating could possibly be due, in all or part, to the use of a UFAD system. The results of this study provide some evidence of moderate energy and IAQ-related benefits of UFAD. Before general conclusions are drawn, the benefits need to be confirmed in other studies.

  5. A physically based analytical spatial air temperature and humidity model

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Endreny, Theodore A.; Nowak, David J.

    2013-09-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat storage based on semiempirical functions and generates spatially distributed estimates based on inputs of topography, land cover, and the weather data measured at a reference site. The model assumes that for all grids under the same mesoscale climate, grid air temperature and humidity are modified by local variation in absorbed solar radiation and the partitioning of sensible and latent heat. The model uses a reference grid site for time series meteorological data and the air temperature and humidity of any other grid can be obtained by solving the heat flux network equations. PASATH was coupled with the USDA iTree-Hydro water balance model to obtain evapotranspiration terms and run from 20 to 29 August 2010 at a 360 m by 360 m grid scale and hourly time step across a 285 km2 watershed including the urban area of Syracuse, NY. PASATH predictions were tested at nine urban weather stations representing variability in urban topography and land cover. The PASATH model predictive efficiency R2 ranged from 0.81 to 0.99 for air temperature and 0.77 to 0.97 for dew point temperature. PASATH is expected to have broad applications on environmental and ecological models.

  6. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  7. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  8. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  9. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  10. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  11. Spatial interpolation of monthly mean air temperature data for Latvia

    NASA Astrophysics Data System (ADS)

    Aniskevich, Svetlana

    2016-04-01

    Temperature data with high spatial resolution are essential for appropriate and qualitative local characteristics analysis. Nowadays the surface observation station network in Latvia consists of 22 stations recording daily air temperature, thus in order to analyze very specific and local features in the spatial distribution of temperature values in the whole Latvia, a high quality spatial interpolation method is required. Until now inverse distance weighted interpolation was used for the interpolation of air temperature data at the meteorological and climatological service of the Latvian Environment, Geology and Meteorology Centre, and no additional topographical information was taken into account. This method made it almost impossible to reasonably assess the actual temperature gradient and distribution between the observation points. During this project a new interpolation method was applied and tested, considering auxiliary explanatory parameters. In order to spatially interpolate monthly mean temperature values, kriging with external drift was used over a grid of 1 km resolution, which contains parameters such as 5 km mean elevation, continentality, distance from the Gulf of Riga and the Baltic Sea, biggest lakes and rivers, population density. As the most appropriate of these parameters, based on a complex situation analysis, mean elevation and continentality was chosen. In order to validate interpolation results, several statistical indicators of the differences between predicted values and the values actually observed were used. Overall, the introduced model visually and statistically outperforms the previous interpolation method and provides a meteorologically reasonable result, taking into account factors that influence the spatial distribution of the monthly mean temperature.

  12. Experimental and theoretical analysis results for high temperature air combustion

    SciTech Connect

    Tanigawa, Tadashi; Morita, Mitsunobu

    1998-07-01

    With Japan's preparation of its Action program to prevent global warming in 1990 and the holding of the United National Conference on Environment and Development (the Earth Summit) in 1992 as a backdrop, reflecting the global effort to protect the environment, a high performance industrial furnace development project was launched in 1993 by the New Energy and Industrial Technology Development Organization (NEDO). This project focuses on the development of a combustion technology which uses air that is preheated to extremely high temperatures (above 1,000 C), heretofore considered impossible. Not only can this technology reduce carbon dioxide emission, thought to cause the greenhouse effect, by over 30%, but it can also reduce nitrogen oxide emission by nearly half. This new technology makes use of the recently-developed high-cycle regenerative heat exchanger, for preheating the furnace air supply. This exchanger preheats air to above 1,000 C, much higher than for conventional furnaces, and then this air is injected with fuel. R and D data have shown that CO{sub 2} and NO{sub x} emissions can be reduced markedly. However, the theoretical analysis is yet to be made, thereby hampering efforts to have this advanced technology become widely adopted. This project accumulated new data related to uniform temperature distribution, high energy heat transfer and low NO{sub x} as common characteristics of high temperature air combustion.

  13. Trends in Surface Temperature from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Aumann, H. H.

    2014-12-01

    To address possible causes of the current hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We find a monotonic positive trend for the land temperature but not for the ocean temperature. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The results are compared with the model studies. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  14. Distributed Temperature Sensing in the Atmosphere

    NASA Astrophysics Data System (ADS)

    van de Giesen, Nicolaas; Selker, John; Sayde, Chadi; Thomas, Christoph K.; Higgins, Chad; Schilperoort, Bart; Coenders-Gerrits, Miriam; Luxemburg, Wim; Hilgersom, Koen; van Emmerik, Tim; Solcerova, Anna; Berghuijs, Wouter

    2016-04-01

    Over the past ten years, Distributed Temperature Sensing (DTS) has been applied for monitoring many different environmental processes, from groundwater movement, to seepage into streams and canals, to soil moisture, and internal waves in lakes. DTS uses optical fibres, along which temperatures are determined by measuring Raman shifts in light that scatters back after a laser pulse has been sent into the fiber. Over the past decade, performance of DTS equipment has dramatically improved. It is now possible to determine fiber temperatures with 0.05 K accuracy, for each 25 cm along a fiber optic cable. With typical spatial resolutions of 1 m, cable lengths can run up to 5 km. Accuracy improves with integration over longer sampling intervals, but measurements over 60 s can give 0.1 K accuracy with proper in-field calibration. DTS can also be used for atmospheric properties such as air temperature, vapor pressure, and wind speed. This presentation provides a complete overview of recent advances in atmospheric DTS observations. Air temperature is the simplest, as one simply has to suspend a fiber optic cable along the profile of interest. This can be from a balloon or along poles. Care has to be taken to correct for radiative heating of the cable. Using a thin white cable minimalizes radiative effects and normally brings the measured temperature to within 1 K of actual air temperature, sufficient for studies on effects of shading in natural and urban landscapes. It is also possible to correct for radiative heating by modeling in some detail the cable's thermal behavior or by using two cables of different diameters. Supporting structures may also have an effect on cable temperatures, which should be minimized or corrected for. Water vapor can be measured by comparing the temperatures of wet and dry cables. These wet and dry bulb temperatures allow derivation of humidity profiles, which, in turn, allows for Bowen-ratio type of calculations of latent and sensible heat

  15. The AIRS Applications Pipeline, from Identification to Visualization to Distribution

    NASA Astrophysics Data System (ADS)

    Ray, S. E.; Pagano, T. S.; Fetzer, E. J.; Lambrigtsen, B.; Teixeira, J.

    2014-12-01

    The Atmospheric Infrared Sounder (AIRS) on NASA's Aqua spacecraft has been returning daily global observations of Earth's atmospheric constituents and properties since 2002. AIRS provides observations of temperature and water vapor along the atmospheric column and is sensitive to many atmospheric constituents in the mid-troposphere, including carbon monoxide, carbon dioxide and ozone. With a 12-year data record and daily, global observations in near real-time, we are finding that AIRS data can play a role in applications that fall under most of the NASA Applied Sciences focus areas. Currently in development are temperature inversion maps that can potentially correlate to respiratory health problems, dengue fever and West Nile virus outbreak prediction maps, maps that can be used to make assessments of air quality, and maps of volcanic ash burden. This poster will communicate the Project's approach and efforts to date of its applications pipeline, which includes identifying applications, utilizing science expertise, hiring outside experts to assist with development and dissemination, visualization along application themes, and leveraging existing NASA data frameworks and organizations to facilitate archiving and distribution. In addition, a new web-based browse tool being developed by the AIRS Project for easy access to application product imagery will also be described.

  16. Is Air Temperature Enough to Predict Lake Surface Temperature?

    NASA Astrophysics Data System (ADS)

    Piccolroaz, S.; Toffolon, M.; Majone, B.

    2014-12-01

    Lake surface water (LST) is a key factor that controls most of the physical and ecological processes occurring in lakes. Reliable estimates are especially important in the light of recent studies, which revealed that inland water bodies are highly sensitive to climate, and are rapidly warming throughout the world. However, an accurate estimation of LST usually requires a significant amount of information that is not always available. In this work, we present an application of air2water, a lumped model that simulates LST as a function of air temperature only. In addition, air2water allows for a qualitative evaluation of the depth of the epilimnion during the annual stratification cycle. The model consists in a simplification of the complete heat budget of the well-mixed surface layer, and has a few parameters (from 4 to 8 depending on the version) that summarize the role of the different heat flux components. Model calibration requires only air and water temperature data, possibly covering sufficiently long historical periods in order to capture inter-annual variability and long-term trends. During the calibration procedure, the information included in input data is retrieved to directly inform model parameters, which can be used to classify the thermal behavior of the lake. In order to investigate how thermal dynamics are related to morphological features, the model has been applied to 14 temperate lakes characterized by different morphological and hydrological conditions, by different sources of temperature data (buoys, satellite), and by variable frequency of acquisition. A good agreement between observed and simulated LST has been achieved, with a RMSE in the order of 1°C, which is fully comparable to the performances of more complex process-based models. This application allowed for a deeper understanding of the thermal response of lakes as a function of their morphology, as well as for specific analyses as for example the investigation of the exceptional

  17. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  18. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  19. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  20. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  1. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  2. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  3. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  4. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  5. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  6. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  7. Analysis of Temperature Distributions in Nighttime Inversions

    NASA Astrophysics Data System (ADS)

    Telyak, Oksana; Krasouski, Aliaksandr; Svetashev, Alexander; Turishev, Leonid; Barodka, Siarhei

    2015-04-01

    Adequate prediction of temperature inversion in the atmospheric boundary layer is one of prerequisites for successful forecasting of meteorological parameters and severe weather events. Examples include surface air temperature and precipitation forecasting as well as prediction of fog, frosts and smog with hazardous levels of atmospheric pollution. At the same time, reliable forecasting of temperature inversions remains an unsolved problem. For prediction of nighttime inversions over some specific territory, it is important to study characteristic features of local circulation cells formation and to properly take local factors into account to develop custom modeling techniques for operational use. The present study aims to investigate and analyze vertical temperature distributions in tropospheric inversions (isotherms) over the territory of Belarus. We study several specific cases of formation, evolution and decay of deep nighttime temperature inversions in Belarus by means of mesoscale numerical simulations with WRF model, considering basic mechanisms of isothermal and inverse temperature layers formation in the troposphere and impact of these layers on local circulation cells. Our primary goal is to assess the feasibility of advance prediction of inversions formation with WRF. Modeling results reveal that all cases under consideration have characteristic features of radiative inversions (e.g., their formation times, development phases, inversion intensities, etc). Regions of "blocking" layers formation are extensive and often spread over the entire territory of Belarus. Inversions decay starts from the lowermost (near surface) layer (altitudes of 5 to 50 m). In all cases, one can observe formation of temperature gradients that substantially differ from the basic inversion gradient, i.e. the layer splits into smaller layers, each having a different temperature stratification (isothermal, adiabatic, etc). As opposed to various empirical techniques as well as

  8. Distribution of critical temperature at Anderson localization

    NASA Astrophysics Data System (ADS)

    Gammag, Rayda; Kim, Ki-Seok

    2016-05-01

    Based on a local mean-field theory approach at Anderson localization, we find a distribution function of critical temperature from that of disorder. An essential point of this local mean-field theory approach is that the information of the wave-function multifractality is introduced. The distribution function of the Kondo temperature (TK) shows a power-law tail in the limit of TK→0 regardless of the Kondo coupling constant. We also find that the distribution function of the ferromagnetic transition temperature (Tc) gives a power-law behavior in the limit of Tc→0 when an interaction parameter for ferromagnetic instability lies below a critical value. However, the Tc distribution function stops the power-law increasing behavior in the Tc→0 limit and vanishes beyond the critical interaction parameter inside the ferromagnetic phase. These results imply that the typical Kondo temperature given by a geometric average always vanishes due to finite density of the distribution function in the TK→0 limit while the typical ferromagnetic transition temperature shows a phase transition at the critical interaction parameter. We propose that the typical transition temperature serves a criterion for quantum Griffiths phenomena vs smeared transitions: Quantum Griffiths phenomena occur above the typical value of the critical temperature while smeared phase transitions result at low temperatures below the typical transition temperature. We speculate that the ferromagnetic transition at Anderson localization shows the evolution from quantum Griffiths phenomena to smeared transitions around the critical interaction parameter at low temperatures.

  9. Air temperature variation across the seed cotton dryer mixpoint

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eighteen tests were conducted in six gins in the fall of 2008 to measure air temperature variation within various heated air seed cotton drying systems with the purpose of: checking validation of recommendations by a professional engineering society and measuring air temperature variation across the...

  10. Possible Economies in Air-Conditioning by Accepting Temperature Swings.

    ERIC Educational Resources Information Center

    Loudon, A. G.; Petherbridge, P.

    Public building air conditioning systems, which use constant and varying heat and cooling loads, are compared and investigated. Experiments indicated that constant temperature controls based on outside air temperature alone were inefficient. Ventilating a building with outside air and the methods of doing so are cited as being the most economical…

  11. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  12. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  13. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  14. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  15. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  16. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  17. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  18. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  19. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  20. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  1. Acoustic method for measuring air temperature and humidity in rooms

    NASA Astrophysics Data System (ADS)

    Kanev, N. G.

    2014-05-01

    A method is proposed to determine air temperature and humidity in rooms with a system of sound sources and receivers, making it possible to find the sound velocity and reverberation time. Nomograms for determining the air temperature and relative air humidity are constructed from the found sound velocity and time reverberation values. The required accuracy of measuring these parameters is estimated.

  2. Sensitivity of New England Stream Temperatures to Air Temperature and Precipitation Under Projected Climate

    NASA Astrophysics Data System (ADS)

    Huang, T.; Samal, N. R.; Wollheim, W. M.; Stewart, R. J.; Zuidema, S.; Prousevitch, A.; Glidden, S.

    2015-12-01

    The thermal response of streams and rivers to changing climate will influence aquatic habitat. This study examines the impact that changing climate has on stream temperatures in the Merrimack River, NH/MA USA using the Framework for Aquatic Modeling in the Earth System (FrAMES), a spatially distributed river network model driven by air temperature, air humidity, wind speed, precipitation, and solar radiation. Streamflow and water temperatures are simulated at a 45-second (latitude x longitude) river grid resolution for 135 years under historical and projected climate variability. Contemporary streamflow (Nash-Sutcliffe Coefficient = 0.77) and river temperatures (Nash-Sutcliffe Coefficient = 0.89) matched at downstream USGS gauge data well. A suite of model runs were made in combination with uniformly increased daily summer air temperatures by 2oC, 4 oC and 6 oC as well as adjusted precipitation by -40%, -30%, -20%, -10% and +10% as a sensitivity analysis to explore a broad range of potential future climates. We analyzed the summer stream temperatures and the percent of river length unsuitable for cold to warm water fish habitats. Impacts are greatest in large rivers due to the accumulation of river temperature warming throughout the entire river network. Cold water fish (i.e. brook trout) are most strongly affected while, warm water fish (i.e. largemouth bass) aren't expected to be impacted. The changes in stream temperatures under various potential climate scenarios will provide a better understanding of the specific impact that air temperature and precipitation have on aquatic thermal regimes and habitat.

  3. Temperature measurement inside metallic cables using distributed temperature system

    NASA Astrophysics Data System (ADS)

    Jaros, Jakub; Papes, Martin; Liner, Andrej; Vasinek, Vladimir; Mach, Veleslav; Hruby, David; Kajnar, Tomas; Perecar, Frantisek

    2015-07-01

    Nowadays, metallic cables are produced so as to avoid the maximum allowable temperature of the cable by the normal operation and the maximum allowable temperature for short-circuit the exceeding the maximum allowable internal temperature. The temperature increase is an unwanted phenomena causing losses in the cable and its abrasion. Longterm overload can lead to damaging of the cable or to the risk of fire in extreme cases. In our work, we present the temperature distribution measurement inside the metallic cables using distributed temperature system. Within the cooperation with manufacturer of the metallic cables, optical fibers were implemented into these cables. The cables are double coated and the fibers are allocated between these coatings and also in the centre of the cable. Thus we are able to measure the temperature inside the cable and also on the surface temperature along the whole cable length with spatial resolution 1 m during the cable heating. This measurement method can be also used for short-circuit prediction and detection, because this phenomena is always accompanied with temperature increase. Distributed temperature systems are already successfully implemented in temperature measurements in industry environment, such as construction, sewer systems, caliducts etc. The main advantage of these systems is electromagnetic resistance, low application price and the possibility of monitoring several kilometers long distances.

  4. Assessing surface air temperature variability using quantile regression

    NASA Astrophysics Data System (ADS)

    Timofeev, A. A.; Sterin, A. M.

    2014-12-01

    Many researches in climate change currently involve linear trends, based on measured variables. And many of them only consider trends in mean values, whereas it is clear, that not only means, but also whole shape of distribution changes over time and requires careful assessment. For example extreme values including outliers may get bigger, while median has zero slope.Quantile regression provides a convenient tool, that enables detailed analysis of changes in full range of distribution by producing a vector of quantile trends for any given set of quantiles.We have applied quantile regression to surface air temperature observations made at over 600 weather stations across Russian Federation during last four decades. The results demonstrate well pronounced regions with similar values of significant trends in different parts of temperature value distribution (left tail, middle part, right tail). The uncertainties of quantile trend estimations for several spatial patterns of trends over Russia are estimated and analyzed for each of four seasons.For temperature trend estimation over vast territories, quantile regression is an effort consuming approach, but is more informative than traditional instrument, to assess decadal evolution of temperature values, including evolution of extremes.Partial support of ERA NET RUS ACPCA joint project between EU and RBRF 12-05-91656-ЭРА-А is highly appreciated.

  5. Air Temperature estimation from Land Surface temperature and solar Radiation parameters

    NASA Astrophysics Data System (ADS)

    Lazzarini, Michele; Eissa, Yehia; Marpu, Prashanth; Ghedira, Hosni

    2013-04-01

    Air Temperature (AirT) is a fundamental parameter in a wide range of applications such as climate change studies, weather forecast, energy balance modeling, efficiency of Photovoltaic (PV) solar cells, etc. Air temperature data are generally obtained through regular measurements from meteorological stations. The distribution of these stations is normally sparse, so the spatial pattern of this parameter cannot be accurately estimated by interpolation methods. This work investigated the relationship between Air Temperature measured at meteorological stations and spatially contiguous measurements derived from Remote Sensing techniques, such as Land Surface Temperature (LST) maps, emissivity maps and shortwave radiation maps with the aim of creating a continuous map of AirT. For LST and emissivity, MSG-SEVIRI LST product from Land Surface Analysis Satellite Applications Facility (LSA-SAF) has been used. For shortwave radiation maps, an Artificial Neural Networks ensemble model has been developed and previously tested to create continuous maps from Global Horizontal Irradiance (GHI) point measurements, utilizing six thermal channels of MSG-SEVIRI. The testing sites corresponded to three meteorological stations located in the United Arab Emirates (UAE), where in situ measurements of Air Temperature were available. From the starting parameters, energy fluxes and net radiation have been calculated, in order to have information on the incoming and outgoing long-wave radiation and the incoming short-wave radiation. The preliminary analysis (day and Night measurements, cloud free) showed a strong negative correlation (0.92) between Outgoing long-wave radiation - GHI and LST- AirT, with a RMSE of 1.84 K in the AirT estimation from the initial parameters. Regression coefficients have been determined and tested on all the ground stations. The analysis also demonstrated the predominant impact of the incoming short-wave radiation in the AirT hourly variation, while the incoming

  6. Controls of air temperature variability over an Alpine Glacier

    NASA Astrophysics Data System (ADS)

    Shaw, Thomas; Brock, Ben; Ayala, Álvaro; Rutter, Nick

    2016-04-01

    Near surface air temperature (Ta) is one of the most important controls on energy exchange between a glacier surface and the overlying atmosphere. However, not enough detail is known about the controls on Ta across a glacier due to sparse data availability. Recent work has provided insights into variability of Ta along glacier centre-lines in different parts of the world, yet there is still a limited understanding of off-centreline variability in Ta and how best to estimate it from distant off-glacier locations. We present a new dataset of distributed 2m Ta records for the Tsanteleina Glacier in Northwest Italy from July-September, 2015. Data provide detailed information of lateral (across-glacier) and centre-line variations in Ta, with ~20,000 hourly observations from 17 locations. The suitability of different vertical temperature gradients (VTGs) in estimating air temperature is considered under a range of meteorological conditions and from different forcing locations. A key finding is that local VTGs account for a lot of Ta variability under a broad range of climatic conditions. However, across-glacier variability is found to be significant, particularly for high ambient temperatures and for localised topographic depressions. The relationship of spatial Ta patterns with regional-scale reanalysis data and alternative Ta estimation methodologies are also presented. This work improves the knowledge of local scale Ta variations and their importance to melt modelling.

  7. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  8. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  9. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  10. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  11. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  12. High Temperature Ceramic Guide Vane Temperature and Pressure Distribution Calculation for Flow with Cooling Jets

    NASA Technical Reports Server (NTRS)

    Srivastava, Rakesh

    2004-01-01

    A ceramic guide vane has been designed and tested for operation under high temperature. Previous efforts have suggested that some cooling flow may be required to alleviate the high temperatures observed near the trailing edge region. The present report describes briefly a three-dimensional viscous analysis carried out to calculate the temperature and pressure distribution on the blade surface and in the flow path with a jet of cooling air exiting from the suction surface near the trailing edge region. The data for analysis was obtained from Dr. Craig Robinson. The surface temperature and pressure distribution along with a flowfield distribution is shown in the results. The surface distribution is also given in a tabular form at the end of the document.

  13. Prediction of air temperature in the aircraft cabin under different operational conditions

    NASA Astrophysics Data System (ADS)

    Volavý, F.; Fišer, J.; Nöske, I.

    2013-04-01

    This paper deals with the prediction of the air temperature in the aircraft cabin by means of Computational Fluid Dynamics. The simulations are performed on the CFD model which is based on geometry and cabin interior arrangement of the Flight Test Facility (FTF) located at Fraunhofer IBP, Germany. The experimental test flights under three different cabin temperatures were done in FTF and the various data were gathered during these flights. Air temperature in the cabin was measured on probes located near feet, torso and head of each passenger and also surface temperature and air temperature distributed from inlets were measured. The data were firstly analysed in order to obtain boundary conditions for cabin surfaces and inlets. Then the results of air temperature from the simulations were compared with measured data. The suitability and accuracy of the CFD approach for temperature prediction is discussed.

  14. Decadal power in land air temperatures: Is it statistically significant?

    NASA Astrophysics Data System (ADS)

    Thejll, Peter A.

    2001-12-01

    The geographical distribution and properties of the well-known 10-11 year signal in terrestrial temperature records is investigated. By analyzing the Global Historical Climate Network data for surface air temperatures we verify that the signal is strongest in North America and is similar in nature to that reported earlier by R. G. Currie. The decadal signal is statistically significant for individual stations, but it is not possible to show that the signal is statistically significant globally, using strict tests. In North America, during the twentieth century, the decadal variability in the solar activity cycle is associated with the decadal part of the North Atlantic Oscillation index series in such a way that both of these signals correspond to the same spatial pattern of cooling and warming. A method for testing statistical results with Monte Carlo trials on data fields with specified temporal structure and specific spatial correlation retained is presented.

  15. Influence of pressure distribution on flow field temperature reconstruction.

    PubMed

    Chen, Yun-yun; Song, Yang; Li, Zhen-hua; He, An-zhi

    2011-05-20

    This research proposes an issue that has previously been omitted in flow field temperature reconstruction by optical computerized tomography (OCT). To prove that it is not reasonable to always assume an isobaric process occurs when OCT is adopted to obtain the temperature distributions of flow fields, a propane-air flame and an argon arc plasma are chosen as two practical examples for experiment. In addition, the measurement of the refractive index is achieved by moiré deflection tomography. The results indicate that the influence of pressure distribution on temperature reconstruction is a universal phenomenon for various flow fields. Hence, the condition that can be introduced to estimate when an isobaric process can no longer be assumed is presented. In addition, an equation is offered to describe the temperature reconstruction imprecision that is caused by using the supposed pressure instead of the practical pressure. PMID:21614105

  16. The characteristics of high temperature air combustion and its practical application to high performance industrial furnace

    SciTech Connect

    Sugiyama, Shunichi; Suzukawa, Yutaka; Hino, Yoshimichi

    1999-07-01

    An experimental regenerative continuous slab reheat furnace was used for the data acquisition of high temperature air combustion. Obtainable preheated air temperature, gas temperature distribution of combustion field, NOx concentration in waste gas, heating pattern, furnace height etc were studied for this purpose. Main results were (1) preheated air temperature close to furnace temperature can be obtained, (2) gas temperature distribution is relatively uniform in main combustion field, (3) NOx concentration in waste gas is significantly reduced, (4) there exists the appropriate combustion capacity of a burner for every furnace width, (5) the optimum furnace height for regenerative continuous slab reheat furnace from the thermal efficiency point of view is lower than the convention one by about 0.5m.

  17. Temperature Distributions in Piezoelectric Photothermal Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zakrzewski, J.; Maliński, M.; Strzałkowski, K.

    2013-04-01

    Piezoelectric photothermal spectroscopy is a method in which the stress and strain of a sample due to the absorption of electromagnetic radiation is detected by a piezoelectric transducer. The temperature distribution in the sample is the basis to obtain the theoretical amplitude and phase of photothermal piezoelectric spectra. In contrast to microphone detection, which needs only the temperature at one of the sample surfaces, in the piezoelectric one, it is necessary to know the spatial temperature distribution. The distributions given by Blonskij and by the modified interferential model of Malinski are applied. The influence of defect states in a volume and at the surfaces on the character of the amplitude and phase piezoelectric spectra is analyzed. The comparison of these approximate models and the two-layer one of Fernelius is presented.

  18. Combustion of Gaseous Fuels with High Temperature Air in Normal- and Micro-gravity Conditions

    NASA Technical Reports Server (NTRS)

    Wang, Y.; Gupta, A. K.

    2001-01-01

    The objective of this study is determine the effect of air preheat temperature on flame characteristics in normal and microgravity conditions. We have obtained qualitative (global flame features) and some quantitative information on the features of flames using high temperature combustion air under normal gravity conditions with propane and methane as the fuels. This data will be compared with the data under microgravity conditions. The specific focus under normal gravity conditions has been on determining the global flame features as well as the spatial distribution of OH, CH, and C2 from flames using high temperature combustion air at different equivalence ratio.

  19. Air velocity distributions from air-assisted five-port sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Capability to control both liquid and air flow rates based on tree structures would be one of the advantages of future variable-rate orchard and nursery sprayers. Air jet velocity distributions from an air assisted, five-port sprayer which was under the development to achieve variable-rate functions...

  20. Air velocity distributions from a variable-rate air-assisted sprayer for tree applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A capability that implements tree structure to control liquid and air flow rates is the preferential design in the development of variable-rate orchard and nursery sprayers. Air jet velocity distributions from an air assisted, five-port sprayer which was under the development to achieve variable-rat...

  1. Change point analysis of mean annual air temperature in Iran

    NASA Astrophysics Data System (ADS)

    Shirvani, A.

    2015-06-01

    The existence of change point in the mean of air temperature is an important indicator of climate change. In this study, Student's t parametric and Mann-Whitney nonparametric Change Point Models (CPMs) were applied to test whether a change point has occurred in the mean of annual Air Temperature Anomalies Time Series (ATATS) of 27 synoptic stations in different regions of Iran for the period 1956-2010. The Likelihood Ratio Test (LRT) was also applied to evaluate the detected change points. The ATATS of all stations except Bandar Anzali and Gorgan stations, which were serially correlated, were transformed to produce an uncorrelated pre-whitened time series as an input file for the CPMs and LRT. Both the Student's t and Mann-Whitney CPMs detected the change point in the ATATS of (a) Tehran Mehrabad, Abadan, Kermanshah, Khoramabad and Yazd in 1992, (b) Mashhad and Tabriz in 1993, (c) Bandar Anzali, Babolsar and Ramsar in 1994, (d) Kerman and Zahedan in 1996 at 5% significance level. The likelihood ratio test shows that the ATATS before and after detected change points in these 12 stations are normally distributed with different means. The Student's t and Mann-Whitney CPMs suggested different change points for individual stations in Bushehr, Bam, Shahroud, and Gorgan. However, the LRT confirmed the change points in these four stations as 1997, 1996, 1993, and 1996, respectively. No change points were detected in the remaining 11 stations.

  2. Monthly mean distribution of ozone and temperature

    NASA Technical Reports Server (NTRS)

    Labitzke, K.; Angell, J. K.; Barnett, J. J.; Bowman, P.; Corney, M.; Keating, G. M.; Krueger, A. J.; Miller, A. J.; Nagatani, R. M.

    1985-01-01

    Global monthly mean charts for both hemispheres are given for four mid-season months, and for the pressure levels 30, 10, 1, and 0.1 mbar for temperature and 0.4 mbar for ozone. Charts of total ozone are provided separately. This set of charts shows clearly the very close coupling between the temperature and ozone distributions and demonstrates the influence of the large-scale planetary waves which give rise to very large longitudinal variations. The regular and interannual variability of temperature and ozone are discussed.

  3. On the design of distributed air quality monitoring systems

    NASA Astrophysics Data System (ADS)

    Velasco, Alejandro; Ferrero, Renato; Gandino, Filippo; Montrucchio, Bartolomeo; Rebaudengo, Maurizio

    2015-12-01

    Nowadays, the air quality is considered a key point, and its monitoring is not only suggested but it is even required in many countries. Since traditional standard monitors for air quality are very expensive, the use of a low-cost distributed network of sensors represents a valid complementary approach. This paper discusses the benefits of a distributed approach and analyzes the main elements that should be taken into account during the design of a distributed system for the air quality monitoring. This paper aims at representing a valuable aid for researchers and practitioners interested in the topic.

  4. Robust Ultrasonic Waveguide Based Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Periyannan, S.; Rajagopal, P.; Balasubramaniam, K.

    This is a novel technique for distributed temperature measurements, using single robust ultrasonic wire or strip-like waveguides, special embodiments in the form of Helical or Spiral configurations that can cover large area/volume in enclosed regions. Such distributed temperature sensing has low cost applications in the long term monitoring critical enclosures such as containment vessels, flue gas stacks, furnaces, underground storage tanks, buildings for fire, etc. The range of temperatures that can be measured are from very low to elevated temperatures. The transduction is performed using Piezo-electric crystals that are bonded to one end of the waveguide which acts as both transmitter and receivers. The wires will have periodic reflector embodiments (bends, gratings, etc.) that allow reflections of an input ultrasonic wave, in a pulse echo mode, back to the crystal. Using the time of fight (TOF) variations at the multiple predefined reflector locations, the measured temperatures are mapped with multiple thermocouples. Using either the L(0,1) or the T(0,1)modes, or simultaneously, measurements other than temperature may also be included. This paper will describe the demonstration of this technology using a 0.5 MHz longitudinal piezo-crystal for transmitting and receiving the L (0, 1) mode through the special form of waveguide at various temperatures zones.

  5. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

  6. Temperature Distribution in a Uniformly Moving Medium

    ERIC Educational Resources Information Center

    Mitchell, Joseph D.; Petrov, Nikola P.

    2009-01-01

    We apply several physical ideas to determine the steady temperature distribution in a medium moving with uniform velocity between two infinite parallel plates. We compute it in the coordinate frame moving with the medium by integration over the "past" to account for the influence of an infinite set of instantaneous point sources of heat in past…

  7. Temperature distribution in the crust and mantle

    NASA Technical Reports Server (NTRS)

    Jeanloz, R.; Morris, S.

    1986-01-01

    In an attempt to understand the temperature distribution in the earth, experimental constraints on the geotherm in the crust and mantle are considered. The basic form of the geotherm is interpreted on the basis of two dominant mechanisms by which heat is transported in the earth: (1) conduction through the rock, and (2) advection by thermal flow. Data reveal that: (1) the temperature distributions through continental lithosphere and through oceanic lithosphere more than 60 million years old are practically indistinguishable, (2) crustal uplift is instrumental in modifying continental geotherms, and (3) the average temperature through the Archean crust and mantle was similar to that at present. It is noted that current limitations in understanding the constitution of the lower mantle can lead to significant uncertainties in the thermal response time of the planetary interior.

  8. Preliminary verification of instantaneous air temperature estimation for clear sky conditions based on SEBAL

    NASA Astrophysics Data System (ADS)

    Zhu, Shanyou; Zhou, Chuxuan; Zhang, Guixin; Zhang, Hailong; Hua, Junwei

    2016-03-01

    Spatially distributed near surface air temperature at the height of 2 m is an important input parameter for the land surface models. It is of great significance in both theoretical research and practical applications to retrieve instantaneous air temperature data from remote sensing observations. An approach based on Surface Energy Balance Algorithm for Land (SEBAL) to retrieve air temperature under clear sky conditions is presented. Taking the meteorological measurement data at one station as the reference and remotely sensed data as the model input, the research estimates the air temperature by using an iterative computation. The method was applied to the area of Jiangsu province for nine scenes by using MODIS data products, as well as part of Fujian province, China based on four scenes of Landsat 8 imagery. Comparing the air temperature estimated from the proposed method with that of the meteorological station measurement, results show that the root mean square error is 1.7 and 2.6 °C at 1000 and 30 m spatial resolution respectively. Sensitivity analysis of influencing factors reveals that land surface temperature is the most sensitive to the estimation precision. Research results indicate that the method has great potentiality to be used to estimate instantaneous air temperature distribution under clear sky conditions.

  9. Advanced Strategy Guideline. Air Distribution Basics and Duct Design

    SciTech Connect

    Burdick, Arlan

    2011-12-01

    This report discusses considerations for designing an air distribution system for an energy efficient house that requires less air volume to condition the space. Considering the HVAC system early in the design process will allow adequate space for equipment and ductwork and can result in cost savings.

  10. Solar Eclipse Effect on Shelter Air Temperature

    NASA Technical Reports Server (NTRS)

    Segal, M.; Turner, R. W.; Prusa, J.; Bitzer, R. J.; Finley, S. V.

    1996-01-01

    Decreases in shelter temperature during eclipse events were quantified on the basis of observations, numerical model simulations, and complementary conceptual evaluations. Observations for the annular eclipse on 10 May 1994 over the United States are presented, and these provide insights into the temporal and spatial changes in the shelter temperature. The observations indicated near-surface temperature drops of as much as 6 C. Numerical model simulations for this eclipse event, which provide a complementary evaluation of the spatial and temporal patterns of the temperature drops, predict similar decreases. Interrelationships between the temperature drop, degree of solar irradiance reduction, and timing of the peak eclipse are also evaluated for late spring, summer, and winter sun conditions. These simulations suggest that for total eclipses the drops in shelter temperature in midlatitudes can be as high as 7 C for a spring morning eclipse.

  11. Daily Cycle of Air Temperature and Surface Temperature in Stone Forest

    NASA Astrophysics Data System (ADS)

    Wang, K.; Li, Y.; Wang, X.; Yuan, M.

    2013-12-01

    Urbanization is one of the most profound human activities that impact on climate change. In cities, where are highly artificial areas, the conflict between human activity and natural climate is particularly prominent. Urban areas always have the larger area of impervious land, the higher consumption of greenhouse gases, more emissions of anthropogenic heat and air pollution, all contribute to the urban warming phenomena. Understanding the mechanisms causing a variety of phenomena involved in the urban warming is critical to distinguish the anthropogenic effect and natural variation in the climate change. However, the exact dynamics of urban warming were poorly understood, and effective control strategies are not available. Here we present a study of the daily cycle of air temperature and surface temperature in Stone Forest. The specific heat of the stones in the Stone Forest and concrete of the man-made structures within the cities are approximate. Besides, the height of the Stone Forest and the height of buildings within the city are also similar. As a scenic area, the Stone Forest is being preserved and only opened for sightseeing. There is no anthropogenic heat, as well air pollution within the Stone Forest. The thermal environment in Stone Forest can be considered to be a simulation of thermal environment in the city, which can reveal the effect of man-made structures on urban thermal environment. We conducted the field studies and numerical analysis in the Stone Forest for 4 typical urban morphology and environment scenarios, including high-rise compact cities, low-rise sparse cities, garden cities and isolated single stone. Air temperature and relative humidity were measured every half an hour in 15 different locations, which within different spatial distribution of stones and can represent the four urban scenarios respectively. At the same time, an infrared camera was used to take thermal images and get the hourly surface temperatures of stones and

  12. Aerosol and air pollution size distribution

    NASA Astrophysics Data System (ADS)

    Shani, Gad; Haccoun, A.; Kushelevsky, A.

    The size distribution of aerosols was measured in a moderately industrial city, in a semi-arid zone on the Negev desert border. The aerosols in the city of Beer Sheva are from two sources: the dust coming from the desert and urban pollution. The size measurements were done with a cascade impactor. The elemental content of the aerosols was investigated by neutron activation analysis and X-ray fluorescence. The main elements of the dust are: Ca, Si, Fe, Na and the trace elements are: Sc, Se, La, Sm, Hf and others. The main elements of the urban pollution are S, Br, Pb, Cl, Hg and others. It was found that the elements belonging to each group can easily be classified by the size distribution. The analytical consideration of the aerosol size distribution of each group are discussed and two corresponding analytical expressions are suggested. It is shown that aerosols originating in the dust have a hump shape distribution around ~ 4μm, and those originating in urban pollution have a distribution decreasing with increasing aerosol diameter. Many examples are given to prove the conclusions.

  13. Ultraviolet Laser Raman Scattering for Temperature Measurement in Atmospheric Air Microdischarges

    NASA Astrophysics Data System (ADS)

    Caplinger, James; Adams, Steven; Williamson, James; Clark, Jerry

    2011-10-01

    Vibrational Raman scattering for temperature measurement within a dc microdischarge in atmospheric pressure air has been investigated using a pulsed ultraviolet laser. The Raman signal analysis method involved monitoring Q-branch signals originating from multiple N2(X) vibrational states populated in the microdischarge. The translational temperature of N2(X) in the microdischarge was calculated using the total Raman signal intensity calibrated with room temperature air. Also, the distribution of Q-branch intensities among vibrational states allowed for direct measurement of the vibrational temperature of N2(X). Raman scattering results are compared to passive optical emission spectral analyses of the N2 second positive system from which the rotational and vibrational temperatures of the N2(C) excited state were also calculated. A comparison of the N2(X) and N2(C) temperatures derived from Raman scattering and emission spectroscopy, respectively, is presented. This work was supported by the Air Force Office of Scientific Research.

  14. Comparison of MODIS Land Surface Temperature and Air Temperature over the Continental USA Meteorological Stations

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Bounoua, Lahouari; Imhoff, Marc L.; Wolfe, Robert E.; Thome, Kurtis

    2014-01-01

    The National Land Cover Database (NLCD) Impervious Surface Area (ISA) and MODIS Land Surface Temperature (LST) are used in a spatial analysis to assess the surface-temperature-based urban heat island's (UHIS) signature on LST amplitude over the continental USA and to make comparisons to local air temperatures. Air-temperature-based UHIs (UHIA), calculated using the Global Historical Climatology Network (GHCN) daily air temperatures, are compared with UHIS for urban areas in different biomes during different seasons. NLCD ISA is used to define urban and rural temperatures and to stratify the sampling for LST and air temperatures. We find that the MODIS LST agrees well with observed air temperature during the nighttime, but tends to overestimate it during the daytime, especially during summer and in nonforested areas. The minimum air temperature analyses show that UHIs in forests have an average UHIA of 1 C during the summer. The UHIS, calculated from nighttime LST, has similar magnitude of 1-2 C. By contrast, the LSTs show a midday summer UHIS of 3-4 C for cities in forests, whereas the average summer UHIA calculated from maximum air temperature is close to 0 C. In addition, the LSTs and air temperatures difference between 2006 and 2011 are in agreement, albeit with different magnitude.

  15. Retrieval of air temperatures from crowd-sourced battery temperatures of cell phones

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James; Leijnse, Hidde; Uijlenhoet, Remko; Steeneveld, Gert-Jan; Horn, Berthold K. P.

    2013-04-01

    Accurate air temperature observations are important for urban meteorology, for example to study the urban heat island and adverse effects of high temperatures on human health. The number of available temperature observations is often relatively limited. A new development is presented to derive temperature information for the urban canopy from an alternative source: cell phones. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. Results are presented for Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree Celsius. This shows that monitoring air temperatures employing an Android application holds great promise. Since 75% of the world's population has a cell phone, 20% of the land surface of the earth has cellular telephone coverage, and 500 million devices use the Android operating system, there is a huge potential for measuring air temperatures employing cell phones. This could eventually lead to real-time world-wide temperature maps.

  16. Associations of endothelial function and air temperature in diabetic subjects

    EPA Science Inventory

    Background and Objective: Epidemiological studies consistently show that air temperature is associated with changes in cardiovascular morbidity and mortality. However, the biological mechanisms underlying the association remain largely unknown. As one index of endothelial functio...

  17. High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to

  18. High temperature hot water distribution system study

    SciTech Connect

    1996-12-01

    The existing High Temperature Hot Water (HTHW) Distribution System has been plagued with design and construction deficiencies since startup of the HTHW system, in October 1988. In October 1989, after one year of service, these deficiencies were outlined in a technical evaluation. The deficiencies included flooded manholes, sump pumps not hooked up, leaking valves, contaminated HTHW water, and no cathodic protection system. This feasibility study of the High Temperature Hot Water (HTHW) Distribution System was performed under Contract No. DACA0l-94-D-0033, Delivery Order 0013, Modification 1, issued to EMC Engineers, Inc. (EMC), by the Norfolk District Corps of Engineers, on 25 April 1996. The purpose of this study was to determine the existing conditions of the High Temperature Hot Water Distribution System, manholes, and areas of containment system degradation. The study focused on two areas of concern, as follows: * Determine existing conditions and areas of containment system degradation (leaks) in the underground carrier pipes and protective conduit. * Document the condition of underground steel and concrete manholes. To document the leaks, a site survey was performed, using state-of-the-art infrared leak detection equipment and tracer gas leak detection equipment. To document the condition of the manholes, color photographs were taken of the insides of 125 manholes, and notes were made on the condition of these manholes.

  19. Distributed strain monitoring for bridges: temperature effects

    NASA Astrophysics Data System (ADS)

    Regier, Ryan; Hoult, Neil A.

    2014-03-01

    To better manage infrastructure assets as they reach the end of their service lives, quantitative data is required to better assess structural behavior and allow for more informed decision making. Distributed fiber optic strain sensors are one sensing technology that could provide comprehensive data for use in structural assessments as these systems potentially allow for strain to be measured with the same accuracy and gage lengths as conventional strain sensors. However, as with many sensor technologies, temperature can play an important role in terms of both the structure's and sensor's performance. To investigate this issue a fiber optic distributed strain sensor system was installed on a section of a two span reinforced concrete bridge on the TransCanada Highway. Strain data was acquired several times a day as well as over the course of several months to explore the effects of changing temperature on the data. The results show that the strain measurements are affected by the bridge behavior as a whole. The strain measurements due to temperature are compared to strain measurements that were taken during a load test on the bridge. The results show that even a small change in temperature can produce crack width and strain changes similar to those due to a fully loaded transport truck. Future directions for research in this area are outlined.

  20. Sampling Biases in Datasets of Historical Mean Air Temperature over Land

    NASA Astrophysics Data System (ADS)

    Wang, K.

    2014-12-01

    Global mean surface air temperature have risen by 0.74 °C over the last 100 years. However, the definition of mean surface air temperature is still a subject of debate. The most defensible definition might be the integral of the continuous temperature measurements over a day (Td0). However, for technological and historical reasons, mean temperatures (Td1) over land have been taken to be the average of the daily maximum and minimum temperature measurements. All existing principle global temperature analyses over land are primarily based on Td1. Here, I make a first quantitative assessment of the bias in the use of Td1 to estimate trends of mean air temperature using hourly air temperature observations at 5600 globally distributed weather stations from the 1970s to 2013. I find that the use of Td1 has a negligible impact on the global mean warming rate. However, the trend of Td1 has a substantial bias at regional and local scales, with a root mean square error of over 25% at 5°×5° grids. Therefore, caution should be taken when using mean air temperature datasets based on Td1 to examine spatial patterns of global warming.

  1. Lessons Learned from AIRS: Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2011-01-01

    This slide presentation reviews the use of shortwave channels available to the Atmospheric Infrared Sounder (AIRS) to improve the determination of surface and atmospheric temperatures. The AIRS instrument is compared with the Infrared Atmospheric Sounding Interferometer (IASI) on-board the MetOp-A satellite. The objectives of the AIRS/AMSU were to (1) provide real time observations to improve numerical weather prediction via data assimilation, (2) Provide observations to measure and explain interannual variability and trends and (3) Use of AIRS product error estimates allows for QC optimized for each application. Successive versions in the AIRS retrieval methodology have shown significant improvement.

  2. Air Distribution Retrofit Strategies for Affordable Housing

    SciTech Connect

    Dentz, J.; Conlin, F.; Holloway, P.; Podorson, D.; Varshney, K.

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, two retrofit duct sealing techniques -- manually-applied sealants and injecting a spray sealant, were implemented in several low-rise multi-unit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder two-story. Results show that duct leakage to the outside was reduced by an average of 59% through the use of manual methods, and by 90% in the units where the injected spray sealant was used. It was found that 73% of the leakage reduction in homes that were treated with injected spray sealant was attributable to the manual sealing done at boots, returns and the air handler. The cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.

  3. Air Distribution Retrofit Strategies for Affordable Housing

    SciTech Connect

    Dentz, J.; Conlin, F.; Holloway, Parker; Podorson, David; Varshney, Kapil

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, two retrofit duct sealing techniques, manually-applied sealants and injecting a spray sealant, were implemented in several low-rise multiunit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder are two story. Results show that duct leakage to the outside was reduced by an average of 59% through the use of manual methods, and by 90% in the units where the injected spray sealant was used. It was found that 73% of the leakage reduction in homes that were treated with injected spray sealant was attributable to the manual sealing done at boots, returns and the air handler. The cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.

  4. Effect of Initial Mixture Temperature on Flame Speed of Methane-Air, Propane-Air, and Ethylene-Air Mixtures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L

    1952-01-01

    Flame speeds based on the outer edge of the shadow cast by the laminar Bunsen cone were determined as functions of composition for methane-air mixtures at initial mixture temperatures ranging from -132 degrees to 342 degrees c and for propane-air and ethylene-air mixtures at initial mixture temperatures ranging from -73 degrees to 344 degrees c. The data showed that maximum flame speed increased with temperature at an increasing rate. The percentage change in flame speed with change in initial temperature for the three fuels followed the decreasing order, methane, propane, and ethylene. Empirical equations were determined for maximum flame speed as a function of initial temperature over the temperature range covered for each fuel. The observed effect of temperature on flame speed for each of the fuels was reasonably well predicted by either the thermal theory as presented by Semenov or the square-root law of Tanford and Pease.

  5. Modelling near subsurface temperature with mixed type boundary condition for transient air temperature and vertical groundwater flow

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev Ranjan; Ramana, D. V.; Singh, R. N.

    2012-10-01

    Near-subsurface temperatures have signatures of climate change. Thermal models of subsurface have been constructed by prescribing time dependent Dirichlet type boundary condition wherein the temperature at the soil surface is prescribed and depth distribution of temperature is obtained. In this formulation it is not possible to include the relationship between air temperatures and the temperature of soil surface. However, if one uses a Robin type boundary condition, a transfer coefficient relates the air and soil surface temperatures which helps to determine both the temperature at the surface and at depth given near surface air temperatures. This coefficient is a function of meteorological conditions and is readily available. We have developed such a thermal model of near subsurface region which includes both heat conduction and advection due to groundwater flows and have presented numerical results for changes in the temperature-depth profiles for different values of transfer coefficient and groundwater flux. There are significant changes in temperature and depth profiles due to changes in the transfer coefficient and groundwater flux. The analytical model will find applications in the interpretation of the borehole geothermal data to extract both climate and groundwater flow signals.

  6. The ocean skin temperature distribution and the bulk-skin temperature difference

    NASA Astrophysics Data System (ADS)

    Jessup, A.; Phadnis, K.; Atmane, M.; Zappa, C.; Loewen, M.; Asher, B.

    2008-12-01

    An experiment in a wind-wave flume was conducted to investigate the relationship between the bulk-skin temperature difference (deltaT) and the ocean skin temperature distribution (Tskin PDF). Skin temperature was measured with an infrared radiometer, bulk temperature was measured with a profiler, and the distribution was measured with an infrared camera. The gradient flux technique was used to measure the net heat flux, which was varied by controlling the wind speed, air-water temperature difference, and relative humidity. This data set provides a unique opportunity to compare direct measurements of deltaT to the Tskin PDF. We found that the percentile of the distribution of measured skin temperatures that corresponded to the measured sub-skin bulk temperature was in the 99.8th or higher percentile for 18 out of 21 cases and higher than the 99.9th percentile when deltaT > 0.15 K. This result shows that the bulk temperature corresponds to the maximum value in the Tskin PDF. We found that the analytical expression for fitting the distribution developed by Garbe et al. [JGR, 2004] was successfully only when the distribution was truncated at the 99.9th percentile, removing the warmest temperatures. However, because the measured bulk temperature (Tbulk) was found to correspond to these same warmest temperatures, especially when deltaT > 0.15 K, our results demonstrate that the method of Garbe et al. [2004] underestimates Tbulk and therefore deltaT. This conclusion was supported by comparing deltaT values from the GasEx01 cruise reported by Garbe et al. [2004] with deltaT from concurrent, direct measurements of Tskin and Tbulk The comparison showed that deltaT from the PDF fitting technique consistently underestimated the measured deltaT by an average factor of 5. We have shown that the skin layer is completely renewed by near-surface turbulence, which is a fundamental assumption of surface renewal theory. Paradoxically, we also have shown that a technique based on a

  7. Improving forecast skill by assimilation of quality-controlled AIRS temperature retrievals under partially cloudy conditions

    NASA Astrophysics Data System (ADS)

    Reale, O.; Susskind, J.; Rosenberg, R.; Brin, E.; Liu, E.; Riishojgaard, L. P.; Terry, J.; Jusem, J. C.

    2008-04-01

    The National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite is now recognized as an important contributor towards the improvement of weather forecasts. At this time only a small fraction of the total data produced by AIRS is being used by operational weather systems. In fact, in addition to effects of thinning and quality control, the only AIRS data assimilated are radiance observations of channels unaffected by clouds. Observations in mid-lower tropospheric sounding AIRS channels are assimilated primarily under completely clear-sky conditions, thus imposing a very severe limitation on the horizontal distribution of the AIRS-derived information. In this work it is shown that the ability to derive accurate temperature profiles from AIRS observations in partially cloud-contaminated areas can be utilized to further improve the impact of AIRS observations in a global model and forecasting system. The analyses produced by assimilating AIRS temperature profiles obtained under partial cloud cover result in a substantially colder representation of the northern hemisphere lower midtroposphere at higher latitudes. This temperature difference has a strong impact, through hydrostatic adjustment, in the midtropospheric geopotential heights, which causes a different representation of the polar vortex especially over northeastern Siberia and Alaska. The AIRS-induced anomaly propagates through the model's dynamics producing improved 5-day forecasts.

  8. Improving Forecast Skill by Assimilation of Quality-controlled AIRS Temperature Retrievals under Partially Cloudy Conditions

    NASA Technical Reports Server (NTRS)

    Reale, O.; Susskind, J.; Rosenberg, R.; Brin, E.; Riishojgaard, L.; Liu, E.; Terry, J.; Jusem, J. C.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite has been long recognized as an important contributor towards the improvement of weather forecasts. At this time only a small fraction of the total data produced by AIRS is being used by operational weather systems. In fact, in addition to effects of thinning and quality control, the only AIRS data assimilated are radiance observations of channels unaffected by clouds. Observations in mid-lower tropospheric sounding AIRS channels are assimilated primarily under completely clear-sky conditions, thus imposing a very severe limitation on the horizontal distribution of the AIRS-derived information. In this work it is shown that the ability to derive accurate temperature profiles from AIRS observations in partially cloud-contaminated areas can be utilized to further improve the impact of AIRS observations in a global model and forecasting system. The analyses produced by assimilating AIRS temperature profiles obtained under partial cloud cover result in a substantially colder representation of the northern hemisphere lower midtroposphere at higher latitudes. This temperature difference has a strong impact, through hydrostatic adjustment, in the midtropospheric geopotential heights, which causes a different representation of the polar vortex especially over northeastern Siberia and Alaska. The AIRS-induced anomaly propagates through the model's dynamics producing improved 5-day forecasts.

  9. Distribution and temperatures in odontology acupuncture

    NASA Astrophysics Data System (ADS)

    Rossi, Ricardo; Creus, Mariano; Gallego Lluesma, Eliseo

    2000-03-01

    Acupuncture has been recognized by W.H.O. in 1989. It admits this therapy and accepts more than forty point on the external ear. After making thermograms to Odontology patients treated with acupuncture, we were able to compare the temperature distribution maps and we found that they were quasi repetitive in the same zones on several patients for a specific illness. We made this technique available to different patients that lack good irrigation on face and neck with the aim to establish patterns.

  10. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  11. Experimental Evaluation of Indoor Air Distribution in High-Performance Residential Buildings: Part I. General Descriptions and Qualification Tests

    SciTech Connect

    Jalalzadeh, A. A.; Hancock, E.; Powell, D.

    2007-12-01

    The main objective of this project is to experimentally characterize an air distribution system in heating mode during a period of recovery from setback. The specific air distribution system under evaluation incorporates a high sidewall supply-air register/diffuser and a near-floor wall return air grille directly below. With this arrangement, the highest temperature difference between the supply air and the room can occur during the recovery period and create a favorable condition for stratification. The experimental approach will provide realistic input data and results for verification of computational fluid dynamics modeling.

  12. Improving Forecast Skill by Assimilation of AIRS Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The AIRS Version 5 retrieval algorithm, is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates delta T(p) for retrieved quantities and the use of these error estimates for Quality Control. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 deg. latitude X 0.67 deg longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates delta (p) were used as the uncertainty for each measurement in the data assimilation process. We compared forecasts analyses generated from the analyses done by assimilation of AIRS temperature profiles with three different sets of thresholds; Standard, Medium, and Tight. Assimilation of Quality Controlled AIRS temperature profiles significantly improve 5-7 day forecast skill compared to that obtained without the benefit of AIRS data in all of the cases studied. In addition, assimilation of Quality Controlled AIRS temperature soundings performs better than assimilation of AIRS observed radiances. Based on the experiments shown, Tight Quality Control of AIRS temperature profile performs best

  13. Effect of air preheat temperature and oxygen concentration on flame structure and emission

    SciTech Connect

    Bolz, S.; Gupta, A.K.

    1998-07-01

    The structure of turbulent diffusion flames with highly preheated combustion air (air preheat temperature in excess of 1,150 C) has been obtained using a specially designed regenerative combustion furnace. Propane gas was used as the fuel. Data have been obtained on the global flame features, spectral emission characteristics, spatial distribution of OH, CH and C{sub 2} species, and pollutants emission from the flames. The results have been obtained for various degrees of air preheat temperatures and O{sub 2} concentration in the air. The color of the flame was found to change from yellow to blue to bluish-green to green over the range of conditions examined. In some cases a hybrid color flame was also observed. The recorded images of the flame photographs were analyzed using color-analyzing software. The results show that thermal and chemical flame behavior strongly depends on the air preheat temperature and oxygen content in the air. The flame color was found to be bluish-green or green at very high air preheat temperatures and low-oxygen concentration. However, at high oxygen concentration the flame color was yellow. The flame volume was found to increase with increase in air-preheat temperature and decrease in oxygen concentration. The flame length showed a similar behavior. The concentrations of OH, CH and C{sub 2} increased with an increase in air preheat temperatures. These species exhibited a two-stage combustion behavior at low oxygen concentration and single stage combustion behavior at high oxygen concentration in the air. Stable flames were obtained for remarkably low equivalence ratios, which would not be possible with normal combustion air. Pollutants emission, including CO{sub 2} and NO{sub x} , was much lower with highly preheated combustion air at low O{sub 2} concentration than the normal air. The results also suggest uniform flow and flame thermal characteristics with conditioned highly preheated air. Highly preheated air combustion provides much

  14. Climatology of upper air temperature in the Eastern Mediterranean region

    NASA Astrophysics Data System (ADS)

    Philandras, C. M.; Nastos, P. T.; Kapsomenakis, I. N.; Repapis, C. C.

    2015-01-01

    The goal of this study is to contribute to the climatology of upper air temperature in the Mediterranean region, during the period 1965-2011. For this purpose, both radiosonde recordings and gridded reanalysis datasets of upper air temperature from National Center for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) were used for seven barometric levels at 850 hPa, 700 hPa, 500 hPa, 300 hPa, 200 hPa, 150 hPa and 100 hPa. Trends and variability of upper air temperature were analyzed on annual and seasonal basis. Further, the impact of atmospheric circulation, by means of correlation between upper air temperature at different barometric levels and specific climatic indices such as Mediterranean Oscillation Index (MOI), North Sea Caspian Pattern Index (NCPI) and North Atlantic Oscillation Index (NAOI), was also quantified. Our findings have given evidence that air temperature is increasing at a higher rate in lower/middle troposphere against upper, and this is very likely due to increasing greenhouse gas concentrations.

  15. Practical considerations for coil-wrapped Distributed Temperature Sensing setups

    NASA Astrophysics Data System (ADS)

    Solcerova, Anna; van Emmerik, Tim; Hilgersom, Koen; van de Giesen, Nick

    2015-04-01

    Fiber-optic Distributed Temperature Sensing (DTS) has been applied widely in hydrological and meteorological systems. For example, DTS has been used to measure streamflow, groundwater, soil moisture and temperature, air temperature, and lake energy fluxes. Many of these applications require a spatial monitoring resolution smaller than the minimum resolution of the DTS device. Therefore, measuring with these resolutions requires a custom made setup. To obtain both high temporal and high spatial resolution temperature measurements, fiber-optic cable is often wrapped around, and glued to, a coil, for example a PVC conduit. For these setups, it is often assumed that the construction characteristics (e.g., the coil material, shape, diameter) do not influence the DTS temperature measurements significantly. This study compares DTS datasets obtained during four measurement campaigns. The datasets were acquired using different setups, allowing to investigate the influence of the construction characteristics on the monitoring results. This comparative study suggests that the construction material, shape, diameter, and way of attachment can have a significant influence on the results. We present a qualitative and quantitative approximation of errors introduced through the selection of the construction, e.g., choice of coil material, influence of solar radiation, coil diameter, and cable attachment method. Our aim is to provide insight in factors that influence DTS measurements, which designers of future DTS measurements setups can take into account. Moreover, we present a number of solutions to minimize these errors for improved temperature retrieval using DTS.

  16. Two-dimensional distribution of flame fluctuation during highly preheated air combustion

    SciTech Connect

    Kitagawa, Kuniyuki; Konishi, Noriyuki; Arai, Norio; Gupta, A.K.

    1998-07-01

    The effect of highly preheated combustion air on the spatial distributions of flame fluctuations and temperature is presented here. Several propane flames, produced with the cross-flow diffusion of gas into highly preheated combustion air having controlled oxygen content, have been examined here by an array of thermocouples and a spectrovideo camera consisting of a monochromator and a high speed UV video camera. Spontaneous emission signal of flames produced from the regenerative combustion system was passed through the monochromator to construct a spectroscopically resolved image. The time resolved images were observed by the high speed UV video camera. Fast Fourier transform (FFT) was then applied to each image, at each pixel location of the detector in the video camera. This provided frequency-domain spectra, which then also allowed one to reconstruct the two-dimensional distribution of flame fluctuation. The results show that lame fluctuations in the high temperature combustion region are significantly lower with highly preheated combustion air. The two-dimensional profiles of the flame vibrational temperature, based on modified two-line method of two C{sub 2} bands, indicate that dilution of the preheated air drastically reduces the temperature gradient. The two-dimensional profiles of temperature as well as their fluctuations were measured by a thermocouple array at 24 points in the combustion chamber. The results indicated tendencies similar to those obtained spectroscopically, i.e., a drastic decrease in the flame fluctuations with highly preheated combustion air. The thermal field uniformity with high temperature combustion air was found to be improved even at low oxygen concentrations in the air.

  17. Estimating Air Temperature over the Tibetan Plateau Using MODIS Data

    NASA Astrophysics Data System (ADS)

    Huang, Fangfang; Ma, Weiqiang; Ma, Yaoming; Li, Maoshan; Hu, Zeyong

    2016-04-01

    Time series of MODIS land surface temperature (LST) data and normalized difference vegetation index (NDVI) data, combined with digital elevation model (DEM) and meterological data for 2001-2012, were used to estimate and map the spatial distribution of monthly mean air temperature over the Tibatan Plateau (TP). Time series and regression analysis of monthly mean land surface temperature (Ts) and air temperature (Ta) were both conducted by ordinary liner regression (OLR) and geographical weighted regression (GWR) methods. Analysis showed that GWR method had much better result (Adjusted R2 > 0.79, root mean square error (RMSE) is between 0.51° C and 1.12° C) for estimating Ta than OLR method. The GWR model, with MODIS LST, NDVI and altitude as independent variables, was used to estimate Ta over the Tibetan Plateau. All GWR models in each month were tested by F-test with significant level of α=0.01 and the regression coefficients were all tested by T-test with significant level of α=0.01. This illustrated that Ts, NDVI and altitude play an important role on estimating Ta over the Tibetan Plateau. Finally, the major conclusions are as follows: (1) GWR method has higher accuracy for estimating Ta than OLR (Adjusted R2=0.40˜0.78, RMSE=1.60˜4.38° C), and the Ta control precision can be up to 1.12° C. (2) Over the Northern TP, the range of Ta variation in January is -29.28 ˜ -5.0° C, and that in July is -0.53 ˜ 14.0° C. Ta in summer half year (from May to October) is between -15.92 ˜ 14.0° C. From October on, 0° C isothermal level is gradually declining from the altitude of 4˜5 kilometers, and hits the bottom with altitude of 3200 meters in December, and Ta is all under 0° C in January. 10° C isothermal level gradually starts rising from the altitude of 3200 meters from May, and reaches the highest level with altitude of 4˜5 kilometers in July. In addition, Ta in south slope of the Tanggula Mountains is obviously higher than that in the north slope. Ta

  18. Heat tolerance of higher plants cenosis to damaging air temperatures

    NASA Astrophysics Data System (ADS)

    Ushakova, Sofya; Shklavtsova, Ekaterina

    Designing sustained biological-technical life support systems (BTLSS) including higher plants as a part of a photosynthesizing unit, it is important to foresee the multi species cenosis reaction on either stress-factors. Air temperature changing in BTLSS (because of failure of a thermoregulation system) up to the values leading to irreversible damages of photosynthetic processes is one of those factors. However, it is possible to increase, within the certain limits, the plant cenosis tolerance to the unfavorable temperatures’ effect due to the choice of the higher plants possessing resistance both to elevated and to lowered air temperatures. Besides, the plants heat tolerance can be increased when subjecting them during their growing to the hardening off temperatures’ effect. Thus, we have come to the conclusion that it is possible to increase heat tolerance of multi species cenosis under the damaging effect of air temperature of 45 (°) СC.

  19. Innovative coal gasification system with high temperature air

    SciTech Connect

    Yoshikawa, K.; Katsushima, H.; Kasahara, M.; Hasegawa, T.; Tanaka, R.; Ootsuka, T.

    1997-12-31

    This paper proposes innovative coal gasification power generation systems where coal is gasified with high temperature air of about 1300K produced by gasified coal fuel gas. The main features of these systems are high thermal efficiency, low NO{sub x} emission, compact desulfurization and dust removal equipment and high efficiency molten slag removal with a very compact gasifier. Recent experimental results on the pebble bed coal gasifier appropriate for high temperature air coal gasification are reported, where 97.7% of coal ash is successfully caught in the pebble bed and extracted without clogging. A new concept of high temperature air preheating system is proposed which is characterized by its high reliability and low cost.

  20. Air distribution in the Borden aquifer during in situ air sparging.

    PubMed

    Tomlinson, D W; Thomson, N R; Johnson, R L; Redman, J D

    2003-12-01

    A field experiment was conducted at Canadian Forces Base Borden (CFB Borden) to assess the air distribution from a single in situ air sparging injection point. This aquifer consists of fine to medium sand deposited in horizontal layers. The permeability at the study location varied from 10(-10) to 10(-14) m2 and distinct low permeability horizons were present at approximately 1.2, 2.0, and 2.9 m below the water table. Prior to air injection, a 15x15-m portion of the vadose zone was excavated to the water table (approximately 1 m below ground surface) in order to visually observe air release distribution at the water table. The water table was actively maintained 5 cm above the excavated surface. The sparging system operated for a period of 7 days with an injection flow rate of 200 m3/days (5 scfm). The resulting subsurface air distribution was assessed using a variety of techniques including neutron logging, borehole and surface ground penetrating radar, piezometric head measurements, surface visualization, and hydraulic testing. Through this combination of tests, it was demonstrated that variations in permeability and, hence, capillary pressure at the site were sufficient to cause the injected air to spread laterally, forming stratigraphically trapped air pockets beneath the low permeability horizons. The formation of these air pockets eventually resulted in a buildup of capillary pressure that exceeded the air entry pressure and allowed some air to migrate up through the lower permeability layers. Each of the assessment techniques employed generated information at different spatial scales that prevented a direct comparison of the results from the various techniques; however, the results from all techniques proved to be critical in the interpretation of the experimental data. As a consequence, the different assessment techniques should not be viewed as alternatives, but rather as complimentary techniques. PMID:14607473

  1. Electron concentration distribution in a glow discharge in air flow

    NASA Astrophysics Data System (ADS)

    Mukhamedzianov, R. B.; Gaisin, F. M.; Sabitov, R. A.

    1989-04-01

    Electron concentration distributions in a glow discharge in longitudinal and vortex air flows are determined from the attenuation of the electromagnetic wave passing through the plasma using microwave probes. An analysis of the distribution curves obtained indicates that electron concentration decreases in the direction of the anode. This can be explained by charge diffusion toward the chamber walls and electron recombination and sticking within the discharge.

  2. The role of subsurface soil temperature feedbacks in summer surface air temperature variability over East Asia

    NASA Astrophysics Data System (ADS)

    Zhang, J.

    2012-12-01

    Soil temperature, an important component of land surface, can influence the climate through its effects on surface energy and water budgets and resulted changes in regional atmospheric circulation. However, the effects of soil temperature on climate variations have been less discussed. This study investigates the role of subsurface soil temperature feedbacks in influencing summer surface air temperature variability over East Asia by means of regional climate model (RCM) simulations. For this aim, two long-term simulations with and without subsurface soil temperature feedbacks are performed with the Weather Research and Forecasting (WRF) model. From our investigation, it is evident that subsurface soil temperature feedbacks make a dominant contribution to amplifying summer surface air temperature variability over the arid/semi-arid regions. Further analysis reveals that subsurface soil temperature exhibits an asymmetric effect on summer daytime and nighttime surface air temperature variability, with a stronger effect on daily minimum temperature variability than that of daily maximum temperature variability. This study provides the first RCM-based demonstration that subsurface soil temperature feedbacks play an important role in influencing climate variability over East Asia, such as summer surface air temperature. In the meanwhile, the model bias should be recognized. The results achieved by this study thus need to be further confirmed in a multi-model framework to eliminate the model dependence.

  3. Passive radiative cooling below ambient air temperature under direct sunlight.

    PubMed

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day. PMID:25428501

  4. Improved Temperature Sounding and Quality Control Methodology Using AIRS/AMSU Data: The AIRS Science Team Version 5 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John M.; Iredell, Lena; Keita, Fricky

    2009-01-01

    This paper describes the AIRS Science Team Version 5 retrieval algorithm in terms of its three most significant improvements over the methodology used in the AIRS Science Team Version 4 retrieval algorithm. Improved physics in Version 5 allows for use of AIRS clear column radiances in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of clear column radiances .R(sub i) for all channels. This new approach allows for the generation of more accurate values of .R(sub i) and T(p) under most cloud conditions. Secondly, Version 5 contains a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 also contains for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology, referred to as AIRS Version 5 AO, was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Results are shown comparing the relative performance of the AIRS Version 4, Version 5, and Version 5 AO for the single day, January 25, 2003. The Goddard DISC is now generating and distributing products derived using the AIRS Science Team Version 5 retrieval algorithm. This paper also described the Quality Control flags contained in the DISC AIRS/AMSU retrieval products and their intended use for scientific research purposes.

  5. Emission Controls Using Different Temperatures of Combustion Air

    PubMed Central

    Holubčík, Michal; Papučík, Štefan

    2014-01-01

    The effort of many manufacturers of heat sources is to achieve the maximum efficiency of energy transformation chemically bound in the fuel to heat. Therefore, it is necessary to streamline the combustion process and minimize the formation of emission during combustion. The paper presents an analysis of the combustion air temperature to the heat performance and emission parameters of burning biomass. In the second part of the paper the impact of different dendromass on formation of emissions in small heat source is evaluated. The measured results show that the regulation of the temperature of the combustion air has an effect on concentration of emissions from the combustion of biomass. PMID:24971376

  6. How do hydrodynamics in the critical zone relate to stream temperature distribution?

    NASA Astrophysics Data System (ADS)

    Isaacson, M. R.; Boutt, D. F.

    2013-12-01

    Rising air temperature and decreasing stream flow trends are predicted to result in corresponding increases in stream temperatures. As a result, the future of ectothermic stream fishes, which rely on seasonal and spatial temperature distributions for growth and survival, could be in jeopardy. Fortunately, contradicting stream temperature trends in forested headwater catchments suggest that non-climatic variables, such as baseflow indices and catchment geologic structure, may have an important confounding influence on the future of stream temperature. Most significantly, the annual variability of groundwater temperature has long been recognized as an important contributor to the advective heat budget of streams. In this study we move beyond the hyporheic zone to investigate the drivers of shallow groundwater temperature variability in the recharge zone of a shallow bedrock/till-mantled headwater catchment. We use isotopic and hydrometric analyses to investigate the potential influence that near surface hydrodynamics have on how air and shallow groundwater temperatures relate to baseflow temperature distributions. We use field studies and numerical analysis to investigate how conductive heat signals in the near surface behave with respect to soil saturation, thermal conductivity, and threshold discharge events. We examine how antecedent moisture conditions in the near-surface impact the thermal conduction of air temperature into shallow water tables, and how that translates to temperature distributions in baseflow. Our results also document step increases in groundwater temperature that coincide with threshold recharge events from the till-overburden into the deep bedrock aquifer. Similarly, temperatures in the shallow water table showed high variability with weak or no correlation to air temperature. Our investigation to helps demonstrate how the coupling of air and stream temperature can be mitigated by the hydrologic dynamics of the critical zone interface.

  7. Assessing the Potential of the AIRS Retrieved Surface Temperature for 6-Hour Average Temperature Forecast in River Forecast Centers

    NASA Astrophysics Data System (ADS)

    Ding, F.; Theobald, M.; Vollmer, B.; Savtchenko, A. K.; Hearty, T. J.; Esfandiari, A. E.

    2012-12-01

    Producing timely and accurate water forecast and information is the mission of National Weather Service River Forecast Centers (NWS RFCs) of National Oceanic and Atmospheric Administration (NOAA). The river forecast system in RFCs requires average surface temperature in the fixed 6-hour period 000-0600, 0600-1200, 1200-1800, and 1200-0000 UTC. The current logic of RFC temperature forecast relies on ingest of point values of daytime maximum and nighttime minimum temperature. Meanwhile, the mean temperature for the 6-hour period is estimated from a weighted average of daytime maximum and nighttime minimum temperature. The Atmospheric Infrared Sounder (AIRS) in the first high spectral resolution infrared sounder on board the Aqua satellite which was launched in May 2002 and follows a Sun-synchronous polar orbit. It is aimed to produce high resolution atmospheric profile and surface atmospheric parameters. As Aqua crosses the equator at about 1330 and 0130 local time, the AIRS retrieved surface temperature may represent daytime maximum and nighttime minimum value. Comparing to point observation from surface weather stations which are often sparse over the less-populated area and are unevenly distributed, satellite may obtain better area averaged observation. This test study assesses the potential of using AIRS retrieved surface temperature to forecast 6-hour average temperature for NWS RFCs. The California Nevada RFC is selected due to the poor coverage of surface observation in the mountainous region and spring snow melting. The study focuses on the March to May spring season when water from snowpack melting often plays important role in flood. AIRS retrieved temperature and surface weather station data set will be used to derive statistical weighting coefficient for 6-hour average temperature forecast. The resulting forecast biases and errors will be the main indicators of the potential usage. All study results will be presented in the meeting.

  8. Variability of Winter Air Temperature in Mid-Latitude Europe

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Ardizzone, J.; Atlas, R.; Bungato, D.; Cierniewski, J.; Jusem, J. C.; Przybylak, R.; Schubert, S.; Starr, D.; Walczewski, J.

    2002-01-01

    The aim of this paper is to report extreme winter/early-spring air temperature (hereinafter temperature) anomalies in mid-latitude Europe, and to discuss the underlying forcing to these interannual fluctuations. Warm advection from the North Atlantic in late winter controls the surface-air temperature, as indicated by the substantial correlation between the speed of the surface southwesterlies over the eastern North Atlantic (quantified by a specific Index Ina) and the 2-meter level air temperatures (hereinafter Ts) over Europe, 45-60 deg N, in winter. In mid-March and subsequently, the correlation drops drastically (quite often it is negative). This change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature: absorption of insolation replaces the warm advection as the dominant control. This forcing by maritime-air advection in winter was demonstrated in a previous publication, and is re-examined here in conjunction with extreme fluctuations of temperatures in Europe. We analyze here the interannual variability at its extreme by comparing warm-winter/early-spring of 1989/90 with the opposite scenario in 1995/96. For these two December-to-March periods the differences in the monthly mean temperature in Warsaw and Torun, Poland, range above 10 C. Short-term (shorter than a month) fluctuations of the temperature are likewise very strong. We conduct pentad-by-pentad analysis of the surface-maximum air temperature (hereinafter Tmax), in a selected location, examining the dependence on Ina. The increased cloudiness and higher amounts of total precipitable water, corollary effects to the warm low-level advection. in the 1989/90 winter, enhance the positive temperature anomalies. The analysis of the ocean surface winds is based on the Special Sensor Microwave/Imager (SSM/I) dataset; ascent rates, and over land wind data are from the European Centre for Medium-Range Weather Forecasts (ECMWF); maps of 2-m temperature, cloud

  9. AIRS Data Distribution at NASA GES DISC DAAC

    NASA Astrophysics Data System (ADS)

    Qin, J. C.; Cho, S.; Li, J. Y.; Phelps, C.

    2003-04-01

    The Atmospheric Infrared Sounder (AIRS) data product suite is now available at the Distributed Active Archive Center (DAAC) located at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) in Greenbelt, Maryland, USA. The Atmospheric Dynamics Data Support Team (atmdyn-dst@daac.gsfc.nasa.gov) is providing user services to help with understanding, accessing and utilizing AIRS data. These services include assistance with product ordering and distribution, access to online technical documentation and HDF-EOS format information, development of online data analysis tools, data mining, and educational resources. The AIRS data is available via the DAAC Search and Order interface (http://daac.gsfc.nasa.gov/data/), the EOS Data Gateway (http://eos.nasa.gov/imswelcome/) or the EOS Core System Datapool (ftp://g0dps01u.ecs.nasa.gov/). The AIRS data support website is located at http://daac.gsfc.nasa.gov/atmodyn/airs/. AIRS data products are a combination of AIRS, Advanced Microwave Sounding Unit (AMSU-A) and Humidity Sounder for Brazil (HSB) measurements. Global coverage by the instruments is obtained twice daily (day and night) and the data along the orbit is processed into 6-minute granules. AIRS alone has 2,378 channels measuring in the infrared range 3.74-15.4 mm and four channels measuring in the visible/near-infrared range 0.4-1.1mm. A web-based AIRS data subsetter is among the tools available to perform channel subsetting for geolocated calibrated radiances (Level 1B) as well as variable subsetting for atmospheric final retrievals (Level 2). Also useful is AIRS QuickLook, a data visualization application which allows users to view AIRS Level 1B data online for a specific channel prior to ordering or downloading data. Global map is also provided along with image to show geographic coverage of the granule and flight direction of the Aqua spacecraft. AIRS Level 1B data was released in March 2003 and Level 2 products are available May 2003.

  10. The coupling influence of airflow and temperature on the wall-wetted fuel film distribution

    SciTech Connect

    Cheng, Yong-sheng; Deng, Kangyao; Li, Tao

    2010-02-15

    The coupling influence of airflow and temperature on the two-dimensional distribution of the film resulted from fuel spray impinging on a horizontal flat wall was studied with experiments. The horizontal airflow direction was perpendicular to the vertical axis of the injection spray. The results show that, as air velocity increases, the film shape turns from a circle to an oblong. As wall temperature increases, the film area shrinks. Film thickness decreases as wall temperature or air velocity increases. The boiling point of the fuel is an important temperature to affect the film area and the film thickness. Film center moves more far away in the downstream direction as air velocity increases. For a certain air velocity, film center moves less far away as wall temperature increases. (author)

  11. A method to optimize sampling locations for measuring indoor air distributions

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Shen, Xiong; Li, Jianmin; Li, Bingye; Duan, Ran; Lin, Chao-Hsin; Liu, Junjie; Chen, Qingyan

    2015-02-01

    Indoor air distributions, such as the distributions of air temperature, air velocity, and contaminant concentrations, are very important to occupants' health and comfort in enclosed spaces. When point data is collected for interpolation to form field distributions, the sampling locations (the locations of the point sensors) have a significant effect on time invested, labor costs and measuring accuracy on field interpolation. This investigation compared two different sampling methods: the grid method and the gradient-based method, for determining sampling locations. The two methods were applied to obtain point air parameter data in an office room and in a section of an economy-class aircraft cabin. The point data obtained was then interpolated to form field distributions by the ordinary Kriging method. Our error analysis shows that the gradient-based sampling method has 32.6% smaller error of interpolation than the grid sampling method. We acquired the function between the interpolation errors and the sampling size (the number of sampling points). According to the function, the sampling size has an optimal value and the maximum sampling size can be determined by the sensor and system errors. This study recommends the gradient-based sampling method for measuring indoor air distributions.

  12. Pulsed positive streamer discharges in air at high temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Kamakura, Taku

    2016-08-01

    Atmospheric-pressure air pulsed positive streamer discharges are generated in a 13 mm point-plane gap in the temperature range of 293 K–1136 K, and the effect of temperature on the streamer discharges is studied. When the temperature is increased, the product of applied voltage and temperature VT proportional to the reduced electric field can be used as a primary parameter that determines some discharge parameters regardless of temperature. For a given VT, the transferred charge per pulse, streamer diameter, product of discharge energy and temperature, and length of secondary streamer are almost constant regardless of T, whereas the streamer velocity decreases with increasing T and the decay rate of the discharge current is proportional to 1/T. The N2(C) emission intensity is approximately determined by the discharge energy independent of T. These results are useful to predict the streamer discharge and its reactive species production when the ambient temperature is increased.

  13. Temperature gradients and clear-air turbulence probabilities

    NASA Technical Reports Server (NTRS)

    Bender, M. A.; Panofsky, H. A.; Peslen, C. A.

    1976-01-01

    In order to forecast clear-air turbulence (CAT) in jet aircraft flights, a study was conducted in which the data from a special-purpose instrument aboard a Boeing 747 jet airliner were compared with satellite-derived radiance gradients, conventional temperature gradients from analyzed maps, and temperature gradients obtained from a total air temperature sensor on the plane. The advantage of making use of satellite-derived data is that they are available worldwide without the need for radiosonde observations, which are scarce in many parts of the world. Major conclusions are that CAT probabilities are significantly higher over mountains than flat terrain, and that satellite radiance gradients appear to discriminate between CAT and no CAT better than conventional temperature gradients over flat lands, whereas the reverse is true over mountains, the differences between the two techniques being not large over mountains.

  14. The Effects of Air Pollution and Temperature on COPD.

    PubMed

    Hansel, Nadia N; McCormack, Meredith C; Kim, Victor

    2016-06-01

    Chronic Obstructive Pulmonary Disease (COPD) affects 12-16 million people in the United States and is the third-leading cause of death. In developed countries, smoking is the greatest risk factor for the development of COPD, but other exposures also contribute to the development and progression of the disease. Several studies suggest, though are not definitive, that outdoor air pollution exposure is linked to the prevalence and incidence of COPD. Among individuals with COPD, outdoor air pollutants are associated with loss of lung function and increased respiratory symptoms. In addition, outdoor air pollutants are also associated with COPD exacerbations and mortality. There is much less evidence for the impact of indoor air on COPD, especially in developed countries in residences without biomass exposure. The limited existing data suggests that indoor particulate matter and nitrogen dioxide concentrations are linked to increased respiratory symptoms among patients with COPD. In addition, with the projected increases in temperature and extreme weather events in the context of climate change there has been increased attention to the effects of heat exposure. Extremes of temperature-both heat and cold-have been associated with increased respiratory morbidity in COPD. Some studies also suggest that temperature may modify the effect of pollution exposure and though results are not conclusive, understanding factors that may modify susceptibility to air pollution in patients with COPD is of utmost importance. PMID:26683097

  15. Flame Speeds of Methane-Air, Propane-Air, and Ethylene-Air Mixtures at Low Initial Temperatures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L; Heimel, Sheldon

    1952-01-01

    Flame speeds were determined for methane-air, propane-air, and ethylene-air mixtures at -73 C and for methane-air mixtures at -132 C. The data extend the curves of maximum flame speed against initial mixture temperature previously established for the range from room temperature to 344 C. Empirical equations for maximum flame speed u(cm/ sec) as a function of initial mixture temperature T(sub O) were determined to be as follows: for methane, for T(sub O) from 141 to 615 K, u = 8 + 0.000160 T(sub O)(exp 2.11); for propane, for T(sub O) from 200 to 616 K, u = 10 + 0.000342 T(sub O)(exp 2.00); for ethylene, for T(sub O) from 200 to 617 K, u = 10 + 0.00259 T(sub O)(exp 1.74). Relative flame speeds at low initial temperatures were predicted within approximately 20 percent by either the thermal theory as presented by Semenov or by the diffusion theory of Tanford and Pease. The same order was found previously for high initial temperatures. The low-temperature data were also found to extend the linear correlations between maximum flame speed and calculated equilibrium active-radical concentrations, which were established by the previously reported high-temperature data.

  16. Geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppälä, A.; Randall, C. E.; Clilverd, M. A.; Rozanov, E.; Rodger, C. J.

    2009-10-01

    Here we use the ERA-40 and ECMWF operational surface level air temperature data sets from 1957 to 2006 to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the A p index. Previous modeling work has suggested that NO x produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in surface air temperatures (SATs). We find that during winter months, polar SATs in years with high A p index are different than in years with low A p index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, depending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings (SSWs) are excluded. We take into account solar irradiance variations, unlike previous analyses of geomagnetic effects in ERA-40 and operational data. Although we cannot conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating wintertime surface air temperatures. We tested our SAT results against variation in the Quasi Biennial Oscillation, the El Niño Southern Oscillation and the Southern Annular Mode. The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode, and we cannot robustly exclude a chance linkage between sea surface temperature variability and geomagnetic activity.

  17. Drier Air, Lower Temperatures, and Triggering of Paroxysmal Atrial Fibrillation

    PubMed Central

    Nguyen, Jennifer L.; Link, Mark S.; Luttmann-Gibson, Heike; Laden, Francine; Schwartz, Joel; Wessler, Benjamin S.; Mittleman, Murray A.; Gold, Diane R.; Dockery, Douglas W.

    2015-01-01

    Background The few previous studies on the onset of paroxysmal atrial fibrillation and meteorologic conditions have focused on outdoor temperature and hospital admissions, but hospital admissions are a crude indicator of atrial fibrillation incidence, and studies have found other weather measures in addition to temperature to be associated with cardiovascular outcomes. Methods Two hundred patients with dual chamber implantable cardioverter-defibrillators were enrolled and followed prospectively from 2006 to 2010 for new onset episodes of atrial fibrillation. The date and time of arrhythmia episodes documented by the implanted cardioverter-defibrillators were linked to meteorologic data and examined using a case-crossover analysis. We evaluated associations with outdoor temperature, apparent temperature, air pressure, and three measures of humidity (relative humidity, dew point, and absolute humidity). Results Of the 200 enrolled patients, 49 patients experienced 328 atrial fibrillation episodes lasting ≥30 seconds. Lower temperatures in the prior 48 hours were positively associated with atrial fibrillation. Lower absolute humidity (ie, drier air) had the strongest and most consistent association: each 0.5 g/m3 decrease in the prior 24 hours increased the odds of atrial fibrillation by 4% (95% confidence interval [CI]: 0%, 7%) and by 5% (95% CI: 2%, 8%) for exposure in the prior 2 hours. Results were similar for dew point but slightly weaker. Conclusions Recent exposure to drier air and lower temperatures were associated with the onset of atrial fibrillation among patients with known cardiac disease, supporting the hypothesis that meteorologic conditions trigger acute cardiovascular episodes. PMID:25756220

  18. Measurement of Vertical Temperature Distribution Using a Single Pair of Loudspeaker and Microphone with Acoustic Reflection

    NASA Astrophysics Data System (ADS)

    Saito, Ikumi; Mizutani, Koichi; Wakatsuki, Naoto; Kawabe, Satoshi

    2009-07-01

    It is important to maintain an adequate indoor temperature for comfortable working conditions, improvement of the rate of production of farm goods grown in greenhouses, and for saving energy. Thus, it is necessary to measure the temperature distribution to realize efficient air-conditioning systems. However, we have to use many conventional instruments to measure the temperature distribution. We proposed a measurement system for vertical temperature distribution using a single pair of loudspeaker (SP) and microphone (MIC), and acoustic reflectors. This system consists of SP, MIC, and multiple acoustic reflectors, and it can be used to determine the temperature distribution from the mean temperature of the area bounded by two reflectors. In experiments, the vertical temperature distribution was measured using five sound probes in a large facility every 20 s for 24 h. From the results of this experiment, it was verified that this system can be used to measure the vertical temperature distribution from the mean temperature of each area bounded by two reflectors. This system could be used to measure the change in the temperature distribution over time. We constructed a simple system to measure the vertical temperature distribution.

  19. Ambient air pollution, temperature and out-of-hospital coronary deaths in Shanghai, China.

    PubMed

    Dai, Jinping; Chen, Renjie; Meng, Xia; Yang, Changyuan; Zhao, Zhuohui; Kan, Haidong

    2015-08-01

    Few studies have evaluated the effects of ambient air pollution and temperature in triggering out-of-hospital coronary deaths (OHCDs) in China. We evaluated the associations of air pollution and temperature with daily OHCDs in Shanghai, China from 2006 to 2011. We applied an over-dispersed generalized additive model and a distributed lag nonlinear model to analyze the effects of air pollution and temperature, respectively. A 10 μg/m(3) increase in the present-day PM10, PM2.5, SO2, NO2 and CO were associated with increases in OHCD mortality of 0.49%, 0.68%, 0.88%, 1.60% and 0.08%, respectively. A 1 °C decrease below the minimum-mortality temperature corresponded to a 3.81% increase in OHCD mortality on lags days 0-21, and a 1 °C increase above minimum-mortality temperature corresponded to a 4.61% increase over lag days 0-3. No effects were found for in-hospital coronary deaths. This analysis suggests that air pollution, low temperature and high temperature may increase the risk of OHCDs. PMID:25875162

  20. Modeling daily average stream temperature from air temperature and watershed area

    NASA Astrophysics Data System (ADS)

    Butler, N. L.; Hunt, J. R.

    2012-12-01

    Habitat restoration efforts within watersheds require spatial and temporal estimates of water temperature for aquatic species especially species that migrate within watersheds at different life stages. Monitoring programs are not able to fully sample all aquatic environments within watersheds under the extreme conditions that determine long-term habitat viability. Under these circumstances a combination of selective monitoring and modeling are required for predicting future geospatial and temporal conditions. This study describes a model that is broadly applicable to different watersheds while using readily available regional air temperature data. Daily water temperature data from thirty-eight gauges with drainage areas from 2 km2 to 2000 km2 in the Sonoma Valley, Napa Valley, and Russian River Valley in California were used to develop, calibrate, and test a stream temperature model. Air temperature data from seven NOAA gauges provided the daily maximum and minimum air temperatures. The model was developed and calibrated using five years of data from the Sonoma Valley at ten water temperature gauges and a NOAA air temperature gauge. The daily average stream temperatures within this watershed were bounded by the preceding maximum and minimum air temperatures with smaller upstream watersheds being more dependent on the minimum air temperature than maximum air temperature. The model assumed a linear dependence on maximum and minimum air temperature with a weighting factor dependent on upstream area determined by error minimization using observed data. Fitted minimum air temperature weighting factors were consistent over all five years of data for each gauge, and they ranged from 0.75 for upstream drainage areas less than 2 km2 to 0.45 for upstream drainage areas greater than 100 km2. For the calibration data sets within the Sonoma Valley, the average error between the model estimated daily water temperature and the observed water temperature data ranged from 0.7

  1. Advances in Fast Response Acoustically Derived Air Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Bogoev, Ivan; Jacobsen, Larry; Horst, Thomas; Conrad, Benjamin

    2016-04-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity. The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  2. Fiber Optic Distributed Temperature Sensing of Recharge Basin Percolation Dynamics

    NASA Astrophysics Data System (ADS)

    Becker, M.; Allen, E. M.; Hutchinson, A.

    2014-12-01

    Infiltration (spreading) basins are a central component of managed aquifer and recovery operations around the world. The concept is simple. Water is percolated into an aquifer where it can be withdrawn at a later date. However, managing infiltration basins can be complicated by entrapped air in sediments, strata of low permeability, clogging of the recharge surface, and biological growth, among other factors. Understanding the dynamics of percolation in light of these complicating factors provides a basis for making management decisions that increase recharge efficiency. As an aid to understanding percolation dynamics, fiber optic distribute temperature sensing (DTS) was used to track heat as a tracer of water movement in an infiltration basin. The diurnal variation of temperature in the basin was sensed at depth. The time lag between the oscillating temperature signal at the surface and at depth indicated the velocity of water percolation. DTS fiber optic cables were installed horizontally along the basin and vertically in boreholes to measure percolation behavior. The horizontal cable was installed in trenches at 0.3 and 1 m depth, and the vertical cable was installed using direct push technology. The vertical cable was tightly wound to produce a factor of 10 increase in spatial resolution of temperature measurements. Temperature was thus measured every meter across the basin and every 10 cm to a depth of 10 m. Data from the trenched cable suggested homogeneous percolation across the basin, but infiltration rates were a function of stage indicating non-ideal percolation. Vertical temperature monitoring showed significant lateral flow in sediments underlying the basin both during saturation and operation of the basin. Deflections in the vertical temperature profile corresponded with fine grained layers identified in core samples indicating a transient perched water table condition. The three-dimensional flow in this relatively homogenous surficial geology calls

  3. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  4. CARS Temperature and Species Measurements For Air Vehicle Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Gord, James R.; Grisch, Frederic; Klimenko, Dmitry; Clauss, Walter

    2005-01-01

    The coherent anti-Stokes Raman spectroscopy (CARS) method has recently been used in the United States and Europe to probe several different types of propulsion systems for air vehicles. At NASA Langley Research Center in the United States, CARS has been used to simultaneously measure temperature and the mole fractions of N2, O2 and H2 in a supersonic combustor, representative of a scramjet engine. At Wright- Patterson Air Force Base in the United States, CARS has been used to simultaneously measure temperature and mole fractions of N2, O2 and CO2, in the exhaust stream of a liquid-fueled, gas-turbine combustor. At ONERA in France and the DLR in Germany researchers have used CARS to measure temperature and species concentrations in cryogenic LOX-H2 rocket combustion chambers. The primary aim of these measurements has been to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.

  5. Microwave temperature profiler for clear air turbulence prediction

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    1992-01-01

    A method is disclosed for determining Richardson Number, Ri, or its reciprocal, RRi, for clear air prediction using measured potential temperature and determining the vertical gradient of potential temperature, d(theta)/dz. Wind vector from the aircraft instrumentation versus potential temperature, dW/D(theta), is determined and multiplies by d(theta)/dz to obtain dW/dz. Richardson number or its reciprocal is then determined from the relationship Ri = K(d theta)/dz divided by (dW/dz squared) for use in detecting a trend toward a threshold value for the purpose of predicting clear air turbulence. Other equations for this basic relationship are disclosed together with the combination of other atmospheric observables using multiple regression techniques.

  6. Symmetric scaling properties in global surface air temperature anomalies

    NASA Astrophysics Data System (ADS)

    Varotsos, Costas A.; Efstathiou, Maria N.

    2015-08-01

    We have recently suggested "long-term memory" or internal long-range correlation within the time-series of land-surface air temperature (LSAT) anomalies in both hemispheres. For example, an increasing trend in the LSAT anomalies is followed by another one at a different time in a power-law fashion. However, our previous research was mainly focused on the overall long-term persistence, while in the present study, the upward and downward scaling dynamics of the LSAT anomalies are analysed, separately. Our results show that no significant fluctuation differences were found between the increments and decrements in LSAT anomalies, over the whole Earth and over each hemisphere, individually. On the contrary, the combination of land-surface air and sea-surface water temperature anomalies seemed to cause a departure from symmetry and the increments in the land and sea surface temperature anomalies appear to be more persistent than the decrements.

  7. The Effects of Air Pollution and Temperature on COPD

    PubMed Central

    Hansel, Nadia N.; McCormack, Meredith C.; Kim, Victor

    2016-01-01

    Chronic Obstructive Pulmonary Disease (COPD) affects 12–16 million people in the United States and is the third-leading cause of death. In developed countries, smoking is the greatest risk factor for the development of COPD, but other exposures also contribute to the development and progression of the disease. Several studies suggest, though are not definitive, that outdoor air pollution exposure is linked to the prevalence and incidence of COPD. Among individuals with COPD, outdoor air pollutants are associated with loss of lung function and increased respiratory symptoms. In addition, outdoor air pollutants are also associated with COPD exacerbations and mortality. There is much less evidence for the impact of indoor air on COPD, especially in developed countries in residences without biomass exposure. The limited existing data suggests that indoor particulate matter and nitrogen dioxide concentrations are linked to increased respiratory symptoms among patients with COPD. In addition, with the projected increases in temperature and extreme weather events in the context of climate change there has been increased attention to the effects of heat exposure. Extremes of temperature—both heat and cold—have been associated with increased respiratory morbidity in COPD. Some studies also suggest that temperature may modify the effect of pollution exposure and though results are not conclusive, understanding factors that may modify susceptibility to air pollution in patients with COPD is of utmost importance. PMID:26683097

  8. Air pollution, temperature and pediatric influenza in Brisbane, Australia.

    PubMed

    Xu, Zhiwei; Hu, Wenbiao; Williams, Gail; Clements, Archie C A; Kan, Haidong; Tong, Shilu

    2013-09-01

    Previous studies have demonstrated the importance of weather variables in influencing the incidence of influenza. However, the role of air pollution is often ignored in identifying the environmental drivers of influenza. This research aims to examine the impacts of air pollutants and temperature on the incidence of pediatric influenza in Brisbane, Australia. Lab-confirmed daily data on influenza counts among children aged 0-14years in Brisbane from 2001 January 1st to 2008 December 31st were retrieved from Queensland Health. Daily data on maximum and minimum temperatures for the same period were supplied by the Australian Bureau of Meteorology. Winter was chosen as the main study season due to it having the highest pediatric influenza incidence. Four Poisson log-linear regression models, with daily pediatric seasonal influenza counts as the outcome, were used to examine the impacts of air pollutants (i.e., ozone (O3), particulate matter≤10μm (PM10) and nitrogen dioxide (NO2)) and temperature (using a moving average of ten days for these variables) on pediatric influenza. The results show that mean temperature (Relative risk (RR): 0.86; 95% Confidence Interval (CI): 0.82-0.89) was negatively associated with pediatric seasonal influenza in Brisbane, and high concentrations of O3 (RR: 1.28; 95% CI: 1.25-1.31) and PM10 (RR: 1.11; 95% CI: 1.10-1.13) were associated with more pediatric influenza cases. There was a significant interaction effect (RR: 0.94; 95% CI: 0.93-0.95) between PM10 and mean temperature on pediatric influenza. Adding the interaction term between mean temperature and PM10 substantially improved the model fit. This study provides evidence that PM10 needs to be taken into account when evaluating the temperature-influenza relationship. O3 was also an important predictor, independent of temperature. PMID:23911338

  9. Requirements for high-temperature air-cooled central receivers

    SciTech Connect

    Wright, J.D.; Copeland, R.J.

    1983-12-01

    The design of solar thermal central receivers will be shaped by the end user's need for energy. This paper identifies the requirements for receivers supplying heat for industrial processes or electric power generation in the temperature range 540 to 1000/sup 0/C and evaluates the effects of the requirements on air-cooled central receivers. Potential IPH applications are identified as large baseload users that are located some distance from the receiver. In the electric power application, the receiver must supply heat to a pressurized gas power cycle. The difficulty in providing cost-effective thermal transport and thermal storage for air-cooled receivers is a critical problem.

  10. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    SciTech Connect

    Sherman, Max; Sherman, Max H.; Walker, Iain S.

    2008-05-01

    The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

  11. Can air temperature be used to project influences of climate change on stream temperature?

    USGS Publications Warehouse

    Arismendi, Ivan; Safeeq, Mohammad; Dunham, Jason B.; Johnson, Sherri L.

    2014-01-01

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To address this knowledge gap, we examined the performance of two widely used linear and nonlinear regression models that predict stream temperatures based on air temperatures. We evaluated model performance and temporal stability of model parameters in a suite of regulated and unregulated streams with 11–44 years of stream temperature data. Although such models may have validity when predicting stream temperatures within the span of time that corresponds to the data used to develop them, model predictions did not transfer well to other time periods. Validation of model predictions of most recent stream temperatures, based on air temperature–stream temperature relationships from previous time periods often showed poor performance when compared with observed stream temperatures. Overall, model predictions were less robust in regulated streams and they frequently failed in detecting the coldest and warmest temperatures within all sites. In many cases, the magnitude of errors in these predictions falls within a range that equals or exceeds the magnitude of future projections of climate-related changes in stream temperatures reported for the region we studied (between 0.5 and 3.0 °C by 2080). The limited ability of regression-based statistical models to accurately project stream temperatures over time likely stems from the fact that underlying processes at play, namely the heat budgets of air and water, are distinctive in each medium and vary among localities and through time.

  12. Measurements of surface air temperatures in Lombok with low cost miniature data loggers

    NASA Astrophysics Data System (ADS)

    Sudiarta, I. W.; Yadnya, M. S.; Mardiana, L.; Kuripan, I. N.

    2014-09-01

    The global warming and climate change are two of our major problems in this decade. Local impacts of global warming need to be investigated since it depends on local conditions. Understanding variability of local weather especially surface air temperature requires many observations, not only periodic but also covers large area. In this paper, we report our progress in developing low cost miniature data loggers for temperature measurements. The data loggers are based on microcontrollers ATMega8L and 10 kΩ thermistors. Calibration results in laboratory and in field have indicated that the temperature obtained by data loggers shows good agreement with thermometer readings. It is found that errors of temperature measurements are less than 0.3 °C. We have performed preliminary temperature measurements in Lombok Island using twenty data loggers for about one week duration. Temperature variation in Lombok shows localized temperature distribution that is affected by position and topography.

  13. Can air temperatures be used to project influences of climate change on stream temperatures?

    NASA Astrophysics Data System (ADS)

    Arismendi, I.; Safeeq, M.; Dunham, J.; Johnson, S. L.

    2013-12-01

    The lack of available in situ stream temperature records at broad spatiotemporal scales have been recognized as a major limiting factor in the understanding of thermal behavior of stream and river systems. This has motivated the promotion of a wide variety of models that use surrogates for stream temperatures including a regression approach that uses air temperature as the predictor variable. We investigate the long-term performance of widely used linear and non-linear regression models between air and stream temperatures to project the latter in future climate scenarios. Specifically, we examine the temporal variability of the parameters that define each of these models in long-term stream and air temperature datasets representing relatively natural and highly human-influenced streams. We selected 25 sites with long-term records that monitored year-round daily measurements of stream temperature (daily mean) in the western United States (California, Oregon, Idaho, Washington, and Alaska). Surface air temperature data from each site was not available. Therefore, we calculated daily mean surface air temperature for each site in contiguous US from a 1/16-degree resolution gridded surface temperature data. Our findings highlight several limitations that are endemic to linear or nonlinear regressions that have been applied in many recent attempts to project future stream temperatures based on air temperature. Our results also show that applications over longer time periods, as well as extrapolation of model predictions to project future stream temperatures are unlikely to be reliable. Although we did not analyze a broad range of stream types at a continental or global extent, our analysis of stream temperatures within the set of streams considered herein was more than sufficient to illustrate a number of specific limitations associated with statistical projections of stream temperature based on air temperature. Radar plots of Nash-Sutcliffe efficiency (NSE) values for

  14. Heat transfer and pressure distributions on hemisphere-cylinders in methane-air combustion products at Mach 7

    NASA Technical Reports Server (NTRS)

    Weinstein, I.

    1973-01-01

    Heat-transfer and pressure distributions were measured over the surfaces of three hemisphere-cylinder models tested at a nominal Mach number of 7 in the Langley 8-foot high-temperature structures tunnel which uses methane-air products of combustion as a test medium. The results showed that the heat-transfer and pressure distributions over the surface of the models were in good agreement with experimental data obtained in air and also with theoretical predictions.

  15. The effect of air temperature and human thermal indices on mortality in Athens, Greece

    NASA Astrophysics Data System (ADS)

    Nastos, Panagiotis T.; Matzarakis, Andreas

    2012-05-01

    , the air temperature and PET/UTCI exceedances over specific thresholds depending on the distribution reveal that, very hot conditions are risk factors for the daily mortality.

  16. Persistence analysis of daily mean air temperature variation in Georgia

    NASA Astrophysics Data System (ADS)

    Matcharashvili, Teimuraz; Chelidze, Tamaz; Zhukova, Natalia; Mepharidze, Ekaterine; Sborshchikov, Alexander

    2010-05-01

    Extrapolation of observed linear trends is common practice in climate change researches on different scales. In this respect it is important, that though global warming is well established, the question of persistence of trends on regional scales remain controversial. Indeed, climate change for specific region and time by definition includes more than the simple average of weather conditions. Either random events or long-term changes, or more often combinations of them, can bring about significant swings in a variety of climate indicators from one time period to the next. Therefore in order to achieve further understanding of dynamics of climate change the character of stable peculiarities of analyzed dynamics should be investigated. Analysis of the character of long range correlations in climatological time series or peculiarities of their inherent memory is motivated exactly by this goal. Such analysis carried out on a different scales may help to understand spatial and temporal features of regional climate change. In present work the problem of persistence of observed trends in air temperature time series in Georgia was investigated. Longest available mean daily temperature time series of Tbilisi (1890-2008) were analyzed. Time series on shorter time scales of five stations in the West and East Georgia also were considered as well as monthly mean temperature time series of five stations. Additionally, temporally and spatially averaged daily and monthly mean air temperature time series were analyzed. Extent of persistence in mentioned time series were evaluated using R/S analysis calculation. Detrended and Multifractal Detrended Fluctuation Analysis as well as multi scaling analysis based on CWT have been used. Our results indicate that variation of daily or monthly mean temperatures reveals clear antipersistence on whole available time scale. It seems that antipersistence on global scale is general characteristics of mean air temperature variation and is not

  17. Historical changes in air temperature are evident in temperature fluxes measured in the sub-soil.

    NASA Astrophysics Data System (ADS)

    Fraser, Fiona; McCormick, Benjamin; Hallett, Paul; Wookey, Philip; Hopkins, David

    2013-04-01

    Warming trends in soil temperature have implications for a plethora of soil processes, including exacerbated climate change through the net release of greenhouse gases. Whereas long-term datasets of air temperature changes are abundant, a search of scientific literature reveals a lack of information on soil temperature changes and their specific consequences. We analysed five long-term data series collected in the UK (Dundee and Armagh) and Canada (Charlottetown, Ottawa and Swift Current). They show that the temperatures of soils at 5 - 20 cm depth, and sub-soils at 30 - 150 cm depth, increased in line with air temperature changes over the period 1958 - 2003. Differences were found, however, between soil and air temperatures when data were sub-divided into seasons. In spring, soil temperature warming ranged from 0.19°C at 30 cm in Armagh to 4.30°C at 50 cm in Charlottetown. In summer, however, the difference was smaller and ranged from 0.21°C at 10 cm in Ottawa to 3.70°C at 50 cm in Charlottetown. Winter temperatures were warmer in soil and ranged from 0.45°C at 5 cm in Charlottetown to 3.76°C at 150 cm in Charlottetown. There were significant trends in changes to soil temperature over time, whereas air temperature trends tended only to be significant in winter (changes range from 1.27°C in Armagh to 3.35°C in Swift Current). Differences in the seasonal warming patterns between air and soil temperatures have potential implications for the parameterization of models of biogeochemical cycling.

  18. RELATIONSHIP BETWEEN WATER TEMPERATURES AND AIR TEMPERATURES FOR CENTRAL US STREAMS

    EPA Science Inventory

    An analysis of the relationship between air and stream water temperature records for 11 rivers located in the central United States was conducted. he reliability of commonly available water temperature records was shown to be of unequal quality. imple linear relationships between...

  19. Air Temperature Estimation over the Third Pole Using MODIS LST

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Zhang, F.; Ye, M.; Che, T.

    2015-12-01

    The Third Pole is centered on the Tibetan Plateau (TP), which is the highest large plateau around the world with extremely complex terrain and climate conditions, resulting in very scarce meteorological stations especially in the vast west region. For these unobserved areas, the remotely sensed land surface temperature (LST) can greatly contribute to air temperature estimation. In our research we utilized the MODIS LST production from both TERRA and AQUA to estimate daily mean air temperature over the TP using multiple statistical models. Other variables used in the models include longitudes, latitudes, Julian day, solar zenith, NDVI and elevation. To select a relatively optimal model, we chose six popular and representative statistical models as candidate models including the multiple linear regression (MLR), the partial least squares regression (PLS), back propagate neural network (BPNN), support vector regression (SVR), random forests (RF) and Cubist regression (CR). The performances of the six models were compared for each possible combination of LSTs at four satellite pass times and two quality situations. Eventually a ranking table consisting of optimal models for each LST combination and quality situation was built up based on the validation results. By this means, the final production is generated providing daily mean air temperature with the least cloud blockage and acceptable accuracy. The average RMSEs of cross validation are mostly around 2℃. Stratified validations were also performed to test the expansibility to unobserved and high-altitude areas of the final models selected.

  20. Exploration of health risks related to air pollution and temperature in three Latin American cities

    NASA Astrophysics Data System (ADS)

    Romero-Lankao, P.; Borbor Cordova, M.; Qin, H.

    2013-12-01

    We explore whether the health risks related to air pollution and temperature extremes are spatially and socioeconomically differentiated within three Latin American cities: Bogota, Colombia, Mexico City, Mexico, and Santiago, Chile. Based on a theoretical review of three relevant approaches to risk analysis (risk society, environmental justice, and urban vulnerability as impact), we hypothesize that health risks from exposure to air pollution and temperature in these cities do not necessarily depend on socio-economic inequalities. To test this hypothesis, we gathered, validated, and analyzed temperature, air pollution, mortality and socioeconomic vulnerability data from the three study cities. Our results show the association between air pollution levels and socioeconomic vulnerabilities did not always correlate within the study cities. Furthermore, the spatial differences in socioeconomic vulnerabilities within cities do not necessarily correspond with the spatial distribution of health impacts. The present study improves our understanding of the multifaceted nature of health risks and vulnerabilities associated with global environmental change. The findings suggest that health risks from atmospheric conditions and pollutants exist without boundaries or social distinctions, even exhibiting characteristics of a boomerang effect (i.e., affecting rich and poor alike) on a smaller scale such as areas within urban regions. We used human mortality, a severe impact, to measure health risks from air pollution and extreme temperatures. Public health data of better quality (e.g., morbidity, hospital visits) are needed for future research to advance our understanding of the nature of health risks related to climate hazards.

  1. Fast tomographic measurements of temperature in an air plasma cutting torch

    NASA Astrophysics Data System (ADS)

    Hlína, J.; Šonský, J.; Gruber, J.; Cressault, Y.

    2016-03-01

    Temperatures in an air plasma jet were measured using a tomographic experimental arrangement providing time-resolved scans of plasma optical radiation in the spectral band 559-601 nm from two directions. The acquired data and subsequent processing yielded time-resolved temperature distributions in measurement planes perpendicular to the plasma jet axis with a temporal resolution of 1 μs. The measurement system and evaluation methods afforded detailed information about the influence of high-frequency ripple modulation of the arc current on plasma temperature.

  2. Numerical analysis of air-flow and temperature field in a passenger car compartment

    NASA Astrophysics Data System (ADS)

    Kamar, Haslinda Mohamed; Kamsah, Nazri; Mohammad Nor, Ahmad Miski

    2012-06-01

    This paper presents a numerical study on the temperature field inside a passenger's compartment of a Proton Wira saloon car using computational fluid dynamics (CFD) method. The main goal is to investigate the effects of different glazing types applied onto the front and rear windscreens of the car on the distribution of air-temperature inside the passenger compartment in the steady-state conditions. The air-flow condition in the passenger's compartment is also investigated. Fluent CFD software was used to develop a three-dimensional symmetrical model of the passenger's compartment. Simplified representations of the driver and one rear passenger were incorporated into the CFD model of the passenger's compartment. Two types of glazing were considered namely clear insulated laminated tint (CIL) with a shading coefficient of 0.78 and green insulated laminate tint (GIL) with a shading coefficient of 0.5. Results of the CFD analysis were compared with those obtained when the windscreens are made up of clear glass having a shading coefficient of 0.86. Results of the CFD analysis show that for a given glazing material, the temperature of the air around the driver is slightly lower than the air around the rear passenger. Also, the use of GIL glazing material on both the front and rear windscreens significantly reduces the air temperature inside the passenger's compartment of the car. This contributes to a better thermal comfort condition to the occupants. Swirling air flow condition occurs in the passenger compartment. The air-flow intensity and velocity are higher along the side wall of the passenger's compartment compared to that along the middle section of the compartment. It was also found that the use of glazing materials on both the front and rear windscreen has no significant effects on the air-flow condition inside the passenger's compartment of the car.

  3. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect

    Waye, S.; Musselman, M.; King, C.

    2014-09-01

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  4. Global surface air temperature variations: 1851-1984

    SciTech Connect

    Jones, P.D.; Raper, S.C.B.; Kelly, P.M.

    1986-11-01

    Many attempts have been made to combine station surface air temperature data into an average for the Northern Hemisphere. Fewer attempts have been made for the Southern Hemisphere because of the unavailability of data from the Antarctic mainland before the 1950s and the uncertainty of making a hemispheric estimate based solely on land-based analyses for a hemisphere that is 80% ocean. Past estimates have been based largely on data from the World Weather Records (Smithsonian Institution, 1927, 1935, 1947, and U.S. Weather Bureau, 1959-82) and have been made without considerable effort to detect and correct station inhomogeneities. Better estimates for the Southern Hemisphere are now possible because of the availability of 30 years of climatological data from Antarctica. The mean monthly surface air temperature anomalies presented in this package for the than those previously published because of the incorporation of data previously hidden away in archives and the analysis of station homogeneity before estimation.

  5. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays

    NASA Astrophysics Data System (ADS)

    Mao, C.-P.; Oechsle, V.; Chigier, N.

    1987-03-01

    Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.

  6. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays

    NASA Technical Reports Server (NTRS)

    Mao, C.-P.; Oechsle, V.; Chigier, N.

    1987-01-01

    Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.

  7. Industrial applications of MHD high temperature air heater technology

    NASA Astrophysics Data System (ADS)

    Saari, D. P.; Fenstermacher, J. E.; White, L. R.; Marksberry, C. L.

    1981-12-01

    The MHD high temperature air heater (HTAH) requires technology beyond the current state-of-the-art of industrial regenerative heaters. Specific aspects of HTAH technology which may find other application include refractory materials and valves resistant to the high temperature, corrosive, slag-bearing gas, materials resistant to cyclic thermal stresses, high temperature support structures for the cored brick bed, regenerative heater operating techniques for preventing accumulation of slag in the heater, and analytical tools for computing regenerative heater size, cost, and performance. Areas where HTAH technology may find application include acetylene/ethylene production processes, flash pyrolysis of coal, high temperature gas reactors, coal gasification processes, various metallurgical processes, waste incineration, and improvements to existing regenerator technology such as blast furnace stoves and glass tank regenerators.

  8. Evidence of Lunar Phase Influence on Global Surface Air Temperatures

    NASA Technical Reports Server (NTRS)

    Anyamba, Ebby; Susskind, Joel

    2000-01-01

    Intraseasonal oscillations appearing in a newly available 20-year record of satellite-derived surface air temperature are composited with respect to the lunar phase. Polar regions exhibit strong lunar phase modulation with higher temperatures occurs near full moon and lower temperatures at new moon, in agreement with previous studies. The polar response to the apparent lunar forcing is shown to be most robust in the winter months when solar influence is minimum. In addition, the response appears to be influenced by ENSO events. The highest mean temperature range between full moon and new moon in the polar region between 60 deg and 90 deg latitude was recorded in 1983, 1986/87, and 1990/91. Although the largest lunar phase signal is in the polar regions, there is a tendency for meridional equatorward progression of anomalies in both hemispheres so that the warning in the tropics occurs at the time of the new moon.

  9. Soil Temperature Variability in Complex Terrain measured using Distributed a Fiber-Optic Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Seyfried, M. S.; Link, T. E.

    2013-12-01

    Soil temperature (Ts) exerts critical environmental controls on hydrologic and biogeochemical processes. Rates of carbon cycling, mineral weathering, infiltration and snow melt are all influenced by Ts. Although broadly reflective of the climate, Ts is sensitive to local variations in cover (vegetative, litter, snow), topography (slope, aspect, position), and soil properties (texture, water content), resulting in a spatially and temporally complex distribution of Ts across the landscape. Understanding and quantifying the processes controlled by Ts requires an understanding of that distribution. Relatively few spatially distributed field Ts data exist, partly because traditional Ts data are point measurements. A relatively new technology, fiber optic distributed temperature system (FO-DTS), has the potential to provide such data but has not been rigorously evaluated in the context of remote, long term field research. We installed FO-DTS in a small experimental watershed in the Reynolds Creek Experimental Watershed (RCEW) in the Owyhee Mountains of SW Idaho. The watershed is characterized by complex terrain and a seasonal snow cover. Our objectives are to: (i) evaluate the applicability of fiber optic DTS to remote field environments and (ii) to describe the spatial and temporal variability of soil temperature in complex terrain influenced by a variable snow cover. We installed fiber optic cable at a depth of 10 cm in contrasting snow accumulation and topographic environments and monitored temperature along 750 m with DTS. We found that the DTS can provide accurate Ts data (+/- .4°C) that resolves Ts changes of about 0.03°C at a spatial scale of 1 m with occasional calibration under conditions with an ambient temperature range of 50°C. We note that there are site-specific limitations related cable installation and destruction by local fauna. The FO-DTS provide unique insight into the spatial and temporal variability of Ts in a landscape. We found strong seasonal

  10. Antarctic Sea ice variations and seasonal air temperature relationships

    NASA Technical Reports Server (NTRS)

    Weatherly, John W.; Walsh, John E.; Zwally, H. J.

    1991-01-01

    Data through 1987 are used to determine the regional and seasonal dependencies of recent trends of Antarctic temperature and sea ice. Lead-lag relationships involving regional sea ice and air temperature are systematically evaluated, with an eye toward the ice-temperature feedbacks that may influence climatic change. Over the 1958-1087 period the temperature trends are positive in all seasons. For the 15 years (l973-l987) for which ice data are available, the trends are predominantly positive only in winter and summer, and are most strongly positive over the Antarctic Peninsula. The spatially aggregated trend of temperature for this latter period is small but positive, while the corresponding trend of ice coverage is small but negative. Lag correlations between seasonal anomalies of the two variables are generally stronger with ice lagging the summer temperatures and with ice leading the winter temperatures. The implication is that summer temperatures predispose the near-surface waters to above-or below-normal ice coverage in the following fall and winter.

  11. Equatorial range limits of an intertidal ectotherm are more linked to water than air temperature.

    PubMed

    Seabra, Rui; Wethey, David S; Santos, António M; Gomes, Filipa; Lima, Fernando P

    2016-10-01

    As climate change is expected to impose increasing thermal stress on intertidal organisms, understanding the mechanisms by which body temperatures translate into major biogeographic patterns is of paramount importance. We exposed individuals of the limpet Patella vulgata Linnaeus, 1758, to realistic experimental treatments aimed at disentangling the contribution of water and air temperature for the buildup of thermal stress. Treatments were designed based on temperature data collected at the microhabitat level, from 15 shores along the Atlantic European coast spanning nearly 20° of latitude. Cardiac activity data indicated that thermal stress levels in P. vulgata are directly linked to elevated water temperature, while high air temperature is only stressful if water temperature is also high. In addition, the analysis of the link between population densities and thermal regimes at the studied locations suggests that the occurrence of elevated water temperature may represent a threshold P. vulgata is unable to tolerate. By combining projected temperatures with the temperature threshold identified, we show that climate change will likely result in the westward expansion of the historical distribution gap in the Bay of Biscay (southwest France), and northward contraction of the southern range limit in south Portugal. These findings suggest that even a minor relaxing of the upwelling off northwest Iberia could lead to a dramatic increase in thermal stress, with major consequences for the structure and functioning of the intertidal communities along Iberian rocky shores. PMID:27109165

  12. Modeling 2 m air temperatures over mountain glaciers: Exploring the influence of katabatic cooling and external warming

    NASA Astrophysics Data System (ADS)

    Ayala, A.; Pellicciotti, F.; Shea, J. M.

    2015-04-01

    Air temperature is one of the most relevant input variables for snow and ice melt calculations. However, local meteorological conditions, complex topography, and logistical concerns in glacierized regions make the measuring and modeling of air temperature a difficult task. In this study, we investigate the spatial distribution of 2 m air temperature over mountain glaciers and propose a modification to an existing model to improve its representation. Spatially distributed meteorological data from Haut Glacier d'Arolla (Switzerland), Place (Canada), and Juncal Norte (Chile) Glaciers are used to examine approximate flow line temperatures during their respective ablation seasons. During warm conditions (off-glacier temperatures well above 0°C), observed air temperatures in the upper reaches of Place Glacier and Haut Glacier d'Arolla decrease down glacier along the approximate flow line. At Juncal Norte and Haut Glacier d'Arolla, an increase in air temperature is observed over the glacier tongue. While the temperature behavior over the upper part can be explained by the cooling effect of the glacier surface, the temperature increase over the glacier tongue may be caused by several processes induced by the surrounding warm atmosphere. In order to capture the latter effect, we add an additional term to the Greuell and Böhm (GB) thermodynamic glacier wind model. For high off-glacier temperatures, the modified GB model reduces root-mean-square error up to 32% and provides a new approach for distributing air temperature over mountain glaciers as a function of off-glacier temperatures and approximate glacier flow lines.

  13. Dynamic models of heating and cooling coils with one-dimensional air distribution

    NASA Astrophysics Data System (ADS)

    Wang, Zijie; Krauss, G.

    1993-06-01

    This paper presents the simulation models of the plate-fin, air-to-water (or water vapour) heat exchangers used as air-heating or air-cooling and dehumidifying coils in the HVAC (Heating, Ventilation and Air-Conditioning) systems. The thermal models are used to calculate the heat exchange between distributing air and coil pipes and outlet temperatures of air and heat or chilled fluid. The aerodynamic models are used to account for the pressure drop of the air crossing the coil tubes. They can also be used to optimize the structures of such coils. The models are based on principal laws of heat and mass conservation and fluid mechanics. They are transparent and easy to use. In our work, a coil is considered as an assembly of numbers of basic elements in which all the state variables are unique. Therefore we can conveniently simulate the coils with different structures and different geometric parameters. Two modular programs TRNSYS (Transient System Simulation) and ESACAP are utilized as supporting softwares which make the programming and simulation greatly simplified. The coil elements and a real coil were simulated. The results were compared with the data offered by the manufacturer (company SOFICA) and also with those obtained using critical methods such as NTU method, etc. and good agreement is attained.

  14. High efficiency power generation from coal and wastes utilizing high temperature air combustion technology (Part 2: Thermal performance of compact high temperature air preheater and MEET boiler)

    SciTech Connect

    Iwahashi, Takashi; Kosaka, Hitoshi; Yoshida, Nobuhiro

    1998-07-01

    The compact high temperature air preheater and the MEET boiler, which are critical components of the MEET system, are the direct evolutions of the high temperature air combustion technology. Innovative hardware concept for a compact high temperature air preheater has been proposed, and preliminary experiment using the MEET-I high temperature air preheater based on this concept successfully demonstrated continuous high temperature air generation with almost no temperature fluctuation. A preliminary heat transfer calculation for the MEET boiler showed that regenerative combustion using high temperature air is quite effective for radiative heat transfer augmentation in a boiler, which will lead to significant downsizing of a boiler. The heat transfer characteristics in the MEET boiler were experimentally measured and the heat transfer promotion effect and the uniform heat transfer field were confirmed. Moreover, it was understood that excellent combustion with the low BTU gas of about 3,000 kcal/m{sup 3} was done.

  15. An Experimental Investigation Into the Temperature Profile of a Compliant Foil Air Bearing

    NASA Technical Reports Server (NTRS)

    Radil, Kevin; Zeszotek, Michelle

    2004-01-01

    A series of tests was performed to determine the internal temperature profile in a compliant bump-type foil journal air bearing operating at room temperature under various speeds and load conditions. The temperature profile was collected by instrumenting a foil bearing with nine, type K thermocouples arranged in the center and along the bearing s edges in order to measure local temperatures and estimate thermal gradients in the axial and circumferential directions. To facilitate the measurement of maximum temperatures from viscous shearing in the air film, the thermocouples were tack welded to the backside of the bumps that were in direct contact with the top foil. The mating journal was coated with a high temperature solid lubricant that, together with the bearing, underwent high temperature start-stop cycles to produce a smooth, steady-state run-in surface. Tests were conducted at speeds from 20 to 50 krpm and loads ranging from 9 to 222 N. The results indicate that, over the conditions tested, both journal rotational speed and radial load are responsible for heat generation with speed playing a more significant role in the magnitude of the temperatures. The temperature distribution was nearly symmetric about the bearing center at 20 and 30 krpm but became slightly skewed toward one side at 40 and 50 krpm. Surprisingly, the maximum temperatures did not occur at the bearing edge where the minimum film thickness is expected but rather in the middle of the bearing where analytical investigations have predicted the air film to be much thicker. Thermal gradients were common during testing and were strongest in the axial direction from the middle of the bearing to its edges, reaching 3.78 8C/mm. The temperature profile indicated the circumferential thermal gradients were negligible.

  16. Ultra-High Temperature Distributed Wireless Sensors

    SciTech Connect

    May, Russell; Rumpf, Raymond; Coggin, John; Davis, Williams; Yang, Taeyoung; O'Donnell, Alan; Bresnahan, Peter

    2013-03-31

    Research was conducted towards the development of a passive wireless sensor for measurement of temperature in coal gasifiers and coal-fired boiler plants. Approaches investigated included metamaterial sensors based on guided mode resonance filters, and temperature-sensitive antennas that modulate the frequency of incident radio waves as they are re-radiated by the antenna. In the guided mode resonant filter metamaterial approach, temperature is encoded as changes in the sharpness of the filter response, which changes with temperature because the dielectric loss of the guided mode resonance filter is temperature-dependent. In the mechanically modulated antenna approach, the resonant frequency of a vibrating cantilever beam attached to the antenna changes with temperature. The vibration of the beam perturbs the electrical impedance of the antenna, so that incident radio waves are phase modulated at a frequency equal to the resonant frequency of the vibrating beam. Since the beam resonant frequency depends on temperature, a Doppler radar can be used to remotely measure the temperature of the antenna. Laboratory testing of the guided mode resonance filter failed to produce the spectral response predicted by simulations. It was concluded that the spectral response was dominated by spectral reflections of radio waves incident on the filter. Laboratory testing of the mechanically modulated antenna demonstrated that the device frequency shifted incident radio waves, and that the frequency of the re-radiated waves varied linearly with temperature. Radio wave propagation tests in the convection pass of a small research boiler plant identified a spectral window between 10 and 13 GHz for low loss propagation of radio waves in the interior of the boiler.

  17. Air traffic control by distributed management in a MLS environment

    NASA Technical Reports Server (NTRS)

    Kreifeldt, J. G.; Parkin, L.; Hart, S.

    1977-01-01

    The microwave landing system (MLS) is a technically feasible means for increasing runway capacity since it could support curved approaches to a short final. The shorter the final segment of the approach, the wider the variety of speed mixes possible so that theoretically, capacity would ultimately be limited by runway occupance time only. An experiment contrasted air traffic control in a MLS environment under a centralized form of management and under distributed management which was supported by a traffic situation display in each of the 3 piloted simulators. Objective flight data, verbal communication and subjective responses were recorded on 18 trial runs lasting about 20 minutes each. The results were in general agreement with previous distributed management research. In particular, distributed management permitted a smaller spread of intercrossing times and both pilots and controllers perceived distributed management as the more 'ideal' system in this task. It is concluded from this and previous research that distributed management offers a viable alternative to centralized management with definite potential for dealing with dense traffic in a safe, orderly and expeditious manner.

  18. Effect of air-sea coupling on the frequency distribution of intense tropical cyclones over the northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Ogata, Tomomichi; Mizuta, Ryo; Adachi, Yukimasa; Murakami, Hiroyuki; Ose, Tomoaki

    2015-12-01

    Effect of air-sea coupling on the frequency distribution of intense tropical cyclones (TCs) over the northwestern Pacific (NWP) region is investigated using an atmosphere and ocean coupled general circulation model (AOGCM). Monthly varying flux adjustment enables AOGCM to simulate both subseasonal air-sea interaction and realistic seasonal to interannual sea surface temperature (SST) variability. The maximum of intense TC distribution around 20-30°N in the AGCM shifts equatorward in the AOGCM due to the air-sea coupling. Hence, AOGCM reduces northward intense TC distribution bias seen in AGCM. Over the NWP, AOGCM-simulated SST variability is large around 20-30°N where the warm mixed layer becomes shallower rapidly. Active entrainment from subsurface water over this region causes stronger SST cooling, and hence, TC intensity decreases. These results suggest that air-sea coupling characterized by subsurface oceanic condition causes more realistic distribution of intense TCs over the NWP.

  19. On extreme rainfall intensity increases with air temperature

    NASA Astrophysics Data System (ADS)

    Molnar, Peter; Fatichi, Simone; Paschalis, Athanasios; Gaal, Ladislav; Szolgay, Jan; Burlando, Paolo

    2016-04-01

    The water vapour holding capacity of air increases at about 7% per degree C according to the Clausius-Clapeyron (CC) relation. This is one of the arguments why a warmer future atmosphere, being able to hold more moisture, will generate higher extreme precipitation intensities. However, several empirical studies have recently demonstrated an increase in extreme rain intensities with air temperature above CC rates, in the range 7-14% per degree C worldwide (called super-CC rates). This was observed especially for shorter duration rainfall, i.e. in hourly and finer resolution data (e.g. review in Westra et al., 2014). The super-CC rate was attributed to positive feedbacks between water vapour and the updraft dynamics in convective clouds and lateral supply (convergence) of moisture. In addition, mixing of storm types was shown to be potentially responsible for super-CC rates in empirical studies. Assuming that convective events are accompanied by lightning, we will show on a large rainfall dataset in Switzerland (30 year records of 10-min and 1-hr data from 59 stations) that while the average rate of increase in extreme rainfall intensity (95th percentile) is 6-7% in no-lightning events and 8-9% in lightning events, it is 11-13% per degree C when all events are combined (Molnar et al., 2015). These results are relevant for climate change studies which predict shifts in storm types in a warmer climate in some parts of the world. The observation that extreme rain intensity and air temperature are positively correlated has consequences for the stochastic modelling of rainfall. Most current stochastic models do not explicitly include a direct rain intensity-air temperature dependency beyond applying factors of change predicted by climate models to basic statistics of precipitation. Including this dependency explicitly in stochastic models will allow, for example in the nested modelling approach of Paschalis et al. (2014), the random cascade disaggregation routine to be

  20. Comparison of Gravity Wave Temperature Variances from Ray-Based Spectral Parameterization of Convective Gravity Wave Drag with AIRS Observations

    NASA Technical Reports Server (NTRS)

    Choi, Hyun-Joo; Chun, Hye-Yeong; Gong, Jie; Wu, Dong L.

    2012-01-01

    The realism of ray-based spectral parameterization of convective gravity wave drag, which considers the updated moving speed of the convective source and multiple wave propagation directions, is tested against the Atmospheric Infrared Sounder (AIRS) onboard the Aqua satellite. Offline parameterization calculations are performed using the global reanalysis data for January and July 2005, and gravity wave temperature variances (GWTVs) are calculated at z = 2.5 hPa (unfiltered GWTV). AIRS-filtered GWTV, which is directly compared with AIRS, is calculated by applying the AIRS visibility function to the unfiltered GWTV. A comparison between the parameterization calculations and AIRS observations shows that the spatial distribution of the AIRS-filtered GWTV agrees well with that of the AIRS GWTV. However, the magnitude of the AIRS-filtered GWTV is smaller than that of the AIRS GWTV. When an additional cloud top gravity wave momentum flux spectrum with longer horizontal wavelength components that were obtained from the mesoscale simulations is included in the parameterization, both the magnitude and spatial distribution of the AIRS-filtered GWTVs from the parameterization are in good agreement with those of the AIRS GWTVs. The AIRS GWTV can be reproduced reasonably well by the parameterization not only with multiple wave propagation directions but also with two wave propagation directions of 45 degrees (northeast-southwest) and 135 degrees (northwest-southeast), which are optimally chosen for computational efficiency.

  1. Linking geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppala, Annika

    ERA-40 and ECMWF operational surface level air temperature (SAT) data sets from 1957 to 2006 were used to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the Ap index. Previous modelling work has suggested that NOx produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in polar SATs. We find that during winter months, ERA-40 and ECMWF polar SATs in years with high Ap index are different than in years with low Ap index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, de-pending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings are excluded. Solar irradiance variations were taken into account in the analysis. Although using the re-analysis and operational data sets it was not possible to conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating polar wintertime surface air temperature patterns. The SAT results were tested against variation in the Quasi Biennial Oscillation (QBO), the El Niño Southern Oscillation (ENSO) and the Southern Annular Mode n (SAM). The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode (NAM) and we could not robustly exclude a chance linkage between sea surface temperature (SST) variability and geomagnetic activity. Examining the physical link between geomagnetic activity and polar surface temperature variability patterns using atmospheric models is an ongoing task.

  2. Generation of low-temperature air plasma for food processing

    NASA Astrophysics Data System (ADS)

    Stepanova, Olga; Demidova, Maria; Astafiev, Alexander; Pinchuk, Mikhail; Balkir, Pinar; Turantas, Fulya

    2015-11-01

    The project is aimed at developing a physical and technical foundation of generating plasma with low gas temperature at atmospheric pressure for food industry needs. As known, plasma has an antimicrobial effect on the numerous types of microorganisms, including those that cause food spoilage. In this work an original experimental setup has been developed for the treatment of different foods. It is based on initiating corona or dielectric-barrier discharge in a chamber filled with ambient air in combination with a certain helium admixture. The experimental setup provides various conditions of discharge generation (including discharge gap geometry, supply voltage, velocity of gas flow, content of helium admixture in air and working pressure) and allows for the measurement of the electrical discharge parameters. Some recommendations on choosing optimal conditions of discharge generation for experiments on plasma food processing are developed.

  3. Effect of Moderate Air Flow on the Distribution of Fuel Sprays After Injection Cut-0ff

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Spencer, R C

    1935-01-01

    High-speed motion pictures were taken of fuel sprays with the NACA spray-photographic apparatus to study the distribution of the liquid fuel from the instant of injection cut-off until about 0.05 second later. The fuel was injected into a glass-walled chamber in which the air density was varied from 1 to 13 times atmospheric air density (0.0765 to 0.99 pound per cubic foot) and in which the air was at room temperature. The air in the chamber was set in motion by means of a fan, and was directed counter to the spray at velocities up to 27 feet per second. The injection pressure was varied from 2,000 to 6,000 pounds per square inch. A 0.20-inch single-orifice nozzle, an 0.008-inch single-orifice nozzle, a multiorifice nozzle, and an impinging-jets nozzle were used. The best distribution was obtained by the use of air and a high-dispersion nozzle.

  4. Air and Ground Surface Temperature Relations in a Mountainous Basin, Wolf Creek, Yukon Territory

    NASA Astrophysics Data System (ADS)

    Roadhouse, Emily A.

    The links between climate and permafrost are well known, but the precise nature of the relationship between air and ground temperatures remains poorly understood, particularly in complex mountain environments. Although previous studies indicate that elevation and potential incoming solar radiation (PISR) are the two leading factors contributing to the existence of permafrost at a given location, additional factors may also contribute significantly to the existence of mountain permafrost, including vegetation cover, snow accumulation and the degree to which individual mountain landscapes are prone to air temperature inversions. Current mountain permafrost models consider only elevation and aspect, and have not been able to deal with inversion effects in a systematic fashion. This thesis explores the relationship between air and ground surface temperatures and the presence of surface-based inversions at 27 sites within the Wolf Creek basin and surrounding area between 2001 and 2006, as a first step in developing an improved permafrost distribution TTOP model. The TTOP model describes the relationship between the mean annual air temperature and the temperature at the top of permafrost in terms of the surface and thermal offsets (Smith and Riseborough, 2002). Key components of this model are n-factors which relate air and ground climate by establishing the ratio between air and surface freezing (winter) and thawing (summer) degree-days, thus summarizing the surface energy balance on a seasonal basis. Here we examine (1) surface offsets and (2) freezing and thawing n-factor variability at a number of sites through altitudinal treeline in the southern Yukon. Thawing n-factors (nt) measured at individual sites remained relatively constant from one year to the next and may be related to land cover. During the winter, the insulating effect of a thick snow cover results in higher surface temperatures, while thin snow cover results in low surface temperatures more closely

  5. The Trends of Soil Temperature Change Associated with Air Temperature Change in Korea from 1973 to 2012

    NASA Astrophysics Data System (ADS)

    Lee, Bo-Hyun; Park, Byeong-Hak; Koh, Eun-Hee; Lee, Kang-Kun

    2015-04-01

    Examining long-term trends of the soil temperature can contribute to assessing subsurface thermal environment. The recent 40-year (1973-2012) meteorological data from 14 Korea Meteorological Administration (KMA) stations was analyzed in this study to estimate the temporal variations of air and soil temperatures (at depths 0.5 and 1.0m) in Korea and their relations. The information on regional characteristics of study sites was also collected to investigate the local and regional features influencing the soil temperature. The long-term increasing trends of both air and soil temperatures were estimated by using simple linear regression analysis. The air temperature rise and soil temperature rise were compared for every site to reveal the relation between air and soil temperature changes. In most sites, the proportion of soil temperature rise to air temperature rise was nearly one to one except a few sites. The difference between the air and soil temperature trends at those sites may be attributed to the combined effect of soil properties such as thermal diffusivity and soil moisture content. The impact of urbanization on the air and soil temperature was also investigated in this study. Establishment of the relationship between the air and soil temperatures can help predicting the soil temperature change in a region where no soil temperature data is obtained by using air temperature data. For rigorous establishment of the relationship between soil and air temperatures, more thorough investigation on the soil thermal properties is necessary through additional monitoring and accompanied validation of the proposed relations. Keywords : Soil temperature, Air temperature, Cross-correlation analysis, Soil thermal diffusivity, Urbanization effect Acknowledgement This work was supported by the research project of "Advanced Technology for Groundwater Development and Application in Riversides (Geowater+)" in "Water Resources Management Program (code 11 Technology Innovation C05

  6. Identifying Modes of Temperature Variability Using AIRS Data.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Aumann, H. H.; Yung, Y.

    2007-12-01

    We use the Atmospheric Infrared Sounder (AIRS) and Advance Microwave Sounding Unit (AMSU) data obtained on Aqua spacecraft to study mid-tropospheric temperature variability between 2002-2007. The analysis is focused on daily zonal means of the AIRS channel at 2388 1/cm in the CO2 R-branch and the AMSU channel #5 in the 57 GHz Oxygen band, both with weighting function peaking in the mid-troposphere (400 mb) and the matching sea surface temperature from NCEP (Aumann et al., 2007). Taking into account the nonlinear and non- stationary behavior of the temperature we apply the Empirical Mode Decomposition (Huang et al., 1998) to better separate modes of variability. All-sky (cloudy) and clear sky, day and night data are analyzed. In addition to the dominant annual variation, which is nonlinear and latitude dependent, we identified the modes with higher frequency and inter-annual modes. Some trends are visible and we apply stringent criteria to test their statistical significance. References: Aumann, H. H., D. T. Gregorich, S. E. Broberg, and D. A. Elliott, Geophys. Res. Lett., 34, L15813, doi:10.1029/2006GL029191, 2007. Huang, N. E. Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, Proc. R. Soc. Lond., A 454, 903-995, 1998.

  7. Temperature distribution study in a cooled radial inflow turbine rotor

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Baskharone, E.; Tabakoff, W.

    1976-01-01

    A numerical study to determine the temperature distribution in the rotor of a radial inflow turbine is presented. The study is based on the use of the finite element method in the three dimensional heat conduction problem. Different cooling techniques with various coolant to primary mass flow ratios are investigated. The resulting temperature distribution in the rotor are presented for comparison.

  8. Lateral and Time Distributions of Extensive Air Showers for CHICOS

    NASA Astrophysics Data System (ADS)

    Jillings, C. J.; Wells, D.; Chan, K. C.; Hill, J.; Falkowski, B.; Sepikas, J.

    2005-04-01

    We report results of a series of detailed Monte-Carlo calculations to determine the density and arrival-time distribution of charged particles in extensive air showers. We have parameterized both distributions as a function of distance from the shower axis, energy of the primary cosmic-ray proton, and incident zenith angle. Muons and electrons are parameterized separately. These parameterizations can be easily used in maximum-likelihood reconstruction of air showers. Calculations were performed for primary energies between 10^18 and 10^21eV and zenith angles out to approximately 50^o. The calculations are appropriate for the California High School Cosmic Ray Observatory: a 400 km^2 array of scintillation detectors in Los Angeles county. The average elevation of the array is approximately 250 meters above sea level. Currently 64 of 90 sites are operational. The array will be completed this year. We thank the NSF, the CURE program at the Jet Propulsion Laboratory, the SURF program at Caltech, and the Chinese University of Hong Kong.

  9. TRUMP. Transient & S-State Temperature Distribution

    SciTech Connect

    Elrod, D.C.; Turner, W.D.

    1992-03-03

    TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position, and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.

  10. Flight Investigation of the Cooling Characteristics of a Two-row Radial Engine Installation III : Engine Temperature Distribution

    NASA Technical Reports Server (NTRS)

    Rennak, Robert M; Messing, Wesley E; Morgan, James E

    1946-01-01

    The temperature distribution of a two-row radial engine in a twin-engine airplane has been investigated in a series of flight tests. The test engine was operated over a wide range of conditions at density altitudes of 5000 and 20,000 feet; quantitative results are presented showing the effects of flight and engine variables upon average engine temperature and over-all temperature spread. Discussions of the effect of the variables on the shape of the temperature patterns and on the temperature distribution of individual cylinders are also included. The results indicate that, for the tests conducted, the temperature distribution patterns were chiefly determined by the fuel-air ratio and cooling-air distributions. It was possible to calculate individual cylinder temperature, on the assumption of equal power distribution among cylinders, to within an average of plus or minus 14 degrees F. of the actual temperature. A considerable change occurred in either the spread or the thrust axis, the average engine fuel-air ratio, the engine speed, the power, or the blower ratio. Smaller effects on the temperature pattern were noticed with a change in cowl-flap opening and altitude. In most of the tests, a change in conditions affected the temperature of the barrels less than that of the heads. The variation of flight and engine variables had a negligible effect on the temperature distributions of the individual cylinders. (author)

  11. Principled negotiation and distributed optimization for advanced air traffic management

    NASA Astrophysics Data System (ADS)

    Wangermann, John Paul

    Today's aircraft/airspace system faces complex challenges. Congestion and delays are widespread as air traffic continues to grow. Airlines want to better optimize their operations, and general aviation wants easier access to the system. Additionally, the accident rate must decline just to keep the number of accidents each year constant. New technology provides an opportunity to rethink the air traffic management process. Faster computers, new sensors, and high-bandwidth communications can be used to create new operating models. The choice is no longer between "inflexible" strategic separation assurance and "flexible" tactical conflict resolution. With suitable operating procedures, it is possible to have strategic, four-dimensional separation assurance that is flexible and allows system users maximum freedom to optimize operations. This thesis describes an operating model based on principled negotiation between agents. Many multi-agent systems have agents that have different, competing interests but have a shared interest in coordinating their actions. Principled negotiation is a method of finding agreement between agents with different interests. By focusing on fundamental interests and searching for options for mutual gain, agents with different interests reach agreements that provide benefits for both sides. Using principled negotiation, distributed optimization by each agent can be coordinated leading to iterative optimization of the system. Principled negotiation is well-suited to aircraft/airspace systems. It allows aircraft and operators to propose changes to air traffic control. Air traffic managers check the proposal maintains required aircraft separation. If it does, the proposal is either accepted or passed to agents whose trajectories change as part of the proposal for approval. Aircraft and operators can use all the data at hand to develop proposals that optimize their operations, while traffic managers can focus on their primary duty of ensuring

  12. Temperature distribution along the surface of evaporating droplets.

    PubMed

    Zhang, Kai; Ma, Liran; Xu, Xuefeng; Luo, Jianbin; Guo, Dan

    2014-03-01

    The surface temperature can significantly affect the flow field of drying droplets. Most previous studies assumed a monotonic temperature variation along the droplet surface. However, the present analyses indicate that a nonmonotonic spatial distribution of the surface temperature should occur. Three different patterns of the surface temperature distribution may appear during the evaporation process of liquid droplets: (i) the surface temperature increases monotonically from the center to the edge of the droplet; (ii) the surface temperature exhibits a nonmonotonic spatial distribution along the droplet surface; (iii) the surface temperature decreases monotonically from the center to the edge of the droplet. These surface temperature distributions can be explained by combining the evaporative cooling at the droplet surface and the heat conduction across the substrate and the liquid. Furthermore, a "phase diagram" for the distribution of the surface temperature is introduced and the effect of the spatial temperature distribution along the droplet surface on the flow structure of the droplet is discussed. The results may provide a better understanding of the Marangoni effect of drying droplets and provide a potential way to control evaporation-driven deposition as well as the assembly of colloids and other materials. PMID:24730849

  13. Numerical characterization of the hydrodynamics and thermal behavior of air flow in flexible air distribution system

    NASA Astrophysics Data System (ADS)

    Gharehdaghi, Samad; Moujaes, Samir

    2013-10-01

    Flexible duct air distribution systems are used in a large percentage of residential and small commercial buildings in the United States . Very few empirical or predictive data are available though to help provide the HVAC design engineer with reliable information . Moreover, because of the ducts flexibility, the shapes of these ducts offer a different set of operating fluid flow and thermal conditions from traditional smooth metal ducts. Hence, both the flow field and heat transfer through this kind of ducts are much more complex and merit to be analyzed from a numerical predictive approach. The aim of this research paper is to compute some of the hydrodynamic and heat transfer characteristics of the air flow inside these ducts over a range of Re numbers commonly used in the flow conditions of these air distribution systems. The information resulting from this CFD simulation, where a κ-ɛ turbulent model is used to predict the flow conditions, provide pressure drop and average convective heat transfer coefficients that exist in these ducts and was compared to previously found data. Circulation zones in the depressions of these ducts are found to exist which are suspected of influencing the pressured drop and heat transfer coefficients as compared to smooth ducts. The results show that fully developed conditions exist much earlier with regard to the inlet for both hydrodynamic and thermal entrance regions than what would be expected in smooth ducts under the same turbulent conditions.

  14. Variation of the shower lateral spread with air temperature at the ground

    NASA Astrophysics Data System (ADS)

    Wilczyńska, B.; Engel, R.; Homola, P.; Keilhauer, B.; Klages, H.; Pękala, J.; Wilczyński, H.

    The vertical profile of air density at a given site varies considerably with time. Well understood seasonal differences are present, but sizeable effects on shorter time scales, like day to night or day to day variations, are also observed. In consequence, the Moliere radius changes, influencing the lateral distribution of particles in the air showers and therefore may influence the shower detection in surface detector arrays. In air shower reconstruction, usually seasonal average profiles of the atmosphere are used, because local daily measurements of the profile are rarely available. Therefore, the daily fluctuations of the atmosphere are not accounted for. This simplification increases the inaccuracies of shower reconstruction. We show that a universal correlation exists between the ground temperature and the shape of the atmospheric profile, up to altitudes of several kilometers, hence providing a method to reduce inaccuracies in shower reconstruction due to weather variation.

  15. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  16. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  17. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  18. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  19. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  20. Evolution of soot size distribution in premixed ethylene/air and ethylene/benzene/air flames: Experimental and modeling study

    SciTech Connect

    Echavarria, Carlos A.; Sarofim, Adel F.; Lighty, JoAnn S.; D'Anna, Andrea

    2011-01-15

    The effect of benzene concentration in the initial fuel on the evolution of soot size distribution in ethylene/air and ethylene/benzene/air flat flames was characterized by experimental measurements and model predictions of size and number concentration within the flames. Experimentally, a scanning mobility particle sizer was used to allow spatially resolved and online measurements of particle concentration and sizes in the nanometer-size range. The model couples a detailed kinetic scheme with a discrete-sectional approach to follow the transition from gas-phase to nascent particles and their coagulation to larger soot particles. The evolution of soot size distribution (experimental and modeled) in pure ethylene and ethylene flames doped with benzene showed a typical nucleation-sized (since particles do not actually nucleate in the classical sense particle inception is often used in place of nucleation) mode close to the burner surface, and a bimodal behavior at greater height above burner (HAB). However, major features were distinguished between the data sets. The growth of nucleation and agglomeration-sized particles was faster for ethylene/benzene/air flames, evidenced by the earlier presence of bimodality in these flames. The most significant changes in size distribution were attributed to an increase in benzene concentration in the initial fuel. However, these changes were more evident for high temperature flames. In agreement with the experimental data, the model also predicted the decrease of nucleation-sized particles in the postflame region for ethylene flames doped with benzene. This behavior was associated with the decrease of soot precursors after the main oxidation zone of the flames. (author)

  1. A new approach to quantifying soil temperature responses to changing air temperature and snow cover

    NASA Astrophysics Data System (ADS)

    Mackiewicz, Michael C.

    2012-08-01

    Seasonal snow cover provides an effective insulating barrier, separating shallow soil (0.25 m) from direct localized meteorological conditions. The effectiveness of this barrier is evident in a lag in the soil temperature response to changing air temperature. The causal relationship between air and soil temperatures is largely because of the presence or absence of snow cover, and is frequently characterized using linear regression analysis. However, the magnitude of the dampening effect of snow cover on the temperature response in shallow soils is obscured in linear regressions. In this study the author used multiple linear regression (MLR) with dummy predictor variables to quantify the degree of dampening between air and shallow soil temperatures in the presence and absence of snow cover at four Greenland sites. The dummy variables defining snow cover conditions were z = 0 for the absence of snow and z = 1 for the presence of snow cover. The MLR was reduced to two simple linear equations that were analyzed relative to z = 0 and z = 1 to enable validation of the selected equations. Compared with ordinary linear regression of the datasets, the MLR analysis yielded stronger coefficients of multiple determination and less variation in the estimated regression variables.

  2. Air Quality Impact of Distributed Generation of Electricity

    NASA Astrophysics Data System (ADS)

    Jing, Qiguo

    This dissertation summarizes the results of a five-year investigation of the impact of distributed generation (DG) of electricity on air quality in urban areas. I focused on the impact of power plants with capacities of less than 50 MW, which is typical of DG units in urban areas. These power plants are modeled as buoyant emissions from stacks less than 10 m situated in the midst of urban buildings. Because existing dispersion models are not designed for such sources, the first step of the study involved the evaluation of AERMOD, USEPA's state-of-the art dispersion model, with data collected in a tracer study conducted in the vicinity of a DG unit. The second step of the study consisted of using AERMOD to compare the impact of DG penetration in the South Coast Air Basin of Los Angeles with the impact of replacing DG generation with expansion of current central power plant capacity. The third topic of my investigation is the development and application of a model to examine the impact of non-power plant sources in a large urban area such as Los Angeles. This model can be used to estimate the air quality impact of DG relative to other sources in an urban area. The first part of this dissertation describes a tracer study conducted in Palm Springs, CA. Concentrations observed during the nighttime experiments are generally higher than those measured during the daytime experiments. They fall off less rapidly with distance than during the daytime. AERMOD provides an adequate description of concentrations associated with the buoyant releases from the DG during the daytime when turbulence is controlled by convection induced by solar heating. However, AERMOD underestimates concentrations during the night when turbulence is generated by wind shear. Also, AERMOD predicts a decrease in concentrations with distance that is much more rapid than the relatively flat observed decrease. I have suggested modifications to AERMOD to improve the agreement between model estimates and

  3. Temperature distribution in a layer of an active thermal insulation system heated by a gas burner

    SciTech Connect

    Maruyama, Shigenao . Inst. of Fluid Science); Shimizu, Naotaka . Dept. of Mechanical Engineering)

    1993-12-01

    The temperature distribution in a layer of an active thermal insulation system was measured. A semitransparent porous layer was heated by a gas burner, and air was injected from the back face of the layer. The temperature in the layer was measured by thermocouples. The temperature distributions were compared with numerical solutions. The thermal penetration depth of the active thermal insulation layer with gas injection can be reduced to 3 mm. When the surface temperature of a conventional insulation layer without gas injection reached 1,500 K, the temperature at the back surface of a 10-mm-thick layer reached 600 K. The transient temperature of the active thermal insulation reached a steady state very quickly compared with that of the conventional insulation. These characteristics agreed qualitatively with the numerical solutions.

  4. Optimization and investigation of the effect of velocity distribution of air curtains on the performance of food refrigerated display cabinets

    NASA Astrophysics Data System (ADS)

    Wu, XueHong; Chang, ZhiJuan; Ma, QiuYang; Lu, YanLi; Yin, XueMei

    2016-08-01

    This paper focuses on improving the performance of the vertical open refrigerated display cabinets (VORDC) by optimizing the structure of deflector, which is affected by inlet velocity and velocity distribution of air curtains. The results show that the temperature of products located at the front and at the rear reduces as the increases of inlet velocity of air curtains. The increase of the inlet velocity of air curtains can strengthen the disturbance inside the VORDC, and also decrease the temperature of products inside the VORDC; the increase of the outer velocity of air curtain will exacerbate the disturbance outside the VORDC and decrease air curtain's performance. The present study can provide a theoretical foundation for the design of VORDC.

  5. Effect of Ambient Design Temperature on Air-Cooled Binary Plant Output

    SciTech Connect

    Dan Wendt; Greg Mines

    2011-10-01

    Air-cooled binary plants are designed to provide a specified level of power production at a particular air temperature. Nominally this air temperature is the annual mean or average air temperature for the plant location. This study investigates the effect that changing the design air temperature has on power generation for an air-cooled binary plant producing power from a resource with a declining production fluid temperature and fluctuating ambient temperatures. This analysis was performed for plants operating both with and without a geothermal fluid outlet temperature limit. Aspen Plus process simulation software was used to develop optimal air-cooled binary plant designs for specific ambient temperatures as well as to rate the performance of the plant designs at off-design operating conditions. Results include calculation of annual and plant lifetime power generation as well as evaluation of plant operating characteristics, such as improved power generation capabilities during summer months when electric power prices are at peak levels.

  6. BOREAS RSS-17 Stem, Soil, and Air Temperature Data

    NASA Technical Reports Server (NTRS)

    Zimmerman, Reiner; McDonald, Kyle C.; Way, JoBea; Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS RSS-17 team collected several data sets in support of its research in monitoring and analyzing environmental and phenological states using radar data. This data set consists of tree bole and soil temperature measurements from various BOREAS flux tower sites. Temperatures were measured with thermistors implanted in the hydroconductive tissue of the trunks of several trees at each site and at various depths in the soil. Data were stored on a data logger at intervals of either 1 or 2 hours. The majority of the data were acquired between early 1994 and early 1995. The primary product of this data set is the diurnal stem temperature measurements acquired for selected trees at five BOREAS tower sites. The data are provided in tabular ASCII format. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  7. Depth Distribution Of The Maxima Of Extensive Air Shower

    NASA Technical Reports Server (NTRS)

    Adams, J. H.; Howell, L. W.

    2003-01-01

    Observations of the extensive air showers from space can be free from interference by low altitude clouds and aerosols if the showers develop at a sufficiently high altitude. In this paper we explore the altitude distribution of shower maxima to determine the fraction of all showers that will reach their maxima at sufficient altitudes to avoid interference from these lower atmosphere phenomena. Typically the aerosols are confined within a planetary boundary layer that extends from only 2-3 km above the Earth's surface. Cloud top altitudes extend above 15 km but most are below 4 km. The results reported here show that more than 75% of the showers that will be observed by EUSO have maxima above the planetary boundary layer. The results also show that more than 50% of the showers that occur on cloudy days have their maxima above the cloud tops.

  8. Tissue temperature distribution measurement and laser immunotherapy for cancer treatment

    NASA Astrophysics Data System (ADS)

    Chen, Yichao; Gyanwalib, Surya; Bjorlie, Jeremy; Andrienko, Kirill; Liu, Hong; Tesiram, Yasvir A.; Abbott, Andrew; Towner, Rheal A.; Chen, Wei R.

    2006-02-01

    Temperature distribution in tissue can be a crucial factor in laser treatment for inducing immunization responses. In this study, Magnetic Resonance Imaging (MRI) was used to measure thermal temperature distribution in target tissue in laser treatment of metastatic tumors. It is the only feasible method for in vivo, non-invasive temperature distribution measurement. The measurement was conducted using phantom gel and tumor-bearing rats. The thermal couple measurement of target temperature was also was used to calibrate the relative temperature increase. The phantom system was constructed with a dye-enhanced spherical gel embedded in uniform gel phantom, simulating a tumor within normal tissue. Irradiation by an 805-nm laser increased the system temperature. Using an MRI system and proper algorithm processing for small animal studies, a clear temperature distribution matrix was obtained. The temperature profiles of rat tumors, irradiated by the laser with a power in the range of 2-3.5W and injected with a light-absorbing dye, ICG, and an immunoadjuvant, GC, were obtained. The temperature distribution provided in vivo thermal information and future reference for optimizing dye concentration and irradiation parameters to reach the optimum tumor destruction and immunization effects.

  9. Air Surface Temperature Correlation with Greenhouse Gases by Using Airs Data Over Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Rajab, Jasim Mohammed; MatJafri, M. Z.; Lim, H. S.

    2014-08-01

    The main objective of this study is to develop algorithms for calculating the air surface temperature (AST). This study also aims to analyze and investigate the effects of greenhouse gases (GHGs) on the AST value in Peninsular Malaysia. Multiple linear regression is used to achieve the objectives of the study. Peninsular Malaysia has been selected as the research area because it is among the regions of tropical Southeast Asia with the greatest humidity, pockets of heavy pollution, rapid economic growth, and industrialization. The predicted AST was highly correlated ( R = 0.783) with GHGs for the 6-year data (2003-2008). Comparisons of five stations in 2009 showed close agreement between the predicted AST and the observed AST from AIRS, especially in the wet season (within 1.3 K). The in situ data ranged from 1 to 2 K. Validation results showed that AST ( R = 0.776-0.878) has values nearly the same as the observed AST from AIRS. We found that O3 during the wet season was indicated by a strongly positive beta coefficient (0.264-0.992) with AST. The CO2 yields a reasonable relationship with temperature with low to moderate beta coefficient (-0.065 to 0.238). The O3, CO2, and environmental variables experienced different seasonal fluctuations that depend on weather conditions and topography. The concentration of gases and pollution were the highest over industrial zones and overcrowded cities, and the dry season was more polluted compared with the wet season. These results indicate the advantage of using the satellite AIRS data and a correlation analysis to investigate the effect of atmospheric GHGs on AST over Peninsular Malaysia. An algorithm that is capable of retrieving Peninsular Malaysian AST in all weather conditions with total uncertainties ranging from 1 to 2 K was developed.

  10. A basic insight to FEM_based temperature distribution calculation

    NASA Astrophysics Data System (ADS)

    Purwaningsih, A.; Khairina

    2012-06-01

    A manual for finite element method (FEM)-based temperature distribution calculation has been performed. The code manual is written in visual basic that is operated in windows. The calculation of temperature distribution based on FEM has three steps namely preprocessor, processor and post processor. Therefore, three manuals are produced namely a preprocessor to prepare the data, a processor to solve the problem, and a post processor to display the result. In these manuals, every step of a general procedure is described in detail. It is expected, by these manuals, the understanding of calculating temperature distribution be better and easier.

  11. Radial distributions of air plants: a comparison between epiphytes and mistletoes.

    PubMed

    Taylor, Amanda; Burns, Kevin

    2016-04-01

    Vertical gradients of light and humidity within forest canopies are major predictors of air plant distributions. Although this pattern was first recognized over 120 years ago, few studies have considered an additional axis of resource availability, which exists radially around the trunks of trees. Here, we explored the radial distributions of mistletoes and epiphytes in relation to gradients of light and humidity around the trunks of their south-temperate host trees. Additionally, we correlated microclimate occupancy with plant physiological responses to shifting resource availability. The radial distributions of mistletoes and epiphytes were highly directional, and related to the availability of light and humidity, respectively. Mistletoes oriented northwest, parallel to gradients of higher light intensity, temperature, and lower humidity. Comparatively, epiphytes oriented away from the sun to the southeast. The rate of CO2 assimilation in mistletoes and photochemical efficiency of epiphytes was highest in plants growing in higher light and humidity environments, respectively. However, the photosynthetic parameters of mistletoes suggest that they are also efficient at assimilating CO2 in lower light conditions. Our results bridge a key gap in our understanding of within-tree distributions of mistletoes and epiphytes, and raise further questions on the drivers of air plant distributions. PMID:27220198

  12. Influence of Air Temperature Difference on the Snow Melting Simulation of SWAT Model

    NASA Astrophysics Data System (ADS)

    YAN, Y.; Onishi, T.

    2013-12-01

    The temperature-index models are commonly used to simulate the snowmelt process in mountain areas because of its good performance, low data requirements, and computational simplicity. Widely used distributed hydrological model: Soil and Water Assessment Tool (SWAT) model is also using a temperature-index module. However, the lack of monitoring air temperature data still involves uncertainties and errors in its simulation performance especially in data sparse area. Thus, to evaluate the different air temperature data influence on the snow melt of the SWAT model, five different air temperature data are applied in two different Russia basins (Birobidjan basin and Malinovka basin). The data include the monitoring air temperature data (TM), NCEP reanalysis data (TNCEP), the dataset created by inverse distance weighted interpolation (IDW) method (TIDW), the dataset created by improved IDW method considering the elevation influence (TIDWEle), and the dataset created by using linear regression and MODIS Land Surface Temperature (LST) data (TLST). Among these data, the TLST , the TIDW and TIDWEle data have the higher spatial density, while the TNCEP and TM DATA have the most valid monitoring value for daily scale. The daily simulation results during the snow melting seasons (March, April and May) showed reasonable results in both test basins for all air temperature data. While R2 and NSE in Birobidjan basin are around 0.6, these values in Malinovka basin are over 0.75. Two methods: Generalized Likelihood Uncertainty Estimation (GLUE) and Sequential Uncertainty Fitting, version. 2 (SUFI-2) were used for model calibration and uncertainty analysis. The evolution index is p-factor which means the percentage of measured data bracketed by the 95% Prediction Uncertainty (95PPU). The TLST dataset always obtained the best results in both basins compared with other datasets. On the other hand, the two IDW based method get the worst results among all the scenarios. Totally, the

  13. Cyclic Oxidation of High-Temperature Alloy Wires in Air

    NASA Technical Reports Server (NTRS)

    Reigel, Marissa M.

    2004-01-01

    High-temperature alloy wires are proposed for use in seal applications for future re-useable space vehicles. These alloys offer the potential for improved wear resistance of the seals. The wires must withstand the high temperature environments the seals are subjected to as well as maintain their oxidation resistance during the heating and cooling cycles of vehicle re-entry. To model this, the wires were subjected to cyclic oxidation in stagnant air. of this layer formation is dependent on temperature. Slow growing oxides such as chromia and alumina are desirable. Once the oxide is formed it can prevent the metal from further reacting with its environment. Cyclic oxidation models the changes in temperature these wires will undergo in application. Cycling the temperature introduces thermal stresses which can cause the oxide layer to break off. Re-growth of the oxide layer consumes more metal and therefore reduces the properties and durability of the material. were used for cyclic oxidation testing. The baseline material, Haynes 188, has a Co base and is a chromia former while the other two alloys, Kanthal A1 and PM2000, both have a Fe base and are alumina formers. Haynes 188 and Kanthal A1 wires are 250 pm in diameter and PM2000 wires are 150 pm in diameter. The coiled wire has a total surface area of 3 to 5 sq cm. The wires were oxidized for 11 cycles at 1204 C, each cycle containing a 1 hour heating time and a minimum 20 minute cooling time. Weights were taken between cycles. After 11 cycles, one wire of each composition was removed for analysis. The other wire continued testing for 70 cycles. Post-test analysis includes X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) for phase identification and morphology.

  14. Modelling LARES temperature distribution and thermal drag

    NASA Astrophysics Data System (ADS)

    Nguyen, Phuc H.; Matzner, Richard

    2015-10-01

    the same colatitude can be taken to have the same temperature. Since all temperature variations (temporal or spatial) are expected to be small, we linearize the Stefan-Boltzmann law and, taking advantage of the linearity, we perform a Fourier series analysis. The variations are indeed small, validating our Fourier analysis.

  15. Utilization of temperature distribution in expiratory speaking flow as a new parameter for speech production analysis.

    PubMed

    Gomes, G F; Vargas, J V C; Filho, E D M

    2004-01-01

    A new instrument with potential use for speech production analysis is utilized in this study to measure the temperature and velocity of the expiratory speaking flow outside the oral cavity. From a physical point of view, the temperature patterns of individuals with healthy voices are expected to be different from individuals with breathy voices, since their air flow patterns are different: during breathy speech production, the glottis does not close completely, and the leakage of warm air through the glottis increases the extent of the hotter-than-ambient temperature field outside the oral cavity. The instrument is a pipe through which the tested individual breathes out while producing a sustained vowel. A tap water heat exchanger keeps the pipe wall at a temperature level considerably lower than the body temperature. The temperature gradient along the pipe centreline is measured and related to the average air velocity at the oral cavity. The measurements were performed in 30 male and 30 female subjects without vocal complaints. The objective of this initial investigation was to evaluate the possibility of establishing patterns of normality for the temperature distribution outside the oral cavity in expiratory speaking flow. In the experiments, all the temperature measurements increased as the expiratory air flow of the individual increased during speech production, therefore the instrument results agree with the physical behavior predicted by fluid mechanics and heat transfer principles. The collected data allowed for the construction of charts with two distinct normalized temperature distributions outside the oral cavity, for male and female individuals, respectively. These charts have the potential for future utilization in a follow-up study for comparison with similar measurements obtained with individuals with vocal fold pathologies, aiming to eventually produce a reliable new instrument for early detection of vocal problems through a non-invasive procedure

  16. Trend analysis of air temperature and precipitation time series over Greece: 1955-2010

    NASA Astrophysics Data System (ADS)

    Marougianni, G.; Melas, D.; Kioutsioukis, I.; Feidas, H.; Zanis, P.; Anandranistakis, E.

    2012-04-01

    In this study, a database of air temperature and precipitation time series from the network of Hellenic National Meteorological Service has been developed in the framework of the project GEOCLIMA, co-financed by the European Union and Greek national funds through the Operational Program "Competitiveness and Entrepreneurship" of the Research Funding Program COOPERATION 2009. Initially, a quality test was applied to the raw data and then missing observations have been imputed with a regularized, spatial-temporal expectation - maximization algorithm to complete the climatic record. Next, a quantile - matching algorithm was applied in order to verify the homogeneity of the data. The processed time series were used for the calculation of temporal annual and seasonal trends of air temperature and precipitation. Monthly maximum and minimum surface air temperature and precipitation means at all available stations in Greece were analyzed for temporal trends and spatial variation patterns for the longest common time period of homogenous data (1955 - 2010), applying the Mann-Kendall test. The majority of the examined stations showed a significant increase in the summer maximum and minimum temperatures; this could be possibly physically linked to the Etesian winds, because of the less frequent expansion of the low over the southeastern Mediterranean. Summer minimum temperatures have been increasing at a faster rate than that of summer maximum temperatures, reflecting an asymmetric change of extreme temperature distributions. Total annual precipitation has been significantly decreased at the stations located in western Greece, as well as in the southeast, while the remaining areas exhibit a non-significant negative trend. This reduction is very likely linked to the positive phase of the NAO that resulted in an increase in the frequency and persistence of anticyclones over the Mediterranean.

  17. Study of Ram-air Heat Exchangers for Reducing Turbine Cooling-air Temperature of a Supersonic Aircraft Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Diaguila, Anthony J; Livingood, John N B; Eckert, Ernst R G

    1956-01-01

    The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude of 70,000 feet. A compressor-bleed-air weight flow of 2.7 pounds per second was assumed for the coolant; ram air was considered as the other fluid. Pressure drops and inlet states of both fluids were prescribed, and ranges of compressor-bleed-air temperature reductions and of the ratio of compressor-bleed to ram-air weight flows were considered.

  18. Temperature measurements in an axisymmetric methane-air flame using Talbot images

    NASA Astrophysics Data System (ADS)

    Khramtsov, P. P.; Penyazkov, O. G.; Shatan, I. N.

    2015-02-01

    The paper discusses the principles of optical testing of transparent objects using the Talbot images method and its applicability to diagnostic of flames. The experimental study was performed for premixed methane -air flame formed by an axisymmetric nozzle. The local deflection angles of the probe radiation were determined from measurements of the relative displacements of intensity maxima of the Talbot image which is caused by passing of light through the flame. The Abel integral equation was solved to reconstruct the refractive index distribution in the flame. Calculation of the temperature field from the refractive index data was based on neglecting the spatial variation of the component composition. Inaccuracy of the calculations was evaluated by comparing the results with the thermocouple measurements. The results demonstrate that the Talbot images method can be used to measure the temperature distribution in axisymmetric reacting gas flows with high spatial resolution.

  19. Preliminary analysis of hub and spoke air freight distribution system

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1978-01-01

    A brief analysis is made of the hub and spoke air freight distribution system which would employ less than 15 hub centers world wide with very large advanced distributed-load freighters providing the line-haul delivery between hubs. This system is compared to a more conventional network using conventionally-designed long-haul freighters which travel between numerous major airports. The analysis calculates all of the transportation costs, including handling charges and pickup and delivery costs. The results show that the economics of the hub/spoke system are severely compromised by the extensive use of feeder aircraft to deliver cargo into and from the large freighter terminals. Not only are the higher costs for the smaller feeder airplanes disadvantageous, but their use implies an additional exchange of cargo between modes compared to truck delivery. The conventional system uses far fewer feeder airplanes, and in many cases, none at all. When feeder aircraft are eliminated from the hub/spoke system, however, that system is universally more economical than any conventional system employing smaller line-haul aircraft.

  20. Improving Photovoltaic Energy Production with Fiber-Optic Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Hausner, M. B.; Berli, M.

    2014-12-01

    The efficiency of solar photovoltaic (PV) generators declines sharply with increased temperatures. Peak solar exposure often occurs at the same time as peak temperatures, but solar PV installations are typically designed based on solar angle. In temperate areas, the peak temperatures may not be high enough to induce significant efficiency losses. In some of the areas with the greatest potential for solar development, however, summer air temperatures regularly reach 45 °C and PV panel temperatures exceed the air temperatures. Here we present a preliminary model of a PV array intended to optimize solar production in a hot and arid environment. The model begins with the diurnal and seasonal cycles in the angle and elevation of the sun, but also includes a meteorology-driven energy balance to project the temperatures of the PV panels and supporting structure. The model will be calibrated and parameterized using a solar array at the Desert Research Institute's (DRI) Renewable Energy Deployment and Display (REDD) facility in Reno, Nevada, and validated with a similar array at DRI's Las Vegas campus. Optical fibers will be installed on the PV panels and structural supports and interrogated by a distributed temperature sensor (DTS) to record the spatial and temporal variations in temperature. Combining the simulated panel temperatures, the efficiency-temperature relationship for the panels, and the known solar cycles at a site will allow us to optimize the design of future PV collectors (i.e., the aspect and angle of panels) for given production goals.

  1. Impacts of wind farms on surface air temperatures

    PubMed Central

    Baidya Roy, Somnath; Traiteur, Justin J.

    2010-01-01

    Utility-scale large wind farms are rapidly growing in size and numbers all over the world. Data from a meteorological field campaign show that such wind farms can significantly affect near-surface air temperatures. These effects result from enhanced vertical mixing due to turbulence generated by wind turbine rotors. The impacts of wind farms on local weather can be minimized by changing rotor design or by siting wind farms in regions with high natural turbulence. Using a 25-y-long climate dataset, we identified such regions in the world. Many of these regions, such as the Midwest and Great Plains in the United States, are also rich in wind resources, making them ideal candidates for low-impact wind farms. PMID:20921371

  2. Subseasonal variability of North American wintertime surface air temperature

    NASA Astrophysics Data System (ADS)

    Lin, Hai

    2015-09-01

    Using observational pentad data of the recent 34 Northern Hemisphere extended winters, subseasonal variability of surface air temperature (SAT) over North America is analyzed. The four leading modes of subseasonal SAT variability, that are identified with an empirical orthogonal function (EOF) analysis, account for about 60% of the total variance. The first (EOF1) and second (EOF2) modes are independent of other modes, and thus are likely controlled by distinct processes. The third (EOF3) and fourth (EOF4) modes, however, tend to have a phase shift to each other in space and time, indicating that part of their variability is related to a common process and represent a propagating pattern over North America. Lagged regression analysis is conducted to identify the precursors of large-scale atmospheric circulation for each mode a few pentads in advance, and to understand the processes that influence the subseasonal SAT variability and the predictability signal sources. EOF1 is found to be closely related to the Pacific-North American (PNA) circulation pattern and at least part of its variability is preceded by the East Asian cold surge. The cold surge leads to low-level convergence and enhanced convection in the tropical central Pacific which in turn induces the PNA. EOF2 tends to oscillate at a period of about 70 days, and is influenced by the low-frequency component of the Madden-Julian Oscillation (MJO). On the other hand, EOF3 and EOF4 are connected to the high-frequency part of the MJO which has a period range of 30-50 days. These findings would help understanding the mechanisms of subseasonal surface air temperature variability in North America and improving weather predictions on a subseasonal time scale.

  3. Field Test of Room-to-Room Uniformity of Ventilation Air Distribution in Two New Houses

    SciTech Connect

    Hendron, Robert; Anderson, Ren; Barley, Dennis; Rudd, Armin; Townsend, Aaron; Hancock, Ed

    2006-12-01

    This report describes a field test to characterize the uniformity of room-to-room ventilation air distribution under various operating conditions by examining multi-zone tracer gas decay curves and calculating local age-of-air.

  4. Effect of production microclimate on female thermal state with increased temperature and air humidity

    NASA Technical Reports Server (NTRS)

    Machablishvili, O. G.

    1980-01-01

    The thermal state of women during the effect of high air temperature and relative humidity with a varying degree of physical loads was studied. Parameters for air temperature, relative humidity, and air movement were established. It was established that in women the thermo-regulatory stress occurs at lower air temperatures and with lower physical loads than in men. The accumulation of heat in women was revealed with lower air temperature than in men. It is concluded that to preserve the normal physiological state of the female organism it is necessary to create more favorable microclimate conditions and decrease the physical loads.

  5. Distributional changes in gene-specific methylation associated with temperature.

    PubMed

    Bind, Marie-Abele C; Coull, Brent A; Baccarelli, Andrea; Tarantini, Letizia; Cantone, Laura; Vokonas, Pantel; Schwartz, Joel

    2016-10-01

    Temperature has been related to mean differences in DNA methylation. However, heterogeneity in these associations may exist across the distribution of methylation outcomes. This study examined whether the association between three-week averaged of temperature and methylation differs across quantiles of the methylation distributions in nine candidate genes. We measured gene-specific blood methylation repeatedly in 777 elderly men participating in the Normative Aging Study (1999-2010). We fit quantile regressions for longitudinal data to investigate whether the associations of temperature on methylation (expressed as %5mC) varied across the distribution of the methylation outcomes. We observed heterogeneity in the associations of temperature across percentiles of methylation in F3, TLR-2, CRAT, iNOS, and ICAM-1 genes. For instance, an increase in three-week temperature exposure was associated with a longer left-tail of the F3 methylation distribution. A 5°C increase in temperature was associated with a 0.15%5mC (95% confidence interval (CI): -0.27,-0.04) decrease on the 20th quantile of F3 methylation, but was not significantly related to the 80th quantile of this distribution (Estimate:0.06%5mC, 95%CI: -0.22, 0.35). Individuals with low values of F3, TLR-2, CRAT, and iNOS methylation, as well as a high value of ICAM-1 methylation, may be more susceptible to temperature effects on systemic inflammation. PMID:27236570

  6. Semi-empirical analysis of liquid fuel distribution downstream of a plain orifice injector under cross-stream air flow

    NASA Astrophysics Data System (ADS)

    Chin, J. S.; Jiang, H. K.; Cao, M. H.

    1981-07-01

    A simple, flat-fan spray model is proposed, which can with two empirical parameters predict both the value and the position of liquid fuel distribution curve maximums downstream of a plain orifice injector under high-velocity cross flow. It was found that the model is useful in the preliminary design of the fan air flow portion of a turbofan afterburner, due to its ability to predict the influence on liquid fuel distribution of (1) such flow parameters as air velocity and viscosity, pressure and temperature; (2) injector parameters such as diameter and injection velocity; and (3) liquid properties including viscosity, density, and surface tension.

  7. Topographic and spatial impacts of temperature inversions on air quality using mobile air pollution surveys.

    PubMed

    Wallace, Julie; Corr, Denis; Kanaroglou, Pavlos

    2010-10-01

    We investigated the spatial and topographic effects of temperature inversions on air quality in the industrial city of Hamilton, located at the western tip of Lake Ontario, Canada. The city is divided by a 90-m high topographic scarp, the Niagara Escarpment, and dissected by valleys which open towards Lake Ontario. Temperature inversions occur frequently in the cooler seasons, exacerbating the impact of emissions from industry and traffic. This study used pollution data gathered from mobile monitoring surveys conducted over a 3-year period, to investigate whether the effects of the inversions varied across the city. Temperature inversions were identified with vertical temperature data from a meteorological tower located within the study area. We divided the study area into an upper and lower zone separated by the Escarpment and further into six zones, based on location with respect to the Escarpment and industrial and residential areas, to explore variations across the city. The results identified clear differences in the responses of nitrogen dioxide (NO(2)) and fine particulate matter (PM2.5) to temperature inversions, based on the topographic and spatial criteria. We found that pollution levels increased as the inversion strengthened, in the lower city. However, the results also suggested that temperature inversions identified in the lower city were not necessarily experienced in the upper city with the same intensity. Further, pollution levels in the upper city appeared to decrease as the inversion deepened in the lower city, probably because of an associated change in prevailing wind direction and lower wind speeds, leading to decreased long-range transport of pollutants. PMID:20705328

  8. Air mass distribution and the heterogeneity of the climate change signal in the Hudson Bay/Foxe Basin region, Canada

    NASA Astrophysics Data System (ADS)

    Leung, Andrew; Gough, William

    2016-08-01

    The linkage between changes in air mass distribution and temperature trends from 1971 to 2010 is explored in the Hudson Bay/Foxe Basin region. Statistically significant temperature increases were found of varying spatial and temporal magnitude. Concurrent statistically significant changes in air mass frequency at the same locations were also detected, particularly in the declining frequency of dry polar (DP) air. These two sets of changes were found to be linked, and we thus conclude that the heterogeneity of the climatic warming signal in the region is at least partially the result of a fundamental shift in the concurrent air mass frequency in addition to global and regional changes in radiative forcing due to increases in long-lived greenhouse gases.

  9. Global temperature distributions from OGO-6 6300 A airglow measurements

    NASA Technical Reports Server (NTRS)

    Blamont, J. E.; Luton, J. M.; Nisbet, J. S.

    1974-01-01

    The OGO-6 6300 A airglow temperature measurements have been used to develop models of the global temperature distributions under solstice and equinox conditions for the altitude region from 240 to 300 km and for times ranging from dawn in this altitude region to shortly after sunset. The distributions are compared with models derived from satellite orbital decay and incoherent scatter sounding. The seasonal variation of the temperature as a function of latitude is shown to be very different from that derived from static diffusion models with constant boundary conditions.

  10. Effects of coolant parameters on steady state temperature distribution in phospheric-acid fuel cell electrode

    NASA Technical Reports Server (NTRS)

    Alkasab, K. A.; Abdul-Aziz, A.

    1991-01-01

    The influence of thermophysical properties and flow rate on the steady-state temperature distribution in a phosphoric-acid fuel cell electrode plate was experimentally investigated. An experimental setup that simulates the operating conditions prevailing in a phosphoric-acid fuel cell stack was used. The fuel cell cooling system utilized three types of coolants to remove excess heat generated in the cell electrode and to maintain a reasonably uniform temperature distribution in the electrode plate. The coolants used were water, engine oil, and air. These coolants were circulated at Reynolds number ranging from 1165 to 6165 for water; 3070 to 6864 for air; and 15 to 79 for oil. Experimental results are presented.

  11. Advanced Air Transportation Technologies (AATT) Project: Distributed Air-Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Mogford, Richard; Green, Steve; Ballin, Mark

    2002-01-01

    This viewgraph presentation provides an overview of active Distributed Air Ground Traffic Management (DAG-TM) work and reported on its overall progress to date. It does not include details on the concept elements (CEs).The DAG-TM research project is defined as a concept development and definition project and no tools will be delivered. Of the 14 CEs, three are being explored actively: CE-5, CE-6, and CE-11. Overviews of CE-5 (Free Maneuvering for User-Preferred Separation Assurance and Local TFM Conformance), CE-6 (En Route and Transition Trajectory Negotiation for User-Preferred Separation and Local TFM Conformance) and CE-11 (Self-Spacing for Merging and In-Trail Separation) are presented.

  12. Air contaminant statistical distributions with application to PM10 in Santiago, Chile.

    PubMed

    Marchant, Carolina; Leiva, Víctor; Cavieres, M Fernanda; Sanhueza, Antonio

    2013-01-01

    The use of statistical distributions to predict air quality is valuable for determining the impact of air chemical contaminants on human health. Concentrations of air pollutants are treated as random variables that can be modeled by a statistical distribution that is positively skewed and starts from zero. The type of distribution selected for analyzing air pollution data and its associated parameters depend on factors such as emission source and local meteorology and topography. International environmental guideline use appropriate distributions to compute exceedance probabilities and percentiles for setting administrative targets and issuing environmental alerts. The distribution bears a relationship to the normal distribution, and there are theoretical - and physical-based mechanistic arguments that support its use when analyzing air-pollutant data. Others distribution have also been used to model air population data, such as the beta, exponential, gamma, Johnson, log-logistic, Pearson, and Weibull distribution. One model also developed from physical-mechanistic considerations that has received considerable interest in recent year is the Birnbaum-Saunders distribution. This distribution has theoretical arguments and properties similar to those of the log-normal distribution, which renders it useful for modeling air contamination data. In this review, we have addressed the range of common atmospheric contaminants and the health effects they cause. We have also reviewed the statistical distributions that have been use to model air quality, after which we have detailed the problem of air contamination in Santiago, Chile. We have illustrated a methodology that is based on the Birnbaum-Saunders distributions to analyze air contamination data from Santiago, Chile. Finally, in the conclusions, we have provided a list of synoptic statements designed to help readers understand the significance of air pollution in Chile, and in Santiago, in particular, but that can be

  13. Horizontal and vertical distribution of air pollution over Maryland and the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Loughner, C. P.; Goldberg, D.; Tzortziou, M.; Cede, A.; Abuhassan, N.; Retscher, C.; Weinheimer, A. J.; Ferrare, R. A.; Hostetler, C. A.; Lee, P.; Pickering, K. E.; Crawford, J. H.; Mannino, A.; Herman, J. R.; Knapp, D. J.; Montzka, D.; Marufu, T. L.; Dickerson, R. R.; Hair, J. W.; Rogers, R.; Obland, M. D.

    2011-12-01

    Understanding planetary boundary layer (PBL) development and collapse and the transport of pollutants between the PBL and free troposphere are critical in understanding air quality and climate. The PBL height controls the depth of the atmosphere where emissions near the surface are diluted. Transporting pollutants from the PBL to the free troposphere increases their lifetime and the distance they can travel. This causes pollutants to have a larger impact on climate and allow pollutants to impact air quality farther downwind. Regional models have difficulty calculating a large daytime surface temperature gradient present during the summer along coastlines between relatively cool surface waters and the warm ground. The cooler surface waters cause lower PBL heights over water than over land, and the temperature gradient along the coastline causes local circulations, like sea breezes, to develop and transport pollutants. The horizontal and vertical distribution of air pollution and the PBL height over Maryland and the Chesapeake Bay will be contrasted using ground-, ship-, and aircraft-based observations obtained during the DISCOVER-AQ and GeoCAPE-CBODAQ field campaigns during July 2011 and a regional air quality model. Airborne lidar observations of PBL height and in-situ aircraft profiles of O3, NO, NO2, and NOy mixing ratios; ship-based and ground-based observations of NO2 and O3 integrated column measurements; and ship-based and ground-based in-situ O3, NO, and NOy mixing ratios will be analyzed alongside model output. Model biases and future work on how to improve regional air quality model simulations will be identified.

  14. Temperature distribution effects on micro-CFPCR performance.

    PubMed

    Chen, Pin-Chuan; Nikitopoulos, Dimitris E; Soper, Steven A; Murphy, Michael C

    2008-04-01

    Continuous flow polymerase chain reactors (CFPCRs) are BioMEMS devices that offer unique capabilities for the ultra-fast amplification of target DNA fragments using repeated thermal cycling, typically over the following temperature ranges: 90 degrees C-95 degrees C for denaturation, 50 degrees C-70 degrees C for renaturation, and 70 degrees C-75 degrees C for extension. In CFPCR, DNA cocktail is pumped through the constant temperature zones and reaches thermal equilibrium with the channel walls quickly due to its low thermal capacitance. In previous work, a polycarbonate CFPCR was designed with microchannels 150 microm deep, 50 microm wide, and 1.78 m long-including preheating and post-heating zones, fabricated with LIGA, and demonstrated. The high thermal resistance of the polycarbonate led to a high temperature gradient in the micro-device at steady-state and was partly responsible for the low amplification yield. Several steps were taken to ensure that there were three discrete, uniform temperature zones on the polycarbonate CFPCR device including: reducing the thickness of the CFPCR substrate to decrease thermal capacitance, using copper plates as heating elements to ensure a uniform temperature input, and making grooves between temperature zones to increase the resistance to lateral heat conduction between zones. Finite element analyses (FEA) were used to evaluate the macro temperature distribution in the CFPCR device and the micro temperature distribution along a single microchannel. At steady-state, the simulated CFPCR device had three discrete temperature zones, each with a uniform temperature distribution with a variation of +/-0.3 degrees C. An infrared (IR) camera was used to measure the steady-state temperature distribution in the prototype CFPCR and validated the simulation results. The temperature distributions along a microchannel at flow velocities from 0 mm/s to 6 mm/s were used to estimate the resulting temperatures of the DNA reagents in a single

  15. Combustion and gasification characteristics of pulverized coal using high-temperature air

    SciTech Connect

    Hanaoka, R.; Nakamura, M.; Kiga, T.; Kosaka, H.; Iwahashi, T.; Yoshikawa, K.; Sakai, M.; Muramatsu, K.; Mochida, S.

    1998-07-01

    In order to confirm performance of high-temperature-air combusting of pulverized coal, laboratory-scale combustion and gasification tests of coal were conducted changing air temperature and oxygen concentration in the air. Theses were conducted in a drop tube furnace of 200mm in inside diameter and 2,000mm in length. The furnace was heated by ceramic heater up to 1,300 C. A high-temperature air preheater utilizing the HRS (High Cycle Regenerative Combustion System) was used to obtain high-temperature combustion air. As the results, NOx emission was reduced when pulverized coal was fired with high-temperature-air. On the other hand, by lower oxygen concentration in combustion air diluted by nitrogen, NOx emission slightly decreased while became higher under staging condition.

  16. Detection of temperature distribution via recovering electrical conductivity in MREIT

    NASA Astrophysics Data System (ADS)

    In Oh, Tong; Kim, Hyung Joong; Jeong, Woo Chul; Chauhan, Munish; In Kwon, Oh; Woo, Eung Je

    2013-04-01

    In radiofrequency (RF) ablation or hyperthermia, internal temperature measurements and tissue property imaging are important to control their outputs and assess the treatment effect. Recently, magnetic resonance electrical impedance tomography (MREIT), as a non-invasive imaging method of internal conductivity distribution using an MR scanner, has been developed. Its reconstruction algorithm uses measured magnetic flux density induced by injected currents. The MREIT technique has the potential to visualize electrical conductivity of tissue with high spatial resolution and measure relative conductivity variation according to the internal temperature change based on the fact that the electrical conductivity of biological tissues is sensitive to the internal temperature distribution. In this paper, we propose a method to provide a non-invasive alternative to monitor the internal temperature distribution by recovering the electrical conductivity distribution using the MREIT technique. To validate the proposed method, we design a phantom with saline solution and a thin transparency film in a form of a hollow cylinder with holes to create anomalies with different electrical and thermal conductivities controlled by morphological structure. We first prove the temperature maps with respect to spatial and time resolution by solving the thermal conductivity partial differential equation with the real phantom experimental environment. The measured magnetic flux density and the reconstructed conductivity distributions using the phantom experiments were compared to the simulated temperature distribution. The relative temperature variation of two testing objects with respect to the background saline was determined by the relative conductivity contrast ratio (rCCR,%). The relation between the temperature and conductivity measurements using MREIT was approximately linear with better accuracy than 0.22 °C.

  17. How the Plant Temperature Links to the Air Temperature in the Desert Plant Artemisia ordosica

    PubMed Central

    Yu, Ming-Han; Ding, Guo-Dong; Gao, Guang-Lei; Sun, Bao-Ping; Zhao, Yuan-Yuan; Wan, Li; Wang, De-Ying; Gui, Zi-Yang

    2015-01-01

    Plant temperature (Tp) is an important indicator of plant health. To determine the dynamics of plant temperature and self-cooling ability of the plant, we measured Tp in Artemisia ordosica in July, in the Mu Us Desert of Northwest China. Related factors were also monitored to investigate their effects on Tp, including environmental factors, such as air temperature (Ta), relative humidity, wind speed; and physiological factors, such as leaf water potential, sap flow, and water content. The results indicate that: 1) Tp generally changes in conjunction with Ta mainly, and varies with height and among the plant organs. Tp in the young branches is most constant, while it is the most sensitive in the leaves. 2) Correlations between Tp and environmental factors show that Tp is affected mainly by Ta. 3) The self-cooling ability of the plant was effective by midday, with Tp being lower than Ta. 4) Increasing sap flow and leaf water potential showed that transpiration formed part of the mechanism that supported self-cooling. Increased in water conductance and specific heat at midday may be additional factors that contribute to plant cooling ability. Therefore, our results confirmed plant self-cooling ability. The response to high temperatures is regulated by both transpiration speed and an increase in stem water conductance. This study provides quantitative data for plant management in terms of temperature control. Moreover, our findings will assist species selection with taking plant temperature as an index. PMID:26280557

  18. Hydrogeologic controls on baseflow temperature distributions: Implications for stream temperature response to climate variability

    NASA Astrophysics Data System (ADS)

    Boutt, D. F.; Smith, Z.

    2012-12-01

    Ground water temperature distributions in the near surface are not uniform and are the complex result of a variety of near- and sub-surface processes. Heat from the atmosphere is input into the ground via conduction at the ground surface and advection of infiltrating water. These processes produce predictable distributions of temperature that have been used to investigate current and past climatic conditions, determine ground water velocities, and assess basin-scale heat transport in sedimentary systems. The purpose of this investigation is to test a hypothesis that timing and nature of ground water recharge (advection of heat into the subsurface) is a significant control on the temporal and spatial distribution of heat in the shallow subsurface. The advective movement of heat imposes a dominant control on the 3-dimensional subsurface temperature distribution and strongly affects stream baseflow temperatures. We present observational data supporting a strong hydrogeologic control on subsurface water temperatures. These temperature distributions are modified by advection and are significantly different than theoretical distributions in a conduction-dominated environment. The temperature distributions with depth and space are controlled by the aquifers internal hydrogeologic structure and connections to recharge areas. Synthetic modeling is used to address the following questions: (1) how quickly do ground water temperatures respond to a changing climate, and how quickly do they reach a new equilibrium following perturbation; (2) what is the role of recharge water temperature and timing on subsurface temperature distributions; and (3) how do these factors influence baseflow temperatures in stream systems of varying size. Two-dimensional numerical models are developed using Comsol Multiphysics to perform a sensitivity analysis of basin-scale temperature response and coupling to surface water. In nested ground water flow systems, discharge areas farther down the

  19. Fiber-optic distributed temperature sensing of alpine snowpacks

    NASA Astrophysics Data System (ADS)

    Huwald, H.; Mutzner, R.; Williams, S. R.; Higgins, C. W.; Nolin, A. W.; Drake, S. A.; Selker, J. S.; Parlange, M. B.

    2011-12-01

    Small-scale surface topography and variations in snow density and in the snowpack matrix influence the snow temperature, a key variable for various heat flux components of the surface energy balance. Thus detailed knowledge on the spatial distribution and temporal evolution is crucial to quantify horizontal heterogeneity in the heat fluxes at the snow surface. We present measurements of small-scale temperature variations in alpine snow packs using fiber-optic distributed temperature sensing (DTS) together with traditional sensors such as thermocouples and thermistors. Almost a kilometer of fiber-optic cable was installed in the snow at Plaine Morte and Jungfraufirn glacier in the Swiss Alps, to obtain distributed information on snow temperature. The sensor cables were deployed in various configurations such as a fence-like structure anchored in the snowpack providing 2D snow temperature slices as snow accumulated and covered the fence, or a sensor tube with 4mm vertical resolution for high-resolution profiles. Measurements were taken at intervals of 5 minutes, with a spatial resolution of 1m and accuracy better than 0.1C. Besides the diurnal cycle, temperature data show some spatial variability along the transect. Subsurface heat fluxes were computed based on the Fourier heat equation using snow temperature and snow depth data, and an effective thermal conductivity of the snow derived from density measurements. Cable exposure to shortwave radiation near the surface and snow accumulation/compaction caused problems such as temperature overestimation and sagging of the cable between fence poles, respectively.

  20. Environmentally sound thermal energy extraction from coal and wastes using high temperature air combustion technology

    SciTech Connect

    Yoshikawa, Kunio

    1999-07-01

    High temperature air combustion is one of promising ways of burning relatively low BTU gas obtained from gasification of low grade coal or wastes. In this report, the author proposes a new power generation system coupled with high temperature air gasification of coal/wastes and high temperature air combustion of the syngas from coal/wastes. This system is realized by employing Multi-staged Enthalpy Extraction Technology (MEET). The basic idea of the MEET system is that coal or wastes are gasified with high temperature air of about 1,000 C, then the generated syngas is cooled in a heat recovery boiler to be cleaned-up in a gas cleanup system (desulfurization, desalinization and dust removal). Part of thermal energy contained in this cleaned-up syngas is used for high temperature air preheating, and the complete combustion of the fuel gas is done using also high temperature air for driving gas turbines or steam generation in a boiler.

  1. Temporal and spatial assessments of minimum air temperature using satellite surface temperature measurements in Massachusetts, USA

    PubMed Central

    Kloog, Itai; Chudnovsky, Alexandra; Koutrakis, Petros; Schwartz, Joel

    2015-01-01

    Although meteorological stations provide accurate air temperature observations, their spatial coverage is limited and thus often insufficient for epidemiological studies. Satellite data expand spatial coverage, enhancing our ability to estimate near surface air temperature (Ta). However, the derivation of Ta from surface temperature (Ts) measured by satellites is far from being straightforward. In this study, we present a novel approach that incorporates land use regression, meteorological variables and spatial smoothing to first calibrate between Ts and Ta on a daily basis and then predict Ta for days when satellite Ts data were not available. We applied mixed regression models with daily random slopes to calibrate Moderate Resolution Imaging Spectroradiometer (MODIS) Ts data with monitored Ta measurements for 2003. Then, we used a generalized additive mixed model with spatial smoothing to estimate Ta in days with missing Ts. Out-of-sample tenfold cross-validation was used to quantify the accuracy of our predictions. Our model performance was excellent for both days with available Ts and days without Ts observations (mean out-of-sample R2=0.946 and R2=0.941 respectively). Furthermore, based on the high quality predictions we investigated the spatial patterns of Ta within the study domain as they relate to urban vs. non-urban land uses. PMID:22721687

  2. Measuring Temperature in Pipe Flow with Non-Homogeneous Temperature Distribution

    NASA Astrophysics Data System (ADS)

    Klason, P.; Kok, G. J.; Pelevic, N.; Holmsten, M.; Ljungblad, S.; Lau, P.

    2014-04-01

    Accurate temperature measurements in flow lines are critical for many industrial processes. It is normally more a rule than an exception in such applications to obtain water flows with inhomogeneous temperature distributions. In this paper, a number of comparisons were performed between different 100 ohm platinum resistance thermometer (Pt-100) configurations and a new speed-of-sound-based temperature sensor used to measure the average temperature of water flows with inhomogeneous temperature distributions. The aim was to achieve measurement deviations lower than 1 K for the temperature measurement of water flows with inhomogeneous temperature distributions. By using a custom-built flow injector, a water flow with a hot-water layer on top of a cold-water layer was created. The temperature difference between the two layers was up to 32 K. This study shows that the deviations to the temperature reference for the average temperature of four Pt-100s, the multisensor consisting of nine Pt-100s, and the new speed-of-sound sensors are remarkably lower than the deviation for a single Pt-100 under the same conditions. The aim of reaching a deviation lower than 1 K was achieved with the speed-of-sound sensors, the configuration with four Pt-100s, and the multisensor. The promising results from the speed-of sound temperature sensors open the possibility for an integrated flow and temperature sensor. In addition, the immersion depth of a single Pt-100 was also investigated at three different water temperatures.

  3. Observations of Cooling Summer Daytime Temperatures (1948-2005) in Growing Urban Coastal California Air Basins

    NASA Astrophysics Data System (ADS)

    Bornstein, R.; Lebassi, B.; Gonzalez, J.

    2008-12-01

    The study evaluated long-term (1948-2005) air temperatures in California (CA) during summer (June- August). The aggregate CA results showed asymmetric warming, as daily minimum temperatures increased faster than daily maximum temperatures. The spatial distributions of daily maximum temperatures in the heavily urbanized South Coast and San Francisco Bay Area air basins, however, exhibited a complex pattern, with cooling at low-elevation (mainly urban) coastal-areas and warming at (mainly rural) inland areas. Previous studies have suggested that cooling summer max temperatures in CA were due to increased irrigation, coastal upwelling, or cloud cover. The current hypothesis, however, is that this temperature pattern arises from a 'reverse-reaction' to greenhouse gas (GHG) induced global-warming. In this hypothesis, the global warming of inland areas resulted in an increased (cooling) sea breeze activity in coastal areas. The coastal cooling thus resulted as urban heat island (UHI) warming was weaker than the reverse-reaction cooling; if there was no UHI effect, then the cooling would be even stronger. The cooling or warming trends at several pairs of nearby urban and non- urban sites were compared in an effort to separate out the urban heat island (UHI) and global warming components of the trend. Average temperatures from global circulation models show warming that decreases from inland areas of California to its coastal areas. Such large scale models, however, cannot resolve these smaller scale topographic and coastal effects. Meso-scale modeling on a 4 km grid is thus being carried out to evaluate the contributions from GHG global-warming and land-use changes, including UHI development, to the observed trends. Significant societal impacts may result from this observed reverse-reaction to GHG- warming; possible beneficial effects include decreased maximum: O3 levels, human thermal-stress, and per- capita energy requirements for cooling.

  4. FITTING STATISTICAL DISTRIBUTIONS TO AIR QUALITY DATA BY THE MAXIMUM LIKELIHOOD METHOD

    EPA Science Inventory

    A computer program has been developed for fitting statistical distributions to air pollution data using maximum likelihood estimation. Appropriate uses of this software are discussed and a grouped data example is presented. The program fits the following continuous distributions:...

  5. Temperature Distribution within a Cold Cap during Nuclear Waste Vitrification

    SciTech Connect

    Dixon, Derek R.; Schweiger, Michael J.; Riley, Brian J.; Pokorny, Richard; Hrma, Pavel R.

    2015-07-21

    The kinetics of the feed-to-glass conversion affects the waste vitrification rate in an electric melter. The primary area of interest in this conversion process is the cold cap, a layer of reacting feed on top of molten glass. Knowing the temperature profile within a cold cap will help determine its characteristics and relate them to the rate of glass production. The work presented here provides an experimental determination of the temperature distribution within the cold cap. Since a direct measurement of the temperature field within the cold cap is impracticable, an indirect method was developed where the textural features in a laboratory-made cold cap with a high-level waste feed were mapped as a function of position using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. To correlate the temperature distribution to microstructures within the cold cap, microstructures were identified of individual feed samples that were heat treated to set temperatures between 400°C and 1200°C and quenched. The temperature distribution within the cold cap was then established by correlating cold-cap regions with the feed samples of nearly identical structures and was compared with the temperature profile from a mathematical model.

  6. Using Machine learning method to estimate Air Temperature from MODIS over Berlin

    NASA Astrophysics Data System (ADS)

    Marzban, F.; Preusker, R.; Sodoudi, S.; Taheri, H.; Allahbakhshi, M.

    2015-12-01

    Land Surface Temperature (LST) is defined as the temperature of the interface between the Earth's surface and its atmosphere and thus it is a critical variable to understand land-atmosphere interactions and a key parameter in meteorological and hydrological studies, which is involved in energy fluxes. Air temperature (Tair) is one of the most important input variables in different spatially distributed hydrological, ecological models. The estimation of near surface air temperature is useful for a wide range of applications. Some applications from traffic or energy management, require Tair data in high spatial and temporal resolution at two meters height above the ground (T2m), sometimes in near-real-time. Thus, a parameterization based on boundary layer physical principles was developed that determines the air temperature from remote sensing data (MODIS). Tair is commonly obtained from synoptic measurements in weather stations. However, the derivation of near surface air temperature from the LST derived from satellite is far from straight forward. T2m is not driven directly by the sun, but indirectly by LST, thus T2m can be parameterized from the LST and other variables such as Albedo, NDVI, Water vapor and etc. Most of the previous studies have focused on estimating T2m based on simple and advanced statistical approaches, Temperature-Vegetation index and energy-balance approaches but the main objective of this research is to explore the relationships between T2m and LST in Berlin by using Artificial intelligence method with the aim of studying key variables to allow us establishing suitable techniques to obtain Tair from satellite Products and ground data. Secondly, an attempt was explored to identify an individual mix of attributes that reveals a particular pattern to better understanding variation of T2m during day and nighttime over the different area of Berlin. For this reason, a three layer Feedforward neural networks is considered with LMA algorithm

  7. A theoretical analysis of basin-scale groundwater temperature distribution

    NASA Astrophysics Data System (ADS)

    An, Ran; Jiang, Xiao-Wei; Wang, Jun-Zhi; Wan, Li; Wang, Xu-Sheng; Li, Hailong

    2015-03-01

    The theory of regional groundwater flow is critical for explaining heat transport by moving groundwater in basins. Domenico and Palciauskas's (1973) pioneering study on convective heat transport in a simple basin assumed that convection has a small influence on redistributing groundwater temperature. Moreover, there has been no research focused on the temperature distribution around stagnation zones among flow systems. In this paper, the temperature distribution in the simple basin is reexamined and that in a complex basin with nested flow systems is explored. In both basins, compared to the temperature distribution due to conduction, convection leads to a lower temperature in most parts of the basin except for a small part near the discharge area. There is a high-temperature anomaly around the basin-bottom stagnation point where two flow systems converge due to a low degree of convection and a long travel distance, but there is no anomaly around the basin-bottom stagnation point where two flow systems diverge. In the complex basin, there are also high-temperature anomalies around internal stagnation points. Temperature around internal stagnation points could be very high when they are close to the basin bottom, for example, due to the small permeability anisotropy ratio. The temperature distribution revealed in this study could be valuable when using heat as a tracer to identify the pattern of groundwater flow in large-scale basins. Domenico PA, Palciauskas VV (1973) Theoretical analysis of forced convective heat transfer in regional groundwater flow. Geological Society of America Bulletin 84:3803-3814

  8. Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H

    1937-01-01

    Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.

  9. Apparatus for supplying conditioned air at a substantially constant temperature and humidity

    NASA Technical Reports Server (NTRS)

    Obler, H. D. (Inventor)

    1980-01-01

    The apparatus includes a supply duct coupled to a source of supply air for carrying the supply air therethrough. A return duct is coupled to the supply duct for carrying return conditioned air therethrough. A temperature reducing device is coupled to the supply duct for decreasing the temperature of the supply and return conditioned air. A by-pass duct is coupled to the supply duct for selectively directing portions of the supply and return conditioned air around the temperature reducing device. Another by-pass duct is coupled to the return duct for selectively directing portions of the return conditioned air around the supply duct and the temperature reduction device. Controller devices selectively control the flow and amount of mixing of the supply and return conditioned air.

  10. Effect of convective term on temperature distribution in biological tissue

    NASA Astrophysics Data System (ADS)

    Kengne, Emmanuel; Saydé, Michel; Lakhssassi, Ahmed

    2013-08-01

    We introduce a phase imprint into the order parameter describing the influence of blood flow on the temperature distribution in the tissue described by the one-dimensional Pennes equation and then engineer the imprinted phase suitably to generate a modified Pennes equation with a gradient term (known in the theory of biological systems as convective term) which is associated with the heat convected by the flowing blood. Using the derived model, we analytically investigate temperature distribution in biological tissues subject to two different spatial heating methods. The applicability of our results is illustrated by one of typical bio-heat transfer problems which is often encountered in therapeutic treatment, cancer hyperthermia, laser surgery, thermal injury evaluation, etc. Analyzing the effect of the convective term on temperature distribution, we found that an optimum heating of a biological system can be obtained through regulating the convective term.

  11. Influence of the characteristics of atmospheric boundary layer on the vertical distribution of air pollutant in China's Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Wang, Chenggang; Cao, Le

    2016-04-01

    Air pollution occurring in the atmospheric boundary layer is a kind of weather phenomenon which decreases the visibility of the atmosphere and results in poor air quality. Recently, the occurrence of the heavy air pollution events has become more frequent all over Asia, especially in Mid-Eastern China. In December 2015, the most severe air pollution in recorded history of China occurred in the regions of Yangtze River Delta and Beijing-Tianjin-Hebei. More than 10 days of severe air pollution (Air Quality Index, AQI>200) appeared in many large cities of China such as Beijing, Tianjin, Shijiazhuang and Baoding. Thus, the research and the management of the air pollution has attracted most attentions in China. In order to investigate the formation, development and dissipation of the air pollutions in China, a field campaign has been conducted between January 1, 2015 and January 28, 2015 in Yangtze River Delta of China, aiming at a intensive observation of the vertical structure of the air pollutants in the atmospheric boundary layer during the time period with heavy pollution. In this study, the observation data obtained in the field campaign mentioned above is analyzed. The characteristics of the atmospheric boundary layer and the vertical distribution of air pollutants in the city Dongshan located in the center of Lake Taihu are shown and discussed in great detail. It is indicated that the stability of the boundary layer is the strongest during the nighttime and the early morning of Dongshan. Meanwhile, the major air pollutants, PM2.5 and PM10 in the boundary layer, reach their maximum values, 177.1μg m-3 and 285μg m-3 respectively. The convective boundary layer height in the observations ranges from approximately 700m to 1100m. It is found that the major air pollutants tend to be confined in a relatively shallow boundary layer, which represents that the boundary layer height is the dominant factor for controlling the vertical distribution of the air pollutants. In

  12. The Veriability of Radiative Balance Elements and Air Temperature on the Asian Region of Russia

    NASA Astrophysics Data System (ADS)

    Kharyutkina, E. V.; Ippolitov, I. I.; Loginov, S. V.

    2011-01-01

    The variability of spatial-temporal distribution of temperature and radiative and heat balances components is investigated for the Asian territory of Russia (45 - 80oN, 60-180oE) using JRA-25 reanalysis data for the period of current global warming 1979-2008 It is shown that since the beginning of 90th of XX century the increase of back earth-atmosphere short-wave radiation is observed. Such tendency is in conformity with the cloud cover dynamics and downward short-wave radiation at the surface. Annual averaged radiative balance values at the top are negative; it is consistent with negative annual averaged air temperature, averaged over territory. The downward trend of radiative balance is the most obvious after the beginning of 90th of XX century.

  13. High-speed measurement of an air transect's temperature shift heated by laser beam

    NASA Astrophysics Data System (ADS)

    Li, WenYu; Jiang, ZongFu; Xi, Fengjie; Li, Qiang; Xie, Wenke

    2005-02-01

    Laser beam heat the air on the optic path, Beam-deflection optical tomography is a non-intrusive method to measure the 2-dimension temperature distribution in the transect. By means of linear Hartmann Sensor at the rate of 27kHz, the optic path was heated by a 2.7μm HF laser, continuous and high time resolution gradients of optic phase were obtained. the result of analysing and calculation showed the temperament shift in the heated beam path was not higher than 50K when the HF laser power was 9W. The experiment showed that it is a practical non-intrusive temperature shift measurement method for a small area aero-optical medium.

  14. An investigation of temperature distribution in cooled guide vanes

    NASA Technical Reports Server (NTRS)

    Kotwal, R.; Tabakoff, W.; Hamed, A.

    1977-01-01

    A numerical study to determine the temperature distribution in the guide vane blades of a radial inflow turbine is presented. A computer program was developed which permits the temperature distribution to be calculated when the blade is cooled internally using a combination of impingement and film cooling techniques. The study is based on the use of the finite difference method in a two dimensional heat conduction problem. The results are then compared to determine the best cooling configuration for a certain coolant to primary mass flow ratio.

  15. Velocity and pressure distribution behind bodies in an air current

    NASA Technical Reports Server (NTRS)

    Betz, A

    1924-01-01

    The following experiments on the air flow behind bodies were made for the purpose of assisting in the explanation of the phenomena connected with air resistance. The first two series of experiments dealt with the phenomena behind a cylinder. The third series of experiments was carried out behind a streamlined strut.

  16. Distributed temperature monitoring of long distance submarine cables

    NASA Astrophysics Data System (ADS)

    Fromme, Martin; Christiansen, Willi; Kjær, Søren Valdemar; Hill, Wieland

    2011-05-01

    Distributed temperature sensing (DTS) of long distance power cables is shown to provide valuable information for cable design optimisation and proper operation of wind farms. The long range sensing is enabled by using the Raman-OFDR (optical frequency domain reflectometry) technology in single-mode fibres. Raman-OFDR uses a modulated continuous wave laser for detection. The low peak power minimizes stimulated Raman-scattering in single-mode fibres making accurate temperature sensing over long distances feasible.

  17. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System

    PubMed Central

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W.; Dong, Fengzhong

    2016-01-01

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges. PMID:27275822

  18. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System.

    PubMed

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong

    2016-01-01

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges. PMID:27275822

  19. Dust temperature distributions in star-forming condensations

    NASA Technical Reports Server (NTRS)

    Xie, Taoling; Goldsmith, Paul F.; Snell, Ronald L.; Zhou, Weimin

    1993-01-01

    The FIR spectra of the central IR condensations in the dense cores of molecular clouds AFGL 2591. B335, L1551, Mon R2, and Sgr B2 are reanalyzed here in terms of the distribution of dust mass as a function of temperature. FIR spectra of these objects can be characterized reasonably well by a given functional form. The general shapes of the dust temperature distributions of these objects are similar and closely resemble the theoretical computations of de Muizon and Rouan (1985) for a sample of 'hot centered' clouds with active star formation. Specifically, the model yields a 'cutoff' temperature below which essentially no dust is needed to interpret the dust emission spectra, and most of the dust mass is distributed in a broad temperature range of a few tens of degrees above the cutoff temperature. Mass, luminosity, average temperature, and column density are obtained, and it is found that the physical quantities differ considerably from source to source in a meaningful way.

  20. Development of distributed strain and temperature sensing cables

    NASA Astrophysics Data System (ADS)

    Inaudi, Daniele; Glisic, Branko

    2005-05-01

    Distributed fiber optic sensing presents unique features that have no match in conventional sensing techniques. The ability to measure temperatures and strain at thousands of points along a single fiber is particularly interesting for the monitoring of large structures such as pipelines, flow lines, oil wells, dams and dikes. Sensing systems based on Brillouin and Raman scattering have been used for example to detect pipeline leakages, verify pipeline operational parameters, prevent failure of pipelines installed in landslide areas, optimize oil production from wells and detect hot-spots in high-power cables. The measurement instruments have been vastly improved in terms of spatial, temperature and strain resolution, distance range, measurement time, data processing and system cost. Analyzers for Brillouin and Raman scattering are now commercially available and offer reliable operation in field conditions. New application opportunities have however demonstrated that the design and production of sensing cables is a critical element for the success of any distributed sensing instrumentation project. Although standard telecommunication cables can be effectively used for sensing ordinary temperatures, monitoring high and low temperatures or distributed strain present unique challenges that require specific cable designs. This contribution presents three cable designs for high-temperature sensing, strain sensing and combined strain and temperature monitoring.

  1. Reliability and field testing of distributed strain and temperature sensors

    NASA Astrophysics Data System (ADS)

    Inaudi, Daniele; Glisic, Branko

    2006-03-01

    Distributed fiber optic sensing presents unique features that have no match in conventional sensing techniques. The ability to measure temperatures and strain at thousands of points along a single fiber is particularly interesting for the monitoring of large structures such as pipelines, flow lines, oil wells, dams and dikes. Sensing systems based on Brillouin and Raman scattering have been used for example to detect pipeline leakages, verify pipeline operational parameters, prevent failure of pipelines installed in landslide areas, optimize oil production from wells and detect hot-spots in high-power cables. The measurement instruments have been vastly improved in terms of spatial, temperature and strain resolution, distance range, measurement time, data processing and system cost. Analyzers for Brillouin and Raman scattering are now commercially available and offer reliable operation in field conditions. New application opportunities have however demonstrated that the design and production of sensing cables is a critical element for the success of any distributed sensing instrumentation project. Although standard telecommunication cables can be effectively used for sensing ordinary temperatures, monitoring high and low temperatures or distributed strain present unique challenges that require specific cable designs. This contribution presents three cable designs for high-temperature sensing, strain sensing and combined strain and temperature monitoring as well as the respective testing procedures during production and in the field.

  2. Short-term effects of air temperature on plasma metabolite concentrations in patients undergoing cardiac cattheterization.

    EPA Science Inventory

    BACKGROUND: Epidemiological studies have shown associations between air temperature and cardiovascular health outcomes. Metabolic dysregulation might also play a role in the development of cardiovascular disease.OBJECTIVES: To investigate short-term temperature effects on metabol...

  3. The effect of water temperature on air entrainment, bubble plumes, and surface foam in a laboratory breaking-wave analog

    NASA Astrophysics Data System (ADS)

    Callaghan, A. H.; Stokes, M. D.; Deane, G. B.

    2014-11-01

    Air-entraining breaking waves form oceanic whitecaps and play a key role in climate regulation through air-sea bubble-mediated gas transfer, and sea spray aerosol production. The effect of varying sea surface temperature on air entrainment, subsurface bubble plume dynamics, and surface foam evolution intrinsic to oceanic whitecaps has not been well studied. By using a breaking wave analog in the laboratory over a range of water temperatures (Tw = 5°C to Tw = 30°C) and different source waters, we have examined changes in air entrainment, subsurface bubble plumes, and surface foam evolution over the course of a breaking event. For filtered seawater, air entrainment was estimated to increase by 6% between Tw = 6°C and Tw = 30°C, driven by increases of about 43% in the measured surface roughness of the plunging water sheet. After active air entrainment, the rate of loss of air through bubble degassing was more rapid at colder water temperatures within the first 0.5 s of plume evolution. Thereafter, the trend reversed and bubbles degassed more quickly in warmer water. The largest observed temperature-dependent differences in subsurface bubble distributions occurred at radii greater than about 700 μm. Temperature-dependent trends observed in the subsurface bubble plume were mirrored in the temporal evolution of the surface whitecap foam area demonstrating the intrinsic link between surface whitecap foam and the subsurface bubble plume. Differences in foam and plume characteristics due to different water sources were greater than the temperature dependencies for the filtered seawater examined.

  4. Startup of air-cooled condensers and dry cooling towers at low temperatures of the cooling air

    NASA Astrophysics Data System (ADS)

    Milman, O. O.; Ptakhin, A. V.; Kondratev, A. V.; Shifrin, B. A.; Yankov, G. G.

    2016-05-01

    The problems of startup and performance of air-cooled condensers (ACC) and dry cooling towers (DCT) at low cooling air temperatures are considered. Effects of the startup of the ACC at sub-zero temperatures are described. Different options of the ACC heating up are analyzed, and examples of existing technologies are presented (electric heating, heating up with hot air or steam, and internal and external heating). The use of additional heat exchanging sections, steam tracers, in the DCT design is described. The need for high power in cases of electric heating and heating up with hot air is noted. An experimental stand for research and testing of the ACC startup at low temperatures is described. The design of the three-pass ACC unit is given, and its advantages over classical single-pass design at low temperatures are listed. The formation of ice plugs inside the heat exchanging tubes during the start-up of ACC and DCT at low cooling air temperatures is analyzed. Experimental data on the effect of the steam flow rate, steam nozzle distance from the heat-exchange surface, and their orientation in space on the metal temperature were collected, and test results are analyzed. It is noted that the surface temperature at the end of the heat up is almost independent from its initial temperature. Recommendations for the safe start-up of ACCs and DCTs are given. The heating flow necessary to sufficiently heat up heat-exchange surfaces of ACCs and DCTs for the safe startup is estimated. The technology and the process of the heat up of the ACC with the heating steam external supply are described by the example of the startup of the full-scale section of the ACC at sub-zero temperatures of the cooling air, and the advantages of the proposed start-up technology are confirmed.

  5. Study of the exit temperature distribution on combustor with dual-swirler sprayers

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Chin, Ju-Shan

    1993-05-01

    A rectangular combustor, with three dual-radial-swirler mixing cup sprayers that each has a centrifugal primer atomizer from BK-1 engine, is used. Combustion tests are conducted at ambient pressure and temperature to study the effects of different configurations of the dual-swirler sprayer on combustor exit temperature distribution. The results show that in relation to centrifugal nozzle, the correct designed dual-swirler is able to improve the exit temperature distribution significantly, with its pattern factor reduced a value of 0.06-0.09, and that the air flow split ratio between the primary and the secondary swirlers, the length of mixing-cup, the rotational directions between adjacent sprayers are of importance to the pattern factor. This will be useful to the short annular combustor development in Chinese Aeroengine Three Main Component Development Project.

  6. Comparison of air distribution system alternatives serving a classroom-office portion of a school building

    NASA Astrophysics Data System (ADS)

    Jordan, Stillman D., III

    An effective air distribution design accomplishes both comfort and ventilation requirements while consuming as little energy as possible. This paper analyzes four different air distribution systems and technologies including single duct variable air volume air handlers, chilled beam cooling systems, total energy recovery wheels, displacement ventilation, and dedicated outside air systems in an effort to compare air distribution systems for a representative section of a school in hot and humid climate. Distribution effectiveness and energy consumption are weighed against considerations such as system complexity and cost. Energy modeling calculations show that the Energy Utilization Index (EUI) of all of the analyzed designs are significantly less than the median EUI of schools in south Texas. Chilled beams are not well suited for schools because of the large amount of outside air required by the space and the sophisticated design and operation needed to prevent condensation from occurring at the chilled beam. Payback calculations show that even though new technologies like displacement ventilation and dedicated outside air systems reduce total energy consumption, they are not realistic design solutions because they have paybacks that exceed 100 years. The calculations also show the total energy recovery wheels result in a 16% energy savings over a baseline central variable air volume distribution system because of the large amount of outside air required in school buildings.

  7. Temperature distribution in a stellar atmosphere diagnostic basis

    NASA Technical Reports Server (NTRS)

    Jefferies, J. T.; Morrison, N. D.

    1973-01-01

    A stellar chromosphere is considered a region where the temperature increases outward and where the temperature structure of the gas controls the shape of the spectral lines. It is shown that lines which have collision-dominated source sink terms, like the Ca(+) and Mg(+) H and K lines, can be used to obtain the distribution of temperature with height from observed line profiles. Intrinsic emission lines and geometrical emission lines are found in spectral regions where the continuum is depressed. In visual regions, where the continuum is not depressed, emission core in absorption lines are attributed to reflections of intrinsic emission lines.

  8. One-Component Pressure-Temperature Phase Diagrams in the Presence of Air

    ERIC Educational Resources Information Center

    Andrade-Gamboa, Julio; Martire, Daniel O.; Donati, Edgardo R.

    2010-01-01

    One-component phase diagrams are good approximations to predict pressure-temperature ("P-T") behavior of a substance in the presence of air, provided air pressure is not much higher than the vapor pressure. However, at any air pressure, and from the conceptual point of view, the use of a traditional "P-T" phase diagram is not strictly correct. In…

  9. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 34 2013-07-01 2013-07-01 false NOX intake-air humidity...

  10. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 33 2011-07-01 2011-07-01 false NOX intake-air humidity...

  11. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 32 2010-07-01 2010-07-01 false NOX intake-air humidity...

  12. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 34 2012-07-01 2012-07-01 false NOX intake-air humidity...

  13. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 33 2014-07-01 2014-07-01 false NOX intake-air humidity...

  14. The impact of heterogeneous surface temperatures on the 2-m air temperature over the Arctic Ocean in spring

    NASA Astrophysics Data System (ADS)

    Tetzlaff, A.; Kaleschke, L.; Lüpkes, C.; Ament, F.; Vihma, T.

    2012-07-01

    The influence of spatial surface temperature changes over the Arctic Ocean on the 2-m air temperature variability is estimated using backward trajectories based on ERA-Interim and the JRA25 wind fields. They are initiated at Alert, Barrow and at the Tara drifting station. Three different methods are used. The first one compares mean ice surface temperatures along the trajectories to the observed 2-m air temperatures at the stations. The second one correlates the observed temperatures to air temperatures obtained using a simple Lagrangian box model which only includes the effect of sensible heat fluxes. For the third method, mean sensible heat fluxes from the model are correlated with the difference of the air temperatures at the model starting point and the observed temperatures at the stations. The calculations are based on MODIS ice surface temperatures and four different sets of ice concentration derived from SSM/I and AMSR-E data. Under nearly cloud free conditions, up to 90% of the 2-m air temperature variance can be explained for Alert, and 60% for Barrow using these methods. The differences are attributed to the different ice conditions, which are characterized by high ice concentration around Alert and lower ice concentration near Barrow. These results are robust for the different sets of reanalyses and ice concentration data. Near-surface winds of both reanalyses show a large inconsistency in the Central Arctic, which leads to a large difference in the correlations between modeled and observed 2-m air temperatures at Tara. Explained variances amount to 70% using JRA and only 45% using ERA. The results also suggest that near-surface temperatures at a given site are influenced by the variability of surface temperatures in a domain of about 150 to 350 km radius around the site.

  15. A simplified physically-based model to calculate surface water temperature of lakes from air temperature in climate change scenarios

    NASA Astrophysics Data System (ADS)

    Piccolroaz, S.; Toffolon, M.

    2012-12-01

    Modifications of water temperature are crucial for the ecology of lakes, but long-term analyses are not usually able to provide reliable estimations. This is particularly true for climate change studies based on Global Circulation Models, whose mesh size is normally too coarse for explicitly including even some of the biggest lakes on Earth. On the other hand, modeled predictions of air temperature changes are more reliable, and long-term, high-resolution air temperature observational datasets are more available than water temperature measurements. For these reasons, air temperature series are often used to obtain some information about the surface temperature of water bodies. In order to do that, it is common to exploit regression models, but they are questionable especially when it is necessary to extrapolate current trends beyond maximum (or minimum) measured temperatures. Moreover, water temperature is influenced by a variety of processes of heat exchange across the lake surface and by the thermal inertia of the water mass, which also causes an annual hysteresis cycle between air and water temperatures that is hard to consider in regressions. In this work we propose a simplified, physically-based model for the estimation of the epilimnetic temperature in lakes. Starting from the zero-dimensional heat budget, we derive a simplified first-order differential equation for water temperature, primarily forced by a seasonally varying external term (mainly related to solar radiation) and an exchange term explicitly depending on the difference between air and water temperatures. Assuming annual sinusoidal cycles of the main heat flux components at the atmosphere-lake interface, eight parameters (some of them can be disregarded, though) are identified, which can be calibrated if two temporal series of air and water temperature are available. We note that such a calibration is supported by the physical interpretation of the parameters, which provide good initial

  16. Soil temperature variability in complex terrain measured using fiber-optic distributed temperature sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil temperature (Ts) exerts critical controls on hydrologic and biogeochemical processes but magnitude and nature of Ts variability in a landscape setting are rarely documented. Fiber optic distributed temperature sensing systems (FO-DTS) potentially measure Ts at high density over a large extent. ...

  17. Soot formation and temperature field structure in laminar propane-air diffusion flames at elevated pressures

    SciTech Connect

    Bento, Decio S.; Guelder, OEmer L.; Thomson, Kevin A.

    2006-06-15

    The effect of pressure on soot formation and the structure of the temperature field was studied in coflow propane-air laminar diffusion flames over the pressure range of 0.1 to 0.73 MPa in a high-pressure combustion chamber. The fuel flow rate was selected so that the soot was completely oxidized within the visible flame and the flame was stable at all pressures. Spectral soot emission was used to measure radially resolved soot volume fraction and soot temperature as a function of pressure. Additional soot volume fraction measurements were made at selected heights using line-of-sight light attenuation. Soot concentration values from these two techniques agreed to within 30% and both methods exhibited similar trends in the spatial distribution of soot concentration. Maximum line-of-sight soot concentration along the flame centerline scaled with pressure; the pressure exponent was about 1.4 for pressures between 0.2 and 0.73 MPa. Peak carbon conversion to soot, defined as the percentage of fuel carbon content converted to soot, also followed a power-law dependence on pressure, where the pressure exponent was near to unity for pressures between 0.2 and 0.73 MPa. Soot temperature measurements indicated that the overall temperatures decreased with increasing pressure; however, the temperature gradients increased with increasing pressure. (author)

  18. Temperature distribution and evolution characteristic in lightning return stroke channel

    NASA Astrophysics Data System (ADS)

    Mu, Yali; Yuan, Ping; Wang, Xuejuan; Dong, Caixia

    2016-07-01

    According to the time-resolved spectra of four lightning return strokes, the temperatures of arc core channel and the peripheral optical channel surrounding the arc core are investigated by different methods; the temperature distribution along the radial direction of channel on the peak current stage is discussed. The results show that a temperature gradient is formed along the radial direction of channel during the discharge process. With the increasing of the radius, the temperature decreases gradually. The temperature of arc core channel is about 4000-5000 K higher than that of the peripheral optical channel. The time evolution of channel temperature shows that the falling of the temperature is very slow compared with the decreasing of the current after their peak values. After the peak current, the channel temperature is still maintained at around 20,000 K up to 200-400 μ s . The heat effect resulting from such a long-time high temperature is the main source of most direct lightning disasters.

  19. The Role of Auxiliary Variables in Deterministic and Deterministic-Stochastic Spatial Models of Air Temperature in Poland

    NASA Astrophysics Data System (ADS)

    Szymanowski, Mariusz; Kryza, Maciej

    2015-11-01

    correlated auxiliary variables does not improve the quality of the spatial model. The effects of introduction of certain variables into the model were not climatologically justified and were seen on maps as unexpected and undesired artefacts. The results confirm, in accordance with previous studies, that in the case of air temperature distribution, the spatial process is non-stationary; thus, the local GWR model performs better than the global MLR if they are specified using the same set of auxiliary variables. If only GWR residuals are autocorrelated, the geographically weighted regression-kriging (GWRK) model seems to be optimal for air temperature spatial interpolation.

  20. Prototypical experiments relating to air oxidation of Zircaloy-4 at high temperatures

    NASA Astrophysics Data System (ADS)

    Steinbrück, Martin

    2009-08-01

    The mechanism of the reaction between Zircaloy-4 and air at temperatures from 800 to 1500 °C was studied. Air attack under prototypical conditions with air ingress during a hypothetic severe nuclear reactor accident was investigated. Oxidation in air and in air and nitrogen-containing atmospheres leads to a major degradation of the cladding material. The main mechanism is the formation of zirconium nitride and its re-oxidation. Pre-oxidation in steam prevents air attack as long as the oxide scale is intact. Under steam/oxygen starvation conditions, the oxide scale is reduced and significant external nitride formation takes place. When modeling air ingress in severe accident computer codes, parabolic correlations for oxidation in air may be applied only for high temperatures (>1400 °C) and for pre-oxidized cladding (⩾1100 °C). Under all other conditions, faster, rather linear reaction kinetics should be applied.

  1. Predicting seed cotton moisture content from changes in drying air temperature - second year

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A mathematical model was used to predict seed cotton moisture content in the overhead section of a cotton gin. The model took into account the temperature, mass flow, and specific heat of both the air and seed cotton. Air temperatures and mass flows were measured for a second year at a commercial g...

  2. Correction of Temperatures of Air-Cooled Engine Cylinders for Variation in Engine and Cooling Conditions

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Pinkel, Benjamin; Ellerbrock, Herman H , Jr

    1939-01-01

    Factors are obtained from semiempirical equations for correcting engine-cylinder temperatures for variation in important engine and cooling conditions. The variation of engine temperatures with atmospheric temperature is treated in detail, and correction factors are obtained for various flight and test conditions, such as climb at constant indicated air speed, level flight, ground running, take-off, constant speed of cooling air, and constant mass flow of cooling air. Seven conventional air-cooled engine cylinders enclosed in jackets and cooled by a blower were tested to determine the effect of cooling-air temperature and carburetor-air temperature on cylinder temperatures. The cooling air temperature was varied from approximately 80 degrees F. to 230 degrees F. and the carburetor-air temperature from approximately 40 degrees F. to 160 degrees F. Tests were made over a large range of engine speeds, brake mean effective pressures, and pressure drops across the cylinder. The correction factors obtained experimentally are compared with those obtained from the semiempirical equations and a fair agreement is noted.

  3. Effects of Outside Air Temperature on Movement of Phosphine Gas in Concrete Elevator Bins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies that measured the movement and concentration of phosphine gas in upright concrete bins over time indicated that fumigant movement was dictated by air currents, which in turn, were a function of the difference between the average grain temperature and the average outside air temperature durin...

  4. Permafrost distribution mapping and temperature modeling along the Alaska Highway corridor, Interior Alaska

    NASA Astrophysics Data System (ADS)

    Panda, Santosh K.

    An up-to-date permafrost distribution map is critical for making engineering decisions during the planning and design of any engineering project in Interior Alaska. I used a combination of empirical-statistical and remote sensing techniques to generate a high-resolution spatially continuous near-surface (< 1.6 m) permafrost map by exploiting the correlative relationships between permafrost and biophysical terrain parameters. A Binary Logistic Regression (BLR) model was used to establish the relationship between vegetation type, aspect-slope and permafrost presence. The logistic coefficients for each variable class obtained from the BLR model were supplied to respective variable classes mapped from remotely sensed data to estimate permafrost probability for every pixel. The BLR model predicts permafrost presence/absence at an accuracy of 88%. Near-surface permafrost occupies 37% of the total study area. A permafrost map based on the interpretation of airborne electromagnetic (EM) resistivity data shows 22.5 -- 43.5% of the total study area as underlain by permafrost. Permafrost distribution statistics from both the maps suggest near-surface permafrost distribution in the study area is sporadic (10 -- 50 % of the area underlain by permafrost). Changes in air temperature and/or winter snow depth are important factors responsible for permafrost aggradation or degradation. I evaluated the effects of past and recent (1941-2008) climate changes on permafrost and active-layer dynamics at selected locations using the Geophysical Institute Permafrost Laboratory model. Results revealed that active-layer thickness reached 0.58 and 1.0 m, and mean annual permafrost temperature increased by 1.6 and 1.7 °C during 1966-1994 at two sites in response to increased mean annual air temperature, mean summer air temperature and winter snow depth. The study found that active-layer thickness is not only a function of summer air temperature but also of mean annual air temperature and

  5. Uncertainties of satellite-derived surface skin temperatures in the polar oceans: MODIS, AIRS/AMSU, and AIRS only

    NASA Astrophysics Data System (ADS)

    Kang, H.-J.; Yoo, J.-M.; Jeong, M.-J.; Won, Y.-I.

    2015-10-01

    Uncertainties in the satellite-derived surface skin temperature (SST) data in the polar oceans during two periods (16-24 April and 15-23 September) 2003-2014 were investigated and the three data sets were intercompared as follows: MODerate Resolution Imaging Spectroradiometer Ice Surface Temperature (MODIS IST), the SST of the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A (AIRS/AMSU), and AIRS only. The AIRS only algorithm was developed in preparation for the degradation of the AMSU-A. MODIS IST was systematically warmer up to 1.65 K at the sea ice boundary and colder down to -2.04 K in the polar sea ice regions of both the Arctic and Antarctic than that of the AIRS/AMSU. This difference in the results could have been caused by the surface classification method. The spatial correlation coefficient of the AIRS only to the AIRS/AMSU (0.992-0.999) method was greater than that of the MODIS IST to the AIRS/AMSU (0.968-0.994). The SST of the AIRS only compared to that of the AIRS/AMSU had a bias of 0.168 K with a RMSE of 0.590 K over the Northern Hemisphere high latitudes and a bias of -0.109 K with a RMSE of 0.852 K over the Southern Hemisphere high latitudes. There was a systematic disagreement between the AIRS retrievals at the boundary of the sea ice, because the AIRS only algorithm utilized a less accurate GCM forecast over the seasonally varying frozen oceans than the microwave data. The three data sets (MODIS, AIRS/AMSU and AIRS only) showed significant warming rates (2.3 ± 1.7 ~ 2.8 ± 1.9 K decade-1) in the northern high regions (70-80° N) as expected from the ice-albedo feedback. The systematic temperature disagreement associated with surface type classification had an impact on the resulting temperature trends.

  6. Uncertainties of satellite-derived surface skin temperatures in the polar oceans: MODIS, AIRS/AMSU, and AIRS only

    NASA Astrophysics Data System (ADS)

    Kang, H.-J.; Yoo, J.-M.; Jeong, M.-J.; Won, Y.-I.

    2015-05-01

    Uncertainties in the satellite-derived Surface Skin Temperature (SST) data in the polar oceans during two periods (16-24 April and 15-23 September) of 2003-2014 were investigated and the three datasets were intercompared as follows: MODerate Resolution Imaging Spectroradiometer Ice Surface Temperature (MODIS IST), the SST of the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A (AIRS/AMSU), and AIRS only. AIRS only algorithm was developed in preparation for the degradation of the AMSU-A. MODIS IST was systematically up to 1.65 K warmer at the sea ice boundary and up to 2.04 K colder in the polar sea ice regions of both the Arctic and Antarctic than that of the AIRS/AMSU. This difference in the results could have been caused by the surface classification method. The spatial correlation coefficient of the AIRS only to the AIRS/AMSU (0.992-0.999) method was greater than that of the MODIS IST to the AIRS/AMSU (0.968-0.994). The SST of the AIRS only compared to that of the AIRS/AMSU had a bias of 0.168 K with a RMSE of 0.590 K over the Northern Hemisphere high latitudes and a bias of -0.109 K with a RMSE of 0.852 K over the Southern Hemisphere high latitudes. There was a systematic disagreement between the AIRS retrievals at the boundary of the sea ice, because the AIRS only algorithm utilized a~less accurate GCM forecast over the seasonally-varying frozen oceans than the microwave data. The three datasets (MODIS, AIRS/AMSU and AIRS only) showed significant warming rates (2.3 ± 1.7 ~2.8 ± 1.9 K decade-1) in the northern high latitude regions (70-80° N) as expected from the ice-albedo feedback. The systematic temperature disagreement associated with surface type classification had an impact on the resulting temperature trends.

  7. Fabrication and optical properties of non-polar III-nitride air-gap distributed Bragg reflector microcavities

    SciTech Connect

    Tao, Renchun Kako, Satoshi; Arita, Munetaka; Arakawa, Yasuhiko

    2013-11-11

    Using the thermal decomposition technique, non-polar III-nitride air-gap distributed Bragg reflector (DBR) microcavities (MCs) with a single quantum well have been fabricated. Atomic force microscopy reveals a locally smooth DBR surface, and room-temperature micro-photoluminescence measurements show cavity modes. There are two modes per cavity due to optical birefringence in the non-polar MCs, and a systematic cavity mode shift with cavity thickness was also observed. Although the structures consist of only 3 periods (top) and 4 periods (bottom), a quality factor of 1600 (very close to the theoretical value of 2100) reveals the high quality of the air-gap DBR MCs.

  8. Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures

    NASA Astrophysics Data System (ADS)

    Cowtan, Kevin; Hausfather, Zeke; Hawkins, Ed; Jacobs, Peter; Mann, Michael E.; Miller, Sonya K.; Steinman, Byron A.; Stolpe, Martin B.; Way, Robert G.

    2015-08-01

    The level of agreement between climate model simulations and observed surface temperature change is a topic of scientific and policy concern. While the Earth system continues to accumulate energy due to anthropogenic and other radiative forcings, estimates of recent surface temperature evolution fall at the lower end of climate model projections. Global mean temperatures from climate model simulations are typically calculated using surface air temperatures, while the corresponding observations are based on a blend of air and sea surface temperatures. This work quantifies a systematic bias in model-observation comparisons arising from differential warming rates between sea surface temperatures and surface air temperatures over oceans. A further bias arises from the treatment of temperatures in regions where the sea ice boundary has changed. Applying the methodology of the HadCRUT4 record to climate model temperature fields accounts for 38% of the discrepancy in trend between models and observations over the period 1975-2014.

  9. Underfloor air distribution systems: Benefits and when to use the system in building design

    SciTech Connect

    McCarry, B.T.

    1995-12-31

    Underfloor air distribution systems are a viable option for mechanical system building design. They are comprised of raised floor panels with a supply air plenum in the void between the raised floor and the concrete structure. Supply air grilles are flush mounted to the floor to create a flat floor and walking surface. The engineering challenge is to determine when to use underfloor air distribution systems and how to effectively apply them. The best places to use this system are in owner-occupied buildings with a high churn rate and/or frequent technology changes. The benefits of this system include fresh air at the level where building occupants are located, forgiveness for variations in internal cooling loads, easy relocation of the supply air grilles to suit revised layouts, a reduction in energy costs for the mechanical system, and an improvement in indoor air quality.

  10. Modeling subcanopy incoming longwave radiation to seasonal snow using air and tree trunk temperatures

    NASA Astrophysics Data System (ADS)

    Webster, Clare; Rutter, Nick; Zahner, Franziska; Jonas, Tobias

    2016-02-01

    Data collected at three Swiss alpine forested sites over a combined 11 year period were used to evaluate the role of air temperature in modeling subcanopy incoming longwave radiation to the snow surface. Simulated subcanopy incoming longwave radiation is traditionally partitioned into that from the sky and that from the canopy, i.e., a two-part model. Initial uncertainties in predicting longwave radiation using the two-part model resulted from vertical differences in measured air temperature. Above-canopy (35 m) air temperatures were higher than those within (10 m) and below (2 m) canopy throughout four snow seasons (December-April), demonstrating how the forest canopy can act as a cold sink for air. Lowest model root-mean-square error (RMSE) was using above-canopy air temperature. Further investigation of modeling subcanopy longwave radiation using above-canopy air temperature showed underestimations, particularly during periods of high insolation. In order to explicitly account for canopy temperatures in modeling longwave radiation, the two-part model was improved by incorporating a measured trunk view component and trunk temperature. Trunk temperature measurements were up to 25°C higher than locally measured air temperatures. This three-part model reduced the RMSE by up to 7.7 W m-2 from the two-part air temperature model at all sensor positions across the 2014 snowmelt season and performed particularly well during periods of high insolation when errors from the two-part model were up to 40 W m-2. A parameterization predicting tree trunk temperatures using measured air temperature and incoming shortwave radiation demonstrate a simple method that can be applied to provide input to the three-part model across midlatitude coniferous forests.

  11. Optical fiber distributed temperature sensor in cardiological surgeries

    NASA Astrophysics Data System (ADS)

    Skapa, Jan; Látal, Jan; Penhaker, Marek; Koudelka, Petr; Hancek, František; Vasinek, Vladimír

    2010-04-01

    In those days a lot of cardiological surgeries is made every day. It is a matter of very significant importance keeping the temperature of the hearth low during the surgery because it decides whether the cells of the muscle will die or not. The hearth is cooled by the ice placed around the hearth muscle during the surgery and cooling liquid is injected into the hearth also. In these days the temperature is measured only in some points of the hearth using sensors based on the pH measurements. This article describes new method for measurement of temperature of the hearth muscle during the cardiological surgery. We use a multimode optical fiber and distributed temperature sensor (DTS) based on the stimulated Raman scattering in temperature measurements. This principle allows us to measure the temperature and to determine where the temperature changes during the surgery. Resolution in the temperature is about 0.1 degrees of Celsius. Resolution in length is about 1 meter. The resolution in length implies that the fiber must be wound to ensure the spatial resolution about 5 by 5 centimeters.

  12. Accuracy of subsurface temperature distributions computed from pulsed photothermal radiometry.

    PubMed

    Smithies, D J; Milner, T E; Tanenbaum, B S; Goodman, D M; Nelson, J S

    1998-09-01

    Pulsed photothermal radiometry (PPTR) is a non-contact method for determining the temperature increase in subsurface chromophore layers immediately following pulsed laser irradiation. In this paper the inherent limitations of PPTR are identified. A time record of infrared emission from a test material due to laser heating of a subsurface chromophore layer is calculated and used as input data for a non-negatively constrained conjugate gradient algorithm. Position and magnitude of temperature increase in a model chromophore layer immediately following pulsed laser irradiation are computed. Differences between simulated and computed temperature increase are reported as a function of thickness, depth and signal-to-noise ratio (SNR). The average depth of the chromophore layer and integral of temperature increase in the test material are accurately predicted by the algorithm. When the thickness/depth ratio is less than 25%, the computed peak temperature increase is always significantly less than the true value. Moreover, the computed thickness of the chromophore layer is much larger than the true value. The accuracy of the computed subsurface temperature distribution is investigated with the singular value decomposition of the kernel matrix. The relatively small number of right singular vectors that may be used (8% of the rank of the kernel matrix) to represent the simulated temperature increase in the test material limits the accuracy of PPTR. We show that relative error between simulated and computed temperature increase is essentially constant for a particular thickness/depth ratio. PMID:9755938

  13. Comparison of MODIS Satellite Land Surface Temperature with Air Temperature along a 5000-metre Elevation Transect on Kilimanjaro, Tanzania.

    NASA Astrophysics Data System (ADS)

    Pepin, N. C.; Williams, R.; Maeda, E. E.

    2015-12-01

    There is concern that high elevations may be warming more rapidly than lower elevations, but there is a lack of observational data from weather stations in the high mountains. One alternative data source is satellite LST (Land Surface Temperature) which has extensive spatial coverage. This study compares instantaneous values of LST (1030 and 2230 local solar time) as measured by the MODIS MOD11A2 product at 1 km resolution with equivalent screen level air temperatures (in the same pixel) measured from a transect of 22 in situ weather stations across Kilimanjaro ranging in elevation from 990 to 5803 m. Data consists of 11 years on the SW slope and 3 years on the NE slope, equating to >500 and ~140 octtads (8-day periods) respectively. Results show substantial differences between LST and local air temperature, sometimes up to 20C. During the day the LST tends to be higher than air temperature and the reverse is true at night. The differences show large variance, particularly during the daytime, and tend to increase with elevation, particularly on the NE slope of the mountain which faces the sun when the daytime observations are taken (1030 LST). Differences between LST and air temperature are larger in the dry seasons (JF and JJAS), and reduce when conditions are more cloudy. Systematic relationships with cloud cover and vegetation characteristics (as measured by NDVI and MAIAC for the same pixel) are displayed. More vegetation reduces daytime surface heating above the air temperature, but this relationship weakens with elevation. Nighttime differences are more stable and show no relationship with vegetation indices. Therefore the predictability of the LST/air temperature differences reduces at high elevations and it is therefore much more challenging to use satellite data at high elevations to complement in situ air temperature measurements for climate change assessments, especially for daytime maximum temperatures.

  14. Distributional Benefit Analysis of a National Air Quality Rule

    PubMed Central

    Post, Ellen S.; Belova, Anna; Huang, Jin

    2011-01-01

    Under Executive Order 12898, the U.S. Environmental Protection Agency (EPA) must perform environmental justice (EJ) reviews of its rules and regulations. EJ analyses address the hypothesis that environmental disamenities are experienced disproportionately by poor and/or minority subgroups. Such analyses typically use communities as the unit of analysis. While community-based approaches make sense when considering where polluting sources locate, they are less appropriate for national air quality rules affecting many sources and pollutants that can travel thousands of miles. We compare exposures and health risks of EJ-identified individuals rather than communities to analyze EPA’s Heavy Duty Diesel (HDD) rule as an example national air quality rule. Air pollutant exposures are estimated within grid cells by air quality models; all individuals in the same grid cell are assigned the same exposure. Using an inequality index, we find that inequality within racial/ethnic subgroups far outweighs inequality between them. We find, moreover, that the HDD rule leaves between-subgroup inequality essentially unchanged. Changes in health risks depend also on subgroups’ baseline incidence rates, which differ across subgroups. Thus, health risk reductions may not follow the same pattern as reductions in exposure. These results are likely representative of other national air quality rules as well. PMID:21776207

  15. Homogenisation of minimum and maximum air temperature in northern Portugal

    NASA Astrophysics Data System (ADS)

    Freitas, L.; Pereira, M. G.; Caramelo, L.; Mendes, L.; Amorim, L.; Nunes, L.

    2012-04-01

    Homogenization of minimum and maximum air temperature has been carried out for northern Portugal for the period 1941-2010. The database corresponds to the values of the monthly arithmetic averages calculated from daily values observed at stations within the network of stations managed by the national Institute of Meteorology (IM). Some of the weather stations of IM's network are collecting data for more than a century; however, during the entire observing period, some factors have affected the climate series and have to be considered such as, changes in the station surroundings and changes related to replacement of manually operated instruments. Besides these typical changes, it is of particular interest the station relocation to rural areas or to the urban-rural interface and the installation of automatic weather stations in the vicinity of the principal or synoptic stations with the aim of replacing them. The information from these relocated and new stations was merged to produce just one but representative time series of that site. This process starts at the end 90's and the information of the time series fusion process constitutes the set of metadata used. Two basic procedures were performed: (i) preliminary statistical and quality control analysis; and, (ii) detection and correction of problems of homogeneity. In the first case, was developed and used software for quality control, specifically dedicated for the detection of outliers, based on the quartile values of the time series itself. The analysis of homogeneity was performed using the MASH (Multiple Analysis of Series for Homogenisation) and HOMER, which is a software application developed and recently made available within the COST Action ES0601 (COST-ES0601, 2012). Both methods provide a fast quality control of the original data and were developed for automatic processing, analyzing, homogeneity testing and adjusting of climatological data, but manual usage is also possible. Obtained results with both

  16. Skin sites to predict deep-body temperature while wearing firefighters' personal protective equipment during periodical changes in air temperature.

    PubMed

    Kim, Siyeon; Lee, Joo-Young

    2016-04-01

    The aim of this study was to investigate stable and valid measurement sites of skin temperatures as a non-invasive variable to predict deep-body temperature while wearing firefighters' personal protective equipment (PPE) during air temperature changes. Eight male firefighters participated in an experiment which consisted of 60-min exercise and 10-min recovery while wearing PPE without self-contained breathing apparatus (7.75 kg in total PPE mass). Air temperature was periodically fluctuated from 29.5 to 35.5 °C with an amplitude of 6 °C. Rectal temperature was chosen as a deep-body temperature, and 12 skin temperatures were recorded. The results showed that the forehead and chest were identified as the most valid sites to predict rectal temperature (R(2) = 0.826 and 0.824, respectively) in an environment with periodically fluctuated air temperatures. This study suggests that particular skin temperatures are valid as a non-invasive variable when predicting rectal temperature of an individual wearing PPE in changing ambient temperatures. Practitioner Summary: This study should offer assistance for developing a more reliable indirect indicating system of individual heat strain for firefighters in real time, which can be used practically as a precaution of firefighters' heat-related illness and utilised along with physiological monitoring. PMID:26214379

  17. Prediction of Skin Temperature Distribution in Cosmetic Laser Surgery

    NASA Astrophysics Data System (ADS)

    Ting, Kuen; Chen, Kuen-Tasnn; Cheng, Shih-Feng; Lin, Wen-Shiung; Chang, Cheng-Ren

    2008-01-01

    The use of lasers in cosmetic surgery has increased dramatically in the past decade. To achieve minimal damage to tissues, the study of the temperature distribution of skin in laser irradiation is very important. The phenomenon of the thermal wave effect is significant due to the highly focused light energy of lasers in very a short time period. The conventional Pennes equation does not take the thermal wave effect into account, which the thermal relaxation time (τ) is neglected, so it is not sufficient to solve instantaneous heating and cooling problem. The purpose of this study is to solve the thermal wave equation to determine the realistic temperature distribution during laser surgery. The analytic solutions of the thermal wave equation are compared with those of the Pennes equation. Moreover, comparisons are made between the results of the above equations and the results of temperature measurement using an infrared thermal image instrument. The thermal wave equation could likely to predict the skin temperature distribution in cosmetic laser surgery.

  18. Distribution and Room Air Mixing Risks to Retrofitted Homes

    SciTech Connect

    Burdick, A.

    2014-12-01

    ​Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the HVAC system warrants replacement, the HVAC system is often upgraded with a more efficient, lower capacity system that meets the loads of the upgraded house. For a single-story house with ceiling supply air diffusers, ducts are often removed and upgraded. For houses with ducts that are embedded in walls, the cost of demolition precludes the replacement of ducts. The challenge with the use of existing ducts is that the reduced airflow creates a decreased throw at the supply registers, and the supply air and room air do not mix well, leading to potential thermal comfort complaints. This project investigates this retrofit scenario. The issues and solutions discussed here are relevant to all climate zones, with emphasis on climates that require cooling.

  19. Distribution and Room Air Mixing Risks to Retrofitted Homes

    SciTech Connect

    Burdick, A.

    2014-12-01

    Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the HVAC system warrants replacement, the HVAC system is often upgraded with a more efficient, lower capacity system that meets the loads of the upgraded house. For a single-story house with ceiling supply air diffusers, ducts are often removed and upgraded. For houses with ducts that are embedded in walls, the cost of demolition precludes the replacement of ducts. The challenge with the use of existing ducts is that the reduced airflow creates a decreased throw at the supply registers, and the supply air and room air do not mix well, leading to potential thermal comfort complaints. This project investigates this retrofit scenario. The issues and solutions discussed here are relevant to all climate zones, with emphasis on climates that require cooling.

  20. Air-Cooled Design of a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization Systems

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.; Affleck, Dave L.; Rosen, Micha; LeVan, M. Douglas; Wang, Yuan; Cavalcante, Celio L.

    2004-01-01

    The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. We have a developed a temperature-swing adsorption compressor (TSAC) for performing these tasks that is energy efficient, quiet, and has no rapidly moving parts. This paper discusses the mechanical design and the results of thermal model validation tests of a TSAC that uses air as the cooling medium.

  1. Acquisition of the spatial temperature distribution of rock faces by using infrared thermography

    NASA Astrophysics Data System (ADS)

    Beham, Michael; Rode, Matthias; Schnepfleitner, Harald; Sass, Oliver

    2013-04-01

    Rock temperature plays a central role for weathering and therefore influences the risk potential originating from rockfall processes. So far, for the acquisition of temperature mainly point-based measuring methods have been used and accordingly, two-dimensional temperature data is rare. To overcome this limitation, an infrared camera was used to collect and analyse data on the spatial temperature distribution on 10 x 10 m sections of rock faces in the Gesäuse (900m a.s.l.) and in the Dachsteingebirge (2700m a.s.l.) within the framework of the research project ROCKING ALPS (FWF-P24244). The advantage of infrared thermography to capture area-wide temperatures has hardly ever been used in this context. In order to investigate the differences between north-facing and south-facing rock faces at about the same period of time it was necessary to move the camera between the sites. The resulting offset of the time lapse infrared images made it necessary to develop a sophisticated methodology to rectify the captured images in order to create matching datasets for future analysis. With the relatively simple camera used, one of the main challenges was to find a way to convert the colour-scale or grey-scale values of the rectified image back to temperature values after the rectification process. The processing steps were mainly carried out with MATLAB. South-facing rock faces generally experienced higher temperatures and amplitudes compared to the north facing ones. In view of the spatial temperature distribution, the temperatures of shady areas were clearly below those of sunny ones, with the latter also showing the highest amplitudes. Joints and sun-shaded areas were characterised by attenuated diurnal temperature fluctuations closely paralleled to the air temperature. The temperature of protruding rock parts and of loose debris responded very quick to changes in radiation and air temperatures while massive rock reacted more slowly. The potential effects of temperature on

  2. An artificial neural network approach for the forecast of ambient air temperature

    NASA Astrophysics Data System (ADS)

    Philippopoulos, Kostas; Deligiorgi, Despina; Kouroupetroglou, Georgios

    2014-05-01

    based on a combination of correlation and difference statistical measures. An insight of the statistically derived input-output transfer functions is obtained by utilizing the ANN weights method, which quantifies the relative importance of the predictor variables. The assessment also includes a seasonal and monthly analysis of the model residuals along with their corresponding distributions. A general remark is that the optimum Tmax ANN architecture contains more hidden layer neurons compared to the Tmin and is related with higher forecasting errors, which is attributed to the increased complexity of estimating the Tmax at the given site. The ANN models in both cases exhibit very good performance and the method can be useful in the field of air temperature forecasting. This research was partially funded by the University of Athens Special Account of Research Grants.

  3. Device for improved air and fuel distribution to a combustor

    DOEpatents

    Laster, Walter R.; Schilp, Reinhard

    2016-05-31

    A flow conditioning device (30, 50, 70, 100, 150) for a can annular gas turbine engine, including a plurality of flow elements (32, 34, 52, 54, 72, 74, 102) disposed in a compressed air flow path (42, 60, 80, 114, 122) leading to a combustor (12), configured such that relative adjustment of at least one flow directing element (32, 52, 72, 110) with respect to an adjacent flow directing element (34, 54, 74, 112, 120) during operation of the gas turbine engine is effective to adjust a level of choking of the compressed air flow path (42, 60, 80, 114, 122).

  4. Characterization of temperature non-uniformity over a premixed CH4-air flame based on line-of-sight TDLAS

    NASA Astrophysics Data System (ADS)

    Zhang, Guangle; Liu, Jianguo; Xu, Zhenyu; He, Yabai; Kan, Ruifeng

    2016-01-01

    A novel technique for characterizing temperature non-uniformity has been investigated based on measurements of line-of-sight tunable diode laser absorption spectroscopy. It utilized two fiber-coupled distributed feedback diode lasers at wavelengths around 1339 and 1392 nm as light sources to probe the field at multiple absorptions lines of water vapor and applied a temperature binning strategy combined with Gauss-Seidel iteration method to explore the temperature non-uniformity of the field in one dimension. The technique has been applied to a McKenna burner, which produced a flat premixed laminar CH4-air flame. The flame and its adjacent area formed an atmospheric field with significant non-uniformity of temperature and water vapor concentration. The effect of the number of temperature bins on column-density and temperature results has also been explored.

  5. Carbon Monoxide Distribution over Peninsular Malaysia from the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Rajab, Jaso M.; MatJafri, M. Z.; Lim, H. S.; Abdullah, K.

    2009-07-01

    The Atmospheric Infrared Sounder (AIRS) onboard NASA's Aqua satellite. It daily coverage of ˜70% of the planet represents a significant evolutionary advance in satellite traces gas remote sensing. AIRS, the part of a large international investment to upgrade the operational meteorological satellite systems, is first of the new generation of meteorological advanced sounders for operational and research use, Providing New Insights into Weather and Climate for the 21st Century. Carbon monoxide (CO) is a ubiquitous, an indoor and outdoor air pollutant, is not a significant greenhouse gas as it absorbs little infrared radiation from the Earth. However, it does have an influence on oxidization in the atmosphere through interaction with hydroxyl radicals (OH), which also react with methane, halocarbons and tropospheric ozone. It produced by the incomplete combustion of fossil fuels and biomass burning, and that it has a role as a smog. The aim of this investigation is to study the (CO) carbon monoxide distribution over Peninsular Malaysia. The land use map of the Peninsular Malaysia was conducted by using CO total column amount, obtained from AIRS data, the map & data was processed and analyzed by using Photoshop & SigmaPlot 11.0 programs and compared for timing of various (day time) (28 August 2005 & 29 August 2007) for both direct comparison and the comparison using the same a priori profile, the CO concentrations in 28/8/2005 higher. The CO maps were generated using Kriging Interpolation technique. This interpolation technique produced high correlation coefficient, R2 and low root mean square error, RMS for CO. This study provided useful information for influence change of CO concentration on varies temperature.

  6. Bottom temperature and salinity distribution and its variability around Iceland

    NASA Astrophysics Data System (ADS)

    Jochumsen, Kerstin; Schnurr, Sarah M.; Quadfasel, Detlef

    2016-05-01

    The barrier formed by the Greenland-Scotland-Ridge (GSR) shapes the oceanic conditions in the region around Iceland. Deep water cannot be exchanged across the ridge, and only limited water mass exchange in intermediate layers is possible through deep channels, where the flow is directed southwestward (the Nordic Overflows). As a result, the near-bottom water masses in the deep basins of the northern North Atlantic and the Nordic Seas hold major temperature differences. Here, we use near-bottom measurements of about 88,000 CTD (conductivity-temperature-depth) and bottle profiles, collected in the period 1900-2008, to investigate the distribution of near-bottom properties. Data are gridded into regular boxes of about 11 km size and interpolated following isobaths. We derive average spatial temperature and salinity distributions in the region around Iceland, showing the influence of the GSR on the near-bottom hydrography. The spatial distribution of standard deviation is used to identify local variability, which is enhanced near water mass fronts. Finally, property changes within the period 1975-2008 are presented using time series analysis techniques for a collection of grid boxes with sufficient data resolution. Seasonal variability, as well as long term trends are discussed for different bottom depth classes, representing varying water masses. The seasonal cycle is most pronounced in temperature and decreases with depth (mean amplitudes of 2.2 °C in the near surface layers vs. 0.2 °C at depths > 500 m), while linear trends are evident in both temperature and salinity (maxima in shallow waters of +0.33 °C/decade for temperature and +0.03/decade for salinity).

  7. Some Effects of Air Flow on the Penetration and Distribution of Oil Sprays

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Beardsley, E G

    1929-01-01

    Tests were made to determine the effects of air flow on the characteristics of fuel sprays from fuel injection valves. Curves and photographs are presented showing the airflow throughout the chamber and the effects of the air flow on the fuel spray characteristics. It was found that the moving air had little effect on the spray penetration except with the 0.006 inch orifice. The moving air did, however, affect the oil particles on the outside of the spray cone. After spray cut-off, the air flow rapidly distributed the atomized fuel throughout the spray chamber.

  8. Sampling Biases in Datasets of Historical Mean Air Temperature over Land

    NASA Astrophysics Data System (ADS)

    Wang, Kaicun

    2014-04-01

    Global mean surface air temperature (Ta) has been reported to have risen by 0.74°C over the last 100 years. However, the definition of mean Ta is still a subject of debate. The most defensible definition might be the integral of the continuous temperature measurements over a day (Td0). However, for technological and historical reasons, mean Ta over land have been taken to be the average of the daily maximum and minimum temperature measurements (Td1). All existing principal global temperature analyses over land rely heavily on Td1. Here, I make a first quantitative assessment of the bias in the use of Td1 to estimate trends of mean Ta using hourly Ta observations at 5600 globally distributed weather stations from the 1970s to 2013. I find that the use of Td1 has a negligible impact on the global mean warming rate. However, the trend of Td1 has a substantial bias at regional and local scales, with a root mean square error of over 25% at 5° × 5° grids. Therefore, caution should be taken when using mean Ta datasets based on Td1 to examine high resolution details of warming trends.

  9. Sampling biases in datasets of historical mean air temperature over land.

    PubMed

    Wang, Kaicun

    2014-01-01

    Global mean surface air temperature (Ta) has been reported to have risen by 0.74°C over the last 100 years. However, the definition of mean Ta is still a subject of debate. The most defensible definition might be the integral of the continuous temperature measurements over a day (Td0). However, for technological and historical reasons, mean Ta over land have been taken to be the average of the daily maximum and minimum temperature measurements (Td1). All existing principal global temperature analyses over land rely heavily on Td1. Here, I make a first quantitative assessment of the bias in the use of Td1 to estimate trends of mean Ta using hourly Ta observations at 5600 globally distributed weather stations from the 1970s to 2013. I find that the use of Td1 has a negligible impact on the global mean warming rate. However, the trend of Td1 has a substantial bias at regional and local scales, with a root mean square error of over 25% at 5° × 5° grids. Therefore, caution should be taken when using mean Ta datasets based on Td1 to examine high resolution details of warming trends. PMID:24717688

  10. Prediction of transient temperatures for an air-cooled rotating disc

    NASA Astrophysics Data System (ADS)

    Long, C. A.; Owen, J. M.

    1985-09-01

    The numerical solution of Fourier's conduction equation is used to compute the transient temperature distribution in a rotating disc. The convective boundary conditions for the disc surfaces are based on simple formulae obtained from the solutions of the boundary-layer equations, and the computed surface temperatures are compared with measurements made on a rotating-disc rig. Free-disc tests, at rotational Reynolds numbers up to Re sub phi = 2.5 x 10(6), are used to provide a datum from which to judge the numerical method. Although the numerical solution tends to overestimate the cooling rate of the heated free disc at high Reynolds numbers, the agreement between computed and measured temperatures is considered reasonable. Rotating-cavity tests, in which a heated disc is cooled by a radial outflow of air, are used to examine the suitability of the simple convective boundary conditions. As the computed temperatures show reasonable agreement with the measured values, it is suggested that the proposed formulae for convection in a rotating cavity might be useful for design purposes.

  11. Variation in summer surface air temperature over Northeast Asia and its associated circulation anomalies

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Hong, Xiaowei; Lu, Riyu; Jin, Aifen; Jin, Shizhu; Nam, Jae-Cheol; Shin, Jin-Ho; Goo, Tae-Young; Kim, Baek-Jo

    2016-01-01

    This study investigates the interannual variation of summer surface air temperature over Northeast Asia (NEA) and its associated circulation anomalies. Two leading modes for the temperature variability over NEA are obtained by EOF analysis. The first EOF mode is characterized by a homogeneous temperature anomaly over NEA and therefore is called the NEA mode. This anomaly extends from southeast of Lake Baikal to Japan, with a central area in Northeast China. The second EOF mode is characterized by a seesaw pattern, showing a contrasting distribution between East Asia (specifically including the Changbai Mountains in Northeast China, Korea, and Japan) and north of this region. This mode is named the East Asia (EA) mode. Both modes contribute equivalently to the temperature variability in EA. The two leading modes are associated with different circulation anomalies. A warm NEA mode is associated with a positive geopotential height anomaly over NEA and thus a weakened upper-tropospheric westerly jet. On the other hand, a warm EA mode is related to a positive height anomaly over EA and a northward displaced jet. In addition, the NEA mode tends to be related to the Eurasian teleconnection pattern, while the EA mode is associated with the East Asia-Pacific/Pacific-Japan pattern.

  12. Temperature Distribution within a Cold Cap during Nuclear Waste Vitrification.

    PubMed

    Dixon, Derek R; Schweiger, Michael J; Riley, Brian J; Pokorny, Richard; Hrma, Pavel

    2015-07-21

    The kinetics of the feed-to-glass conversion affects the waste vitrification rate in an electric glass melter. The primary area of interest in this conversion process is the cold cap, a layer of reacting feed on top of the molten glass. The work presented here provides an experimental determination of the temperature distribution within the cold cap. Because direct measurement of the temperature field within the cold cap is impracticable, an indirect method was developed in which the textural features in a laboratory-made cold cap with a simulated high-level waste feed were mapped as a function of position using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. The temperature distribution within the cold cap was established by correlating microstructures of cold-cap regions with heat-treated feed samples of nearly identical structures at known temperatures. This temperature profile was compared with a mathematically simulated profile generated by a cold-cap model that has been developed to assess the rate of glass production in a melter. PMID:26111202

  13. Pipeline leakage detection using distributed fibre optical temperature sensing

    NASA Astrophysics Data System (ADS)

    Grosswig, S.; Hurtig, E.; Luebbecke, S.; Vogel, B.

    2005-05-01

    The leakage detection system based on the distributed fibre optical temperature measurement method is an analysing method for continuous detection and localization of leakages at pipelines in the steady and unsteady operation states according to the German rules for pipelines TRbF 301/TRFL which is valid in Germany since April 2003. The leakage detection system is useable under the precondition that there is a sufficient large temperature gradient between the leakage area and the unaffected environment. This can be caused by the medium itself or through a physical effect due to the leakage, e.g. gas expansion, evaporation. It's a very sensitive method, so also creeping leakages can be detected.

  14. Leakage detection using fiber optics distributed temperature monitoring

    NASA Astrophysics Data System (ADS)

    Nikles, Marc; Vogel, Bernhard H.; Briffod, Fabien; Grosswig, Stephan; Sauser, Florian; Luebbecke, Steffen; Bals, Andre; Pfeiffer, Thomas

    2004-07-01

    The monitoring of temperature profiles over long distance by means of optical fibers represents a highly efficient way to perform leakage detection along pipelines, in dams, dykes, or tanks... Different techniques have been developed taking advantages of the fiber geometry and of optical time domain analysis for the localization of the information. Among fiber optics distributed temperature sensing techniques, Brillouin-based systems have demonstrated to have the best potential for applications over distances up to several tens of kilometers. The key features and performances are reviewed in the present article and a 55km pipeline equipped with a fiber optics leakage detection system is presented as a case study.

  15. Determination of needed parameters for measuring temperature fields in air by thermography

    NASA Astrophysics Data System (ADS)

    Pešek, Martin; Pavelek, Milan

    2012-04-01

    The aim of this article is the parameters determination of equipment for measuring temperature fields in air using an infrared camera. This method is based on the visualization of temperature fields in an auxiliary material, which is inserted into the non-isothermal air flow. The accuracy of air temperature measurement (or of surface temperature of supplies) by this method depends especially on (except for parameters of infrared camera) the determination of the static and the dynamic qualities of auxiliary material. The emissivity of support material is the static quality and the dynamic quality is time constant. Support materials with a high emissivity and a low time constant are suitable for the measurement. The high value of emissivity results in a higher measurement sensitivity and the radiation temperature independence. In this article the emissivity of examined kinds of auxiliary materials (papers and textiles) is determined by temperature measuring of heated samples by a calibrated thermocouple and by thermography, with the emissivity setting on the camera to 1 and with the homogeneous radiation temperature. Time constants are determined by a step change of air temperature in the surrounding of auxiliary material. The time constant depends mainly on heat transfer by the convection from the air into the auxiliary material. That is why the effect of air temperature is examined in this article (or a temperature difference towards the environmental temperature) and the flow velocity on the time constant with various types of auxiliary materials. The obtained results allow to define the conditions for using the method of measurement of temperature fields in air during various heating and air conditioning applications.

  16. Effect of pyrolysis temperature and air flow on toxicity of gases from a polycarbonate polymer

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Brick, V. E.; Brauer, D. P.

    1978-01-01

    A polycarbonate polymer was evaluated for toxicity of pyrolysis gases generated at various temperatures without forced air flow and with 1 L/min air flow, using the toxicity screening test method developed at the University of San Francisco. Time to various animal responses decreased with increasing pyrolysis temperature over the range from 500 C to 800 C. There appeared to be no significant toxic effects at 400 C and lower temperatures.

  17. The EUSTACE project: delivering global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Morice, C. P.; Rayner, N. A.; Auchmann, R.; Bessembinder, J.; Bronnimann, S.; Brugnara, Y.; Conway, E. A.; Ghent, D.; Good, E.; Herring, K.; Kennedy, J.; Lindgren, F.; Madsen, K. S.; Merchant, C. J.; van der Schrier, G.; Stephens, A.; Tonboe, R. T.; Waterfall, A. M.; Mitchelson, J.; Woolway, I.

    2015-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, we must develop an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. These relationships can be derived either empirically or with the help of a physical model.Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals would be used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. As the data volumes involved are considerable, such work needs to include development of new "Big Data" analysis methods.We will present plans and progress along this road in the EUSTACE project (2015-June 2018), i.e.: • providing new, consistent, multi-component estimates of uncertainty in surface skin temperature retrievals from satellites; • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras.Information will also be given on how interested users can become

  18. Some Effects of Air and Fuel Oil Temperatures on Spray Penetration and Dispersion

    NASA Technical Reports Server (NTRS)

    Gelalles, A G

    1930-01-01

    Presented here are experimental results obtained from a brief investigation of the appearance, penetration, and dispersion of oil sprays injected into a chamber of highly heated air at atmospheric pressure. The development of single sprays injected into a chamber containing air at room temperature and at high temperature was recorded by spray photography equipment. A comparison of spray records showed that with the air at the higher temperature, the spray assumed the appearance of thin, transparent cloud, the greatest part of which rapidly disappeared from view. With the chamber air at room temperature, a compact spray with an opaque core was obtained. Measurements of the records showed a decrease in penetration and an increase in the dispersion of the spray injected into the heated air. No ignition of the fuel injected was observed or recorded until the spray particles came in contact with the much hotter walls of the chamber about 0.3 second after the start of injection.

  19. Analytical Solution and Symbolic Computation for the Temperature Distribution of the Annular Fin under Fully Wet-Surface Condition

    NASA Astrophysics Data System (ADS)

    Koonprasert, Sanoe; Sangsawang, Rilrada

    2008-09-01

    This paper presents the analytical solutions and symbolic computations for the temperature distribution of the annular fin under fully-wet surface condition. During the process of dehumidification, the annular fin is separated into two regions. The mathematical models for each region are based on the conservation of energy principle. An assumption used in this paper is the humidity ratio of the saturated air on the wet surface varies linearly with the local fin temperature. The mathematical models are solved by the Cauchy-Euler Equation and modified Bessel Equation to form analytical solutions. Besides, the symbolic computations are shown by the Maple software to visualize the temperature distribution along the fin.

  20. Validation of AIRS V6 Surface Temperature over Greenland with GCN and NOAA Stations

    NASA Technical Reports Server (NTRS)

    Lee, Jae N.; Hearty, Thomas; Cullather, Richard; Nowicki, Sophie; Susskind, Joel

    2016-01-01

    This work compares the temporal and spatial characteristics of the AIRSAMSU (Atmospheric Infrared Sounder Advanced Microwave Sounding Unit A) Version 6 and MODIS (Moderate resolution Imaging Spectroradiometer) Collection 5 derived surface temperatures over Greenland. To estimate uncertainties in space-based surface temperature measurements, we re-projected the MODIS Ice Surface Temperature (IST) to 0.5 by 0.5 degree spatial resolution. We also re-gridded AIRS Skin Temperature (Ts) into the same grid but classified with different cloud conditions and surface types. These co-located data sets make intercomparison between the two instruments relatively straightforward. Using this approach, the spatial comparison between the monthly mean AIRS Ts and MODIS IST is in good agreement with RMS 2K for May 2012. This approach also allows the detection of any long-term calibration drift and the careful examination of calibration consistency in the MODIS and AIRS temperature data record. The temporal correlations between temperature data are also compared with those from in-situ measurements from GC-Net (GCN) and NOAA stations. The coherent time series of surface temperature evident in the correlation between AIRS Ts and GCN temperatures suggest that at monthly time scales both observations capture the same climate signal over Greenland. It is also suggested that AIRS surface air temperature (Ta) can be used to estimate the boundary layer inversion.

  1. Attribution of precipitation changes on ground-air temperature offset: Granger causality analysis

    NASA Astrophysics Data System (ADS)

    Cermak, Vladimir; Bodri, Louise

    2016-06-01

    This work examines the causal relationship between the value of the ground-air temperature offset and the precipitation changes for monitored 5-min data series together with their hourly and daily averages obtained at the Sporilov Geophysical Observatory (Prague). Shallow subsurface soil temperatures were monitored under four different land cover types (bare soil, sand, short-cut grass and asphalt). The ground surface temperature (GST) and surface air temperature (SAT) offset, ΔT(GST-SAT), is defined as the difference between the temperature measured at the depth of 2 cm below the surface and the air temperature measured at 5 cm above the surface. The results of the Granger causality test did not reveal any evidence of Granger causality for precipitation to ground-air temperature offsets on the daily scale of aggregation except for the asphalt pavement. On the contrary, a strong evidence of Granger causality for precipitation to the ground-air temperature offsets was found on the hourly scale of aggregation for all land cover types except for the sand surface cover. All results are sensitive to the lag choice of the autoregressive model. On the whole, obtained results contain valuable information on the delay time of ΔT(GST-SAT) caused by the rainfall events and confirmed the importance of using autoregressive models to understand the ground-air temperature relationship.

  2. Simulation on an optimal combustion control strategy for 3-D temperature distributions in tangentially pc-fired utility boiler furnaces.

    PubMed

    Wang, Xi-fen; Zhou, Huai-chun

    2005-01-01

    The control of 3-D temperature distribution in a utility boiler furnace is essential for the safe, economic and clean operation of pc-fired furnace with multi-burner system. The development of the visualization of 3-D temperature distributions in pc-fired furnaces makes it possible for a new combustion control strategy directly with the furnace temperature as its goal to improve the control quality for the combustion processes. Studied in this paper is such a new strategy that the whole furnace is divided into several parts in the vertical direction, and the average temperature and its bias from the center in every cross section can be extracted from the visualization results of the 3-D temperature distributions. In the simulation stage, a computational fluid dynamics (CFD) code served to calculate the 3-D temperature distributions in a furnace, then a linear model was set up to relate the features of the temperature distributions with the input of the combustion processes, such as the flow rates of fuel and air fed into the furnaces through all the burners. The adaptive genetic algorithm was adopted to find the optimal combination of the whole input parameters which ensure to form an optimal 3-D temperature field in the furnace desired for the operation of boiler. Simulation results showed that the strategy could soon find the factors making the temperature distribution apart from the optimal state and give correct adjusting suggestions. PMID:16295911

  3. Temperature distributions from interstitial rf electrode hyperthermia systems: theoretical predictions.

    PubMed

    Strohbehn, J W

    1983-11-01

    In recent years, there has been increased interest in the use of hyperthermia as an adjuvant modality to radiation and chemotherapy in the treatment of cancer. One of the more promising techniques is the application of an rf voltage to an array of electrodes inserted directly into the tumor. The electrodes are usually small, hollow stainless steel needles that are inserted as the first step in a brachytherapy procedure. By applying a voltage between the needles, an rf current is induced in the tissue, resulting in joule heating. In this paper, we calculate numerically the temperature distributions for an array of such needles. In our model we assume a two-dimensional problem, i.e. infinitely long needles, and a homogeneous medium. Blood flow effects are included in the calculation. The results show that for low blood perfusion rates, e.g., on the order of 3 ml/100 gm X min, very smooth temperature distributions result, and the electrodes can be spaced fairly far apart. However, for blood flow rates on the order of 20 ml/100 gm X min the temperature distributions are not smooth, and there are hot spots around the electrodes and cool regions between them. However, if the electrodes are spaced about 1 cm apart and the voltages are adjusted to optimize the temperature distribution then reasonably good results should be achievable. The equation is solved using a finite difference technique. By applying the superpostion principle, we are able to introduce a procedure which substantially reduces the amount of core storage required and results in reasonably efficient run times on a moderate size mini-computer. PMID:6643161

  4. The influence of air-conditioning on street temperatures in the city of Paris

    NASA Astrophysics Data System (ADS)

    de Munck, C. S.; Pigeon, G.; Masson, V.; Marchadier, C.; Meunier, F.; Tréméac, B.; Merchat, M.

    2010-12-01

    A consequence of urban heat islands in summer is the increased use of air-conditioning during extreme heat events : the use of air-conditioning systems, while cooling the inside of buildings releases waste heat (as latent and sensible heat) in the lower part of the urban atmosphere, hence potentially increasing air street temperatures where the heat is released. This may lead locally to a further increase in air street temperatures, therefore increasing the air cooling demand, while at the same time lowering the efficiency of air-conditioning units. A coupled model consisting of a meso-scale meteorological model (MESO-NH) and an urban energy balance model (TEB) has been implemented with an air-conditioning module and used in combination to real spatialised datasets to understand and quantify potential increases in temperature due to air-conditioning heat releases for the city of Paris . In a first instance, the current types of air-conditioning systems co-existing in the city were simulated (underground chilled water network, wet cooling towers and individual air-conditioning units) to study the effects of latent and sensible heat releases on street temperatures. In a third instance, 2 scenarios were tested to characterise the impacts of likely future trends in air-conditioning equipment in the city : a first scenario for which current heat releases were converted to sensible heat, and a second based on 2030s projections of air-conditioning equipment at the scale of the city. All the scenarios showed an increase in street temperature which, as expected, was greater at night time than day time. For the first two scenarios, this increase in street temperatures was localised at or near the sources of air-conditioner heat releases, while the 2030s air-conditioning scenario impacted wider zones in the city. The amplitude of the increase in temperature varied from 0,25°C to 1°C for the air-conditioning current state, between 0,25°C and 2°C for the sensible heat

  5. Distributed temperature and distributed acoustic sensing for remote and harsh environments

    NASA Astrophysics Data System (ADS)

    Mondanos, Michael; Parker, Tom; Milne, Craig H.; Yeo, Jackson; Coleman, Thomas; Farhadiroushan, Mahmoud

    2015-05-01

    Advances in opto-electronics and associated signal processing have enabled the development of Distributed Acoustic and Temperature Sensors. Unlike systems relying on discrete optical sensors a distributed system does not rely upon manufactured sensors but utilises passive custom optical fibre cables resistant to harsh environments, including high temperature applications (600°C). The principle of distributed sensing is well known from the distributed temperature sensor (DTS) which uses the interaction of the source light with thermal vibrations (Raman scattering) to determine the temperature at all points along the fibre. Distributed Acoustic Sensing (DAS) uses a novel digital optical detection technique to precisely capture the true full acoustic field (amplitude, frequency and phase) over a wide dynamic range at every point simultaneously. A number of signal processing techniques have been developed to process a large array of acoustic signals to quantify the coherent temporal and spatial characteristics of the acoustic waves. Predominantly these systems have been developed for the oil and gas industry to assist reservoir engineers in optimising the well lifetime. Nowadays these systems find a wide variety of applications as integrity monitoring tools in process vessels, storage tanks and piping systems offering the operator tools to schedule maintenance programs and maximize service life.

  6. Stabilized Alumina/Ethanol Colloidal Dispersion for Seeding High Temperature Air Flows

    NASA Technical Reports Server (NTRS)

    Wernet, Judith H.; Wernet, Mark P.

    1994-01-01

    Seeding air flows with particles to enable measurements of gas velocities via laser anemometry and/or particle image velocimetry techniques can be quite exasperating. The seeding requirements are compounded when high temperature environments are encountered and special care must be used in selecting a refractory seed material. The pH stabilization techniques commonly employed in ceramic processing are used to obtain stable dispersions for generating aerosols of refractory seed material. By adding submicron alumina particles to a preadjusted pH solution of ethanol, a stable dispersion is obtained which when atomized produces a high quality aerosol. Commercial grade alumina powder is used with a moderate size distribution. The technique is not limited to alumina/ethanol and is also demonstrated with an alumina/H2O system. Other ceramic powders in various polar solvents could also be used once the point of zero charge (pH(sub pzc)) of the powder in the solvent has been determined.

  7. A comparison of urban heat islands mapped using skin temperature, air temperature, and apparent temperature (Humidex), for the greater Vancouver area.

    PubMed

    Ho, Hung Chak; Knudby, Anders; Xu, Yongming; Hodul, Matus; Aminipouri, Mehdi

    2016-02-15

    Apparent temperature is more closely related to mortality during extreme heat events than other temperature variables, yet spatial epidemiology studies typically use skin temperature (also known as land surface temperature) to quantify heat exposure because it is relatively easy to map from satellite data. An empirical approach to map apparent temperature at the neighborhood scale, which relies on publicly available weather station observations and spatial data layers combined in a random forest regression model, was demonstrated for greater Vancouver, Canada. Model errors were acceptable (cross-validated RMSE=2.04 °C) and the resulting map of apparent temperature, calibrated for a typical hot summer day, corresponded well with past temperature research in the area. A comparison with field measurements as well as similar maps of skin temperature and air temperature revealed that skin temperature was poorly correlated with both air temperature (R(2)=0.38) and apparent temperature (R(2)=0.39). While the latter two were more similar (R(2)=0.87), apparent temperature was predicted to exceed air temperature by more than 5 °C in several urban areas as well as around the confluence of the Pitt and Fraser rivers. We conclude that skin temperature is not a suitable proxy for human heat exposure, and that spatial epidemiology studies could benefit from mapping apparent temperature, using an approach similar to the one reported here, to better quantify differences in heat exposure that exist across an urban landscape. PMID:26706765

  8. Temperature Grid Sensor for the Measurement of Spatial Temperature Distributions at Object Surfaces

    PubMed Central

    Schäfer, Thomas; Schubert, Markus; Hampel, Uwe

    2013-01-01

    This paper presents results of the development and application of a new temperature grid sensor based on the wire-mesh sensor principle. The grid sensor consists of a matrix of 256 Pt1000 platinum chip resistors and an associated electronics that measures the grid resistances with a multiplexing scheme at high speed. The individual sensor elements can be spatially distributed on an object surface and measure transient temperature distributions in real time. The advantage compared with other temperature field measurement approaches such as infrared cameras is that the object under investigation can be thermally insulated and the radiation properties of the surface do not affect the measurement accuracy. The sensor principle is therefore suited for various industrial monitoring applications. Its applicability for surface temperature monitoring has been demonstrated through heating and mixing experiments in a vessel. PMID:23353141

  9. Comparison of Near-Surface Air Temperatures and MODIS Ice-Surface Temperatures at Summit, Greenland (2008-2013)

    NASA Technical Reports Server (NTRS)

    Shuman, Christopher A.; Hall, Dorothy K.; DiGirolamo, Nicolo E.; Mefford, Thomas K.; Schnaubelt, Michael J.

    2014-01-01

    We have investigated the stability of the MODerate resolution Imaging Spectroradiometer (MODIS) infrared-derived ice surface temperature (IST) data from Terra for use as a climate quality data record. The availability of climate quality air temperature data (TA) from a NOAA Global Monitoring Division observatory at Greenlands Summit station has enabled this high temporal resolution study of MODIS ISTs. During a 5 year period (July 2008 to August 2013), more than 2500 IST values were compared with 3-minute average TA values derived from the 1-minute data from NOAAs primary 2 m air temperature sensor. These data enabled an expected small offset between air and surface temperatures at this the ice sheet location to be investigated over multiple annual cycles.

  10. Investigation of the impact of extreme air temperature on river water temperature: case study of the heat episode 2013.

    NASA Astrophysics Data System (ADS)

    Weihs, Philipp; Trimmel, Heidelinde; Goler, Robert; Formayer, Herbert; Holzapfel, Gerda; Rauch, Hans Peter

    2014-05-01

    Water stream temperature is a relevant factor for water quality since it is an important driver of water oxygen content and in turn also reduces or increases stress on the aquatic fauna. The water temperature of streams is determined by the source and inflow water temperature, by the energy balance at the stream surface and by the hydrological regime of the stream. Main factors driving the energy balance of streams are radiation balance and air temperature which influences the sensitive and latent heat flux. The present study investigates the impact of the heat episode of summer 2013 on water temperature of two lowland rivers in south eastern Austria. Within the scope of the project BIO_CLIC routine measurements of water temperature at 33 locations alongside the rivers Pinka and Lafnitz have been performed since spring 2012. In addition meteorological measurements of global shortwave and longwave radiation, air temperature, wind and air humidity have been carried out during this time. For the same time period, data of discharge and water levels of both rivers were provided by the public hydrological office. The heat episode of summer 2013 started, according to the Kysely- definition, on 18 July and lasted until 14 August. The highest air temperature ever recorded in Austria was reported on 8 August at 40.5°C. In Güssing, which is located within the project area, 40.0 °C were recorded. In the lower reaches of the river Pinka, at the station Burg the monthly mean water temperature of August 2013 was with more than 22°C, 1°C higher than the mean water temperature of the same period of the previous years. At the same station, the maximum water temperature of 27.1°C was recorded on 29 July, 9 days prior to the air temperature record. Analysis shows that at the downstream stations the main driving parameter is solar radiation whereas at the upstream stations a better correlation between air temperature and water temperature is obtained. Using the extensive data set

  11. Geographical and Geomorphological Effects on Air Temperatures in the Columbia Basin's Signature Vineyards

    NASA Astrophysics Data System (ADS)

    Olson, L.; Pogue, K. R.; Bader, N.

    2012-12-01

    The Columbia Basin of Washington and Oregon is one of the most productive grape-growing areas in the United States. Wines produced in this region are influenced by their terroir - the amalgamation of physical and cultural elements that influence grapes grown at a particular vineyard site. Of the physical factors, climate, and in particular air temperature, has been recognized as a primary influence on viticulture. Air temperature directly affects ripening in the grapes. Proper fruit ripening, which requires precise and balanced levels of acid and sugar, and the accumulation of pigment in the grape skin, directly correlates with the quality of wine produced. Many features control air temperature within a particular vineyard. Elevation, latitude, slope, and aspect all converge to form complex relationships with air temperatures; however, the relative degree to which these attributes affect temperatures varies between regions and is not well understood. This study examines the influence of geography and geomorphology on air temperatures within the American Viticultural Areas (AVAs) of the Columbia Basin in eastern Washington and Oregon. The premier vineyards within each AVA, which have been recognized for producing high-quality wine, were equipped with air temperature monitoring stations that collected hourly temperature measurements. A variety of temperature statistics were calculated, including daily average, maximum, and minimum temperatures. From these values, average diurnal variation and growing degree-days (10°C) were calculated. A variety of other statistics were computed, including date of first and last frost and time spent below a minimum temperature threshold. These parameters were compared to the vineyard's elevation, latitude, slope, aspect, and local topography using GPS, ArcCatalog, and GIS in an attempt to determine their relative influences on air temperatures. From these statistics, it was possible to delineate two trends of temperature variation

  12. Robust Comparison of Climate Models with Observations Using Blended Land Air and Ocean Sea Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Hausfather, Z.; Jacobs, P.; Cowtan, K.; Hawkins, E.; Mann, M. E.; Miller, S. K.; Steinman, B. A.; Way, R. G.; Stolpe, M.

    2015-12-01

    Model-observation comparisons provide an important test of climate models' ability to realistically simulate the transient evolution of the system. A great deal of attention has recently focused on the so-called "hiatus" period of the past ~15 years, when estimates of recent surface temperature evolution fall at the lower end of climate model projections. This work quantifies a systematic bias in model-observation comparisons arising from differential warming rates between sea surface temperatures and surface air temperatures over oceans. Global mean temperatures from climate model simulations are typically calculated using surface air temperatures, while the corresponding observations are based on a blend of air and sea surface temperatures. A further bias arises from the treatment of temperatures in regions where the sea ice boundary has changed. We discuss the magnitude of these biases, and their implications for the evaluation of climate model performance over the "hiatus" period and the full instrumental record.

  13. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    PubMed Central

    Lee, Jing-Nang; Lin, Tsung-Min

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system. PMID:25250390

  14. Distributed birefringence, strain and temperature measurement by homodyne BOTDR

    NASA Astrophysics Data System (ADS)

    Lu, Yuangang; Bao, Xiaoyi; Chen, Liang

    A novel distributed fiber birefringence, strain and temperature measurement based on homodyne Brillouin optical time domain reflectometry (BOTDR) is proposed. Birefringence measurement is based on the beat period detection of Brillouin beat of the same acoustic mode. Strain and temperature are obtained by measuring the power changes of Brillouin beat spectrum (BBS), which corresponds to the optical interaction of different acoustic modes in a complex profile fiber. The birefringence of a 4.3 km large-effective-area fiber (LEAF) was measured with 0.6-m spatial resolution, and strain and temperature at the end of a 4.5 km LEAF were measured at 1.5-m resolution in 140s.

  15. A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology

    NASA Technical Reports Server (NTRS)

    Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

    1998-01-01

    A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

  16. Oxide modified air electrode surface for high temperature electrochemical cells

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1992-01-01

    An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

  17. Stability limit of room air temperature of a VAV system

    SciTech Connect

    Matsuba, Tadahiko; Kamimura, Kazuyuki; Kasahara, Masato; Kimbara, Akiomi; Kurosu, Shigeru; Murasawa, Itaru; Hashimoto, Yukihiko

    1998-12-31

    To control heating, ventilating, and air-conditioning (HVAC) systems, it has been necessary to accept an analog system controlled mainly by proportional-plus-integral-plus-derivative (PID) action. However, when conventional PID controllers are replaced with new digital controllers by selecting the same PID parameters as before, the control loops have often got into hunting phenomena, which result in undamped oscillations. Unstable control characteristics (such as huntings) are thought to be one of the crucial problems faced by field operators. The PID parameters must be carefully selected to avoid instabilities. In this study, a room space is simulated as a thermal system that is air-conditioned by a variable-air-volume (VAV) control system. A dynamic room model without infiltration or exfiltration, which is directly connected to a simple air-handling unit without an economizer, is developed. To explore the possible existence of huntings, a numerical system model is formulated as a bilinear system with time-delayed feedback, and a parametric analysis of the stability limit is presented. Results are given showing the stability region affected by the selection of control and system parameters. This analysis was conducted to help us tune the PID controllers for optimal HVAC control.

  18. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  19. Anomalous Discharge Product Distribution in Lithium-Air Cathodes: A Three Dimensional View

    SciTech Connect

    Nanda, Jagjit; Allu, Srikanth; Bilheux, Hassina Z; Dudney, Nancy J; Pannala, Sreekanth; Veith, Gabriel M; Voisin, Sophie; Walker, Lakeisha MH; Archibald, Richard K

    2012-01-01

    Using neutron tomographic imaging we report for the first time three dimensional spatial distribution of lithium product distribution in electrochemically discharged Lithium-Air cathodes. Neutron imaging finds a non-uniform lithium product distribution across the electrode thickness; the lithium species concentration being higher near the edges of the Li-air electrode and relatively uniform in the center of the electrode. The experimental neutron images were analyzed in context of results obtained from 3D modeling of the spatial lithium product distribution using a kinetically coupled diffusion based transport model that accounts for the dynamical reaction rate dependence on the discharge product formation, porosity changes and mass transfer.

  20. Fiber optic distributed temperature sensor mapping of a jet-mixing flow field

    DOE PAGESBeta

    Lomperski, Stephen; Gerardi, Craig; Pointer, William David

    2015-03-04

    In this paper, we introduce the use of a Rayleigh backscatter-based distributed fiber optic sensor to map the temperature field in air flow for a thermal fatigue application. The experiment involves a pair of air jets at 22 and 70°C discharging from 136 mm hexagonal channels into a 1 × 1 × 1.7 m tank at atmospheric pressure. A 40 m-long, Φ155 µm fiber optic sensor was wound back and forth across the tank midplane to form 16 horizontal measurement sections with a vertical spacing of 51 mm. This configuration generated a 2D temperature map with 2800 data points overmore » a 0.76 × 1.7 m plane. Fiber optic sensor readings were combined with PIV and infrared measurements to relate flow field characteristics to the thermal signature of the tank lid. The paper includes sensor stability data and notes issues encountered using the distributed temperature sensor in a flow field. In conclusion, sensors are sensitive to strain and humidity, and so accuracy relies upon strict control of both.« less

  1. Fiber optic distributed temperature sensor mapping of a jet-mixing flow field

    SciTech Connect

    Lomperski, Stephen; Gerardi, Craig; Pointer, William David

    2015-03-04

    In this paper, we introduce the use of a Rayleigh backscatter-based distributed fiber optic sensor to map the temperature field in air flow for a thermal fatigue application. The experiment involves a pair of air jets at 22 and 70°C discharging from 136 mm hexagonal channels into a 1 × 1 × 1.7 m tank at atmospheric pressure. A 40 m-long, Φ155 µm fiber optic sensor was wound back and forth across the tank midplane to form 16 horizontal measurement sections with a vertical spacing of 51 mm. This configuration generated a 2D temperature map with 2800 data points over a 0.76 × 1.7 m plane. Fiber optic sensor readings were combined with PIV and infrared measurements to relate flow field characteristics to the thermal signature of the tank lid. The paper includes sensor stability data and notes issues encountered using the distributed temperature sensor in a flow field. In conclusion, sensors are sensitive to strain and humidity, and so accuracy relies upon strict control of both.

  2. Increasing influence of air temperature on upper Colorado River streamflow

    NASA Astrophysics Data System (ADS)

    Woodhouse, Connie A.; Pederson, Gregory T.; Morino, Kiyomi; McAfee, Stephanie A.; McCabe, Gregory J.

    2016-03-01

    This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture can result in flow deficits of similar magnitude, but recent droughts have been amplified by warmer temperatures that exacerbate the effects of relatively modest precipitation deficits. Since 1988, a marked increase in the frequency of warm years with lower flows than expected, given precipitation, suggests continued warming temperatures will be an increasingly important influence in reducing future UCRB water supplies.

  3. Increasing influence of air temperature on upper Colorado River streamflow

    USGS Publications Warehouse

    Woodhouse, Connie A.; Pederson, Gregory T.; Morino, Kiyomi; McAfee, Stephanie A.; McCabe, Gregory

    2016-01-01

    This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture can result in flow deficits of similar magnitude, but recent droughts have been amplified by warmer temperatures that exacerbate the effects of relatively modest precipitation deficits. Since 1988, a marked increase in the frequency of warm years with lower flows than expected, given precipitation, suggests continued warming temperatures will be an increasingly important influence in reducing future UCRB water supplies.

  4. Seasonal Prediction of North American Surface Air Temperatures Using Space-Time Principal Components.

    NASA Astrophysics Data System (ADS)

    Vautard, Robert; Plaut, Guy; Wang, Risheng; Brunet, Gilbert

    1999-02-01

    The statistical model proposed by Vautard et al. is applied to the seasonal prediction of surface air temperatures over North America (Canada and the United States). This model is based on sea surface temperature predictors filtered by multichannel singular spectrum analysis (MSSA), which is equivalent here to a nonseasonal version of extended EOF analysis. Several versions of the MSSA model are proposed. The most successful one is based on a two-step procedure consisting in a prior prediction of filtered sea surface temperatures followed by a predictand specification stage.The MSSA model is compared with the recent prediction technique based on canonical correlation analysis (CCA). The former model turns out, in this application, to be more skillful in most seasons than the latter. The differences are, however, marginal. The authors argue that these differences are due to the nonseasonal nature of the MSSA model and to overfitting problems inherent to CCA. Another advantage of the MSSA model relative to CCA is the possibility of easily transforming deterministic continuous forecasts into probabilistic categorical forecasts.The geographical distribution of prediction skill across North America is studied. Canada turns out to be the country where skill is most significant. During winter, high skill values are also found over the southeastern United States.

  5. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region

    NASA Astrophysics Data System (ADS)

    Oikawa, P. Y.; Ge, C.; Wang, J.; Eberwein, J. R.; Liang, L. L.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-11-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality.

  6. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region.

    PubMed

    Oikawa, P Y; Ge, C; Wang, J; Eberwein, J R; Liang, L L; Allsman, L A; Grantz, D A; Jenerette, G D

    2015-01-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality. PMID:26556236

  7. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region

    PubMed Central

    Oikawa, P. Y.; Ge, C.; Wang, J.; Eberwein, J. R.; Liang, L. L.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-01-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality. PMID:26556236

  8. The monitoring and alarm system based on distributed temperature fiber sensing

    NASA Astrophysics Data System (ADS)

    Zhao, Hong-qiang; Zhao, Yu-liang; Zhang, Yu-ye; Wang, Shu-juan

    2014-09-01

    Air material depot is a warehouse which store consumed all the parts and equipment vault of the plane. In order to ensure the various aviation equipment integrity of the backup piece rate, the inside temperature of depot must be controlled within a certain range. Therefore, the depot must be equipped a self-contained temperature real-time monitoring system. This paper presents a distributed temperature sensing alarm system to apply to real-time measure spatial distribution of temperature field. In order to eliminate influence to the scattering strength from the light source instability and the fiber bending splice loss and to improve temperature measurement accuracy, the system design used dual-channel dual- wavelength comparison method which make Anti-Stokes as signal channel and Stokes as a reference channel to collect signals of two channel respectively and detect the ratio of the two channels' signals. The light of LD directional coupling to the sensing optical fiber in the temperature field to test, domain reflect light from the sensing optical fiber directional coupling to receive channel again, Rayleigh domain reflect light is filtered after optical filter, the Anti-Stokes and Stokes are both taken out, converted and magnified, the two signals is digitalized by A/D Converter, and written to the storage machine , which linear cumulative to the content of the storage unit, The distributed measurement of the temperature field to test is finished. The collected 2900 measuring points real-time on 2km of optical fiber. The spatial resolution of the system was 0.7m, measurement range was -20-370°C, and measurement error was ± 2 °C. All index of the system achieved the desired objective. To get an accurate temperature field spatial distribution and the information of temporal variation, the system enabled real-time temperature of aviation depot monitoring and early warning . As a new sensing technology, the distributed fiber optic sensor has the functions of self

  9. Study on two-dimensional tomography algorithm for gas temperature distribution based on TDLAS

    NASA Astrophysics Data System (ADS)

    Lv, Jinwei; Zhou, Tao; Yao, Hongbao

    2013-09-01

    In the combustion flow field, the concentrations of temperature and water vapor are very important in determining combustion efficiency. The traditional contact measurement will induce shock so as to disturb the flow field, and most of the probe can't be used in the high temperature air. So the existing contact measurement method can't meet the measurement requirements of the combustion field, but the tunable laser absorption spectrum technology (TDLAS) can realize non-contact nondestructive measurement of the combustion flow field. Various parameters such as temperature, gas composition and concentration, flow velocity, can be measured at the same time. And there is no temperature limit. It is very good at measuring combustion field parameters in the high temperature and high speed environment. TDLAS can calculate the gas temperature in real-time by scanning both absorption signal of gas absorption lines, but this is one-dimensional path integral measurement, can't reflect the real information of the combustion field. So it can't be used to measure objects with distinct temperature gradient. In order to overcome this deficiency, tunable laser absorption spectrum technology combined with computer tomography technology (called TDLAT) is used to realize the measurement of the two dimensional temperature distribution in the burning flow field. In this paper, the measurement principle and algorithm of the two dimensional temperature field distribution are put forward. In TDLAT system, the measured area is divided into many grids. TDLAS is used to get the laser path integral spectrophotometry along the grid line. In succession, deeply grid information is gotten by non-negative constrained least squares. Thus, assuming that temperature measurement plane within is in smooth transition, interpolation algorithm is used to recreate the high spatial resolution of the two dimensional temperature field distribution. According to the measuring principle and measuring objects

  10. Estimation of Surface Air Temperature Over Central and Eastern Eurasia from MODIS Land Surface Temperature

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.

    2011-01-01

    Surface air temperature (T(sub a)) is a critical variable in the energy and water cycle of the Earth.atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T(sub a) from satellite remotely sensed land surface temperature (T(sub s)) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T(sub a) and MODIS T(sub s). The relationships between the maximum T(sub a) and daytime T(sub s) depend significantly on land cover types, but the minimum T(sub a) and nighttime T(sub s) have little dependence on the land cover types. The largest difference between maximum T(sub a) and daytime T(sub s) appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T(sub a) were estimated from 1 km resolution MODIS T(sub s) under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T(sub a) were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T(sub a) varies from 2.4 C over closed shrublands to 3.2 C over grasslands, and the MAE of the estimated minimum Ta is about 3.0 C.

  11. The simulation of temperature distribution and relative humidity with liquid concentration of 50% using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Yohana, Eflita; Yulianto, Mohamad Endy; Kwang-Hwang, Choi; Putro, Bondantio; Yohanes Aditya W., A.

    2015-12-01

    The study of humidity distribution simulation inside a room has been widely conducted by using computational fluid dynamics (CFD). Here, the simulation was done by employing inputs in the experiment of air humidity reduction in a sample house. Liquid dessicant CaCl2was used in this study to absorb humidity in the air, so that the enormity of humidity reduction occured during the experiment could be obtained.The experiment was conducted in the morning at 8 with liquid desiccant concentration of 50%, nozzle dimension of 0.2 mms attached in dehumidifier, and the debit of air which entered the sample house was 2.35 m3/min. Both in inlet and outlet sides of the room, a DHT 11 censor was installed and used to note changes in humidity and temperature during the experiment. In normal condition without turning on the dehumidifier, the censor noted that the average temperature inside the room was 28°C and RH of 65%.The experiment result showed that the relative humidity inside a sample house was decreasing up to 52% in inlet position. Further, through the results obtained from CFD simulation, the temperature distribution and relative humidity inside the sample house could be seen. It showed that the concentration of liquid desiccant of 50% experienced a decrease while the relative humidity distribution was considerably good since the average RH was 55% followed by the increase in air temperature of 29.2° C inside the sample house.

  12. Emperor penguin body surfaces cool below air temperature.

    PubMed

    McCafferty, D J; Gilbert, C; Thierry, A-M; Currie, J; Le Maho, Y; Ancel, A

    2013-06-23

    Emperor penguins Aptenodytes forsteri are able to survive the harsh Antarctic climate because of specialized anatomical, physiological and behavioural adaptations for minimizing heat loss. Heat transfer theory predicts that metabolic heat loss in this species will mostly depend on radiative and convective cooling. To examine this, thermal imaging of emperor penguins was undertaken at the breeding colony of Pointe Géologie in Terre Adélie (66°40' S 140° 01' E), Antarctica in June 2008. During clear sky conditions, most outer surfaces of the body were colder than surrounding sub-zero air owing to radiative cooling. In these conditions, the feather surface will paradoxically gain heat by convection from surrounding air. However, owing to the low thermal conductivity of plumage any heat transfer to the skin surface will be negligible. Future thermal imaging studies are likely to yield further insights into the adaptations of this species to the Antarctic climate. PMID:23466479

  13. Emperor penguin body surfaces cool below air temperature

    PubMed Central

    McCafferty, D. J.; Gilbert, C.; Thierry, A.-M.; Currie, J.; Le Maho, Y.; Ancel, A.

    2013-01-01

    Emperor penguins Aptenodytes forsteri are able to survive the harsh Antarctic climate because of specialized anatomical, physiological and behavioural adaptations for minimizing heat loss. Heat transfer theory predicts that metabolic heat loss in this species will mostly depend on radiative and convective cooling. To examine this, thermal imaging of emperor penguins was undertaken at the breeding colony of Pointe Géologie in Terre Adélie (66°40′ S 140° 01′ E), Antarctica in June 2008. During clear sky conditions, most outer surfaces of the body were colder than surrounding sub-zero air owing to radiative cooling. In these conditions, the feather surface will paradoxically gain heat by convection from surrounding air. However, owing to the low thermal conductivity of plumage any heat transfer to the skin surface will be negligible. Future thermal imaging studies are likely to yield further insights into the adaptations of this species to the Antarctic climate. PMID:23466479

  14. Accuracy comparison of spatial interpolation methods for estimation of air temperatures in South Korea

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Shim, K.; Jung, M.; Kim, S.

    2013-12-01

    Because of complex terrain, micro- as well as meso-climate variability is extreme by locations in Korea. In particular, air temperature of agricultural fields are influenced by topographic features of the surroundings making accurate interpolation of regional meteorological data from point-measured data. This study was conducted to compare accuracy of a spatial interpolation method to estimate air temperature in Korean Peninsula with the rugged terrains in South Korea. Four spatial interpolation methods including Inverse Distance Weighting (IDW), Spline, Kriging and Cokriging were tested to estimate monthly air temperature of unobserved stations. Monthly measured data sets (minimum and maximum air temperature) from 456 automatic weather station (AWS) locations in South Korea were used to generate the gridded air temperature surface. Result of cross validation showed that using Exponential theoretical model produced a lower root mean square error (RMSE) than using Gaussian theoretical model in case of Kriging and Cokriging and Spline produced the lowest RMSE of spatial interpolation methods in both maximum and minimum air temperature estimation. In conclusion, Spline showed the best accuracy among the methods, but further experiments which reflect topography effects such as temperature lapse rate are necessary to improve the prediction.

  15. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  16. A Review of the Thermodynamic, Transport, and Chemical Reaction Rate Properties of High-temperature Air

    NASA Technical Reports Server (NTRS)

    Hansen, C Frederick; Heims, Steve P

    1958-01-01

    Thermodynamic and transport properties of high temperature air, and the reaction rates for the important chemical processes which occur in air, are reviewed. Semiempirical, analytic expressions are presented for thermodynamic and transport properties of air. Examples are given illustrating the use of these properties to evaluate (1) equilibrium conditions following shock waves, (2) stagnation region heat flux to a blunt high-speed body, and (3) some chemical relaxation lengths in stagnation region flow.

  17. Temperature and relative humidity distributions in a medium-size administrative town in southwest Nigeria.

    PubMed

    Akinbode, O M; Eludoyin, A O; Fashae, O A

    2008-04-01

    This study was carried out in one of the medium-sized public administrative towns in the southwestern part of Nigeria. Its aim is to highlight the effect of spatial distribution of settlements, population, and socio-economic activities on urban air temperature and humidity in the town. Temperature and relative humidity data from 1992 to 2001 were obtained from three meteorological stations in Akure, the Administrative Capital of Ondo State, Nigeria. The stations are located within the Federal Ministry of Aviation, Akure Airport (FMA), Federal University of Technology, Akure (FUTA) and Federal School of Agriculture (SOA). Air temperature and relative humidity measurements were also obtained from 27 points, which were cited to include road junctions, markets, built up areas, etc., using sling psychrometer. The data were subsequently analysed for spatial and temporal variations using statistical packages (SPSS and Microsoft Excel) and isolines. Actual vapour pressure and dew point temperature were computed using Magnus conversion formulae. The results obtained showed that spatial variation was insignificant, in terms of the temperature and humidity variables. The annual mean temperature (Tmean) ranged between 21.9 and 30.4 degrees C while minimum (Tmin) and maximum (Tmax) temperatures varied from 13 to 26 and 21.5-39.6 degrees C, respectively. Relative humidity (RH), actual vapour pressure (Es) and dew point temperature (Td) values also varied from 39.1% to 98.2%, 19.7-20.8 gm(-3), and 17.3-17.8 degrees C, respectively. A significant relationship (p>0.6; r<0.05) between Tmin, Es and Td was observed while the daytime 'urban heat island' intensity (UHI) ranged between 0.5 and 2.5 degrees C within the study period. The study concluded that there is influence of urban canopy on the microclimate of Akure, and hypothesizes that the urban dwellers may be subjected to some levels of weather related physiological disorderliness. PMID:17482750

  18. Pressure and temperature distribution in biological tissues by focused ultrasound

    NASA Astrophysics Data System (ADS)

    Mal, Ajit K.; Feng, Feng; Kabo, Michael; Wang, Jeffrey; Bar-Cohen, Yoseph

    2003-07-01

    The interaction between ultrasound and biological tissues has been the subject of a number of investigators for nearly half a century and the number of applications of high intensity, focused ultrasound for therapeutic purposes continues to grow. This paper is motivated by possible medical applications of focused ultrasound in minimally invasive treatment of a variety of musculoskeletal disorders that are responsive to thermal treatment. The mechanical and thermal effects in a subject"s body induced by high-frequency ultrasound are simulated using PZFlex, a finite element based program. The FEM model described in this report is of a transverse section of the body at the level of the second lumbar vertebra (L2) extracted from a CT image. In order to protect the nerves inside the spinal canal as well as to obtain an effective heating result at the focal region within the intervertebral disk, a suitable orientation of axis of the focused ultrasound lens have to be determined in advance. The pressure, energy loss distribution and temperature distribution are investigated in this paper with the different orientations of the axis and different transverse diameter of the spherical ultrasound lens. Since nonlinear effects are expected to be important in the therapeutic application in some literatures, this paper also demonstrates the effects of nonlinearities on the pressure and temperature distribution induced by focused ultrasound in a two dimensional model. Finally, a comparison of the results between linear and nonlinear cases is reported.

  19. Quantifying Walker River stream temperature variability using distributed temperature sensing data

    NASA Astrophysics Data System (ADS)

    Beck, A. J.; Null, S. E.

    2014-12-01

    Nevada's Walker River historically supported Lahontan cutthroat trout (Oncorhynchus clarki henshawi), although today Lahontan cutthroat trout are listed as a federally threatened species and limited to isolated headwater reaches. Much of the lower Walker River is impaired for native aquatic species because of elevated stream temperatures and nutrients, and low streamflow and dissolved oxygen levels. We deployed a 1 kilometer single-ended fiber-optic Raman spectra distributed temperature sensing (DTS) cable in the Wabuska drain outlet and surrounding Walker River for one week in June 2014 to improve fine-scale understanding of stream temperatures. These data identify and quantify thermal variability of micro-habitat that standard temperature monitoring and modeling do not capture. Results indicate stream temperatures exceeded 26°C and a return flow channel exhibited greater thermal variability with both warmer daytime temperatures and cooler nighttime temperatures - possibly providing more complex thermal habitat during some flow conditions. Fine-scale DTS data complement ongoing stream temperature modeling by bounding thermal variability within model reaches that are 250 m long and where stream temperature is assumed to be well-mixed within each reach.

  20. Vertical Distribution of Temperature and Density in a Planetary Ring

    NASA Astrophysics Data System (ADS)

    Schmidt, J.; Spahn, F.; Petzschmann, O.; Salo, Heikki

    1998-09-01

    We model temperature and density profiles for a dilute planetary ring, based on the hydrodynamic balance equations for momentum and energy of granular flows. Within our approximation the ring consists of inelastic smooth spheres of unique size and mass, while the fluxes of mass, momentum and energy are linear functions of the gradients of density, velocity and temperature. The phase space distribution function is an isotropic Gaussian with additive corrections that are first order in these gradients (Jenkins and Richman, Arch. Ration. Mech. Anal., 87 (1985)). The resulting system of coupled differential equations leads to temperature and density profiles, which depend on the coefficient of restitution, a measure for the inelasticity of the particle collisions, the optical depth and the shear rate. We compare the results to those of the kinetic approach to ring dynamics (Simon and Jenkins, Icarus, 110 (1994)) , where the non-isotropic nature of the ring system is taken into account by use of a triaxial Gaussian velocity distribution. Furthermore we present event driven N-particle simulations that confirm the numerical results.

  1. Impact of vegetation growth on urban surface temperature distribution

    NASA Astrophysics Data System (ADS)

    Buyadi, S. N. A.; Mohd, W. M. N. W.; Misni, A.

    2014-02-01

    Earlier studies have indicated that, the temperature distribution in the urban area is significantly warmer than its surrounding suburban areas. The process of urbanization has created urban heat island (UHI). As a city expands, trees are cut down to accommodate commercial development, industrial areas, roads, and suburban growth. Trees or green areas normally play a vital role in mitigating the UHI effects especially in regulating high temperature in saturated urban areas. This study attempts to assess the effects of vegetation growth on land surface temperature (LST) distribution in urban areas. An area within the City of Shah Alam, Selangor has been selected as the study area. Land use/land cover and LST maps of two different dates are generated from Landsat 5 TM images of the year 1991 and 2009. Only five major land cover classes are considered in this study. Mono-window algorithm is used to generate the LST maps. Landsat 5 TM images are also used to generate the NDVI maps. Results from this study have shown that there are significant land use changes within the study area. Although the conversion of green areas into residential and commercial areas significantly increase the LST, matured trees will help to mitigate the effects of UHI.

  2. Temperature and Humidity Independent Control Research on Ground Source Heat Pump Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Chen, G.; Wang, L. L.

    Taking green demonstration center building air conditioning system as an example, this paper presents the temperature and humidity independent control system combined with ground source heat pump system, emphasis on the design of dry terminal device system, fresh air system and ground source heat pump system.

  3. Biodiesel and Cold Temperature Effect on Speciated Mobile Source Air Toxics from Modern Diesel Trucks

    EPA Science Inventory

    Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...

  4. Biodiesel and Cold Temperature Effects on Speciated Mobile Source Air Toxics from Modern Diesel Trucks

    EPA Science Inventory

    Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...

  5. Air stability of low-temperature dehydrogenation of Pd-decorated Mg blades.

    PubMed

    Liu, Yu; Wang, Gwo-Ching

    2012-01-20

    We demonstrated that Pd-decorated Mg blades are air-stable for hydrogen storage with a low desorption temperature of 373 K. Pd-catalyst-decorated Mg blades were prepared by 64° oblique incident angle thermal deposition on a rotatable substrate with the rotation axis perpendicular to the substrate. The hydrogen desorption from Pd-decorated Mg blades was performed and recorded by temperature-programmed desorption (TPD) for repeated hydrogenation–dehydrogenation cycles. The near-surface structural and compositional changes were characterized in situ by reflection high energy electron diffraction (RHEED). The Mg blades were intentionally exposed to air at elevated temperatures (333 or 358 K) between certain cycles. It was found that the degradation of the storage capacity was affected weakly by the air exposure at moderate temperatures. The kinetics of the hydrogen desorption was sensitive to air exposure but recoverable through a replenishment of fresh catalyst Pd on the surface of the oxidized Mg blades. PMID:22166731

  6. Transport properties of high-temperature air in a magnetic field

    SciTech Connect

    Bruno, D.; Capitelli, M.; Catalfamo, C.; Giordano, D.

    2011-01-15

    Transport properties of equilibrium air plasmas in a magnetic field are calculated with the Chapman-Enskog method. The range considered for the temperature is [50-50 000] K and for the magnetic induction is [0-300] T.

  7. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Ferrare, Richard A.; Browell, Edward V.; Kooi, Susan A.; Dunion, Jason P.; Heymsfield, Gerry; Notari, Anthony; Butler, Carolyn F.; Burton, Sharon; Fenn, Marta; Krishnamurti, T. N.; Chen, Gao; Anderson, Bruce

    2010-01-01

    LASE (Lidar Atmospheric Sensing Experiment) on-board the NASA DC-8 measured high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan Air Layer(s) (SAL). Interactions between the SAL and tropical air were observed during the early stages of the TC development. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on AEWs and TCs. Examples of profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in SAL, convection, and clear air regions. LASE data suggest that the SAL suppresses low-altitude convection at the convection-SAL interface region. Mid-level convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on August 20, 2008. This interaction is responsible for the transfer of about 7 x 10(exp 15) J latent heat energy within a day to the SAL. Measurements of lidar extinction-to-backscatter ratios in the range 36+/-5 to 45+/-5 are within the range of measurements from other lidar measurements of dust. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings, respectively.

  8. Apparatus and method for generating large mass flow of high temperature air at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Sabol, A. P.; Stewart, R. B. (Inventor)

    1973-01-01

    High temperature, high mass air flow and a high Reynolds number test air flow in the Mach number 8-10 regime of adequate test flow duration is attained by pressurizing a ceramic-lined storage tank with air to a pressure of about 100 to 200 atmospheres. The air is heated to temperatures of 7,000 to 8,000 R prior to introduction into the tank by passing the air over an electric arc heater means. The air cools to 5,500 to 6,000 R while in the tank. A decomposable gas such as nitrous oxide or a combustible gas such as propane is injected into the tank after pressurization and the heated pressurized air in the tank is rapidly released through a Mach number 8-10 nozzle. The injected gas medium upon contact with the heated pressurized air effects an exothermic reaction which maintains the pressure and temperature of the pressurized air during the rapid release.

  9. Fractal structure of the distributions of air dose rates in Koriyama city in Fukushima.

    PubMed

    Ishihara, Masamichi

    2014-10-01

    The authors investigated the fractal structure of the distributions of air dose rates in Koriyama city in Fukushima using data published by the Fukushima Prefectural and Koriyama City governments. Relative frequency data of air dose rates (strength distribution) could be well fitted with a q-distribution. In the present analysis, the relative frequency decreases approximately as s for high air dose rate values, where the quantity s represents air dose rate. The fractal dimension is a function of the threshold sth of air dose rate. The fractal dimension is approximately 1.59 when sth is the average of the air dose rates in Koriyama (0.9 μSv h) and decreases with increasing the threshold: it is approximately 1.97 for sth = 0.6 μSv h and 1.40 for sth = 1.2 μSv h. These results confirm that the strength distribution behaves like a power function for high air dose rate values and that the fallout pattern can be described as a fractal. PMID:25162424

  10. The use of distributed temperature sensing technology for monitoring wildland fire intensity and distribution.

    NASA Astrophysics Data System (ADS)

    Ochoa, C. G.; Cram, D.; Hatch, C. E.; Tyler, S. W.

    2014-12-01

    Distributed temperature sensing (DTS) technology offers a viable alternative for accurately measuring wildland fire intensity and distribution in real time applications. We conducted an experiment to test the use of DTS as an alternative technology to monitor prescribed fire temperatures in real time and across a broad spatial scale. The custom fiber-optic cable consisted of three fiber optic lines buffered by polyamide, copper, and polyvinyl chloride, respectively, each armored in a stainless steel tube backfilled with Nitrogen gas. The 150 m long cable was deployed in three different 20 by 26 m experimental plots of short-grass rangeland in central New Mexico. Cable was arranged to maximize coverage of the experimental plots and allow cross-comparison between two main parallel straight-line sections approximately 8 m apart. A DTS system recorded fire temperatures every three seconds and integrated every one meter. A series of five thermocouples attached to a datalogger were placed at selected locations along the cable and also recorded temperature data every three seconds on each fiber. Results indicate that in general there is good agreement between thermocouple-measured and DTS-measured temperatures. A close match in temperature between DTS and thermocouples was particularly observed during the rising limb but not so much during the decline. The metal armoring of the fiber-optic cable remained hot longer than the thermocouples after the flames had passed. The relatively short-duration, high-intensity, prescribed burn fire in each plot resulted in temperatures reaching up to 450 degrees Celsius. In addition, DTS data allow for illustration of the irregular nature of flame speed and travel path across the rangeland grasses, a phenomenon that was impossible to quantify without the use of this tool. This study adds to the understanding of using DTS as a new alternative tool for better characterizing wildland fire intensity, distribution and travel patterns, and

  11. Effects of a Circulating-water Garment and Forced-air Warming on Body Heat Content and Core Temperature

    PubMed Central

    Taguchi, Akiko; Ratnaraj, Jebadurai; Kabon, Barbara; Sharma, Neeru; Lenhardt, Rainer; Sessler, Daniel I.

    2005-01-01

    Background: Forced-air warming is sometimes unable to maintain perioperative normothermia. We therefore compared heat transfer, regional heat distribution, and core rewarming of forced-air warming with a novel circulating-water garment. Methods: Nine volunteers were each evaluated on two randomly ordered study days. They were anesthetized and cooled to a core temperature near 34°C. The volunteers were subsequently warmed for 2.5 hours with either a circulating-water garment or forced-air cover. Overall, heat balance was determined from the difference between cutaneous heat loss (thermal flux transducers) and metabolic heat production (oxygen consumption). Average arm and leg (peripheral) tissue temperatures were determined from 18 intramuscular needle thermocouples, 15 skin thermal flux transducers, and “deep” arm and foot thermometers. Results: Heat production (≈ 60 kcal/h) and loss (≈45 kcal/h) were similar with each treatment before warming. The increase in heat transfer across anterior portions of the skin surface was similar with each warming system (≈65 kcal/h). Forced-air warming had no effect on posterior heat transfer whereas circulating-water transferred 21 ± 9 kcal/h through the posterior skin surface after a half hour of warming. Over 2.5 h, circulating-water thus increased body heat content 56% more than forced air. Core temperatures thus increased faster than with circulating water than forced air, especially during the first hour, with the result that core temperature was 1.1 ± 0.7°C greater after 2.5 h (P < 0.001). Peripheral tissue heat content increased twice as much as core heat content with each device, but the core-to-peripheral tissue temperature gradient remained positive throughout the study. Conclusions: The circulating-water system transferred more heat than forced air, with the difference resulting largely from posterior heating. Circulating water rewarmed patients 0.4°C/h faster than forced air. A substantial peripheral

  12. Rate constants for chemical reactions in high-temperature nonequilibrium air

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.

    1986-01-01

    In the nonequilibrium atmospheric chemistry regime that will be encountered by the proposed Aeroassisted Orbital Transfer Vehicle in the upper atmosphere, where air density is too low for thermal and chemical equilibrium to be maintained, the detailed high temperature air chemistry plays a critical role in defining radiative and convective heating loads. Although vibrational and electronic temperatures remain low (less than 15,000 K), rotational and translational temperatures may reach 50,000 K. Attention is presently given to the effects of multiple temperatures on the magnitudes of various chemical reaction rate constants, for the cases of both bimolecular exchange reactions and collisional excitation and dissociation reactions.

  13. Repeat temperature measurements in boreholes from northwestern Utah link ground and air temperature changes at the decadal time scale

    NASA Astrophysics Data System (ADS)

    Davis, Michael G.; Harris, Robert N.; Chapman, David S.

    2010-05-01

    Borehole temperature profiles provide a record of ground surface temperature (GST) change at the decadal to centennial time scale. GST histories reconstructed from boreholes are particularly useful in climate reconstruction if changes in GST and surface air temperature (SAT) are effectively coupled at decadal and longer time periods and it can be shown that borehole temperatures respond faithfully to surface temperature changes. We test these assumptions using three boreholes in northwestern Utah that have been repeatedly logged for temperature over a time span of 29 years. We report 13 temperature-depth logs at the Emigrant Pass Observatory borehole GC-1, eight at borehole SI-1 and five at borehole DM-1, acquired between 1978 and 2007. Systematic subsurface temperature changes of up to 0.6°C are observed over this time span in the upper sections of the boreholes; below approximately 100 m any temperature transients are within observational noise. We difference the temperature logs to highlight subsurface transients and to remove any ambiguity resulting from steady state source of curvature. Synthetic temperature profiles computed from SAT data at nearby meteorological stations reproduce both the amplitude and pattern of the transient temperature observations, fitting the observations to within 0.03°C or better. This observational confirmation of the strong coupling between surface temperature change and borehole temperature transients lends further support to the use of borehole temperatures to complement SAT and multiproxy reconstructions of climate change.

  14. COMPUTER MODEL OF TEMPERATURE DISTRIBUTION IN OPTICALLY PUMPED LASER RODS

    NASA Technical Reports Server (NTRS)

    Farrukh, U. O.

    1994-01-01

    Managing the thermal energy that accumulates within a solid-state laser material under active pumping is of critical importance in the design of laser systems. Earlier models that calculated the temperature distribution in laser rods were single dimensional and assumed laser rods of infinite length. This program presents a new model which solves the temperature distribution problem for finite dimensional laser rods and calculates both the radial and axial components of temperature distribution in these rods. The modeled rod is either side-pumped or end-pumped by a continuous or a single pulse pump beam. (At the present time, the model cannot handle a multiple pulsed pump source.) The optical axis is assumed to be along the axis of the rod. The program also assumes that it is possible to cool different surfaces of the rod at different rates. The user defines the laser rod material characteristics, determines the types of cooling and pumping to be modeled, and selects the time frame desired via the input file. The program contains several self checking schemes to prevent overwriting memory blocks and to provide simple tracing of information in case of trouble. Output for the program consists of 1) an echo of the input file, 2) diffusion properties, radius and length, and time for each data block, 3) the radial increments from the center of the laser rod to the outer edge of the laser rod, and 4) the axial increments from the front of the laser rod to the other end of the rod. This program was written in Microsoft FORTRAN77 and implemented on a Tandon AT with a 287 math coprocessor. The program can also run on a VAX 750 mini-computer. It has a memory requirement of about 147 KB and was developed in 1989.

  15. Driving Parameters for Distributed and Centralized Air Transportation Architectures

    NASA Technical Reports Server (NTRS)

    Feron, Eric

    2001-01-01

    This report considers the problem of intersecting aircraft flows under decentralized conflict avoidance rules. Using an Eulerian standpoint (aircraft flow through a fixed control volume), new air traffic control models and scenarios are defined that enable the study of long-term airspace stability problems. Considering a class of two intersecting aircraft flows, it is shown that airspace stability, defined both in terms of safety and performance, is preserved under decentralized conflict resolution algorithms. Performance bounds are derived for the aircraft flow problem under different maneuver models. Besides analytical approaches, numerical examples are presented to test the theoretical results, as well as to generate some insight about the structure of the traffic flow after resolution. Considering more than two intersecting aircraft flows, simulations indicate that flow stability may not be guaranteed under simple conflict avoidance rules. Finally, a comparison is made with centralized strategies to conflict resolution.

  16. Air quality and temperature effects on exercise-induced bronchoconstriction.

    PubMed

    Rundell, Kenneth W; Anderson, Sandra D; Sue-Chu, Malcolm; Bougault, Valerie; Boulet, Louis-Philippe

    2015-04-01

    Exercise-induced bronchoconstriction (EIB) is exaggerated constriction of the airways usually soon after cessation of exercise. This is most often a response to airway dehydration in the presence of airway inflammation in a person with a responsive bronchial smooth muscle. Severity is related to water content of inspired air and level of ventilation achieved and sustained. Repetitive hyperpnea of dry air during training is associated with airway inflammatory changes and remodeling. A response during exercise that is related to pollution or allergen is considered EIB. Ozone and particulate matter are the most widespread pollutants of concern for the exercising population; chronic exposure can lead to new-onset asthma and EIB. Freshly generated emissions particulate matter less than 100 nm is most harmful. Evidence for acute and long-term effects from exercise while inhaling high levels of ozone and/or particulate matter exists. Much evidence supports a relationship between development of airway disorders and exercise in the chlorinated pool. Swimmers typically do not respond in the pool; however, a large percentage responds to a dry air exercise challenge. Studies support oxidative stress mediated pathology for pollutants and a more severe acute response occurs in the asthmatic. Winter sport athletes and swimmers have a higher prevalence of EIB, asthma and airway remodeling than other athletes and the general population. Because of fossil fuel powered ice resurfacers in ice rinks, ice rink athletes have shown high rates of EIB and asthma. For the athlete training in the urban environment, training during low traffic hours and in low traffic areas is suggested. PMID:25880506

  17. Temperature distribution in the Cerro Prieto geothermal field

    SciTech Connect

    Castillo B, F.; Bermejo M, F.J.; Domiguez A, B.; Esquer P, C.A.; Navarro O, F.J.

    1981-01-01

    A series of temperature and pressure logs and flow rate measurements was compiled for each of the geothermal wells drilled to different reservoir depths between October 1979 and December 1980. Based on the valuable information obtained, a series of graphs showing the thermal characteristics of the reservoir were prepared. These graphs clearly show the temperature distribution resulting from the movement of fluids from the deep regions toward the higher zones of the reservoir, thus establishing more reliable parameters for locating new wells with better production zones. Updated information based on data from new deep wells drilled in the geothermal field is presented here. This new information does not differ much from earlier estimates and theories. However, the influence of faulting and fracturing on the hydrothermal recharge of the geothermal reservoir is seen more clearly.

  18. The temperature of inspired air influences respiratory water loss in young lambs.

    PubMed

    Riesenfeld, T; Hammarlund, K; Norsted, T; Sedin, G

    1994-01-01

    The temperature of inspired air influences respiratory water loss (RWL) in young lambs. Water loss from the airways, oxygen consumption and carbon dioxide production were measured using an open flow-through system with a mass spectrometer, specially equipped with a water channel, for gas analysis. Measurements were made in 9 newborn lambs at 3 different inspired air temperatures keeping all other environmental factors stable, including the ambient air temperature. The water content of the inspired air was also kept constant. RWL was found to be 9.9 +/- 3.9 (SD) mg/kg/min when the temperature of the inspired air was 30 degrees C and its humidity 30%. At 40 degrees C this loss increased to 11.5 +/- 3.6 mg/kg/min, and at about 60 degrees C it increased further to 26.0 +/- 8.2 mg/kg/min. The oxygen consumption was 10.0 +/- 0.8 (SD) ml/kg/min at 30 degrees C and 10.4 +/- 2.0 ml/kg/min at 60 degrees C, a change which is not significant. Thus RWL is influenced by the temperature of the inspired air, with greater loss at higher temperatures. PMID:8054401

  19. Simulating Tree and Topography Effects on Urban Air temperature and Humidity

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Endreny, T. A.; Nowak, D. J.; Kroll, C.; Heisler, G. M.

    2012-12-01

    Microclimate, especially air temperature and humidity, significantly affect human thermal comfort, ecosystem services, and building energy use. Air temperature and humidity measurements are generally recorded at fixed-location meteorology stations, which do not represent the spatial variations encountered in these parameters across the landscape. We developed a spatial air temperature and humidity model to simulate local air temperature and humidity over a region where the mesoscale climate is presumed homogeneous. The model assumes that under the same mesoscale climate, microclimate is modified by local topography and land cover, which are two critical factors determining the absorbed solar radiation and the partitioning of sensible and latent heat. Therefore, the difference in microclimates among local clusters can be determined by the differences in local topography and land cover. Given a reference site where the meteorological data are collected, the microclimate of any other local cluster can be obtained by comparing the topography and land cover of the reference site and the local cluster. The model was tested at 11 locations in Syracuse, NY, where the hourly air temperature and humidity were measured from July 15, 2010 through September 15, 2010. The simulation results showed the model has high efficiency in estimating local cluster air temperature and humidity. The model can be applied on strategic urban reforestation designs, urban heat island mitigation, climate change mitigation and adaptation, and ecosystem interaction research.

  20. Near-surface air temperature and snow skin temperature comparison from CREST-SAFE station data with MODIS land surface temperature data

    NASA Astrophysics Data System (ADS)

    Pérez Díaz, C. L.; Lakhankar, T.; Romanov, P.; Muñoz, J.; Khanbilvardi, R.; Yu, Y.

    2015-08-01

    Land Surface Temperature (LST) is a key variable (commonly studied to understand the hydrological cycle) that helps drive the energy balance and water exchange between the Earth's surface and its atmosphere. One observable constituent of much importance in the land surface water balance model is snow. Snow cover plays a critical role in the regional to global scale hydrological cycle because rain-on-snow with warm air temperatures accelerates rapid snow-melt, which is responsible for the majority of the spring floods. Accurate information on near-surface air temperature (T-air) and snow skin temperature (T-skin) helps us comprehend the energy and water balances in the Earth's hydrological cycle. T-skin is critical in estimating latent and sensible heat fluxes over snow covered areas because incoming and outgoing radiation fluxes from the snow mass and the air temperature above make it different from the average snowpack temperature. This study investigates the correlation between MODerate resolution Imaging Spectroradiometer (MODIS) LST data and observed T-air and T-skin data from NOAA-CREST-Snow Analysis and Field Experiment (CREST-SAFE) for the winters of 2013 and 2014. LST satellite validation is imperative because high-latitude regions are significantly affected by climate warming and there is a need to aid existing meteorological station networks with the spatially continuous measurements provided by satellites. Results indicate that near-surface air temperature correlates better than snow skin temperature with MODIS LST data. Additional findings show that there is a negative trend demonstrating that the air minus snow skin temperature difference is inversely proportional to cloud cover. To a lesser extent, it will be examined whether the surface properties at the site are representative for the LST properties within the instrument field of view.

  1. A Comprehensive Analysis of AIRS Near Surface Air Temperature and Water Vapor Over Land and Tropical Ocean

    NASA Astrophysics Data System (ADS)

    Dang, H. V. T.; Lambrigtsen, B.; Manning, E. M.; Fetzer, E. J.; Wong, S.; Teixeira, J.

    2015-12-01

    Version 6 (V6) of the Atmospheric Infrared Sounder's (AIRS) combined infrared and microwave (IR+MW) retrieval of near surface air temperature (NSAT) and water vapor (NSWV) is validated over the United States with the densely populated MESONET data. MESONET data is a collection of surface/near surface meteorological data from many federal and state agencies. The ones used for this analysis are measured from instruments maintained by the National Weather Service (NWS), the Federal Aviation Administration (FAA), and the Interagency Remote Automatic Weather Stations (RAWS), resulting in a little more than four thousand locations throughout the US. Over the Tropical oceans, NSAT and NSWV are compared to a network of moored buoys from the Tropical Atmosphere Ocean/Triangle Trans-Ocean Buoy Network (TAO/TRITON), and the Pilot Research Moored Array in the Tropical Atlantic (PIRATA). With the analysis of AIRS surface and near surface products over ocean, we glean information on how retrieval of NSAT and NSWV over land can be improved and why it needs some adjustments. We also compare AIRS initial guess of near surface products that are trained on fifty days of ECMWF along with AIRS calibrated radiances, to ECMWF analysis data. The comparison is done to show the differing characteristics of AIRS initial guesses from ECMWF.

  2. Radiometric measurement of temperature distributions in solar cavity receivers

    SciTech Connect

    Thacher, E.F.; Giannola, P.S.

    1989-03-01

    An engineering tool incorporating a scanning infrared radiometer, an image digitizer, a microcomputer, and the software to drive the system was developed to allow remote mapping of the temperature distribution in solar cavity receivers. Using enclosure analysis, the infrared image processing program extracts the irradiance map from the radiosity map of the cavity to yield an emissive power map. Using the calibration curve of the radiometer and the emissivity of the surface of the cavity, the emissive power map is transformed into a temperature map. The system was tested by comparing its calculated temperatures to temperatures measured by thermocouples at several locations on the surfaces of heated model cavity receivers. The average relative error for the cavities ranged from 4.6%--34.9%, with the relative error on the base usually less than half that on the wall. Some work was also carried out to compensate the detected radiosity field for the system transfer function error of the scanner system. 8 refs., 57 figs., 3 tabs.

  3. Surface air temperature anomalies for the Northern Hemisphere: The Russian dataset

    SciTech Connect

    Robock, A.; Borzenkova, I.I.; Gurza, G.V.; Vinnikov, K.Ya.

    1988-03-01

    The existence of a Russian surface temperature dataset became known to Western scientists when Budyko (1969) showed the secular variation of temperature and direct radiation for the Northern Hemisphere. His results were derived from maps of monthly mean surface air temperature anomalies compiled at the Main Geophysical Observatory. These maps covered the period 1881 to 1960 and were prepared for the purpose of monthly and seasonal forecasting, with a goal of finding patterns in monthly departures from normal temperatures.

  4. Duration study for heating and air-conditioning design temperatures

    SciTech Connect

    Snelling, H.J.

    1985-01-01

    Recently, abnormally cold winters and hot summers have generated interest in the duration of time that design temperature values have been equaled or exceeded. ETAC's Engineering Meteorology Section did a pilot study to examine temperature records for several military installations and give some insight into durations that may occur. The authors chose sites to represent different climatic regimes. For each site, the authors generated statistics on the number of occurrences of durations of one, two, three ... up to eight hours for each of the design temperature values (1%, 2 1/2%, and 5% temperatures for the summer months; 99% and 97 1/2% for winter months). The authors also made a study of the longest duration of each design value. The authors used the latest available 15 consecutive years of temperature data for all sites. The authors also made a comparison of data for the 15-year period of record (POR) versus data for the total available POR for some of the sites. Results were inconclusive and indicate that more study is needed.

  5. Data Assimilation Experiments Using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2009-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains a number of significant improvements over Version 4. Two very significant improvements are described briefly below. 1) The AIRS Science Team Radiative Transfer Algorithm (RTA) has now been upgraded to accurately account for effects of non-local thermodynamic equilibrium on the AIRS observations. This allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval algorithm during both day and night. Following theoretical considerations, tropospheric temperature profile information is obtained almost exclusively from clear column radiances in the 4.3 micron CO2 band in the AIRS Version 5 temperature profile retrieval step. These clear column radiances are a derived product that are indicative of radiances AIRS channels would have seen if the field of view were completely clear. Clear column radiances for all channels are determined using tropospheric sounding 15 micron CO2 observations. This approach allows for the generation of accurate values of clear column radiances and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel clear column radiances. These error estimates are used for quality control of the retrieved products. Based on error estimate thresholds, each temperature profiles is assigned a characteristic pressure, pg, down to which the profile is characterized as good for use for data assimilation purposes. We have conducted forecast impact experiments assimilating AIRS quality controlled temperature profiles using the NASA GEOS-5 data assimilation system, consisting of the NCEP GSI analysis coupled with the

  6. Spatial Disaggregation of the 0.25-degree GLDAS Air Temperature Dataset to 30-arcsec Resolution

    NASA Astrophysics Data System (ADS)

    Ji, L.; Senay, G. B.; Verdin, J. P.; Velpuri, N. M.

    2015-12-01

    Air temperature is a key input variable in ecological and hydrological models for simulating the hydrological cycle and water budget. Several global reanalysis products have been developed at different organizations, which provide gridded air temperature datasets at resolutions ranging from 0.25º to 2.5º (or 27.8 - 278.3 km at the equator). However, gridded air temperature products at a high-resolution (≤1 km) are available only for limited areas of the world. To meet the needs for global eco-hydrological modeling, we aim to produce a continuous daily air temperature datasets at 1-km resolution for the global coverage. In this study, we developed a technique that spatially disaggregates the 0.25º Global Land Data Assimilation System (GLDAS) daily air temperature data to 30-arcsec (0.928 km at the equator) resolution by integrating the GLDAS data with the 30-arcsec WorldClim 1950 - 2000 monthly normal air temperature data. The method was tested using the GLDAS and Worldclim maximum and minimum air temperature datasets from 2002 and 2010 for the conterminous Unites States and Africa. The 30-arcsec disaggregated GLDAS (GLDASd) air temperature dataset retains the mean values of the original GLDAS data, while adding spatial variabilities inherited from the Worldclim data. A great improvement in GLDAS disaggregation is shown in mountain areas where complex terrain features have strong impact on temperature. We validated the disaggregation method by comparing the GLDASd product with daily meteorological observations archived by the Global Historical Climatology Network (GHCN) and the Global Surface Summary of the Day (GSOD) datasets. Additionally, the 30-arcsec TopoWX daily air temperature product was used to compare with the GLDASd data for the conterminous United States. The proposed data disaggregation method provides a convenient and efficient tool for generating a global high-resolution air temperature dataset, which will be beneficial to global eco

  7. Hypothetical air ingress scenarios in advanced modular high temperature gas cooled reactors

    SciTech Connect

    Kroeger, P.G.

    1988-01-01

    Considering an extremely hypothetical scenario of complete cross duct failure and unlimited air supply into the reactor vessel of a modular high temperature gas cooled ractor, it is found that the potential air inflow remains limited due to the high friction pressure drop through the active core. All incoming air will be oxidized to CO and some local external burning would be temporarily possible in such a scenario. The accident would have to continue with unlimited air supply for hundreds of hours before the core structural integrity would be jeopardized.

  8. Late Quaternary glacier sensitivity to temperature and precipitation distribution in the Southern Alps of New Zealand

    SciTech Connect

    Ann V. Rowan; Simon H. Brocklehurst; David M. Schultz; Mitchell A. Plummer; Leif S. Anderson; Neil F. Glasser

    2014-05-01

    Glaciers respond to climate variations and leave geomorphic evidence that represents an important terrestrial paleoclimate record. However, the accuracy of paleoclimate reconstructions from glacial geology is limited by the challenge of representing mountain meteorology in numerical models. Precipitation is usually treated in a simple manner and yet represents difficult-to-characterize variables such as amount, distribution, and phase. Furthermore, precipitation distributions during a glacial probably differed from present-day interglacial patterns. We applied two models to investigate glacier sensitivity to temperature and precipitation in the eastern Southern Alps of New Zealand. A 2-D model was used to quantify variations in the length of the reconstructed glaciers resulting from plausible precipitation distributions compared to variations in length resulting from change in mean annual air temperature and precipitation amount. A 1-D model was used to quantify variations in length resulting from interannual climate variability. Assuming that present-day interglacial values represent precipitation distributions during the last glacial, a range of plausible present-day precipitation distributions resulted in uncertainty in the Last Glacial Maximum length of the Pukaki Glacier of 17.1?km (24%) and the Rakaia Glacier of 9.3?km (25%), corresponding to a 0.5°C difference in temperature. Smaller changes in glacier length resulted from a 50% decrease in precipitation amount from present-day values (-14% and -18%) and from a 50% increase in precipitation amount (5% and 9%). Our results demonstrate that precipitation distribution can produce considerable variation in simulated glacier extents and that reconstructions of paleoglaciers should include this uncertainty.

  9. Predictions of thermal comfort and pollutant distributions for a thermostatically-controlled, air-conditioned, partitioned room: Numerical results and enhanced graphical presentation

    SciTech Connect

    White, M.D.; Eyler, L.L.

    1989-05-01

    An index of local thermal comfort and pollutant distributions have been computed with the TEMPEST computer code, in a transient simulation of an air-conditioned enclosure with an incomplete partition. This complex three-dimensional air conditioning problem included forced ventilation through inlet veins, flow through a partition, remote return air vents, and infiltration source, a pollutant source, and a thermostatically controlled air conditioning system. Five forced ventilation schemes that varied in vent areas and face velocities were simulated. Thermal comfort was modeled as a three-dimensional scalar field dependent on the fluid velocity and temperature fields; where humidity activity levels, and clothing were considered constants. Pollutants transport was incorporated through an additional constituent diffusion equation. Six distinct graphic techniques for the visualization of the three-dimensional data fields of air velocity, temperature, and comfort index were tested. 4 refs., 7 figs., 1 tab.

  10. Comparison of Vertical Soundings and Sidewall Air Temperature Measurements in a Small Alpine Basin

    SciTech Connect

    Whiteman, Charles D.; Eisenbach, Stefan; Pospichal, Bernhard; Steinacker, Reinhold

    2004-11-01

    Tethered balloon soundings from two sites on the floor of a 1-km diameter limestone sinkhole in the Eastern Alps are compared with pseudo-vertical temperature ‘soundings’ from three lines of temperature data loggers on the basin’s northwest, southwest and southeast sidewalls. Under stable nighttime conditions with low background winds, the pseudo-vertical profiles from all three lines were good proxies for free air temperature soundings over the basin center, with a mean nighttime cold temperature bias of about 0.4°C and a standard deviation of 0.4°C. Cold biases were highest in the upper basin where relatively warm air subsides to replace air that spills out of the basin through the lowest altitude saddle. On a windy night, standard deviations increased to 1 - 2°C. After sunrise, the varying exposures of the data loggers to sunlight made the pseudo-vertical profiles less useful as proxies for free air soundings. The good correspondence between sidewall and free air temperatures during high static stability conditions suggests that sidewall soundings will prove useful in monitoring temperatures and vertical temperature gradients in the sinkhole. The sidewall soundings can produce more frequent profiles at less cost than tethersondes or rawinsondes, and provide valuable advantages for some types of meteorological analyses.

  11. Summertime Temperatures in Buildings Without Air-Conditioning.

    ERIC Educational Resources Information Center

    Loudon, A. G.

    Many modern buildings become uncomfortably warm during sunny spells in the summer, and until recently there was no simple, reliable method of assessing at the design stage whether a building would become overheated. This paper describes a method of calculating summertime temperatures which was developed at the Building Research Station, and gives…

  12. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    Johnson, R. K.

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  13. Mixture distributions for the statistical time delay in synthetic air at low pressure

    NASA Astrophysics Data System (ADS)

    Jovanović, Aleksandar P.; Popović, Biljana Č.; Marković, Vidosav Lj.; Stamenković, Suzana N.; Stankov, Marjan N.

    2014-08-01

    The mixture distributions for statistical time delay of electrical breakdown are proposed along with the generalized relation for the effective electron yield. The validity of the proposed model is tested by applying this distribution to experimental data measured in synthetic air at low pressure. Two samples without and with oxide surface are compared in order to determine physical processes leading to appearance of mixture distributions in the case of oxidized cathode. The obtained distributions are tested by Kolmogorov-Smirnov statistical hypothesis test in order to justify the use of mixture distributions. The physical interpretation of mixture distribution measured in the synthetic air is proposed, accompanied by the calculated values of the effective electron yield of initiating electrons in the gas gap.

  14. Reviving the Bowen Ratio method for Actual Evaporation with Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Luxemburg, W. M. J.; Euser, T.; Everson, C. S.; Mengistu, M. G.; Clulow, A. D.

    2012-04-01

    We have used the technique of distributed temperature sensing (DTS) with a fiber optic cable to determine actual evaporation over land. The results were compared with measurements using a surface layer scintilometer, surface renewal and eddy covariance techniques. Dry and wetted sections of a fiber optic cable were suspended from a six meter high tower in a sugar beet trial in KwaZulu-Natal, South Africa. From the principle of a psychrometer, a near continuous observation of vapor pressure and temperature at 0.20 m intervals of a vertical column of air above the field could be derived. Subsequently it allowed accurate determination of the ratio of sensible and latent heat, i.e. the Bowen ratio over time and in the vertical. Using measurements of the net radiation, soil heat flux and the Bowen ratio sensible heat flux, the actual evaporation could be determined as the residual of the shortened energy balance equation. The advantage of the DTS method over the traditional Bowen ratio method is that one and the same sensor (the fiber optic cable) is used, with sufficient accuracy to discriminate small differences in temperature and vapor pressure respectively, hence giving numerous gradient measurements over the vertical. The traditional Bowen ratio method relies on only a few sensors that require careful calibration to detect the real differences of temperature and vapor pressure. Comparing the improved method with the traditional Bowen Ratio method, shows that the improved method gives more stable and constant results than the standard method. The DTS data were reliable, provided that water blown by strong wind from the wetted cable does not affect the temperature of air at the location of the dry cable. Under these conditions the vertical air temperature was not representative for the air temperature over the fetch of the crop. The experiments were carried out in South Africa, in November 2011 (summer) under varying radiation conditions. In this way it was

  15. Characteristics of Gaseous Diffusion Flames with High Temperature Combustion Air in Microgravity

    NASA Technical Reports Server (NTRS)

    Ghaderi, M.; Gupta, A. K.

    2003-01-01

    The characteristics of gaseous diffusion flames have been obtained using high temperature combustion air under microgravity conditions. The time resolved flame images under free fall microgravity conditions were obtained from the video images obtained. The tests results reported here were conducted using propane as the fuel and about 1000 C combustion air. The burner included a 0.686 mm diameter central fuel jet injected into the surrounding high temperature combustion air. The fuel jet exit Reynolds number was 63. Several measurements were taken at different air preheats and fuel jet exit Reynolds number. The resulting hybrid color flame was found to be blue at the base of the flame followed by a yellow color flame. The length and width of flame during the entire free fall conditions has been examined. Also the relative flame length and width for blue and yellow portion of the flame has been examined under microgravity conditions. The results show that the flame length decreases and width increases with high air preheats in microgravity condition. In microgravity conditions the flame length is larger with normal temperature combustion air than high temperature air.

  16. Flow distribution in unglazed transpired plate solar air heaters of large area

    SciTech Connect

    Gunnewiek, L.H.; Brundrett, E.; Hollands, K.G.T.

    1996-10-01

    Unglazed transpired plate solar air heaters have proven to be effective in heating outside air on a once-through basis for ventilation and drying applications. Outside air is sucked through unglazed plates having uniformly distributed perforations. The air is drawn into a plenum behind the plate and then supplied to the application by fans. Large collectors have been built that cover the sides of sizable buildings, and the problem of designing the system so that the air is sucked uniformly everywhere (or nearly so) has proven to be a challenging one. This article describes an analytical tool that has been developed to predict the flow distribution over the collector. It is based on modelling the flow-field in the plenum by means of a commercial CFD (computational fluid mechanics) code, incorporating a special set of boundary conditions to model the plate and the ambient air. The article presents the 2D version of the code, and applies it to the problem of predicting the flow distribution in still air (no wind) conditions, a situation well treated by a 2D code. Results are presented for a wide range of conditions, and design implications are discussed. An interesting finding of the study is that the heat transfer at the back of the plate can play an important role, and because of this heat transfer, the efficiency of a collector in nonuniform flow can actually be greater than that of the same collector in uniform flow. 15 refs., 7 figs.

  17. Spectroscopic temperature measurements of air breakdown plasma using a 110 GHz megawatt gyrotron beam

    SciTech Connect

    Hummelt, J. S.; Shapiro, M. A.; Temkin, R. J.

    2012-12-15

    Temperature measurements are presented of a non-equilibrium air breakdown plasma using optical emission spectroscopy. A plasma is created with a focused 110 GHz 3 {mu}s pulse gyrotron beam in air that produces power fluxes exceeding 1 MW/cm{sup 2}. Rotational and vibrational temperatures are spectroscopically measured over a pressure range of 1-100 Torr as the gyrotron power is varied above threshold. The temperature dependence on microwave field as well as pressure is examined. Rotational temperature measurements of the plasma reveal gas temperatures in the range of 300-500 K and vibrational temperatures in the range of 4200-6200 K. The vibrational and rotational temperatures increase slowly with increasing applied microwave field over the range of microwave fields investigated.

  18. Evaluation of cadaveric lumbar spine temperature distributions during nucleoplasty

    NASA Astrophysics Data System (ADS)

    Nau, William H.; Diederich, Chris J.

    2003-06-01

    This study investigated the contribution of applied thermal energy during the nucleoplasty procedure by obtaining temperature maps throughout human cadaveric disc specimens (n=5) during a simulated treatment protocol. The procedure was performed using the ArthroCare SpineWand RF-Coblation device inserted through a 17 g needle into the cadaveric disc. The device uses a dual mode heating technique which employs a high voltage RF plasma field to vaporize tissue, followed by RF current heating for thermal coagulation. The device is manipulated to create a series of 6 channels at a 60 degree angular spacing within a period of 3 minutes. A computer-controlled, motorized translational system was used to mimic the insertion (coblation) and retraction (rf-coagulation) performed during clinical implementation. Rotation was performed manually between each coblation/rf-coagulation cycle. Transient temperature data were obtained using five multi-junction thermocouple probes (5 to 6- 0.05 mm diameter junctions spaced at either 2 or 5 mm) spaced throughout the desired heating volume. Temperature distributions and accumulated thermal doses calculated from the temperature-time history were used to define probable regions of thermal coagulation. Intra-discal temperatures of 60-65C were measured within 2 to 3 mm radial distance from the introducer with therapeutic thermal doses of >250 EM43C achieved at radial distances of up to 5 mm from the introducer. Although appreciable regions of thermal coagulation within the nucleus are localized around the applicator, improper placement of the applicator during treatment may also generate undesirable hot spots in the bone endplate.

  19. Distributed measurement of flow rate in conduits using heated fiber optic distributed temperature sensing

    NASA Astrophysics Data System (ADS)

    Sánchez, Raúl; Zubelzu, Sergio; Rodríguez-Sinobas, Leonor; Juana, Luis

    2016-04-01

    In some cases flow varies along conduits, such as in irrigated land drainage pipes and channels, irrigation laterals and others. Detailed knowledge of flow rate along the conduit makes possible analytical evaluation of water distribution and collection systems performance. Flow rate can change continuously in some systems, like in drainage pipes and channels, or abruptly, like in conduits bifurcations or emitter insertions. A heat pulse along the conduit makes possible to get flow rate from continuity and heat balance equations. Due to the great value of specific heat of water, temperature changes along conduit are smaller than the noise that involves the measurement process. This work presents a methodology that, dealing with the noise of distributed temperature measurements, leads to flow rate determination along pressurized pipes or open channel flows.

  20. Influence of BBO temperature distribution on phase mismatching distribution in fourth harmonic

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Yu, Miao; Chen, Xin-yu; Tan, Xue-chun; Yu, Yong-ji; Jin, Guang-yong; Wan, Chun-ming

    2013-09-01

    266nm UV laser has a wide range of applications in various fields by its advantages in high single photon energy and high resolution, which also has a development gradually moving in the direction of high power and high conversion efficiency. In the process of high-power laser frequency doubling, BBO crystal inevitably absorbs part of fundamental light power and frequency doubled light power, it induced the temperature rise along the direction of radiation in crystal and destroyed the phase-matching conditions of BBO crystal that lead to phase mismatching. In order to improve harmonic conversion efficiency as well as reduce the influence of output power and beam quality caused by phase mismatching, in this paper we analyzed the process of phase mismatching, established the thermal-induced phase mismatching model by using analytical expression of the nonlinear crystal temperature field equation which has been given, and the three-dimensional phase mismatching distribution were obtained. There are three major contributions in the paper. Firstly, the working process of the nonlinear crystal was analyzed, and the physical and mathematical models of temperature distributions were established, and the BBO crystal three-dimensional temperature distributions were also obtained. Secondly, a variety of factors that affect the temperature distributions within the BBO crystal were summarized. For different 532nm waist radius and 532nm input power, they were numerical simulated use of MATLAB. Finally, combined with the above analysis, the physical and mathematical models of phase mismatching caused by energy absorption of BBO in forth harmonics generation were established, the phase mismatching distributions in the crystal were simulated as well, especially the changes to phase mismatching distributions with different parameter were analyzed. Combination of the multiplier theory, the influence of phase mismatching on frequency doubling conversion efficiency was analyzed. The

  1. Temperature Anisotropy Distribution and Evolution in Inhomogeneous Solar Wind

    NASA Astrophysics Data System (ADS)

    Yoon, P. H.; Seough, J.; Kim, S.

    2015-12-01

    The solar wind displays temperature anisotropy associated with the protons, which is often represented as a rhombic shape data distribution in (Tperp/Tll, βll) space. The upper-right and lower-right boundaries of such a data distribution appear to be limited by various kinetic plasma instabilities driven by the proton temperature anisotropy. To understand such boundaries, the present authors developed a quasi-linear model in inhomogeneous solar wind plasma in which the instability-driven dissipation terms appear on the right-hand sides of the equations for Tperp and Tll, while self-consistently computing for the wave intensities. Such a formalism successfully reproduced the upper-right and lower-right boundaries. However, in order to explain the vast majority of data points within the distribution that are found well away from the boundaries and possessing near isotropy, Tperp ≈ Tll, one must include effects other than the collisionless dissipations, i.e., other than dissipations due to instabilities. The present paper employs an improved quasi-linear theory that incorporates not only the instability-driven collisionless dissipation terms, but also the dissipations due to binary collisions (which is often called the collisional age) as well as the dissipations due to spontaneous thermal emissions. The set of equations for Tperp and Tll as well as for the waves are solved over inhomogeneous solar wind model, and the results will be discussed. The present approach may help in interpreting existing and future satellite data, including those from the near future Solar Probe Plus and Solar Orbiter Missions.

  2. Impacts of Rising Temperatures on Vegetation Species Distributions

    NASA Astrophysics Data System (ADS)

    van de Ven, C. M.; Weiss, S. B.

    2002-12-01

    Climate change is a long-term ecosystem disturbance having drastic impacts on species patterns and distributions. Mountain ranges in particular provide extensive evidence of past shifts in species distributions driven by climate change, and promise to be sensitive to future climate change. Complex environmental gradients in the White Mountains in eastern California produce striking variation in vegetation composition over short distances, dominated by the effects of elevation on temperature and precipitation, but more locally modified by gradients in potential insolation, slope, topographic position, and diverse geologic substrates including carbonate, metaclastic, and granitic rocks. This study examines the effects of changing temperatures on species distributions and patterns in an arid mountain range. Digital elevation models, geologic maps and 650 ground control points were used to map current species distributions over 6200 km2 (620,000 ha) of the central and southern White Mts. Species-environment relationships of 89 plant species were modeled using Canonical Correspondence Analysis (CCA). CCA quantitatively describes species "envelopes" in multidimensional environmental space that were projected across entire landscapes at a scale of 18-50 m using a GIS. CCA models were calibrated from 434 field plots, and evaluated in the 216 remaining plots using kappa statistics. We then modeled potential distributions under a 3°C warming scenario by dropping all elevations 500 meters (i.e. 2500 m becomes 2000 m), keeping all other factors constant. Species ranges contracted substantially (ranging from 95% - 30% reduction in area) as they moved upslope. Species with broad elevational ranges had substantial overlap in current and new ranges; others with narrow ranges had little overlap. High alpine species contracted to small populations around the tallest peak (4340 m) and its north-facing slopes. Several alpine species were predicted to go extinct. Ranges of mid

  3. Apparatus and Method for Measuring Air Temperature Ahead of an Aircraft for Controlling a Variable Inlet/Engine Assembly

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    2001-01-01

    The apparatus and method employ remote sensing to measure the air temperature a sufficient distance ahead of the aircraft to allow time for a variable inlet/engine assembly to be reconfigured in response to the measured temperature, to avoid inlet unstart and/or engine compressor stall. In one embodiment, the apparatus of the invention has a remote sensor for measuring at least one air temperature ahead of the vehicle and an inlet control system for varying the inlet. The remote sensor determines a change in temperature value using at least one temperature measurement and prior temperature measurements corresponding to the location of the aircraft. The control system uses the change in air temperature value to vary the inlet configuration to maintain the position of the shock wave during the arrival of the measured air in the inlet. In one embodiment, the method of the invention includes measuring at least one air temperature ahead of the vehicle, determining an air temperature at the vehicle from prior air temperature measurements, determining a change in temperature value using the air temperature at the vehicle and the at least one air temperature measurement ahead of the vehicle, and using the change in temperature value to-reposition the airflow inlet, to cause the shock wave to maintain substantially the same position within the inlet as the airflow temperature changes within the inlet.

  4. Numerical Modelling of Airflow and Temperature Distribution in a Living Room with Different Heat Exchange Conditions

    NASA Astrophysics Data System (ADS)

    Gendelis, S.; Jakovičs, A.

    2010-01-01

    Numerical mathematical modelling of the indoor thermal conditions and of the energy losses for separate rooms is an important part of the analysis of the heat-exchange balance and energy efficiency in buildings. The measurements of heat transfer coefficients for bounding structures, the air-tightness tests and thermographic diagnostics done for a building allow the influence of those factors to be predicted more correctly in developed numerical models. The temperature distribution and airflows in a typical room (along with the heat losses) were calculated for different heater locations and solar radiation (modelled as a heat source) through the window, as well as various pressure differences between the openings in opposite walls. The airflow velocities and indoor temperature, including its gradient, were also analysed as parameters of thermal comfort conditions. The results obtained show that all of the listed factors have an important influence on the formation of thermal comfort conditions and on the heat balance in a room.

  5. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    SciTech Connect

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue Fang, Jing

    2015-10-15

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  6. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue; Fang, Jing

    2015-10-01

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  7. Cloud Masking and Surface Temperature Distribution in the Polar Regions Using AVHRR and other Satellite Data

    NASA Technical Reports Server (NTRS)

    Comiso, Joey C.

    1995-01-01

    Surface temperature is one of the key variables associated with weather and climate. Accurate measurements of surface air temperatures are routinely made in meteorological stations around the world. Also, satellite data have been used to produce synoptic global temperature distributions. However, not much attention has been paid on temperature distributions in the polar regions. In the polar regions, the number of stations is very sparse. Because of adverse weather conditions and general inaccessibility, surface field measurements are also limited. Furthermore, accurate retrievals from satellite data in the region have been difficult to make because of persistent cloudiness and ambiguities in the discrimination of clouds from snow or ice. Surface temperature observations are required in the polar regions for air-sea-ice interaction studies, especially in the calculation of heat, salinity, and humidity fluxes. They are also useful in identifying areas of melt or meltponding within the sea ice pack and the ice sheets and in the calculation of emissivities of these surfaces. Moreover, the polar regions are unique in that they are the sites of temperature extremes, the location of which is difficult to identify without a global monitoring system. Furthermore, the regions may provide an early signal to a potential climate change because such signal is expected to be amplified in the region due to feedback effects. In cloud free areas, the thermal channels from infrared systems provide surface temperatures at relatively good accuracies. Previous capabilities include the use of the Temperature Humidity Infrared Radiometer (THIR) onboard the Nimbus-7 satellite which was launched in 1978. Current capabilities include the use of the Advance Very High Resolution Radiometer (AVHRR) aboard NOAA satellites. Together, these two systems cover a span of 16 years of thermal infrared data. Techniques for retrieving surface temperatures with these sensors in the polar regions have

  8. Measuring artificial recharge with fiber optic distributed temperature sensing.

    PubMed

    Becker, Matthew W; Bauer, Brian; Hutchinson, Adam

    2013-01-01

    Heat was used as a tracer to measure infiltration rates from a recharge basin. The propagation of diurnal oscillation of surface water temperature into the basin bed was monitored along a transect using Fiber Optic Distributed Temperature Sensing (FODTS). The propagation rate was related to downward specific discharge using standard theory of heat advection and dispersion in saturated porous media. An estimate of the temporal variation of heat propagation was achieved using a wavelet transform to find the phase lag between the surface temperature diurnal oscillation and the correlated oscillation at 0.33 and 0.98 m below the bed surface. The wavelet results compared well to a constant velocity model of thermal advection and dispersion during periods of relatively constant discharge rates. The apparent dispersion of heat was found to be due primarily to hydrodynamic mechanisms rather than thermal diffusion. Specific discharge estimates using the FODTS technique also compared well to water balance estimates over a four month period, although there were occasional deviations that have yet to be adequately explained. The FODTS technique is superior to water balance in that it produces estimates of infiltration rate every meter along the cable transect, every half hour. These high resolution measurements highlighted areas of low infiltration and demonstrated the degradation of basin efficiency due to source waters of high suspended solids. FODTS monitoring promises to be a useful tool for diagnosing basin performance in an era of increasing groundwater demand. PMID:23110559

  9. Temperature effects on atomic pair distribution functions of melts

    NASA Astrophysics Data System (ADS)

    Ding, J.; Xu, M.; Guan, P. F.; Deng, S. W.; Cheng, Y. Q.; Ma, E.

    2014-02-01

    Using molecular dynamics simulations, we investigate the temperature-dependent evolution of the first peak position/shape in pair distribution functions of liquids. For metallic liquids, the peak skews towards the left (shorter distance side) with increasing temperature, similar to the previously reported anomalous peak shift. Making use of constant-volume simulations in the absence of thermal expansion and change in inherent structure, we demonstrate that the apparent shift of the peak maximum can be a result of the asymmetric shape of the peak, as the asymmetry increases with temperature-induced spreading of neighboring atoms to shorter and longer distances due to the anharmonic nature of the interatomic interaction potential. These findings shed light on the first-shell expansion/contraction paradox for metallic liquids, aside from possible changes in local topological or chemical short-range ordering. The melts of covalent materials are found to exhibit an opposite trend of peak shift, which is attributed to an effect of the directionality of the interatomic bonds.

  10. Temperature effects on atomic pair distribution functions of melts

    SciTech Connect

    Ding, J. Ma, E.; Xu, M.; Guan, P. F.; Deng, S. W.; Cheng, Y. Q.

    2014-02-14

    Using molecular dynamics simulations, we investigate the temperature-dependent evolution of the first peak position/shape in pair distribution functions of liquids. For metallic liquids, the peak skews towards the left (shorter distance side) with increasing temperature, similar to the previously reported anomalous peak shift. Making use of constant-volume simulations in the absence of thermal expansion and change in inherent structure, we demonstrate that the apparent shift of the peak maximum can be a result of the asymmetric shape of the peak, as the asymmetry increases with temperature-induced spreading of neighboring atoms to shorter and longer distances due to the anharmonic nature of the interatomic interaction potential. These findings shed light on the first-shell expansion/contraction paradox for metallic liquids, aside from possible changes in local topological or chemical short-range ordering. The melts of covalent materials are found to exhibit an opposite trend of peak shift, which is attributed to an effect of the directionality of the interatomic bonds.

  11. Estimation of daily mean air temperature from satellite derived radiometric data

    NASA Technical Reports Server (NTRS)

    Phinney, D.

    1976-01-01

    The Screwworm Eradication Data System (SEDS) at JSC utilizes satellite derived estimates of daily mean air temperature (DMAT) to monitor the effect of temperature on screwworm populations. The performance of the SEDS screwworm growth potential predictions depends in large part upon the accuracy of the DMAT estimates.

  12. Prediction of air temperature for thermal comfort of people using sleeping bags: a review

    NASA Astrophysics Data System (ADS)

    Huang, Jianhua

    2008-11-01

    Six models for determining air temperatures for thermal comfort of people using sleeping bags were reviewed. These models were based on distinctive metabolic rates and mean skin temperatures. All model predictions of air temperatures are low when the insulation values of the sleeping bag are high. Nevertheless, prediction variations are greatest for the sleeping bags with high insulation values, and there is a high risk of hypothermia if an inappropriate sleeping bag is chosen for the intended conditions of use. There is, therefore, a pressing need to validate the models by wear trial and determine which one best reflects ordinary consumer needs.

  13. Characterizing Air Temperature Changes in the Tarim Basin over 1960–2012

    PubMed Central

    Peng, Dongmei; Wang, Xiujun; Zhao, Chenyi; Wu, Xingren; Jiang, Fengqing; Chen, Pengxiang

    2014-01-01

    There has been evidence of warming rate varying largely over space and between seasons. However, little has been done to evaluate the spatial and temporal variability of air temperature in the Tarim Basin, northwest China. In this study, we collected daily air temperature from 19 meteorological stations for the period of 1960–2012, and analyzed annual mean temperature (AMT), the annual minimum (Tmin) and maximum temperature (Tmax), and mean temperatures of all twelve months and four seasons and their anomalies. Trend analyses, standard deviation of the detrended anomaly (SDDA) and correlations were carried out to characterize the spatial and temporal variability of various mean air temperatures. Our data showed that increasing trend was much greater in the Tmin (0.55°C/10a) than in the AMT (0.25°C/10a) and Tmax (0.12°C/10a), and the fluctuation followed the same order. There were large spatial variations in the increasing trends of both AMT (from −0.09 to 0.43 °C/10a) and Tmin (from 0.15 to 1.12°C/10a). Correlation analyses indicated that AMT had a significantly linear relationship with Tmin and the mean temperatures of four seasons. There were also pronounced changes in the monthly air temperature from November to March at decadal time scale. The seasonality (i.e., summer and winter difference) of air temperature was stronger during the period of 1960–1979 than over the recent three decades. Our preliminary analyses indicated that local environmental conditions (such as elevation) might be partly responsible for the spatial variability, and large scale climate phenomena might have influences on the temporal variability of air temperature in the Tarim Basin. In particular, there was a significant correlation between index of El Niño-Southern Oscillation (ENSO) and air temperature of May (P = 0.004), and between the index of Pacific Decadal Oscillation (PDO) and air temperature of July (P = 0.026) over the interannual to decadal time scales. PMID

  14. Characterizing air temperature changes in the Tarim Basin over 1960-2012.

    PubMed

    Peng, Dongmei; Wang, Xiujun; Zhao, Chenyi; Wu, Xingren; Jiang, Fengqing; Chen, Pengxiang

    2014-01-01

    There has been evidence of warming rate varying largely over space and between seasons. However, little has been done to evaluate the spatial and temporal variability of air temperature in the Tarim Basin, northwest China. In this study, we collected daily air temperature from 19 meteorological stations for the period of 1960-2012, and analyzed annual mean temperature (AMT), the annual minimum (T min) and maximum temperature (Tmax), and mean temperatures of all twelve months and four seasons and their anomalies. Trend analyses, standard deviation of the detrended anomaly (SDDA) and correlations were carried out to characterize the spatial and temporal variability of various mean air temperatures. Our data showed that increasing trend was much greater in the T min (0.55°C/10a) than in the AMT (0.25°C/10a) and Tmax (0.12°C/10a), and the fluctuation followed the same order. There were large spatial variations in the increasing trends of both AMT (from -0.09 to 0.43 °C/10a) and T min (from 0.15 to 1.12°C/10a). Correlation analyses indicated that AMT had a significantly linear relationship with T min and the mean temperatures of four seasons. There were also pronounced changes in the monthly air temperature from November to March at decadal time scale. The seasonality (i.e., summer and winter difference) of air temperature was stronger during the period of 1960-1979 than over the recent three decades. Our preliminary analyses indicated that local environmental conditions (such as elevation) might be partly responsible for the spatial variability, and large scale climate phenomena might have influences on the temporal variability of air temperature in the Tarim Basin. In particular, there was a significant correlation between index of El Niño-Southern Oscillation (ENSO) and air temperature of May (P = 0.004), and between the index of Pacific Decadal Oscillation (PDO) and air temperature of July (P = 0.026) over the interannual to decadal time scales. PMID:25375648

  15. Temperature and electron density distributions of laser-induced plasmas generated with an iron sample at different ambient gas pressures

    NASA Astrophysics Data System (ADS)

    Aguilera, J. A.; Aragón, C.

    2002-09-01

    Intensity, temperature and electron density distributions of laser-induced plasmas (LIPs) have been measured by emission spectroscopy with two-dimensional spatial resolution and temporal resolution. The plasmas have been generated with an iron sample at different pressures of air, in the range 10-1000 mbar. An experimental system based in an imaging spectrometer equipped with an intensified CCD detector has been used to obtain the spectra with two-dimensional spatial resolution. The evolution of the intensity distributions is described by the blast wave model only at initial times. The temperature distributions are shown to correspond to a slight difference between the intensity distributions of two Fe I emission lines that have a high difference of their upper energy levels (3.38 eV). The electron density distributions have similar features to those of the temperature distributions. The features of the intensity and temperature distributions show a significant change with the ambient gas pressure: they have separated maxima in the plasmas generated at pressures below 100 mbar, whereas at higher pressures, the maxima of the two distributions coincide.

  16. Size distributions of air showers accompanied with high energy gamma ray bundles observed at Mt. Chacaltaya

    NASA Technical Reports Server (NTRS)

    Matano, T.; Machida, M.; Tsuchima, I.; Kawasumi, N.; Honda, K.; Hashimoto, K.; Martinic, N.; Zapata, J.; Navia, C. E.; Aquirre, C.

    1985-01-01

    Size distributions of air showers accompanied with bundle of high energy gamma rays and/or large size bursts under emulsion chambers, to study the composition of primary cosmic rays and also characteristics of high energy nuclear interaction. Air showers initiated by particles with a large cross section of interaction may develop from narrow region of the atmosphere near the top. Starting levels of air showers by particles with smaller cross section fluctuate in wider region of the atmosphere. Air showers of extremely small size accompanied with bundle of gamma rays may be ones initiated by protons at lower level after penetrating deep atmosphere without interaction. It is determined that the relative size distribution according to the total energy of bundle of gamma rays and the total burst size observed under 15 cm lead absorber.

  17. Improved spatial monitoring of air temperature in forested complex terrain: an energy-balance based calibration method

    NASA Astrophysics Data System (ADS)

    Kennedy, A. M.; Thomas, C. K.; Pypker, T. G.; Bond, B. J.; Selker, J. S.; Unsworth, M. H.

    2009-12-01

    Fiber-optic distributed temperature sensing (DTS) has great potential for spatial monitoring in hydrology and atmospheric science. DTS systems have an advantage over conventional individual temperature sensors in that thousands of quasi-concurrent temperature measurements may be made along the entire length of a fiber at 1 meter increments by a single instrument, thus increasing measurement precision. However, like any other temperature sensors, the fiber temperature is influenced by energy exchange with its environment, particularly by radiant energy (solar and long-wave) and by wind speed. The objective of this research is to perform an energy-balance based calibration of a DTS fiber system that will reduce the uncertainty of air temperature measurements in open and forested environments. To better understand the physics controlling the fiber temperature reported by the DTS, alternating black and white fiber optic cables were installed on vertical wooden jigs inside a recirculating wind tunnel. A constant irradiance from six 600W halogen lamps was directed on a two meter section of fiber to permit controlled observations of the resulting temperature difference between the black and white fibers as wind speed was varied. The net short and longwave radiation balance of each fiber was measured with an Eppley pyranometer and Kipp and Zonen pyrgeometer. Additionally, accurate air temperature was recorded from a screened platinum resistance thermometer, and sonic anemometers were positioned to record wind speed and turbulence. Relationships between the temperature excess of each fiber, net radiation, and wind speed were developed and will be used to derive correction terms in future field work. Preliminary results indicate that differential heating of fibers (black-white) is driven largely by net radiation with wind having a smaller but consistent effect. Subsequent work will require field verification to confirm that the observed wind tunnel correction algorithms are

  18. Influence of Air Temperature and Humidity on Dehydration Equilibria and Kinetics of Theophylline

    PubMed Central

    Touil, Amira; Peczalski, Roman; Timoumi, Souad; Zagrouba, Fethi

    2013-01-01

    The effect of hygrothermal conditions (air temperature and relative humidity) on the dehydration of theophylline monohydrate was investigated. Firstly, the equilibrium states of theophylline were investigated. The data from gravimetric analysis at constant temperature and humidity were reported as desorption isotherms. The PXRD analysis was used to identify the different polymorphic forms of theophylline: the monohydrate, the metastable anhydrate, and the stable anhydrate. Solid-solid phase diagrams for two processing times were proposed. Secondly, the dehydration kinetics were studied. The water content evolutions with time were recorded at several temperatures from 20°C to 80°C and several relative humidities from 4% to 50%. Different mathematical models were used to fit the experimental data. The spatially averaged solution of 2D Fickian transient diffusion equation best represented the water mass loss versus time experimental relationship. The dehydration rate constant was found to increase exponentially with air temperature and to decrease exponentially with air relative humidity. PMID:26556000

  19. Influence of Air Temperature and Humidity on Dehydration Equilibria and Kinetics of Theophylline.

    PubMed

    Touil, Amira; Peczalski, Roman; Timoumi, Souad; Zagrouba, Fethi

    2013-01-01

    The effect of hygrothermal conditions (air temperature and relative humidity) on the dehydration of theophylline monohydrate was investigated. Firstly, the equilibrium states of theophylline were investigated. The data from gravimetric analysis at constant temperature and humidity were reported as desorption isotherms. The PXRD analysis was used to identify the different polymorphic forms of theophylline: the monohydrate, the metastable anhydrate, and the stable anhydrate. Solid-solid phase diagrams for two processing times were proposed. Secondly, the dehydration kinetics were studied. The water content evolutions with time were recorded at several temperatures from 20°C to 80°C and several relative humidities from 4% to 50%. Different mathematical models were used to fit the experimental data. The spatially averaged solution of 2D Fickian transient diffusion equation best represented the water mass loss versus time experimental relationship. The dehydration rate constant was found to increase exponentially with air temperature and to decrease exponentially with air relative humidity. PMID:26556000

  20. The temperature fields measurement of air in the car cabin by infrared camera

    NASA Astrophysics Data System (ADS)

    Pešek, M.

    2013-04-01

    The article deals with the temperature fields measurement of air using the Jenoptic Variocam infrared camera inside the car Škoda Octavia Combi II. The temperature fields with the use of auxiliary material with a high emissivity value were visualized. The measurements through the viewing window with a high transmissivity value were performed. The viewing windows on the side car door were placed. In the rear car area, the temperature fields of air on the spacious sheet of auxiliary material were visualized which is a suitable method for 2D airstreams. In the front car area, the temperature fields in the air were measured with the use of the measuring net which is suitable for 3D airstreams measuring.

  1. Combined effects of wind and solar irradiance on the spatial variation of midday air temperature over a mountainous terrain

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Ock; Kim, Jin-Hee; Kim, Dae-Jun; Shim, Kyo Moon; Yun, Jin I.

    2015-08-01

    When the midday temperature distribution in a mountainous region was estimated using data from a nearby weather station, the correction of elevation difference based on temperature lapse caused a large error. An empirical approach reflecting the effects of solar irradiance and advection was suggested in order to increase the reliability of the results. The normalized slope irradiance, which was determined by normalizing the solar irradiance difference between a horizontal surface and a sloping surface from 1100 to 1500 LST on a clear day, and the deviation relationship between the horizontal surface and the sloping surface at the 1500 LST temperature on each day were presented as simple empirical formulas. In order to simulate the phenomenon that causes immigrant air parcels to push out or mix with the existing air parcels in order to decrease the solar radiation effects, an advection correction factor was added to exponentially reduce the solar radiation effect with an increase in wind speed. In order to validate this technique, we estimated the 1500 LST air temperatures on 177 clear days in 2012 and 2013 at 10 sites with different slope aspects in a mountainous catchment and compared these values to the actual measured data. The results showed that this technique greatly improved the error bias and the overestimation of the solar radiation effect in comparison with the existing methods. By applying this technique to the Korea Meteorological Administration's 5-km grid data, it was possible to determine the temperature distribution at a 30-m resolution over a mountainous rural area south of Jiri Mountain National Park, Korea.

  2. Evaluating geothermal and hydrogeologic controls on regional groundwater temperature distribution

    NASA Astrophysics Data System (ADS)

    Burns, Erick R.; Ingebritsen, Steven E.; Manga, Michael; Williams, Colin F.

    2016-02-01

    A one-dimensional (1-D) analytic solution is developed for heat transport through an aquifer system where the vertical temperature profile in the aquifer is nearly uniform. The general anisotropic form of the viscous heat generation term is developed for use in groundwater flow simulations. The 1-D solution is extended to more complex geometries by solving the equation for piece-wise linear or uniform properties and boundary conditions. A moderately complex example, the Eastern Snake River Plain (ESRP), is analyzed to demonstrate the use of the analytic solution for identifying important physical processes. For example, it is shown that viscous heating is variably important and that heat conduction to the land surface is a primary control on the distribution of aquifer and spring temperatures. Use of published values for all aquifer and thermal properties results in a reasonable match between simulated and measured groundwater temperatures over most of the 300 km length of the ESRP, except for geothermal heat flow into the base of the aquifer within 20 km of the Yellowstone hotspot. Previous basal heat flow measurements (˜110 mW/m2) made beneath the ESRP aquifer were collected at distances of >50 km from the Yellowstone Plateau, but a higher basal heat flow of 150 mW/m2 is required to match groundwater temperatures near the Plateau. The ESRP example demonstrates how the new tool can be used during preliminary analysis of a groundwater system, allowing efficient identification of the important physical processes that must be represented during more-complex 2-D and 3-D simulations of combined groundwater and heat flow.

  3. Evaluating geothermal and hydrogeologic controls on regional groundwater temperature distribution

    USGS Publications Warehouse

    Burns, Erick R.; Ingebritsen, Steven E.; Manga, Michael; Williams, Colin F.

    2016-01-01

    A one-dimensional (1-D) analytic solution is developed for heat transport through an aquifer system where the vertical temperature profile in the aquifer is nearly uniform. The general anisotropic form of the viscous heat generation term is developed for use in groundwater flow simulations. The 1-D solution is extended to more complex geometries by solving the equation for piece-wise linear or uniform properties and boundary conditions. A moderately complex example, the Eastern Snake River Plain (ESRP), is analyzed to demonstrate the use of the analytic solution for identifying important physical processes. For example, it is shown that viscous heating is variably important and that heat conduction to the land surface is a primary control on the distribution of aquifer and spring temperatures. Use of published values for all aquifer and thermal properties results in a reasonable match between simulated and measured groundwater temperatures over most of the 300 km length of the ESRP, except for geothermal heat flow into the base of the aquifer within 20 km of the Yellowstone hotspot. Previous basal heat flow measurements (∼110 mW/m2) made beneath the ESRP aquifer were collected at distances of >50 km from the Yellowstone Plateau, but a higher basal heat flow of 150 mW/m2 is required to match groundwater temperatures near the Plateau. The ESRP example demonstrates how the new tool can be used during preliminary analysis of a groundwater system, allowing efficient identification of the important physical processes that must be represented during more-complex 2-D and 3-D simulations of combined groundwater and heat flow.

  4. Stream temperature response to three riparian vegetation scenarios by use of a distributed temperature validated model.

    PubMed

    Roth, T R; Westhoff, M C; Huwald, H; Huff, J A; Rubin, J F; Barrenetxea, G; Vetterli, M; Parriaux, A; Selkeer, J S; Parlange, M B

    2010-03-15

    Elevated in-stream temperature has led to a surge in the occurrence of parasitic intrusion proliferative kidney disease and has resulted in fish kills throughout Switzerland's waterways. Data from distributed temperature sensing (DTS) in-stream measurements for three cloud-free days in August 2007 over a 1260 m stretch of the Boiron de Merges River in southwest Switzerland were used to calibrate and validate a physically based one-dimensional stream temperature model. Stream temperature response to three distinct riparian conditions were then modeled: open, in-stream reeds, and forest cover. Simulation predicted a mean peak stream temperature increase of 0.7 °C if current vegetation was removed, an increase of 0.1 °C if dense reeds covered the entire stream reach, and a decrease of 1.2 °C if a mature riparian forest covered the entire reach. Understanding that full vegetation canopy cover is the optimal riparian management option for limiting stream temperature, in-stream reeds, which require no riparian set-aside and grow very quickly, appear to provide substantial thermal control, potentially useful for land-use management. PMID:20131784

  5. Stabilized three-stage oxidation of DME/air mixture in a micro flow reactor with a controlled temperature profile

    SciTech Connect

    Oshibe, Hiroshi; Nakamura, Hisashi; Tezuka, Takuya; Hasegawa, Susumu; Maruta, Kaoru

    2010-08-15

    Ignition and combustion characteristics of a stoichiometric dimethyl ether (DME)/air mixture in a micro flow reactor with a controlled temperature profile which was smoothly ramped from room temperature to ignition temperature were investigated. Special attention was paid to the multi-stage oxidation in low temperature condition. Normal stable flames in a mixture flow in the high velocity region, and non-stationary pulsating flames and/or repetitive extinction and ignition (FREI) in the medium velocity region were experimentally confirmed as expected from our previous study on a methane/air mixture. In addition, stable double weak flames were observed in the low velocity region for the present DME/air mixture case. It is the first observation of stable double flames by the present methodology. Gas sampling was conducted to obtain major species distributions in the flow reactor. The results indicated that existence of low-temperature oxidation was conjectured by the production of CH{sub 2}O occured in the upstream side of the experimental first luminous flame, while no chemiluminescence from it was seen. One-dimensional computation with detailed chemistry and transport was conducted. At low mixture velocities, three-stage oxidation was confirmed from profiles of the heat release rate and major chemical species, which was broadly in agreement with the experimental results. Since the present micro flow reactor with a controlled temperature profile successfully presented the multi-stage oxidations as spatially separated flames, it is shown that this flow reactor can be utilized as a methodology to separate sets of reactions, even for other practical fuels, at different temperature. (author)

  6. The upper explosion limit of lower alkanes and alkenes in air at elevated pressures and temperatures.

    PubMed

    Van den Schoor, F; Verplaetsen, F

    2006-01-16

    The upper explosion limit (UEL) of ethane-air, propane-air, n-butane-air, ethylene-air and propylene-air mixtures is determined experimentally at initial pressures up to 30 bar and temperatures up to 250 degrees C. The experiments are performed in a closed spherical vessel with an internal diameter of 200 mm. The mixtures are ignited by fusing a coiled tungsten wire, placed at the centre of the vessel, by electric current. Flame propagation is said to have taken place if there is a pressure rise of at least 1% of the initial pressure after ignition of the mixture. In the pressure-temperature range investigated, a linear dependence of UEL on temperature and a bilinear dependence on pressure are found except in the vicinity of the auto-ignition range. A comparison of the UEL data of the lower alkanes shows that the UEL expressed as equivalence ratio (the actual fuel/air ratio divided by the stoichiometric fuel/air ratio) increases with increasing carbon number in the homologous series of alkanes. PMID:16154265

  7. Remote Sensing of Atlanta's Urban Sprawl and the Distribution of Land Cover and Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Laymon, Charles A.; Estes, Maurice G., Jr.; Quattrochi, Dale A.; Arnold, James E. (Technical Monitor)

    2001-01-01

    Between 1973 and 1992, an average of 20 ha of forest was lost each day to urban expansion of Atlanta, Georgia. Urban surfaces have very different thermal properties than natural surfaces-storing solar energy throughout the day and continuing to release it as sensible heat well after sunset. The resulting heat island effect serves as catalysts for chemical reactions from vehicular exhaust and industrialization leading to a deterioration in air quality. In this study, high spatial resolution multispectral remote sensing data has been used to characterize the type, thermal properties, and distribution of land surface materials throughout the Atlanta metropolitan area. Ten-meter data were acquired with the Advanced Thermal and Land Applications Sensor (ATLAS) on May 11 and 12, 1997. ATLAS is a 15-channel multispectral scanner that incorporates the Landsat TM bands with additional bands in the middle reflective infrared and thermal infrared range. The high spatial resolution permitted discrimination of discrete surface types (e.g., concrete, asphalt), individual structures (e.g., buildings, houses) and their associated thermal characteristics. There is a strong temperature contrast between vegetation and anthropomorphic features. Vegetation has a modal temperature at about 20 C, whereas asphalt shingles, pavement, and buildings have a modal temperature of about 39 C. Broad-leaf vegetation classes are indistinguishable on a thermal basis alone. There is slightly more variability (plus or minus 5 C) among the urban surfaces. Grasses, mixed vegetation and mixed urban surfaces are intermediate in temperature and are characterized by broader temperature distributions with modes of about 29 C. Thermal maps serve as a basis for understanding the distribution of "hotspots", i.e., how landscape features and urban fabric contribute the most heat to the lower atmosphere.

  8. Remote Sensing of Atlanta's Urban Sprawl and the Distribution of Land Cover and Surface Temperature

    NASA Technical Reports Server (NTRS)

    Laymon, Charles A.; Estes, Maurice G., Jr.; Quattrochi, Dale A.; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    Between 1973 and 1992, an average of 20 ha of forest was lost each day to urban expansion of Atlanta, Georgia. Urban surfaces have very different thermal properties than natural surfaces-storing solar energy throughout the day and continuing to release it as sensible heat well after sunset. The resulting heat island effect serves as catalysts for chemical reactions from vehicular exhaust and industrialization leading to a deterioration in air quality. In this study, high spatial resolution multispectral remote sensing data has been used to characterize the type, thermal properties, and distribution of land surface materials throughout the Atlanta metropolitan area. Ten-meter data were acquired with the Advanced Thermal and Land Applications Sensor (ATLAS) on May 11 and 12, 1997. ATLAS is a 15-channel multispectral scanner that incorporates the Landsat TM bands with additional bands in the middle reflective infrared and thermal infrared range. The high spatial resolution permitted discrimination of discrete surface types (e.g., concrete, asphalt), individual structures (e.g., buildings, houses) and their associated thermal characteristics. There is a strong temperature contrast between vegetation and anthropomorphic features. Vegetation has a modal temperature at about 20 C, whereas asphalt shingles, pavement, and buildings have a modal temperature of about 39 C. Broad-leaf vegetation classes are indistinguishable on a thermal basis alone. There is slightly more variability (+/-5 C) among the urban surfaces. Grasses, mixed vegetation and mixed urban surfaces are intermediate in temperature and are characterized by broader temperature distributions with modes of about 29 C. Thermal maps serve as a basis for understanding the distribution of "hotspots", i.e., how landscape features and urban fabric contribute the most heat to the lower atmosphere.

  9. Data Assimilation Experiments using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    SUsskind, Joel

    2008-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 pm C02 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 pm C02 observations are now used primarily in the generation of cloud cleared radiances Ri. This approach allows for the generation of accurate values of Ri and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by- channel error estimates for Ri. These error estimates are used for quality control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of quality control using the NASA GEOS-5 data assimilation system. Assimilation of quality controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done Operationally by ECMWF and NCEP. Forecasts resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.

  10. Improving Forecast Skill by Assimilation of Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2009-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of cloud cleared radiances R(sub i). This approach allows for the generation of accurate values of R(sub i) and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel error estimates for R(sub i). These error estimates are used for Quality Control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of Quality Control using the NASA GEOS-5 data assimilation system. Assimilation of Quality Controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done operationally by ECMWF and NCEP. Forecast resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.

  11. Air Ingress Accident in a High Temperature Reactor with Prismatic Fuel

    SciTech Connect

    Haque, H.; Brinkmann, G.

    2006-07-01

    In this paper, the safety behavior of the new generation high temperature reactors (HTRs) with prismatic fuels during air ingress accident conditions has been investigated. These reactors conceived primarily for the production of hydrogen, are characterized by their inherent safety features with respect to passive decay heat removal through conduction, radiation and natural convection. Air ingress is an HTR specific event. The potential threat posed by air ingress lies in the chemical reaction of oxygen with hot graphite at a temperature above 500 deg. C leading to reaction heat and graphite corrosion. A substantial amount of graphite burn-off can take place only if sufficient amount of air enters into the core. In order to better assess the phenomena of air ingress into the reactor, it is postulated that breaks are present above and below the reactor core and that unobstructed ingress of air through them is possible. It is obvious that the air ingress incident has to be preceded by a depressurization accident. For this hypothetical scenario the maximum possible air flow rate through the core resulting solely from the pressure losses in the core is determined as a function of the break cross sections exposed above and below the core. This paper demonstrates the thermal behavior of the ANTARES reactor (operating inlet/outlet temperatures 450/850 deg. C) for various air flow rates with respect to graphite burn-off and maximum temperatures of fuel and bottom reflector region. It indicates the limiting time at which the graphite layer of fuel will be completely burnt-off and the pellets exposed. (authors)

  12. Evaluation of the Global Land Data Assimilation System (GLDAS) air temperature data products

    NASA Astrophysics Data System (ADS)

    Ji, L.; Senay, G. B.; Verdin, J. P.

    2014-12-01

    There is a high demand for agro-hydrologic models to use gridded surface air temperature data as the model input for estimating regional and global water budget and cycle. The Global Land Data Assimilation System (GLDAS) developed by combining simulation models with observations provides a long-term gridded meteorological dataset at the global coverage. However, the GLDAS air temperature products have not been comprehensively evaluated, although the accuracy of the products was assessed in limited areas. In this study, we compared the daily 0.25° resolution GLDAS air temperature data with two reference datasets: (1) 1-km resolution gridded Daymet data (2002 and 2010) for the Conterminous United States, and (2) global meteorological observations (2000 - 2011) archived from the Global Historical Climatology Network (GHCN). The comparison of the GLDAS datasets with the GHCN datasets including 13,511 weather stations indicates a fairly high accuracy of the GLDAS data for daily maximum temperature [bias is 1.2 C°, root mean square error (RMSE) is 3.9 C°, and R2 is 0.92] and daily minimum temperature (bias is -1.4 C°, RMSE is 5.4 C°, and R2 is 0.82). The quality of the GLDAS air temperature data, however, is not always consistent in different regions of the world; for example, some areas in Africa and South America show relatively low accurate estimates. Spatial and temporal analyses reveal a high agreement between GLDAS and Daymet daily air temperature datasets, although spatial details in high mountainous areas are not sufficiently estimated by the GLDAS data. Our evaluation of the GLDAS data demonstrates that the air temperature estimates are generally accurate, but cautions should be taken when the data are used in mountainous areas or places with sparse weather stations.

  13. Fault diagnosis and temperature sensor recovery for an air-handling unit

    SciTech Connect

    Lee, W.Y.; Shin, D.R.; House, J.M.

    1997-12-31

    The presence of faults and the influence they have on system operation is a real concern in the heating, ventilating, and air-conditioning (HVAC) community. A fault can be defined as an inadmissible or unacceptable property of a system or a component. Unless corrected, faults can lead to increased energy use, shorter equipment life, and uncomfortable and/or unhealthy conditions for building occupants. This paper describes the use of a two-stage artificial neural network for fault diagnosis in a simulated air-handling unit. The stage one neural network is trained to identify the subsystem in which a fault occurs. The stage two neural network is trained to diagnose the specific cause of a fault at the subsystem level. Regression equations for the supply and mixed-air temperatures are obtained from simulation data and are used to compute input parameters to the neutral networks. Simulation results are presented that demonstrate that, after a successful diagnosis of a supply air temperature sensor fault, the recovered estimate of the supply air temperature obtained from the regression equation can be used in a feedback control loop to bring the supply air temperature back to the setpoint value. Results are also presented that illustrate the evolution of the diagnosis of the two-stage artificial neural network from normal operation to various fault modes of operation.

  14. An ultrasonic air temperature measurement system with self-correction function for humidity

    NASA Astrophysics Data System (ADS)

    Tsai, Wen-Yuan; Chen, Hsin-Chieh; Liao, Teh-Lu

    2005-02-01

    This paper proposes an ultrasonic measurement system for air temperature with high accuracy and instant response. It can measure the average temperature of the environmental air by detecting the changes of the speed of the ultrasound in the air. The changes of speed of sound are computed from combining variations of time-of-flight (TOF) from a binary frequency shift-keyed (BFSK) ultrasonic signal and phase shift from continuous waves [11]. In addition, another proposed technique for the ultrasonic air temperature measurement is the self-correction functionality within a highly humid environment. It utilizes a relative humidity/water vapour sensor and applies the theory of how sound speed changes in a humid environment. The proposed new ultrasonic air temperature measurement has the capability of self-correction for the environment variable of humidity. Especially under the operational environment with high fluctuations of various humidity levels, the proposed system can accurately self-correct the errors on the conventional ultrasonic thermometer caused by the changing density of the vapours in the air. Including the high humidity effect, a proof-of-concept experiment demonstrates that in dry air (relative humidity, RH = 10%) without humidity correction, it is accurate to ±0.4 °C from 0 °C to 80 °C, while in highly humid air (relative humidity, RH = 90%) with self-correction functionality, it is accurate to ±0.3 °C from 0 °C to 80 °C with 0.05% resolution and temperature changes are instantly reflected within 100 ms.

  15. Laboratory spectroscopic diagnostics of TLE-like air plasmas: methods to derive the rotational (gas) temperature in TLEs

    NASA Astrophysics Data System (ADS)

    Gordillo-Vazquez, F.; Parra-Rojas, F.; Passas, M.; Carrasco, E.; Luque, A.; Tanarro, I.; Simek, M.

    2013-12-01

    Laboratory low pressure (0.1 mbar < p < 2 mbar) glow air discharges have been studies by optical emission spectroscopy to illustrate several spectroscopic techniques that, depending on the available spectral resolution, could be implemented by different field spectrographs to experimentally quantify the gas temperature associated with Transient Luminous Events (TLEs) occurring at different altitudes including blue jets, giant blue jets and sprites. The laboratory air plasmas investigated have been analysed from the near UV (300 nm) to the near IR (1060 nm) with high (up to 0.01 nm) and low (2 nm) spectral resolution commercial grating spectrographs and by an in-house developed intensified CCD grating spectrograph that we have recently developed in our group at IAA - CSIC for TLE spectral diagnostic surveys with 0.45 nm spectral resolution. We discuss the results of laboratory tests and comment on the convenience of using one or another technique for rotational (gas) temperature determination during TLE spectroscopic campaigns. Finally, we will also show a comparison of the vibrational distribution function (VDF) of N2(B) obtained from (a) experiments in low pressure laboratory air plasmas produced in conditions similar to TLEs, (b) spectroscopic emissions from real TLE air plasmas and (c) compute from kinetic modeling.

  16. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  17. Effect of green roofs on air temperature; measurement study of well-watered and dry conditions

    NASA Astrophysics Data System (ADS)

    Solcerova, Anna; van de Ven, Frans; Wang, Mengyu; van de Giesen, Nick

    2016-04-01

    Rapid urbanization and increasing number and duration of heat waves poses a need for understanding urban climate and ways to mitigate extremely high temperatures. One of repeatedly suggested and often investigated methods to moderate the so called urban heat island are green roofs. This study investigates several extensive green roofs in Utrecht (NL) and their effect on air temperature right above the roof surface. Air temperature was measured 15 and 30 cm above the roof surface and also in the substrate. We show that under normal condition is air above green roof, compared to white gravel roof, colder at night and warmer during day. This suggest that green roofs might help decrease air temperatures at night, when the urban heat island is strongest, but possibly contribute to high temperatures during daytime. We also measured situation when the green roofs wilted and dried out. Under such conditions green roof exhibits more similar behavior to conventional white gravel roof. Interestingly, pattern of soil temperature remains almost the same for both dry and well-prospering green roof, colder during day and warmer at night. As such, green roof works as a buffer of diurnal temperature changes.

  18. Anisotropic Azimuthal Power and Temperature distribution on FuelRod. Impact on Hydride Distribution

    SciTech Connect

    Motta, Arthur; Ivanov, Kostadin; Arramova, Maria; Hales, Jason

    2015-04-29

    The degradation of the zirconium cladding may limit nuclear fuel performance. In the high temperature environment of a reactor, the zirconium in the cladding corrodes, releasing hydrogen in the process. Some of this hydrogen is absorbed by the cladding in a highly inhomogeneous manner. The distribution of the absorbed hydrogen is extremely sensitive to temperature and stress concentration gradients. The absorbed hydrogen tends to concentrate near lower temperatures. This hydrogen absorption and hydride formation can cause cladding failure. This project set out to improve the hydrogen distribution prediction capabilities of the BISON fuel performance code. The project was split into two primary sections, first was the use of a high fidelity multi-physics coupling to accurately predict temperature gradients as a function of r, θ , and z, and the second was to use experimental data to create an analytical hydrogen precipitation model. The Penn State version of thermal hydraulics code COBRA-TF (CTF) was successfully coupled to the DeCART neutronics code. This coupled system was verified by testing and validated by comparison to FRAPCON data. The hydrogen diffusion and precipitation experiments successfully calculated the heat of transport and precipitation rate constant values to be used within the hydrogen model in BISON. These values can only be determined experimentally. These values were successfully implemented in precipitation, diffusion and dissolution kernels that were implemented in the BISON code. The coupled output was fed into BISON models and the hydrogen and hydride distributions behaved as expected. Simulations were conducted in the radial, axial and azimuthal directions to showcase the full capabilities of the hydrogen model.

  19. Numerical modeling of temperature and species distributions in hydrocarbon reservoirs

    NASA Astrophysics Data System (ADS)

    Bolton, Edward W.; Firoozabadi, Abbas

    2014-01-01

    We examine bulk fluid motion and diffusion of multicomponent hydrocarbon species in porous media in the context of nonequilibrium thermodynamics, with particular focus on the phenomenology induced by horizontal thermal gradients at the upper and lower horizontal boundaries. The problem is formulated with respect to the barycentric (mass-averaged) frame of reference. Thermally induced convection, with fully time-dependent temperature distributions, can lead to nearly constant hydrocarbon composition, with minor unmixing due to thermal gradients near the horizontal boundaries. Alternately, the composition can be vertically segregated due to gravitational effects. Independent and essentially steady solutions have been found to depend on how the compositions are initialized in space and may have implications for reservoir history. We also examine injection (to represent filling) and extraction (to represent leakage) of hydrocarbons at independent points and find a large distortion of the gas-oil contact for low permeability.

  20. Temperature distribution of dust in luminous IRAS galaxies

    NASA Technical Reports Server (NTRS)

    Carico, David P.

    1989-01-01

    Work is currently in progress to obtain temperature distributions of dust in the most infrared-luminous galaxies. The results presented are of a preliminary nature, representing a zeroth-order approximation. The objects which have been analyzed so far are all galaxies from the Infrared Astronomy Satellite (IRAS) Bright Galaxy Sample with infrared luminosities L sub IR greater than or equal to 10(exp 11) solar luminosity. They are: Arp 220, Mrk 231, Mrk 273, NGC 1614, NGC 3690, NGC 6285/6, and Zw 049.057. The analysis utilized 3.7 micron data from the Palomar 5 m Hale telescope, IRAS data at 12, 25, 60, and 100 microns, and 1 mm continuum data from the CalTech Submillimeter Observatory on Mauna Kea.

  1. Near real-time AIRS processing and distribution system: from design to operations

    NASA Astrophysics Data System (ADS)

    Wolf, Walter; King, Thomas; Goldberg, Mitchell D.; Zhou, Lihang; Barnet, Chris D.

    2004-10-01

    A near real-time AIRS processing and distribution system is fully operational at NOAA/NESDIS/ORA. The AIRS system went though three separate production phases: design and development, implementation, and operations. The design and development phase consisted of two years of preparation for the near real-time AIRS data. The approach was to fully emulate the AIRS measurement stream. This was accomplished by using a forecast model to represent the geophysical state and computation of simulated AIRS measurements using the characteristics of the AIRS channels. The preparation included file format development and the creation of a program to subset the radiance and product data. The implementation phase lasted over a year and involved utilizing AIRS/AMSU/HSB simulated data quasi-operationally. This simulated data was placed into deliverable files and distributed to the customers for their pre-launch preparations. The operational phase consisted of switching the simulation system to real data and is the current system status. Details of what went right and wrong at each production phase will be presented. This methodology eased the transition to operations and will be applied to other advanced sounders such as IASI and CrIS.

  2. Assimilation of Quality Controlled AIRS Temperature Profiles using the NCEP GFS

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste; Iredell, Lena; Rosenberg, Robert

    2013-01-01

    We have previously conducted a number of data assimilation experiments using AIRS Version-5 quality controlled temperature profiles as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The data assimilation and forecast system we used was the Goddard Earth Observing System Model , Version-5 (GEOS-5) Data Assimilation System (DAS), which represents a combination of the NASA GEOS-5 forecast model with the National Centers for Environmental Prediction (NCEP) operational Grid Point Statistical Interpolation (GSI) global analysis scheme. All analyses and forecasts were run at a 0.5deg x 0.625deg spatial resolution. Data assimilation experiments were conducted in four different seasons, each in a different year. Three different sets of data assimilation experiments were run during each time period: Control; AIRS T(p); and AIRS Radiance. In the "Control" analysis, all the data used operationally by NCEP was assimilated, but no AIRS data was assimilated. Radiances from the Aqua AMSU-A instrument were also assimilated operationally by NCEP and are included in the "Control". The AIRS Radiance assimilation adds AIRS observed radiance observations for a select set of channels to the data set being assimilated, as done operationally by NCEP. In the AIRS T(p) assimilation, all information used in the Control was assimilated as well as Quality Controlled AIRS Version-5 temperature profiles, i.e., AIRS T(p) information was substituted for AIRS radiance information. The AIRS Version-5 temperature profiles were presented to the GSI analysis as rawinsonde profiles, assimilated down to a case-by-case appropriate pressure level p(sub best) determined using the Quality Control procedure. Version-5 also determines case-by-case, level-by-level error estimates of the temperature profiles, which were used as the uncertainty of each temperature measurement. These experiments using GEOS-5 have shown that forecasts

  3. A quantitative assessment of the relationship between precipitation deficits and air temperature variations

    NASA Astrophysics Data System (ADS)

    He, B.; Wang, H. L.; Wang, Q. F.; Di, Z. H.

    2015-06-01

    Previous studies have reported precipitation deficits related to temperature extremes. However, how and to what extent precipitation deficits affect surface air temperatures is still poorly understood. In this study, the relationship between precipitation deficits and surface temperatures was examined in China from 1960 to 2012 based on monthly temperature and precipitation records from 565 stations. Significant negative correlations were identified in each season, with the strongest relationships in the summer, indicating that higher temperatures usually accompanied water-deficient conditions and lower temperatures usually accompanied wet conditions. The examination of the correlations based on 30 year moving windows suggested that the interaction between the two variables has declined over the past three decades. Further investigation indicated a higher impact of extreme dry conditions on temperature than that of extreme wet conditions. In addition, a new simple index (Dry Temperature Index, DTI) was developed and used to quantitatively describe the relationship between water deficits and air temperature variations. We tested and compared the DTI in the coldest month (January) and the hottest month (July) of the year, station by station. In both months, the number of stations with a DThighI ≥ 50% was greater than those with a DThighI < 50%, indicating that a greater proportion of higher temperatures occurred during dry conditions. Based on the results, we conclude that water deficits in China are usually correlated to high temperatures but not to low temperatures.

  4. Reproduction of surface air temperature over South Korea using dynamical downscaling and statistical correction

    NASA Astrophysics Data System (ADS)

    Ahn, J.; Lee, J.; Shim, K.; Kim, Y.

    2013-12-01

    In spite of dense meteorological observation conducting over South Korea (The average distance between stations: ~ 12.7km), the detailed topographical effect is not reflected properly due to its mountainous terrains and observation sites mostly situated on low altitudes. A model represents such a topographical effect well, but due to systematic biases in the model, the general temperature distribution is sometimes far different from actual observation. This study attempts to produce a detailed mean temperature distribution for South Korea through a method combining dynamical downscaling and statistical correction. For the dynamical downscaling, a multi-nesting technique is applied to obtain 3-km resolution data with a focus on the domain for the period of 10 years (1999-2008). For the correction of systematic biases, a perturbation method divided into the mean and the perturbation part was used with a different correction method being applied to each part. The mean was corrected by a weighting function while the perturbation was corrected by the self-organizing maps method. The results with correction agree well with the observed pattern compared to those without correction, improving the spatial and temporal correlations as well as the RMSE. In addition, they represented detailed spatial features of temperature including topographic signals, which cannot be expressed properly by gridded observation. Through comparison with in-situ observation with gridded values after objective analysis, it was found that the detailed structure correctly reflected topographically diverse signals that could not be derived from limited observation data. We expect that the correction method developed in this study can be effectively used for the analyses and projections of climate downscaled by using region climate models. Acknowledgements This work was carried out with the support of Korea Meteorological Administration Research and Development Program under Grant CATER 2012-3083 and

  5. Spatiotemporal distribution characteristics and attribution of extreme regional low temperature event

    NASA Astrophysics Data System (ADS)

    Feng, Tai-Chen; Zhang, Ke-Quan; Su, Hai-Jing; Wang, Xiao-Juan; Gong, Zhi-Qiang; Zhang, Wen-Yu

    2015-10-01

    Based on an objective identification technique for regional low temperature event (OITRLTE), the daily minimum temperature in China has been detected from 1960 to 2013. During this period, there were 60 regional extreme low temperature events (ERLTEs), which are included in the 690 regional low temperature events (RLTEs). The 60 ERLTEs are analyzed in this paper. The results show that in the last 50 years, the intensity of the ERLTEs has become weak; the number of lasted days has decreased; and, the affected area has become small. However, that situation has changed in this century. In terms of spatial distribution, the high intensity regions are mainly in Northern China while the high frequency regions concentrate in Central and Eastern China. According to the affected area of each event, the 60 ERLTEs are classified into six types. The atmospheric circulation background fields which correspond to these types are also analyzed. The results show that, influenced by stronger blocking highs of Ural and Lake Baikal, as well as stronger southward polar vortex and East Asia major trough at 500-hPa geopotential height, cold air from high latitudes is guided to move southward and abnormal northerly winds at 850 hPa makes the cold air blow into China along diverse paths, thereby forming different types of regional extreme low temperatures in winter. Project supported by the National Natural Science Foundation of China (Grant No. 41305075), the National Basic Research Program of China (Grant Nos. 2012CB955203 and 2012CB955902), and the Special Scientific Research on Public Welfare Industry, China (Grant No. GYHY201306049).

  6. Transient temperature distributions in a cylinder heated by microwaves

    SciTech Connect

    Jackson, H.W.; Barmatz, M.; Wagner, P.

    1996-12-31

    Transient temperature distributions were calculated for a lossy dielectric cylinder coaxially aligned in a cylindrical microwave cavity excited in a single mode. Results were obtained for sample sizes that range from fibers to large cylinders. Realistic values for temperature dependent complex dielectric constants and thermophysical properties of the samples were used. Losses in cavity walls were taken into account as were realistic thermal emissivities at all surfaces. For a fine mesh of points in time, normal mode properties and microwave power absorption profiles were evaluated using analytic expressions. Those expressions correspond to exact solutions of Maxwell`s equations within the framework of a cylindrical shell model. Heating produced by the microwave absorption was included in self-consistent numerical solutions of thermal equations. In this model, both direct microwave heating and radiant heating of the sample (hybrid heating) were studied by including a lossy dielectric tube surrounding the sample. Calculated results are discussed within the context of two parametric studies. One is concerned with relative merits of microwave and hybrid heating of fibers, rods, and larger cylinders. The other is concerned with thermal runaway.

  7. Distributed landsurface skin temperature sensing in Swiss Alps

    NASA Astrophysics Data System (ADS)

    van de Giesen, N.; Baerenbold, F.; Nadeau, D. F.; Pardyjak, E.; Parlange, M. B.

    2010-12-01

    The ZyTemp TN9 is a mass-produced thermal infrared (TIR) sensor that is normally used to build handheld non-contact thermometers. The measurement principle of the TN9 is similar to that of very costly meteorological pyrgeometers. The costs of the TN9 are less than 10. The output of the TN9 consists of observed thermal radiation, the temperature of the measurement instrument, and the emissivity used. The output is provided through a Serial Peripheral Interface protocol. The TN9 was combined with an Arduino board that registered data onto a USB memory stick. A solar cell, lead acid battery, housing and stand completed the meausrement set up. Total costs per set was in the order of 200 Land surface atmosphere interactions in mountainous areas, such as the Swiss Alps, are spatially heterogeneous. Shading, multi-layer cloud formation, and up- and downdrafts make for a very dynamic exchange of mass and energy along and across slopes. In order to better understand these exchanges, the Swiss Slope Experiment at La Fouly (SELF) has built a distributed sensing network consisting of eight micro-met stations and two flux towers in the "La Fouly" watershed in the upper Alps. To obtain a better handle on surface temperature, fifteen TIR sensing stations were installed that made observations during the 2010 Summer. Methods and results will be presented. Overview La Fouly watershed (source: http://eflum.epfl.ch/research/images/fouly_2.jpg)

  8. UAS and Distributed Temperature Sensing Reveal Previously Unseen Atmospheric Processes

    NASA Astrophysics Data System (ADS)

    Higgins, C. W.; Liu, Z.; Holmes, H.; Wing, M.; Predosa, R. A.; Blunck, D.

    2015-12-01

    The frontier of atmospheric boundary layer research lies in times and places of complexity. Transitions between atmospheric states, buoyant flows over complex terrain, and times with only weak forcing mechanisms all have rich physical expressions of atmospheric flow that are not fully understood. These motions often span a large range of scales and are nonstationary. Traditional atmospheric measurement approaches are inadequate in these situations as they do not have the data density or the physical extent to capture the full range of motions. An unmanned aerial system (UAS) is used to lift distributed temperature sensing (DTS) technologies to observe the early morning transition from stable to unstably stratified conditions. The UAS/DTS combination yielded observations of temperature and humidity in the lower atmosphere with never-seen-before resolution and extent. The data reveal a complex interplay of motions that occur during the morning transition that ultimately results in the propagation and growth of unstable wave modes. The observations have given new insight into the appropriate scaling variables for the morning transition time.

  9. Performance of High Temperature Air Combustion Boiler with Low NOx Emission

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiromichi; Ito, Yoshihito; Tsuruta, Naoki; Yoshikawa, Kunio

    Thermal performance in the experiments and three-dimensional numerical simulations for a high temperature air combustion boiler where fuel can be efficiently combusted by high temperature preheated air (800°C-1000°C) is examined. The boiler can burn not only natural gas but also low calorific gas (e. g. full gasification gas obtained from coal or wastes). In the boiler, four regenerative burners are installed. This boiler has new features that not only air but also gasification gas is heated up to 900°C, and combination of burners is switched every 15 seconds where two burners are used as inlets of fuel and air and the other two burners are used as outlets of exhaust gas. Natural gas and syngas obtained from coal are burned. The NOx emission for each fuel is less than 50ppm. The heat transfer of three-dimensional calculation is predicted higher than that of experiment.

  10. The Influence of a Dispersion Cone on the Temperature Distribution in the Heat Exchanger of a Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    MusiaŁ, M.; Borcuch, M.; Wojciechowski, K.

    2016-03-01

    This paper presents the results of a numerical simulation of heat distribution in the heat exchanger of a prototype thermoelectric generator constructed and examined in the Thermoelectric Research Laboratory in AGH University, Cracow, Poland. The area of interest was to prepare a numerical model and determine the influence of a dispersion cone on the temperature distribution along the heat exchanger. The role of a dispersion element is to mix the air stream to improve the flow between the internal heat exchanger's fins in order to enhance heat exchange. The estimation of power output parameters and exchanger efficiency has been performed in order to assess the cone impact for three selected air inlet temperatures. The results show that the presence of the cone increases the efficiency of the thermoelectric generator by at least 25%.

  11. Eleven years of ground-air temperature tracking over different land cover materials

    NASA Astrophysics Data System (ADS)

    Cermák, Vladimír; Dedecek, Petr; Bodri, Louise; Safanda, Jan; Kresl, Milan

    2015-04-01

    We have analyzed series of air, near surface and shallow ground temperatures under four different land covers, namely bare clayey soil, sand, grass and asphalt, collected between 2002 and 2013, monitored at the Geothermal Climate Change Observatory Sporilov. All obtained temperature series revealed a strong dependence of the subsurface thermal regime on the surface cover material. The ground "skin" temperatures are generally warmer than the surface air temperatures for all monitored surfaces; however they mutually differ significantly reflecting the nature of the land surface. Asphalt shows the highest temperatures, temperatures below the grassy surface are the lowest. A special interest was paid to the assessment of the "temperature offset", the difference between the surface ground temperature and the surface air temperature. Even when its instant value varies dramatically on both, daily and annual scale, by up to 30+ K, on a long time scale it is believed to be generally constant. The characteristic 2003-2013 mean offset values for the individual covers are following: asphalt 4.1 K, sand 1.6 K, clay 1.3 K and grass 0.2-0.3 K. All four surface covers revealed their daily and inter-annual cycles. Incident solar radiation is the primary variable in determining the amount of the temperature offset value and its time changes. A linear relationship between air-ground temperature differences and incident solar radiation was detected. The slope of the linear regression between both variables is clearly surface cover dependent. The greatest value of 3.3 K per 100 W.m-2 was found for asphalt, rates of 1.0 to 1.2 apply for bare soil and sand covers and negative slope of -0.44 K per 100 W.m-2 stands for grass, during the day or year the slope rates may vary extensively reflecting the periodic daily and/or annual cycle as well as the irregular instant deviations in solar radiation.

  12. Impact of aerosol on air temperature in Kuwait

    NASA Astrophysics Data System (ADS)

    Sabbah, I.

    2010-08-01

    This work uses MODIS aerosol optical thickness (AOT) data observed over Kuwait during the 7-year interval 2000-2007. The values of AOT and the Ångström wavelength exponent ( α) show a clear annual cycle. These data are categorized into two catalogues in terms of the values of the AOT of the 870 nm channel ( τ870). One catalogue (71 days) includes days with high values of AOT ( τ870 ≥ 0.75). The most probable "modal" value of α for these days is 0.52. The other catalogue (1162 days) consists of the background days with a modal value ~ 1.1 for the exponent α. This analysis is extended to include water vapor content (WVC), surface wind speed (V), visibility (Vis) and the diurnal temperature range (DTR). Chree's method of superposed-epoch analysis is applied to these parameters in order to compare the variation in the daily averages during days with high AOT values with respect to background days. The high values of AOT during the 71 days are positively correlated with aerosol size, near-surface winds and poor visibility. This concludes that the aerosol particles during these days were mostly dust. The mean daily value of the DTR (Δ T) and visibility reduced significantly during these days. This reduction on DTR is a direct result of increasing the atmospheric opacity due to the presence of dust.

  13. Characterization of AIRS temperature and water vapor measurement capability using correlative observations

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Eldering, Annmarie; Lee, Sung-Yung

    2005-01-01

    In this presentation we address several fundamental issues in the measurement of temperature and water vapor by AIRS: accuracy, precision, vertical resolution and biases as a function of cloud amount. We use two correlative data sources. First we compare AIRS total water vapor with that from the Advanced microwave Sounding Radiometer for EOS (AMSR-E) instrument, also onboard the Aqua spacecraft. AMSRE uses a mature methodology with a heritage including the operational Special Sensor Microwave Imager (SSM/I) instruments. AIRS and AMSR-E observations are collocated and simultaneous, providing a very large data set for comparison: about 200,000 over-ocean matches daily. We show small cloud-dependent biases between AIRS and AMSR-E total water vapor for several oceanic regions. Our second correlative data source is several hundred dedicated radiosondes launched during AIRS overpasses.

  14. Near Decade Long Tropospheric Air Temperature and Specific Humidity Records from AIRS for CMIP5 Model Evaluation

    NASA Astrophysics Data System (ADS)

    Tian, B.; Fetzer, E.; Kahn, B. H.; Teixeira, J.; Manning, E.; Hearty, T. J.

    2012-12-01

    The peer-reviewed analyses of multi-model outputs from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) experiments will be the most important basis for the next Intergovernmental Panel on Climate Change (IPCC) Assessment Report (AR5). To increase the fidelity of the IPCC AR5, an Obs4MIPs project has been initiated to collect some well-established and well-documented datasets, to organize them according to the CMIP5 model output requirements, and makes them available to the science community for CMIP5 model evaluation. The NASA Atmospheric Infrared Sounder (AIRS) project has produced monthly mean tropospheric air temperature (ta, K) and specific humidity (hus, kg/kg) products as part of the Obs4MIPS project. In this paper, we first describe these two AIRS datasets in terms of data description, origin, validation and caveats for model-observation comparison. We then document the climatological mean features of these two AIRS datasets and compare them to those from NASA's Modern Era Retrospective analysis for Research and Applications (MERRA) for AIRS data validation and CMIP5 model simulations for CMIP5 model evaluation. As expected, the 9-year AIRS data show several well-known climatological features of tropospheric ta and hus, such as the strong meridional and vertical gradients of tropospheric ta and hus and strong zonal gradient of tropospheric hus. AIRS data also show the strong connections between the tropospheric hus, atmospheric circulation and deep convection. In comparison to MERRA, AIRS seems to be colder in the free troposphere but warmer in the boundary layer with differences typically less than 1 K. AIRS is wetter (~10%) in the tropical boundary layer but drier (around 30%) in the tropical free troposphere and the extratropical troposphere. In particular, the large AIRS-MERRA hus differences are mainly located in the cloudy regions, such as the Intertropical Convergence Zone (ITCZ), the South Pacific Convergence Zone (SPCZ) and the

  15. Temperature, humidity and air flow in the emplacement drifts using convection and dispersion transport models

    SciTech Connect

    Danko, G.; Birkholzer, J.T.; Bahrami, D.; Halecky, N.

    2009-10-01

    A coupled thermal-hydrologic-airflow model is developed, solving for the transport processes within a waste emplacement drift and the surrounding rockmass together at the proposed nuclear waste repository at Yucca Mountain. Natural, convective air flow as well as heat and mass transport in a representative emplacement drift during post-closure are explicitly simulated, using the MULTIFLUX model. The conjugate, thermal-hydrologic transport processes in the rockmass are solved with the TOUGH2 porous-media simulator in a coupled way to the in-drift processes. The new simulation results show that large-eddy turbulent flow, as opposed to small-eddy flow, dominate the drift air space for at least 5000 years following waste emplacement. The size of the largest, longitudinal eddy is equal to half of the drift length, providing a strong axial heat and moisture transport mechanism from the hot to the cold drift sections. The in-drift results are compared to those from simplified models using a surrogate, dispersive model with an equivalent dispersion coefficient for heat and moisture transport. Results from the explicit, convective velocity simulation model provide higher axial heat and moisture fluxes than those estimated from the previously published, simpler, equivalent-dispersion models, in addition to showing differences in temperature, humidity and condensation rate distributions along the drift length. A new dispersive model is also formulated, giving a time- and location-variable function that runs generally about ten times higher in value than the highest dispersion coefficient currently used in the Yucca Mountain Project as an estimate for the equivalent dispersion coefficient in the emplacement drift. The new dispersion coefficient variation, back-calculated from the convective model, can adequately describe the heat and mass transport processes in the emplacement drift example.

  16. Short-term effects of air temperature on mortality and effect modification by air pollution in three cities of Bavaria, Germany: A time-series analysis

    EPA Science Inventory

    Background: Air temperature has been shown to be associated with mortality; however, only very few studies have been conducted in Germany. This study examined the association between daily air temperature and cause-specific mortality in Bavaria, Southern Germany. Moreover, we inv...

  17. The comparative performance of an aviation engine at normal and high inlet air temperatures

    NASA Technical Reports Server (NTRS)

    Gardiner, Arthur W; Schey, Oscar W

    1928-01-01

    This report presents some results obtained during an investigation to determine the effect of high inlet air temperature on the performance of a Liberty 12 aviation engine. The purpose of this investigation was to ascertain, for normal service carburetor adjustments and a fixed ignition advance, the relation between power and temperature for the range of carburetor air temperatures that may be encountered when supercharging to sea level pressure at altitudes of over 20,000 feet and without intercooling when using plain aviation gasoline and mixtures of benzol and gasoline. The results show that for the conditions of test, both the brake and indicated power decrease with increase in air temperature at a faster rate than given by the theoretical assumption that power varies inversely as the square root of the absolute temperature. On a brake basis, the order of the difference in power for a temperature difference of 120 degrees F. Is 3 to 5 per cent. The observed relation between power and temperature when using the 30-70 blend was found to be linear. But, although these differences are noted, the above theoretical assumption may be considered as generally applicable except where greater precision over a wide range of temperatures is desired, in which case it appears necessary to test the particular engine under the given conditions. (author)

  18. Flow and containment characteristics of an air-curtain fume hood operated at high temperatures.

    PubMed

    Chen, Jia-Kun; Huang, Rong Fung; Hsin, Pei-Yi; Hsu, Ching Min; Chen, Chun-Wann

    2012-01-01

    The flow and leakage characteristics of the air-curtain fume hood under high temperature operation (between 100°C and 250°C) were studied. Laser-assisted flow visualization technique was used to reveal the hot plume movements in the cabinet and the critical conditions for the hood-top leakage. The sulfur hexafluoride tracer-gas concentration test method was employed to examine the containment spillages from the sash opening and the hood top. It was found that the primary parameters dominating the behavior of the flow field and hood performance are the sash height and the suction velocity as an air-curtain hood is operated at high temperatures. At large sash height and low suction velocity, the air curtain broke down and accompanied with three-dimensional flow in the cabinet. Since the suction velocity was low and the sash opening was large, the makeup air drawn down from the hood top became insufficient to counter act the rising hot plume. Under this situation, containment leakage from the sash opening and the hood top was observed. At small sash opening and high suction velocity, the air curtain presented robust characteristics and the makeup air flow from the hood top was sufficiently large. Therefore the containment leakages from the sash opening and the hood top were not observed. According to the results of experiments, quantitative operation sash height and suction velocity corresponding to the operation temperatures were suggested. PMID:22293724

  19. Torrefaction and low temperature carbonization of oil palm fiber and Eucalyptus in nitrogen and air atmospheres.

    PubMed

    Lu, Ke-Miao; Lee, Wen-Jhy; Chen, Wei-Hsin; Liu, Shih-Hsien; Lin, Ta-Chang

    2012-11-01

    Torrefaction is a pretreatment method for upgrading biomass as solid fuels. To provide flexible operations for effectively upgrading biomass at lower costs, the aim of this study was to investigate the properties of oil palm fiber and eucalyptus pretreated in nitrogen and air atmospheres at temperatures of 250-350°C for 1h. Based on energy and solid yield and introducing an energy-mass co-benefit index (EMCI), oil palm fiber pretreatment under nitrogen at 300°C provided the solid fuel with higher energy density and less volume compared to other temperatures. Pretreatment of oil palm fiber in air resulted in the fuel with low solid and energy yields and is therefore not recommended. For eucalyptus, nitrogen and air can be employed to upgrade the biomass, and the suggested temperatures are 325 and 275°C, respectively. PMID:22940305

  20. An experimental study on high temperature and low oxygen air combustion

    NASA Astrophysics Data System (ADS)

    Kim, W. B.; Chung, D. H.; Yang, J. B.; Noh, D. S.

    2000-06-01

    High temperature preheated and diluted air combustion has been confirmed as the technology, mainly applied to industrial furnaces and kilns, to realize higher thermal efficiency and lower emissions. The purpose of this study was to investigate fundamental aspects of the above-mentioned combustion experimentally and to compare with those in ordinary hydrocarbon combustion with room temperature air. The test items were exhaust gas components of CO, NOx, flame shape and radical components of CH, OH and C2, which were measured with gas analyser, camera and ICCD(Intensified Charged - Coupled Device) camera. Many phenomena as results appeared in combustion with the oxidizer, low oxygen concentration and extremely high temperature air, such as expansion of the flammable limits, increased flame propagation speed, it looked so strange as compared with those in existing combustion technology. We confirmed that such extraordinary phenomena were believable through the hot-test experiment.

  1. The effect of air temperature on the sappan wood extract drying

    NASA Astrophysics Data System (ADS)

    Djaeni, M.; Triyastuti, M. S.; Asiah, N.; Annisa, A. N.; Novita, D. A.

    2015-12-01

    The sappan wood extract contain natural colour called brazilin that can be used as a food colouring and antioxidant. The product is commonly found as a dry extract powder for consummer convenience. The spray dryer with air dehumidification can be an option to retain the colour and antioxidant agent. This paper discusses the effect of air temperature on sappan wood extract drying that was mixed with maltodextrin. As responses, the particle size, final moisture content, and extract solubility degradation were observed. In all cases, the process conducted in temperature ranging 90 - 110°C can retain the brazilin quality as seen in solubility and particle size. In addition, the sappan wood extract can be fully dried with moisture content below 2%. Moreover, with the increase of air temperature, the particle size of dry extract can be smaller.

  2. Surface air temperature and its changes over the past 150 years

    NASA Astrophysics Data System (ADS)

    Jones, P. D.; New, M.; Parker, D. E.; Martin, S.; Rigor, I. G.

    1999-05-01

    We review the surface air temperature record of the past 150 years, considering the homogeneity of the basic data and the standard errors of estimation of the average hemispheric and global estimates. We present global fields of surface temperature change over the two 20-year periods of greatest warming this century, 1925-1944 and 1978-1997. Over these periods, global temperatures rose by 0.37° and 0.32°C, respectively. The twentieth-century warming has been accompanied by a decrease in those areas of the world affected by exceptionally cool temperatures and to a lesser extent by increases in areas affected by exceptionally warm temperatures. In recent decades there have been much greater increases in night minimum temperatures than in day maximum temperatures, so that over 1950-1993 the diurnal temperature range has decreased by 0.08°C per decade. We discuss the recent divergence of surface and satellite temperature measurements of the lower troposphere and consider the last 150 years in the context of the last millennium. We then provide a globally complete absolute surface air temperature climatology on a 1° × 1° grid. This is primarily based on data for 1961-1990. Extensive interpolation had to be undertaken over both polar regions and in a few other regions where basic data are scarce, but we believe the climatology is the most consistent and reliable of absolute surface air temperature conditions over the world. The climatology indicates that the annual average surface temperature of the world is 14.0°C (14.6°C in the Northern Hemisphere (NH) and 13.4°C for the Southern Hemisphere). The annual cycle of global mean temperatures follows that of the land-dominated NH, with a maximum in July of 15.9°C and a minimum in January of 12.2°C.

  3. The influence of snow depth and surface air temperature on satellite-derived microwave brightness temperature. [central Russian steppes, and high plains of Montana, North Dakota, and Canada

    NASA Technical Reports Server (NTRS)

    Foster, J. L.; Hall, D. K.; Chang, A. T. C.; Rango, A.; Allison, L. J.; Diesen, B. C., III

    1980-01-01

    Areas of the steppes of central Russia, the high plains of Montana and North Dakota, and the high plains of Canada were studied in an effort to determine the relationship between passive microwave satellite brightness temperature, surface air temperature, and snow depth. Significant regression relationships were developed in each of these homogeneous areas. Results show that sq R values obtained for air temperature versus snow depth and the ratio of microwave brightness temperature and air temperature versus snow depth were not as the sq R values obtained by simply plotting microwave brightness temperature versus snow depth. Multiple regression analysis provided only marginal improvement over the results obtained by using simple linear regression.

  4. Estimation Accuracy of air Temperature and Water Vapor Amount Above Vegetation Canopy Using MODIS Satellite Data

    NASA Astrophysics Data System (ADS)

    Tomosada, M.

    2005-12-01

    Estimation accuracy of the air temperature and water vapor amount above vegetation canopy using MODIS satellite data is indicated at AGU fall meeting. The air temperature and water vapor amount which are satisfied the multilayer energy budget model from the ground surface to the atmosphere are estimated. Energy budget models are described the fluxes of sensible heat and latent heat exchange for the ground surface and the vegetated surface. Used MODIS satellite data is the vegetated surface albedo which is calculated from visible and near infrared band data, the vegetated surface temperature, NDVI (Normalized Difference Vegetation Index), LAI (Leaf Area Index). Estimation accuracy of air temperature and water vapor amount above vegetation canopy is evaluated comparing with the value which is measured on a flux research tower in Tomakomai northern forest of Japan. Meteorological parameters such as temperature, wind speed, water vapor amount, global solar radiation are measured on a flux tower from the ground to atmosphere. Well, MODIS satellite observes at day and night, and it snows in Tomakomai in winter. Therefore, estimation accuracy is evaluated dividing on at daytime, night, snowfall day, and not snowfall day. There is the investigation of the undeveloped region such as dense forest and sea in one of feature of satellite observation. Since there is almost no meteorological observatory at the undeveloped region so far, it is hard to get the meteorological parameters. Besides, it is the one of the subject of satellite observation to get the amount of physical parameter. Although the amount of physical parameter such as surface temperature and concentration of chlorophyll-a are estimated by satellite, air temperature and amount of water vapor above vegetation canopy have not been estimated by satellite. Therefore, the estimation of air temperature and water vapor amount above vegetation canopy using satellite data is significant. Further, a highly accurate

  5. Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Chunlin; Wu, Yi; Chen, Zhexin; Yang, Fei; Feng, Ying; Rong, Mingzhe; Zhang, Hantian

    2016-07-01

    Air plasma has been widely applied in industrial manufacture. In this paper, both dry and humid air plasmas' thermodynamic and transport properties are calculated in temperature 300-100000 K and pressure 0.1-100 atm. To build a more precise model of real air plasma, over 70 species are considered for composition. Two different methods, the Gibbs free energy minimization method and the mass action law method, are used to determinate the composition of the air plasma in a different temperature range. For the transport coefficients, the simplified Chapman-Enskog method developed by Devoto has been applied using the most recent collision integrals. It is found that the presence of CO2 has almost no effect on the properties of air plasma. The influence of H2O can be ignored except in low pressure air plasma, in which the saturated vapor pressure is relatively high. The results will serve as credible inputs for computational simulation of air plasma. supported by the National Key Basic Research Program of China (973 Program)(No. 2015CB251002), National Natural Science Foundation of China (Nos. 51521065, 51577145), the Science and Technology Project Funds of the Grid State Corporation (SGTYHT/13-JS-177), the Fundamental Research Funds for the Central Universities, and State Grid Corporation Project (GY71-14-004)

  6. Two-dimensional-spatial distribution measurement of electron temperature and plasma density in low temperature plasmas

    SciTech Connect

    Kim, Young-Cheol; Jang, Sung-Ho; Oh, Se-Jin; Lee, Hyo-Chang; Chung, Chin-Wook

    2013-05-15

    A real-time measurement method for two-dimensional (2D) spatial distribution of the electron temperature and plasma density was developed. The method is based on the floating harmonic method and the real time measurement is achieved with little plasma perturbation. 2D arrays of the sensors on a 300 mm diameter wafer-shaped printed circuit board with a high speed multiplexer circuit were used. Experiments were performed in an inductive discharge under various external conditions, such as powers, gas pressures, and different gas mixing ratios. The results are consistent with theoretical prediction. Our method can measure the 2D spatial distribution of plasma parameters on a wafer-level in real-time. This method can be applied to plasma diagnostics to improve the plasma uniformity of plasma reactors for plasma processing.

  7. Local-scale variability in regional air quality modelling: Implications on temporal distribution of emissions

    NASA Astrophysics Data System (ADS)

    Bergemann, Christoph; Meyer-Arnek, Julian

    2010-05-01

    In the field of air quality modeling, the comparison of model results with ground-based measurements is essential for validation purposes. The usefulness of these measurements for regional air quality modeling is however limited by the extremely local nature of station measurements. This is especially true for short-lived species like NO2, which is of high importance for public health. Nevertheless station observations are the only continuously available source of data on ground level air quality besides model results. Uncertainties in air quality models mainly arise from the lack of precise knowledge of the spatial and temporal distribution of pollutants. Most emission inventories provide aggregated values for long periods of time and yield no information on the temporal (diurnal) distribution of emissions. By applying ground-based measurements, our study yields optimized diurnal variations of anthropogenic emissions for different urban regions of Germany. In the course of the study the variability of air pollution on the urban scale (the model's subgrid scale) is also addressed. The study applies the newly established POLYPHEMUS/DLR model at a moderate resolution. In the framework of the GMES project "PROMOTE", this model system operationally analyzes and forecasts air quality in Bavaria, Germany. The model employs the latest version of the EMEP emission register in combination with high-resolution emission data provided by Bavarian authorities.

  8. Quantifying the effect of air temperature in CPV modules under outdoor conditions

    NASA Astrophysics Data System (ADS)

    Fernández, Eduardo F.; Pérez-Higueras, P.; Almonacid, F.; García Loureiro, A. J.; Fernández, J. I.; Rodrigo, P.; Vidal, P. G.; Almonacid, G.

    2012-10-01

    CPV modules are influenced by incident irradiance, air temperature and incident spectrum. However, the study of these effects and the ability to quantify them individually is not easy and it is still under study. The aim of this paper is describe a procedure to study the influence of air temperature in the maximum power point independently of the incident irradiance and spectrum. Two different CPV modules have been studied during one year, the main conclusions and the differences in the behaviour of CPV modules under study will be given.

  9. Emissions of an AVCO Lycoming 0-320-DIAD air cooled light aircraft engine as a function of fuel-air ratio, timing, and air temperature and humidity

    NASA Technical Reports Server (NTRS)

    Meng, P. R.; Skorobatckyi, M.; Cosgrove, D. V.; Kempke, E. E., Jr.

    1976-01-01

    A carbureted aircraft engine was operated over a range of test conditions to establish the exhaust levels over the EPA seven-mode emissions cycle. Baseline (full rich production limit) exhaust emissions at an induction air temperature of 59 F and near zero relative humidity were 90 percent of the EPA standard for HC, 35 percent for NOx, and 161 percent for CO. Changes in ignition timing around the standard 25 deg BTDC from 30 deg BTDC to 20 deg BTDC had little effect on the exhaust emissions. Retarding the timing to 15 deg BTDC increased both the HC and CO emissions and decreased NOx emissions. HC and CO emissions decreased as the carburetor was leaned out, while NOx emissions increased. The EPA emission standards were marginally achieved at two leanout conditions. Variations in the quantity of cooling air flow over the engine had no effect on exhaust emissions. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased.