Science.gov

Sample records for air temperature due

  1. Impact of two-way air flow due to temperature difference on preventing the entry of outdoor particles using indoor positive pressure control method.

    PubMed

    Chen, Chun; Zhao, Bin; Yang, Xudong

    2011-02-28

    Maintaining positive pressure indoors using mechanical ventilation system is a popular control method for preventing the entry of outdoor airborne particles. The idea is, as long as the supply air flow rate is larger than return air flow rate, the pressure inside the ventilated room should be positive since the superfluous air flow must exfiltrate from air leakages or other openings of the room to the outdoors. Based on experimental and theoretical analyses this paper aims to show the impact of two-way air flow due to indoor/outdoor temperature difference on preventing the entry of outdoor particles using positive pressure control method. The indoor positive pressure control method is effective only when the size of the opening area is restricted to a certain level, opening degree less than 30° in this study, due to the two-way air flow effect induced by differential temperature. The theoretical model was validated using the experimental data. The impacts of two-way air flow due to temperature difference and the supply air flow rate were also analyzed using the theoretical model as well as experimental data. For real houses, it seems that the idea about the positive pressure control method for preventing the entry of outdoor particles has a blind side.

  2. Influence of air pressure, humidity, solar radiation, temperature, and wind speed on ambulatory visits due to chronic obstructive pulmonary disease in Bavaria, Germany

    NASA Astrophysics Data System (ADS)

    Ferrari, Uta; Exner, Teresa; Wanka, Eva R.; Bergemann, Christoph; Meyer-Arnek, Julian; Hildenbrand, Beate; Tufman, Amanda; Heumann, Christian; Huber, Rudolf M.; Bittner, Michael; Fischer, Rainald

    2012-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the most important causes of morbidity and mortality in the world. The disease is often aggravated by periods of increased symptoms requiring medical attention. Among the possible triggers for these exacerbations, meteorological factors are under consideration. The objective of this study was to assess the influence of various meteorological factors on the health status of patients with COPD. For this purpose, the daily number of ambulatory care visits due to COPD was analysed in Bavaria, Germany, for the years 2006 and 2007. The meteorological factors were provided by the model at the European Centre for Medium Range Weather Forecast (ECMWF). For the multivariate analysis, a generalised linear model was used. In Bavaria, an increase of 1% of daily consultations (about 103 visits per day) was found to be associated with a change of 0.72 K temperature, 209.55 of log air surface pressure in Pa, and a decrease of 1% of daily consultations with 1,453,763 Ws m2 of solar radiation. There also seem to be regional differences between north and south Bavaria; for instance, the effect of wind speed and specific humidity with a lag of 1 day were only significant in the north. This study could contribute to a tool for the prevention of exacerbations. It also serves as a model for the further evaluation of the impact of meteorological factors on health, and could easily be applied to other diseases or other regions.

  3. Influence of air pressure, humidity, solar radiation, temperature, and wind speed on ambulatory visits due to chronic obstructive pulmonary disease in Bavaria, Germany.

    PubMed

    Ferrari, Uta; Exner, Teresa; Wanka, Eva R; Bergemann, Christoph; Meyer-Arnek, Julian; Hildenbrand, Beate; Tufman, Amanda; Heumann, Christian; Huber, Rudolf M; Bittner, Michael; Fischer, Rainald

    2012-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the most important causes of morbidity and mortality in the world. The disease is often aggravated by periods of increased symptoms requiring medical attention. Among the possible triggers for these exacerbations, meteorological factors are under consideration. The objective of this study was to assess the influence of various meteorological factors on the health status of patients with COPD. For this purpose, the daily number of ambulatory care visits due to COPD was analysed in Bavaria, Germany, for the years 2006 and 2007. The meteorological factors were provided by the model at the European Centre for Medium Range Weather Forecast (ECMWF). For the multivariate analysis, a generalised linear model was used. In Bavaria, an increase of 1% of daily consultations (about 103 visits per day) was found to be associated with a change of 0.72 K temperature, 209.55 of log air surface pressure in Pa, and a decrease of 1% of daily consultations with 1,453,763 Ws m(2) of solar radiation. There also seem to be regional differences between north and south Bavaria; for instance, the effect of wind speed and specific humidity with a lag of 1 day were only significant in the north. This study could contribute to a tool for the prevention of exacerbations. It also serves as a model for the further evaluation of the impact of meteorological factors on health, and could easily be applied to other diseases or other regions.

  4. Voice Change Due to Paratracheal Air Cysts

    PubMed Central

    Rhee, Youn Ju; Han, Sung Joon; Chong, Yoo Young; Cho, Hyun Jin; Kang, Shin Kwang; Lee, Choong-Sik; Kang, Min-Woong

    2016-01-01

    Paratracheal air cysts are a rare entity in which cystic formation occurs adjacent to the trachea. Most patients with paratracheal air cysts are asymptomatic, and the cysts are detected incidentally on chest radiograph or computed tomography (CT) scan. Most symptomatic patients complain of pulmonary symptoms or repeated respiratory infection. Rarely, the air cysts can lead to paralysis of the recurrent laryngeal nerve as a result of direct compression. We report a case of a 59-year-old male patient who presented with voice change, and the cause was identified as paratracheal air cysts on a chest CT scan. Surgical resection via video-assisted mediastinoscopy was performed, and the voice recovered immediately after the operation. PMID:27525245

  5. Undulator Hall Air Temperature Fault Scenarios

    SciTech Connect

    Sevilla, J.; Welch, J.; /SLAC

    2010-11-17

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  6. Surface Temperature variability from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Dang, V. T.; Aumann, H. H.

    2015-12-01

    To address the existence and possible causes of the climate hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014for the day and night conditions. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We compare the satellite data with the new surface data produced by Karl et al. (2015) who denies the reality of the climate hiatus. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The day-night difference is an indicator of the anthropogenic trend. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  7. Comparison of Air Temperature Calibrations

    NASA Astrophysics Data System (ADS)

    Heinonen, M.; Anagnostou, M.; Bartolo, J.; Bell, S.; Benyon, R.; Bergerud, R. A.; Bojkovski, J.; Böse, N.; Dinu, C.; Smorgon, D.; Flakiewicz, K.; Martin, M. J.; Nedialkov, S.; Nielsen, M. B.; Oğuz Aytekin, S.; Otych, J.; Pedersen, M.; Rujan, M.; Testa, N.; Turzó-András, E.; Vilbaste, M.; White, M.

    2014-07-01

    European national metrology institutes use calibration systems of various types for calibrating thermometers in air. These were compared to each other for the first time in a project organized by the European Association of National Metrology Institutes (EURAMET). This EURAMET P1061 comparison project had two main objectives: (1) to study the equivalence of calibrations performed by different laboratories and (2) to investigate correlations between calibration methods and achievable uncertainties. The comparison was realized using a pair of 100 platinum resistance thermometer probes connected to a digital thermometer bridge as the transfer standard. The probes had different dimensions and surface properties. The measurements covered the temperature range between and , but each laboratory chose a subrange most relevant to its scope and performed measurements at five nominal temperature points covering the subrange. To enable comparison between the laboratories, comparison reference functions were determined using weighted least-squares fitting. Various effects related to variations in heat transfer conditions were demonstrated but clear correlations to specific characteristics of calibration system were not identified. Calibrations in air and liquid agreed typically within at and . Expanded uncertainties determined by the participants ranged from to and they were shown to be realistic in most cases.

  8. Historical Air Temperatures Across the Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Kagawa-Viviani, A.; Giambelluca, T. W.

    2015-12-01

    This study focuses on an analysis of daily temperature from over 290 ground-based stations across the Hawaiian Islands from 1905-2015. Data from multiple stations were used to model environmental lapse rates by fitting linear regressions of mean daily Tmax and Tmin on altitude; piecewise regressions were also used to model the discontinuity introduced by the trade wind inversion near 2150m. Resulting time series of both model coefficients and lapse rates indicate increasing air temperatures near sea level (Tmax: 0.09°C·decade-1 and Tmin: 0.23°C·decade-1 over the most recent 65 years). Evaluation of lapse rates during this period suggest Tmax lapse rates (~0.6°C·100m-1) are decreasing by 0.006°C·100m-1decade-1 due to rapid high elevation warming while Tmin lapse rates (~0.8°C·100m-1) are increasing by 0.002°C·100m-1decade-1 due to the stronger increase in Tmin at sea level versus at high elevation. Over the 110 year period, temperatures tend to vary coherently with the PDO index. Our analysis verifies warming trends and temperature variability identified earlier by analysis of selected index stations. This method also provides temperature time series we propose are more robust to station inhomogeneities.

  9. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James C. R.; Leijnse, Hidde; Steeneveld, Gert-Jan; Horn, Berthold K. P.; Uijlenhoet, Remko

    2014-05-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. It has been shown that a straightforward heat transfer model can be employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. The methodology has been applied to Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree

  10. Human health risks in megacities due to air pollution

    NASA Astrophysics Data System (ADS)

    Gurjar, B. R.; Jain, A.; Sharma, A.; Agarwal, A.; Gupta, P.; Nagpure, A. S.; Lelieveld, J.

    2010-11-01

    This study evaluates the health risks in megacities in terms of mortality and morbidity due to air pollution. A new spreadsheet model, Risk of Mortality/Morbidity due to Air Pollution (Ri-MAP), is used to estimate the excess numbers of deaths and illnesses. By adopting the World Health Organization (WHO) guideline concentrations for the air pollutants SO 2, NO 2 and total suspended particles (TSP), concentration-response relationships and a population attributable-risk proportion concept are employed. Results suggest that some megacities like Los Angeles, New York, Osaka Kobe, Sao Paulo and Tokyo have very low excess cases in total mortality from these pollutants. In contrast, the approximate numbers of cases is highest in Karachi (15,000/yr) characterized by a very high concentration of total TSP (˜670 μg m -3). Dhaka (7000/yr), Beijing (5500/yr), Karachi (5200/yr), Cairo (5000/yr) and Delhi (3500/yr) rank highest with cardiovascular mortality. The morbidity (hospital admissions) due to Chronic Obstructive Pulmonary Disease (COPD) follows the tendency of cardiovascular mortality. Dhaka and Karachi lead the rankings, having about 2100/yr excess cases, while Osaka-Kobe (˜20/yr) and Sao Paulo (˜50/yr) are at the low end of all megacities considered. Since air pollution is increasing in many megacities, and our database of measured pollutants is limited to the period up to 2000 and does not include all relevant components (e.g. O 3), these numbers should be interpreted as lower limits. South Asian megacities most urgently need improvement of air quality to prevent excess mortality and morbidity due to exceptionally high levels of air pollution. The risk estimates obtained from Ri-MAP present a realistic baseline evaluation for the consequences of ambient air pollution in comparison to simple air quality indices, and can be expanded and improved in parallel with the development of air pollution monitoring networks.

  11. Controlled-Temperature Hot-Air Gun

    NASA Technical Reports Server (NTRS)

    Munoz, M. C.

    1986-01-01

    Materials that find applications in wind tunnels first tested in laboratory. Hot-Air Gun differs from commercial units in that flow rate and temperature monitored and controlled. With typical compressed-airsupply pressure of 25 to 38 psi (170 to 260 kPa), flow rate and maximum temperature are 34 stdft3/min (0.96 stdm3/min) and 1,090 degrees F (590 degrees C), respectively. Resembling elaborate but carefully regulated hot-air gun, setup used to apply blasts of air temperatures above 1,500 degrees F (815 degrees C) to test specimens.

  12. Air separation with temperature and pressure swing

    DOEpatents

    Cassano, Anthony A.

    1986-01-01

    A chemical absorbent air separation process is set forth which uses a temperature swing absorption-desorption cycle in combination with a pressure swing wherein the pressure is elevated in the desorption stage of the process.

  13. Air Temperature in the Undulator Hall

    SciTech Connect

    Not Available

    2010-12-07

    Various analyses have been performed recently to estimate the performance of the air conditioning (HVAC) system planned for the Undulator Hall. This reports summarizes the results and provides an upgrade plan to be used if new requirements are needed in the future. The estimates predict that with the planned loads the tunnel air temperature will be well within the allowed tolerance during normal operation.

  14. Quantification and control of the spatiotemporal gradients of air speed and air temperature in an incubator.

    PubMed

    Van Brecht, A; Aerts, J M; Degraeve, P; Berckmans, D

    2003-11-01

    Around the optimal incubator air temperature only small spatiotemporal deviations are allowed. However, air speed and air temperature are not uniformly distributed in the total volume of the incubator due to obstruction of the eggs and egg trays. The objectives of this research were (1) to quantify the spatiotemporal gradients in temperature and velocity and (2) to develop and validate a control algorithm to increase the uniformity in temperature during the entire incubation process. To improve the uniformity of air temperature, the airflow pattern and the air quality need to be controlled more optimally. These data show that the air temperature between the eggs at a certain position in a large incubator is the result of (1) the mean air temperature of the incubator; (2) the exchange of heat between the egg and its micro-environment, which is affected by the air speed at that certain position; (3) the time-variable heat production of the embryo; and (4) the heat influx or efflux as a result from the movement of hot or cold air in the incubator toward that position, which is affected by the airflow pattern. This implies that the airflow pattern needs to be controlled in a more optimal way. To maximize the uniformity of air temperature, an active and adaptive control of the three-dimensional (3-D) airflow pattern has been developed and tested. It was found to improve the spatiotemporal temperature distribution. The chance of having a temperature reading in the interval from 37.5 to 38.1 degrees C increased by 3% compared to normal operating conditions.

  15. Nowcasting daily minimum air and grass temperature

    NASA Astrophysics Data System (ADS)

    Savage, M. J.

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient ( b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  16. High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to

  17. Modeling monthly mean air temperature for Brazil

    NASA Astrophysics Data System (ADS)

    Alvares, Clayton Alcarde; Stape, José Luiz; Sentelhas, Paulo Cesar; de Moraes Gonçalves, José Leonardo

    2013-08-01

    Air temperature is one of the main weather variables influencing agriculture around the world. Its availability, however, is a concern, mainly in Brazil where the weather stations are more concentrated on the coastal regions of the country. Therefore, the present study had as an objective to develop models for estimating monthly and annual mean air temperature for the Brazilian territory using multiple regression and geographic information system techniques. Temperature data from 2,400 stations distributed across the Brazilian territory were used, 1,800 to develop the equations and 600 for validating them, as well as their geographical coordinates and altitude as independent variables for the models. A total of 39 models were developed, relating the dependent variables maximum, mean, and minimum air temperatures (monthly and annual) to the independent variables latitude, longitude, altitude, and their combinations. All regression models were statistically significant ( α ≤ 0.01). The monthly and annual temperature models presented determination coefficients between 0.54 and 0.96. We obtained an overall spatial correlation higher than 0.9 between the models proposed and the 16 major models already published for some Brazilian regions, considering a total of 3.67 × 108 pixels evaluated. Our national temperature models are recommended to predict air temperature in all Brazilian territories.

  18. Air pollution effects due to deregulation of the electric industry

    NASA Astrophysics Data System (ADS)

    Davoodi, Khojasteh Riaz

    ) nuclear sources until the year 2005. Each module was analyzed separately and the result from each module was transferred into the Air Quality Impact model. The model assesses the changes in electricity generation within each module due to deregulation and these changes can then be correlated to the emission of air pollutants in the United States.

  19. Possible rainfall reduction through reduced surface temperatures due to overgrazing

    NASA Technical Reports Server (NTRS)

    Otterman, J.

    1975-01-01

    Surface temperature reduction in terrain denuded of vegetation (as by overgrazing) is postulated to decrease air convection, reducing cloudiness and rainfall probability during weak meteorological disturbances. By reducing land-sea daytime temperature differences, the surface temperature reduction decreases daytime circulation of thermally driven local winds. The described desertification mechanism, even when limited to arid regions, high albedo soils, and weak meteorological disturbances, can be an effective rainfall reducing process in many areas including most of the Mediterranean lands.

  20. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  1. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  2. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  3. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  4. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  5. Urban soil moisture affecting local air temperature

    NASA Astrophysics Data System (ADS)

    Wiesner, Sarah; Ament, Felix; Eschenbach, Annette

    2015-04-01

    of urban land use is not found to be definite. Air temperature (Ta) anomalies of the suburban sites from the inner city site are analysed for several periods and seasons. During daytime a significant annual mean deviation is observed above unsealed, vegetated surfaces from a sealed site during selected relevant days. Remarkably, about a fifth of the variance of the diurnal Ta span, i.e. increase of Ta during the day, is found to be explained by normalized Θ for selected meteorological situations. In this contribution this observed relation between topsoil moisture and air temperature increase during daytime at suburban sites will be presented after describing the local conditions and soil hydrological heterogeneities at the observed urban sites.

  6. Heat tolerance of higher plants cenosis to damaging air temperatures

    NASA Astrophysics Data System (ADS)

    Ushakova, Sofya; Shklavtsova, Ekaterina

    Designing sustained biological-technical life support systems (BTLSS) including higher plants as a part of a photosynthesizing unit, it is important to foresee the multi species cenosis reaction on either stress-factors. Air temperature changing in BTLSS (because of failure of a thermoregulation system) up to the values leading to irreversible damages of photosynthetic processes is one of those factors. However, it is possible to increase, within the certain limits, the plant cenosis tolerance to the unfavorable temperatures’ effect due to the choice of the higher plants possessing resistance both to elevated and to lowered air temperatures. Besides, the plants heat tolerance can be increased when subjecting them during their growing to the hardening off temperatures’ effect. Thus, we have come to the conclusion that it is possible to increase heat tolerance of multi species cenosis under the damaging effect of air temperature of 45 (°) СC.

  7. Air Temperature and Radiation Depressions Associated with a Snow Cover.

    NASA Astrophysics Data System (ADS)

    Baker, Donald G.; Ruschy, David L.; Skaggs, Richard H.; Wall, David B.

    1992-03-01

    An analysis of air temperature and radiation regimes an days with and without a snow cover at the St. Paul, Minnesota, climatological observatory was made based on a 16 December-15 March 23-yr temperature record and a solar and longwave radiation record for 11 of those 23 years. In addition, an overlapping 41-yr temperature record of the Minneapolis-St. Paul National Weather Service Station (MSP) was analyzed for corroboration of the St. Paul temperature results.It was found that both the average maximum and average minimum air temperatures for winter days with a 10-cm or greater snow cover were 8.4°C lower than on the snow-free days. For days with intermediate-depth snow (>0 and <10 cm deep) the depressions of the maximum and minimum temperatures averaged about 2°C less. The temperature depressions at MSP were about 2°C less than at St. Paul for both snow-cover depths, a difference believed to be due to the more urban surroundings at MSP.A difference in the depression of the winter month temperatures was observed at MSP but not at the St. Paul observatory. The St. Paul results were unexpected, since it has been suggested that a greater maximum temperature depression, due to a higher sun, would occur in March than in December.The air temperature depressions compare favorably with the mean 16 December- 15 March radiometrically determined surface temperatures, which indicated that the intermediate snow depth and the 10-cm snow depth were 1O° and 15°C, respectively, colder than the surface free of snow. The mean longwave radiation loss was 3.94 MJ m2 day1 greater from the snow-free surface than from a 10-cm or greater snow cover.

  8. Trends in Surface Temperature from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Aumann, H. H.

    2014-12-01

    To address possible causes of the current hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We find a monotonic positive trend for the land temperature but not for the ocean temperature. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The results are compared with the model studies. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  9. Is Air Temperature Enough to Predict Lake Surface Temperature?

    NASA Astrophysics Data System (ADS)

    Piccolroaz, S.; Toffolon, M.; Majone, B.

    2014-12-01

    Lake surface water (LST) is a key factor that controls most of the physical and ecological processes occurring in lakes. Reliable estimates are especially important in the light of recent studies, which revealed that inland water bodies are highly sensitive to climate, and are rapidly warming throughout the world. However, an accurate estimation of LST usually requires a significant amount of information that is not always available. In this work, we present an application of air2water, a lumped model that simulates LST as a function of air temperature only. In addition, air2water allows for a qualitative evaluation of the depth of the epilimnion during the annual stratification cycle. The model consists in a simplification of the complete heat budget of the well-mixed surface layer, and has a few parameters (from 4 to 8 depending on the version) that summarize the role of the different heat flux components. Model calibration requires only air and water temperature data, possibly covering sufficiently long historical periods in order to capture inter-annual variability and long-term trends. During the calibration procedure, the information included in input data is retrieved to directly inform model parameters, which can be used to classify the thermal behavior of the lake. In order to investigate how thermal dynamics are related to morphological features, the model has been applied to 14 temperate lakes characterized by different morphological and hydrological conditions, by different sources of temperature data (buoys, satellite), and by variable frequency of acquisition. A good agreement between observed and simulated LST has been achieved, with a RMSE in the order of 1°C, which is fully comparable to the performances of more complex process-based models. This application allowed for a deeper understanding of the thermal response of lakes as a function of their morphology, as well as for specific analyses as for example the investigation of the exceptional

  10. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  11. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  12. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  13. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  14. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  15. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  16. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  17. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  18. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  19. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  20. Drag reduction due to interstitial air in a granular medium

    NASA Astrophysics Data System (ADS)

    Homan, Tess; van der Meer, Devaraj

    2013-11-01

    The force experienced by an object while it penetrates a pre-fluidized sand bed strongly depends on the ambient air pressure. In this work we experimentally investigate the influence of interstitial air by systematically varying the penetration velocity and the ambient air pressure and measuring the resulting force required to push the intruder into the sand bed. Counterintuitively, we find that for the intruder to move faster through the bed a lower force is required. We hypothesize that, while the object moves down, sand in front of the intruder is compacted and the air in this compactified region is trapped. At higher penetration velocities air has no time to move out of the way causing a pressure build-up in front of the ball which leads to drag reduction. To test this hypothesis, we perform experiments at reduced ambient air pressures and find that indeed the dependence on the intruder velocity disappears: The measured force is constant and equal to the value of the drag found in the quasi-static limit, which emphasizes the role of air.

  1. Association Between Air Temperature and Cancer Death Rates in Florida

    PubMed Central

    2015-01-01

    Proponents of global warming predict adverse events due to a slight warming of the planet in the last 100 years. This ecological study tests one of the possible arguments that might support the global warming theory – that it may increase cancer death rates. Thus, average daily air temperature is compared to cancer death rates at the county level in a U.S. state, while controlling for variables of smoking, race, and land elevation. The study revealed that lower cancer death rates were associated with warmer temperatures. Further study is indicated to verify these findings. PMID:26674418

  2. Indoor air quality. [Health hazards due to energy conservation measures

    SciTech Connect

    Hollowell, C.D.

    1981-06-01

    Rising energy prices, among other factors, have generated an incentive to reduce ventilation rates and thereby reduce the cost of heating and cooling buildings. Reduced ventilation in buildings may significantly increase exposure to indoor air pollution and perhaps have adverse effects on occupant health and comfort. Preliminary findings suggest that reduced ventilation may adversely affect indoor air quality unless appropriate control strategies are undertaken. The strategies used to control indoor air pollution depend on the specific pollutant or class of pollutants encountered, and differ somewhat depending on whether the application is to an existing building or a new building under design and construction. Whenever possible, the first course of action is prevention or reduction of pollutant emissions at the source. In most buildings, control measures involve a combination of prevention, removal, and suppression. Common sources of indoor air pollution in buildings, the specific pollutants emitted by each source, the potential health effects, and possible control techniques are discussed.

  3. Crop loss due to air pollution in The Netherlands.

    PubMed

    van der Eerden, L J; Tonneijck, A E; Wijnands, J H

    1988-01-01

    The extent of yield reduction and economic loss caused by air pollution has been estimated for The Netherlands. Based on available data on direct effects only, each species was designated as sensitive, moderately sensitive or tolerant. On a nationwide scale, only ozone (O3), sulphur dioxide (SO2), and hydrogen fluoride (HF) exceeded effect thresholds. Effects from pollutant combinations were assumed to be additive. Yield reductions were calculated, using 10 exposure-response relationships and concentration data from the Dutch air pollution monitoring network. Changes in air pollution levels result in changes in supply. By multiplying the supply with the current price, the so-called crop volume was calculated. Subsequently, changes in crop volume were converted into economic terms, taking into account demand elasticity. On the basis of these calculations, air pollution in The Netherlands reduces total crop volume by 5%:3.4% by O3, 1.2% by SO2, and 0.4% by HF. The slope of the nonlinear relationship between crop volume reduction and exposure level increases at higher concentrations. In general, air pollution causes relatively little loss to producers, since yield reductions are largely compensated by higher prices. If air pollution in The Netherlands would be reduced to background concentrations, consumers would experience a net gain of Dfl 640 million (US 320 million dollars). Although large amounts of data were attained through literature and our own experience for this study, many assumptions still had to be made to arrive at these conclusions. With the current available knowledge, validation of our results in the field is not yet possible. PMID:15092562

  4. Possible Economies in Air-Conditioning by Accepting Temperature Swings.

    ERIC Educational Resources Information Center

    Loudon, A. G.; Petherbridge, P.

    Public building air conditioning systems, which use constant and varying heat and cooling loads, are compared and investigated. Experiments indicated that constant temperature controls based on outside air temperature alone were inefficient. Ventilating a building with outside air and the methods of doing so are cited as being the most economical…

  5. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  6. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  7. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  8. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  9. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  10. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  11. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  12. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  13. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  14. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  15. Infant death due to air embolism from peripheral venous infusion.

    PubMed

    Sowell, Matthew W; Lovelady, Cari L; Brogdon, B G; Wecht, Cyril H

    2007-01-01

    An otherwise healthy male infant was brought to the hospital because the mother suspected superficial infection at the operative site 5 days after an inguinal hernia repair. He was admitted to the pediatric unit overnight to be evaluated by his surgeon the next morning. When a venous infusion of maintenance fluids was started, the patient immediately went into cardio-respiratory arrest and was pronounced dead after resuscitation efforts failed. Subsequently, air collections were found in both venous and arterial circulations, including the splenoportal system. Detailed review of the clinical presentation and course, laboratory results, radiological, and pathological findings, along with a review of pertinent literature provides an explanation for the death by air embolism. Apparent inconsistent findings both radiographically and at autopsy are resolved. The mechanism of distribution of air to both systemic and splenoportal circulation is discussed. We believe this to be only the eighth case reported in English-language literature of infantile death from peripheral venous infusion. In all age groups, we find only six other cases in the English-language literature of gas found concomitantly in both the systemic and portal venous systems. PMID:17209934

  16. Room temperature ferromagnetism in Teflon due to carbon dangling bonds.

    PubMed

    Ma, Y W; Lu, Y H; Yi, J B; Feng, Y P; Herng, T S; Liu, X; Gao, D Q; Xue, D S; Xue, J M; Ouyang, J Y; Ding, J

    2012-03-06

    The ferromagnetism in many carbon nanostructures is attributed to carbon dangling bonds or vacancies. This provides opportunities to develop new functional materials, such as molecular and polymeric ferromagnets and organic spintronic materials, without magnetic elements (for example, 3d and 4f metals). Here we report the observation of room temperature ferromagnetism in Teflon tape (polytetrafluoroethylene) subjected to simple mechanical stretching, cutting or heating. First-principles calculations indicate that the room temperature ferromagnetism originates from carbon dangling bonds and strong ferromagnetic coupling between them. Room temperature ferromagnetism has also been successfully realized in another polymer, polyethylene, through cutting and stretching. Our findings suggest that ferromagnetism due to networks of carbon dangling bonds can arise in polymers and carbon-based molecular materials.

  17. Sensitivity of New England Stream Temperatures to Air Temperature and Precipitation Under Projected Climate

    NASA Astrophysics Data System (ADS)

    Huang, T.; Samal, N. R.; Wollheim, W. M.; Stewart, R. J.; Zuidema, S.; Prousevitch, A.; Glidden, S.

    2015-12-01

    The thermal response of streams and rivers to changing climate will influence aquatic habitat. This study examines the impact that changing climate has on stream temperatures in the Merrimack River, NH/MA USA using the Framework for Aquatic Modeling in the Earth System (FrAMES), a spatially distributed river network model driven by air temperature, air humidity, wind speed, precipitation, and solar radiation. Streamflow and water temperatures are simulated at a 45-second (latitude x longitude) river grid resolution for 135 years under historical and projected climate variability. Contemporary streamflow (Nash-Sutcliffe Coefficient = 0.77) and river temperatures (Nash-Sutcliffe Coefficient = 0.89) matched at downstream USGS gauge data well. A suite of model runs were made in combination with uniformly increased daily summer air temperatures by 2oC, 4 oC and 6 oC as well as adjusted precipitation by -40%, -30%, -20%, -10% and +10% as a sensitivity analysis to explore a broad range of potential future climates. We analyzed the summer stream temperatures and the percent of river length unsuitable for cold to warm water fish habitats. Impacts are greatest in large rivers due to the accumulation of river temperature warming throughout the entire river network. Cold water fish (i.e. brook trout) are most strongly affected while, warm water fish (i.e. largemouth bass) aren't expected to be impacted. The changes in stream temperatures under various potential climate scenarios will provide a better understanding of the specific impact that air temperature and precipitation have on aquatic thermal regimes and habitat.

  18. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  19. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  20. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  1. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  2. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  3. Air traffic disturbance due to the 2010 Merapi volcano eruption

    NASA Astrophysics Data System (ADS)

    Picquout, A.; Lavigne, F.; Mei, E. T. W.; Grancher, D.; Noer, Cholik; Vidal, C. M.; Hadmoko, D. S.

    2013-07-01

    The 2010 Merapi eruption was exceptional on several levels (intensity of the eruption, destructions, casualties…) and for the first time, created major air traffic disruptions in Yogyakarta, leading to the closure of the airport. Some companies suspended their flights, others adapted to the crisis by transferring their flights to other airports, and some companies even continued to fly despite the risks involved. Four major phases emerged; first, a few days corresponding to the rise of the activity of the eruption, a second corresponding to the start of the eruption and first ash emissions. Then, a third peak marked by the eruption which led to the closure of the Yogyakarta airport for 15 days and finally, a fourth one-month-long phase where airport activity returned to normal. We studied the evolution of disturbances on the field and the correlation between volcanic activity and flight cancelations. Adaptations between airports were observed, Adisucipto Airport (Yogyakarta) transferred several of its flights to the Adi Soemarmo of Surakarta airport and it transferred its flights to Ahmad Yani Airport in Semarang and Juanda in Surabaya. Moreover, the eruption disrupted the pilgrimage to Mecca for thousands of Muslims who had waited and saved for years to be able to go. Nevertheless, the organizers coped with the crisis by changing departure airports for the pilgrimage. This study allowed us to understand the impacts of a major Merapi eruption on air transport, from the onset of ash emissions until the late disturbances.

  4. Extracting changes in air temperature using acoustic coda phase delays.

    PubMed

    Marcillo, Omar; Arrowsmith, Stephen; Whitaker, Rod; Morton, Emily; Scott Phillips, W

    2014-10-01

    Blast waves produced by 60 high-explosive detonations were recorded at short distances (few hundreds of meters); the corresponding waveforms show charge-configuration independent coda-like features (i.e., similar shapes, amplitudes, and phases) lasting several seconds. These features are modeled as reflected and/or scattered waves by acoustic reflectors/scatters surrounding the explosions. Using explosion pairs, relative coda phase delays are extracted and modeled as changes in sound speed due to changes in air temperature. Measurements from nearby weather towers are used for validation. PMID:25324115

  5. Air-bubble entrapment due to a drop

    NASA Astrophysics Data System (ADS)

    Ootsuka, Nao; Etoh, Takeharu G.; Takehara, Kohsei; Oki, Sachio; Takano, Yasuhide; Hatsuki, Yuya; Thoroddsen, Sigurdur T.

    2005-03-01

    In 2001, an ultra-high-speed video camera of 1,000,000 frames per second was developed in Hydraulics Laboratory of Kinki University. The image sensor of the camera was the ISIS-V2, the In-situ Storage Image Sensor-Version 2. The camera has been applied to visualization of high-speed phenomena in various fields of science and engineering. We observed entrapment phenomena of bubbles resulting from thermal spraying of metals. Thermal spraying is used to improve solid surfaces by spraying melted metal or ceramic particles to the surfaces. One of the problems relating to the thermal spraying is entrapment of air bubbles under the metal or ceramic layers covering the solid surfaces. The bubbles decrease bonding strength of the layers made by the thermal spraying. The entrapment processes were successfully visualized by application of the ultra-high-speed video camera.

  6. Air pollution and health risks due to vehicle traffic.

    PubMed

    Zhang, Kai; Batterman, Stuart

    2013-04-15

    Traffic congestion increases vehicle emissions and degrades ambient air quality, and recent studies have shown excess morbidity and mortality for drivers, commuters and individuals living near major roadways. Presently, our understanding of the air pollution impacts from congestion on roads is very limited. This study demonstrates an approach to characterize risks of traffic for on- and near-road populations. Simulation modeling was used to estimate on- and near-road NO2 concentrations and health risks for freeway and arterial scenarios attributable to traffic for different traffic volumes during rush hour periods. The modeling used emission factors from two different models (Comprehensive Modal Emissions Model and Motor Vehicle Emissions Factor Model version 6.2), an empirical traffic speed-volume relationship, the California Line Source Dispersion Model, an empirical NO2-NOx relationship, estimated travel time changes during congestion, and concentration-response relationships from the literature, which give emergency doctor visits, hospital admissions and mortality attributed to NO2 exposure. An incremental analysis, which expresses the change in health risks for small increases in traffic volume, showed non-linear effects. For a freeway, "U" shaped trends of incremental risks were predicted for on-road populations, and incremental risks are flat at low traffic volumes for near-road populations. For an arterial road, incremental risks increased sharply for both on- and near-road populations as traffic increased. These patterns result from changes in emission factors, the NO2-NOx relationship, the travel delay for the on-road population, and the extended duration of rush hour for the near-road population. This study suggests that health risks from congestion are potentially significant, and that additional traffic can significantly increase risks, depending on the type of road and other factors. Further, evaluations of risk associated with congestion must

  7. Controls of air temperature variability over an Alpine Glacier

    NASA Astrophysics Data System (ADS)

    Shaw, Thomas; Brock, Ben; Ayala, Álvaro; Rutter, Nick

    2016-04-01

    Near surface air temperature (Ta) is one of the most important controls on energy exchange between a glacier surface and the overlying atmosphere. However, not enough detail is known about the controls on Ta across a glacier due to sparse data availability. Recent work has provided insights into variability of Ta along glacier centre-lines in different parts of the world, yet there is still a limited understanding of off-centreline variability in Ta and how best to estimate it from distant off-glacier locations. We present a new dataset of distributed 2m Ta records for the Tsanteleina Glacier in Northwest Italy from July-September, 2015. Data provide detailed information of lateral (across-glacier) and centre-line variations in Ta, with ~20,000 hourly observations from 17 locations. The suitability of different vertical temperature gradients (VTGs) in estimating air temperature is considered under a range of meteorological conditions and from different forcing locations. A key finding is that local VTGs account for a lot of Ta variability under a broad range of climatic conditions. However, across-glacier variability is found to be significant, particularly for high ambient temperatures and for localised topographic depressions. The relationship of spatial Ta patterns with regional-scale reanalysis data and alternative Ta estimation methodologies are also presented. This work improves the knowledge of local scale Ta variations and their importance to melt modelling.

  8. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to air conditioning leakage. 86.166-12 Section 86.166-12 Protection of Environment ENVIRONMENTAL... for calculating emissions due to air conditioning leakage. This section describes procedures used to determine a refrigerant leakage rate in grams per year from vehicle-based air conditioning units....

  9. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to air conditioning leakage. 86.166-12 Section 86.166-12 Protection of Environment ENVIRONMENTAL... for calculating emissions due to air conditioning leakage. This section describes procedures used to determine a refrigerant leakage rate in grams per year from vehicle-based air conditioning units....

  10. Scuba diver deaths due to air embolism: two case reports.

    PubMed

    Türkmen, Nursel; Akan, Okan; Cetin, Selçuk; Eren, Bülent; Gürses, Murat Serdar; Gündoğmuş, Umit Naci

    2013-04-01

    Barotraumas and decompression sickness are the two most well-known complications of diving. First presented case was 32 year-old male with recreational diver, who was found floating prone position on the bottom of sea in a depth of 33 m. He had been carried to the surface in a controlled ascent. Second case was a 39 year-old male experienced dive instructor in a diving school, after following an uneventful duration of dive was found unconscious with a floating supine position in a depth of 30 m and there were no signs of life when they were transported to the hospital. Extensive subcutaneous emphysema of the extremities was detected by palpation of the skin. In the autopsy diffuse gas bubbles like beads were seen in the coronary arteries and in ventricles, basilar artery and all of the cerebral arteries. The cause of death was attributed due to gas embolism and drowning.

  11. Moisture Risk in Unvented Attics Due to Air Leakage Paths

    SciTech Connect

    Prahl, D.; Shaffer, M.

    2014-11-01

    IBACOS completed an initial analysis of moisture damage potential in an unvented attic insulated with closed-cell spray polyurethane foam. To complete this analysis, the research team collected field data, used computational fluid dynamics to quantify the airflow rates through individual airflow (crack) paths, simulated hourly flow rates through the leakage paths with CONTAM software, correlated the CONTAM flow rates with indoor humidity ratios from Building Energy Optimization software, and used Warme und Feuchte instationar Pro two-dimensional modeling to determine the moisture content of the building materials surrounding the cracks. Given the number of simplifying assumptions and numerical models associated with this analysis, the results indicate that localized damage due to high moisture content of the roof sheathing is possible under very low airflow rates. Reducing the number of assumptions and approximations through field studies and laboratory experiments would be valuable to understand the real-world moisture damage potential in unvented attics.

  12. Moisture Risk in Unvented Attics Due to Air Leakage Paths

    SciTech Connect

    Prahl, D.; Shaffer, M.

    2014-11-01

    IBACOS completed an initial analysis of moisture damage potential in an unvented attic insulated with closed-cell spray polyurethane foam. To complete this analysis, the research team collected field data, used computational fluid dynamics to quantify the airflow rates through individual airflow (crack) paths, simulated hourly flow rates through the leakage paths with CONTAM software, correlated the CONTAM flow rates with indoor humidity ratios from Building Energy Optimization software, and used Wärme und Feuchte instationär Pro two-dimensional modeling to determine the moisture content of the building materials surrounding the cracks. Given the number of simplifying assumptions and numerical models associated with this analysis, the results indicate that localized damage due to high moisture content of the roof sheathing is possible under very low airflow rates. Reducing the number of assumptions and approximations through field studies and laboratory experiments would be valuable to understand the real-world moisture damage potential in unvented attics.

  13. Soil temperature regime and vulnerability due to extreme soil temperatures in Croatia

    NASA Astrophysics Data System (ADS)

    Sviličić, Petra; Vučetić, Višnja; Filić, Suzana; Smolić, Ante

    2016-10-01

    Soil temperature is an important factor within the climate system. Changes of trends in soil temperature and analysis of vulnerability due to heat stress can provide useful information on climate change. In this paper, the soil temperature regime was analyzed on seasonal and annual scales at depths of 2, 5, 10, 20, 30, and 50 cm at 26 sites in Croatia. Trends of maximal, mean, and minimal soil temperatures were analyzed in the periods 1961-2010 and 1981-2010. Duration of extreme soil temperatures and vulnerability due to high or low soil temperatures in the recent standard period 1981-2010 was compared with the reference climate period 1961-1990. The results show a general warming in all seasons and depths for maximal and mean temperatures in both observed periods, while only at some locations for minimal soil temperature. Warming is more pronounced in the eastern and coastal parts of Croatia in the surface layers, especially in the spring and summer season in the second period. Significant trends of maximal, minimal, and mean soil temperature in both observed periods range from 2.3 to 6.6 °C/decade, from -1.0 to 1.3 °C/decade, and from 0.1 to 2.5 °C/decade, respectively. The highest vulnerability due to heat stress at 35 °C is noted in the upper soil layers of the coastal area in both observed periods. The mountainous and northwestern parts of Croatia at surface soil layers are the most vulnerable due to low soil temperature below 0 °C. Vulnerability due to high or low soil temperature decreases with depth.

  14. Soil temperature regime and vulnerability due to extreme soil temperatures in Croatia

    NASA Astrophysics Data System (ADS)

    Sviličić, Petra; Vučetić, Višnja; Filić, Suzana; Smolić, Ante

    2015-08-01

    Soil temperature is an important factor within the climate system. Changes of trends in soil temperature and analysis of vulnerability due to heat stress can provide useful information on climate change. In this paper, the soil temperature regime was analyzed on seasonal and annual scales at depths of 2, 5, 10, 20, 30, and 50 cm at 26 sites in Croatia. Trends of maximal, mean, and minimal soil temperatures were analyzed in the periods 1961-2010 and 1981-2010. Duration of extreme soil temperatures and vulnerability due to high or low soil temperatures in the recent standard period 1981-2010 was compared with the reference climate period 1961-1990. The results show a general warming in all seasons and depths for maximal and mean temperatures in both observed periods, while only at some locations for minimal soil temperature. Warming is more pronounced in the eastern and coastal parts of Croatia in the surface layers, especially in the spring and summer season in the second period. Significant trends of maximal, minimal, and mean soil temperature in both observed periods range from 2.3 to 6.6 °C/decade, from -1.0 to 1.3 °C/decade, and from 0.1 to 2.5 °C/decade, respectively. The highest vulnerability due to heat stress at 35 °C is noted in the upper soil layers of the coastal area in both observed periods. The mountainous and northwestern parts of Croatia at surface soil layers are the most vulnerable due to low soil temperature below 0 °C. Vulnerability due to high or low soil temperature decreases with depth.

  15. Temperature Increase due to the Permafrost Carbon Feedback

    NASA Astrophysics Data System (ADS)

    Jafarov, E. E.; Schaefer, K. M.

    2015-12-01

    The Permafrost Carbon Feedback (PCF) is the amplification of anthropogenic warming due to carbon dioxide (CO2) and methane (CH4) emissions from thawing permafrost. It is estimated that permafrost-affected soils store two times more of the organic carbon that is currently available in the atmosphere. Thawing of near surface permafrost will lead to irreversible changes for environment including its feedback on the global temperatures. Previous studies of the PCF indicate emissions from thawing permafrost will start sometime in the middle of this century with a total of 120 ± 85 Gt of carbon by 2100, resulting in a global temperature increase of 0.29 ± 0.21 °C. The northern high latitudes will remain relatively cold and wet with slow permafrost degradation and even slower organic matter decay, resulting in a PCF that will persist for centuries. Few studies included projections beyond 2100, but those that did indicate 50% to 60% of the emissions will occur after. What will be the impact of the PCF on global climate beyond 2100? How much warming from the PCF have we already committed to, even if we reach the 2 °C warming target above pre-industrial levels by 2100?

  16. Dirty air, dirty power. Mortality and health damage due to air pollution from power plants

    SciTech Connect

    Schneider, Conrad G.; Padian, M.

    2004-06-15

    The Clean Air Task Force commissioned Abt Associates, the consulting firm relied upon by US EPA to assess the health benefits of many of the agency's air regulatory programs. The report documents the asthma attacks, hospitalisations, lost work and school days, and premature deaths linked to pollution from power plants. A first report was released in 2000. The 2004 report documents for the first time the number of heart attacks and lung cancer deaths that would be caused by power plants in 2010 and 2020. It compares the premature deaths that would result under the Bush administration's air pollution plan, the existing US Clean Air Act, and a proposal sponsored by Senator Jim Jeffords to strengthen the Clean Air Act. In general it was found that the administration's plan would produce the fewest benefits. The full study is available from the EPA, abstracted separately on the Coal Abstracts database. 65 refs., 2 apps.

  17. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

  18. Low temperature air with high IAQ for dry climates

    SciTech Connect

    Scofield, C.M. ); Des Champs, N.H. )

    1995-01-01

    This article describes how low temperature supply air and air-to-air heat exchangers can furnish 100% outdoor air with reduced peak energy demands. The use of low temperature supply air systems in arid climates greatly simplifies the air-conditioning design. Risks associated with moisture migration and sweating of duct and terminal equipment are reduced. Insulation and vapor barrier design requirements are not nearly as critical as they are in the humid, ambient conditions that exist in the eastern United States. The introduction of outdoor air to meet ASHRAE Standard 62-1989 becomes far less taxing on the mechanical cooling equipment because of the lower enthalpy levels of the dry western climate. Energy costs to assure indoor air quality (IAQ) are lower than for more tropical climates. In arid regions, maintaining acceptable indoor relative humidity (RH) levels becomes a major IAQ concern. For the western United States, coupling an air-to-air heat exchanger to direct (adiabatic) evaporative coolers can greatly reduce low temperature supply air refrigeration energy requirements and winter humidification costs while ensuring proper ventilation.

  19. Influence of temperature changes on ambient air NOx chemiluminescence measurements.

    PubMed

    Miñarro, Marta Doval; Ferradás, Enrique González; Martínez, Francisco J Marzal

    2012-09-01

    Users of automatic air pollution monitors are largely unaware of how certain parameters, like temperature, can affect readings. The present work examines the influence of temperature changes on chemiluminescence NO(x) measurements made with a Thermo Scientific 42i analyzer, a model widely used in air monitoring networks and air pollution studies. These changes are grouped into two categories according to European Standard EN 14211: (1) changes in the air surrounding the analyzers and (2) changes in the sampled air. First, the sensitivity tests described in Standard EN 14211 were performed to determine whether the analyzer performance was adapted to the requirements of the standard. The analyzer met the performance criteria of both tests; however, some differences were detected in readings with temperature changes even though the temperature compensator was on. Sample temperature changes were studied more deeply as they were the most critical (they cannot be controlled and differences of several tens of degrees can be present in a single day). Significant differences in readings were obtained when changing sample temperature; however, maximum deviations were around 3% for temperature ranges of 15°C. If other possible uncertainty contributions are controlled and temperature variations with respect to the calibration temperature are not higher than 15°C, the effect of temperature changes could be acceptable and no data correction should have to be applied. PMID:21964932

  20. Solar Eclipse Effect on Shelter Air Temperature

    NASA Technical Reports Server (NTRS)

    Segal, M.; Turner, R. W.; Prusa, J.; Bitzer, R. J.; Finley, S. V.

    1996-01-01

    Decreases in shelter temperature during eclipse events were quantified on the basis of observations, numerical model simulations, and complementary conceptual evaluations. Observations for the annular eclipse on 10 May 1994 over the United States are presented, and these provide insights into the temporal and spatial changes in the shelter temperature. The observations indicated near-surface temperature drops of as much as 6 C. Numerical model simulations for this eclipse event, which provide a complementary evaluation of the spatial and temporal patterns of the temperature drops, predict similar decreases. Interrelationships between the temperature drop, degree of solar irradiance reduction, and timing of the peak eclipse are also evaluated for late spring, summer, and winter sun conditions. These simulations suggest that for total eclipses the drops in shelter temperature in midlatitudes can be as high as 7 C for a spring morning eclipse.

  1. Impacts of wind farms on surface air temperatures

    PubMed Central

    Baidya Roy, Somnath; Traiteur, Justin J.

    2010-01-01

    Utility-scale large wind farms are rapidly growing in size and numbers all over the world. Data from a meteorological field campaign show that such wind farms can significantly affect near-surface air temperatures. These effects result from enhanced vertical mixing due to turbulence generated by wind turbine rotors. The impacts of wind farms on local weather can be minimized by changing rotor design or by siting wind farms in regions with high natural turbulence. Using a 25-y-long climate dataset, we identified such regions in the world. Many of these regions, such as the Midwest and Great Plains in the United States, are also rich in wind resources, making them ideal candidates for low-impact wind farms. PMID:20921371

  2. Comparison of MODIS Land Surface Temperature and Air Temperature over the Continental USA Meteorological Stations

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Bounoua, Lahouari; Imhoff, Marc L.; Wolfe, Robert E.; Thome, Kurtis

    2014-01-01

    The National Land Cover Database (NLCD) Impervious Surface Area (ISA) and MODIS Land Surface Temperature (LST) are used in a spatial analysis to assess the surface-temperature-based urban heat island's (UHIS) signature on LST amplitude over the continental USA and to make comparisons to local air temperatures. Air-temperature-based UHIs (UHIA), calculated using the Global Historical Climatology Network (GHCN) daily air temperatures, are compared with UHIS for urban areas in different biomes during different seasons. NLCD ISA is used to define urban and rural temperatures and to stratify the sampling for LST and air temperatures. We find that the MODIS LST agrees well with observed air temperature during the nighttime, but tends to overestimate it during the daytime, especially during summer and in nonforested areas. The minimum air temperature analyses show that UHIs in forests have an average UHIA of 1 C during the summer. The UHIS, calculated from nighttime LST, has similar magnitude of 1-2 C. By contrast, the LSTs show a midday summer UHIS of 3-4 C for cities in forests, whereas the average summer UHIA calculated from maximum air temperature is close to 0 C. In addition, the LSTs and air temperatures difference between 2006 and 2011 are in agreement, albeit with different magnitude.

  3. Retrieval of air temperatures from crowd-sourced battery temperatures of cell phones

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James; Leijnse, Hidde; Uijlenhoet, Remko; Steeneveld, Gert-Jan; Horn, Berthold K. P.

    2013-04-01

    Accurate air temperature observations are important for urban meteorology, for example to study the urban heat island and adverse effects of high temperatures on human health. The number of available temperature observations is often relatively limited. A new development is presented to derive temperature information for the urban canopy from an alternative source: cell phones. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. Results are presented for Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree Celsius. This shows that monitoring air temperatures employing an Android application holds great promise. Since 75% of the world's population has a cell phone, 20% of the land surface of the earth has cellular telephone coverage, and 500 million devices use the Android operating system, there is a huge potential for measuring air temperatures employing cell phones. This could eventually lead to real-time world-wide temperature maps.

  4. Associations of endothelial function and air temperature in diabetic subjects

    EPA Science Inventory

    Background and Objective: Epidemiological studies consistently show that air temperature is associated with changes in cardiovascular morbidity and mortality. However, the biological mechanisms underlying the association remain largely unknown. As one index of endothelial functio...

  5. Temperature dependent surface modification of molybdenum due to low energy He+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Tripathi, J. K.; Novakowski, T. J.; Joseph, G.; Linke, J.; Hassanein, A.

    2015-09-01

    In this paper, we report on the temperature dependent surface modifications in molybdenum (Mo) samples due to 100 eV He+ ion irradiation in extreme conditions as a potential candidate to plasma-facing components in fusion devices alternative to tungsten. The Mo samples were irradiated at normal incidence, using an ion fluence of 2.6 × 1024 ions m-2 (with a flux of 7.2 × 1020 ions m-2 s-1). Surface modifications have been studied using high-resolution field emission scanning electron-(SEM) and atomic force (AFM) microscopy. At 773 K target temperature homogeneous evolution of molybdenum nanograins on the entire Mo surface were observed. However, at 823 K target temperature appearance of nano-pores and pin-holes nearby the grain boundaries, and Mo fuzz in patches were observed. The fuzz density increases significantly with target temperatures and continued until 973 K. However, at target temperatures beyond 973 K, counterintuitively, a sequential reduction in the fuzz density has been seen till 1073 K temperatures. At 1173 K and above temperatures, only molybdenum nano structures were observed. Our temperature dependent studies confirm a clear temperature widow, 823-1073 K, for Mo fuzz formation. Ex-situ high resolution X-ray photoelectron spectroscopy studies on Mo fuzzy samples show the evidence of MoO3 3d doublets. This elucidates that almost all the Mo fuzz were oxidized during open air exposure and are thick enough as well. Likewise the microscopy studies, the optical reflectivity measurements also show a sequential reduction in the reflectivity values (i.e., enhancement in the fuzz density) up to 973 K and after then a sequential enhancement in the reflectivity values (i.e., reduction in the fuzz density) with target temperatures. This is in well agreement with microscopy studies where we observed clear temperature window for Mo fuzz growth.

  6. Heliotropic leaf movements in common beans controlled by air temperature.

    PubMed

    Fu, Q A; Ehleringer, J R

    1989-11-01

    Heliotropic leaf movements were examined in common beans (Phaseolus vulgaris cv Blue Lake Bush) under outdoor and laboratory conditions. Heliotropic leaf movements in well-watered plants were partly controlled by temperature, and appeared to be independent of atmospheric humidity and CO(2) concentration. When environmental conditions were held constant in the laboratory, increased air temperature caused bean leaves to orient more obliquely to a light source. Ambient CO(2), intercellular CO(2), and net photosynthesis were not correlated with the temperature-induced changes in heliotropic movements, nor did they significantly affect these movements directly. The effect of air temperature on leaf movements need not be mediated through a change in leaf water potential, transpiration, or leaf conductance. Air temperature modified laminar orientation in light through its effect on tissue temperature in the pulvinal region, not that of the lamina or petiole. However, under darkness the temperature effects on leaf movements were not expressed. Active heliotropic movements in response to air temperature allowed lamina temperature to remain close to the thermal optimum of photosynthesis. This temperature effect underlies a commonly observed pattern of leaf movements under well-watered conditions: a tendency for leaves to face the sun more obliquely on hot days than cool days. PMID:16667127

  7. Hypothetical air ingress scenarios in advanced modular high temperature gas cooled reactors

    SciTech Connect

    Kroeger, P.G.

    1988-01-01

    Considering an extremely hypothetical scenario of complete cross duct failure and unlimited air supply into the reactor vessel of a modular high temperature gas cooled ractor, it is found that the potential air inflow remains limited due to the high friction pressure drop through the active core. All incoming air will be oxidized to CO and some local external burning would be temporarily possible in such a scenario. The accident would have to continue with unlimited air supply for hundreds of hours before the core structural integrity would be jeopardized.

  8. Variability in surface meteorology and air-sea fluxes due to cumulus convective systems observed during CINDY/DYNAMO

    NASA Astrophysics Data System (ADS)

    Yokoi, Satoru; Katsumata, Masaki; Yoneyama, Kunio

    2014-03-01

    This study examines the variability in surface meteorological parameters and air-sea heat fluxes due to cold pools emanating from cumulus convective systems observed over the tropical Indian Ocean in November 2011. In particular, this study focuses on convective systems that are spatially smaller than mesoscale convective systems in a southeasterly trade wind environment. Composite analyses of convectively active periods show an increase in the sensible heat flux by 15-20 W m-2 that is primarily attributed to an increase in the difference between the surface air temperature and sea surface temperature and an increase in the latent heat flux by 30-70 W m-2 due to enhanced surface wind speeds. A succession of convectively active periods leads to a greater influence than those occurring independently. The direction of the surface wind velocity anomaly due to cold pools tends to be close to that of the environmental wind velocity, resulting in an efficient enhancement of wind speed. This study also demonstrates the close relation between cold pool intensities and convective activity. In particular, two measures of cold pool intensity, a minimum surface air temperature and a maximum amount of surface wind speed enhancement, are correlated with each other and with the convective activity around the observation point measured by radar-estimated rainfall and radar echo coverage.

  9. Lessons Learned from AIRS: Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2011-01-01

    This slide presentation reviews the use of shortwave channels available to the Atmospheric Infrared Sounder (AIRS) to improve the determination of surface and atmospheric temperatures. The AIRS instrument is compared with the Infrared Atmospheric Sounding Interferometer (IASI) on-board the MetOp-A satellite. The objectives of the AIRS/AMSU were to (1) provide real time observations to improve numerical weather prediction via data assimilation, (2) Provide observations to measure and explain interannual variability and trends and (3) Use of AIRS product error estimates allows for QC optimized for each application. Successive versions in the AIRS retrieval methodology have shown significant improvement.

  10. Effect of Initial Mixture Temperature on Flame Speed of Methane-Air, Propane-Air, and Ethylene-Air Mixtures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L

    1952-01-01

    Flame speeds based on the outer edge of the shadow cast by the laminar Bunsen cone were determined as functions of composition for methane-air mixtures at initial mixture temperatures ranging from -132 degrees to 342 degrees c and for propane-air and ethylene-air mixtures at initial mixture temperatures ranging from -73 degrees to 344 degrees c. The data showed that maximum flame speed increased with temperature at an increasing rate. The percentage change in flame speed with change in initial temperature for the three fuels followed the decreasing order, methane, propane, and ethylene. Empirical equations were determined for maximum flame speed as a function of initial temperature over the temperature range covered for each fuel. The observed effect of temperature on flame speed for each of the fuels was reasonably well predicted by either the thermal theory as presented by Semenov or the square-root law of Tanford and Pease.

  11. Geographical and Geomorphological Effects on Air Temperatures in the Columbia Basin's Signature Vineyards

    NASA Astrophysics Data System (ADS)

    Olson, L.; Pogue, K. R.; Bader, N.

    2012-12-01

    controlled by elevation. In some AVAs, such as Walla Walla Valley and Red Mountain, average air temperatures increased with elevation because of the effect of cold air pooling on valley floors. In other AVAs, such as Horse Heaven Hills, Lake Chelan and Columbia Gorge, average temperatures decreased with elevation due to the moderating influences of the Columbia River and Lake Chelan. Other temperature statistics, including average diurnal range and maximum and minimum temperature, were influenced by relative topography, including local topography and slope. Vineyards with flat slopes that had low elevations relative to their surroundings had larger diurnal variations and lower maximum and minimum temperatures than vineyards with steeper slopes that were high relative to their surroundings.

  12. Errors of five-day mean surface wind and temperature conditions due to inadequate sampling

    NASA Technical Reports Server (NTRS)

    Legler, David M.

    1991-01-01

    Surface meteorological reports of wind components, wind speed, air temperature, and sea-surface temperature from buoys located in equatorial and midlatitude regions are used in a simulation of random sampling to determine errors of the calculated means due to inadequate sampling. Subsampling the data with several different sample sizes leads to estimates of the accuracy of the subsampled means. The number N of random observations needed to compute mean winds with chosen accuracies of 0.5 (N sub 0.5) and 1.0 (N sub 1,0) m/s and mean air and sea surface temperatures with chosen accuracies of 0.1 (N sub 0.1) and 0.2 (N sub 0.2) C were calculated for each 5-day and 30-day period in the buoy datasets. Mean values of N for the various accuracies and datasets are given. A second-order polynomial relation is established between N and the variability of the data record. This relationship demonstrates that for the same accuracy, N increases as the variability of the data record increases. The relationship is also independent of the data source. Volunteer-observing ship data do not satisfy the recommended minimum number of observations for obtaining 0.5 m/s and 0.2 C accuracy for most locations. The effect of having remotely sensed data is discussed.

  13. Temperature distribution of air source heat pump barn with different air flow

    NASA Astrophysics Data System (ADS)

    He, X.; Li, J. C.; Zhao, G. Q.

    2016-08-01

    There are two type of airflow form in tobacco barn, one is air rising, the other is air falling. They are different in the structure layout and working principle, which affect the tobacco barn in the distribution of temperature field and velocity distribution. In order to compare the temperature and air distribution of the two, thereby obtain a tobacco barn whose temperature field and velocity distribution are more uniform. Taking the air source heat pump tobacco barn as the investigated subject and establishing relevant mathematical model, the thermodynamics of the two type of curing barn was analysed and compared based on Fluent. Provide a reasonable evidence for chamber arrangement and selection of outlet for air source heat pump tobacco barn.

  14. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  15. Improving Forecast Skill by Assimilation of AIRS Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The AIRS Version 5 retrieval algorithm, is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates delta T(p) for retrieved quantities and the use of these error estimates for Quality Control. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 deg. latitude X 0.67 deg longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates delta (p) were used as the uncertainty for each measurement in the data assimilation process. We compared forecasts analyses generated from the analyses done by assimilation of AIRS temperature profiles with three different sets of thresholds; Standard, Medium, and Tight. Assimilation of Quality Controlled AIRS temperature profiles significantly improve 5-7 day forecast skill compared to that obtained without the benefit of AIRS data in all of the cases studied. In addition, assimilation of Quality Controlled AIRS temperature soundings performs better than assimilation of AIRS observed radiances. Based on the experiments shown, Tight Quality Control of AIRS temperature profile performs best

  16. Annoyance due to noise and air pollution to the residents of heavily frequented streets

    NASA Technical Reports Server (NTRS)

    Wanner, H. U.; Wehrli, B.; Nemecek, J.; Turrian, V.

    1980-01-01

    The residents of different streets with varying traffic density and building density were questioned about annoyance due to traffic noise and air pollution. Results show that annoyance felt is dependent not only on the measured noise levels and/or air pollution concentrations, but that there do exist interactions between the residential quarters and annoyance. These interactions should be considered when fixing the limits and standards.

  17. Wear Potential Due to Low EHD Films During Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Leville, Alan; Ward, Peter

    2014-01-01

    An earlier study showed that EHD films could be accurately measured in a running bearing and that the EHD film eventually runs-in to a steady state value [1]. In the present paper, we report on additional tests conducted on bearings with more lubricants, wider speeds, and higher temperatures. The new results consistently show that all lubricants tested, including MAC-based lubricants have EHD film levels that are lower than model predictions in some situations. In addition, the MAC lubricants studied have lower film thickness than traditional hydrocarbons. Figure 1 is taken from [1] and shows room temperature data of MAC oil and Corey 100 oil, illustrating the smaller EHD film results when using this MAC oil. Since higher temperatures produce lower films by changing the viscosity, the concern we have is that the EHD films may be too small to prevent ball/race metal contact and resulting wear at lower speeds. Best bearing practices would have the EHD film thickness be at least three (3) times the composite surface roughness. In this paper, we will present measured EHD thicknesses of lubricant films at speeds up to several thousand RPM for bearing bore sizes from as low as 6 mm (0.2 in) to as large as 35 mm (1.4 in) using MAC, Corey and KG-80. Ambient temperatures from room temperature to 52C (125F) are used. Testing was done with the base oils as well as formulated greases. Greases eventually ran in to the same EHD values as the base oil but took longer times to get there. The results clearly indicate that wear is very possible in all steel bearings when using MAC lubricants and that this condition worsens with higher temperatures and smaller bearing size.

  18. Temperature and concentration transients in the aluminum-air battery

    SciTech Connect

    Homsy, R.V.

    1981-08-26

    Coupled conservation equations of heat and mass transfer are solved, that predict temperature and concentration of the electrolyte of an aluminum-air battery system upon start-up and shutdown. Results of recent laboratory studies investigating the crystallization kinetics and solubility of the caustic-aluminate electrolyte system are used in the predictions. Temperature and concentration start-up transients are short, while during standby conditions, temperature increases to a maximum and decreases slowly.

  19. Extremely Low Passive Microwave Brightness Temperatures Due to Thunderstorms

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.

    2015-01-01

    Extreme events by their nature fall outside the bounds of routine experience. With imperfect or ambiguous measuring systems, it is appropriate to question whether an unusual measurement represents an extreme event or is the result of instrument errors or other sources of noise. About three weeks after the Tropical Rainfall Measuring Mission (TRMM) satellite began collecting data in Dec 1997, a thunderstorm was observed over northern Argentina with 85 GHz brightness temperatures below 50 K and 37 GHz brightness temperatures below 70 K (Zipser et al. 2006). These values are well below what had previously been observed from satellite sensors with lower resolution. The 37 GHz brightness temperatures are also well below those measured by TRMM for any other storm in the subsequent 16 years. Without corroborating evidence, it would be natural to suspect a problem with the instrument, or perhaps an irregularity with the platform during the first weeks of the satellite mission. Automated quality control flags or other procedures in retrieval algorithms could treat these measurements as errors, because they fall outside the expected bounds. But the TRMM satellite also carries a radar and a lightning sensor, both confirming the presence of an intense thunderstorm. The radar recorded 40+ dBZ reflectivity up to about 19 km altitude. More than 200 lightning flashes per minute were recorded. That same storm's 19 GHz brightness temperatures below 150 K would normally be interpreted as the result of a low-emissivity water surface (e.g., a lake, or flood waters) if not for the simultaneous measurements of such intense convection. This paper will examine records from TRMM and related satellite sensors including SSMI, AMSR-E, and the new GMI to find the strongest signatures resulting from thunderstorms, and distinguishing those from sources of noise. The lowest brightness temperatures resulting from thunderstorms as seen by TRMM have been in Argentina in November and December. For

  20. Is mudflow in Sidoarjo, East Java due to the pumping mechanism of hot air bubbles? : Laboratory simulations and field observations

    NASA Astrophysics Data System (ADS)

    Nurhandoko, Bagus Endar B.

    2015-09-01

    Extraordinary mudflow has happened in Sidoarjo, East Java, Indonesia since 2006. This mud comes from the giant crater that is located close to the BJP - 01. Thousands of homes have been submerged due to mudflow. Till today this giant mud crater is still has great strength despite the mud flowing over 8 years. This is a very rare phenomenon in the world. This mud flow mechanism raises big questions, because it has been going on for years, naturally the mudflow will stop by itself because the pressure should be reduced. This research evaluates all aspects of integrated observations, laboratory tests and field observations since the beginning of this ongoing mudflow. Laboratory tests were done by providing hot air bubbles into the fluid inside the inverted funnel showed that the fluid can flow with a high altitude. It is due to the mechanism of buoyant force from air bubbles to the water where the contrast density of the water and the air is quite large. Quantity of air bubbles provides direct effect to the debit of fluid flow. Direct observation in the field, in 2006 and 2007, with TIMNAS and LPPM ITB showed the large number of air bubbles on the surface of the mud craters. Temperature observation on the surface of mud crater is around 98 degree C whereas at greater depth shows the temperature is increasingly rising. This strengthens the hypothesis or proves that the mud pumping mechanism comes from buoyant force of hot air bubbles. Inversion gravity images show that the deep subsurface of main crater is close to volcanic layers or root of Arjuna mountain. Based on the simulation laboratory and field observation data, it can be concluded that the geothermal factor plays a key role in the mudflow mechanism.

  1. Hydrologic property alterations due to elevated temperatures at Yucca Mountain

    SciTech Connect

    Flint, A.L.; Nash, M.H.; Nash, M.S.

    1994-12-31

    Yucca Mountain is currently being evaluated as a potential site for a high level nuclear waste repository. The pre-emplacement hydrologic properties of the rock are important in determining the suitability of the site; however, post emplacement thermal loads and associated drying may permanently alter the character of the rock. A preliminary study was undertaken to determine the effects of elevated temperatures on hydrologic properties of the welded Topopah Spring member of the Paintbrush Tuff and a zeolitic, nonwelded tuff from the Tuffaceous Beds of Calico Hills. Rock outcrop samples were collected and dried in the laboratory at different temperatures (up to 400 degrees C). Hydrologic and physical properties -were tested before and after each of the drying cycles.

  2. Changes in tropospheric composition and air quality due to stratospheric ozone depletion.

    PubMed

    Solomon, Keith R; Tang, Xiaoyan; Wilson, Stephen R; Zanis, Prodromos; Bais, Alkiviadis F

    2003-01-01

    Increased UV-B through stratospheric ozone depletion leads to an increased chemical activity in the lower atmosphere (the troposphere). The effect of stratospheric ozone depletion on tropospheric ozone is small (though significant) compared to the ozone generated anthropogenically in areas already experiencing air pollution. Modeling and experimental studies suggest that the impacts of stratospheric ozone depletion on tropospheric ozone are different at different altitudes and for different chemical regimes. As a result the increase in ozone due to stratospheric ozone depletion may be greater in polluted regions. Attributable effects on concentrations are expected only in regions where local emissions make minor contributions. The vertical distribution of NOx (NO + NO2), the emission of volatile organic compounds and the abundance of water vapor, are important influencing factors. The long-term nature of stratospheric ozone depletion means that even a small increase in tropospheric ozone concentration can have a significant impact on human health and the environment. Trifluoroacetic acid (TFA) and chlorodifluoroacetic acid (CDFA) are produced by the atmospheric degradation of hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs). TFA has been measured in rain, rivers, lakes, and oceans, the ultimate sink for these and related compounds. Significant anthropogenic sources of TFA other than degradation HCFCs and HFCs have been identified. Toxicity tests under field conditions indicate that the concentrations of TFA and CDFA currently produced by the atmospheric degradation of HFCs and HCFCs do not present a risk to human health and the environment. The impact of the interaction between ozone depletion and future climate change is complex and a significant area of current research. For air quality and tropospheric composition, a range of physical parameters such as temperature, cloudiness and atmospheric transport will modify the impact of UV-B. Changes in the

  3. AIRS Sea Surface Temperature and Pacific Decadal Oscillation

    NASA Astrophysics Data System (ADS)

    Chen, L. L.

    2015-12-01

    Atmospheric Infrared Sounder (AIRS) has been providing necessary measurements for long term atmospheric and surface processes aboard NASA' s Aqua polar orbiter since May 2002. Here, we use time series of AIRS sea surface temperature (SST) anomalies to show the time evolution of Pacific Decadal Oscillation (PDO) in the Gulf of Alaska (lon:-144.5, lat:54.5) from 2003 to 2014. PDO is connected to the first mode of North Pacific SST variability and is tele-connected to ENSO in the tropics. Further analysis of AIRS data can provide clarification of Pacific climate variability.

  4. Passive radiative cooling below ambient air temperature under direct sunlight.

    PubMed

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day.

  5. Passive radiative cooling below ambient air temperature under direct sunlight.

    PubMed

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day. PMID:25428501

  6. Variability of Winter Air Temperature in Mid-Latitude Europe

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Ardizzone, J.; Atlas, R.; Bungato, D.; Cierniewski, J.; Jusem, J. C.; Przybylak, R.; Schubert, S.; Starr, D.; Walczewski, J.

    2002-01-01

    The aim of this paper is to report extreme winter/early-spring air temperature (hereinafter temperature) anomalies in mid-latitude Europe, and to discuss the underlying forcing to these interannual fluctuations. Warm advection from the North Atlantic in late winter controls the surface-air temperature, as indicated by the substantial correlation between the speed of the surface southwesterlies over the eastern North Atlantic (quantified by a specific Index Ina) and the 2-meter level air temperatures (hereinafter Ts) over Europe, 45-60 deg N, in winter. In mid-March and subsequently, the correlation drops drastically (quite often it is negative). This change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature: absorption of insolation replaces the warm advection as the dominant control. This forcing by maritime-air advection in winter was demonstrated in a previous publication, and is re-examined here in conjunction with extreme fluctuations of temperatures in Europe. We analyze here the interannual variability at its extreme by comparing warm-winter/early-spring of 1989/90 with the opposite scenario in 1995/96. For these two December-to-March periods the differences in the monthly mean temperature in Warsaw and Torun, Poland, range above 10 C. Short-term (shorter than a month) fluctuations of the temperature are likewise very strong. We conduct pentad-by-pentad analysis of the surface-maximum air temperature (hereinafter Tmax), in a selected location, examining the dependence on Ina. The increased cloudiness and higher amounts of total precipitable water, corollary effects to the warm low-level advection. in the 1989/90 winter, enhance the positive temperature anomalies. The analysis of the ocean surface winds is based on the Special Sensor Microwave/Imager (SSM/I) dataset; ascent rates, and over land wind data are from the European Centre for Medium-Range Weather Forecasts (ECMWF); maps of 2-m temperature, cloud

  7. Temperature Measurement in Microhollow Cathode Discharges in Atmospheric Air

    NASA Astrophysics Data System (ADS)

    Block, Rolf; Toedter, Olaf; Schoenbach, Karl H.

    1998-10-01

    By reducing the diameter of the cathode opening in hollow cathode discharge geometry to values on the order of one hundred micrometers we were able to operate the discharges in a direct current mode at atmospheric pressure in air. The possibility to operate microhollow cathode discharges (MHCD) in parallel [1] in atmospheric air opens a wide range of applications. At atmospheric pressures, the electric power of a single discharge was measured as 8W. The power density in the microhollow exceeds 1MW/cm^3. This leads to strong thermal loading of the electrodes. In order to study the thermal properties of the discharge we have used a method based on emission spectroscopy. The rotational structure of the emitted lines corresponding to the second positive system of nitrogen contains information on the neutral gas temperature. Taking the apparatus profile into account the temperature of the rotational excited molecules can be estimated by a comparison of simulated and measured data. Measurements on MHCD up to atmospheric pressure show an increase in the neutral gas temperature to values exceeding 1000K. In addition to the gas temperature the electrode temperatures were measured and the thermodynamic behavior of the electrode configuration was calculated. [1] W. Shi, K.H. Schoenbach Parallel Operation of Microhollow Cathode Discharges, ICOPS98, Raleigh, NC, USA, 1998 This work was funded by the Air Force Office of Scientific Research (AFOSR) in cooperation with the DDR&E Air Plasma Ramparts MURI program, and by the Department of Energy, Advanced Energy Division.

  8. Use of satellite land surface temperatures in the EUSTACE global surface air temperature analysis

    NASA Astrophysics Data System (ADS)

    Ghent, D.; Good, E.; Rayner, N. A.

    2015-12-01

    EUSTACE (EU Surface Temperatures for All Corners of Earth) is a Horizon2020 project that will produce a spatially complete, near-surface air temperature (NSAT) analysis for the globe for every day since 1850. The analysis will be based on both satellite and in situ surface temperature observations over land, sea, ice and lakes, which will be combined using state-of-the-art statistical methods. The use of satellite data will enable the EUSTACE analysis to offer improved estimates of NSAT in regions that are poorly observed in situ, compared with existing in-situ based analyses. This presentation illustrates how satellite land surface temperature (LST) data - sourced from the European Space Agency (ESA) Data User Element (DUE) GlobTemperature project - will be used in EUSTACE. Satellite LSTs represent the temperature of the Earth's skin, which can differ from the corresponding NSAT by several degrees or more, particularly during the hottest part of the day. Therefore the first challenge is to develop an approach to estimate global NSAT from satellite observations. Two methods will be trialled in EUSTACE, both of which are summarised here: an established empirical regression-based approach for predicting NSAT from satellite data, and a new method whereby NSAT is calculated from LST and other parameters using a physics-based model. The second challenge is in estimating the uncertainties for the satellite NSAT estimates, which will determine how these data are used in the final blended satellite-in situ analysis. This is also important as a key component of EUSTACE is in delivering accurate uncertainty information to users. An overview of the methods to estimate the satellite NSATs is also included in this presentation.

  9. Pulsed positive streamer discharges in air at high temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Kamakura, Taku

    2016-08-01

    Atmospheric-pressure air pulsed positive streamer discharges are generated in a 13 mm point-plane gap in the temperature range of 293 K–1136 K, and the effect of temperature on the streamer discharges is studied. When the temperature is increased, the product of applied voltage and temperature VT proportional to the reduced electric field can be used as a primary parameter that determines some discharge parameters regardless of temperature. For a given VT, the transferred charge per pulse, streamer diameter, product of discharge energy and temperature, and length of secondary streamer are almost constant regardless of T, whereas the streamer velocity decreases with increasing T and the decay rate of the discharge current is proportional to 1/T. The N2(C) emission intensity is approximately determined by the discharge energy independent of T. These results are useful to predict the streamer discharge and its reactive species production when the ambient temperature is increased.

  10. Pulsed positive streamer discharges in air at high temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Kamakura, Taku

    2016-08-01

    Atmospheric-pressure air pulsed positive streamer discharges are generated in a 13 mm point-plane gap in the temperature range of 293 K-1136 K, and the effect of temperature on the streamer discharges is studied. When the temperature is increased, the product of applied voltage and temperature VT proportional to the reduced electric field can be used as a primary parameter that determines some discharge parameters regardless of temperature. For a given VT, the transferred charge per pulse, streamer diameter, product of discharge energy and temperature, and length of secondary streamer are almost constant regardless of T, whereas the streamer velocity decreases with increasing T and the decay rate of the discharge current is proportional to 1/T. The N2(C) emission intensity is approximately determined by the discharge energy independent of T. These results are useful to predict the streamer discharge and its reactive species production when the ambient temperature is increased.

  11. Effects of air flow directions on composting process temperature profile

    SciTech Connect

    Kulcu, Recep; Yaldiz, Osman

    2008-07-01

    In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO{sub 2} and O{sub 2} ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperature distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2.

  12. Temperature gradients and clear-air turbulence probabilities

    NASA Technical Reports Server (NTRS)

    Bender, M. A.; Panofsky, H. A.; Peslen, C. A.

    1976-01-01

    In order to forecast clear-air turbulence (CAT) in jet aircraft flights, a study was conducted in which the data from a special-purpose instrument aboard a Boeing 747 jet airliner were compared with satellite-derived radiance gradients, conventional temperature gradients from analyzed maps, and temperature gradients obtained from a total air temperature sensor on the plane. The advantage of making use of satellite-derived data is that they are available worldwide without the need for radiosonde observations, which are scarce in many parts of the world. Major conclusions are that CAT probabilities are significantly higher over mountains than flat terrain, and that satellite radiance gradients appear to discriminate between CAT and no CAT better than conventional temperature gradients over flat lands, whereas the reverse is true over mountains, the differences between the two techniques being not large over mountains.

  13. Temperature variations recorded during interinstitutional air shipments of laboratory mice.

    PubMed

    Syversen, Eric; Pineda, Fernando J; Watson, Julie

    2008-01-01

    Despite extensive guidelines and regulations that govern most aspects of rodent shipping, few data are available on the physical environment experienced by rodents during shipment. To document the thermal environment experienced by mice during air shipments, we recorded temperatures at 1-min intervals throughout 103 routine interinstitutional shipments originating at our institution. We found that 49.5% of shipments were exposed to high temperatures (greater than 29.4 degrees C), 14.6% to low temperatures (less than 7.2 degrees C), and 61% to temperature variations of 11 degrees C or more. International shipments were more likely than domestic shipments to experience temperature extremes and large variations in temperature. Freight forwarders using passenger airlines rather than their own airplanes were more likely to have shipments that experienced temperature extremes or variations. Temperature variations were most common during stopovers. Some airlines were more likely than others to experience inflight temperature extremes or swings. Most domestic shipments lasted at least 24 h, whereas international shipments lasted 48 to 72 h. Despite exposure to high and low temperatures, animals in all but 1 shipment arrived alive. We suggest that simple measures, such as shipping at night during hot weather, provision of nesting material in shipping crates, and specifying aircraft cargo-hold temperatures that are suitable for rodents, could reduce temperature-induced stress. Measures such as additional training for airport ground crews, as previously recommended by the American Veterinary Medical Association, could further reduce exposure of rodents to extreme ambient temperatures during airport stopovers.

  14. Geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppälä, A.; Randall, C. E.; Clilverd, M. A.; Rozanov, E.; Rodger, C. J.

    2009-10-01

    Here we use the ERA-40 and ECMWF operational surface level air temperature data sets from 1957 to 2006 to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the A p index. Previous modeling work has suggested that NO x produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in surface air temperatures (SATs). We find that during winter months, polar SATs in years with high A p index are different than in years with low A p index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, depending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings (SSWs) are excluded. We take into account solar irradiance variations, unlike previous analyses of geomagnetic effects in ERA-40 and operational data. Although we cannot conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating wintertime surface air temperatures. We tested our SAT results against variation in the Quasi Biennial Oscillation, the El Niño Southern Oscillation and the Southern Annular Mode. The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode, and we cannot robustly exclude a chance linkage between sea surface temperature variability and geomagnetic activity.

  15. Enhanced Ozone Production at Low Temperatures due to Ethanol (E85)

    NASA Astrophysics Data System (ADS)

    Ginnebaugh, D. L.; Livingstone, P. L.; Jacobson, M. Z.

    2009-12-01

    The increased use of ethanol in transportation fuels warrants an investigation of its consequences. An important component of such an investigation is the temperature-dependence of ethanol and gasoline exhaust chemistry. We use the near-explicit Master Chemical Mechanism (MCM, version 3.1, LEEDS University) with the SMVGEAR II chemical ordinary differential solver to provide the speed necessary to simulate explicit chemistry to examine such effects. The MCM has over 13,500 organic reactions and 4,600 species. SMVGEAR II is a sparse-matrix Gear solver that reduces the computation time significantly while maintaining any specified accuracy. Although for this study we use a box model, we determined that the speed of the MCM with the SMVGEAR solver will allow the MCM to be modeled in 3-dimensions. We also verified the accuracy of the model with comparisons to smog chamber data. We use species-resolved tailpipe emissions data for E85 (15% gasoline, 85% ethanol fuel blend) and gasoline vehicles to compare the impact of each on ozone and carcinogenic organic gases as a function of ambient temperature and background concentrations, using Los Angeles in 2020 as a base case. We use two different emissions sets - one is a compilation of data taken at near 24 C and the other from data taken at -7 C - to determine how atmospheric chemistry and emissions are affected by temperature. We include diurnal effects by examining 2 day and 5 day scenarios. We find that for both emission data sets, the average ozone concentrations through the range of temperatures tested are higher with E85 than with gasoline by 8 parts per billion volume (ppbv) at higher temperatures to 55 ppbv at low temperatures and low sunlight (winter conditions) for an area with a high nitrogen oxides (NOx) to non-methane organic gases (NMOG) ratio. The results suggest that E85's effect on health through ozone formation becomes increasingly more significant relative to gasoline as temperatures decreased due to the

  16. Advances in Fast Response Acoustically Derived Air Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Bogoev, Ivan; Jacobsen, Larry; Horst, Thomas; Conrad, Benjamin

    2016-04-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity. The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  17. The mass and speed dependence of meteor air plasma temperatures.

    PubMed

    Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  18. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  19. CARS Temperature and Species Measurements For Air Vehicle Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Gord, James R.; Grisch, Frederic; Klimenko, Dmitry; Clauss, Walter

    2005-01-01

    The coherent anti-Stokes Raman spectroscopy (CARS) method has recently been used in the United States and Europe to probe several different types of propulsion systems for air vehicles. At NASA Langley Research Center in the United States, CARS has been used to simultaneously measure temperature and the mole fractions of N2, O2 and H2 in a supersonic combustor, representative of a scramjet engine. At Wright- Patterson Air Force Base in the United States, CARS has been used to simultaneously measure temperature and mole fractions of N2, O2 and CO2, in the exhaust stream of a liquid-fueled, gas-turbine combustor. At ONERA in France and the DLR in Germany researchers have used CARS to measure temperature and species concentrations in cryogenic LOX-H2 rocket combustion chambers. The primary aim of these measurements has been to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.

  20. Microwave temperature profiler for clear air turbulence prediction

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    1992-01-01

    A method is disclosed for determining Richardson Number, Ri, or its reciprocal, RRi, for clear air prediction using measured potential temperature and determining the vertical gradient of potential temperature, d(theta)/dz. Wind vector from the aircraft instrumentation versus potential temperature, dW/D(theta), is determined and multiplies by d(theta)/dz to obtain dW/dz. Richardson number or its reciprocal is then determined from the relationship Ri = K(d theta)/dz divided by (dW/dz squared) for use in detecting a trend toward a threshold value for the purpose of predicting clear air turbulence. Other equations for this basic relationship are disclosed together with the combination of other atmospheric observables using multiple regression techniques.

  1. The Effects of Air Pollution and Temperature on COPD

    PubMed Central

    Hansel, Nadia N.; McCormack, Meredith C.; Kim, Victor

    2016-01-01

    Chronic Obstructive Pulmonary Disease (COPD) affects 12–16 million people in the United States and is the third-leading cause of death. In developed countries, smoking is the greatest risk factor for the development of COPD, but other exposures also contribute to the development and progression of the disease. Several studies suggest, though are not definitive, that outdoor air pollution exposure is linked to the prevalence and incidence of COPD. Among individuals with COPD, outdoor air pollutants are associated with loss of lung function and increased respiratory symptoms. In addition, outdoor air pollutants are also associated with COPD exacerbations and mortality. There is much less evidence for the impact of indoor air on COPD, especially in developed countries in residences without biomass exposure. The limited existing data suggests that indoor particulate matter and nitrogen dioxide concentrations are linked to increased respiratory symptoms among patients with COPD. In addition, with the projected increases in temperature and extreme weather events in the context of climate change there has been increased attention to the effects of heat exposure. Extremes of temperature—both heat and cold—have been associated with increased respiratory morbidity in COPD. Some studies also suggest that temperature may modify the effect of pollution exposure and though results are not conclusive, understanding factors that may modify susceptibility to air pollution in patients with COPD is of utmost importance. PMID:26683097

  2. Spatial interpolation of monthly mean air temperature data for Latvia

    NASA Astrophysics Data System (ADS)

    Aniskevich, Svetlana

    2016-04-01

    Temperature data with high spatial resolution are essential for appropriate and qualitative local characteristics analysis. Nowadays the surface observation station network in Latvia consists of 22 stations recording daily air temperature, thus in order to analyze very specific and local features in the spatial distribution of temperature values in the whole Latvia, a high quality spatial interpolation method is required. Until now inverse distance weighted interpolation was used for the interpolation of air temperature data at the meteorological and climatological service of the Latvian Environment, Geology and Meteorology Centre, and no additional topographical information was taken into account. This method made it almost impossible to reasonably assess the actual temperature gradient and distribution between the observation points. During this project a new interpolation method was applied and tested, considering auxiliary explanatory parameters. In order to spatially interpolate monthly mean temperature values, kriging with external drift was used over a grid of 1 km resolution, which contains parameters such as 5 km mean elevation, continentality, distance from the Gulf of Riga and the Baltic Sea, biggest lakes and rivers, population density. As the most appropriate of these parameters, based on a complex situation analysis, mean elevation and continentality was chosen. In order to validate interpolation results, several statistical indicators of the differences between predicted values and the values actually observed were used. Overall, the introduced model visually and statistically outperforms the previous interpolation method and provides a meteorologically reasonable result, taking into account factors that influence the spatial distribution of the monthly mean temperature.

  3. Can air temperature be used to project influences of climate change on stream temperature?

    USGS Publications Warehouse

    Arismendi, Ivan; Safeeq, Mohammad; Dunham, Jason B.; Johnson, Sherri L.

    2014-01-01

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To address this knowledge gap, we examined the performance of two widely used linear and nonlinear regression models that predict stream temperatures based on air temperatures. We evaluated model performance and temporal stability of model parameters in a suite of regulated and unregulated streams with 11–44 years of stream temperature data. Although such models may have validity when predicting stream temperatures within the span of time that corresponds to the data used to develop them, model predictions did not transfer well to other time periods. Validation of model predictions of most recent stream temperatures, based on air temperature–stream temperature relationships from previous time periods often showed poor performance when compared with observed stream temperatures. Overall, model predictions were less robust in regulated streams and they frequently failed in detecting the coldest and warmest temperatures within all sites. In many cases, the magnitude of errors in these predictions falls within a range that equals or exceeds the magnitude of future projections of climate-related changes in stream temperatures reported for the region we studied (between 0.5 and 3.0 °C by 2080). The limited ability of regression-based statistical models to accurately project stream temperatures over time likely stems from the fact that underlying processes at play, namely the heat budgets of air and water, are distinctive in each medium and vary among localities and through time.

  4. [Fire disaster due to deflagration of a propane gas-air mixture].

    PubMed

    Nadjem, Hadi; Vogt, Susanne; Simon, Karl-Heinz; Pollak, Stefan; Geisenberger, Dorothee; Kramer, Lena; Pircher, Rebecca; Perdekampl, Markus Große; Thierauf-Emberger, Annette

    2015-01-01

    On 26 Nov 2012, a serious fire occurred at Neustadt/Black Forest in which 14 persons in a sheltered workshop died and 10 other individuals were injured. The fire was caused by the unbridled escape of propane gas due to accidental disconnection of the screw fixing between a gas bottle and a catalytic heater. Deflagration of the propane gas-air mixture set the workshop facilities on fire. In spite of partly extensive burns the fatally injured victims could be rapidly identified. The results of the fire investigations at the scene and the autopsy findings are presented. Carboxyhemoglobin concentrations ranged between 8 and 56 % and signs of fire fume inhalation were present in all cases. Three victims had eardrum ruptures due to the sudden increase in air pressure during the deflagration. PMID:26548032

  5. [Fire disaster due to deflagration of a propane gas-air mixture].

    PubMed

    Nadjem, Hadi; Vogt, Susanne; Simon, Karl-Heinz; Pollak, Stefan; Geisenberger, Dorothee; Kramer, Lena; Pircher, Rebecca; Perdekampl, Markus Große; Thierauf-Emberger, Annette

    2015-01-01

    On 26 Nov 2012, a serious fire occurred at Neustadt/Black Forest in which 14 persons in a sheltered workshop died and 10 other individuals were injured. The fire was caused by the unbridled escape of propane gas due to accidental disconnection of the screw fixing between a gas bottle and a catalytic heater. Deflagration of the propane gas-air mixture set the workshop facilities on fire. In spite of partly extensive burns the fatally injured victims could be rapidly identified. The results of the fire investigations at the scene and the autopsy findings are presented. Carboxyhemoglobin concentrations ranged between 8 and 56 % and signs of fire fume inhalation were present in all cases. Three victims had eardrum ruptures due to the sudden increase in air pressure during the deflagration.

  6. Historical changes in air temperature are evident in temperature fluxes measured in the sub-soil.

    NASA Astrophysics Data System (ADS)

    Fraser, Fiona; McCormick, Benjamin; Hallett, Paul; Wookey, Philip; Hopkins, David

    2013-04-01

    Warming trends in soil temperature have implications for a plethora of soil processes, including exacerbated climate change through the net release of greenhouse gases. Whereas long-term datasets of air temperature changes are abundant, a search of scientific literature reveals a lack of information on soil temperature changes and their specific consequences. We analysed five long-term data series collected in the UK (Dundee and Armagh) and Canada (Charlottetown, Ottawa and Swift Current). They show that the temperatures of soils at 5 - 20 cm depth, and sub-soils at 30 - 150 cm depth, increased in line with air temperature changes over the period 1958 - 2003. Differences were found, however, between soil and air temperatures when data were sub-divided into seasons. In spring, soil temperature warming ranged from 0.19°C at 30 cm in Armagh to 4.30°C at 50 cm in Charlottetown. In summer, however, the difference was smaller and ranged from 0.21°C at 10 cm in Ottawa to 3.70°C at 50 cm in Charlottetown. Winter temperatures were warmer in soil and ranged from 0.45°C at 5 cm in Charlottetown to 3.76°C at 150 cm in Charlottetown. There were significant trends in changes to soil temperature over time, whereas air temperature trends tended only to be significant in winter (changes range from 1.27°C in Armagh to 3.35°C in Swift Current). Differences in the seasonal warming patterns between air and soil temperatures have potential implications for the parameterization of models of biogeochemical cycling.

  7. Air Temperature Estimation over the Third Pole Using MODIS LST

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Zhang, F.; Ye, M.; Che, T.

    2015-12-01

    The Third Pole is centered on the Tibetan Plateau (TP), which is the highest large plateau around the world with extremely complex terrain and climate conditions, resulting in very scarce meteorological stations especially in the vast west region. For these unobserved areas, the remotely sensed land surface temperature (LST) can greatly contribute to air temperature estimation. In our research we utilized the MODIS LST production from both TERRA and AQUA to estimate daily mean air temperature over the TP using multiple statistical models. Other variables used in the models include longitudes, latitudes, Julian day, solar zenith, NDVI and elevation. To select a relatively optimal model, we chose six popular and representative statistical models as candidate models including the multiple linear regression (MLR), the partial least squares regression (PLS), back propagate neural network (BPNN), support vector regression (SVR), random forests (RF) and Cubist regression (CR). The performances of the six models were compared for each possible combination of LSTs at four satellite pass times and two quality situations. Eventually a ranking table consisting of optimal models for each LST combination and quality situation was built up based on the validation results. By this means, the final production is generated providing daily mean air temperature with the least cloud blockage and acceptable accuracy. The average RMSEs of cross validation are mostly around 2℃. Stratified validations were also performed to test the expansibility to unobserved and high-altitude areas of the final models selected.

  8. Effects of air temperature, humidity, and air movement on thermal comfort under hot and humid conditions

    SciTech Connect

    Tanabe, Shinichi; Kimura, Kenichi

    1994-12-31

    The purpose of this paper is to review and summarize the effects of air temperature, humidity, and air movement on thermal comfort under hot and humid conditions with a view toward energy conservation. Recently, ASHRAE published a new comfort envelope in Standard 55-1992. In that standard, the upper limit of relative humidity (RH) was wet at 60%. In hot and humid regions, humidity levels higher than 60% may often be observed. This upper limit of humidity is discussed based on their subjective data. In addition, the results show that under hot and humid conditions, air movement may be one of the least expensive methods of providing thermal comfort. The effect of air movement is also described in this paper.

  9. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect

    Waye, S.; Musselman, M.; King, C.

    2014-09-01

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  10. A review of reaction rates in high temperature air

    NASA Technical Reports Server (NTRS)

    Park, Chul

    1989-01-01

    The existing experimental data on the rate coefficients for the chemical reactions in nonequilibrium high temperature air are reviewed and collated, and a selected set of such values is recommended for use in hypersonic flow calculations. For the reactions of neutral species, the recommended values are chosen from the experimental data that existed mostly prior to 1970, and are slightly different from those used previously. For the reactions involving ions, the recommended rate coefficients are newly chosen from the experimental data obtained more recently. The reacting environment is assumed to lack thermal equilibrium, and the rate coefficients are expressed as a function of the controlling temperature, incorporating the recent multitemperature reaction concept.

  11. Industrial applications of MHD high temperature air heater technology

    NASA Astrophysics Data System (ADS)

    Saari, D. P.; Fenstermacher, J. E.; White, L. R.; Marksberry, C. L.

    1981-12-01

    The MHD high temperature air heater (HTAH) requires technology beyond the current state-of-the-art of industrial regenerative heaters. Specific aspects of HTAH technology which may find other application include refractory materials and valves resistant to the high temperature, corrosive, slag-bearing gas, materials resistant to cyclic thermal stresses, high temperature support structures for the cored brick bed, regenerative heater operating techniques for preventing accumulation of slag in the heater, and analytical tools for computing regenerative heater size, cost, and performance. Areas where HTAH technology may find application include acetylene/ethylene production processes, flash pyrolysis of coal, high temperature gas reactors, coal gasification processes, various metallurgical processes, waste incineration, and improvements to existing regenerator technology such as blast furnace stoves and glass tank regenerators.

  12. Antarctic Sea ice variations and seasonal air temperature relationships

    NASA Technical Reports Server (NTRS)

    Weatherly, John W.; Walsh, John E.; Zwally, H. J.

    1991-01-01

    Data through 1987 are used to determine the regional and seasonal dependencies of recent trends of Antarctic temperature and sea ice. Lead-lag relationships involving regional sea ice and air temperature are systematically evaluated, with an eye toward the ice-temperature feedbacks that may influence climatic change. Over the 1958-1087 period the temperature trends are positive in all seasons. For the 15 years (l973-l987) for which ice data are available, the trends are predominantly positive only in winter and summer, and are most strongly positive over the Antarctic Peninsula. The spatially aggregated trend of temperature for this latter period is small but positive, while the corresponding trend of ice coverage is small but negative. Lag correlations between seasonal anomalies of the two variables are generally stronger with ice lagging the summer temperatures and with ice leading the winter temperatures. The implication is that summer temperatures predispose the near-surface waters to above-or below-normal ice coverage in the following fall and winter.

  13. Economic assessment of crop damages due to air pollution: the role of quality effects.

    PubMed

    Shortle, J S; Phillips, M; Dunn, J W

    1988-01-01

    Biological research has established that air pollution can affect the yield and quality of agricultural crops. Economic assessments of crop exposure to air pollution have focused on the yield effect. This study illustrates the implications of considering crop quality effects in addition to crop yield changes for the case of O3 impacts on soybeans. An economic model of US soybean, soybean oil, and soybean meal markets is used to simulate the impacts of increased soybean yields due to reduced O3 concentrations with and without changes in soybean quality. The simulations with quality effects are richer in their distributional implications and show larger increases in economic surplus than the simulations with yield effects only.

  14. [Effect of air temperature and rainfall on wetland ecosystem CO2 exchange in China].

    PubMed

    Chu, Xiao-jing; Han, Guang-xuan

    2015-10-01

    Wetland can be a potential efficient sink to reduce global warming due to its higher primary productivity and lower carbon decomposition rate. While there has been a series progress on the influence mechanism of ecosystem CO2 exchange over China' s wetlands, a systematic metaanalysis of data still needs to be improved. We compiled data of ecosystem CO2 exchange of 21 typical wetland vegetation types in China from 29 papers and carried out an integrated analysis of air temperature and precipitation effects on net ecosystem CO2 exchange (NEE), ecosystem respiration (Reco), gross primary productivity (GPP), the response of NEE to PAR, and the response of Reco to temperature. The results showed that there were significant responses (P<0.05) of NEE (R2 = 50%, R2=57%), GPP (R2 = 60%, R2 = 50%) Reco (R2 = 44%, R2=50%) with increasing air temperature and enhanced precipitation on the annual scale. On the growing season scale, air temperature accounted for 50% of the spatial variation of NEE, 36% of GPP and 19% of Reco, respectively. Both NEE (R2 = 33%) and GPP (R2 =25%) were correlated positively with precipitation (P<0.05). However, the relationship between Reco and precipitation was not significant (P>0.05). Across different Chinese wetlands, both precipitation and temperature had no significant effect on apparent quantum yield (α) or ecosystem respiration in the daytime (Reco,day, P>0.05). The maximum photosynthesis rate (Amax) was remarkably correlated with precipitation (P <0.01), but not with air temperature. Besides, there was no significant correlation between basal respiration (Rref) and precipitation (P>0.05). Precipitation was negatively correlated with temperature sensitivity of Reco (Q10, P<0.05). Furthermore, temperature accounted for 35% and 46% of the variations in temperature sensitivity of Reco (Q10) and basal respiration (Rref P<0.05), respectively. PMID:26995905

  15. Air Temperature estimation from Land Surface temperature and solar Radiation parameters

    NASA Astrophysics Data System (ADS)

    Lazzarini, Michele; Eissa, Yehia; Marpu, Prashanth; Ghedira, Hosni

    2013-04-01

    Air Temperature (AirT) is a fundamental parameter in a wide range of applications such as climate change studies, weather forecast, energy balance modeling, efficiency of Photovoltaic (PV) solar cells, etc. Air temperature data are generally obtained through regular measurements from meteorological stations. The distribution of these stations is normally sparse, so the spatial pattern of this parameter cannot be accurately estimated by interpolation methods. This work investigated the relationship between Air Temperature measured at meteorological stations and spatially contiguous measurements derived from Remote Sensing techniques, such as Land Surface Temperature (LST) maps, emissivity maps and shortwave radiation maps with the aim of creating a continuous map of AirT. For LST and emissivity, MSG-SEVIRI LST product from Land Surface Analysis Satellite Applications Facility (LSA-SAF) has been used. For shortwave radiation maps, an Artificial Neural Networks ensemble model has been developed and previously tested to create continuous maps from Global Horizontal Irradiance (GHI) point measurements, utilizing six thermal channels of MSG-SEVIRI. The testing sites corresponded to three meteorological stations located in the United Arab Emirates (UAE), where in situ measurements of Air Temperature were available. From the starting parameters, energy fluxes and net radiation have been calculated, in order to have information on the incoming and outgoing long-wave radiation and the incoming short-wave radiation. The preliminary analysis (day and Night measurements, cloud free) showed a strong negative correlation (0.92) between Outgoing long-wave radiation - GHI and LST- AirT, with a RMSE of 1.84 K in the AirT estimation from the initial parameters. Regression coefficients have been determined and tested on all the ground stations. The analysis also demonstrated the predominant impact of the incoming short-wave radiation in the AirT hourly variation, while the incoming

  16. On extreme rainfall intensity increases with air temperature

    NASA Astrophysics Data System (ADS)

    Molnar, Peter; Fatichi, Simone; Paschalis, Athanasios; Gaal, Ladislav; Szolgay, Jan; Burlando, Paolo

    2016-04-01

    The water vapour holding capacity of air increases at about 7% per degree C according to the Clausius-Clapeyron (CC) relation. This is one of the arguments why a warmer future atmosphere, being able to hold more moisture, will generate higher extreme precipitation intensities. However, several empirical studies have recently demonstrated an increase in extreme rain intensities with air temperature above CC rates, in the range 7-14% per degree C worldwide (called super-CC rates). This was observed especially for shorter duration rainfall, i.e. in hourly and finer resolution data (e.g. review in Westra et al., 2014). The super-CC rate was attributed to positive feedbacks between water vapour and the updraft dynamics in convective clouds and lateral supply (convergence) of moisture. In addition, mixing of storm types was shown to be potentially responsible for super-CC rates in empirical studies. Assuming that convective events are accompanied by lightning, we will show on a large rainfall dataset in Switzerland (30 year records of 10-min and 1-hr data from 59 stations) that while the average rate of increase in extreme rainfall intensity (95th percentile) is 6-7% in no-lightning events and 8-9% in lightning events, it is 11-13% per degree C when all events are combined (Molnar et al., 2015). These results are relevant for climate change studies which predict shifts in storm types in a warmer climate in some parts of the world. The observation that extreme rain intensity and air temperature are positively correlated has consequences for the stochastic modelling of rainfall. Most current stochastic models do not explicitly include a direct rain intensity-air temperature dependency beyond applying factors of change predicted by climate models to basic statistics of precipitation. Including this dependency explicitly in stochastic models will allow, for example in the nested modelling approach of Paschalis et al. (2014), the random cascade disaggregation routine to be

  17. Linking geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppala, Annika

    ERA-40 and ECMWF operational surface level air temperature (SAT) data sets from 1957 to 2006 were used to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the Ap index. Previous modelling work has suggested that NOx produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in polar SATs. We find that during winter months, ERA-40 and ECMWF polar SATs in years with high Ap index are different than in years with low Ap index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, de-pending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings are excluded. Solar irradiance variations were taken into account in the analysis. Although using the re-analysis and operational data sets it was not possible to conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating polar wintertime surface air temperature patterns. The SAT results were tested against variation in the Quasi Biennial Oscillation (QBO), the El Niño Southern Oscillation (ENSO) and the Southern Annular Mode n (SAM). The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode (NAM) and we could not robustly exclude a chance linkage between sea surface temperature (SST) variability and geomagnetic activity. Examining the physical link between geomagnetic activity and polar surface temperature variability patterns using atmospheric models is an ongoing task.

  18. Estimating Temperature Rise Due to Flashlamp Heating Using Irreversible Temperature Indicators

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    1999-01-01

    One of the nondestructive thermography inspection techniques uses photographic flashlamps. The flashlamps provide a short duration (about 0.005 sec) heat pulse. The short burst of energy results in a momentary rise in the surface temperature of the part. The temperature rise may be detrimental to the top layer of the part being exposed. Therefore, it is necessary to ensure the nondestructive nature of the technique. Amount of the temperature rise determines whether the flashlamp heating would be detrimental to the part. A direct method for the temperature measurement is to use of an infrared pyrometer that has much shorter response time than the flash duration. In this paper, an alternative technique is given using the irreversible temperature 'indicators. This is an indirect technique and it measures the temperature rise on the irreversible temperature indicators and computes the incident heat flux. Once the heat flux is known, the temperature rise on the part can be computed. A wedge shaped irreversible temperature indicator for measuring the heat flux is proposed. A procedure is given to use the wedge indicator.

  19. Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature

    PubMed Central

    Wu, Chih-Da; Lung, Shih-Chun Candice

    2016-01-01

    The lack of appropriate methodologies and indicators to quantify three-dimensional (3-D) building constructions poses challenges to authorities and urban planners when formulating polices to reduce health risks due to heat stress. This study evaluated the applicability of an innovative three-dimensional Urbanization Index (3DUI), based on remote sensing database, with a 5 m spatial resolution of 3-D man-made constructions to representing intra-urban variability of air temperature by assessing correlation of 3DUI with air temperature from a 3-D perspective. The results showed robust high correlation coefficients, ranging from 0.83 to 0.85, obtained within the 1,000 m circular buffer around weather stations regardless of season, year, or spatial location. Our findings demonstrated not only the strength of 3DUI in representing intra-urban air-temperature variability, but also its great potential for heat stress assessment within cities. In view of the maximum correlation between building volumes within the 1,000 m circular buffer and ambient air temperature, urban planning should consider setting ceilings for man-made construction volume in each 2 × 2 km2 residential community for thermal environment regulation, especially in Asian metropolis with high population density in city centers. PMID:27079537

  20. Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature.

    PubMed

    Wu, Chih-Da; Lung, Shih-Chun Candice

    2016-01-01

    The lack of appropriate methodologies and indicators to quantify three-dimensional (3-D) building constructions poses challenges to authorities and urban planners when formulating polices to reduce health risks due to heat stress. This study evaluated the applicability of an innovative three-dimensional Urbanization Index (3DUI), based on remote sensing database, with a 5 m spatial resolution of 3-D man-made constructions to representing intra-urban variability of air temperature by assessing correlation of 3DUI with air temperature from a 3-D perspective. The results showed robust high correlation coefficients, ranging from 0.83 to 0.85, obtained within the 1,000 m circular buffer around weather stations regardless of season, year, or spatial location. Our findings demonstrated not only the strength of 3DUI in representing intra-urban air-temperature variability, but also its great potential for heat stress assessment within cities. In view of the maximum correlation between building volumes within the 1,000 m circular buffer and ambient air temperature, urban planning should consider setting ceilings for man-made construction volume in each 2 × 2 km(2) residential community for thermal environment regulation, especially in Asian metropolis with high population density in city centers. PMID:27079537

  1. Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature

    NASA Astrophysics Data System (ADS)

    Wu, Chih-Da; Lung, Shih-Chun Candice

    2016-04-01

    The lack of appropriate methodologies and indicators to quantify three-dimensional (3-D) building constructions poses challenges to authorities and urban planners when formulating polices to reduce health risks due to heat stress. This study evaluated the applicability of an innovative three-dimensional Urbanization Index (3DUI), based on remote sensing database, with a 5 m spatial resolution of 3-D man-made constructions to representing intra-urban variability of air temperature by assessing correlation of 3DUI with air temperature from a 3-D perspective. The results showed robust high correlation coefficients, ranging from 0.83 to 0.85, obtained within the 1,000 m circular buffer around weather stations regardless of season, year, or spatial location. Our findings demonstrated not only the strength of 3DUI in representing intra-urban air-temperature variability, but also its great potential for heat stress assessment within cities. In view of the maximum correlation between building volumes within the 1,000 m circular buffer and ambient air temperature, urban planning should consider setting ceilings for man-made construction volume in each 2 × 2 km2 residential community for thermal environment regulation, especially in Asian metropolis with high population density in city centers.

  2. Free air breathing proton exchange membrane fuel cell: Thermal behavior characterization near freezing temperature

    NASA Astrophysics Data System (ADS)

    Higuita Cano, Mauricio; Kelouwani, Sousso; Agbossou, Kodjo; Dubé, Yves

    2014-01-01

    A free air breathing fuel cell thermal model is developed. This proton exchange membrane fuel cell (PEMFC) has been selected as the basis for the study due to its use in automotive applications. The blowers integrated to the stack provide the required air flow for hydrogen oxidation as well as the fluid for the stack thermal regulation. Hence, their controls are a key point for keeping the system to maximum efficiency. Using well-known fuel cell electrochemistry, a dynamic thermal model near freezing temperature, which includes the stack physical parameters, is developed and validated. In addition to these parameters, only the inlet and outlet air temperatures are used to derive the model. Experimental validation with a real 1 kW free air breathing PEMFC has demonstrated that the model can reasonably track the stack internal temperature with a maximum deviation between the observed and the estimated temperatures of 5%. Therefore, the proposed method will allow the development of efficient blower management systems for PEMFC efficiency improvement.

  3. Generation of low-temperature air plasma for food processing

    NASA Astrophysics Data System (ADS)

    Stepanova, Olga; Demidova, Maria; Astafiev, Alexander; Pinchuk, Mikhail; Balkir, Pinar; Turantas, Fulya

    2015-11-01

    The project is aimed at developing a physical and technical foundation of generating plasma with low gas temperature at atmospheric pressure for food industry needs. As known, plasma has an antimicrobial effect on the numerous types of microorganisms, including those that cause food spoilage. In this work an original experimental setup has been developed for the treatment of different foods. It is based on initiating corona or dielectric-barrier discharge in a chamber filled with ambient air in combination with a certain helium admixture. The experimental setup provides various conditions of discharge generation (including discharge gap geometry, supply voltage, velocity of gas flow, content of helium admixture in air and working pressure) and allows for the measurement of the electrical discharge parameters. Some recommendations on choosing optimal conditions of discharge generation for experiments on plasma food processing are developed.

  4. [Air pollution due to the burning of thermoplastics II (author's transl)].

    PubMed

    van Grimbergen, M; Reybrouck, G; van de Voorde, H

    1975-03-01

    Following on from the first publication, (12) concerning the burning of plastics, another 13 chemical pure polymers were burnt in an electric oven to determine the level of solid and gaseous air pollution caused by their stackgases. All 13 polymers are highly combustible but require different burning temperatures (300-900 degrees C) in order to be burnt completely (i.e. without ashrest). With the exception of PMMA and PTFE, all plastics leave a very heavy tar- and soot deposit after burning. At the other end of the scale, burning at low temperature (300 degrees C) gives rise to high concentrations of alipathic aldehyds. The pH of the exhaust-gases, dissolved in water, is neutral to strong acid (PTFE), and will cause a severe corrosion. The nitrogen-containing polymers pollute by forming cyanides, nitrogenoxides and ammonia. PTFE gives off high concentrations of fluorid into the air. PMMA decomposes in its monomer methylmethacrylate and forms large amounts of aliphatic aldehyds. ABS and SBR cause a styrene pollution.

  5. RADIOLOGICAL RELEASES DUE TO AIR AND SILICA DUST ACTIVATION IN EMPLACEMENT DRIFTS

    SciTech Connect

    J.S. Tang

    2003-05-07

    The purpose of this calculation is to determine the quantity and significance of annual Monitored Geologic Repository (MGR) subsurface normal radiological releases due to neutron activation of air and silica dust in emplacement drifts. This calculation includes the following items: (1) Calculate activation of ventilation airflow through emplacement drifts to quantify radioactive gaseous releases; and (2) Calculate the bounding potential activated silica dust concentration and releases. The sources of silica dust may arise from air supply to emplacement drifts as well as host rock around emplacement drifts. For this calculation, the source of dust is conservatively assumed to be the host rock (Assumption 3.6), which is subject to long-term neutron exposure resulting in saturated radioactivity. The scope of this calculation is limited to releases from activated air and silica dust only, excluding natural radioactive releases such as radon or releases from defective waste packages (breached or contaminated). This work supports the repository ventilation system design and Preclosure Safety Analysis. This includes MGR items classified as Quality Level 1, for example, the Uncanistered Spent Nuclear Fuel Waste Package (CRWMS M&O [Civilian Radioactive Waste Management and Operation Contractor] 1999a, page 7). Therefore, this calculation is subject to the requirements of the ''Quality Assurance Requirements and Description'' (DOE [U.S. Department of Energy] 2003). The performance of the calculation and development of this document are carried out in accordance with AP-3.12Q, ''Design Calculation and Analyses'' and LP-3.30Q-BSC, ''Hazards Analysis System''.

  6. Effect of load carriage on gait due to firefighting air bottle configuration.

    PubMed

    Park, Kiwon; Hur, Pilwon; Rosengren, Karl S; Horn, Gavin P; Hsiao-Wecksler, Elizabeth T

    2010-07-01

    The air bottle configuration (mass and size) used with a firefighter's self-contained breathing apparatus may affect functional gait performance and slip/trip/fall risk, contributing to one of the most common and costly fire ground injuries to this population. To examine the potential effect of bottle mass and size on firefighter gait performance, four 30-min air bottle configurations were tested. To quantify biomechanical gait performance, kinetic and kinematic gait data were collected on 24 male firefighters while walking at normal and fast speeds during three conditions (no obstacle, 10 cm or 30 cm stationary obstacle). Bottle mass, obstacle height and walking speed - but not bottle size - were found to significantly impact gait parameters. Ten subjects (42%) contacted the taller obstacle while wearing heavier bottles, suggesting greater risk for tripping. Heavier bottles also resulted in larger forces by the trailing leg in both the anterior-posterior and vertical directions, suggesting greater risk for slipping. These results suggest that increased bottle weight may result in a decrease in gait performance and an increase in fall risk. STATEMENT OF RELEVANCE: Occupations, such as firefighting, often require use of a self-contained breathing apparatus that includes a pressurised air bottle. No systematic assessment has investigated how modest changes in load carriage due to bottle configuration (mass and size) might affect gait behaviour, especially when crossing obstacles. Bottle mass, but not size, was found to decrease gait performance and increase fall risk.

  7. Effect of load carriage on gait due to firefighting air bottle configuration.

    PubMed

    Park, Kiwon; Hur, Pilwon; Rosengren, Karl S; Horn, Gavin P; Hsiao-Wecksler, Elizabeth T

    2010-07-01

    The air bottle configuration (mass and size) used with a firefighter's self-contained breathing apparatus may affect functional gait performance and slip/trip/fall risk, contributing to one of the most common and costly fire ground injuries to this population. To examine the potential effect of bottle mass and size on firefighter gait performance, four 30-min air bottle configurations were tested. To quantify biomechanical gait performance, kinetic and kinematic gait data were collected on 24 male firefighters while walking at normal and fast speeds during three conditions (no obstacle, 10 cm or 30 cm stationary obstacle). Bottle mass, obstacle height and walking speed - but not bottle size - were found to significantly impact gait parameters. Ten subjects (42%) contacted the taller obstacle while wearing heavier bottles, suggesting greater risk for tripping. Heavier bottles also resulted in larger forces by the trailing leg in both the anterior-posterior and vertical directions, suggesting greater risk for slipping. These results suggest that increased bottle weight may result in a decrease in gait performance and an increase in fall risk. STATEMENT OF RELEVANCE: Occupations, such as firefighting, often require use of a self-contained breathing apparatus that includes a pressurised air bottle. No systematic assessment has investigated how modest changes in load carriage due to bottle configuration (mass and size) might affect gait behaviour, especially when crossing obstacles. Bottle mass, but not size, was found to decrease gait performance and increase fall risk. PMID:20582769

  8. Relationships of eggshell, air cell, and cloacal temperatures of embryonated broiler hatching eggs during incubation.

    PubMed

    Olojede, O C; Collins, K E; Womack, S K; Gerard, P D; Peebles, E D

    2016-10-01

    The relationships of eggshell, air cell, and embryo cloacal temperatures in Ross × Ross 708 broiler hatching eggs were determined. Twenty eggs were weighed and set on each of 3 tray levels of a single incubator. Eggshell temperature (EST) of the eggs were recorded once in the morning (AM) and afternoon (PM) between 0 and 19 d of incubation (DOI) using an infrared thermometer (IRT). All eggs were candled and a transponder was implanted in the air cell of eggs containing live embryos (12 per tray level) at 12 DOI. At 19 DOI, transponders were implanted in the cloaca of live embryos from those same eggs. Air cell temperature (ACT) and EST readings were recorded once in the AM and PM between 12 and 19 DOI, and ACT and cloaca temperature (CLT) readings were recorded every 6 h between 19 and 21 DOI. The EST and ACT readings between 13 and 19 DOI were positively correlated. However, their respective mean temperatures between 13 and 19 DOI differed. The EST and ACT were not significantly influenced by tray level. Nevertheless, a main effect due to location (eggshell vs. air cell), and an interaction between DOI and time of day (AM and PM) in the 13 to 19 DOI interval were observed. Furthermore, an interaction was observed between location (air cell and cloaca) and the 6 h sequential time periods in the 19 to 21 DOI interval. However, across the entire 19 to 21 DOI interval, mean ACT and CLT were not significantly different, and were positively correlated. These data suggest that ACT readings are higher than those of EST during the last half of incubation, and that between 13 and 19 DOI, ACT readings may have the potential for use as a minimally invasive method by which to more accurately estimate the true core body temperature of broiler embryos. The effects of this method on hatchability and post-hatch performance need determination to better establish its practicality.

  9. Relationships of eggshell, air cell, and cloacal temperatures of embryonated broiler hatching eggs during incubation.

    PubMed

    Olojede, O C; Collins, K E; Womack, S K; Gerard, P D; Peebles, E D

    2016-10-01

    The relationships of eggshell, air cell, and embryo cloacal temperatures in Ross × Ross 708 broiler hatching eggs were determined. Twenty eggs were weighed and set on each of 3 tray levels of a single incubator. Eggshell temperature (EST) of the eggs were recorded once in the morning (AM) and afternoon (PM) between 0 and 19 d of incubation (DOI) using an infrared thermometer (IRT). All eggs were candled and a transponder was implanted in the air cell of eggs containing live embryos (12 per tray level) at 12 DOI. At 19 DOI, transponders were implanted in the cloaca of live embryos from those same eggs. Air cell temperature (ACT) and EST readings were recorded once in the AM and PM between 12 and 19 DOI, and ACT and cloaca temperature (CLT) readings were recorded every 6 h between 19 and 21 DOI. The EST and ACT readings between 13 and 19 DOI were positively correlated. However, their respective mean temperatures between 13 and 19 DOI differed. The EST and ACT were not significantly influenced by tray level. Nevertheless, a main effect due to location (eggshell vs. air cell), and an interaction between DOI and time of day (AM and PM) in the 13 to 19 DOI interval were observed. Furthermore, an interaction was observed between location (air cell and cloaca) and the 6 h sequential time periods in the 19 to 21 DOI interval. However, across the entire 19 to 21 DOI interval, mean ACT and CLT were not significantly different, and were positively correlated. These data suggest that ACT readings are higher than those of EST during the last half of incubation, and that between 13 and 19 DOI, ACT readings may have the potential for use as a minimally invasive method by which to more accurately estimate the true core body temperature of broiler embryos. The effects of this method on hatchability and post-hatch performance need determination to better establish its practicality. PMID:27433009

  10. Identifying Modes of Temperature Variability Using AIRS Data.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Aumann, H. H.; Yung, Y.

    2007-12-01

    We use the Atmospheric Infrared Sounder (AIRS) and Advance Microwave Sounding Unit (AMSU) data obtained on Aqua spacecraft to study mid-tropospheric temperature variability between 2002-2007. The analysis is focused on daily zonal means of the AIRS channel at 2388 1/cm in the CO2 R-branch and the AMSU channel #5 in the 57 GHz Oxygen band, both with weighting function peaking in the mid-troposphere (400 mb) and the matching sea surface temperature from NCEP (Aumann et al., 2007). Taking into account the nonlinear and non- stationary behavior of the temperature we apply the Empirical Mode Decomposition (Huang et al., 1998) to better separate modes of variability. All-sky (cloudy) and clear sky, day and night data are analyzed. In addition to the dominant annual variation, which is nonlinear and latitude dependent, we identified the modes with higher frequency and inter-annual modes. Some trends are visible and we apply stringent criteria to test their statistical significance. References: Aumann, H. H., D. T. Gregorich, S. E. Broberg, and D. A. Elliott, Geophys. Res. Lett., 34, L15813, doi:10.1029/2006GL029191, 2007. Huang, N. E. Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, Proc. R. Soc. Lond., A 454, 903-995, 1998.

  11. Coastal Greenland air temperature extremes 1890-2010

    NASA Astrophysics Data System (ADS)

    Mernild, Sebastian H.; Hanna, Edward; Cappelen, John

    2013-04-01

    We use observed air temperature data series from fourteen meteorological stations in coastal Greenland (located all around the Greenland Ice Sheet (GrIS)) for 1960-2010, where long-term records for five of the stations extend back to 1890, to illustrate the annual and monthly temporal and spatial distribution of temperature extremes. We find that the 2000s (2001-2010) had the highest number of mean annual air temperature (MAAT) warm extremes, and the 1890s (1891-1900) the highest number of cold extremes. For the 2000s the number of warm extremes was significantly higher by around 50% than the number in the 1940s (the Early Twentieth Century Warm Period): the decade with the second highest occurrence of MAAT warm extremes. Since 1960, based on MAAT the number of cold extremes has decreased on the decadal timescale, while warm extremes have increased leading to a higher occurrence of extremes (cold plus warm extremes): an almost similar pattern occurred on mean monthly and on monthly mean daily maximum and minimum scales. Further, a division of Greenland into east and west sectors shows that the occurrence of cold (warm) extremes was more pronounced in the East than in the West in the 1960s and 1970s (mid-1980s to the 2000s).

  12. Measuring centimeter-resolution air temperature profiles above land and water using fiber-optic Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Sigmund, Armin; Pfister, Lena; Olesch, Johannes; Thomas, Christoph K.

    2016-04-01

    The precise determination of near-surface air temperature profiles is of special importance for the characterization of airflows (e.g. cold air) and the quantification of sensible heat fluxes according to the flux-gradient similarity approach. In contrast to conventional multi-sensor techniques, measuring temperature profiles using fiber-optic Distributed Temperature Sensing (DTS) provides thousands of measurements referenced to a single calibration standard at much reduced costs. The aim of this work was to enhance the vertical resolution of Raman scatter DTS measurements up to the centimeter-scale using a novel approach for atmospheric applications: the optical fiber was helically coiled around a meshed fabric. In addition to testing the new fiber geometry, we quantified the measurement uncertainty and demonstrated the benefits of the enhanced-resolution profiles. The fiber-optic cable was coiled around a hollow column consisting of white reinforcing fabric supported by plexiglass rings every meter. Data from two columns of this type were collected for 47 days to measure air temperature vertically over 3.0 and 5.1 m over a gently inclined meadow and over and in a small lake, respectively. Both profiles had a vertical resolution of 1 cm in the lower section near the surface and 5 cm in the upper section with an along-fiber instrument-specific averaging of 1.0 m and a temporal resolution of 30 s. Measurement uncertainties, especially from conduction between reinforcing fabric and fiber-optic cable, were estimated by modeling the fiber temperature via a detailed energy balance approach. Air temperature, wind velocity and radiation components were needed as input data and measured separately. The temperature profiles revealed valuable details, especially in the lowest 1 m above surface. This was best demonstrated for nighttime observations when artefacts due to solar heating did not occur. For example, the dynamics of a cold air layer was detected in a clear night

  13. Observational evidence of increased tropical rainfall due to air passage over forests

    NASA Astrophysics Data System (ADS)

    Spracklen, D. V.; Arnold, S. R.; Taylor, C.

    2012-12-01

    Vegetation affects precipitation patterns through altering moisture, energy and trace-gas fluxes between the surface and atmosphere. Climate model studies typically predict that large-scale deforestation results in reduced regional precipitation. Observational studies that have attempted to confirm these modelling predictions have yielded conflicting results likely due to the large temporal and spatial variability in precipitation masking land-cover induced changes. Here we explore the effect of tropical vegetation on precipitation using satellite remote sensed observations of precipitation from the tropical Rainfall Measuring Mission (TRMM) and other satellites combined (TRMM3B42) and leaf area index (LAI) from the Moderate Resolution Imaging Spectroradiometer (MODIS). We combine these observations with a Lagrangian atmospheric transport model which we use to describe daily variability in tropical atmospheric transport patterns. We calculate cumulative exposure of air masses to tropical vegetation and explore relationships between this exposure and observed precipitation. We find that for large regions of the tropics air that has experienced a large cumulative exposure to vegetation in the preceding few days produces at least twice as much rain as air that has little exposure. To understand potential mechanisms behind this relationship we explore the atmospheric water budget along analysed back trajectories. We constrain the water budget using specific humidity from analysed meteorological fields combined with global land-surface model output of evapotranspiration (ET). We find that ET in air masses with large exposure to vegetation maintains atmospheric moisture sufficiently to explain observed relationships with precipitation. We combine these empirical relationships with a business-as-usual scenario of Amazonian deforestation to estimate impacts on future precipitation.

  14. Model-based estimation of changes in air temperature seasonality

    NASA Astrophysics Data System (ADS)

    Barbosa, Susana; Trigo, Ricardo

    2010-05-01

    Seasonality is a ubiquitous feature in climate time series. Climate change is expected to involve not only changes in the mean of climate parameters but also changes in the characteristics of the corresponding seasonal cycle. Therefore the identification and quantification of changes in seasonality is a highly relevant topic in climate analysis, particularly in a global warming context. However, the analysis of seasonality is far from a trivial task. A key challenge is the discrimination between long-term changes in the mean and long-term changes in the seasonal pattern itself, which requires the use of appropriate statistical approaches in order to be able to distinguish between overall trends in the mean and trends in the seasons. Model based approaches are particularly suitable for the analysis of seasonality, enabling to assess uncertainties in the amplitude and phase of seasonal patterns within a well defined statistical framework. This work addresses the changes in the seasonality of air temperature over the 20th century. The analysed data are global air temperature values close to surface (2m above ground) and mid-troposphere (500 hPa geopotential height) from the recently developed 20th century reanalysis. This new 3-D Reanalysis dataset is available since 1891, considerably extending all other Reanalyses currently in use (e.g. NCAR, ECWMF), and was obtained with the Ensemble Filter (Compo et al., 2006) by assimilation of pressure observations into a state-of-the-art atmospheric general circulation model that includes the radiative effects of historical time-varying CO2 concentrations, volcanic aerosol emissions and solar output variations. A modeling approach based on autoregression (Barbosa et al, 2008; Barbosa, 2009) is applied within a Bayesian framework for the estimation of a time varying seasonal pattern and further quantification of changes in the amplitude and phase of air temperature over the 20th century. Barbosa, SM, Silva, ME, Fernandes, MJ

  15. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  16. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  17. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  18. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  19. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  20. An empirical technique for estimating near-surface air temperature trends in central Greenland from SSM/I brightness temperatures

    SciTech Connect

    Shuman, C.A.; Alley, R.B.; Anandakrishnan, S.; Stearns, C.R.

    1995-02-01

    In central Greenland, near-surface air temperatures can be estimated from long-term satellite passive microwave brightness temperatures supported by limited air-temperature data from automatic weather stations. In this region, brightness temperature depends on snow emissivity, which varies slowly over time, and on snow temperature, which varies more rapidly and is controlled by air temperature. The air temperature and brightness temperature data define an emissivity trend which can be modeled as an annual sinusoid. An air temperature trend can then be derived from the brightness temperature and modeled emissivity information. The estimated air temperature values represent an integrated near-surface value that defines the overall temperature trend at the Greenland Summit. The modeled emissivity cycle allows daily-average air temperatures to be estimated across significant gaps in weather station records, as well as quality control of their temperature data. The technique also generates annual trends of emissivity which can be used to evaluate radiative transfer models of microwave emissivity from dry firn.

  1. Effect of Ambient Design Temperature on Air-Cooled Binary Plant Output

    SciTech Connect

    Dan Wendt; Greg Mines

    2011-10-01

    Air-cooled binary plants are designed to provide a specified level of power production at a particular air temperature. Nominally this air temperature is the annual mean or average air temperature for the plant location. This study investigates the effect that changing the design air temperature has on power generation for an air-cooled binary plant producing power from a resource with a declining production fluid temperature and fluctuating ambient temperatures. This analysis was performed for plants operating both with and without a geothermal fluid outlet temperature limit. Aspen Plus process simulation software was used to develop optimal air-cooled binary plant designs for specific ambient temperatures as well as to rate the performance of the plant designs at off-design operating conditions. Results include calculation of annual and plant lifetime power generation as well as evaluation of plant operating characteristics, such as improved power generation capabilities during summer months when electric power prices are at peak levels.

  2. Change point analysis of mean annual air temperature in Iran

    NASA Astrophysics Data System (ADS)

    Shirvani, A.

    2015-06-01

    The existence of change point in the mean of air temperature is an important indicator of climate change. In this study, Student's t parametric and Mann-Whitney nonparametric Change Point Models (CPMs) were applied to test whether a change point has occurred in the mean of annual Air Temperature Anomalies Time Series (ATATS) of 27 synoptic stations in different regions of Iran for the period 1956-2010. The Likelihood Ratio Test (LRT) was also applied to evaluate the detected change points. The ATATS of all stations except Bandar Anzali and Gorgan stations, which were serially correlated, were transformed to produce an uncorrelated pre-whitened time series as an input file for the CPMs and LRT. Both the Student's t and Mann-Whitney CPMs detected the change point in the ATATS of (a) Tehran Mehrabad, Abadan, Kermanshah, Khoramabad and Yazd in 1992, (b) Mashhad and Tabriz in 1993, (c) Bandar Anzali, Babolsar and Ramsar in 1994, (d) Kerman and Zahedan in 1996 at 5% significance level. The likelihood ratio test shows that the ATATS before and after detected change points in these 12 stations are normally distributed with different means. The Student's t and Mann-Whitney CPMs suggested different change points for individual stations in Bushehr, Bam, Shahroud, and Gorgan. However, the LRT confirmed the change points in these four stations as 1997, 1996, 1993, and 1996, respectively. No change points were detected in the remaining 11 stations.

  3. Assessing surface air temperature variability using quantile regression

    NASA Astrophysics Data System (ADS)

    Timofeev, A. A.; Sterin, A. M.

    2014-12-01

    Many researches in climate change currently involve linear trends, based on measured variables. And many of them only consider trends in mean values, whereas it is clear, that not only means, but also whole shape of distribution changes over time and requires careful assessment. For example extreme values including outliers may get bigger, while median has zero slope.Quantile regression provides a convenient tool, that enables detailed analysis of changes in full range of distribution by producing a vector of quantile trends for any given set of quantiles.We have applied quantile regression to surface air temperature observations made at over 600 weather stations across Russian Federation during last four decades. The results demonstrate well pronounced regions with similar values of significant trends in different parts of temperature value distribution (left tail, middle part, right tail). The uncertainties of quantile trend estimations for several spatial patterns of trends over Russia are estimated and analyzed for each of four seasons.For temperature trend estimation over vast territories, quantile regression is an effort consuming approach, but is more informative than traditional instrument, to assess decadal evolution of temperature values, including evolution of extremes.Partial support of ERA NET RUS ACPCA joint project between EU and RBRF 12-05-91656-ЭРА-А is highly appreciated.

  4. Simulation and projection of summer surface air temperature over China: a comparison between a RCM and the driving global model

    NASA Astrophysics Data System (ADS)

    Li, Donghuan; Zhou, Tianjun; Zou, Liwei

    2016-04-01

    The regional climate model (version 3, RegCM3) with the horizontal resolution of 50 km was employed to downscale the historical and projected climate changes over CORDEX East Asia domain, nested within the global climate system model FGOALS-g2 (Flexible Global Ocean-Atmosphere-Land System Model: Grid-point Version 2). The simulated (1986-2005) and projected (2046-2065) summer surface air temperature changes under RCP8.5 scenario over China were compared between the RegCM3 and FGOALS-g2. The air temperature indices used in this study included tmx (daily maximum temperature), t2m (daily average temperature) and tmn (daily minimum temperature), and extreme high-temperature events included TXx (max tmx), TX90p (warm days) and WSDI (warm spell duration). Results indicated that both models could reasonably reproduce the climatological distribution of surface air temperature and extreme high-temperature events. Compared to the driving global climate model, the detailed characteristics of summer surface air temperature were better simulated in RegCM3 due to its higher horizontal resolution. Under the RCP8.5 scenario, summer surface air temperature over China will increase significantly during the middle of 21st century. RegCM3 projected larger increase of tmx than tmn over most regions of China, but in the western Tibet Plateau, the increase of tmn was larger. In the projection of FGOALS-g2, the projected changes of the three temperature indices (t2m, tmn, and tmx) were similar with larger increases over northeastern China and Tibet Plateau. Extreme high-temperature events were projected to increase significantly in both models. TX90p will increase more than 60% compared to present day, while WSDI will become twice of present day. Key words: Summer surface air temperature; Extreme high-temperature events; Regional climate model; Climate change

  5. Controlling a rabbet load and air/oil seal temperatures in a turbine

    DOEpatents

    Schmidt, Mark Christopher

    2002-01-01

    During a standard fired shutdown of a turbine, a loaded rabbet joint between the fourth stage wheel and the aft shaft of the machine can become unloaded causing a gap to occur due to a thermal mismatch at the rabbet joint with the bearing blower turned on. An open or unloaded rabbet could cause the parts to move relative to each other and therefore cause the rotor to lose balance. If the bearing blower is turned off during a shutdown, the forward air/oil seal temperature may exceed maximum design practice criterion due to "soak-back." An air/oil seal temperature above the established maximum design limits could cause a bearing fire to occur, with catastrophic consequences to the machine. By controlling the bearing blower according to an optimized blower profile, the rabbet load can be maintained, and the air/oil seal temperature can be maintained below the established limits. A blower profile is determined according to a thermodynamic model of the system.

  6. Pan-Arctic linkages between snow accumulation and growing season air temperature, soil moisture and vegetation

    NASA Astrophysics Data System (ADS)

    Luus, K. A.; Gel, Y.; Lin, J. C.; Kelly, R. E. J.; Duguay, C. R.

    2013-01-01

    Arctic field studies have indicated that the air temperature, soil moisture and vegetation at a site influence the quantity of snow accumulated, and that snow accumulation can alter growing season soil moisture and vegetation. Climate change is predicted to bring about warmer air temperatures, greater snow accumulation and northward movements of the shrub and tree lines. Understanding the response of northern environments to changes in snow and growing season land surface characteristics requires: (1) insights into the present-day linkages between snow and growing season land surface characteristics; and (2) the ability to continue to monitor these associations over time across the vast pan-Arctic. The objective of this study was therefore to examine the pan-Arctic (north of 60° N) linkages between two temporally distinct data products created from AMSR-E satellite passive microwave observations: GlobSnow snow water equivalent, and NTSG (growing season air temperature, soil moisture and vegetation transmissivity). Due to the complex and interconnected nature of processes determining snow and growing season land surface characteristics, these associations were analyzed using the modern non-parametric technique of Alternating Conditional Expectations (ACE), as this approach does not impose a predefined analytic form. Findings indicate that regions with lower vegetation transmissivity (more biomass) at the start and end of the growing season tend to accumulate less snow at the start and end of the snow season, possibly due to interception and shading. Warmer air temperatures at the start and end of the growing season were associated with diminished snow accumulation at the start and end of the snow season. High latitude sites with warmer mean annual growing season temperatures tended to accumulate more snow, probably due to the greater availability of water vapor for snow season precipitation at warmer locations. Regions with drier soils preceding snow onset tended

  7. Air Surface Temperature Correlation with Greenhouse Gases by Using Airs Data Over Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Rajab, Jasim Mohammed; MatJafri, M. Z.; Lim, H. S.

    2014-08-01

    The main objective of this study is to develop algorithms for calculating the air surface temperature (AST). This study also aims to analyze and investigate the effects of greenhouse gases (GHGs) on the AST value in Peninsular Malaysia. Multiple linear regression is used to achieve the objectives of the study. Peninsular Malaysia has been selected as the research area because it is among the regions of tropical Southeast Asia with the greatest humidity, pockets of heavy pollution, rapid economic growth, and industrialization. The predicted AST was highly correlated ( R = 0.783) with GHGs for the 6-year data (2003-2008). Comparisons of five stations in 2009 showed close agreement between the predicted AST and the observed AST from AIRS, especially in the wet season (within 1.3 K). The in situ data ranged from 1 to 2 K. Validation results showed that AST ( R = 0.776-0.878) has values nearly the same as the observed AST from AIRS. We found that O3 during the wet season was indicated by a strongly positive beta coefficient (0.264-0.992) with AST. The CO2 yields a reasonable relationship with temperature with low to moderate beta coefficient (-0.065 to 0.238). The O3, CO2, and environmental variables experienced different seasonal fluctuations that depend on weather conditions and topography. The concentration of gases and pollution were the highest over industrial zones and overcrowded cities, and the dry season was more polluted compared with the wet season. These results indicate the advantage of using the satellite AIRS data and a correlation analysis to investigate the effect of atmospheric GHGs on AST over Peninsular Malaysia. An algorithm that is capable of retrieving Peninsular Malaysian AST in all weather conditions with total uncertainties ranging from 1 to 2 K was developed.

  8. An improved method for correction of air temperature measured using different radiation shields

    NASA Astrophysics Data System (ADS)

    Cheng, Xinghong; Su, Debin; Li, Deping; Chen, Lu; Xu, Wenjing; Yang, Meilin; Li, Yongcheng; Yue, Zhizhong; Wang, Zijing

    2014-11-01

    The variation of air temperature measurement errors using two different radiation shields (DTR502B Vaisala, Finland, and HYTFZ01, Huayun Tongda Satcom, China) was studied. Datasets were collected in the field at the Daxing weather station in Beijing from June 2011 to May 2012. Most air temperature values obtained with these two commonly used radiation shields were lower than the reference records obtained with the new Fiber Reinforced Polymers (FRP) Stevenson screen. In most cases, the air temperature errors when using the two devices were smaller on overcast and rainy days than on sunny days; and smaller when using the imported rather than the Chinese shield. The measured errors changed sharply at sunrise and sunset, and reached maxima at noon. Their diurnal variation characteristics were, naturally, related to changes in solar radiation. The relationships between the record errors, global radiation, and wind speed were nonlinear. An improved correction method was proposed based on the approach described by Nakamura and Mahrt (2005) (NM05), in which the impact of the solar zenith angle (SZA) on the temperature error is considered and extreme errors due to changes in SZA can be corrected effectively. Measurement errors were reduced significantly after correction by either method for both shields. The error reduction rate using the improved correction method for the Chinese and imported shields were 3.3% and 40.4% higher than those using the NM05 method, respectively.

  9. Cyclic Oxidation of High-Temperature Alloy Wires in Air

    NASA Technical Reports Server (NTRS)

    Reigel, Marissa M.

    2004-01-01

    High-temperature alloy wires are proposed for use in seal applications for future re-useable space vehicles. These alloys offer the potential for improved wear resistance of the seals. The wires must withstand the high temperature environments the seals are subjected to as well as maintain their oxidation resistance during the heating and cooling cycles of vehicle re-entry. To model this, the wires were subjected to cyclic oxidation in stagnant air. of this layer formation is dependent on temperature. Slow growing oxides such as chromia and alumina are desirable. Once the oxide is formed it can prevent the metal from further reacting with its environment. Cyclic oxidation models the changes in temperature these wires will undergo in application. Cycling the temperature introduces thermal stresses which can cause the oxide layer to break off. Re-growth of the oxide layer consumes more metal and therefore reduces the properties and durability of the material. were used for cyclic oxidation testing. The baseline material, Haynes 188, has a Co base and is a chromia former while the other two alloys, Kanthal A1 and PM2000, both have a Fe base and are alumina formers. Haynes 188 and Kanthal A1 wires are 250 pm in diameter and PM2000 wires are 150 pm in diameter. The coiled wire has a total surface area of 3 to 5 sq cm. The wires were oxidized for 11 cycles at 1204 C, each cycle containing a 1 hour heating time and a minimum 20 minute cooling time. Weights were taken between cycles. After 11 cycles, one wire of each composition was removed for analysis. The other wire continued testing for 70 cycles. Post-test analysis includes X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) for phase identification and morphology.

  10. Air pollution due to traffic, air quality monitoring along three sections of National Highway N-5, Pakistan.

    PubMed

    Ali, Mahboob; Athar, Makshoof

    2008-01-01

    Transportation system has contributed significantly to the development of human civilization; on the other hand it has an enormous impact on the ambient air quality in several ways. In this paper the air and noise pollution at selected sites along three sections of National Highway was monitored. Pakistan National Highway Authority has started a Highway Improvement program for rehabilitations and maintenance of National highways to improve the traffic flows, and would ultimately improve the air quality along highways. The ambient air quality and noise level was monitored at nine different locations along these sections of highways to quantify the air pollution. The duration of monitoring at individual location was 72 h. The most of the sampling points were near the urban or village population, schools or hospitals, in order to quantify the air pollution at most affected locations along these roads. A database consisting of information regarding the source of emission, local metrology and air quality may be created to assess the profile of air quality in the area.

  11. Study of Ram-air Heat Exchangers for Reducing Turbine Cooling-air Temperature of a Supersonic Aircraft Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Diaguila, Anthony J; Livingood, John N B; Eckert, Ernst R G

    1956-01-01

    The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude of 70,000 feet. A compressor-bleed-air weight flow of 2.7 pounds per second was assumed for the coolant; ram air was considered as the other fluid. Pressure drops and inlet states of both fluids were prescribed, and ranges of compressor-bleed-air temperature reductions and of the ratio of compressor-bleed to ram-air weight flows were considered.

  12. Air temperature evolution during dry spells and its relation to prevailing soil moisture regimes

    NASA Astrophysics Data System (ADS)

    Schwingshackl, Clemens; Hirschi, Martin; Seneviratne, Sonia I.

    2015-04-01

    The complex interplay between land and atmosphere makes accurate climate predictions very challenging, in particular with respect to extreme events. More detailed investigations of the underlying dynamics, such as the identification of the drivers regulating the energy exchange at the land surface and the quantification of fluxes between soil and atmosphere over different land types, are thus necessary. The recently started DROUGHT-HEAT project (funded by the European Research Council) aims to provide better understanding of the processes governing the land-atmosphere exchange. In the first phase of the project, different datasets and methods are used to investigate major drivers of land-atmosphere dynamics leading to droughts and heatwaves. In the second phase, these findings will be used for reducing uncertainties and biases in earth system models. Finally, the third part of the project will focus on the application of the previous findings and use them for the attribution of extreme events to land processes and possible mitigation through land geoengineering. One of the major questions in land-atmosphere exchange is the relationship between air temperature and soil moisture. Different studies show that especially during dry spells soil moisture has a strong impact on air temperature and the amplification of hot extremes. Whereas in dry and wet soil moisture regimes variations in latent heat flux during rain-free periods are expected to be small, this is not the case in transitional soil moisture regimes: Due to decreasing soil moisture content latent heat flux reduces with time, which causes in turn an increase in sensible heat flux and, subsequently, higher air temperatures. The investigation of air temperature evolution during dry spells can thus help to detect different soil moisture regimes and to provide insights on the effect of different soil moisture levels on air temperature. Here we assess the underlying relationships using different observational and

  13. Rapid fluctuations of the air and surface temperature in the city of Bucharest (Romania)

    NASA Astrophysics Data System (ADS)

    Cheval, Sorin; Dumitrescu, Alexandru; Hustiu, Mihaita-Cristinel

    2016-04-01

    Urban areas derive significant changes of the ambient temperature generating specific challenges for society and infrastructure. Extreme temperature events, heat and cold waves affect the human comfort, increase the health risk, and require specific building regulations and emergency preparedness, strongly related to the magnitude and frequency of the thermal hazards. Rapid changes of the temperature put a particular stress for the urban settlements, and the topic has been approached constantly in the scientific literature. Due to its geographical position in a plain area with a temperate climate and noticeable continental influence, the city of Bucharest (Romania) deals with high seasonal and daily temperature variations. However, rapid fluctuations also occur at sub-daily scale caused by cold or warm air advections or by very local effects (e.g. radiative heat exchange, local precipitation). For example, in the area of Bucharest, the cold fronts of the warm season may trigger temperature decreasing up to 10-15 centigrades / hour, while warm advections lead to increasing of 1-2 centigrades / hour. This study focuses on the hourly and sub-hourly temperature variations over the period November 2014 - February 2016, using air temperature data collected from urban sensors and meteorological stations of the national network, and land surface temperature data obtained from satellite remote sensing. The analysis returns different statistics, such as magnitude, intensity, frequency, simultaneous occurrence and areal coverage of the rapid temperature fluctuations. Furthermore, the generating factors for each case study are assessed, and the results are used to define some preliminary patterns and enhance the urban temperature forecast at fine scale. The study was funded by the Romanian Programme Partnership in Priority Domains, PN - II - PCCA - 2013 - 4 - 0509 - Reducing UHI effects to improve urban comfort and balance energy consumption in Bucharest (REDBHI).

  14. Case study of materials damage due to air pollution and acid rain in New Haven, CT

    SciTech Connect

    Lipfert, F.W.; Dupuis, L.R.; Malone, R.G.; Schaedler, J.; daum, M.L.

    1985-05-01

    This case study of New Haven, CT has estimated the annual costs of materials degradation due to SO/sub 2/ and acidic precipitation, at current conditions. The assessment is based on a detailed materials distribution, computed as well as measured environmental conditions, and newly-derived damage functions. Painted surfaces are the most prevalent, and contribute over 60% of the total estimated costs. Since paint damage is highly dependent on the type of paint and its application, these costs are less certain than, for example, the metal or stone damage portions. This finding emphasizes the need for accelerated research on damage to painted surfaces due to acidic deposition. By pollutant, hydrogen ion deposition is seen to be responsible for more damage in New Haven than SO/sub 2/, for all materials. This finding, together with the important role played by background SO/sub 2/, indicated that regional air pollution is much more important for materials damage (in New Haven) than are local sources. This may not be the case, however, in a more industralized location.

  15. Real-time monitoring of air pollution due to wildland fires, using OMEGA model

    NASA Astrophysics Data System (ADS)

    Bhoi, S.; Boybeyi, Z.; Qu, J. J.

    2005-12-01

    In this study a mesoscale mode coupled with near real-time remote sensing data, has been applied to forecast air pollution due to wildland fires. Operational Multiscale Environment model with Grid Adaptivity (OMEGA) developed by SAIC (Science Applications International Corporation) is used in our current study. Satellite images have been used along with the NFDRS (National Fire Danger Rating) fuel load data to estimate the current fuel load available for burning. Emission from the fire has been calculated by estimating the area burned by the fire using real-time satellite data, and using emission factors given by EPA (Environmental Protection Agency). We have concentrated our efforts on estimating the emission of PM2.5 and Carbon Monoxide due to wildland fires. A forest fire in the Eastern United States has been taken as a case study and the accuracy and efficiency of the model to run on real time basis has been shown. The whole processing is done using a sixteen node parallel cluster, so as to speed up the processing time for the model. A framework has been proposed to use mesoscale model along with real-time remote sending data to automatically detect fire pixels, run the model and generate the output in GIS (Geographic Information Systems) format to be distributed on the web. This will facilitate rapid distribution of forecast result which will be of immense help to persons involved in disaster management of wildland fires.

  16. Subseasonal variability of North American wintertime surface air temperature

    NASA Astrophysics Data System (ADS)

    Lin, Hai

    2015-09-01

    Using observational pentad data of the recent 34 Northern Hemisphere extended winters, subseasonal variability of surface air temperature (SAT) over North America is analyzed. The four leading modes of subseasonal SAT variability, that are identified with an empirical orthogonal function (EOF) analysis, account for about 60% of the total variance. The first (EOF1) and second (EOF2) modes are independent of other modes, and thus are likely controlled by distinct processes. The third (EOF3) and fourth (EOF4) modes, however, tend to have a phase shift to each other in space and time, indicating that part of their variability is related to a common process and represent a propagating pattern over North America. Lagged regression analysis is conducted to identify the precursors of large-scale atmospheric circulation for each mode a few pentads in advance, and to understand the processes that influence the subseasonal SAT variability and the predictability signal sources. EOF1 is found to be closely related to the Pacific-North American (PNA) circulation pattern and at least part of its variability is preceded by the East Asian cold surge. The cold surge leads to low-level convergence and enhanced convection in the tropical central Pacific which in turn induces the PNA. EOF2 tends to oscillate at a period of about 70 days, and is influenced by the low-frequency component of the Madden-Julian Oscillation (MJO). On the other hand, EOF3 and EOF4 are connected to the high-frequency part of the MJO which has a period range of 30-50 days. These findings would help understanding the mechanisms of subseasonal surface air temperature variability in North America and improving weather predictions on a subseasonal time scale.

  17. Effect of production microclimate on female thermal state with increased temperature and air humidity

    NASA Technical Reports Server (NTRS)

    Machablishvili, O. G.

    1980-01-01

    The thermal state of women during the effect of high air temperature and relative humidity with a varying degree of physical loads was studied. Parameters for air temperature, relative humidity, and air movement were established. It was established that in women the thermo-regulatory stress occurs at lower air temperatures and with lower physical loads than in men. The accumulation of heat in women was revealed with lower air temperature than in men. It is concluded that to preserve the normal physiological state of the female organism it is necessary to create more favorable microclimate conditions and decrease the physical loads.

  18. DYNAMIC RESPONSE OF STREAM TEMPERATURES TO BOUNDARY AND INFLOW PERTURBATION DUE TO RESERVOIR OPERATIONS

    SciTech Connect

    Khangaonkar, Tarang P.; Yang, Zhaoqing

    2008-05-01

    Dams and reservoir operations modify natural stream behaviour and affect the downstream characteristics such as mean temperatures and diurnal temperature amplitudes. Managing phase effects due to reservoir operation and the associated amplification of daily maximum temperatures in the downstream reaches remains a challenge. An analytical approach derived from a one-dimensional heat advection and dispersion equation with surface heating in the form of equilibrium temperature was developed to examine the potential for restoration of natural stream temperatures. The analytical model was validated with observed temperature data collected in the Clackamas River, Oregon, and was used to highlight key downstream temperature behaviour characteristics. Mean stream temperatures below the dam are relatively stable and upon deviating from natural stream mean temperatures, return asymptotically to their natural state. In contrast, the amplitudes of daily temperature variation are highly sensitive to the phase differences induced by the dam and could nearly double in natural amplitude within the first 24 h. The analysis showed that restoring average stream temperatures to natural levels through structural and operational modifications at the dam may not be sufficient as phase-induced temperatures maximums would continue to persist

  19. Release of Free DNA by Membrane-Impaired Bacterial Aerosols Due to Aerosolization and Air Sampling

    PubMed Central

    Zhen, Huajun; Han, Taewon; Fennell, Donna E.

    2013-01-01

    We report here that stress experienced by bacteria due to aerosolization and air sampling can result in severe membrane impairment, leading to the release of DNA as free molecules. Escherichia coli and Bacillus atrophaeus bacteria were aerosolized and then either collected directly into liquid or collected using other collection media and then transferred into liquid. The amount of DNA released was quantified as the cell membrane damage index (ID), i.e., the number of 16S rRNA gene copies in the supernatant liquid relative to the total number in the bioaerosol sample. During aerosolization by a Collison nebulizer, the ID of E. coli and B. atrophaeus in the nebulizer suspension gradually increased during 60 min of continuous aerosolization. We found that the ID of bacteria during aerosolization was statistically significantly affected by the material of the Collison jar (glass > polycarbonate; P < 0.001) and by the bacterial species (E. coli > B. atrophaeus; P < 0.001). When E. coli was collected for 5 min by filtration, impaction, and impingement, its ID values were within the following ranges: 0.051 to 0.085, 0.16 to 0.37, and 0.068 to 0.23, respectively; when it was collected by electrostatic precipitation, the ID values (0.011 to 0.034) were significantly lower (P < 0.05) than those with other sampling methods. Air samples collected inside an equine facility for 2 h by filtration and impingement exhibited ID values in the range of 0.30 to 0.54. The data indicate that the amount of cell damage during bioaerosol sampling and the resulting release of DNA can be substantial and that this should be taken into account when analyzing bioaerosol samples. PMID:24096426

  20. Estimating Air Temperature over the Tibetan Plateau Using MODIS Data

    NASA Astrophysics Data System (ADS)

    Huang, Fangfang; Ma, Weiqiang; Ma, Yaoming; Li, Maoshan; Hu, Zeyong

    2016-04-01

    Time series of MODIS land surface temperature (LST) data and normalized difference vegetation index (NDVI) data, combined with digital elevation model (DEM) and meterological data for 2001-2012, were used to estimate and map the spatial distribution of monthly mean air temperature over the Tibatan Plateau (TP). Time series and regression analysis of monthly mean land surface temperature (Ts) and air temperature (Ta) were both conducted by ordinary liner regression (OLR) and geographical weighted regression (GWR) methods. Analysis showed that GWR method had much better result (Adjusted R2 > 0.79, root mean square error (RMSE) is between 0.51° C and 1.12° C) for estimating Ta than OLR method. The GWR model, with MODIS LST, NDVI and altitude as independent variables, was used to estimate Ta over the Tibetan Plateau. All GWR models in each month were tested by F-test with significant level of α=0.01 and the regression coefficients were all tested by T-test with significant level of α=0.01. This illustrated that Ts, NDVI and altitude play an important role on estimating Ta over the Tibetan Plateau. Finally, the major conclusions are as follows: (1) GWR method has higher accuracy for estimating Ta than OLR (Adjusted R2=0.40˜0.78, RMSE=1.60˜4.38° C), and the Ta control precision can be up to 1.12° C. (2) Over the Northern TP, the range of Ta variation in January is -29.28 ˜ -5.0° C, and that in July is -0.53 ˜ 14.0° C. Ta in summer half year (from May to October) is between -15.92 ˜ 14.0° C. From October on, 0° C isothermal level is gradually declining from the altitude of 4˜5 kilometers, and hits the bottom with altitude of 3200 meters in December, and Ta is all under 0° C in January. 10° C isothermal level gradually starts rising from the altitude of 3200 meters from May, and reaches the highest level with altitude of 4˜5 kilometers in July. In addition, Ta in south slope of the Tanggula Mountains is obviously higher than that in the north slope. Ta

  1. Death, Disease, and Dirty Power. Mortality and health damage due to air pollution from power plants

    SciTech Connect

    Schneider, Conrad G.

    2000-10-01

    The Clean Air Task Force, on behalf of the Clear the Air campaign, commissioned Abt Associates to quantify the health impacts of fine particle air pollution, commonly known as soot, from power plants, as well as the expected benefits (avoidable deaths, hospitalizations, etc.) of policies that would reduce fine particle pollution from power plants. The health effects analyzed include death, hospitalizations, emergency room visits, asthma attacks, and a variety of lesser respiratory symptoms. This report summarizes the findings of the Abt Associates study, reviews the contribution of power plants to fine particle pollution, and discusses policies that will reduce power plant fine particle pollution and thus save thousands of lives. Key findings include: Fine particle pollution from US power plants cuts short the lives of over 30,000 people each year. In more polluted areas, fine particle pollution can shave several years off its victims' lives. Hundreds of thousands of Americans suffer from asthma attacks, cardiac problems and upper and lower respiratory problems associated with fine particles from power plants. The elderly, children, and those with respiratory disease are most severely impacted by fine particle pollution from power plants. Metropolitan areas with large populations near coal-fired power plants feel their impacts most acutely - their attributable death rates are much higher than in areas with few or no coal-fired power plants. Power plants outstrip all other polluters as the largest source of sulfates - the major component of fine particle pollution - in the US Approximately two-thirds (over 18,000) of the deaths due to fine particle pollution from power plants could be avoided by implementing policies that cut power plant sulfur dioxide and nitrogen oxide pollution 75 percent below 1997 emission levels. Fine particle pollution is responsible for increased risk of death and shortened life spans. Abt Associates' findings are based on a body of well

  2. Topographic and spatial impacts of temperature inversions on air quality using mobile air pollution surveys.

    PubMed

    Wallace, Julie; Corr, Denis; Kanaroglou, Pavlos

    2010-10-01

    We investigated the spatial and topographic effects of temperature inversions on air quality in the industrial city of Hamilton, located at the western tip of Lake Ontario, Canada. The city is divided by a 90-m high topographic scarp, the Niagara Escarpment, and dissected by valleys which open towards Lake Ontario. Temperature inversions occur frequently in the cooler seasons, exacerbating the impact of emissions from industry and traffic. This study used pollution data gathered from mobile monitoring surveys conducted over a 3-year period, to investigate whether the effects of the inversions varied across the city. Temperature inversions were identified with vertical temperature data from a meteorological tower located within the study area. We divided the study area into an upper and lower zone separated by the Escarpment and further into six zones, based on location with respect to the Escarpment and industrial and residential areas, to explore variations across the city. The results identified clear differences in the responses of nitrogen dioxide (NO(2)) and fine particulate matter (PM2.5) to temperature inversions, based on the topographic and spatial criteria. We found that pollution levels increased as the inversion strengthened, in the lower city. However, the results also suggested that temperature inversions identified in the lower city were not necessarily experienced in the upper city with the same intensity. Further, pollution levels in the upper city appeared to decrease as the inversion deepened in the lower city, probably because of an associated change in prevailing wind direction and lower wind speeds, leading to decreased long-range transport of pollutants. PMID:20705328

  3. Propagation Of Error And The Reliability Of Global Air Temperature Projections

    NASA Astrophysics Data System (ADS)

    Frank, P.

    2013-12-01

    General circulation model (GCM) projections of the impact of rising greenhouse gases (GHGs) on globally averaged annual surface air temperatures are a simple linear extrapolation of GHG forcing, as indicated by their accurate simulation using the equation, ΔT = a×33K×[(F0+∑iΔFi)/F0], where F0 is the total GHG forcing of projection year zero, ΔFi is the increment of GHG forcing in the ith year, and a is a variable dimensionless fraction that follows GCM climate sensitivity. Linearity of GCM air temperature projections means that uncertainty propagates step-wise as the root-sum-square of error. The annual average error in total cloud fraction (TCF) resulting from CMIP5 model theory-bias is ×12%, equivalent to ×5 Wm-2 uncertainty in the energy state of the projected atmosphere. Propagated uncertainty due to TCF error is always much larger than the projected globally averaged air temperature anomaly, and reaches ×20 C in a centennial projection. CMIP5 GCMs thus have no predictive value.

  4. Cerebral Venous Air Embolism due to a Hidden Skull Fracture Secondary to Head Trauma

    PubMed Central

    Hosaka, Ai; Yamaguchi, Tetsuto; Yamamoto, Fumiko; Shibagaki, Yasuro

    2015-01-01

    Cerebral venous air embolism is sometimes caused by head trauma. One of the paths of air entry is considered a skull fracture. We report a case of cerebral venous air embolism following head trauma. The patient was a 55-year-old man who fell and hit his head. A head computed tomography (CT) scan showed the air in the superior sagittal sinus; however, no skull fractures were detected. Follow-up CT revealed a fracture line in the right temporal bone. Cerebral venous air embolism following head trauma might have occult skull fractures even if CT could not show the skull fractures. PMID:26693366

  5. Cerebral Venous Air Embolism due to a Hidden Skull Fracture Secondary to Head Trauma.

    PubMed

    Hosaka, Ai; Yamaguchi, Tetsuto; Yamamoto, Fumiko; Shibagaki, Yasuro

    2015-01-01

    Cerebral venous air embolism is sometimes caused by head trauma. One of the paths of air entry is considered a skull fracture. We report a case of cerebral venous air embolism following head trauma. The patient was a 55-year-old man who fell and hit his head. A head computed tomography (CT) scan showed the air in the superior sagittal sinus; however, no skull fractures were detected. Follow-up CT revealed a fracture line in the right temporal bone. Cerebral venous air embolism following head trauma might have occult skull fractures even if CT could not show the skull fractures. PMID:26693366

  6. Disease burden due to biomass cooking-fuel-related household air pollution among women in India

    PubMed Central

    Sehgal, Meena; Rizwan, Suliankatchi Abdulkader; Krishnan, Anand

    2014-01-01

    Background Household air pollution (HAP) due to biomass cooking fuel use is an important risk factor for a range of diseases, especially among adult women who are primary cooks, in India. About 80% of rural households in India use biomass fuel for cooking. The aim of this study is to estimate the attributable cases (AC) for four major diseases/conditions associated with biomass cooking fuel use among adult Indian women. Methods We used the population attributable fraction (PAF) method to calculate the AC of chronic bronchitis, tuberculosis (TB), cataract, and stillbirths due to exposure to biomass cooking fuel. A number of data sources were accessed to obtain population totals and disease prevalence rates. A meta-analysis was conducted to obtain adjusted pooled odds ratios (ORs) for strength of association. Using this, PAF and AC were calculated using a standard formula. Results were presented as number of AC and 95% confidence intervals (CI). Results The fixed effects pooled OR obtained from the meta-analysis were 2.37 (95% CI: 1.59, 3.54) for chronic bronchitis, 2.33 (1.65, 3.28) for TB, 2.16 (1.42, 3.26) for cataract, and 1.26 (1.12, 1.43) for stillbirths. PAF varied across conditions being maximum (53%) for chronic bronchitis in rural areas and least (1%) for cataract in older age and urban areas. About 2.4 (95% CI: 1.4, 3.1) of 5.6 m cases of chronic bronchitis, 0.3 (0.2, 0.4) of 0.76 m cases of TB, 5.0 (2.8, 6.7) of 51.4 m cases of cataract among adult Indian women and 0.02 (0.01, 0.03) of 0.15 m stillbirths across India are attributable to HAP due to biomass cooking fuel. These estimates should be cautiously interpreted in the light of limitations discussed which relate to exposure assessment, exposure characterization, and age-specific prevalence of disease. Conclusions HAP due to biomass fuel has diverse and major impacts on women’s health in India. Although challenging, incorporating the agenda of universal clean fuel access or cleaner technology within

  7. Damage costs due to automotive air pollution and the influence of street canyons

    NASA Astrophysics Data System (ADS)

    Spadaro, Joseph V.; Rabl, Ari

    Using the methodology of the ExternE Project of the European Commission, we have evaluated the damage costs of automotive air pollution by way of two case studies in France: a trip across Paris, and a trip from Paris to Lyon. This methodology involves an analysis of the impact pathways, starting with the emissions (e.g., g/km of particles from tailpipe), followed by local and regional dispersion (e.g., incremental μg/m 3 of particles), calculation of the physical impacts using exposure-response functions (e.g., cases of respiratory hospital admissions), and finally multiplication by unit costs factors (e.g., ? per hospital admission). Damages are aggregated over all affected receptors in Europe. In addition to the local and regional dispersion calculations carried out so far by ExternE, we also consider the increased microscale impacts due to the trapping of pollutants in street canyons, using numerical simulations with the FLUENT software. We have evaluated impacts to human health, agricultural crops and building materials, due to particles, NO x, CO, HC and CO 2. Health impacts, especially reduced life expectancy, dominate in terms of cost. Damages for older cars (before 1997) range from 2 to 41 Euro cents/km, whereas for newer cars (since 1997), the range 1-9 Euro cents/km, and there is continuing progress in reducing the emissions further. In large cities, the particulate emissions of diesel cars lead to the highest damages, exceeding those of gasoline cars by a factor of 7. For cars before 1997 the order of magnitude of the damage costs is comparable to the price of gasoline, and the loss of life expectancy is comparable to that from traffic accidents.

  8. Temperature Stratification of Underfloor and Ceiling Based Air Heating Distribution System in an Experimental Room

    NASA Astrophysics Data System (ADS)

    Katunský, Dušan; Lopušniak, Martin; Vašková, Anna

    2013-06-01

    Most of air heating and ventilating systems for passive houses inlet air in floors. It is assumed that a natural motion of air is led upwards, and so the right stratification of temperature in the space is ensured. However, in the case of excellently insulated buildings it is possible to assume that an upper inlet of air is also able to ensure the required layering of temperature. Within the experiment an influence of upper and down air inlet for temperature stratification in the space was followed. Night sensors of indoor air temperature are placed for measurement purposes. Measurements are done in the long term. The results from measurements show that both, vertical and horizontal stratification of temperature in rooms of passive houses are equal regardless of the fact, which system of air inlet is used.

  9. The relationship between ozone formation and air temperature in the atmospheric surface layer

    NASA Astrophysics Data System (ADS)

    Belan, Boris D.; Savkin, Denis; Tolmachev, Gennadii

    2016-04-01

    Studying the formation and dynamics of ozone in the atmosphere is important due to several reasons. First, the contribution of tropospheric ozone to the global greenhouse effect is only slightly less than that of water vapor, carbon dioxide, and methane. Second, tropospheric ozone acts as a strong poison that has negative effects on human health, animals, and vegetation. Third, being a potent oxidizer, ozone destroys almost all materials, including platinum group metals and compounds. Fourthly, ozone is formed in situ from precursors as a result of photochemical processes, but not emitted into the atmosphere by any industrial enterprises directly. In this work, we present some results of the study aimed at the revealing relationship between ozone formation rate and surface air temperature in the background atmosphere. It has been found that this relationship is nonlinear. Analysis of the possible reasons showed that the nonlinear character of this relationship may be due to a nonlinear increase in the reaction constants versus air temperature and a quadratic increase in the concentration of hydrocarbons with increasing temperature. This work was supported by the Ministry of Education and Science contract no.14.613.21.0013 (ID: RFMEFI61314X0013).

  10. How the Plant Temperature Links to the Air Temperature in the Desert Plant Artemisia ordosica.

    PubMed

    Yu, Ming-Han; Ding, Guo-Dong; Gao, Guang-Lei; Sun, Bao-Ping; Zhao, Yuan-Yuan; Wan, Li; Wang, De-Ying; Gui, Zi-Yang

    2015-01-01

    Plant temperature (Tp) is an important indicator of plant health. To determine the dynamics of plant temperature and self-cooling ability of the plant, we measured Tp in Artemisia ordosica in July, in the Mu Us Desert of Northwest China. Related factors were also monitored to investigate their effects on Tp, including environmental factors, such as air temperature (Ta), relative humidity, wind speed; and physiological factors, such as leaf water potential, sap flow, and water content. The results indicate that: 1) Tp generally changes in conjunction with Ta mainly, and varies with height and among the plant organs. Tp in the young branches is most constant, while it is the most sensitive in the leaves. 2) Correlations between Tp and environmental factors show that Tp is affected mainly by Ta. 3) The self-cooling ability of the plant was effective by midday, with Tp being lower than Ta. 4) Increasing sap flow and leaf water potential showed that transpiration formed part of the mechanism that supported self-cooling. Increased in water conductance and specific heat at midday may be additional factors that contribute to plant cooling ability. Therefore, our results confirmed plant self-cooling ability. The response to high temperatures is regulated by both transpiration speed and an increase in stem water conductance. This study provides quantitative data for plant management in terms of temperature control. Moreover, our findings will assist species selection with taking plant temperature as an index. PMID:26280557

  11. How the Plant Temperature Links to the Air Temperature in the Desert Plant Artemisia ordosica

    PubMed Central

    Yu, Ming-Han; Ding, Guo-Dong; Gao, Guang-Lei; Sun, Bao-Ping; Zhao, Yuan-Yuan; Wan, Li; Wang, De-Ying; Gui, Zi-Yang

    2015-01-01

    Plant temperature (Tp) is an important indicator of plant health. To determine the dynamics of plant temperature and self-cooling ability of the plant, we measured Tp in Artemisia ordosica in July, in the Mu Us Desert of Northwest China. Related factors were also monitored to investigate their effects on Tp, including environmental factors, such as air temperature (Ta), relative humidity, wind speed; and physiological factors, such as leaf water potential, sap flow, and water content. The results indicate that: 1) Tp generally changes in conjunction with Ta mainly, and varies with height and among the plant organs. Tp in the young branches is most constant, while it is the most sensitive in the leaves. 2) Correlations between Tp and environmental factors show that Tp is affected mainly by Ta. 3) The self-cooling ability of the plant was effective by midday, with Tp being lower than Ta. 4) Increasing sap flow and leaf water potential showed that transpiration formed part of the mechanism that supported self-cooling. Increased in water conductance and specific heat at midday may be additional factors that contribute to plant cooling ability. Therefore, our results confirmed plant self-cooling ability. The response to high temperatures is regulated by both transpiration speed and an increase in stem water conductance. This study provides quantitative data for plant management in terms of temperature control. Moreover, our findings will assist species selection with taking plant temperature as an index. PMID:26280557

  12. How the Plant Temperature Links to the Air Temperature in the Desert Plant Artemisia ordosica.

    PubMed

    Yu, Ming-Han; Ding, Guo-Dong; Gao, Guang-Lei; Sun, Bao-Ping; Zhao, Yuan-Yuan; Wan, Li; Wang, De-Ying; Gui, Zi-Yang

    2015-01-01

    Plant temperature (Tp) is an important indicator of plant health. To determine the dynamics of plant temperature and self-cooling ability of the plant, we measured Tp in Artemisia ordosica in July, in the Mu Us Desert of Northwest China. Related factors were also monitored to investigate their effects on Tp, including environmental factors, such as air temperature (Ta), relative humidity, wind speed; and physiological factors, such as leaf water potential, sap flow, and water content. The results indicate that: 1) Tp generally changes in conjunction with Ta mainly, and varies with height and among the plant organs. Tp in the young branches is most constant, while it is the most sensitive in the leaves. 2) Correlations between Tp and environmental factors show that Tp is affected mainly by Ta. 3) The self-cooling ability of the plant was effective by midday, with Tp being lower than Ta. 4) Increasing sap flow and leaf water potential showed that transpiration formed part of the mechanism that supported self-cooling. Increased in water conductance and specific heat at midday may be additional factors that contribute to plant cooling ability. Therefore, our results confirmed plant self-cooling ability. The response to high temperatures is regulated by both transpiration speed and an increase in stem water conductance. This study provides quantitative data for plant management in terms of temperature control. Moreover, our findings will assist species selection with taking plant temperature as an index.

  13. Multidecadal variations in the modulation of Alaska wintertime air temperature by the Madden-Julian Oscillation

    NASA Astrophysics Data System (ADS)

    Oliver, Eric C. J.

    2015-07-01

    The Madden-Julian Oscillation (MJO), the dominant mode of intraseasonal variability in the tropics, is known to influence extratropical air temperature in the Northern Hemisphere. In particular, it has been shown that intraseasonal variations in wintertime Alaska surface air temperature (SAT) is linked with variations in cross-shore surface wind and that this mechanism is driven by a train of Rossby waves originating in the tropics due to MJO forcing. We show, using long station records of Alaska SAT and an independent reconstruction of the MJO index over the twentieth century, that the MJO-SAT connection in Alaska has undergone significant multidecadal variability over the last century. The Pacific Decadal Oscillation appears to explain some of the observed multidecadal variability but fails to capture a large proportion of it. We identify four distinct periods between the years 1910 and 2000 that exhibit either a weak, moderate or strong MJO-SAT connection. The nature of our method ensures that the detected multidecadal variability is due to changes in the teleconnection mechanism and not due to changes in the strength of the MJO index. Finally, we speculate on the mechanism which may bring about such multidecadal variations in the teleconnection mechanism.

  14. Environmentally sound thermal energy extraction from coal and wastes using high temperature air combustion technology

    SciTech Connect

    Yoshikawa, Kunio

    1999-07-01

    High temperature air combustion is one of promising ways of burning relatively low BTU gas obtained from gasification of low grade coal or wastes. In this report, the author proposes a new power generation system coupled with high temperature air gasification of coal/wastes and high temperature air combustion of the syngas from coal/wastes. This system is realized by employing Multi-staged Enthalpy Extraction Technology (MEET). The basic idea of the MEET system is that coal or wastes are gasified with high temperature air of about 1,000 C, then the generated syngas is cooled in a heat recovery boiler to be cleaned-up in a gas cleanup system (desulfurization, desalinization and dust removal). Part of thermal energy contained in this cleaned-up syngas is used for high temperature air preheating, and the complete combustion of the fuel gas is done using also high temperature air for driving gas turbines or steam generation in a boiler.

  15. Analysis of spanwise temperature distribution in three types of air-cooled turbine blade

    NASA Technical Reports Server (NTRS)

    Livingood, John N B; Brown, W Byron

    1950-01-01

    Methods for computing spanwise blade-temperature distributions are derived for air-cooled hollow blades, air-cooled hollow blades with inserts, and air-cooled blades containing internal cooling fins. Individual and combined effects on spanwise blade-temperature distributions of cooling-air and radial heat conduction are determined. In general, the effects of radiation and radial heat conduction were found to be small and the omission of these variations permitted the construction of nondimensional charts for use in determining spanwise temperature distribution through air-cooled turbine blades. An approximate method for determining the allowable stress-limited blade-temperature distribution is included, with brief accounts of a method for determining the maximum allowable effective gas temperatures and the cooling-air requirements. Numerical examples that illustrate the use of the various temperature-distribution equations and of the nondimensional charts are also included.

  16. Satellite-Derived Bias-Corrected Air Temperature for Understanding Crop-Climate Interactions in Tropical Agricultural Systems

    NASA Astrophysics Data System (ADS)

    Cohn, A.

    2015-12-01

    The magnitude of local/regional temperature variability and crop responses to such changes must be well understood to accurately assess the impacts of climate variability and change on agriculture. Challenges arise when meteorological stations are sparsely distributed such as in much of the tropics including cerrado Brazil—one of the largest agriculturally-important areas in the tropics. Currently available gridded climate datasets are coarse (i.e. 2.5º to 0.5º), heavily-interpolated and hence not adequate for regional/local scale assessments of agricultural impacts from climate. In this context, we aim to develop a new method for gridded standard retrieval of a number of agriculturally-relevant near-surface air temperature indicators. We employ Moderate Resolution Imaging Spectroradiometer (MODIS)-derived land surface temperature, vertical temperature profile, meteorological station data, and other biophysical data. We will contrast the accuracy of different air temperature derivation approaches including multiple linear regression, machine learning, the use of vegetation indices to proxy for air temperature variation, and physical approaches based on surface energy balance parametrizations. Our method aims to control for potential biases in surface temperatures due to differences in land cover types, changes in vegetation cover, and variation in plant growth. Satellite-derived near-surface air temperature datasets can support enhanced analysis of climate impacts and climate change adaptation in tropical agriculture.

  17. Quantized thermal conductance of nanowires at room temperature due to Zenneck surface-phonon polaritons.

    PubMed

    Ordonez-Miranda, José; Tranchant, Laurent; Kim, Beomjoon; Chalopin, Yann; Antoni, Thomas; Volz, Sebastian

    2014-02-01

    Based on the Landauer formalism, we demonstrate that the thermal conductance due to the propagation of Zenneck surface-phonon polaritons along a polar nanowire is independent of the material characteristics and is given by π2kB2T/3h. The giant propagation length of these energy carriers establishes that this quantization holds not only for a temperature much smaller than 1 K, as is the case for electrons and phonons, but also for temperatures comparable to room temperature, which can significantly facilitate its observation and application in the thermal management of nanoscale electronics and photonics.

  18. Temporal and spatial assessments of minimum air temperature using satellite surface temperature measurements in Massachusetts, USA.

    PubMed

    Kloog, Itai; Chudnovsky, Alexandra; Koutrakis, Petros; Schwartz, Joel

    2012-08-15

    Although meteorological stations provide accurate air temperature observations, their spatial coverage is limited and thus often insufficient for epidemiological studies. Satellite data expand spatial coverage, enhancing our ability to estimate near surface air temperature (Ta). However, the derivation of Ta from surface temperature (Ts) measured by satellites is far from being straightforward. In this study, we present a novel approach that incorporates land use regression, meteorological variables and spatial smoothing to first calibrate between Ts and Ta on a daily basis and then predict Ta for days when satellite Ts data were not available. We applied mixed regression models with daily random slopes to calibrate Moderate Resolution Imaging Spectroradiometer (MODIS) Ts data with monitored Ta measurements for 2003. Then, we used a generalized additive mixed model with spatial smoothing to estimate Ta in days with missing Ts. Out-of-sample tenfold cross-validation was used to quantify the accuracy of our predictions. Our model performance was excellent for both days with available Ts and days without Ts observations (mean out-of-sample R(2)=0.946 and R(2)=0.941 respectively). Furthermore, based on the high quality predictions we investigated the spatial patterns of Ta within the study domain as they relate to urban vs. non-urban land uses. PMID:22721687

  19. The impact of AIRS atmospheric temperature and moisture profiles on hurricane forecasts: Ike (2008) and Irene (2011)

    NASA Astrophysics Data System (ADS)

    Zheng, Jing; Li, Jun; Schmit, Timothy J.; Li, Jinlong; Liu, Zhiquan

    2015-03-01

    Atmospheric InfraRed Sounder (AIRS) measurements are a valuable supplement to current observational data, especially over the oceans where conventional data are sparse. In this study, two types of AIRS-retrieved temperature and moisture profiles, the AIRS Science Team product (SciSup) and the single field-of-view (SFOV) research product, were evaluated with European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data over the Atlantic Ocean during Hurricane Ike (2008) and Hurricane Irene (2011). The evaluation results showed that both types of AIRS profiles agreed well with the ECMWF analysis, especially between 200 hPa and 700 hPa. The average standard deviation of both temperature profiles was approximately 1 K under 200 hPa, where the mean AIRS temperature profile from the AIRS SciSup retrievals was slightly colder than that from the AIRS SFOV retrievals. The mean SciSup moisture profile was slightly drier than that from the SFOV in the mid troposphere. A series of data assimilation and forecast experiments was then conducted with the Advanced Research version of the Weather Research and Forecasting (WRF) model and its three-dimensional variational (3DVAR) data assimilation system for hurricanes Ike and Irene. The results showed an improvement in the hurricane track due to the assimilation of AIRS clear-sky temperature profiles in the hurricane environment. In terms of total precipitable water and rainfall forecasts, the hurricane moisture environment was found to be affected by the AIRS sounding assimilation. Meanwhile, improving hurricane intensity forecasts through assimilating AIRS profiles remains a challenge for further study.

  20. Temperature, air pollution, and mortality from myocardial infarction in São Paulo, Brazil.

    PubMed

    Sharovsky, R; César, L A M; Ramires, J A F

    2004-11-01

    An increase in daily mortality from myocardial infarction has been observed in association with meteorological factors and air pollution in several cities in the world, mainly in the northern hemisphere. The objective of the present study was to analyze the independent effects of environmental variables on daily counts of death from myocardial infarction in a subtropical region in South America. We used the robust Poisson regression to investigate associations between weather (temperature, humidity and barometric pressure), air pollution (sulfur dioxide, carbon monoxide, and inhalable particulate), and the daily death counts attributed to myocardial infarction in the city of São Paulo in Brazil, where 12,007 fatal events were observed from 1996 to 1998. The model was adjusted in a linear fashion for relative humidity and day-of-week, while nonparametric smoothing factors were used for seasonal trend and temperature. We found a significant association of daily temperature with deaths due to myocardial infarction (P < 0.001), with the lowest mortality being observed at temperatures between 21.6 and 22.6 degrees C. Relative humidity appeared to exert a protective effect. Sulfur dioxide concentrations correlated linearly with myocardial infarction deaths, increasing the number of fatal events by 3.4% (relative risk of 1.03; 95% confidence interval = 1.02-1.05) for each 10 microg/m(3) increase. In conclusion, this study provides evidence of important associations between daily temperature and air pollution and mortality from myocardial infarction in a subtropical region, even after a comprehensive control for confounding factors.

  1. Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H

    1937-01-01

    Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.

  2. Apparatus for supplying conditioned air at a substantially constant temperature and humidity

    NASA Technical Reports Server (NTRS)

    Obler, H. D. (Inventor)

    1980-01-01

    The apparatus includes a supply duct coupled to a source of supply air for carrying the supply air therethrough. A return duct is coupled to the supply duct for carrying return conditioned air therethrough. A temperature reducing device is coupled to the supply duct for decreasing the temperature of the supply and return conditioned air. A by-pass duct is coupled to the supply duct for selectively directing portions of the supply and return conditioned air around the temperature reducing device. Another by-pass duct is coupled to the return duct for selectively directing portions of the return conditioned air around the supply duct and the temperature reduction device. Controller devices selectively control the flow and amount of mixing of the supply and return conditioned air.

  3. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... determine a refrigerant leakage rate in grams per year from vehicle-based air conditioning units. The... using the following equation: Grams/YRTOT = Grams/YRRP + Grams/YRSP + Grams/YRFH + Grams/YRMC + Grams/YRC Where: Grams/YRTOT = Total air conditioning system emission rate in grams per year and rounded...

  4. Molecular records of continental air temperature and monsoon precipitation variability in East Asia spanning the past 130,000 years

    NASA Astrophysics Data System (ADS)

    Peterse, Francien; Martínez-García, Alfredo; Zhou, Bin; Beets, Christiaan J.; Prins, Maarten A.; Zheng, Hongbo; Eglinton, Timothy I.

    2014-01-01

    Our current understanding of past changes in East Asian summer monsoon (EASM) precipitation intensity derives from several loess-paleosol sequences and oxygen isotope (δ18O) records of well-dated stalagmites. Although temperature is generally presumed to have had minimal impact on EASM records, past air temperature dynamics over East Asia are, so far, relatively poorly understood, mainly due to the lack of tools to reconstruct continental paleotemperatures. Here we report a high-resolution record of East Asian air temperature over the past 130,000 years, based on soil bacterial lipid signatures preserved in a loess-paleosol sequence from the Mangshan loess plateau in China. We find that maximum local insolation is the main driver of air temperature, although greenhouse gas concentrations and southern hemisphere climate may influence temperature at times when insolation is weak, causing a decoupling with EASM precipitation intensity. Direct comparison of our temperature record with precipitation-induced changes in past soil pH, derived from the same suite of lipids confirms this decoupling. Subsequent cross-spectral analysis of the two molecular proxy records reveals that variations in monsoon precipitation consistently lag those in air temperature throughout the whole record at the dominant precession band. The length of this lag is variable however, and increases as glaciation develops. This observation is consistent with an increasing influence of northern hemisphere ice sheets on the modulation of EASM response to insolation forcing during ice ages.

  5. The design of an air filtration system to clean high temperature/high humidity radioactive air streams

    SciTech Connect

    Proffitt, T.H.; Burket, J.P.

    1994-12-31

    During normal operating processes or waste remediation efforts high efficiency (HEPA) filtration systems are used to remove particulate contamination from air streams. These HEPA filtration systems can accommodate a range of air humidities and temperatures and still retain their effectiveness. However, when the combination of high humidity and high temperature are present the effect of these highly saturated air streams can be detrimental to a HEPA filtration system. Couple this highly saturated air stream with the effect of radioactivity and a case for a {open_quotes}specialized{close_quotes} HEPA filter system can be made. However, using fundamental laws of heat transfer it is possible to design a a HEPA a filter system that can operate in a high temperature/high humidity radioactive environment.

  6. Air - Ground - Bedrock Temperature Coupling, Its Monitoring at Borehole Climate Observatories

    NASA Astrophysics Data System (ADS)

    Cermák, V.

    2012-04-01

    Reconstructing ground surface temperature (GST) histories from present-day temperature-depth logs is now generally accepted as one of the independent and physically justified method to obtain information about the past climate history on the time scale of hundreds to thousands years. Any temperature change at the Earth`s surface slowly propagates downward and deeper we go farther back in time the measured temperature carries certain memory on what has happened on the surface in the past. Due to diffusive character of the process, however, the resolution quickly decreases for the remote events and the reconstructed GST at a given moment is a weighted average of temperature over a certain period of time. For better understanding of the temperature state in the subsurface T(z) logs can be suitably completed with long-run temperature-time monitoring at selected depth intervals, namely within the near-surface active layer affected by seasonal temperature variations (usually uppermost 30-40 m). In addition to GST inversions applied on deep T(z) profiles existing all over the world, several permanent borehole climate observatories were actually established in the last two decades to test the validity of the assumption that GST variations track the SAT (surface air temperature) changes as well as to study various environmental/local effects, such as the vegetation cover type/change, rain/snow precipitation, thawing/melting/freezing, etc. which controls the whole heat transfer process. Long-term monitoring of the shallow subsurface temperature field in suitably geographically located sites may additionally also help to understand the different conditions in e.g. urban vs. countryside environments and to assess the potential anthropogenic contribution to the present-day warming rate within the natural climate variability. This presentation summarizes main results obtained at the Czech borehole sites since 1992 completed with brief comparison of similar results collected

  7. The burden of COPD mortality due to ambient air pollution in Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Li, Li; Yang, Jun; Song, Yun-Feng; Chen, Ping-Yan; Ou, Chun-Quan

    2016-05-01

    Few studies have investigated the chronic obstructive pulmonary disease (COPD) mortality fraction attributable to air pollution and modification by individual characteristics of air pollution effects. We applied distributed lag non-linear models to assess the associations between air pollution and COPD mortality in 2007–2011 in Guangzhou, China, and the total COPD mortality fraction attributable to air pollution was calculated as well. We found that an increase of 10 μg/m3 in particulate matter with an aerodynamic diameter of 10 μm or less (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NO2) was associated with a 1.58% (95% confidence interval (CI): 0.12–3.06%), 3.45% (95% CI: 1.30–5.66%) and 2.35% (95% CI: 0.42–4.32%) increase of COPD mortality over a lag of 0–15 days, respectively. Greater air pollution effects were observed in the elderly, males and residents with low educational attainment. The results showed 10.91% (95% CI: 1.02–9.58%), 12.71% (95% CI: 5.03–19.85%) and 13.38% (95% CI: 2.67–22.84%) COPD mortality was attributable to current PM10, SO2 and NO2 exposure, respectively. In conclusion, the associations between air pollution and COPD mortality differed by individual characteristics. There were remarkable COPD mortality burdens attributable to air pollution in Guangzhou.

  8. The burden of COPD mortality due to ambient air pollution in Guangzhou, China.

    PubMed

    Li, Li; Yang, Jun; Song, Yun-Feng; Chen, Ping-Yan; Ou, Chun-Quan

    2016-05-19

    Few studies have investigated the chronic obstructive pulmonary disease (COPD) mortality fraction attributable to air pollution and modification by individual characteristics of air pollution effects. We applied distributed lag non-linear models to assess the associations between air pollution and COPD mortality in 2007-2011 in Guangzhou, China, and the total COPD mortality fraction attributable to air pollution was calculated as well. We found that an increase of 10 μg/m(3) in particulate matter with an aerodynamic diameter of 10 μm or less (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NO2) was associated with a 1.58% (95% confidence interval (CI): 0.12-3.06%), 3.45% (95% CI: 1.30-5.66%) and 2.35% (95% CI: 0.42-4.32%) increase of COPD mortality over a lag of 0-15 days, respectively. Greater air pollution effects were observed in the elderly, males and residents with low educational attainment. The results showed 10.91% (95% CI: 1.02-9.58%), 12.71% (95% CI: 5.03-19.85%) and 13.38% (95% CI: 2.67-22.84%) COPD mortality was attributable to current PM10, SO2 and NO2 exposure, respectively. In conclusion, the associations between air pollution and COPD mortality differed by individual characteristics. There were remarkable COPD mortality burdens attributable to air pollution in Guangzhou.

  9. The burden of COPD mortality due to ambient air pollution in Guangzhou, China.

    PubMed

    Li, Li; Yang, Jun; Song, Yun-Feng; Chen, Ping-Yan; Ou, Chun-Quan

    2016-01-01

    Few studies have investigated the chronic obstructive pulmonary disease (COPD) mortality fraction attributable to air pollution and modification by individual characteristics of air pollution effects. We applied distributed lag non-linear models to assess the associations between air pollution and COPD mortality in 2007-2011 in Guangzhou, China, and the total COPD mortality fraction attributable to air pollution was calculated as well. We found that an increase of 10 μg/m(3) in particulate matter with an aerodynamic diameter of 10 μm or less (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NO2) was associated with a 1.58% (95% confidence interval (CI): 0.12-3.06%), 3.45% (95% CI: 1.30-5.66%) and 2.35% (95% CI: 0.42-4.32%) increase of COPD mortality over a lag of 0-15 days, respectively. Greater air pollution effects were observed in the elderly, males and residents with low educational attainment. The results showed 10.91% (95% CI: 1.02-9.58%), 12.71% (95% CI: 5.03-19.85%) and 13.38% (95% CI: 2.67-22.84%) COPD mortality was attributable to current PM10, SO2 and NO2 exposure, respectively. In conclusion, the associations between air pollution and COPD mortality differed by individual characteristics. There were remarkable COPD mortality burdens attributable to air pollution in Guangzhou. PMID:27195597

  10. Temperature dependence of an abiotic glucose/air alkaline fuel cell

    NASA Astrophysics Data System (ADS)

    Orton, Dane; Scott, Daniel

    2015-11-01

    The temperature dependence of a previously developed glucose fuel cell is explored. This cell uses a small molecule dye mediator to transport oxidizable electrons from glucose to a carbon felt anode. This reaction is driven by an air breathing MnO2 cathode. This research investigates how the temperature of the system affects the power production of the fuel cell. Cell performance is observed using either methyl viologen, indigo carmine, trypan blue, or hydroquinone as a mediator at temperatures of 15, 19, 27, 32, 37, 42, and 49 °C. Cyclic voltammetry of the cell anode at the given temperatures with the individual dyes is also presented. The highest power production amongst all of the cells occurs at 32 °C. This occurs with the mediator indigo carmine or with the mediator methyl viologen. These sustained powers are 2.31 mW cm-2 and 2.39 mW cm-2, respectively. This is approximately a 350% increase for these cells compared to their power produced at room temperature. This dramatic increase is likely due to increased solubility of the mediator dye at higher temperatures.

  11. Short-term effects of air temperature on plasma metabolite concentrations in patients undergoing cardiac cattheterization.

    EPA Science Inventory

    BACKGROUND: Epidemiological studies have shown associations between air temperature and cardiovascular health outcomes. Metabolic dysregulation might also play a role in the development of cardiovascular disease.OBJECTIVES: To investigate short-term temperature effects on metabol...

  12. [Air Bubble in the Left Ventricle due to Computed Tomography Guided Lung Needle Biopsy].

    PubMed

    Matsuda, Eisuke; Yoshida, Kumiko; Yoshiyama, Koichi; Hayashi, Tatsuro; Tanaka, Toshiki; Tao, Hiroyuki; Okabe, Kazunori

    2015-11-01

    Computed tomography (CT) guided lung biopsy is a useful examination in diagnosing pulmonary diseases, but the complications such as pneumothorax or pulmonary hemorrhage can not be ignored. Among them, air embolization is a severe complication, although it is infrequently encountered. Forty two-year-old man admitted to our department for the examination of left lung tumor. CT guided lung biopsy was performed. After examination, the patient showed disturbance in cardiac function, which recovered in several minutes. Chest CT revealed air bubble in the left ventricle. After 2-hours head down position followed by bed rest, air bubble is confirmed to be dissappeared by CT.

  13. Startup of air-cooled condensers and dry cooling towers at low temperatures of the cooling air

    NASA Astrophysics Data System (ADS)

    Milman, O. O.; Ptakhin, A. V.; Kondratev, A. V.; Shifrin, B. A.; Yankov, G. G.

    2016-05-01

    The problems of startup and performance of air-cooled condensers (ACC) and dry cooling towers (DCT) at low cooling air temperatures are considered. Effects of the startup of the ACC at sub-zero temperatures are described. Different options of the ACC heating up are analyzed, and examples of existing technologies are presented (electric heating, heating up with hot air or steam, and internal and external heating). The use of additional heat exchanging sections, steam tracers, in the DCT design is described. The need for high power in cases of electric heating and heating up with hot air is noted. An experimental stand for research and testing of the ACC startup at low temperatures is described. The design of the three-pass ACC unit is given, and its advantages over classical single-pass design at low temperatures are listed. The formation of ice plugs inside the heat exchanging tubes during the start-up of ACC and DCT at low cooling air temperatures is analyzed. Experimental data on the effect of the steam flow rate, steam nozzle distance from the heat-exchange surface, and their orientation in space on the metal temperature were collected, and test results are analyzed. It is noted that the surface temperature at the end of the heat up is almost independent from its initial temperature. Recommendations for the safe start-up of ACCs and DCTs are given. The heating flow necessary to sufficiently heat up heat-exchange surfaces of ACCs and DCTs for the safe startup is estimated. The technology and the process of the heat up of the ACC with the heating steam external supply are described by the example of the startup of the full-scale section of the ACC at sub-zero temperatures of the cooling air, and the advantages of the proposed start-up technology are confirmed.

  14. One-Component Pressure-Temperature Phase Diagrams in the Presence of Air

    ERIC Educational Resources Information Center

    Andrade-Gamboa, Julio; Martire, Daniel O.; Donati, Edgardo R.

    2010-01-01

    One-component phase diagrams are good approximations to predict pressure-temperature ("P-T") behavior of a substance in the presence of air, provided air pressure is not much higher than the vapor pressure. However, at any air pressure, and from the conceptual point of view, the use of a traditional "P-T" phase diagram is not strictly correct. In…

  15. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 34 2012-07-01 2012-07-01 false NOX intake-air humidity...

  16. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 34 2013-07-01 2013-07-01 false NOX intake-air humidity...

  17. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 33 2011-07-01 2011-07-01 false NOX intake-air humidity...

  18. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 33 2014-07-01 2014-07-01 false NOX intake-air humidity...

  19. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 32 2010-07-01 2010-07-01 false NOX intake-air humidity...

  20. The impact of heterogeneous surface temperatures on the 2-m air temperature over the Arctic Ocean in spring

    NASA Astrophysics Data System (ADS)

    Tetzlaff, A.; Kaleschke, L.; Lüpkes, C.; Ament, F.; Vihma, T.

    2012-07-01

    The influence of spatial surface temperature changes over the Arctic Ocean on the 2-m air temperature variability is estimated using backward trajectories based on ERA-Interim and the JRA25 wind fields. They are initiated at Alert, Barrow and at the Tara drifting station. Three different methods are used. The first one compares mean ice surface temperatures along the trajectories to the observed 2-m air temperatures at the stations. The second one correlates the observed temperatures to air temperatures obtained using a simple Lagrangian box model which only includes the effect of sensible heat fluxes. For the third method, mean sensible heat fluxes from the model are correlated with the difference of the air temperatures at the model starting point and the observed temperatures at the stations. The calculations are based on MODIS ice surface temperatures and four different sets of ice concentration derived from SSM/I and AMSR-E data. Under nearly cloud free conditions, up to 90% of the 2-m air temperature variance can be explained for Alert, and 60% for Barrow using these methods. The differences are attributed to the different ice conditions, which are characterized by high ice concentration around Alert and lower ice concentration near Barrow. These results are robust for the different sets of reanalyses and ice concentration data. Near-surface winds of both reanalyses show a large inconsistency in the Central Arctic, which leads to a large difference in the correlations between modeled and observed 2-m air temperatures at Tara. Explained variances amount to 70% using JRA and only 45% using ERA. The results also suggest that near-surface temperatures at a given site are influenced by the variability of surface temperatures in a domain of about 150 to 350 km radius around the site.

  1. A simplified physically-based model to calculate surface water temperature of lakes from air temperature in climate change scenarios

    NASA Astrophysics Data System (ADS)

    Piccolroaz, S.; Toffolon, M.

    2012-12-01

    Modifications of water temperature are crucial for the ecology of lakes, but long-term analyses are not usually able to provide reliable estimations. This is particularly true for climate change studies based on Global Circulation Models, whose mesh size is normally too coarse for explicitly including even some of the biggest lakes on Earth. On the other hand, modeled predictions of air temperature changes are more reliable, and long-term, high-resolution air temperature observational datasets are more available than water temperature measurements. For these reasons, air temperature series are often used to obtain some information about the surface temperature of water bodies. In order to do that, it is common to exploit regression models, but they are questionable especially when it is necessary to extrapolate current trends beyond maximum (or minimum) measured temperatures. Moreover, water temperature is influenced by a variety of processes of heat exchange across the lake surface and by the thermal inertia of the water mass, which also causes an annual hysteresis cycle between air and water temperatures that is hard to consider in regressions. In this work we propose a simplified, physically-based model for the estimation of the epilimnetic temperature in lakes. Starting from the zero-dimensional heat budget, we derive a simplified first-order differential equation for water temperature, primarily forced by a seasonally varying external term (mainly related to solar radiation) and an exchange term explicitly depending on the difference between air and water temperatures. Assuming annual sinusoidal cycles of the main heat flux components at the atmosphere-lake interface, eight parameters (some of them can be disregarded, though) are identified, which can be calibrated if two temporal series of air and water temperature are available. We note that such a calibration is supported by the physical interpretation of the parameters, which provide good initial

  2. Temperature rise due to mechanical energy dissipation in undirectional thermoplastic composites(AS4/PEEK)

    NASA Technical Reports Server (NTRS)

    Georgious, I. T.; Sun, C. T.

    1992-01-01

    The history of temperature rise due to internal dissipation of mechanical energy in insulated off-axis uniaxial specimens of the unidirectional thermoplastic composite (AS4/PEEK) has been measured. The experiment reveals that the rate of temperature rise is a polynomial function of stress amplitude: It consists of a quadratic term and a sixth power term. This fact implies that the specific heat of the composite depends on the stretching its microstructure undergoes during deformation. The Einstein theory for specific heat is used to explain the dependence of the specific heat on the stretching of the microstructure.

  3. Correction of Temperatures of Air-Cooled Engine Cylinders for Variation in Engine and Cooling Conditions

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Pinkel, Benjamin; Ellerbrock, Herman H , Jr

    1939-01-01

    Factors are obtained from semiempirical equations for correcting engine-cylinder temperatures for variation in important engine and cooling conditions. The variation of engine temperatures with atmospheric temperature is treated in detail, and correction factors are obtained for various flight and test conditions, such as climb at constant indicated air speed, level flight, ground running, take-off, constant speed of cooling air, and constant mass flow of cooling air. Seven conventional air-cooled engine cylinders enclosed in jackets and cooled by a blower were tested to determine the effect of cooling-air temperature and carburetor-air temperature on cylinder temperatures. The cooling air temperature was varied from approximately 80 degrees F. to 230 degrees F. and the carburetor-air temperature from approximately 40 degrees F. to 160 degrees F. Tests were made over a large range of engine speeds, brake mean effective pressures, and pressure drops across the cylinder. The correction factors obtained experimentally are compared with those obtained from the semiempirical equations and a fair agreement is noted.

  4. Predicting seed cotton moisture content from changes in drying air temperature - second year

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A mathematical model was used to predict seed cotton moisture content in the overhead section of a cotton gin. The model took into account the temperature, mass flow, and specific heat of both the air and seed cotton. Air temperatures and mass flows were measured for a second year at a commercial g...

  5. The burden of COPD mortality due to ambient air pollution in Guangzhou, China

    PubMed Central

    Li, Li; Yang, Jun; Song, Yun-Feng; Chen, Ping-Yan; Ou, Chun-Quan

    2016-01-01

    Few studies have investigated the chronic obstructive pulmonary disease (COPD) mortality fraction attributable to air pollution and modification by individual characteristics of air pollution effects. We applied distributed lag non-linear models to assess the associations between air pollution and COPD mortality in 2007–2011 in Guangzhou, China, and the total COPD mortality fraction attributable to air pollution was calculated as well. We found that an increase of 10 μg/m3 in particulate matter with an aerodynamic diameter of 10 μm or less (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NO2) was associated with a 1.58% (95% confidence interval (CI): 0.12–3.06%), 3.45% (95% CI: 1.30–5.66%) and 2.35% (95% CI: 0.42–4.32%) increase of COPD mortality over a lag of 0–15 days, respectively. Greater air pollution effects were observed in the elderly, males and residents with low educational attainment. The results showed 10.91% (95% CI: 1.02–9.58%), 12.71% (95% CI: 5.03–19.85%) and 13.38% (95% CI: 2.67–22.84%) COPD mortality was attributable to current PM10, SO2 and NO2 exposure, respectively. In conclusion, the associations between air pollution and COPD mortality differed by individual characteristics. There were remarkable COPD mortality burdens attributable to air pollution in Guangzhou. PMID:27195597

  6. Prediction of air temperature in the aircraft cabin under different operational conditions

    NASA Astrophysics Data System (ADS)

    Volavý, F.; Fišer, J.; Nöske, I.

    2013-04-01

    This paper deals with the prediction of the air temperature in the aircraft cabin by means of Computational Fluid Dynamics. The simulations are performed on the CFD model which is based on geometry and cabin interior arrangement of the Flight Test Facility (FTF) located at Fraunhofer IBP, Germany. The experimental test flights under three different cabin temperatures were done in FTF and the various data were gathered during these flights. Air temperature in the cabin was measured on probes located near feet, torso and head of each passenger and also surface temperature and air temperature distributed from inlets were measured. The data were firstly analysed in order to obtain boundary conditions for cabin surfaces and inlets. Then the results of air temperature from the simulations were compared with measured data. The suitability and accuracy of the CFD approach for temperature prediction is discussed.

  7. System and method for air temperature control in an oxygen transport membrane based reactor

    DOEpatents

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  8. The effect of change in skin temperature due to evaporative cooling on sweating response during exercise

    NASA Astrophysics Data System (ADS)

    Kondo, N.; Nakadome, Manabu; Zhang, Keren; Shiojiri, Tomoyuki; Shibasaki, Manabu; Hirata, Kozo; Iwata, Atsushi

    The purpose of this study was to investigate whether there are any effects of skin temperature changes on sweating response in the first few minutes of mild exercise. Six healthy males performed a bicycle exercise at 100 W (50 rpm) for 30 min under an ambient temperature of 23° C (40% RH). Esophageal temperature (Tes), mean skin temperature (T-sk), local skin temperature at the lower left scapula (Tsl), local sweating rate (M.sw), and cutaneous blood flow by laser-Doppler flowmetry (LDF) were measured continuously. Although Tsl decreased markedly just after the onset of sweating, T-sk did not change. M.sw did not increase constantly in the early stages of exercise, and there was a temporary interruption in the increase of M.sw. This interruption in sweating was affected by the rate of change in Tsl rather than by the absolute value of Tsl, since there was a positive and significant correlation between the time of the interruption in the increase of M.sw and the rate of decrease in Tsl (y=6.47x+0.04; r=0.86, P<0.05). The results suggest that sweating response in the early stages of exercise may be influenced by changes in local skin temperature due to evaporative cooling.

  9. Temperature waves arising due to absorption of electromagnetic radiation in laminated media

    NASA Astrophysics Data System (ADS)

    Khabibullin, I. L.; Konovalova, S. I.; Sadykova, L. A.

    2015-05-01

    Propagation of electromagnetic radiation in a moving three-layer medium is studied. It is shown that travelling temperature waves are formed due to interference of the incident wave with the wave reflected from the interface between the layers with radiation energy dissipation. The frequency, length, and velocity of these waves are found to depend on the electromagnetic radiation frequency, electrophysical and thermophysical parameters of the medium, and velocity of medium motion.

  10. Measurements of Electron Temperature and Gas Temperature in a Pulsed Atmospheric Pressure Air Discharge

    NASA Astrophysics Data System (ADS)

    Leipold, Frank; Hufney Mohamed, Abdel-Aleam; Schoenbach, Karl H.

    2001-10-01

    The application of electrical pulses with duration shorter than the time constant for glow-to-arc transition allows us to shift the electron energy distribution in high pressure glow discharges temporally to high energy values [1]. Application of these nonequilibrium plasmas are plasma ramparts, plasma reactors, and excimer light sources. In order to obtain information on the electron energy distribution , or electron energy, respectively, and the gas temperature with the required temporal resolution of 1 ns, we have explored two diagnostic methods. One is based on the evaluation of the bremsstrahlung. This method allows us to determine the electron temperature [2]. The gas temperature is obtained from the rotational spectrum of the second positive system of nitrogen. The results of measurement on a 10 ns pulsed atmospheric pressure air glow will be presented. References [1] Robert H. Stark and Karl H. Schoenbach, J. Appl. Phys. 89, 3568 (2001) [2] Jaeyoung Park, Ivars Henins, Hans W. Herrmann, and Gary S. Selwyn, Physics of Plasmas 7, 3141 (2000). [3] R. Block, O. Toedter, and K. H. Schoenbach, Bull. APS 43, 1478 (1998)

  11. Lamination of pharmaceutical tablets due to air entrapment: direct visualization and influence of the compact thickness.

    PubMed

    Mazel, V; Busignies, V; Diarra, H; Tchoreloff, P

    2015-01-30

    Capping and lamination are two problems that are often faced during the industrial manufacturing of pharmaceutical tablets. Several reasons have been proposed to explain these phenomena. Among them, air entrapment is supposed to play a role in some cases. Nevertheless, no direct proof were given to prove that air entrapment can promote lamination or capping and various publications have questioned this hypothesis. In this article, using a model product compacted on a compression simulator, a direct proof of the implication of air entrapment during lamination was given. In fact, at the surface of the compact, defects with a spherical shape, clearly linked with an entrapped bubble of air, began to appear on the surface of the compact just below the pressure level to which lamination was observed. Moreover it was also observed that, when the compact thickness increased, the lamination pressure decreased, meaning that the compact thickness can promote lamination. As a conclusion, contrary to what is said in some publications, air entrapment can be involved when problems of lamination occur, and, in this case, powder desaeration should be considered. PMID:25522829

  12. Investigating the Impacts of Surface Temperature Anomalies Due to Wildfires in Northern Sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Gabbert, T.; Ichoku, C. M.; Matsui, T.; Capehart, W. J.

    2014-12-01

    The northern Sub-Saharan African region (NSSA) is an area of intense study due to the recent severe droughts that have dire consequences on the population, which relies mostly on rainfed agriculture for its food supply. This region's weather and hydrologic cycle are very complex and are dependent on the West African Monsoon. Different regional processes affect the West African Monsoon cycle and variability. One of the areas of current investigation is the water cycle response to the variability of land surface characteristics. Land surface characteristics are often altered in NSSA due to agricultural practices, grazing, and the fires that occur during the dry season. To better understand the effects of biomass burning on the hydrologic cycle of the sub-Saharan environment, an interdisciplinary team sponsored by NASA is analyzing potential feedback mechanisms due to the fires. As part of this research, this study focuses on the effects of land surface changes, particularly albedo and skin temperature, that are influenced by biomass burning. Surface temperature anomalies can influence the initiation of convective rainfall and surface albedo is linked to the absorption of solar radiation. To capture the effects of fire perturbations on the land surface, NASA's Unified Weather and Research Forecasting (NU-WRF) model coupled with NASA's Land Information System (LIS) is being used to simulate some of the fire-induced surface temperature anomalies and other environmental processes. In this presentation, we will report the strategy for these simulations, and show some preliminary results.

  13. Surface temperature distribution along a thin liquid layer due to thermocapillary convection

    NASA Technical Reports Server (NTRS)

    Lai, C. L.; Chai, A. T.

    1985-01-01

    The surface temperature distributions due to thermocapillary convections in a thin liquid layer with heat fluxes imposed on the free surface were investigated. The nondimensional analysis predicts that, when convection is important, the characteristics length scale in the flow direction L, and the characteristic temperature difference delta T sub o can be represented by L and delta T sub o approx. (A2Ma)/1/4 delta T sub R, respectively, where L sub R and delta sub R are the reference scales used in the conduction dominant situations with A denoting the aspect ratio and Ma the Marangoni number. Having L and delta sub o defined, the global surface temperature gradient delta sub o/L, the global thermocapillary driving force, and other interesting features can be determined. Numerical calculations involving a Gaussian heat flux distribution are presented to justify these two relations.

  14. Modeling subcanopy incoming longwave radiation to seasonal snow using air and tree trunk temperatures

    NASA Astrophysics Data System (ADS)

    Webster, Clare; Rutter, Nick; Zahner, Franziska; Jonas, Tobias

    2016-02-01

    Data collected at three Swiss alpine forested sites over a combined 11 year period were used to evaluate the role of air temperature in modeling subcanopy incoming longwave radiation to the snow surface. Simulated subcanopy incoming longwave radiation is traditionally partitioned into that from the sky and that from the canopy, i.e., a two-part model. Initial uncertainties in predicting longwave radiation using the two-part model resulted from vertical differences in measured air temperature. Above-canopy (35 m) air temperatures were higher than those within (10 m) and below (2 m) canopy throughout four snow seasons (December-April), demonstrating how the forest canopy can act as a cold sink for air. Lowest model root-mean-square error (RMSE) was using above-canopy air temperature. Further investigation of modeling subcanopy longwave radiation using above-canopy air temperature showed underestimations, particularly during periods of high insolation. In order to explicitly account for canopy temperatures in modeling longwave radiation, the two-part model was improved by incorporating a measured trunk view component and trunk temperature. Trunk temperature measurements were up to 25°C higher than locally measured air temperatures. This three-part model reduced the RMSE by up to 7.7 W m-2 from the two-part air temperature model at all sensor positions across the 2014 snowmelt season and performed particularly well during periods of high insolation when errors from the two-part model were up to 40 W m-2. A parameterization predicting tree trunk temperatures using measured air temperature and incoming shortwave radiation demonstrate a simple method that can be applied to provide input to the three-part model across midlatitude coniferous forests.

  15. Evidence for interaction between air pollution and high temperature in the causation of excess mortality.

    PubMed

    Katsouyanni, K; Pantazopoulou, A; Touloumi, G; Tselepidaki, I; Moustris, K; Asimakopoulos, D; Poulopoulou, G; Trichopoulos, D

    1993-01-01

    Studies have demonstrated repeatedly that air pollution in Athens is associated with a small but statistically significant increase in mortality. Extremely high air temperatures can also cause excess mortality. This study investigated whether air pollution and air temperature have synergistic effects on excess mortality in Athens. Data concerning the increased number of deaths in July 1987 (when a major "heat wave" hit Greece) were compared to the deaths in July of the 6 previous years. This comparison revealed a greater increase in the number of deaths in Athens (97%), compared to all other urban areas (33%) and to all non-urban areas (27%). Data on the daily levels of smoke, sulfur dioxide, and ozone; the number of deaths that occurred daily; and meteorological variables were collected for a 5-y period. The daily value of Thom's discomfort index was calculated. Multiple linear regression models were used to investigate main and interactive effects of air temperature and Thom's discomfort index and air pollution indices. The daily number of deaths increased by more than 40 when the mean 24-h air temperature exceeded 30 degrees C. The main effects of an air pollution index are not statistically significant, but the interaction between high levels of air pollution and high temperature (> or = 30 degrees C) are statistically significant (p < .05) for sulfur dioxide and are suggestive (p < .20) for ozone and smoke. Similar results were obtained when the discomfort index was used, instead of temperature in the models. PMID:8357272

  16. Comparison of MODIS Satellite Land Surface Temperature with Air Temperature along a 5000-metre Elevation Transect on Kilimanjaro, Tanzania.

    NASA Astrophysics Data System (ADS)

    Pepin, N. C.; Williams, R.; Maeda, E. E.

    2015-12-01

    There is concern that high elevations may be warming more rapidly than lower elevations, but there is a lack of observational data from weather stations in the high mountains. One alternative data source is satellite LST (Land Surface Temperature) which has extensive spatial coverage. This study compares instantaneous values of LST (1030 and 2230 local solar time) as measured by the MODIS MOD11A2 product at 1 km resolution with equivalent screen level air temperatures (in the same pixel) measured from a transect of 22 in situ weather stations across Kilimanjaro ranging in elevation from 990 to 5803 m. Data consists of 11 years on the SW slope and 3 years on the NE slope, equating to >500 and ~140 octtads (8-day periods) respectively. Results show substantial differences between LST and local air temperature, sometimes up to 20C. During the day the LST tends to be higher than air temperature and the reverse is true at night. The differences show large variance, particularly during the daytime, and tend to increase with elevation, particularly on the NE slope of the mountain which faces the sun when the daytime observations are taken (1030 LST). Differences between LST and air temperature are larger in the dry seasons (JF and JJAS), and reduce when conditions are more cloudy. Systematic relationships with cloud cover and vegetation characteristics (as measured by NDVI and MAIAC for the same pixel) are displayed. More vegetation reduces daytime surface heating above the air temperature, but this relationship weakens with elevation. Nighttime differences are more stable and show no relationship with vegetation indices. Therefore the predictability of the LST/air temperature differences reduces at high elevations and it is therefore much more challenging to use satellite data at high elevations to complement in situ air temperature measurements for climate change assessments, especially for daytime maximum temperatures.

  17. Technology Solutions Case Study: Overcoming Comfort Issues Due to Reduced Flow Room Air Mixing

    SciTech Connect

    2015-03-01

    Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the HVAC system warrants replacement, the HVAC system is often upgraded with a more efficient, lower capacity system that meets the loads of the upgraded house. In this project, IBACOS studied when HVAC equipment is downsized and ducts are unaltered to determine conditions that could cause a supply air delivery problem and to evaluate the feasibility of modifying the duct systems using minimally invasive strategies to improve air distribution.

  18. Paradoxical air embolism during percutaneous nephrolithotomy due to patent foramen ovale: Case report

    PubMed Central

    Chahal, Daljeet; Ruzhynsky, Vladimir; McAuley, Iain; Sweeney, Desmond; Sobkin, Paul; Kinahan, Michael; Gardiner, Rich; Kinahan, John

    2015-01-01

    Paradoxical air embolism is a very rare complication associated with percutaneous nephrolithotomy (PCNL). Incidence may be higher if patients also suffer from a septal heart defect. We report the case of a 76-year old male who presented for PCNL treatment of a right kidney lower calyceal calculus. During the procedure, the patient developed signs and symptoms consistent with that of air embolism. Intraoperative echocardiography confirmed the diagnosis. Subsequent intraoperative and postoperative medical management was carried out and the patient was discharged after recovery three days later. This case highlights the importance of a rare but potentially fatal complication of PCNL. PMID:26425235

  19. Stream air temperature relations to classify stream ground water interactions in a karst setting, central Pennsylvania, USA

    NASA Astrophysics Data System (ADS)

    O'Driscoll, Michael A.; DeWalle, David R.

    2006-09-01

    SummaryStream-ground water interactions in karst vary from complete losses through swallow holes, to reemergences from springs. Our study objective was to compare stream-air temperature and energy exchange relationships across various stream-ground water relationships in a carbonate watershed. It was hypothesized that ground water-fed stream segments could be distinguished from perched/losing segments using stream-air temperature relationships. Two types of computations were conducted: (1) comparisons of stream-air temperature relationships for the period of October 1999-September 2002 at 12 sites in the Spring Creek drainage and (2) detailed energy budget computations for the same period for ground water-dominated Thompson Run and Lower Buffalo Run, a stream with negligible ground water inputs. Weekly average air temperatures and stream temperatures were highly correlated, but slopes and intercepts of the relationship varied for the 12 sites. Slopes ranged from 0.19 to 0.67 and intercepts ranged from 3.23 to 9.07 °C. A two-component mixing model with end members of ground water and actual stream temperatures indicated that the slope and intercept of the stream-air temperature relationship was controlled by ground water inputs. Streams with large ground water inputs had greater intercepts and lesser slopes than streams that were seasonally losing, perched, and/or distant from ground water inputs. Energy fluxes across the air-water interface were greatest for the ground water-fed stream due to increased longwave, latent, and sensible heat losses from the stream in winter when large temperature and vapor pressure differences existed between the stream and air. Advection of ground water was an important source and sink for heat in the ground water-fed stream, depending on season. In contrast, along the seasonally losing stream reach, advection was of minimal importance and stream temperatures were dominated by energy exchange across the air- water interface. Overall

  20. Skin sites to predict deep-body temperature while wearing firefighters' personal protective equipment during periodical changes in air temperature.

    PubMed

    Kim, Siyeon; Lee, Joo-Young

    2016-04-01

    The aim of this study was to investigate stable and valid measurement sites of skin temperatures as a non-invasive variable to predict deep-body temperature while wearing firefighters' personal protective equipment (PPE) during air temperature changes. Eight male firefighters participated in an experiment which consisted of 60-min exercise and 10-min recovery while wearing PPE without self-contained breathing apparatus (7.75 kg in total PPE mass). Air temperature was periodically fluctuated from 29.5 to 35.5 °C with an amplitude of 6 °C. Rectal temperature was chosen as a deep-body temperature, and 12 skin temperatures were recorded. The results showed that the forehead and chest were identified as the most valid sites to predict rectal temperature (R(2) = 0.826 and 0.824, respectively) in an environment with periodically fluctuated air temperatures. This study suggests that particular skin temperatures are valid as a non-invasive variable when predicting rectal temperature of an individual wearing PPE in changing ambient temperatures. Practitioner Summary: This study should offer assistance for developing a more reliable indirect indicating system of individual heat strain for firefighters in real time, which can be used practically as a precaution of firefighters' heat-related illness and utilised along with physiological monitoring.

  1. Homogenisation of minimum and maximum air temperature in northern Portugal

    NASA Astrophysics Data System (ADS)

    Freitas, L.; Pereira, M. G.; Caramelo, L.; Mendes, L.; Amorim, L.; Nunes, L.

    2012-04-01

    Homogenization of minimum and maximum air temperature has been carried out for northern Portugal for the period 1941-2010. The database corresponds to the values of the monthly arithmetic averages calculated from daily values observed at stations within the network of stations managed by the national Institute of Meteorology (IM). Some of the weather stations of IM's network are collecting data for more than a century; however, during the entire observing period, some factors have affected the climate series and have to be considered such as, changes in the station surroundings and changes related to replacement of manually operated instruments. Besides these typical changes, it is of particular interest the station relocation to rural areas or to the urban-rural interface and the installation of automatic weather stations in the vicinity of the principal or synoptic stations with the aim of replacing them. The information from these relocated and new stations was merged to produce just one but representative time series of that site. This process starts at the end 90's and the information of the time series fusion process constitutes the set of metadata used. Two basic procedures were performed: (i) preliminary statistical and quality control analysis; and, (ii) detection and correction of problems of homogeneity. In the first case, was developed and used software for quality control, specifically dedicated for the detection of outliers, based on the quartile values of the time series itself. The analysis of homogeneity was performed using the MASH (Multiple Analysis of Series for Homogenisation) and HOMER, which is a software application developed and recently made available within the COST Action ES0601 (COST-ES0601, 2012). Both methods provide a fast quality control of the original data and were developed for automatic processing, analyzing, homogeneity testing and adjusting of climatological data, but manual usage is also possible. Obtained results with both

  2. Elevated Ground Temperatures at Crude Oil Spill Sites due to Microbial Activity

    NASA Astrophysics Data System (ADS)

    Warren, E.; Bekins, B. A.

    2009-12-01

    Crude oil near the water table at spill sites near Bemidji and Cass Lake, Minnesota, has been undergoing aerobic and anaerobic biodegradation for decades. Because the reactions are exothermic, biodegradation of oil compounds will produce measurable temperature increases if heat is generated faster than it is transported away from the oil body. Subsurface temperatures at the two spill sites were measured with thermistors at multiple depths in groundwater monitoring wells and water-filled tubes in the vadose zone. Temperatures in selected wells were measured in the summer of 2007, 2008, and 2009. At the Bemidji site, temperatures measured in the summer ranged from a low of 6.3 oC in the background well to a high of 9.2 oC within wells in the oil-contaminated zone. From year to year, background minimum temperatures were constant within +/- 0.05 oC while maximum temperatures within the oil-contaminated zone remained within +/- 0.25 oC. Seasonal changes in temperature in the plume as measured by data loggers exceeded 4 oC, which was far greater than the year to year change in the summer measurements. Seasonal variability was greater near the water table than at depth. It is unclear whether this variability is due to subsurface hydrology or microbial activity. Temperatures in the vadose zone were warmer near and down-gradient from the oil body compared to the background indicating the heat from the oil and plume propagates up and outward into the vadose zone. At the Cass Lake site, summer temperatures in 2009 were 6.4 oC in the background and 11.5 oC in wells near the oil. Reaction rates inferred from chemical data were compared to heating required in a 3-dimension energy transport model of the subsurface. The increased temperature compared well to the expected heat production from biodegradation reactions occurring in the oil and plume. Results indicate that microbial activity in sediments contaminated with crude oil undergoing biodegradation can be detected using

  3. A 217-year record of summer air temperature reconstructed from freshwater pearl mussels ( M. margarifitera, Sweden)

    NASA Astrophysics Data System (ADS)

    Schöne, Bernd R.; Dunca, Elena; Mutvei, Harry; Norlund, Ulf

    2004-09-01

    Variations in annual shell growth of the freshwater pearl mussel Margritifera margritifera (L.) were utilized to reconstruct summer (June-August) air temperatures for each year over the period AD 1777-1993. Our study is based on 60 live-collected specimens with overlapping life-spans from six different Swedish rivers. Individual age-detrended and standardized chronologies ranging from 10 to 127 years in length were strung together to form one master chronology (AD 1777-1993) and three regional mean chronologies (Stensele, Uppsala, and Karlshamn). Standardized annual growth rates and air temperature (river water covaries with water temperature) exhibit a significant positive correlation and high running similarity confirming previous experimental findings. Up to 55% in the variability of annual shell growth is explained by temperature changes. From north to south this correlation slightly decreases. We establish a growth-temperature model capable of reconstructing summer air temperature from annual shell growth increments with a precision error of ±0.6-0.9°C (2SD). The validity of the model was tested against instrumentally determined air temperatures and proxy temperatures derived from tree rings. Our study demonstrates that freshwater pearl mussels provide an independent measure for past (i.e., prior to the 20th century greenhouse forcing) changes in air temperature. It can be used to test and verify other air temperature proxies and thus improve climate models.

  4. Air-Cooled Design of a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization Systems

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.; Affleck, Dave L.; Rosen, Micha; LeVan, M. Douglas; Wang, Yuan; Cavalcante, Celio L.

    2004-01-01

    The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. We have a developed a temperature-swing adsorption compressor (TSAC) for performing these tasks that is energy efficient, quiet, and has no rapidly moving parts. This paper discusses the mechanical design and the results of thermal model validation tests of a TSAC that uses air as the cooling medium.

  5. Air quality and climate impacts due to CNG conversion of motor vehicles in Dhaka, Bangladesh.

    PubMed

    Wadud, Zia; Khan, Tanzila

    2013-12-17

    Dhaka had recently experienced rapid conversion of its motor vehicle fleet to run on compressed natural gas (CNG). This paper quantifies ex-post the air quality and climate benefits of the CNG conversion policy, including monetary valuations, through an impact pathway approach. Around 2045 (1665) avoided premature deaths in greater Dhaka (City Corporation) can be attributed to air quality improvements from the CNG conversion policy in 2010, resulting in a saving of around USD 400 million. Majority of these health benefits resulted from the conversion of high-emitting diesel vehicles. CNG conversion was clearly detrimental from climate change perspective using the changes in CO2 and CH4 only (CH4 emissions increased); however, after considering other global pollutants (especially black carbon), the climate impact was ambiguous. Uncertainty assessment using input distributions and Monte Carlo simulation along with a sensitivity analysis show that large uncertainties remain for climate impacts. For our most likely estimate, there were some climate costs, valued at USD 17.7 million, which is an order of magnitude smaller than the air quality benefits. This indicates that such policies can and should be undertaken on the grounds of improving local air pollution alone and that precautions should be taken to reduce the potentially unintended increases in GHG emissions or other unintended effects. PMID:24195736

  6. Air quality and climate impacts due to CNG conversion of motor vehicles in Dhaka, Bangladesh.

    PubMed

    Wadud, Zia; Khan, Tanzila

    2013-12-17

    Dhaka had recently experienced rapid conversion of its motor vehicle fleet to run on compressed natural gas (CNG). This paper quantifies ex-post the air quality and climate benefits of the CNG conversion policy, including monetary valuations, through an impact pathway approach. Around 2045 (1665) avoided premature deaths in greater Dhaka (City Corporation) can be attributed to air quality improvements from the CNG conversion policy in 2010, resulting in a saving of around USD 400 million. Majority of these health benefits resulted from the conversion of high-emitting diesel vehicles. CNG conversion was clearly detrimental from climate change perspective using the changes in CO2 and CH4 only (CH4 emissions increased); however, after considering other global pollutants (especially black carbon), the climate impact was ambiguous. Uncertainty assessment using input distributions and Monte Carlo simulation along with a sensitivity analysis show that large uncertainties remain for climate impacts. For our most likely estimate, there were some climate costs, valued at USD 17.7 million, which is an order of magnitude smaller than the air quality benefits. This indicates that such policies can and should be undertaken on the grounds of improving local air pollution alone and that precautions should be taken to reduce the potentially unintended increases in GHG emissions or other unintended effects.

  7. Temperatures of individual ion species and heating due to charge exchange in the ionosphere of Venus

    NASA Technical Reports Server (NTRS)

    Kim, Jhoon; Nagy, Andrew F.; Cravens, Thomas E.; Shinagawa, Hiroyuki

    1990-01-01

    The coupled electron and multispecies ion energy equations were solved for daytime conditions in the Venus ionosphere. The heating rates due to charge exchange between hot oxygen atoms and thermal oxygen ions were calculated and incorporated into the energy equations. The combination of the traditional EUV heating and this hot oxygen energy source leads to calculated electron and individual ion temperatures significantly lower than the measured values during solar cycle maximum conditions. Calculations were also carried out for solar cycle minimum conditions, which led to considerably lower temperatures; no data are available which would allow direct comparisons of these results with measurements. In order to obtain calculated temperature values consistent with the observed ones, for solar cycle maximum conditions, topside heat inflows into the ion and electron gases have to be introduced or the thermal conductivity must be reduced by considering the effect of steady and fluctuating magnetic fields, as was done in previous studies. The addition of hot oxygen heating leads to minor increases in the calculated ion temperatures except for the case of reduced thermal conductivities. Separate temperatures were calculated for each ion species for a number of different conditions and in general the differences were found to be relatively small.

  8. Thermal Characteristics of an Aluminum Thin Film due to Temperature Disturbance at Film Edges

    NASA Astrophysics Data System (ADS)

    Ali, Haider; Mansoor, Saad Bin; Yilbas, Bekir Sami

    2015-01-01

    Phonon transport in an aluminum thin film is simulated due to a temperature disturbance across the film. The Boltzmann equation is introduced to formulate the radiative transport in the electron and lattice sub-systems. The transient and frequency dependence of the phonon transport is considered, and dispersion relations are accommodated to account for the group velocities in the analysis. Electron-phonon coupling is employed to couple the energy transport across the electron and lattice sub-systems. An equivalent equilibrium temperature is presented to assess the characteristics of the phonon intensity in the film. Temperature predictions are validated with data presented in a previous study. It is found that the equivalent equilibrium temperature differs significantly from that obtained from the two-equation model. The film thickness influences the transport characteristics of the film, in which case the time to reach an almost quasi-steady temperature is shorter for the thin film (, where is the film thickness) than that corresponding to the thick film (). In the diffusion limit (when the Knudsen number , where is the mean free path), it is demonstrated that the radiative transport equation reduces to the formulation of the two-equation model.

  9. Temperature modifies the association between particulate air pollution and mortality: A multi-city study in South Korea.

    PubMed

    Kim, Satbyul Estella; Lim, Youn-Hee; Kim, Ho

    2015-08-15

    Substantial epidemiologic literature has demonstrated the effects of air pollution and temperature on mortality. However, there is inconsistent evidence regarding the temperature modification effect on acute mortality due to air pollution. Herein, we investigated the effects of temperature on the relationship between air pollution and mortality due to non-accidental, cardiovascular, and respiratory death in seven cities in South Korea. We applied stratified time-series models to the data sets in order to examine whether the effects of particulate matter <10 μm (PM10) on mortality were modified by temperature. The effect of PM10 on daily mortality was first quantified within different ranges of temperatures at each location using a time-series model, and then the estimates were pooled through a random-effects meta-analysis using the maximum likelihood method. From all the data sets, 828,787 non-accidental deaths were registered from 2000-2009. The highest overall risk between PM10 and non-accidental or cardiovascular mortality was observed on extremely hot days (daily mean temperature: >99th percentile) in individuals aged <65 years. In those aged ≥65 years, the highest overall risk between PM10 and non-accidental or cardiovascular mortality was observed on very hot days and not on extremely hot days (daily mean temperature: 95-99th percentile). There were strong harmful effects from PM10 on non-accidental mortality with the highest temperature range (>99th percentile) in men, with a very high temperature range (95-99th percentile) in women. Our findings showed that temperature can affect the relationship between the PM10 levels and cause-specific mortality. Moreover, the differences were apparent after considering the age and sex groups.

  10. The EUSTACE project: delivering global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Morice, C. P.; Rayner, N. A.; Auchmann, R.; Bessembinder, J.; Bronnimann, S.; Brugnara, Y.; Conway, E. A.; Ghent, D.; Good, E.; Herring, K.; Kennedy, J.; Lindgren, F.; Madsen, K. S.; Merchant, C. J.; van der Schrier, G.; Stephens, A.; Tonboe, R. T.; Waterfall, A. M.; Mitchelson, J.; Woolway, I.

    2015-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, we must develop an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. These relationships can be derived either empirically or with the help of a physical model.Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals would be used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. As the data volumes involved are considerable, such work needs to include development of new "Big Data" analysis methods.We will present plans and progress along this road in the EUSTACE project (2015-June 2018), i.e.: • providing new, consistent, multi-component estimates of uncertainty in surface skin temperature retrievals from satellites; • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras.Information will also be given on how interested users can become

  11. Effect of pyrolysis temperature and air flow on toxicity of gases from a polycarbonate polymer

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Brick, V. E.; Brauer, D. P.

    1978-01-01

    A polycarbonate polymer was evaluated for toxicity of pyrolysis gases generated at various temperatures without forced air flow and with 1 L/min air flow, using the toxicity screening test method developed at the University of San Francisco. Time to various animal responses decreased with increasing pyrolysis temperature over the range from 500 C to 800 C. There appeared to be no significant toxic effects at 400 C and lower temperatures.

  12. Effects of animal activity and air temperature on methane and ammonia emissions from a naturally ventilated building for dairy cows

    NASA Astrophysics Data System (ADS)

    Ngwabie, N. M.; Jeppsson, K.-H.; Gustafsson, G.; Nimmermark, S.

    2011-12-01

    significantly with the indoor air temperatures ( r = 0.66). Daily CH 4 emissions were negatively correlated to the indoor air temperature ( r = -0.84). This suggests that increased daily indoor air temperatures due to seasonal changes may bring about decreased animal activity which may decrease the release of CH 4 from dairy cows. Finally, changes in daily NH 3 emissions were influenced more by the indoor air temperature than by the activity of the cows.

  13. Some Effects of Air and Fuel Oil Temperatures on Spray Penetration and Dispersion

    NASA Technical Reports Server (NTRS)

    Gelalles, A G

    1930-01-01

    Presented here are experimental results obtained from a brief investigation of the appearance, penetration, and dispersion of oil sprays injected into a chamber of highly heated air at atmospheric pressure. The development of single sprays injected into a chamber containing air at room temperature and at high temperature was recorded by spray photography equipment. A comparison of spray records showed that with the air at the higher temperature, the spray assumed the appearance of thin, transparent cloud, the greatest part of which rapidly disappeared from view. With the chamber air at room temperature, a compact spray with an opaque core was obtained. Measurements of the records showed a decrease in penetration and an increase in the dispersion of the spray injected into the heated air. No ignition of the fuel injected was observed or recorded until the spray particles came in contact with the much hotter walls of the chamber about 0.3 second after the start of injection.

  14. Material degradation due to moisture and temperature. Part 1: mathematical model, analysis, and analytical solutions

    NASA Astrophysics Data System (ADS)

    Xu, C.; Mudunuru, M. K.; Nakshatrala, K. B.

    2016-06-01

    The mechanical response, serviceability, and load-bearing capacity of materials and structural components can be adversely affected due to external stimuli, which include exposure to a corrosive chemical species, high temperatures, temperature fluctuations (i.e., freezing-thawing), cyclic mechanical loading, just to name a few. It is, therefore, of paramount importance in several branches of engineering—ranging from aerospace engineering, civil engineering to biomedical engineering—to have a fundamental understanding of degradation of materials, as the materials in these applications are often subjected to adverse environments. As a result of recent advancements in material science, new materials such as fiber-reinforced polymers and multi-functional materials that exhibit high ductility have been developed and widely used, for example, as infrastructural materials or in medical devices (e.g., stents). The traditional small-strain approaches of modeling these materials will not be adequate. In this paper, we study degradation of materials due to an exposure to chemical species and temperature under large strain and large deformations. In the first part of our research work, we present a consistent mathematical model with firm thermodynamic underpinning. We then obtain semi-analytical solutions of several canonical problems to illustrate the nature of the quasi-static and unsteady behaviors of degrading hyperelastic solids.

  15. Material degradation due to moisture and temperature. Part 1: mathematical model, analysis, and analytical solutions

    NASA Astrophysics Data System (ADS)

    Xu, C.; Mudunuru, M. K.; Nakshatrala, K. B.

    2016-11-01

    The mechanical response, serviceability, and load-bearing capacity of materials and structural components can be adversely affected due to external stimuli, which include exposure to a corrosive chemical species, high temperatures, temperature fluctuations (i.e., freezing-thawing), cyclic mechanical loading, just to name a few. It is, therefore, of paramount importance in several branches of engineering—ranging from aerospace engineering, civil engineering to biomedical engineering—to have a fundamental understanding of degradation of materials, as the materials in these applications are often subjected to adverse environments. As a result of recent advancements in material science, new materials such as fiber-reinforced polymers and multi-functional materials that exhibit high ductility have been developed and widely used, for example, as infrastructural materials or in medical devices (e.g., stents). The traditional small-strain approaches of modeling these materials will not be adequate. In this paper, we study degradation of materials due to an exposure to chemical species and temperature under large strain and large deformations. In the first part of our research work, we present a consistent mathematical model with firm thermodynamic underpinning. We then obtain semi-analytical solutions of several canonical problems to illustrate the nature of the quasi-static and unsteady behaviors of degrading hyperelastic solids.

  16. Multi-fractal scaling comparison of the Air Temperature and the Surface Temperature over China

    NASA Astrophysics Data System (ADS)

    Jiang, Lei; Zhang, Jiping; Liu, Xinwei; Li, Fei

    2016-11-01

    The spatial and temporal multi-scaling behaviors between the daily Air Temperature (AT) and the Surface Temperature (ST) over China are compared in about 60-yr observations by Multi-fractal Detrended Fluctuation Analysis (MF-DFA) method. The different fractal phenomena and diversity features in the geographic distribution are found for the AT and ST series using MF-DFA. There are more multi-fractal features for the AT records but less for ST. The respective geographic sites show important scaling differences when compared to the multi-fractal signatures of AT with ST. An interval threshold for 95% confidence level is obtained by shuffling the AT records and the ST records. For the AT records, 93% of all observed stations shows the strong multi-fractal behaviors. In addition, the multi-fractal characteristics decrease with increasing latitude in South China and are obviously strong along the coast. The multi-fractal behaviors of the AT records between the Yangtze River and Yellow River basin and in most regions of Northwest China seem to be weak and not significant, even single mono-fractal features. However, for the ST records, the geographical distributions of multi-fractal phenomenon seem to be in disorder which account for 81% of the stations. The weak multi-fractal behaviors of the ST records are concentrated in North China, most regions of Northeast China.

  17. Wind-chill-equivalent temperatures: regarding the impact due to the variability of the environmental convective heat transfer coefficient.

    PubMed

    Shitzer, Avraham

    2006-03-01

    The wind-chill index (WCI), developed in Antarctica in the 1940s and recently updated by the weather services in the USA and Canada, expresses the enhancement of heat loss in cold climates from exposed body parts, e.g., face, due to wind. The index provides a simple and practical means for assessing the thermal effects of wind on humans outdoors. It is also used for indicating weather conditions that may pose adverse risks of freezing at subfreezing environmental temperatures. Values of the WCI depend on a number of parameters, i.e, temperatures, physical properties of the air, wind speed, etc., and on insolation and evaporation. This paper focuses on the effects of various empirical correlations used in the literature for calculating the convective heat transfer coefficients between humans and their environment. Insolation and evaporation are not included in the presentation. Large differences in calculated values among these correlations are demonstrated and quantified. Steady-state wind-chill-equivalent temperatures (WCETs) are estimated by a simple, one-dimensional heat-conducting hollow-cylindrical model using these empirical correlations. Partial comparison of these values with the published "new" WCETs is presented. The variability of the estimated WCETs, due to different correlations employed to calculate them, is clearly demonstrated. The results of this study clearly suggest the need for establishing a "gold standard" for estimating convective heat exchange between exposed body elements and the cold and windy environment. This should be done prior to the introduction and adoption of further modifications to WCETs and indices. Correlations to estimate the convective heat transfer coefficients between exposed body parts of humans in windy and cold environments influence the WCETs and need to be standardized. PMID:16397760

  18. Wind-chill-equivalent temperatures: regarding the impact due to the variability of the environmental convective heat transfer coefficient.

    PubMed

    Shitzer, Avraham

    2006-03-01

    The wind-chill index (WCI), developed in Antarctica in the 1940s and recently updated by the weather services in the USA and Canada, expresses the enhancement of heat loss in cold climates from exposed body parts, e.g., face, due to wind. The index provides a simple and practical means for assessing the thermal effects of wind on humans outdoors. It is also used for indicating weather conditions that may pose adverse risks of freezing at subfreezing environmental temperatures. Values of the WCI depend on a number of parameters, i.e, temperatures, physical properties of the air, wind speed, etc., and on insolation and evaporation. This paper focuses on the effects of various empirical correlations used in the literature for calculating the convective heat transfer coefficients between humans and their environment. Insolation and evaporation are not included in the presentation. Large differences in calculated values among these correlations are demonstrated and quantified. Steady-state wind-chill-equivalent temperatures (WCETs) are estimated by a simple, one-dimensional heat-conducting hollow-cylindrical model using these empirical correlations. Partial comparison of these values with the published "new" WCETs is presented. The variability of the estimated WCETs, due to different correlations employed to calculate them, is clearly demonstrated. The results of this study clearly suggest the need for establishing a "gold standard" for estimating convective heat exchange between exposed body elements and the cold and windy environment. This should be done prior to the introduction and adoption of further modifications to WCETs and indices. Correlations to estimate the convective heat transfer coefficients between exposed body parts of humans in windy and cold environments influence the WCETs and need to be standardized.

  19. Wind-chill-equivalent temperatures: regarding the impact due to the variability of the environmental convective heat transfer coefficient

    NASA Astrophysics Data System (ADS)

    Shitzer, Avraham

    2006-03-01

    The wind-chill index (WCI), developed in Antarctica in the 1940s and recently updated by the weather services in the USA and Canada, expresses the enhancement of heat loss in cold climates from exposed body parts, e.g., face, due to wind. The index provides a simple and practical means for assessing the thermal effects of wind on humans outdoors. It is also used for indicating weather conditions that may pose adverse risks of freezing at subfreezing environmental temperatures. Values of the WCI depend on a number of parameters, i.e, temperatures, physical properties of the air, wind speed, etc., and on insolation and evaporation. This paper focuses on the effects of various empirical correlations used in the literature for calculating the convective heat transfer coefficients between humans and their environment. Insolation and evaporation are not included in the presentation. Large differences in calculated values among these correlations are demonstrated and quantified. Steady-state wind-chill-equivalent temperatures (WCETs) are estimated by a simple, one-dimensional heat-conducting hollow-cylindrical model using these empirical correlations. Partial comparison of these values with the published “new” WCETs is presented. The variability of the estimated WCETs, due to different correlations employed to calculate them, is clearly demonstrated. The results of this study clearly suggest the need for establishing a “gold standard” for estimating convective heat exchange between exposed body elements and the cold and windy environment. This should be done prior to the introduction and adoption of further modifications to WCETs and indices. Correlations to estimate the convective heat transfer coefficients between exposed body parts of humans in windy and cold environments influence the WCETs and need to be standardized.

  20. Attribution of precipitation changes on ground-air temperature offset: Granger causality analysis

    NASA Astrophysics Data System (ADS)

    Cermak, Vladimir; Bodri, Louise

    2016-06-01

    This work examines the causal relationship between the value of the ground-air temperature offset and the precipitation changes for monitored 5-min data series together with their hourly and daily averages obtained at the Sporilov Geophysical Observatory (Prague). Shallow subsurface soil temperatures were monitored under four different land cover types (bare soil, sand, short-cut grass and asphalt). The ground surface temperature (GST) and surface air temperature (SAT) offset, ΔT(GST-SAT), is defined as the difference between the temperature measured at the depth of 2 cm below the surface and the air temperature measured at 5 cm above the surface. The results of the Granger causality test did not reveal any evidence of Granger causality for precipitation to ground-air temperature offsets on the daily scale of aggregation except for the asphalt pavement. On the contrary, a strong evidence of Granger causality for precipitation to the ground-air temperature offsets was found on the hourly scale of aggregation for all land cover types except for the sand surface cover. All results are sensitive to the lag choice of the autoregressive model. On the whole, obtained results contain valuable information on the delay time of ΔT(GST-SAT) caused by the rainfall events and confirmed the importance of using autoregressive models to understand the ground-air temperature relationship.

  1. Validation of AIRS V6 Surface Temperature over Greenland with GCN and NOAA Stations

    NASA Technical Reports Server (NTRS)

    Lee, Jae N.; Hearty, Thomas; Cullather, Richard; Nowicki, Sophie; Susskind, Joel

    2016-01-01

    This work compares the temporal and spatial characteristics of the AIRSAMSU (Atmospheric Infrared Sounder Advanced Microwave Sounding Unit A) Version 6 and MODIS (Moderate resolution Imaging Spectroradiometer) Collection 5 derived surface temperatures over Greenland. To estimate uncertainties in space-based surface temperature measurements, we re-projected the MODIS Ice Surface Temperature (IST) to 0.5 by 0.5 degree spatial resolution. We also re-gridded AIRS Skin Temperature (Ts) into the same grid but classified with different cloud conditions and surface types. These co-located data sets make intercomparison between the two instruments relatively straightforward. Using this approach, the spatial comparison between the monthly mean AIRS Ts and MODIS IST is in good agreement with RMS 2K for May 2012. This approach also allows the detection of any long-term calibration drift and the careful examination of calibration consistency in the MODIS and AIRS temperature data record. The temporal correlations between temperature data are also compared with those from in-situ measurements from GC-Net (GCN) and NOAA stations. The coherent time series of surface temperature evident in the correlation between AIRS Ts and GCN temperatures suggest that at monthly time scales both observations capture the same climate signal over Greenland. It is also suggested that AIRS surface air temperature (Ta) can be used to estimate the boundary layer inversion.

  2. A comparison of urban heat islands mapped using skin temperature, air temperature, and apparent temperature (Humidex), for the greater Vancouver area.

    PubMed

    Ho, Hung Chak; Knudby, Anders; Xu, Yongming; Hodul, Matus; Aminipouri, Mehdi

    2016-02-15

    Apparent temperature is more closely related to mortality during extreme heat events than other temperature variables, yet spatial epidemiology studies typically use skin temperature (also known as land surface temperature) to quantify heat exposure because it is relatively easy to map from satellite data. An empirical approach to map apparent temperature at the neighborhood scale, which relies on publicly available weather station observations and spatial data layers combined in a random forest regression model, was demonstrated for greater Vancouver, Canada. Model errors were acceptable (cross-validated RMSE=2.04 °C) and the resulting map of apparent temperature, calibrated for a typical hot summer day, corresponded well with past temperature research in the area. A comparison with field measurements as well as similar maps of skin temperature and air temperature revealed that skin temperature was poorly correlated with both air temperature (R(2)=0.38) and apparent temperature (R(2)=0.39). While the latter two were more similar (R(2)=0.87), apparent temperature was predicted to exceed air temperature by more than 5 °C in several urban areas as well as around the confluence of the Pitt and Fraser rivers. We conclude that skin temperature is not a suitable proxy for human heat exposure, and that spatial epidemiology studies could benefit from mapping apparent temperature, using an approach similar to the one reported here, to better quantify differences in heat exposure that exist across an urban landscape.

  3. A comparison of urban heat islands mapped using skin temperature, air temperature, and apparent temperature (Humidex), for the greater Vancouver area.

    PubMed

    Ho, Hung Chak; Knudby, Anders; Xu, Yongming; Hodul, Matus; Aminipouri, Mehdi

    2016-02-15

    Apparent temperature is more closely related to mortality during extreme heat events than other temperature variables, yet spatial epidemiology studies typically use skin temperature (also known as land surface temperature) to quantify heat exposure because it is relatively easy to map from satellite data. An empirical approach to map apparent temperature at the neighborhood scale, which relies on publicly available weather station observations and spatial data layers combined in a random forest regression model, was demonstrated for greater Vancouver, Canada. Model errors were acceptable (cross-validated RMSE=2.04 °C) and the resulting map of apparent temperature, calibrated for a typical hot summer day, corresponded well with past temperature research in the area. A comparison with field measurements as well as similar maps of skin temperature and air temperature revealed that skin temperature was poorly correlated with both air temperature (R(2)=0.38) and apparent temperature (R(2)=0.39). While the latter two were more similar (R(2)=0.87), apparent temperature was predicted to exceed air temperature by more than 5 °C in several urban areas as well as around the confluence of the Pitt and Fraser rivers. We conclude that skin temperature is not a suitable proxy for human heat exposure, and that spatial epidemiology studies could benefit from mapping apparent temperature, using an approach similar to the one reported here, to better quantify differences in heat exposure that exist across an urban landscape. PMID:26706765

  4. Coal mining activities change plant community structure due to air pollution and soil degradation.

    PubMed

    Pandey, Bhanu; Agrawal, Madhoolika; Singh, Siddharth

    2014-10-01

    The aim of this study was to investigate the effects of coal mining activities on the community structures of woody and herbaceous plants. The response of individual plants of community to defilement caused by coal mining was also assessed. Air monitoring, soil physico-chemical and phytosociological analyses were carried around Jharia coalfield (JCF) and Raniganj coalfield. The importance value index of sensitive species minified and those of tolerant species enhanced with increasing pollution load and altered soil quality around coal mining areas. Although the species richness of woody and herbaceous plants decreased with higher pollution load, a large number of species acclimatized to the stress caused by the coal mining activities. Woody plant community at JCF was more affected by coal mining than herbaceous community. Canonical correspondence analysis revealed that structure of herbaceous community was mainly driven by soil total organic carbon, soil nitrogen, whereas woody layer community was influenced by sulphur dioxide in ambient air, soil sulphate and soil phosphorus. The changes in species diversity observed at mining areas indicated an increase in the proportion of resistant herbs and grasses showing a tendency towards a definite selection strategy of ecosystem in response to air pollution and altered soil characteristics.

  5. Model calculated global, regional and megacity premature mortality due to air pollution

    NASA Astrophysics Data System (ADS)

    Lelieveld, J.; Barlas, C.; Giannadaki, D.; Pozzer, A.

    2013-03-01

    Air pollution by fine particulate matter (PM2.5) and ozone (O3) has increased strongly with industrialization and urbanization. We estimated the premature mortality rates and the years of human life lost (YLL) caused by anthropogenic PM2.5 and O3 in 2005 for epidemiological regions defined by the World Health Organization. We carried out high-resolution global model calculations to resolve urban and industrial regions in greater detail compared to previous work. We applied a health impact function to estimate premature mortality for people of 30 yr and older, using parameters derived from epidemiological cohort studies. Our results suggest that especially in large countries with extensive suburban and rural populations, air pollution-induced mortality rates have previously been underestimated. We calculate a global respiratory mortality of about 773 thousand yr-1 (YLL ≈ 5.2 million yr-1), 186 thousand yr-1 by lung cancer (YLL ≈ 1.7 million yr-1) and 2.0 million yr-1 by cardiovascular disease (YLL ≈ 14.3 million yr-1). The global mean per capita mortality caused by air pollution is about 0.1 % yr-1. The highest premature mortality rates are found in the Southeast Asia and Western Pacific regions (about 25% and 46% of the global rate, respectively) where more than a dozen of the most highly polluted megacities are located.

  6. Resistivity Variation due to CO2 Migration in Different Temperature and Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Nakatsuka, Y.; Onishi, K.; Yamada, Y.; Matsuoka, T.; Xue, Z.

    2007-12-01

    CO2 geological sequestration is one of the effective approaches solving the global warming problem. Captured CO2 is injected to the deep aquifers or depleted oil and gas fields. Injected CO2 migrates thorough the reservoir rock, however, the details behavior of injected CO2 under the ground at super critical phase is not yet fully understood. Migration of injected CO2 will change by the condition of the injected reservoir such as the temperature and pressure. Also density and permeability of the rock may be changed due to temperature or pressure variations. These changes control the migration behavior of injected CO2. In this study, experiments of resistivity measurements were conducted to detect the migration difference of CO2 in different temperature and pressure conditions by using sandstone core samples. Core sample was taken from Berea sandstone and processed to 5cm diameter and 12cm length. For the resistivity measurement, impression electrode was set on the both end and the measurement electrode of ring condition was set on the side of the rock sample. We stetted the core sample in the pressure vessel and recreated the condition of underground reservoir which is high pressure and high temperature. We injected supercritical CO2 in different pressure and temperature for each experiment. Pressure was changed in range of 8 to 11MPa and temperature was changed in range of 35° to 45°. This means that all the experiments were conducted in supercritical phase. From the measured resistivity variation, we verified the migration of CO2 and compared the migration behavior of CO2 in different conditions.

  7. Risk assessment for cardiovascular and respiratory mortality due to air pollution and synoptic meteorology in 10 Canadian cities.

    PubMed

    Vanos, Jennifer K; Hebbern, Christopher; Cakmak, Sabit

    2014-02-01

    Synoptic weather and ambient air quality synergistically influence human health. We report the relative risk of mortality from all non-accidental, respiratory-, and cardiovascular-related causes, associated with exposure to four air pollutants, by weather type and season, in 10 major Canadian cities for 1981 through 1999. We conducted this multi-city time-series study using Poisson generalized linear models stratified by season and each of six distinctive synoptic weather types. Statistically significant relationships of mortality due to short-term exposure to carbon monoxide, nitrogen dioxide, sulphur dioxide, and ozone were found, with significant modifications of risk by weather type, season, and mortality cause. In total, 61% of the respiratory-related mortality relative risk estimates were significantly higher than for cardiovascular-related mortality. The combined effect of weather and air pollution is greatest when tropical-type weather is present in the spring or summer.

  8. Projection of future temperature-related mortality due to climate and demographic changes.

    PubMed

    Lee, Jae Young; Kim, Ho

    2016-09-01

    Understanding the effects of global climate change from both environmental and human health perspectives has gained great importance. Particularly, studies on the direct effect of temperature increase on future mortality have been conducted. However, few of those studies considered population changes, and although the world population is rapidly aging, no previous study considered the effect of society aging. Here we present a projection of future temperature-related mortality due to both climate and demographic changes in seven major cities of South Korea, a fast aging country, until 2100; we used the HadGEM3-RA model under four Representative Concentration Pathway (RCP) scenarios (RCP 2.6, 4.5, 6.0, and 8.5) and the United Nations world population prospects under three fertility scenarios (high, medium, and low). The results showed markedly increased mortality in the elderly group, significantly increasing the overall future mortality. In 2090s, South Korea could experience a four- to six-time increase in temperature-related mortality compared to that during 1992-2010 under four different RCP scenarios and three different fertility variants, while the mortality is estimated to increase only by 0.5 to 1.5 times assuming no population aging. Therefore, not considering population aging may significantly underestimate temperature risks.

  9. Projection of future temperature-related mortality due to climate and demographic changes.

    PubMed

    Lee, Jae Young; Kim, Ho

    2016-09-01

    Understanding the effects of global climate change from both environmental and human health perspectives has gained great importance. Particularly, studies on the direct effect of temperature increase on future mortality have been conducted. However, few of those studies considered population changes, and although the world population is rapidly aging, no previous study considered the effect of society aging. Here we present a projection of future temperature-related mortality due to both climate and demographic changes in seven major cities of South Korea, a fast aging country, until 2100; we used the HadGEM3-RA model under four Representative Concentration Pathway (RCP) scenarios (RCP 2.6, 4.5, 6.0, and 8.5) and the United Nations world population prospects under three fertility scenarios (high, medium, and low). The results showed markedly increased mortality in the elderly group, significantly increasing the overall future mortality. In 2090s, South Korea could experience a four- to six-time increase in temperature-related mortality compared to that during 1992-2010 under four different RCP scenarios and three different fertility variants, while the mortality is estimated to increase only by 0.5 to 1.5 times assuming no population aging. Therefore, not considering population aging may significantly underestimate temperature risks. PMID:27316627

  10. One hundred years of Arctic surface temperature variation due to anthropogenic influence

    PubMed Central

    Fyfe, John C.; von Salzen, Knut; Gillett, Nathan P.; Arora, Vivek K.; Flato, Gregory M.; McConnell, Joseph R.

    2013-01-01

    Observations show that Arctic-average surface temperature increased from 1900 to 1940, decreased from 1940 to 1970, and increased from 1970 to present. Here, using new observational data and improved climate models employing observed natural and anthropogenic forcings, we demonstrate that contributions from greenhouse gas and aerosol emissions, along with explosive volcanic eruptions, explain most of this observed variation in Arctic surface temperature since 1900. In addition, climate model simulations without natural and anthropogenic forcings indicate very low probabilities that the observed trends in each of these periods were due to internal climate variability alone. Arctic climate change has important environmental and economic impacts and these results improve our understanding of past Arctic climate change and our confidence in future projections. PMID:24025852

  11. One hundred years of Arctic surface temperature variation due to anthropogenic influence.

    PubMed

    Fyfe, John C; von Salzen, Knut; Gillett, Nathan P; Arora, Vivek K; Flato, Gregory M; McConnell, Joseph R

    2013-01-01

    Observations show that Arctic-average surface temperature increased from 1900 to 1940, decreased from 1940 to 1970, and increased from 1970 to present. Here, using new observational data and improved climate models employing observed natural and anthropogenic forcings, we demonstrate that contributions from greenhouse gas and aerosol emissions, along with explosive volcanic eruptions, explain most of this observed variation in Arctic surface temperature since 1900. In addition, climate model simulations without natural and anthropogenic forcings indicate very low probabilities that the observed trends in each of these periods were due to internal climate variability alone. Arctic climate change has important environmental and economic impacts and these results improve our understanding of past Arctic climate change and our confidence in future projections. PMID:24025852

  12. Multimodel estimates of premature human mortality due to intercontinental transport of air pollution

    NASA Astrophysics Data System (ADS)

    Liang, C.; Silva, R.; West, J. J.; Sudo, K.; Lund, M. T.; Emmons, L. K.; Takemura, T.; Bian, H.

    2015-12-01

    Numerous modeling studies indicate that emissions from one continent influence air quality over others. Reducing air pollutant emissions from one continent can therefore benefit air quality and health on multiple continents. Here, we estimate the impacts of the intercontinental transport of ozone (O3) and fine particulate matter (PM2.5) on premature human mortality by using an ensemble of global chemical transport models coordinated by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP). We use simulations of 20% reductions of all anthropogenic emissions from 13 regions (North America, Central America, South America, Europe, Northern Africa, Sub-Saharan Africa, Former Soviet Union, Middle East, East Asia, South Asia, South East Asia, Central Asia, and Australia) to calculate their impact on premature mortality within each region and elsewhere in the world. To better understand the impact of potential control strategies, we also analyze premature mortality for global 20% perturbations from five sectors individually: power and industry, ground transport, forest and savannah fires, residential, and others (shipping, aviation, and agriculture). Following previous studies, premature human mortality resulting from each perturbation scenario is calculated using a health impact function based on a log-linear model for O3 and an integrated exposure response model for PM2.5 to estimate relative risk. The spatial distribution of the exposed population (adults aged 25 and over) is obtained from the LandScan 2011 Global Population Dataset. Baseline mortality rates for chronic respiratory disease, ischemic heart disease, cerebrovascular disease, chronic obstructive pulmonary disease, and lung cancer are estimated from the GBD 2010 country-level mortality dataset for the exposed population. Model results are regridded from each model's original grid to a common 0.5°x0.5° grid used to estimate mortality. We perform uncertainty analysis and evaluate the sensitivity

  13. Investigation of the impact of extreme air temperature on river water temperature: case study of the heat episode 2013.

    NASA Astrophysics Data System (ADS)

    Weihs, Philipp; Trimmel, Heidelinde; Goler, Robert; Formayer, Herbert; Holzapfel, Gerda; Rauch, Hans Peter

    2014-05-01

    Water stream temperature is a relevant factor for water quality since it is an important driver of water oxygen content and in turn also reduces or increases stress on the aquatic fauna. The water temperature of streams is determined by the source and inflow water temperature, by the energy balance at the stream surface and by the hydrological regime of the stream. Main factors driving the energy balance of streams are radiation balance and air temperature which influences the sensitive and latent heat flux. The present study investigates the impact of the heat episode of summer 2013 on water temperature of two lowland rivers in south eastern Austria. Within the scope of the project BIO_CLIC routine measurements of water temperature at 33 locations alongside the rivers Pinka and Lafnitz have been performed since spring 2012. In addition meteorological measurements of global shortwave and longwave radiation, air temperature, wind and air humidity have been carried out during this time. For the same time period, data of discharge and water levels of both rivers were provided by the public hydrological office. The heat episode of summer 2013 started, according to the Kysely- definition, on 18 July and lasted until 14 August. The highest air temperature ever recorded in Austria was reported on 8 August at 40.5°C. In Güssing, which is located within the project area, 40.0 °C were recorded. In the lower reaches of the river Pinka, at the station Burg the monthly mean water temperature of August 2013 was with more than 22°C, 1°C higher than the mean water temperature of the same period of the previous years. At the same station, the maximum water temperature of 27.1°C was recorded on 29 July, 9 days prior to the air temperature record. Analysis shows that at the downstream stations the main driving parameter is solar radiation whereas at the upstream stations a better correlation between air temperature and water temperature is obtained. Using the extensive data set

  14. Comparison of Near-Surface Air Temperatures and MODIS Ice-Surface Temperatures at Summit, Greenland (2008-2013)

    NASA Technical Reports Server (NTRS)

    Shuman, Christopher A.; Hall, Dorothy K.; DiGirolamo, Nicolo E.; Mefford, Thomas K.; Schnaubelt, Michael J.

    2014-01-01

    We have investigated the stability of the MODerate resolution Imaging Spectroradiometer (MODIS) infrared-derived ice surface temperature (IST) data from Terra for use as a climate quality data record. The availability of climate quality air temperature data (TA) from a NOAA Global Monitoring Division observatory at Greenlands Summit station has enabled this high temporal resolution study of MODIS ISTs. During a 5 year period (July 2008 to August 2013), more than 2500 IST values were compared with 3-minute average TA values derived from the 1-minute data from NOAAs primary 2 m air temperature sensor. These data enabled an expected small offset between air and surface temperatures at this the ice sheet location to be investigated over multiple annual cycles.

  15. Modeling validation and control analysis for controlled temperature and humidity of air conditioning system.

    PubMed

    Lee, Jing-Nang; Lin, Tsung-Min; Chen, Chien-Chih

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14 °C, 0006 kg(w)/kg(da) in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  16. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    PubMed Central

    Lee, Jing-Nang; Lin, Tsung-Min

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system. PMID:25250390

  17. Stresses and deformations in composite tubes due to a circumferential temperature gradient

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Cooper, D. E.

    1986-01-01

    A linear elasticity solution for determining the response of composite tubes subjected to a circumferential temperature gradient is presented. Numerical examples are used to show that, in a single layer tube, fiber orientation strongly influences response. When the fibers are aligned axially, all stress components in the tube are small. When the fibers are aligned circumferentially, the hoop stress becomes large. This difference in behavior is due to the large difference between the radial and circumferential coefficients of thermal expansion when the fibers are oriented circumferentially. In multilayer tubes, stresses are quite high and just two constants characterize the overall bending and axial deformations of the tubes.

  18. Estimate of the fetal temperature increase due to UHF RFID exposure.

    PubMed

    Fiocchi, S; Markakis, I A; Liorni, I; Parazzini, M; Samaras, T; Ravazzani, P

    2013-01-01

    Exposure from electromagnetic (EM) devices has increased during the last decades due to the rapid development of new technologies. Among them, radiofrequency identification (RFID) applications are used in almost every aspect of everyday life, which could expose people unselectively. This scenario could pose potential risks for certain groups of general population, such as pregnant women, who are more sensitive to thermal effects produced by EM exposure. In this paper, the temperature rise at the steady state in two pregnant women models exposed to UHF RFID has been assessed. Results show that heating of tissues is far from the threshold of biological effects indicated by radiation protection guidelines.

  19. Temperature fields due to jet induced mixing in a typical OTV tank

    NASA Technical Reports Server (NTRS)

    Hochstein, J. I.; Ji, Hyun-Chul; Aydelott, J. C.

    1987-01-01

    The Eclipse Code is being developed as a general tool for analysis of cryogenic propellant behavior in spacecraft tankage. The focus of the work being reported is on prediction of temperature fields due to introduction of a cold jet along the centerline of a typical Orbit Transfer Vehicle tank. A brief description of the formulations used for modeling heat transfer and turbulent flow is presented. Code performance is verified through comparison to experimental data for mixing in small scale tanks. An unexpected difficulty in computing long duration flows is reviewed. Preliminary results for a partially filled full scale tank are obtained by approximating the free surface by a spherical solid boundary.

  20. On axial temperature gradients due to large pressure drops in dense fluid chromatography.

    PubMed

    Colgate, Sam O; Berger, Terry A

    2015-03-13

    The effect of energy degradation (Degradation is the creation of net entropy resulting from irreversibility.) accompanying pressure drops across chromatographic columns is examined with regard to explaining axial temperature gradients in both high performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC). The observed effects of warming and cooling can be explained equally well in the language of thermodynamics or fluid dynamics. The necessary equivalence of these treatments is reviewed here to show the legitimacy of using whichever one supports the simpler determination of features of interest. The determination of temperature profiles in columns by direct application of the laws of thermodynamics is somewhat simpler than applying them indirectly by solving the Navier-Stokes (NS) equations. Both disciplines show that the preferred strategy for minimizing the reduction in peak quality caused by temperature gradients is to operate columns as nearly adiabatically as possible (i.e. as Joule-Thomson expansions). This useful fact, however, is not widely familiar or appreciated in the chromatography community due to some misunderstanding of the meaning of certain terms and expressions used in these disciplines. In fluid dynamics, the terms "resistive heating" or "frictional heating" have been widely used as synonyms for the dissipation function, Φ, in the NS energy equation. These terms have been widely used by chromatographers as well, but often misinterpreted as due to friction between the mobile phase and the column packing, when in fact Φ describes the increase in entropy of the system (dissipation, ∫TdSuniv>0) due to the irreversible decompression of the mobile phase. Two distinctly different contributions to the irreversibility are identified; (1) ΔSext, viscous dissipation of work done by the external surroundings driving the flow (the pump) contributing to its warming, and (2) ΔSint, entropy change accompanying decompression of

  1. Electromagnetic power absorption and temperature changes due to brain machine interface operation.

    PubMed

    Ibrahim, Tamer S; Abraham, Doney; Rennaker, Robert L

    2007-05-01

    To fully understand neural function, chronic neural recordings must be made simultaneously from 10s or 100s of neurons. To accomplish this goal, several groups are developing brain machine interfaces. For these devices to be viable for chronic human use, it is likely that they will need to be operated and powered externally via a radiofrequency (RF) source. However, RF exposure can result in tissue heating and is regulated by the FDA/FCC. This paper provides an initial estimate of the amount of tissue heating and specific absorption rate (SAR) associated with the operation of a brain-machine interface (BMI). The operation of a brain machine interface was evaluated in an 18-tissue anatomically detailed human head mesh using simulations of electromagnetics and bio-heat phenomena. The simulations were conducted with a single chip, as well as with eight chips, placed on the surface of the human brain and each powered at four frequencies (13.6 MHz, 1.0 GHz, 2.4 GHz, and 5.8 GHz). The simulated chips consist of a wire antenna on a silicon chip covered by a Teflon dura patch. SAR values were calculated using the finite-difference time-domain method and used to predict peak temperature changes caused by electromagnetic absorption in the head using two-dimensional bio-heat equation. Results due to SAR alone show increased heating at higher frequencies, with a peak temperature change at 5.8 GHz of approximately 0.018 degrees C in the single-chip configuration and 0.06 degrees C in the eight-chip configuration with 10 mW of power absorption (in the human head) per chip. In addition, temperature elevations due to power dissipation in the chip(s) were studied. Results show that for the neural tissue, maximum temperature rises of 3.34 degrees C in the single-chip configuration and 7.72 degrees C in the eight-chip configuration were observed for 10 mW dissipation in each chip. Finally, the maximum power dissipation allowable in each chip before a 1.0 degrees C temperature

  2. Combustion of Gaseous Fuels with High Temperature Air in Normal- and Micro-gravity Conditions

    NASA Technical Reports Server (NTRS)

    Wang, Y.; Gupta, A. K.

    2001-01-01

    The objective of this study is determine the effect of air preheat temperature on flame characteristics in normal and microgravity conditions. We have obtained qualitative (global flame features) and some quantitative information on the features of flames using high temperature combustion air under normal gravity conditions with propane and methane as the fuels. This data will be compared with the data under microgravity conditions. The specific focus under normal gravity conditions has been on determining the global flame features as well as the spatial distribution of OH, CH, and C2 from flames using high temperature combustion air at different equivalence ratio.

  3. Temperature rise in objects due to optical focused beam through atmospheric turbulence near ground and ocean surface

    NASA Astrophysics Data System (ADS)

    Stoneback, Matthew; Ishimaru, Akira; Reinhardt, Colin; Kuga, Yasuo

    2013-03-01

    We consider an optical beam propagated through the atmosphere and incident on an object causing a temperature rise. In clear air, the physical characteristics of the optical beam transmitted to the object surface are influenced primarily by the effect of atmospheric turbulence, which can be significant near the ground or ocean surface. We use a statistical model to quantify the expected power transfer through turbulent atmosphere and provide guidance toward the threshold of thermal blooming for the considered scenarios. The bulk thermal characteristics of the materials considered are used in a thermal diffusion model to determine the net temperature rise at the object surface due to the incident optical beam. These results of the study are presented in graphical form and are of particular interest to operators of high power laser systems operating over large distances through the atmosphere. Numerical examples include a CO2 laser (λ=10.6 μm) with: aperture size of 5 cm, varied pulse duration, and propagation distance of 0.5 km incident on 0.1-mm copper, 10-mm polyimide, 1-mm water, and 10-mm glass/resin composite targets. To assess the effect of near ground/ocean laser propagation, we compare turbulent (of varying degrees) and nonturbulent atmosphere.

  4. Oxide modified air electrode surface for high temperature electrochemical cells

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1992-01-01

    An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

  5. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  6. Improved Temperature Sounding and Quality Control Methodology Using AIRS/AMSU Data: The AIRS Science Team Version 5 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John M.; Iredell, Lena; Keita, Fricky

    2009-01-01

    This paper describes the AIRS Science Team Version 5 retrieval algorithm in terms of its three most significant improvements over the methodology used in the AIRS Science Team Version 4 retrieval algorithm. Improved physics in Version 5 allows for use of AIRS clear column radiances in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of clear column radiances .R(sub i) for all channels. This new approach allows for the generation of more accurate values of .R(sub i) and T(p) under most cloud conditions. Secondly, Version 5 contains a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 also contains for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology, referred to as AIRS Version 5 AO, was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Results are shown comparing the relative performance of the AIRS Version 4, Version 5, and Version 5 AO for the single day, January 25, 2003. The Goddard DISC is now generating and distributing products derived using the AIRS Science Team Version 5 retrieval algorithm. This paper also described the Quality Control flags contained in the DISC AIRS/AMSU retrieval products and their intended use for scientific research purposes.

  7. Model calculated global, regional and megacity premature mortality due to air pollution

    NASA Astrophysics Data System (ADS)

    Lelieveld, J.; Barlas, C.; Giannadaki, D.; Pozzer, A.

    2013-07-01

    Air pollution by fine particulate matter (PM2.5) and ozone (O3) has increased strongly with industrialization and urbanization. We estimate the premature mortality rates and the years of human life lost (YLL) caused by anthropogenic PM2.5 and O3 in 2005 for epidemiological regions defined by the World Health Organization (WHO). This is based upon high-resolution global model calculations that resolve urban and industrial regions in greater detail compared to previous work. Results indicate that 69% of the global population is exposed to an annual mean anthropogenic PM2.5 concentration of >10 μg m-3 (WHO guideline) and 33% to > 25 μg m-3 (EU directive). We applied an epidemiological health impact function and find that especially in large countries with extensive suburban and rural populations, air pollution-induced mortality rates have been underestimated given that previous studies largely focused on the urban environment. We calculate a global respiratory mortality of about 773 thousand/year (YLL ≈ 5.2 million/year), 186 thousand/year by lung cancer (YLL ≈ 1.7 million/year) and 2.0 million/year by cardiovascular disease (YLL ≈ 14.3 million/year). The global mean per capita mortality caused by air pollution is about 0.1% yr-1. The highest premature mortality rates are found in the Southeast Asia and Western Pacific regions (about 25% and 46% of the global rate, respectively) where more than a dozen of the most highly polluted megacities are located.

  8. Health impacts due to particulate air pollution in Volos City, Greece.

    PubMed

    Moustris, Konstantinos P; Proias, George T; Larissi, Ioanna K; Nastos, Panagiotis T; Koukouletsos, Konstantinos V; Paliatsos, Athanasios G

    2016-01-01

    There is great consensus among the scientific community that suspended particulate matter is considered as one of the most harmful pollutants, particularly the inhalable particulate matter with aerodynamic diameter less than 10 μm (PM10) causing respiratory health problems and heart disorders. Average daily concentrations exceeding established standard values appear, among other cases, to be the main cause of such episodes, especially during Saharan dust episodes, a natural phenomenon that degrades air quality in the urban area of Volos. In this study the AirQ2.2.3 model, developed by the World Health Organization (WHO) European Center for Environment and Health, was used to evaluate adverse health effects by PM10 pollution in the city of Volos during a 5-year period (2007-2011). Volos is a coastal medium size city in the Thessaly region. The city is located on the northern side of the Gulf of Pagassitikos, on the east coast of Central Greece. Air pollution data were obtained by a fully automated monitoring station, which was established by the Municipal Water Supply and Sewage Department in the Greater Area of Volos, located in the centre of the city. The results of the current study indicate that when the mean annual PM10 concentration exceeds the corresponding European Union (EU) threshold value, the number of hospital admissions for respiratory disease (HARD) is increased by 25% on average. There is also an estimated increase of about 2.5% in HARD compared to the expected annual HARD cases for Volos. Finally, a strong correlation was found between the number of days exceeding the EU daily threshold concentration ([PM10] ≥ 50 μg m(-3)) and the annual HARD cases.

  9. Health impacts due to particulate air pollution in Volos City, Greece.

    PubMed

    Moustris, Konstantinos P; Proias, George T; Larissi, Ioanna K; Nastos, Panagiotis T; Koukouletsos, Konstantinos V; Paliatsos, Athanasios G

    2016-01-01

    There is great consensus among the scientific community that suspended particulate matter is considered as one of the most harmful pollutants, particularly the inhalable particulate matter with aerodynamic diameter less than 10 μm (PM10) causing respiratory health problems and heart disorders. Average daily concentrations exceeding established standard values appear, among other cases, to be the main cause of such episodes, especially during Saharan dust episodes, a natural phenomenon that degrades air quality in the urban area of Volos. In this study the AirQ2.2.3 model, developed by the World Health Organization (WHO) European Center for Environment and Health, was used to evaluate adverse health effects by PM10 pollution in the city of Volos during a 5-year period (2007-2011). Volos is a coastal medium size city in the Thessaly region. The city is located on the northern side of the Gulf of Pagassitikos, on the east coast of Central Greece. Air pollution data were obtained by a fully automated monitoring station, which was established by the Municipal Water Supply and Sewage Department in the Greater Area of Volos, located in the centre of the city. The results of the current study indicate that when the mean annual PM10 concentration exceeds the corresponding European Union (EU) threshold value, the number of hospital admissions for respiratory disease (HARD) is increased by 25% on average. There is also an estimated increase of about 2.5% in HARD compared to the expected annual HARD cases for Volos. Finally, a strong correlation was found between the number of days exceeding the EU daily threshold concentration ([PM10] ≥ 50 μg m(-3)) and the annual HARD cases. PMID:26421944

  10. Occupational exposure to particulate air pollution and mortality due to ischaemic heart disease and cerebrovascular disease

    PubMed Central

    Torén, Kjell; Bergdahl, Ingvar A; Nilsson, Tohr; Järvholm, Bengt

    2007-01-01

    Objectives A growing number of epidemiological studies are showing that ambient exposure to particulate matter air pollution is a risk factor for cardiovascular disease; however, whether occupational exposure increases this risk is not clear. The aim of the present study was to examine whether occupational exposure to particulate air pollution increases the risk for ischaemic heart disease and cerebrovascular disease. Methods The study population was a cohort of 176 309 occupationally exposed Swedish male construction workers and 71 778 unexposed male construction workers. The definition of exposure to inorganic dust (asbestos, man‐made mineral fibres, dust from cement, concrete and quartz), wood dust, fumes (metal fumes, asphalt fumes and diesel exhaust) and gases and irritants (organic solvents and reactive chemicals) was based on a job‐exposure matrix with focus on exposure in the mid‐1970s. The cohort was followed from 1971 to 2002 with regard to mortality to ischaemic heart disease and cerebrovascular disease. Relative risks (RR) were obtained by the person‐years method and from Poisson regression models adjusting for baseline values of blood pressure, body mass index, age and smoking habits. Results Any occupational particulate air pollution was associated with an increased risk for ischemic heart disease (RR 1.13, 95% CI 1.07 to 1.19), but there was no increased risk for cerebrovascular disease (RR 0.97, 95% CI 0.88 to 1.07). There was an increased risk for ischaemic heart disease and exposure to inorganic dust (RR 1.07, 95% CI 1.03 to 1.12) and exposure to fumes (RR 1.05, 95% CI 1.00 to 1.10), especially diesel exhaust (RR 1.18, 95% CI 1.13 to 1.24). There was no significantly increased risk for cerebrovascular disease and exposure to inorganic dust, fumes or wood dust. Conclusions Occupational exposure to particulate air pollution, especially diesel exhaust, among construction workers increases the risk for ischaemic heart disease. PMID

  11. Modeling Study on Air Quality Improvement due to Mobile Source Emission control Plan in Seoul Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Kim, Y. J.; Sunwoo, Y.; Hwang, I.; Song, S.; Sin, J.; Kim, D.

    2015-12-01

    A very high population and corresponding high number of vehicles in the Seoul Metropolitan Area (SMA) are aggravating the air quality of this region. The Korean government continues to make concerted efforts to improve air quality. One of the major policies that the Ministry of Environment of Korea enforced is "The Special Act for Improvement of Air Quality in SMA" and "The 1st Air Quality Management Plan of SMA". Mobile Source emission controls are an important part of the policy. Thus, it is timely to evaluate the air quality improvement due to the controls. Therefore, we performed a quantitative analysis of the difference in air quality using the Community Multiscale Air Quality (CMAQ) model and December, 2011 was set as the target period to capture the impact of the above control plans. We considered four fuel-type vehicle emission scenarios and compared the air quality improvement differences between them. The scenarios are as follows: no-control, gasoline vehicle control only, diesel vehicle control only, and control of both; utilizing the revised mobile source emissions from the Clean Air Policy Support System (CAPSS), which is the national emission inventory reflecting current policy.In order to improve the accuracy of the modeling data, we developed new temporal allocation coefficients based on traffic volume observation data and spatially reallocated the mobile source emissions using vehicle flow survey data. Furthermore, we calculated the PM10 and PM2.5 emissions of gasoline vehicles which is omitted in CAPSS.The results of the air quality modeling shows that vehicle control plans for both gasoline and diesel lead to a decrease of 0.65ppb~8.75ppb and 0.02㎍/㎥~7.09㎍/㎥ in NO2 and PM10 monthly average concentrations, respectively. The large percentage decreases mainly appear near the center of the metropolis. However, the largest NO2 decrease percentages are found in the northeast region of Gyeonggi-do, which is the province that surrounds the

  12. High-precision diode-laser-based temperature measurement for air refractive index compensation

    SciTech Connect

    Hieta, Tuomas; Merimaa, Mikko; Vainio, Markku; Seppae, Jeremias; Lassila, Antti

    2011-11-01

    We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements, it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlen equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilizes direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well-matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially nonhomogeneous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using a 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement.

  13. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region

    PubMed Central

    Oikawa, P. Y.; Ge, C.; Wang, J.; Eberwein, J. R.; Liang, L. L.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-01-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality. PMID:26556236

  14. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region.

    PubMed

    Oikawa, P Y; Ge, C; Wang, J; Eberwein, J R; Liang, L L; Allsman, L A; Grantz, D A; Jenerette, G D

    2015-01-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality. PMID:26556236

  15. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region.

    PubMed

    Oikawa, P Y; Ge, C; Wang, J; Eberwein, J R; Liang, L L; Allsman, L A; Grantz, D A; Jenerette, G D

    2015-11-10

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality.

  16. Effect of air preheat temperature and oxygen concentration on flame structure and emission

    SciTech Connect

    Bolz, S.; Gupta, A.K.

    1998-07-01

    The structure of turbulent diffusion flames with highly preheated combustion air (air preheat temperature in excess of 1,150 C) has been obtained using a specially designed regenerative combustion furnace. Propane gas was used as the fuel. Data have been obtained on the global flame features, spectral emission characteristics, spatial distribution of OH, CH and C{sub 2} species, and pollutants emission from the flames. The results have been obtained for various degrees of air preheat temperatures and O{sub 2} concentration in the air. The color of the flame was found to change from yellow to blue to bluish-green to green over the range of conditions examined. In some cases a hybrid color flame was also observed. The recorded images of the flame photographs were analyzed using color-analyzing software. The results show that thermal and chemical flame behavior strongly depends on the air preheat temperature and oxygen content in the air. The flame color was found to be bluish-green or green at very high air preheat temperatures and low-oxygen concentration. However, at high oxygen concentration the flame color was yellow. The flame volume was found to increase with increase in air-preheat temperature and decrease in oxygen concentration. The flame length showed a similar behavior. The concentrations of OH, CH and C{sub 2} increased with an increase in air preheat temperatures. These species exhibited a two-stage combustion behavior at low oxygen concentration and single stage combustion behavior at high oxygen concentration in the air. Stable flames were obtained for remarkably low equivalence ratios, which would not be possible with normal combustion air. Pollutants emission, including CO{sub 2} and NO{sub x} , was much lower with highly preheated combustion air at low O{sub 2} concentration than the normal air. The results also suggest uniform flow and flame thermal characteristics with conditioned highly preheated air. Highly preheated air combustion provides much

  17. Increasing influence of air temperature on upper Colorado River streamflow

    NASA Astrophysics Data System (ADS)

    Woodhouse, Connie A.; Pederson, Gregory T.; Morino, Kiyomi; McAfee, Stephanie A.; McCabe, Gregory J.

    2016-03-01

    This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture can result in flow deficits of similar magnitude, but recent droughts have been amplified by warmer temperatures that exacerbate the effects of relatively modest precipitation deficits. Since 1988, a marked increase in the frequency of warm years with lower flows than expected, given precipitation, suggests continued warming temperatures will be an increasingly important influence in reducing future UCRB water supplies.

  18. Increasing influence of air temperature on upper Colorado River streamflow

    USGS Publications Warehouse

    Woodhouse, Connie A.; Pederson, Gregory T.; Morino, Kiyomi; McAfee, Stephanie A.; McCabe, Gregory

    2016-01-01

    This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture can result in flow deficits of similar magnitude, but recent droughts have been amplified by warmer temperatures that exacerbate the effects of relatively modest precipitation deficits. Since 1988, a marked increase in the frequency of warm years with lower flows than expected, given precipitation, suggests continued warming temperatures will be an increasingly important influence in reducing future UCRB water supplies.

  19. OXIDATION OF INCONEL 718 IN AIR AT TEMPERATURES FROM 973K TO 1620K.

    SciTech Connect

    GREENE,G.A.; FINFROCK,C.C.

    2000-10-01

    As part of the APT project, it was necessary to quantify the release of tungsten from the APT spallation target during postulated accident conditions in order to develop accident source terms for accident consequence characterization. Experiments with tungsten rods at high temperatures in a flowing steam environment characteristic of postulated accidents revealed that considerable vaporization of the tungsten occurred as a result of reactions with the steam and that the aerosols which formed were readily transported away from the tungsten surfaces, thus exposing fresh tungsten to react with more steam. The resulting tungsten release fractions and source terms were undesirable and it was decided to clad the tungsten target with Inconel 718 in order to protect it from contact with steam during an accident and mitigate the accident source term and the consequences. As part of the material selection criteria, experiments were conducted with Inconel 718 at high temperatures to evaluate the rate of oxidation of the proposed clad material over as wide a temperature range as possible, as well as to determine the high-temperature failure limit of the material. Samples of Inconel 718 were inserted into a preheated furnace at temperatures ranging from 973 K to 1620 K and oxidized in air for varying periods of time. After oxidizing in air at a constant temperature for the prescribed time and then being allowed to cool, the samples would be reweighed to determine their weight gain due to the uptake of oxygen. From these weight gain measurements, it was possible to identify three regimes of oxidation for Inconel 718: a low-temperature regime in which the samples became passivated after the initial oxidation, an intermediate-temperature regime in which the rate of oxidation was limited by diffusion and exhibited a constant parabolic rate dependence, and a high-temperature regime in which material deformation and damage accompanied an accelerated oxidation rate above the parabolic

  20. Detonation cell size measurements and predictions in hydrogen-air-steam mixtures at elevated temperatures

    SciTech Connect

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.; Economos, C.

    1994-01-01

    The present research reports on the effect of initial mixture temperature on the experimentally measured detonation cell size for hydrogen-air-steam mixtures. Experimental and theoretical research related to combustion phenomena in hydrogen-air-steam mixtures has been ongoing for many years. However, detonation cell size data currently exists or hydrogen-air-steam mixtures up to a temperature of only 400K. Sever accident scenarios have been identified for light water reactors (LWRs) where hydrogen-air mixture temperatures in excess of 400K could be generated within containment. The experiments in this report focus on extending the cell size data base for initial mixture temperatures in excess of 400K. The experiments were carried out in a 10-cm inner-diameter, 6.1-m long heated detonation tube with a maximum operating temperature of 700K and spatial temperature uniformity of {plus_minus}14K. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air initial gas mixture temperature, in the range 300K--650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm inside-diameter test vessel, based upon the onset of single-head spin, decreased from 15 percent by hydrogen at 300K down to about 9 percent hydrogen at 650K. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments.

  1. Temperature dependence of bromine activation due to reaction with ozone in a proxy for organic aerosols

    NASA Astrophysics Data System (ADS)

    Edebeli, Jacinta; Ammann, Markus; Gilgen, Anina; Eichler, Anja; Schneebeli, Martin; Bartels-Rausch, Thorsten

    2016-04-01

    The discovery of boundary layer ozone depletion events in the Polar Regions [1] and in the mid-latitudes [2], two areas of very different temperature regimes, begs the question of temperature dependence of reactions responsible for these observations [3]. These ODEs have been attributed to ozone reacting with halides leading to reactive halogens (halogen activation) of which bromide is extensively studied, R1 - R3 [4, 5] (R1 is a multiphase reaction). O3 + Br-→ O2 + OBr- (R1) OBr- + H+ ↔ HOBr (R2) HOBr + H+ + Br-→ Br2 + H2O (R3) Despite extensive studies of ozone-bromide interactions, the temperature dependence of bromine activation is not clear [3]. This limits parameterization of the involved reactions and factors in atmospheric models [3, 6]. Viscosity changes in the matrix (such as organic aerosols) due to temperature have been shown to influence heterogeneous reaction rates and products beyond pure temperature effect [7]. With the application of coated wall flow-tubes, the aim of this study is therefore to investigate the temperature dependence of bromine activation by ozone interaction while attempting to characterize the contributions of the bulk and surface reactions to observed ozone uptake. Citric acid is used in this study as a hygroscopically characterized matrix whose viscosity changes with temperature and humidity. Here, we present reactive ozone uptake measured between 258 and 289 K. The data show high reproducibility. Comparison of measured uptake with modelled bulk uptake at different matrix compositions (and viscosities) indicate that bulk reactive uptake dominates, but there are other factors which still need further consideration in the model. References 1. Barrie, L.A., et al., Nature, 1988. 334: p. 138 - 141. 2. Hebestreit, K., et al., Science, 1999. 283: p. 55-57. 3. Simpson, W.R., et al., Atmospheric Chemistry and Physics, 2007. 7: p. 4375 - 4418. 4. Haag, R.W. and J. Hoigné, Environ Sci Technol, 1983. 17: p. 261-267. 5. Oum, K.W., et

  2. Temperature dependence of bromine activation due to reaction with ozone in a proxy for organic aerosols

    NASA Astrophysics Data System (ADS)

    Edebeli, Jacinta; Ammann, Markus; Gilgen, Anina; Eichler, Anja; Schneebeli, Martin; Bartels-Rausch, Thorsten

    2016-04-01

    The discovery of boundary layer ozone depletion events in the Polar Regions [1] and in the mid-latitudes [2], two areas of very different temperature regimes, begs the question of temperature dependence of reactions responsible for these observations [3]. These ODEs have been attributed to ozone reacting with halides leading to reactive halogens (halogen activation) of which bromide is extensively studied, R1 - R3 [4, 5] (R1 is a multiphase reaction). O3 + Br‑→ O2 + OBr‑ (R1) OBr‑ + H+ ↔ HOBr (R2) HOBr + H+ + Br‑→ Br2 + H2O (R3) Despite extensive studies of ozone-bromide interactions, the temperature dependence of bromine activation is not clear [3]. This limits parameterization of the involved reactions and factors in atmospheric models [3, 6]. Viscosity changes in the matrix (such as organic aerosols) due to temperature have been shown to influence heterogeneous reaction rates and products beyond pure temperature effect [7]. With the application of coated wall flow-tubes, the aim of this study is therefore to investigate the temperature dependence of bromine activation by ozone interaction while attempting to characterize the contributions of the bulk and surface reactions to observed ozone uptake. Citric acid is used in this study as a hygroscopically characterized matrix whose viscosity changes with temperature and humidity. Here, we present reactive ozone uptake measured between 258 and 289 K. The data show high reproducibility. Comparison of measured uptake with modelled bulk uptake at different matrix compositions (and viscosities) indicate that bulk reactive uptake dominates, but there are other factors which still need further consideration in the model. References 1. Barrie, L.A., et al., Nature, 1988. 334: p. 138 - 141. 2. Hebestreit, K., et al., Science, 1999. 283: p. 55-57. 3. Simpson, W.R., et al., Atmospheric Chemistry and Physics, 2007. 7: p. 4375 - 4418. 4. Haag, R.W. and J. Hoigné, Environ Sci Technol, 1983. 17: p. 261-267. 5. Oum

  3. Statistical modeling of urban air temperature distributions under different synoptic conditions

    NASA Astrophysics Data System (ADS)

    Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Hald, Cornelius; Hartz, Uwe; Jacobeit, Jucundus; Richter, Katja; Schneider, Alexandra; Wolf, Kathrin

    2015-04-01

    Within urban areas air temperature may vary distinctly between different locations. These intra-urban air temperature variations partly reach magnitudes that are relevant with respect to human thermal comfort. Therefore and furthermore taking into account potential interrelations with other health related environmental factors (e.g. air quality) it is important to estimate spatial patterns of intra-urban air temperature distributions that may be incorporated into urban planning processes. In this contribution we present an approach to estimate spatial temperature distributions in the urban area of Augsburg (Germany) by means of statistical modeling. At 36 locations in the urban area of Augsburg air temperatures are measured with high temporal resolution (4 min.) since December 2012. These 36 locations represent different typical urban land use characteristics in terms of varying percentage coverages of different land cover categories (e.g. impervious, built-up, vegetated). Percentage coverages of these land cover categories have been extracted from different sources (Open Street Map, European Urban Atlas, Urban Morphological Zones) for regular grids of varying size (50, 100, 200 meter horizonal resolution) for the urban area of Augsburg. It is well known from numerous studies that land use characteristics have a distinct influence on air temperature and as well other climatic variables at a certain location. Therefore air temperatures at the 36 locations are modeled utilizing land use characteristics (percentage coverages of land cover categories) as predictor variables in Stepwise Multiple Regression models and in Random Forest based model approaches. After model evaluation via cross-validation appropriate statistical models are applied to gridded land use data to derive spatial urban air temperature distributions. Varying models are tested and applied for different seasons and times of the day and also for different synoptic conditions (e.g. clear and calm

  4. Accuracy comparison of spatial interpolation methods for estimation of air temperatures in South Korea

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Shim, K.; Jung, M.; Kim, S.

    2013-12-01

    Because of complex terrain, micro- as well as meso-climate variability is extreme by locations in Korea. In particular, air temperature of agricultural fields are influenced by topographic features of the surroundings making accurate interpolation of regional meteorological data from point-measured data. This study was conducted to compare accuracy of a spatial interpolation method to estimate air temperature in Korean Peninsula with the rugged terrains in South Korea. Four spatial interpolation methods including Inverse Distance Weighting (IDW), Spline, Kriging and Cokriging were tested to estimate monthly air temperature of unobserved stations. Monthly measured data sets (minimum and maximum air temperature) from 456 automatic weather station (AWS) locations in South Korea were used to generate the gridded air temperature surface. Result of cross validation showed that using Exponential theoretical model produced a lower root mean square error (RMSE) than using Gaussian theoretical model in case of Kriging and Cokriging and Spline produced the lowest RMSE of spatial interpolation methods in both maximum and minimum air temperature estimation. In conclusion, Spline showed the best accuracy among the methods, but further experiments which reflect topography effects such as temperature lapse rate are necessary to improve the prediction.

  5. Preliminary verification of instantaneous air temperature estimation for clear sky conditions based on SEBAL

    NASA Astrophysics Data System (ADS)

    Zhu, Shanyou; Zhou, Chuxuan; Zhang, Guixin; Zhang, Hailong; Hua, Junwei

    2016-03-01

    Spatially distributed near surface air temperature at the height of 2 m is an important input parameter for the land surface models. It is of great significance in both theoretical research and practical applications to retrieve instantaneous air temperature data from remote sensing observations. An approach based on Surface Energy Balance Algorithm for Land (SEBAL) to retrieve air temperature under clear sky conditions is presented. Taking the meteorological measurement data at one station as the reference and remotely sensed data as the model input, the research estimates the air temperature by using an iterative computation. The method was applied to the area of Jiangsu province for nine scenes by using MODIS data products, as well as part of Fujian province, China based on four scenes of Landsat 8 imagery. Comparing the air temperature estimated from the proposed method with that of the meteorological station measurement, results show that the root mean square error is 1.7 and 2.6 °C at 1000 and 30 m spatial resolution respectively. Sensitivity analysis of influencing factors reveals that land surface temperature is the most sensitive to the estimation precision. Research results indicate that the method has great potentiality to be used to estimate instantaneous air temperature distribution under clear sky conditions.

  6. Estimation of Surface Air Temperature Over Central and Eastern Eurasia from MODIS Land Surface Temperature

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.

    2011-01-01

    Surface air temperature (T(sub a)) is a critical variable in the energy and water cycle of the Earth.atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T(sub a) from satellite remotely sensed land surface temperature (T(sub s)) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T(sub a) and MODIS T(sub s). The relationships between the maximum T(sub a) and daytime T(sub s) depend significantly on land cover types, but the minimum T(sub a) and nighttime T(sub s) have little dependence on the land cover types. The largest difference between maximum T(sub a) and daytime T(sub s) appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T(sub a) were estimated from 1 km resolution MODIS T(sub s) under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T(sub a) were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T(sub a) varies from 2.4 C over closed shrublands to 3.2 C over grasslands, and the MAE of the estimated minimum Ta is about 3.0 C.

  7. A Review of the Thermodynamic, Transport, and Chemical Reaction Rate Properties of High-temperature Air

    NASA Technical Reports Server (NTRS)

    Hansen, C Frederick; Heims, Steve P

    1958-01-01

    Thermodynamic and transport properties of high temperature air, and the reaction rates for the important chemical processes which occur in air, are reviewed. Semiempirical, analytic expressions are presented for thermodynamic and transport properties of air. Examples are given illustrating the use of these properties to evaluate (1) equilibrium conditions following shock waves, (2) stagnation region heat flux to a blunt high-speed body, and (3) some chemical relaxation lengths in stagnation region flow.

  8. Emperor penguin body surfaces cool below air temperature.

    PubMed

    McCafferty, D J; Gilbert, C; Thierry, A-M; Currie, J; Le Maho, Y; Ancel, A

    2013-06-23

    Emperor penguins Aptenodytes forsteri are able to survive the harsh Antarctic climate because of specialized anatomical, physiological and behavioural adaptations for minimizing heat loss. Heat transfer theory predicts that metabolic heat loss in this species will mostly depend on radiative and convective cooling. To examine this, thermal imaging of emperor penguins was undertaken at the breeding colony of Pointe Géologie in Terre Adélie (66°40' S 140° 01' E), Antarctica in June 2008. During clear sky conditions, most outer surfaces of the body were colder than surrounding sub-zero air owing to radiative cooling. In these conditions, the feather surface will paradoxically gain heat by convection from surrounding air. However, owing to the low thermal conductivity of plumage any heat transfer to the skin surface will be negligible. Future thermal imaging studies are likely to yield further insights into the adaptations of this species to the Antarctic climate.

  9. Emperor penguin body surfaces cool below air temperature

    PubMed Central

    McCafferty, D. J.; Gilbert, C.; Thierry, A.-M.; Currie, J.; Le Maho, Y.; Ancel, A.

    2013-01-01

    Emperor penguins Aptenodytes forsteri are able to survive the harsh Antarctic climate because of specialized anatomical, physiological and behavioural adaptations for minimizing heat loss. Heat transfer theory predicts that metabolic heat loss in this species will mostly depend on radiative and convective cooling. To examine this, thermal imaging of emperor penguins was undertaken at the breeding colony of Pointe Géologie in Terre Adélie (66°40′ S 140° 01′ E), Antarctica in June 2008. During clear sky conditions, most outer surfaces of the body were colder than surrounding sub-zero air owing to radiative cooling. In these conditions, the feather surface will paradoxically gain heat by convection from surrounding air. However, owing to the low thermal conductivity of plumage any heat transfer to the skin surface will be negligible. Future thermal imaging studies are likely to yield further insights into the adaptations of this species to the Antarctic climate. PMID:23466479

  10. Health effects of air pollution due to coal combustion in the Chestnut Ridge region of Pennsylvania

    SciTech Connect

    Batterman, S.; Golomb, D.

    1985-08-01

    This study used the seventeen monitor air quality network in the Chestnut Ridge region of Pennsylvania to evaluate the effect of pollutant trends and representations on measures of exposure. Data consisted of four and five years of SO/sub 2/ and TSP measurements, respectively, and were considered in deriving exposure models. A cross-sectional study of 4071 children aged 6 to 11 years of age was conducted in the spring of 1979. Standardized children's questionnaires were distributed to the parents and returned by the children to school, where spirometry was performed. The region was divided into low, moderate and high pollution areas on the basis of the 1974-1978, 3 h, 24 h, and annual averages for SO/sub 2/. After adjusting the respiratory symptom response outcomes and the pulmonary function levels for known predictors, no significant association was noted for level of SO/sub 2/. 65 refs., 16 figs., 19 tabs.

  11. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  12. Biodiesel and Cold Temperature Effect on Speciated Mobile Source Air Toxics from Modern Diesel Trucks

    EPA Science Inventory

    Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...

  13. Biodiesel and Cold Temperature Effects on Speciated Mobile Source Air Toxics from Modern Diesel Trucks

    EPA Science Inventory

    Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...

  14. Temperature and Humidity Independent Control Research on Ground Source Heat Pump Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Chen, G.; Wang, L. L.

    Taking green demonstration center building air conditioning system as an example, this paper presents the temperature and humidity independent control system combined with ground source heat pump system, emphasis on the design of dry terminal device system, fresh air system and ground source heat pump system.

  15. High-temperature stabilization by air of a pyrophoric catalyst for the synthesis of ammonia

    SciTech Connect

    Krylova, A.V.; Ustimenko, G.A.

    1982-12-01

    The reaction of a catalyst for the synthesis of ammonia with air at 480 to 520/sup 0/C leads to the formation on the surface of a thin protective oxide structure that eliminates its pyrophoric character. High-temperature stabilization by air is a considerably faster process than passivation and leads to the production of catalysts with increased resistance to oxidation.

  16. Apparatus and method for generating large mass flow of high temperature air at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Sabol, A. P.; Stewart, R. B. (Inventor)

    1973-01-01

    High temperature, high mass air flow and a high Reynolds number test air flow in the Mach number 8-10 regime of adequate test flow duration is attained by pressurizing a ceramic-lined storage tank with air to a pressure of about 100 to 200 atmospheres. The air is heated to temperatures of 7,000 to 8,000 R prior to introduction into the tank by passing the air over an electric arc heater means. The air cools to 5,500 to 6,000 R while in the tank. A decomposable gas such as nitrous oxide or a combustible gas such as propane is injected into the tank after pressurization and the heated pressurized air in the tank is rapidly released through a Mach number 8-10 nozzle. The injected gas medium upon contact with the heated pressurized air effects an exothermic reaction which maintains the pressure and temperature of the pressurized air during the rapid release.

  17. Improving Forecast Skill by Assimilation of Quality-controlled AIRS Temperature Retrievals under Partially Cloudy Conditions

    NASA Technical Reports Server (NTRS)

    Reale, O.; Susskind, J.; Rosenberg, R.; Brin, E.; Riishojgaard, L.; Liu, E.; Terry, J.; Jusem, J. C.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite has been long recognized as an important contributor towards the improvement of weather forecasts. At this time only a small fraction of the total data produced by AIRS is being used by operational weather systems. In fact, in addition to effects of thinning and quality control, the only AIRS data assimilated are radiance observations of channels unaffected by clouds. Observations in mid-lower tropospheric sounding AIRS channels are assimilated primarily under completely clear-sky conditions, thus imposing a very severe limitation on the horizontal distribution of the AIRS-derived information. In this work it is shown that the ability to derive accurate temperature profiles from AIRS observations in partially cloud-contaminated areas can be utilized to further improve the impact of AIRS observations in a global model and forecasting system. The analyses produced by assimilating AIRS temperature profiles obtained under partial cloud cover result in a substantially colder representation of the northern hemisphere lower midtroposphere at higher latitudes. This temperature difference has a strong impact, through hydrostatic adjustment, in the midtropospheric geopotential heights, which causes a different representation of the polar vortex especially over northeastern Siberia and Alaska. The AIRS-induced anomaly propagates through the model's dynamics producing improved 5-day forecasts.

  18. A method for measuring temperatures and densities in hypersonic wind tunnel air flows using laser-induced O2 fluorescence

    NASA Technical Reports Server (NTRS)

    Laufer, Gabriel; Fletcher, Douglas G.; Mckenzie, Robert L.

    1990-01-01

    Laser-induced fluorescence in oxygen, in combination with Raman scattering, is shown to be an accurate means by which temperature, density, and their fluctuations due to turbulence can be measured in air flows associated with high-speed wind tunnels. For temperatures above 60 K and densities above 0.01 amagat, the uncertainty in the temperature and density measurements can be less than 2 and 3 percent, respectively, if the signal uncertainties are dominated by photon-statistical noise. The measurements are unaffected by collisional quenching and can be achieved with laser fluences for which nonlinear effects are insignificant. Temperature measurements using laser-induced fluorescence alone have been demonstrated at known densities in the range of low temperatures and densities which are expected in a hypersonic wind tunnel.

  19. Air Temperature Error Correction Based on Solar Radiation in an Economical Meteorological Wireless Sensor Network.

    PubMed

    Sun, Xingming; Yan, Shuangshuang; Wang, Baowei; Xia, Li; Liu, Qi; Zhang, Hui

    2015-01-01

    Air temperature (AT) is an extremely vital factor in meteorology, agriculture, military, etc., being used for the prediction of weather disasters, such as drought, flood, frost, etc. Many efforts have been made to monitor the temperature of the atmosphere, like automatic weather stations (AWS). Nevertheless, due to the high cost of specialized AT sensors, they cannot be deployed within a large spatial density. A novel method named the meteorology wireless sensor network relying on a sensing node has been proposed for the purpose of reducing the cost of AT monitoring. However, the temperature sensor on the sensing node can be easily influenced by environmental factors. Previous research has confirmed that there is a close relation between AT and solar radiation (SR). Therefore, this paper presents a method to decrease the error of sensed AT, taking SR into consideration. In this work, we analyzed all of the collected data of AT and SR in May 2014 and found the numerical correspondence between AT error (ATE) and SR. This corresponding relation was used to calculate real-time ATE according to real-time SR and to correct the error of AT in other months. PMID:26213941

  20. Vibration amplitude and induced temperature limitation of high power air-borne ultrasonic transducers.

    PubMed

    Saffar, Saber; Abdullah, Amir

    2014-01-01

    The acoustic impedances of matching layers, their internal loss and vibration amplitude are the most important and influential parameters in the performance of high power airborne ultrasonic transducers. In this paper, the optimum acoustic impedances of the transducer matching layers were determined by using a genetic algorithm, the powerful tool for optimizating domain. The analytical results showed that the vibration amplitude increases significantly for low acoustic impedance matching layers. This enhancement is maximum and approximately 200 times higher for the last matching layer where it has the same interface with the air than the vibration amplitude of the source, lead zirconate titanate-pizo electric while transferring the 1 kW is desirable. This large amplitude increases both mechanical failure and temperature of the matching layers due to the internal loss of the matching layers. It has analytically shown that the temperature in last matching layer with having the maximum vibration amplitude is high enough to melt or burn the matching layers. To verify suggested approach, the effect of the amplitude of vibration on the induced temperature has been investigated experimentally. The experimental results displayed good agreement with the theoretical predictions.

  1. Air Temperature Error Correction Based on Solar Radiation in an Economical Meteorological Wireless Sensor Network

    PubMed Central

    Sun, Xingming; Yan, Shuangshuang; Wang, Baowei; Xia, Li; Liu, Qi; Zhang, Hui

    2015-01-01

    Air temperature (AT) is an extremely vital factor in meteorology, agriculture, military, etc., being used for the prediction of weather disasters, such as drought, flood, frost, etc. Many efforts have been made to monitor the temperature of the atmosphere, like automatic weather stations (AWS). Nevertheless, due to the high cost of specialized AT sensors, they cannot be deployed within a large spatial density. A novel method named the meteorology wireless sensor network relying on a sensing node has been proposed for the purpose of reducing the cost of AT monitoring. However, the temperature sensor on the sensing node can be easily influenced by environmental factors. Previous research has confirmed that there is a close relation between AT and solar radiation (SR). Therefore, this paper presents a method to decrease the error of sensed AT, taking SR into consideration. In this work, we analyzed all of the collected data of AT and SR in May 2014 and found the numerical correspondence between AT error (ATE) and SR. This corresponding relation was used to calculate real-time ATE according to real-time SR and to correct the error of AT in other months. PMID:26213941

  2. Quantifying of uncertainty range of regional temperature change due to global warming using RCM

    NASA Astrophysics Data System (ADS)

    Ishihara, K.; Takayabu, I.

    2010-12-01

    It is important to accurately assess future change in various risk due to global warming, for which regional projections have been made using high-resolution climate models. The project “Multi-method Included Downscaling for Assessment Study” which is the part of S-5 project (Integrated Research on Climate Change Scenarios to Increase Public Awareness) sponsored by the Ministry of Environment, Japan, is one of the downscaling projects in Japan. In this project, we down-scale the GCM’s result in two steps, which are (1) to reduce the uncertainty of the dynamical downscaling result, and (2) to derive information for use in impact studies. This presentation introduces both the brief overview of the project (S-5-3) and the estimated uncertainty range of annual temperature change in each prefecture in Japan. The uncertainty range was estimated using the normality of appearance frequency of annual temperature both for the present and future climates. A regional climate model with a resolution of 20km (MRI-RCM20) was used in the study, and SRES A2 scenario was used for the future climate. As a result, for example, annual temperature around the northern part of Hokkaido was projected to rise by 3.2±1.7 degrees in 100 years. Now, for the verification of RCMs, their results are often compared with the observed data of each meteorological element such as temperature in each region. This means that the reproducibility of the RCM is quantified for each element in each region. However, for overall verification of the RCM, it is necessary to develop a statistical method such as CCA which can deal with some elements over regions. This work was supported by the Global Environment Research Fund (S-5-3) of the Ministry of the Environment, Japan.

  3. Fretting of titanium at temperatures to 650 C in air

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1975-01-01

    Fretting wear experiments were conducted on high-purity titanium at temperatures up to 650 C. Results indicate that up to about 500 C, the fretting wear increases with temperature. A further increase in the temperature up to 650 C results in decreasing fretting wear. This change in trend of fretting wear with temperature is shown to be associated with a change in oxidation rate. Additional experiments at 650 C showed a transmission from a low rate of fretting wear to a higher rate occurred after exposure to a number of fretting cycles; the number of cycles required to cause this transition was dependent on the normal load. Scanning electron microscopy studies revealed that this transition was marked by cracking and disruption of the surface oxide film. A model was proposed that coupled the oxidation rate kinetics of titanium at 650 C with the occurrence of wear at the surface of the oxide film.

  4. Rate constants for chemical reactions in high-temperature nonequilibrium air

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.

    1986-01-01

    In the nonequilibrium atmospheric chemistry regime that will be encountered by the proposed Aeroassisted Orbital Transfer Vehicle in the upper atmosphere, where air density is too low for thermal and chemical equilibrium to be maintained, the detailed high temperature air chemistry plays a critical role in defining radiative and convective heating loads. Although vibrational and electronic temperatures remain low (less than 15,000 K), rotational and translational temperatures may reach 50,000 K. Attention is presently given to the effects of multiple temperatures on the magnitudes of various chemical reaction rate constants, for the cases of both bimolecular exchange reactions and collisional excitation and dissociation reactions.

  5. Near-surface air temperature and snow skin temperature comparison from CREST-SAFE station data with MODIS land surface temperature data

    NASA Astrophysics Data System (ADS)

    Pérez Díaz, C. L.; Lakhankar, T.; Romanov, P.; Muñoz, J.; Khanbilvardi, R.; Yu, Y.

    2015-08-01

    Land Surface Temperature (LST) is a key variable (commonly studied to understand the hydrological cycle) that helps drive the energy balance and water exchange between the Earth's surface and its atmosphere. One observable constituent of much importance in the land surface water balance model is snow. Snow cover plays a critical role in the regional to global scale hydrological cycle because rain-on-snow with warm air temperatures accelerates rapid snow-melt, which is responsible for the majority of the spring floods. Accurate information on near-surface air temperature (T-air) and snow skin temperature (T-skin) helps us comprehend the energy and water balances in the Earth's hydrological cycle. T-skin is critical in estimating latent and sensible heat fluxes over snow covered areas because incoming and outgoing radiation fluxes from the snow mass and the air temperature above make it different from the average snowpack temperature. This study investigates the correlation between MODerate resolution Imaging Spectroradiometer (MODIS) LST data and observed T-air and T-skin data from NOAA-CREST-Snow Analysis and Field Experiment (CREST-SAFE) for the winters of 2013 and 2014. LST satellite validation is imperative because high-latitude regions are significantly affected by climate warming and there is a need to aid existing meteorological station networks with the spatially continuous measurements provided by satellites. Results indicate that near-surface air temperature correlates better than snow skin temperature with MODIS LST data. Additional findings show that there is a negative trend demonstrating that the air minus snow skin temperature difference is inversely proportional to cloud cover. To a lesser extent, it will be examined whether the surface properties at the site are representative for the LST properties within the instrument field of view.

  6. Air quality and temperature effects on exercise-induced bronchoconstriction.

    PubMed

    Rundell, Kenneth W; Anderson, Sandra D; Sue-Chu, Malcolm; Bougault, Valerie; Boulet, Louis-Philippe

    2015-04-01

    Exercise-induced bronchoconstriction (EIB) is exaggerated constriction of the airways usually soon after cessation of exercise. This is most often a response to airway dehydration in the presence of airway inflammation in a person with a responsive bronchial smooth muscle. Severity is related to water content of inspired air and level of ventilation achieved and sustained. Repetitive hyperpnea of dry air during training is associated with airway inflammatory changes and remodeling. A response during exercise that is related to pollution or allergen is considered EIB. Ozone and particulate matter are the most widespread pollutants of concern for the exercising population; chronic exposure can lead to new-onset asthma and EIB. Freshly generated emissions particulate matter less than 100 nm is most harmful. Evidence for acute and long-term effects from exercise while inhaling high levels of ozone and/or particulate matter exists. Much evidence supports a relationship between development of airway disorders and exercise in the chlorinated pool. Swimmers typically do not respond in the pool; however, a large percentage responds to a dry air exercise challenge. Studies support oxidative stress mediated pathology for pollutants and a more severe acute response occurs in the asthmatic. Winter sport athletes and swimmers have a higher prevalence of EIB, asthma and airway remodeling than other athletes and the general population. Because of fossil fuel powered ice resurfacers in ice rinks, ice rink athletes have shown high rates of EIB and asthma. For the athlete training in the urban environment, training during low traffic hours and in low traffic areas is suggested. PMID:25880506

  7. Air quality and temperature effects on exercise-induced bronchoconstriction.

    PubMed

    Rundell, Kenneth W; Anderson, Sandra D; Sue-Chu, Malcolm; Bougault, Valerie; Boulet, Louis-Philippe

    2015-04-01

    Exercise-induced bronchoconstriction (EIB) is exaggerated constriction of the airways usually soon after cessation of exercise. This is most often a response to airway dehydration in the presence of airway inflammation in a person with a responsive bronchial smooth muscle. Severity is related to water content of inspired air and level of ventilation achieved and sustained. Repetitive hyperpnea of dry air during training is associated with airway inflammatory changes and remodeling. A response during exercise that is related to pollution or allergen is considered EIB. Ozone and particulate matter are the most widespread pollutants of concern for the exercising population; chronic exposure can lead to new-onset asthma and EIB. Freshly generated emissions particulate matter less than 100 nm is most harmful. Evidence for acute and long-term effects from exercise while inhaling high levels of ozone and/or particulate matter exists. Much evidence supports a relationship between development of airway disorders and exercise in the chlorinated pool. Swimmers typically do not respond in the pool; however, a large percentage responds to a dry air exercise challenge. Studies support oxidative stress mediated pathology for pollutants and a more severe acute response occurs in the asthmatic. Winter sport athletes and swimmers have a higher prevalence of EIB, asthma and airway remodeling than other athletes and the general population. Because of fossil fuel powered ice resurfacers in ice rinks, ice rink athletes have shown high rates of EIB and asthma. For the athlete training in the urban environment, training during low traffic hours and in low traffic areas is suggested.

  8. A decadal microwave record of tropical air temperature from AMSU-A/aqua observations

    NASA Astrophysics Data System (ADS)

    Shi, Yuan; Li, King-Fai; Yung, Yuk L.; Aumann, Hartmut H.; Shi, Zuoqiang; Hou, Thomas Y.

    2013-09-01

    Atmospheric temperature is one of the most important climate variables. This observational study presents detailed descriptions of the temperature variability imprinted in the 9-year brightness temperature data acquired by the Advanced Microwave Sounding Unit-Instrument A (AMSU-A) aboard Aqua since September 2002 over tropical oceans. A non-linear, adaptive method called the Ensemble Joint Multiple Extraction has been employed to extract the principal modes of variability in the AMSU-A/Aqua data. The semi-annual, annual, quasi-biennial oscillation (QBO) modes and QBO-annual beat in the troposphere and the stratosphere have been successfully recovered. The modulation by the El Niño/Southern oscillation (ENSO) in the troposphere was found and correlates well with the Multivariate ENSO Index. The long-term variations during 2002-2011 reveal a cooling trend (-0.5 K/decade at 10 hPa) in the tropical stratosphere; the trend below the tropical tropopause is not statistically significant due to the length of our data. A new tropospheric near-annual mode (period ~1.6 years) was also revealed in the troposphere, whose existence was confirmed using National Centers for Environmental Prediction Reanalysis air temperature data. The near-annual mode in the troposphere is found to prevail in the eastern Pacific region and is coherent with a near-annual mode in the observed sea surface temperature over the Warm Pool region that has previously been reported. It remains a challenge for climate models to simulate the trends and principal modes of natural variability reported in this work.

  9. A Comprehensive Analysis of AIRS Near Surface Air Temperature and Water Vapor Over Land and Tropical Ocean

    NASA Astrophysics Data System (ADS)

    Dang, H. V. T.; Lambrigtsen, B.; Manning, E. M.; Fetzer, E. J.; Wong, S.; Teixeira, J.

    2015-12-01

    Version 6 (V6) of the Atmospheric Infrared Sounder's (AIRS) combined infrared and microwave (IR+MW) retrieval of near surface air temperature (NSAT) and water vapor (NSWV) is validated over the United States with the densely populated MESONET data. MESONET data is a collection of surface/near surface meteorological data from many federal and state agencies. The ones used for this analysis are measured from instruments maintained by the National Weather Service (NWS), the Federal Aviation Administration (FAA), and the Interagency Remote Automatic Weather Stations (RAWS), resulting in a little more than four thousand locations throughout the US. Over the Tropical oceans, NSAT and NSWV are compared to a network of moored buoys from the Tropical Atmosphere Ocean/Triangle Trans-Ocean Buoy Network (TAO/TRITON), and the Pilot Research Moored Array in the Tropical Atlantic (PIRATA). With the analysis of AIRS surface and near surface products over ocean, we glean information on how retrieval of NSAT and NSWV over land can be improved and why it needs some adjustments. We also compare AIRS initial guess of near surface products that are trained on fifty days of ECMWF along with AIRS calibrated radiances, to ECMWF analysis data. The comparison is done to show the differing characteristics of AIRS initial guesses from ECMWF.

  10. Nest temperatures in a loggerhead nesting beach in Turkey is more determined by sea surface than air temperature.

    PubMed

    Girondot, Marc; Kaska, Yakup

    2015-01-01

    While climate change is now fully recognised as a reality, its impact on biodiversity is still not completely understood. To predict its impact, proxies coherent with the studied ecosystem or species are thus required. Marine turtles are threatened worldwide (though some populations are recovering) as they are particularly sensitive to temperature throughout their entire life cycle. This is especially true at the embryo stage when temperature affects both growth rates and sex determination. Nest temperature is thus of prime importance to understand the persistence of populations in the context of climate change. We analysed the nest temperature of 21 loggerheads (Caretta caretta) originating from Dalyan Beach in Turkey using day-lagged generalised mixed models with autocorrelation. Surprisingly, the selected model for nest temperature includes an effect for sea surface temperature 4-times higher than for air temperature. We also detected a very significant effect of metabolic heating during development compatible with what is already known about marine turtle nests. Our new methodology allows the prediction of marine turtle nest temperatures with good precision based on a combination of air temperature measured at beach level and sea surface temperature in front of the beach. These data are available in public databases for most of the beaches worldwide.

  11. Nest temperatures in a loggerhead nesting beach in Turkey is more determined by sea surface than air temperature.

    PubMed

    Girondot, Marc; Kaska, Yakup

    2015-01-01

    While climate change is now fully recognised as a reality, its impact on biodiversity is still not completely understood. To predict its impact, proxies coherent with the studied ecosystem or species are thus required. Marine turtles are threatened worldwide (though some populations are recovering) as they are particularly sensitive to temperature throughout their entire life cycle. This is especially true at the embryo stage when temperature affects both growth rates and sex determination. Nest temperature is thus of prime importance to understand the persistence of populations in the context of climate change. We analysed the nest temperature of 21 loggerheads (Caretta caretta) originating from Dalyan Beach in Turkey using day-lagged generalised mixed models with autocorrelation. Surprisingly, the selected model for nest temperature includes an effect for sea surface temperature 4-times higher than for air temperature. We also detected a very significant effect of metabolic heating during development compatible with what is already known about marine turtle nests. Our new methodology allows the prediction of marine turtle nest temperatures with good precision based on a combination of air temperature measured at beach level and sea surface temperature in front of the beach. These data are available in public databases for most of the beaches worldwide. PMID:25526649

  12. An Air Temperature Cloud Height Precipitation Phase Determination Scheme for Surface Based Modeling

    NASA Astrophysics Data System (ADS)

    Feiccabrino, J. M.

    2015-12-01

    Many hydrological and ecological models use simple surface temperature threshold equations rather than coupling with a complex meteorological model to determine if precipitation is rain or snow. Some comparative studies have found, the most common rain/snow threshold variable, air temperature to have more precipitation phase error than dew-point or wet-bulb temperature, which account for the important secondary role of humidity in the melting and sublimation processes. However, just like surface air temperature, surface humidity is often effected by soil conditions and vegetation and is therefore not always representative of the atmospheric humidity precipitation falls through. A viable alternative to using surface humidity as a proxy for atmospheric moisture would be to adjust the rain snow threshold for changes in cloud height. The height of a cloud base above the ground gives the depth of an unsaturated layer. An unsaturated atmospheric layer should have much different melting and sublimation rates than a saturated cloud layer. Therefore, rain and snow percentages at a given surface air temperature should change with the height of the lowest cloud base. This study uses hourly observations from 12 U.S. manually augmented meteorological stations located in the Great Plains and Midwest upwind or away from major water bodies in relatively flat areas in an attempt to limit geographical influences. The surface air temperature threshold for the ground to 200 feet (under 100m) was 0.0°C, 0.6°C for 300-600 feet (100-200m), 1.1°C for 700-1200 feet (300-400m), 1.7°C for 1300-2000 feet (500-600m), and 2.2°C for 2100-3300 feet (700-1000m). Total precipitation error for these cloud height air temperature thresholds reduced the error from the single air temperature threshold 1.1°C by 15% from 14% to 12% total error between -2.2°C and 3.9°C. These air temperature cloud height thresholds resulted in 1.5% less total error than the dew-point temperature threshold 0.0

  13. Chronic Inflammation in an Anophthalmic Socket due to a Room Temperature Vulcanized Silicone Implant

    PubMed Central

    Galindo-Ferreiro, Alicia; AlGhafri, Laila; Elkhamary, Sahar M.; Maktabi, Azza; Gálvez-Ruiz, Alberto; Galindo-Alonso, Julio; Schellini Proff, Silvana

    2016-01-01

    Two case reports are used to illustrate the signs and symptoms, complications and treatments of chronic socket inflammation due to intraorbital implants. The ophthalmic examination, surgeries and treatments are documented. Two anophthalmic cases that underwent enucleation and multiple orbital surgeries to enhance the anophthalmic socket volume developed pain, intense discharge and contracted cavities with chronic inflammation in the socket which was nonresponsive to medical therapy. Computed tomography indicated a hypodense foreign body in both cases causing an intense inflammatory reaction. The implants were removed by excisional surgery and a room temperature vulcanized silicone implant was retrieved in both cases. Socket inflammation resolved in both cases after implant removal. An intraorbital inflammatory reaction against an intraorbital implant can cause chronic socket inflammation in patients with a history of multiple surgeries. Diagnosis requires imaging and the definitive treatment is implant removal. PMID:27462246

  14. AIRS high-resolution stratospheric temperature retrievals evaluated with operational Level-2 data and ERA-Interim

    NASA Astrophysics Data System (ADS)

    Meyer, Catrin I.; Hoffmann, Lars

    2015-04-01

    The Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite provides stratospheric temperature observations for a variety of scientific tasks. However, the horizontal resolution of the operational temperature retrievals is generally not sufficient for studies of gravity waves. The retrieval discussed here provides stratospheric temperature profiles for each individual AIRS footprint and therefore has nine times better horizontal sampling than the operational data. The retrieval configuration is optimized so that the results provide a trade-off between spatial resolution and retrieval noise which is considered optimal for gravity wave analysis. Here the quality of the high-resolution data is assessed by comparing a nine-year record (2003 - 2011) of stratospheric temperatures with results from the AIRS operational Level-2 data and the ERA-Interim meteorological reanalysis. Due to the large amount of data we performed a statistical comparison of the high-resolution retrieval and reference data sets based on zonal averages and time-series. The temperature data sets are split into day and night, because the AIRS high-resolution retrieval uses different configurations for day- and night-time conditions to cope with non-LTE effects. The temperature data are averaged on a latitudinal grid with a resolution of one degree. The zonal averages are calculated on a daily basis and show significant day-to-day variability. To further summarize the data we calculated monthly averages from the daily averaged data and also computed zonal means. Additionally, the standard deviation of the three data sets was computed. The comparisons show that the high-resolution temperature data are in good agreement with the reference data sets. The bias in the zonal averages is mostly within ± 2 K and reaches a maximum of 7 K to ERA-Interim and 4 K to the AIRS operational data at the stratopause, which is related to the different resolutions of the data sets. Variability is nearly the

  15. Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices.

    PubMed

    Vega-Gálvez, Antonio; Ah-Hen, Kong; Chacana, Marcelo; Vergara, Judith; Martínez-Monzó, Javier; García-Segovia, Purificación; Lemus-Mondaca, Roberto; Di Scala, Karina

    2012-05-01

    The aim of this work was to study the effect of temperature and air velocity on the drying kinetics and quality attributes of apple (var. Granny Smith) slices during drying. Experiments were conducted at 40, 60 and 80°C, as well as at air velocities of 0.5, 1.0 and 1.5ms(-1). Effective moisture diffusivity increased with temperature and air velocity, reaching a value of 15.30×10(-9)m(2)s(-1) at maximum temperature and air velocity under study. The rehydration ratio changed with varying both air velocity and temperature indicating tissue damage due to processing. The colour difference, ΔE, showed the best results at 80°C. The DPPH-radical scavenging activity at 40°C and 0.5ms(-1) showed the highest antioxidant activity, closest to that of the fresh sample. Although ΔE decreased with temperature, antioxidant activity barely varied and even increased at high air velocities, revealing an antioxidant capacity of the browning products. The total phenolics decreased with temperature, but at high air velocity retardation of thermal degradation was observed. Firmness was also determined and explained using glass transition concept and microstructure analysis. PMID:26434262

  16. Spatial Disaggregation of the 0.25-degree GLDAS Air Temperature Dataset to 30-arcsec Resolution

    NASA Astrophysics Data System (ADS)

    Ji, L.; Senay, G. B.; Verdin, J. P.; Velpuri, N. M.

    2015-12-01

    Air temperature is a key input variable in ecological and hydrological models for simulating the hydrological cycle and water budget. Several global reanalysis products have been developed at different organizations, which provide gridded air temperature datasets at resolutions ranging from 0.25º to 2.5º (or 27.8 - 278.3 km at the equator). However, gridded air temperature products at a high-resolution (≤1 km) are available only for limited areas of the world. To meet the needs for global eco-hydrological modeling, we aim to produce a continuous daily air temperature datasets at 1-km resolution for the global coverage. In this study, we developed a technique that spatially disaggregates the 0.25º Global Land Data Assimilation System (GLDAS) daily air temperature data to 30-arcsec (0.928 km at the equator) resolution by integrating the GLDAS data with the 30-arcsec WorldClim 1950 - 2000 monthly normal air temperature data. The method was tested using the GLDAS and Worldclim maximum and minimum air temperature datasets from 2002 and 2010 for the conterminous Unites States and Africa. The 30-arcsec disaggregated GLDAS (GLDASd) air temperature dataset retains the mean values of the original GLDAS data, while adding spatial variabilities inherited from the Worldclim data. A great improvement in GLDAS disaggregation is shown in mountain areas where complex terrain features have strong impact on temperature. We validated the disaggregation method by comparing the GLDASd product with daily meteorological observations archived by the Global Historical Climatology Network (GHCN) and the Global Surface Summary of the Day (GSOD) datasets. Additionally, the 30-arcsec TopoWX daily air temperature product was used to compare with the GLDASd data for the conterminous United States. The proposed data disaggregation method provides a convenient and efficient tool for generating a global high-resolution air temperature dataset, which will be beneficial to global eco

  17. BOREAS RSS-17 Stem, Soil, and Air Temperature Data

    NASA Technical Reports Server (NTRS)

    Zimmerman, Reiner; McDonald, Kyle C.; Way, JoBea; Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS RSS-17 team collected several data sets in support of its research in monitoring and analyzing environmental and phenological states using radar data. This data set consists of tree bole and soil temperature measurements from various BOREAS flux tower sites. Temperatures were measured with thermistors implanted in the hydroconductive tissue of the trunks of several trees at each site and at various depths in the soil. Data were stored on a data logger at intervals of either 1 or 2 hours. The majority of the data were acquired between early 1994 and early 1995. The primary product of this data set is the diurnal stem temperature measurements acquired for selected trees at five BOREAS tower sites. The data are provided in tabular ASCII format. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  18. Satellite versus Surface Estimates of Air Temperature since 1979.

    NASA Astrophysics Data System (ADS)

    Hurrell, James W.; Trenberth, Kevin E.

    1996-09-01

    A comparison of near-global monthly mean surface temperature anomalies to those of global Microwave Sounding Unit (MSU) 2R temperatures for 1979-95 reveals differences in global annual mean trends that are shown to be largely attributable to important physical differences in the quantities that are measured. Maps of standard deviations of the monthly mean anomalies, which can be viewed as mostly measuring the size of the climate signal, reveal pronounced differences regionally in each dataset. At the surface, the variability of temperatures is relatively small over the oceans but large over land, whereas in the MSU record the signal is much more zonally symmetric. The largest differences are found over the North Pacific and North Atlantic Oceans where the monthly standard deviations of the MSU temperatures are larger by more than a factor of 2. Locally over land, the variance of the surface record is larger than that of the MSU. In addition to differential responses to forcings from the El Niño-Southern Oscillation phenomenon and volcanic eruptions, these characteristics are indicative of differences of the response to physical processes arising from the relative importance of advection versus surface interactions and the different heat capacities of land and ocean. The result is that the regions contributing to hemispheric or global mean anomalies differ substantially between the two temperature datasets. This helps to account for the observed differences in decadal trends where the surface record shows a warming trend since 1979 of 0.18°C per decade, relative to the MSU record. While a common perception from this result is that the MSU and surface measurements of global temperature change are inconsistent, the issue should not be about which record is better, but rather that both give a different perspective on the same events.

  19. Multi-scale predictions of massive conifer mortality due to chronic temperature rise

    NASA Astrophysics Data System (ADS)

    McDowell, N. G.; Williams, A. P.; Xu, C.; Pockman, W. T.; Dickman, L. T.; Sevanto, S.; Pangle, R.; Limousin, J.; Plaut, J.; Mackay, D. S.; Ogee, J.; Domec, J. C.; Allen, C. D.; Fisher, R. A.; Jiang, X.; Muss, J. D.; Breshears, D. D.; Rauscher, S. A.; Koven, C.

    2016-03-01

    Global temperature rise and extremes accompanying drought threaten forests and their associated climatic feedbacks. Our ability to accurately simulate drought-induced forest impacts remains highly uncertain in part owing to our failure to integrate physiological measurements, regional-scale models, and dynamic global vegetation models (DGVMs). Here we show consistent predictions of widespread mortality of needleleaf evergreen trees (NET) within Southwest USA by 2100 using state-of-the-art models evaluated against empirical data sets. Experimentally, dominant Southwest USA NET species died when they fell below predawn water potential (Ψpd) thresholds (April-August mean) beyond which photosynthesis, hydraulic and stomatal conductance, and carbohydrate availability approached zero. The evaluated regional models accurately predicted NET Ψpd, and 91% of predictions (10 out of 11) exceeded mortality thresholds within the twenty-first century due to temperature rise. The independent DGVMs predicted >=50% loss of Northern Hemisphere NET by 2100, consistent with the NET findings for Southwest USA. Notably, the global models underestimated future mortality within Southwest USA, highlighting that predictions of future mortality within global models may be underestimates. Taken together, the validated regional predictions and the global simulations predict widespread conifer loss in coming decades under projected global warming.

  20. Multi-scale predictions of massive conifer mortality due to chronic temperature rise

    USGS Publications Warehouse

    McDowell, Nathan G.; Williams, A.P.; Xu, C.; Pockman, W. T.; Dickman, L. T.; Sevanto, S.; Pangle, R.; Limousin, J.; Plaut, J.J.; Mackay, D.S.; Ogee, J.; Domec, Jean-Christophe; Allen, Craig D.; Fisher, Rosie A.; Jiang, X.; Muss, J.D.; Breshears, D.D.; Rauscher, Sara A.; Koven, C.

    2015-01-01

    Global temperature rise and extremes accompanying drought threaten forests and their associated climatic feedbacks. Our ability to accurately simulate drought-induced forest impacts remains highly uncertain in part owing to our failure to integrate physiological measurements, regional-scale models, and dynamic global vegetation models (DGVMs). Here we show consistent predictions of widespread mortality of needleleaf evergreen trees (NET) within Southwest USA by 2100 using state-of-the-art models evaluated against empirical data sets. Experimentally, dominant Southwest USA NET species died when they fell below predawn water potential (Ψpd) thresholds (April–August mean) beyond which photosynthesis, hydraulic and stomatal conductance, and carbohydrate availability approached zero. The evaluated regional models accurately predicted NET Ψpd, and 91% of predictions (10 out of 11) exceeded mortality thresholds within the twenty-first century due to temperature rise. The independent DGVMs predicted ≥50% loss of Northern Hemisphere NET by 2100, consistent with the NET findings for Southwest USA. Notably, the global models underestimated future mortality within Southwest USA, highlighting that predictions of future mortality within global models may be underestimates. Taken together, the validated regional predictions and the global simulations predict widespread conifer loss in coming decades under projected global warming.

  1. Application of high temperature air heaters to advanced power generation cycles

    SciTech Connect

    Thompson, T R; Boss, W H; Chapman, J N

    1992-03-01

    Recent developments in ceramic composite materials open up the possibility of recuperative air heaters heating air to temperatures well above the feasible with metal tubes. A high temperature air heater (HTAH) has long been recognized as a requirement for the most efficient MHD plants in order to reach high combustor flame temperatures. The application of gas turbines in coal-fired plants of all types has been impeded because of the problems in cleaning exhaust gas sufficiently to avoid damage to the turbine. With a possibility of a HTAH, such plants may become feasible on the basis of air turbine cycles, in which air is compressed and heated in the HTAH before being applied to turbine. The heat exchanger eliminates the need for the hot gas cleanup system. The performance improvement potential of advanced cycles with HTAH application including the air turbine cycle in several variations such as the DOE program on ``Coal-Fired Air Furnace Combined Cycle...,`` variations originated by the authors, and the MHD combined cycle are presented. The status of development of ceramic air heater technology is included.

  2. Changes in tropospheric composition and air quality due to stratospheric ozone depletion and climate change.

    PubMed

    Wilson, S R; Solomon, K R; Tang, X

    2007-03-01

    It is well-understood that reductions in air quality play a significant role in both environmental and human health. Interactions between ozone depletion and global climate change will significantly alter atmospheric chemistry which, in turn, will cause changes in concentrations of natural and human-made gases and aerosols. Models predict that tropospheric ozone near the surface will increase globally by up to 10 to 30 ppbv (33 to 100% increase) during the period 2000 to 2100. With the increase in the amount of the stratospheric ozone, increased transport from the stratosphere to the troposphere will result in different responses in polluted and unpolluted areas. In contrast, global changes in tropospheric hydroxyl radical (OH) are not predicted to be large, except where influenced by the presence of oxidizable organic matter, such as from large-scale forest fires. Recent measurements in a relatively clean location over 5 years showed that OH concentrations can be predicted by the intensity of solar ultraviolet radiation. If this relationship is confirmed by further observations, this approach could be used to simplify assessments of air quality. Analysis of surface-level ozone observations in Antarctica suggests that there has been a significant change in the chemistry of the boundary layer of the atmosphere in this region as a result of stratospheric ozone depletion. The oxidation potential of the Antarctic boundary layer is estimated to be greater now than before the development of the ozone hole. Recent modeling studies have suggested that iodine and iodine-containing substances from natural sources, such as the ocean, may increase stratospheric ozone depletion significantly in polar regions during spring. Given the uncertainty of the fate of iodine in the stratosphere, the results may also be relevant for stratospheric ozone depletion and measurements of the influence of these substances on ozone depletion should be considered in the future. In agreement with

  3. Changes in tropospheric composition and air quality due to stratospheric ozone depletion and climate change.

    PubMed

    Wilson, S R; Solomon, K R; Tang, X

    2007-03-01

    It is well-understood that reductions in air quality play a significant role in both environmental and human health. Interactions between ozone depletion and global climate change will significantly alter atmospheric chemistry which, in turn, will cause changes in concentrations of natural and human-made gases and aerosols. Models predict that tropospheric ozone near the surface will increase globally by up to 10 to 30 ppbv (33 to 100% increase) during the period 2000 to 2100. With the increase in the amount of the stratospheric ozone, increased transport from the stratosphere to the troposphere will result in different responses in polluted and unpolluted areas. In contrast, global changes in tropospheric hydroxyl radical (OH) are not predicted to be large, except where influenced by the presence of oxidizable organic matter, such as from large-scale forest fires. Recent measurements in a relatively clean location over 5 years showed that OH concentrations can be predicted by the intensity of solar ultraviolet radiation. If this relationship is confirmed by further observations, this approach could be used to simplify assessments of air quality. Analysis of surface-level ozone observations in Antarctica suggests that there has been a significant change in the chemistry of the boundary layer of the atmosphere in this region as a result of stratospheric ozone depletion. The oxidation potential of the Antarctic boundary layer is estimated to be greater now than before the development of the ozone hole. Recent modeling studies have suggested that iodine and iodine-containing substances from natural sources, such as the ocean, may increase stratospheric ozone depletion significantly in polar regions during spring. Given the uncertainty of the fate of iodine in the stratosphere, the results may also be relevant for stratospheric ozone depletion and measurements of the influence of these substances on ozone depletion should be considered in the future. In agreement with

  4. Characteristics of Gaseous Diffusion Flames with High Temperature Combustion Air in Microgravity

    NASA Technical Reports Server (NTRS)

    Ghaderi, M.; Gupta, A. K.

    2003-01-01

    The characteristics of gaseous diffusion flames have been obtained using high temperature combustion air under microgravity conditions. The time resolved flame images under free fall microgravity conditions were obtained from the video images obtained. The tests results reported here were conducted using propane as the fuel and about 1000 C combustion air. The burner included a 0.686 mm diameter central fuel jet injected into the surrounding high temperature combustion air. The fuel jet exit Reynolds number was 63. Several measurements were taken at different air preheats and fuel jet exit Reynolds number. The resulting hybrid color flame was found to be blue at the base of the flame followed by a yellow color flame. The length and width of flame during the entire free fall conditions has been examined. Also the relative flame length and width for blue and yellow portion of the flame has been examined under microgravity conditions. The results show that the flame length decreases and width increases with high air preheats in microgravity condition. In microgravity conditions the flame length is larger with normal temperature combustion air than high temperature air.

  5. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    Johnson, R. K.

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  6. Analysis of nocturnal air temperature in districts using mobile measurements and a cooling indicator

    NASA Astrophysics Data System (ADS)

    Leconte, François; Bouyer, Julien; Claverie, Rémy; Pétrissans, Mathieu

    2016-08-01

    The urban heat island phenomenon is generally defined as an air temperature difference between a city center and the non-urbanized rural areas nearby. However, this description does not encompass the intra-urban temperature differences that exist between neighborhoods in a city. This study investigates the air temperature dynamics of neighborhoods for meteorological conditions that lead to important urban heat island amplitude. Local climate zones (LCZs) have been determined in Nancy, France, and mobile screen-height air temperature measurements are performed using an instrumented vehicle. Initially, hourly measurements are performed within four different LCZs. These results show that air temperature within LCZ demonstrates a nocturnal cooling in two phases, i.e., a first phase between 1 to 3 h before sunset and 3 to 5 h after sunset, and a second phase from 3 to 5 h after sunset to sunrise. During phase 1, neighborhoods exhibit different cooling rate values and air temperature gaps develop between districts, while during phase 2, cooling rates tend to be analogous. Then, a larger meteorological data set is used to investigate these two phases for a selection of 13 LCZs. Normalized cooling rates are calculated between daytime measures and nighttime measures in order to quantify the air temperature dynamics of the studied areas during phase 1. Considering this indicator, three groups are emerging: LCZ compact midrise and open midrise with mean normalized cooling rate values of 0.09 h -1 LCZ large lowrise and open lowrise/sparsely built with mean normalized cooling rate values of 0.011 h -1 LCZ low plants with mean normalized cooling rate values of 0.014 h -1 Results indicate that the relative position of LCZ within the conurbation does not drive air temperature dynamics during phase 1. In addition, measures performed during phase 2 tend to illustrate that cooling rates are similar to all LCZ during this period.

  7. The relationship between radiant heat, air temperature and thermal comfort at rest and exercise.

    PubMed

    Guéritée, Julien; Tipton, Michael J

    2015-02-01

    The aims of the present work were to investigate the relationships between radiant heat load, air velocity and body temperatures with or without coincidental exercise to determine the physiological mechanisms that drive thermal comfort and thermoregulatory behaviour. Seven male volunteers wearing swimming trunks in 18°C, 22°C or 26°C air were exposed to increasing air velocities up to 3 m s(-1) and self-adjusted the intensity of the direct radiant heat received on the front of the body to just maintain overall thermal comfort, at rest or when cycling (60 W, 60 rpm). During the 30 min of the experiments, skin and rectal temperatures were continuously recorded. We hypothesized that mean body temperature should be maintained stable and the intensity of the radiant heat and the mean skin temperatures would be lower when cycling. In all conditions, mean body temperature was lower when facing winds of 3 m s(-1) than during the first 5 min, without wind. When facing winds, in all but the 26°C air, the radiant heat was statistically higher at rest than when exercising. In 26°C air mean skin temperature was lower at rest than when exercising. No other significant difference was observed. In all air temperatures, high correlation coefficients were observed between the air velocity and the radiant heat load. Other factors that we did not measure may have contributed to the constant overall thermal comfort status despite dropping mean skin and body temperatures. It is suggested that the allowance to behaviourally adjust the thermal environment increases the tolerance of cold discomfort.

  8. Causality between energy consumption, emissions of CO{sub 2} and surface air temperature

    SciTech Connect

    Mariam, Y.K.G.; Barre, M.

    1998-12-31

    Climate research has been one of the focal points of the scientific community for the past few decades. However, most of the studies tended to examine the scientific basis to understand the mechanisms that resulted in changes in global climate. There was less emphasis on issues of mitigating the causes of climate change. Due to the fact that climate change is primarily the result of emission of green houses gases, especially carbon dioxide, and due to the fact that most these emissions are anthropogenic, social scientists have to address strategies in which emissions are reduced. Of particular significance is that global climate is a common good. Private companies and individuals, in an effort to maximize income or welfare, dump increased emission to the atmosphere. As a typical example of the classic work of the tragedy of the commons, there is a desperate need for all disciplines of the social and natural sciences to develop ways of mitigating the dangers of changes in the global common climate. Energy consumption, particularly fossil fuels, has been attributed as the driving force for the increased emission of CO{sub 2} and rise in global surface air temperature. While many studies have been carried out regarding the relationship between global energy consumption, emissions of CO{sub 2} and indicators of climate change such as temperature, there are only a few studies that have examined linkages between these factors at the level of individual countries. Increased consumption of carbon-intensive sources of energy will continue to exacerbate existing climate change problems. On the other hand, not only will energy consumption influence climate change but also changes in climate change may influence the patterns of energy consumption. The objectives of this research are to examine trends in energy consumption and emissions of CO{sub 2}, and causal linkages between energy consumption, emission of CO{sub 2} and mean annual surface temperature for 21 OECD countries.

  9. Measurement of HO{sub x}{center_dot} production rate due to radon decay in air

    SciTech Connect

    Ding, Huiling

    1993-08-01

    Radon in indoor air may cause the exposure of the public to excessive radioactivity. Radiolysis of water vapor in indoor air due to radon decay could produce ({center_dot}OH and HO{sub 2} {center_dot}) that may convert atmospheric constituents to compounds of lower vapor pressure. These lower vapor pressure compounds might then nucleate to form new particles in the indoor atmosphere. Chemical amplification was used to determine HO{sub x}{center_dot} production rate in indoor air caused by radon decay. Average HO{sub x}{center_dot} production rate was found to be (4.31{plus_minus}0.07) {times} 10{sup 5} HO{sub x}{center_dot} per Rn decay per second (Bq) 3.4 to 55.0% at 22C. This work provided G{sub (HO{sub x}{center_dot})}-value, 7.86{plus_minus}0.13 No./100 eV in air by directly measuring [HO{sub x}{center_dot}] formed from the radiolysis procedure. This G value implies that HO{sub x}{center_dot} produced by radon decay in air might be formed by multiple processes and may be result of positive ion-molecule reactions, primary radiolysis, and radical reactions. There is no obvious relation between HO{sub x}{center_dot} production rate and relative humidity. A laser-induced fluorescence (LIF) system has been used for {center_dot}OH production rate measurement; it consists of an excimer laser, a dye laser, a frequency doubler, a gaseous fluorescence chamber, and other optical and electronic parts. This system needs to be improved to eliminate the interferences of light scattering and artificial {center_dot}OH produced from the photolysis of O{sub 3}/H{sub 2}O.

  10. Spatiotemporal variability of tetrachloroethylene in residential indoor air due to vapor intrusion: a longitudinal, community-based study.

    PubMed

    Johnston, Jill E; Gibson, Jacqueline MacDonald

    2014-11-01

    The migration of volatile contaminants from groundwater and soil into indoor air is a potential health threat at thousands of contaminated sites across the country. This phenomenon, known as vapor intrusion, is characterized by spatial and temporal heterogeneity. This study examined short-term fluctuations in concentrations of tetrachloroethylene (PCE) in the indoor air of residential homes due to vapor intrusion in a community in San Antonio, Texas, that sits atop an extensive, shallow plume of contaminated groundwater. Using a community-based design, we removed potential indoor sources of PCE and then collected twelve 3-day passive indoor air samples in each of the 20 homes. Results demonstrated a one-order-of-magnitude variability in concentration across both space and time among the study homes, although all measured concentrations were below risk-based screening levels. We found that within any given home, indoor concentrations increase with the magnitude of the barometric pressure drop (P=0.048) and humidity (P<0.001), while concentrations decrease as wind speed increases (P<0.001) and also during winter (P=0.001). In a second analysis to examine sources of spatial variability, we found that indoor air PCE concentrations between homes increase with groundwater concentration (P=0.030) and a slab-on-grade (as compared with a crawl space) foundation (P=0.028), whereas concentrations decrease in homes without air conditioners (P=0.015). This study offers insights into the drivers of temporal and spatial variability in vapor intrusion that can inform decisions regarding monitoring and exposure assessment at affected sites.

  11. Apparatus and Method for Measuring Air Temperature Ahead of an Aircraft for Controlling a Variable Inlet/Engine Assembly

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    2001-01-01

    The apparatus and method employ remote sensing to measure the air temperature a sufficient distance ahead of the aircraft to allow time for a variable inlet/engine assembly to be reconfigured in response to the measured temperature, to avoid inlet unstart and/or engine compressor stall. In one embodiment, the apparatus of the invention has a remote sensor for measuring at least one air temperature ahead of the vehicle and an inlet control system for varying the inlet. The remote sensor determines a change in temperature value using at least one temperature measurement and prior temperature measurements corresponding to the location of the aircraft. The control system uses the change in air temperature value to vary the inlet configuration to maintain the position of the shock wave during the arrival of the measured air in the inlet. In one embodiment, the method of the invention includes measuring at least one air temperature ahead of the vehicle, determining an air temperature at the vehicle from prior air temperature measurements, determining a change in temperature value using the air temperature at the vehicle and the at least one air temperature measurement ahead of the vehicle, and using the change in temperature value to-reposition the airflow inlet, to cause the shock wave to maintain substantially the same position within the inlet as the airflow temperature changes within the inlet.

  12. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue; Fang, Jing

    2015-10-01

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  13. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    SciTech Connect

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue Fang, Jing

    2015-10-15

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  14. Pan-Arctic linkages between snow accumulation and growing-season air temperature, soil moisture and vegetation

    NASA Astrophysics Data System (ADS)

    Luus, K. A.; Gel, Y.; Lin, J. C.; Kelly, R. E. J.; Duguay, C. R.

    2013-11-01

    Arctic field studies have indicated that the air temperature, soil moisture and vegetation at a site influence the quantity of snow accumulated, and that snow accumulation can alter growing-season soil moisture and vegetation. Climate change is predicted to bring about warmer air temperatures, greater snow accumulation and northward movements of the shrub and tree lines. Understanding the responses of northern environments to changes in snow and growing-season land surface characteristics requires: (1) insights into the present-day linkages between snow and growing-season land surface characteristics; and (2) the ability to continue to monitor these associations over time across the vast pan-Arctic. The objective of this study was therefore to examine the pan-Arctic (north of 60° N) linkages between two temporally distinct data products created from AMSR-E satellite passive microwave observations: GlobSnow snow water equivalent (SWE), and NTSG growing-season AMSR-E Land Parameters (air temperature, soil moisture and vegetation transmissivity). Due to the complex and interconnected nature of processes determining snow and growing-season land surface characteristics, these associations were analyzed using the modern nonparametric technique of alternating conditional expectations (ACE), as this approach does not impose a predefined analytic form. Findings indicate that regions with lower vegetation transmissivity (more biomass) at the start and end of the growing season tend to accumulate less snow at the start and end of the snow season, possibly due to interception and sublimation. Warmer air temperatures at the start and end of the growing season were associated with diminished snow accumulation at the start and end of the snow season. High latitude sites with warmer mean annual growing-season temperatures tended to accumulate more snow, probably due to the greater availability of water vapor for snow season precipitation at warmer locations. Regions with drier

  15. East Asian summer monsoon dynamics lag continental air temperature changes during the last 130,000 years

    NASA Astrophysics Data System (ADS)

    Prins, M. A.; Peterse, F.; Zhou, B.; Martinez-Garcia, A.; Beets, K.; Zheng, H.; Eglinton, T. I.

    2012-12-01

    Changes in the East Asian Summer Monsoon (EASM) precipitation intensity have been derived from loess-paleosol sequences and oxygen isotope (δ18O) records of well-dated stalagmites from several caves in China, and show that the strength of the EASM generally responds to changes in Northern Hemisphere (NH) summer insolation. In contrast, past continental air temperature dynamics are still poorly understood for this area, mainly due to the lack of paleotemperature records. Application of the recently developed MBT-CBT (methylation of branched tetraethers-cyclisation of branched tetraethers) paleothermometer, based on the distribution of soil bacterial membrane lipids [1], on a loess-paleosol sequence from the Mangshan loess plateau provided one of the first continuous, high resolution, absolute air temperature records for southeast Asia [2]. The 34,000-year record indicated that the onset of atmospheric warming and the intensification of the EASM were decoupled during the last deglaciation, and suggested that factors controlling temperature and precipitation were different. Here we present the extended temperature record for this exact same loess-paleosol sequence, so that it now covers the last 130,000 years. Comparison of the MBT-CBT-derived temperature record with speleothem δ18O and monsoon proxy records (grain size and magnetic susceptibility) from the same loess-paleosol sequence shows that EASM precipitation dynamics structurally lag the changes in continental air temperature throughout the whole record. The offset in timing between temperature and precipitation becomes even clearer upon filtration of the proxy records at the 23 kyr band. The filtered MBT-CBT record exactly tracks that of NH summer insolation, whereas all monsoon records (both loess proxies and speleothem) are laggin behind. This supports the earlier suggestion that temperature and precipitation have different driving forces, an observation that may lead us towards a better understanding of

  16. Enhanced formation of secondary air pollutants and aggravation of urban smog due to crop residue burning emissions in North India

    NASA Astrophysics Data System (ADS)

    Sarkar, Chinmoy; Kumar, Vinod; Sinha, Vinayak

    2013-04-01

    Biomass burning causes intense perturbations to regional atmospheric chemistry and air quality and is a significant global source of reactive pollutants to the atmosphere (Andreae and Merlet, 2001). In November 2012, large areas in North India including New Delhi experienced several weeks of aggravated smog and poor air quality due to the impact of crop residue burning, which is a biannual post harvest activity that occurs during Oct-Nov and April-May every year in the agricultural belts of North western India. In-situ high temporal resolution (1 measurement every minute) measurements of a suite of volatile organic compounds measured using proton transfer reaction mass spectrometry (PTR-MS) such as acetonitrile (biomass burning tracer) and aromatic hydrocarbons were performed simultaneously with carbon monoxide, nitrogen oxides, ozone and aerosol mass concentrations (PM 2.5 and PM 10) at a suburban site (30.667°N, 76.729°E and 310 m asl), impacted by air masses that had passed over the burning fields less than 72 hours ago. By using data from the same season but before the post harvest crop residue burning activity had commenced, we were able to quantify enhancements in ambient levels of the measured species due to the crop residue burning activity. When air masses influenced by the fire emissions reached the measurement site, peak values of about 8 ppbV acetonitrile, 4 ppmV CO, 100 ppbV NOx , 30 ppbV toluene and 15 ppbV benzene were observed which represented a factor of 2-5 increase over their ambient levels in the non-fire influenced period. Emission ratios of aromatic hydrocarbons/CO also showed a marked increase. Non fire event (N.F. E.) influenced and fire event (F.E.) influenced air masses had the following emission ratio enhancements: benzene/CO (N.F.E = 3; F.E. = 5), toluene/CO (N.F.E = 4; F.E. = 8.7) and sum of C8 aromatics/CO (N.F.E = 4; F.E. = 7.3) and sum of C9 aromatics/CO (N.F.E = 2.6; F.E. = 3.4). The OH reactivity of air masses which has strong

  17. A study of the H2O absorption line shifts in the visible spectrum region due to air pressure

    NASA Technical Reports Server (NTRS)

    Grossmann, B. E.; Browell, E. V.; Bykov, A. D.; Kapitanov, V. A.; Korotchenko, E. A.

    1990-01-01

    Results of measured and calculated shift coefficients are presented for 170 absorption lines of H2O in five vibrational-rotational bands. The measurements have been carried out using highly sensitive laser spectrometers with a resolution of at least 0.01/cm; the calculations are based on the Anderson-Tsao-Curnutte-Frost method. Good agreement is obtained between the theoretical and experimental values of the shift coefficients of H2O lines due to N2, O2, and air pressure.

  18. [Verification of exhaled air temperature and heat flux in respiratory diseases as useful biomarker].

    PubMed

    Ito, Wataru; Chihara, Junichi

    2008-12-01

    Asthma, chronic obstructive pulmonary disease, and diffuse panbronchiolitis are syndromes associated with chronic airway inflammation. In the conventional definition of inflammation, local pyrexia at the site of inflammation should be observed. However, there are very few reports that have evaluated the "heat" in inflammatory respiratory diseases. We considered that the evaluation of allergic airway inflammation such as asthma might be possible by measuring the exhaled air temperature, and devised an original device that stabilizes the flow rate, which is a very important factor for the direct measurement of heat. Moreover, an expiratory heat flux meter, which can detect a change in air temperature more precisely and immediately, was also incorporated into our original device. As a result, we succeeded in the measurement and evaluation of the heat flux and air temperature in healthy subjects and asthmatic patients, and, further, the air temperature was straightforwardly evaluated by a portable spirometer including a temperature sensor. These findings suggest that the heat flux and temperature of exhaled air can be used to objectively monitor airway inflammation noninvasively, and assist in the diagnosis/monitoring of inflammatory respiratory diseases, including asthma.

  19. Temperature Programmed Desorption of Quench-condensed Krypton and Acetone in Air; Selective Concentration of Ultra-trace Gas Components.

    PubMed

    Suzuki, Taku T; Sakaguchi, Isao

    2016-01-01

    Selective concentration of ultra-trace components in air-like gases has an important application in analyzing volatile organic compounds in the gas. In the present study, we examined quench-condensation of the sample gas on a ZnO substrate below 50 K followed by temperature programmed desorption (TPD) (low temperature TPD) as a selective gas concentration technique. We studied two specific gases in the normal air; krypton as an inert gas and acetone as a reactive gas. We evaluated the relationship between the operating condition of low temperature TPD and the lowest detection limit. In the case of krypton, we observed the selective concentration by exposing at 6 K followed by thermal desorption at about 60 K. On the other hand, no selectivity appeared for acetone although trace acetone was successfully concentrated. This is likely due to the solvent effect by a major component in the air, which is suggested to be water. We suggest that pre-condensation to remove the water component may improve the selectivity in the trace acetone analysis by low temperature TPD.

  20. Temperature Programmed Desorption of Quench-condensed Krypton and Acetone in Air; Selective Concentration of Ultra-trace Gas Components.

    PubMed

    Suzuki, Taku T; Sakaguchi, Isao

    2016-01-01

    Selective concentration of ultra-trace components in air-like gases has an important application in analyzing volatile organic compounds in the gas. In the present study, we examined quench-condensation of the sample gas on a ZnO substrate below 50 K followed by temperature programmed desorption (TPD) (low temperature TPD) as a selective gas concentration technique. We studied two specific gases in the normal air; krypton as an inert gas and acetone as a reactive gas. We evaluated the relationship between the operating condition of low temperature TPD and the lowest detection limit. In the case of krypton, we observed the selective concentration by exposing at 6 K followed by thermal desorption at about 60 K. On the other hand, no selectivity appeared for acetone although trace acetone was successfully concentrated. This is likely due to the solvent effect by a major component in the air, which is suggested to be water. We suggest that pre-condensation to remove the water component may improve the selectivity in the trace acetone analysis by low temperature TPD. PMID:27063719

  1. Usefulness of AIRS-Derived OLR, Temperature, Water vapor and Cloudiness Anomaly Trends for GCM Validation

    NASA Astrophysics Data System (ADS)

    Molnar, G. I.; Susskind, J.; Iredell, L. F.; NASA/Gsfc Sounder Research Team

    2010-12-01

    Mainly due to their global nature, satellite observations can provide a very useful basis for GCM validations. In particular, satellite sounders such as AIRS provide 3-D spatial information (most useful for GCMs), so the question arises: can we use AIRS datasets for climate variability assessments? We show that the recent (September 2002 - February 2010) CERES-observed negative trend in OLR of ~-0.1 W/m2/yr averaged over the globe is found in the AIRS OLR data as well. Most importantly, even minute details (down to 1 x 1 degree GCM-scale resolution) of spatial and temporal anomalies and trends of OLR as observed by CERES and computed based on AIRS-retrieved surface and atmospheric geophysical parameters over this time period are essentially the same. The correspondance can be seen even in the very large spatial variations of these trends with local values ranging from -2.6 W/m2/yr to +3.0 W/m2/yr in the tropics, for example. This essentially perfect agreement of OLR anomalies and trends derived from observations by two different instruments, in totally independent and different manners, implies that both sets of results must be highly accurate, and indirectly validates the anomalies and trends of other AIRS derived products as well. These products show that global and regional anomalies and trends of OLR, water vapor and cloud cover over the last 7+ years are strongly influenced by El-Niño-La Niña cycles . We have created climate parameter anomaly datasets using AIRS retrievals which can be compared directly with coupled GCM climate variability assesments. Moreover, interrelationships of these anomalies and trends should also be similar between the observed and GCM-generated datasets, and, in cases of discrepancies, GCM parameterizations could be improved based on the relationships observed in the data. First, we assess spatial “trends” of variability of climatic parameter anomalies [since anomalies relative to the seasonal cycle are good proxies of climate

  2. Usefulness of AIRS-Derived OLR, Temperature, Water Vapor and Cloudiness Anomaly Trends for GCM Validation

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula I.; Susskind, Joel; Iredell, Lena F.

    2010-01-01

    Mainly due to their global nature, satellite observations can provide a very useful basis for GCM validations. In particular, satellite sounders such as AIRS provide 3-D spatial information (most useful for GCMs), so the question arises: can we use AIRS datasets for climate variability assessments? We show that the recent (September 2002 February 2010) CERES-observed negative trend in OLR of approx.-0.1 W/sq m/yr averaged over the globe is found in the AIRS OLR data as well. Most importantly, even minute details (down to 1 x 1 degree GCM-scale resolution) of spatial and temporal anomalies and trends of OLR as observed by CERES and computed based on AIRS-retrieved surface and atmospheric geophysical parameters over this time period are essentially the same. The correspondence can be seen even in the very large spatial variations of these trends with local values ranging from -2.6 W/sq m/yr to +3.0 W/sq m/yr in the tropics, for example. This essentially perfect agreement of OLR anomalies and trends derived from observations by two different instruments, in totally independent and different manners, implies that both sets of results must be highly accurate, and indirectly validates the anomalies and trends of other AIRS derived products as well. These products show that global and regional anomalies and trends of OLR, water vapor and cloud cover over the last 7+ years are strongly influenced by EI-Nino-La Nina cycles . We have created climate parameter anomaly datasets using AIRS retrievals which can be compared directly with coupled GCM climate variability assessments. Moreover, interrelationships of these anomalies and trends should also be similar between the observed and GCM-generated datasets, and, in cases of discrepancies, GCM parameterizations could be improved based on the relationships observed in the data. First, we assess spatial "trends" of variability of climatic parameter anomalies [since anomalies relative to the seasonal cycle are good proxies of

  3. Prediction of air temperature for thermal comfort of people using sleeping bags: a review

    NASA Astrophysics Data System (ADS)

    Huang, Jianhua

    2008-11-01

    Six models for determining air temperatures for thermal comfort of people using sleeping bags were reviewed. These models were based on distinctive metabolic rates and mean skin temperatures. All model predictions of air temperatures are low when the insulation values of the sleeping bag are high. Nevertheless, prediction variations are greatest for the sleeping bags with high insulation values, and there is a high risk of hypothermia if an inappropriate sleeping bag is chosen for the intended conditions of use. There is, therefore, a pressing need to validate the models by wear trial and determine which one best reflects ordinary consumer needs.

  4. Characterizing air temperature changes in the Tarim Basin over 1960-2012.

    PubMed

    Peng, Dongmei; Wang, Xiujun; Zhao, Chenyi; Wu, Xingren; Jiang, Fengqing; Chen, Pengxiang

    2014-01-01

    There has been evidence of warming rate varying largely over space and between seasons. However, little has been done to evaluate the spatial and temporal variability of air temperature in the Tarim Basin, northwest China. In this study, we collected daily air temperature from 19 meteorological stations for the period of 1960-2012, and analyzed annual mean temperature (AMT), the annual minimum (T min) and maximum temperature (Tmax), and mean temperatures of all twelve months and four seasons and their anomalies. Trend analyses, standard deviation of the detrended anomaly (SDDA) and correlations were carried out to characterize the spatial and temporal variability of various mean air temperatures. Our data showed that increasing trend was much greater in the T min (0.55°C/10a) than in the AMT (0.25°C/10a) and Tmax (0.12°C/10a), and the fluctuation followed the same order. There were large spatial variations in the increasing trends of both AMT (from -0.09 to 0.43 °C/10a) and T min (from 0.15 to 1.12°C/10a). Correlation analyses indicated that AMT had a significantly linear relationship with T min and the mean temperatures of four seasons. There were also pronounced changes in the monthly air temperature from November to March at decadal time scale. The seasonality (i.e., summer and winter difference) of air temperature was stronger during the period of 1960-1979 than over the recent three decades. Our preliminary analyses indicated that local environmental conditions (such as elevation) might be partly responsible for the spatial variability, and large scale climate phenomena might have influences on the temporal variability of air temperature in the Tarim Basin. In particular, there was a significant correlation between index of El Niño-Southern Oscillation (ENSO) and air temperature of May (P = 0.004), and between the index of Pacific Decadal Oscillation (PDO) and air temperature of July (P = 0.026) over the interannual to decadal time scales. PMID:25375648

  5. Characterizing air temperature changes in the Tarim Basin over 1960-2012.

    PubMed

    Peng, Dongmei; Wang, Xiujun; Zhao, Chenyi; Wu, Xingren; Jiang, Fengqing; Chen, Pengxiang

    2014-01-01

    There has been evidence of warming rate varying largely over space and between seasons. However, little has been done to evaluate the spatial and temporal variability of air temperature in the Tarim Basin, northwest China. In this study, we collected daily air temperature from 19 meteorological stations for the period of 1960-2012, and analyzed annual mean temperature (AMT), the annual minimum (T min) and maximum temperature (Tmax), and mean temperatures of all twelve months and four seasons and their anomalies. Trend analyses, standard deviation of the detrended anomaly (SDDA) and correlations were carried out to characterize the spatial and temporal variability of various mean air temperatures. Our data showed that increasing trend was much greater in the T min (0.55°C/10a) than in the AMT (0.25°C/10a) and Tmax (0.12°C/10a), and the fluctuation followed the same order. There were large spatial variations in the increasing trends of both AMT (from -0.09 to 0.43 °C/10a) and T min (from 0.15 to 1.12°C/10a). Correlation analyses indicated that AMT had a significantly linear relationship with T min and the mean temperatures of four seasons. There were also pronounced changes in the monthly air temperature from November to March at decadal time scale. The seasonality (i.e., summer and winter difference) of air temperature was stronger during the period of 1960-1979 than over the recent three decades. Our preliminary analyses indicated that local environmental conditions (such as elevation) might be partly responsible for the spatial variability, and large scale climate phenomena might have influences on the temporal variability of air temperature in the Tarim Basin. In particular, there was a significant correlation between index of El Niño-Southern Oscillation (ENSO) and air temperature of May (P = 0.004), and between the index of Pacific Decadal Oscillation (PDO) and air temperature of July (P = 0.026) over the interannual to decadal time scales.

  6. Characterizing Air Temperature Changes in the Tarim Basin over 1960–2012

    PubMed Central

    Peng, Dongmei; Wang, Xiujun; Zhao, Chenyi; Wu, Xingren; Jiang, Fengqing; Chen, Pengxiang

    2014-01-01

    There has been evidence of warming rate varying largely over space and between seasons. However, little has been done to evaluate the spatial and temporal variability of air temperature in the Tarim Basin, northwest China. In this study, we collected daily air temperature from 19 meteorological stations for the period of 1960–2012, and analyzed annual mean temperature (AMT), the annual minimum (Tmin) and maximum temperature (Tmax), and mean temperatures of all twelve months and four seasons and their anomalies. Trend analyses, standard deviation of the detrended anomaly (SDDA) and correlations were carried out to characterize the spatial and temporal variability of various mean air temperatures. Our data showed that increasing trend was much greater in the Tmin (0.55°C/10a) than in the AMT (0.25°C/10a) and Tmax (0.12°C/10a), and the fluctuation followed the same order. There were large spatial variations in the increasing trends of both AMT (from −0.09 to 0.43 °C/10a) and Tmin (from 0.15 to 1.12°C/10a). Correlation analyses indicated that AMT had a significantly linear relationship with Tmin and the mean temperatures of four seasons. There were also pronounced changes in the monthly air temperature from November to March at decadal time scale. The seasonality (i.e., summer and winter difference) of air temperature was stronger during the period of 1960–1979 than over the recent three decades. Our preliminary analyses indicated that local environmental conditions (such as elevation) might be partly responsible for the spatial variability, and large scale climate phenomena might have influences on the temporal variability of air temperature in the Tarim Basin. In particular, there was a significant correlation between index of El Niño-Southern Oscillation (ENSO) and air temperature of May (P = 0.004), and between the index of Pacific Decadal Oscillation (PDO) and air temperature of July (P = 0.026) over the interannual to decadal time scales. PMID

  7. Stress-temperature-lifetime response of nicalon fiber-reinforced SiC composites in air

    SciTech Connect

    Lin, Hua-Tay; Becher, P.F.

    1996-02-01

    Time-to-failure tests were conducted in four-point flexure and in air as a function of stress levels and temperatures to study the lifetime response of various Nicalon fiber-reinforced SiC (designated as Nic/SiC) composites with a graphitic interfacial coating. The results indicated that all of the Nic/SiC composites exhibit a similar stress-dependent failure at applied stress greater than a threshold value. In this case, the lifetimes of the composites increased with decrease in both stress level and test temperature. The lifetime of the composites appeared to be relatively insensitive to the thickness of graphitic interface layer and was enhanced somewhat by the addition of oxidation inhibitors. Electron microscopy and oxidation studies indicated that the life of the Nic/SiC composites was governed by the oxidation of the graphitic interfaces and the on of glass(es) in composites due to the oxidation of the fiber and matrix, inhibitor phases.

  8. Evaluation of AIRS, MODIS, and HIRS 11 Micron Brightness Temperature Difference Changes from 2002 through 2006

    NASA Technical Reports Server (NTRS)

    Broberg, Steven E.; Aumann, Hartmut H.; Gregorich, David T.; Xiong, X.

    2006-01-01

    In an effort to validate the accuracy and stability of AIRS data at low scene temperatures (200-250 K range), we evaluated brightness temperatures at 11 microns with Aqua MODIS band 31 and HIRS/3 channel 8 for Antarctic granules between September 2002 and May 2006. We found excellent agreement with MODIS (at the 0.2 K level) over the full emperature range in data from early in the Aqua mission. However, in more recent data, starting in April 2005, we found a scene temperature dependence in MODIS-AIRS brightness temperature differences, with a discrepancy of 1- 1.5 K at 200 K. The comparison between AIRS and HIRS/3 (channel 8) on NOAA 16 for the same time period yields excellent agreement. The cause and time dependence of the disagreement with MODIS is under evaluation, but the change was coincident with a change in the MODIS production software from collection 4 to 5.

  9. The temperature fields measurement of air in the car cabin by infrared camera

    NASA Astrophysics Data System (ADS)

    Pešek, M.

    2013-04-01

    The article deals with the temperature fields measurement of air using the Jenoptic Variocam infrared camera inside the car Škoda Octavia Combi II. The temperature fields with the use of auxiliary material with a high emissivity value were visualized. The measurements through the viewing window with a high transmissivity value were performed. The viewing windows on the side car door were placed. In the rear car area, the temperature fields of air on the spacious sheet of auxiliary material were visualized which is a suitable method for 2D airstreams. In the front car area, the temperature fields in the air were measured with the use of the measuring net which is suitable for 3D airstreams measuring.

  10. A new dose model for assessment of health risk due to contaminants in air.

    PubMed

    Rajkumar, T; Guesgen, H W; Robinson, S; Fisher, G W

    2000-01-01

    The problem of making quantitative assessments of the risks associated with human exposure to toxic contaminants in the environment is a pressing one. This study demonstrates the capability of a new computational technique involving the use of fuzzy logic and neural networks to produce realistic risk assessments. The systematic analysis of human exposure involves the use of measurements and models, the results of which are sometimes used in regulatory decisions or in the drafting of legislation. Because of limited scientific understanding, however, interpretation of models often involves substantial uncertainty. Extensive measurement programs can be very expensive. The high complexity and inherent heterogeneity of exposure analysis is still a major challenge. The approach to this challenge tested here is to use a new model incorporating sophisticated artificial intelligence algorithms. Exposure assessment often requires that a number of factors be evaluated, including exposure concentrations, intake rates, exposure times, and frequencies. These factors are incorporated into a system that can "learn" the relevant relationships based on a known data set. The results can then be applied to new data sets and thus be applied widely without the need for extensive measurements. In this analysis, an example is developed for human health risk through inhalation exposure to benzene from vehicular emissions in the cities of Auckland and Christchurch, New Zealand. Risk factors considered were inhaled contaminant concentration, age, body weight, and activity patterns of humans. Three major variables affecting the inhaled contaminant concentration were emissions (mainly from motor vehicles), meteorology (wind speed, temperature, and atmospheric stability), and site factors (hilly, flat, etc.). The results are preliminary and used principally to demonstrate the technique, but they are very encouraging.

  11. Modeling of the relationship between the environmental air pollution, clinical risk factors, and hospital mortality due to myocardial infarction in Isfahan, Iran

    PubMed Central

    Sadeghi, Mehraban; Ahmadi, Ali; Baradaran, Azar; Masoudipoor, Neda; Frouzandeh, Soleiman

    2015-01-01

    Background: This study aimed to determine the relationship between the environmental factor, clinical risk factors, and individual variables with mortality due to acute myocardial infarction (MI) in Isfahan. Materials and Methods: This cross-sectional study was performed between April 2012 and March 2013. The data on the patients’ mortality due to MI in Isfahan were obtained from the MI National Registry. The international classification system (ICD10: I21-I22) was used to diagnose MI. The air quality indicators and environmental variables were used to measure the air pollution. Multilevel logistic regression in the Stata software was used to determine the factors associated with mortality in patients and odds ratios (ORs) were calculated. Results: Six hundred eleven patients with MI were studied during 1-year. 444 (72.2%) patients were male and the rest were female. 4.7% of the patients died due to MI. The mean age at MI incidence was 62.2 ± 13 years. Of the air pollution parameters, PM10 had the maximum mean concentration (49.113 ppm), followed by NOX, NO, NO2, CO, SO2, and O3. The adjusted OR of mortality was derived 2.07 (95% CI: 1.5-2.85) for right bundle branch block, 1.5 (95% CI: 1.3-1.7) for ST-segment elevation MI, 1.84 (95% CI: 1.13-3) for age, 1.06 (95% CI: 1.01-1.20) for CO, 1.1 (95% CI: 1.03-1.30) for O3, and 1.04 (95% CI: 1.01-1.4) for SO2, all of which were considered as the risk factors of mortality. However, OR of mortality was 0.79 for precipitation (95% CI: 0.74-0.84) and 0.52 for angioplasty (95% CI: 0.4-0.68) were considered as protective factors of mortality. The individual characteristics including age, history of MI in the immediate family, hypertension, and diabetes were significantly associated with mortality from MI. The indices of air pollution including SO2, CO, O3, and environmental factors such as the precipitation and temperature were the determinants of mortality in patients with MI. Conclusion: With regards to the factors

  12. Increased biomass burning due to the economic crisis in Greece and its adverse impact on wintertime air quality in Thessaloniki.

    PubMed

    Saffari, Arian; Daher, Nancy; Samara, Constantini; Voutsa, Dimitra; Kouras, Athanasios; Manoli, Evangelia; Karagkiozidou, Olga; Vlachokostas, Christos; Moussiopoulos, Nicolas; Shafer, Martin M; Schauer, James J; Sioutas, Constantinos

    2013-01-01

    The recent economic crisis in Greece resulted in a serious wintertime air pollution episode in Thessaloniki. This air quality deterioration was mostly due to the increased price of fuel oil, conventionally used as a source of energy for domestic heating, which encouraged the residents to burn the less expensive wood/biomass during the cold season. A wintertime sampling campaign for fine particles (PM2.5) was conducted in Thessaloniki during the winters of 2012 and 2013 in an effort to quantify the extent to which the ambient air was impacted by the increased wood smoke emissions. The results indicated a 30% increase in the PM2.5 mass concentration as well as a 2-5-fold increase in the concentration of wood smoke tracers, including potassium, levoglucosan, mannosan, and galactosan. The concentrations of fuel oil tracers (e.g., Ni and V), on the other hand, declined by 20-30% during 2013 compared with 2012. Moreover, a distinct diurnal variation was observed for wood smoke tracers, with significantly higher concentrations in the evening period compared with the morning. Correlation analysis indicated a strong association between reactive oxygen species (ROS) activity and the concentrations of levoglucosan, galactosan, and potassium, underscoring the potential impact of wood smoke on PM-induced toxicity during the winter months in Thessaloniki.

  13. Variation of annual effective dose due to radon level in indoor air in Marwar region of Rajasthan, India

    NASA Astrophysics Data System (ADS)

    Rani, Asha; Mittal, Sudhir; Mehra, Rohit

    2015-08-01

    In the present work, indoor radon and thoron measurements have been carried out from different locations of Jodhpur and Nagaur districts of Northern Rajasthan, India using RAD7, a solid state alpha detector. The radon and thoron concentration in indoor air varies from 8.75 to 61.25 Bq m-3 and 32.7 to 147.2 Bq m-3 with the mean value of 32 and 73 Bq m-3 respectively. The observed indoor radon concentration values are well below the action level recommended by International Commission on Radiological Protection (200-300 Bq m-3) and Environmental Protection Agency (148 Bq m-3). The survey reveals that the thoron concentration values in the indoor air are well within the International Commission on Radiological Protection (2005). The calculated total annual effective dose due to radon level in indoor air varies from 0.22 to 1.54 mSv y-1 with the mean value of 0.81 mSv y-1 which is less than even the lower limit of action level 3-10 mSv y-1 recommended by International Commission on Radiological Protection (2005).

  14. Variation of annual effective dose due to radon level in indoor air in Marwar region of Rajasthan, India

    SciTech Connect

    Rani, Asha; Mittal, Sudhir; Mehra, Rohit

    2015-08-28

    In the present work, indoor radon and thoron measurements have been carried out from different locations of Jodhpur and Nagaur districts of Northern Rajasthan, India using RAD7, a solid state alpha detector. The radon and thoron concentration in indoor air varies from 8.75 to 61.25 Bq m{sup −3} and 32.7 to 147.2 Bq m{sup −3} with the mean value of 32 and 73 Bq m{sup −3} respectively. The observed indoor radon concentration values are well below the action level recommended by International Commission on Radiological Protection (200-300 Bq m{sup −3}) and Environmental Protection Agency (148 Bq m{sup −3}). The survey reveals that the thoron concentration values in the indoor air are well within the International Commission on Radiological Protection (2005). The calculated total annual effective dose due to radon level in indoor air varies from 0.22 to 1.54 mSv y{sup −1} with the mean value of 0.81 mSv y{sup −1} which is less than even the lower limit of action level 3-10 mSv y{sup −1} recommended by International Commission on Radiological Protection (2005)

  15. Improving Forecast Skill by Assimilation of Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2009-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of cloud cleared radiances R(sub i). This approach allows for the generation of accurate values of R(sub i) and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel error estimates for R(sub i). These error estimates are used for Quality Control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of Quality Control using the NASA GEOS-5 data assimilation system. Assimilation of Quality Controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done operationally by ECMWF and NCEP. Forecast resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.

  16. Influence of Temperature, Relative Humidity, and Soil Properties on the Soil-Air Partitioning of Semivolatile Pesticides: Laboratory Measurements and Predictive Models.

    PubMed

    Davie-Martin, Cleo L; Hageman, Kimberly J; Chin, Yu-Ping; Rougé, Valentin; Fujita, Yuki

    2015-09-01

    Soil-air partition coefficient (Ksoil-air) values are often employed to investigate the fate of organic contaminants in soils; however, these values have not been measured for many compounds of interest, including semivolatile current-use pesticides. Moreover, predictive equations for estimating Ksoil-air values for pesticides (other than the organochlorine pesticides) have not been robustly developed, due to a lack of measured data. In this work, a solid-phase fugacity meter was used to measure the Ksoil-air values of 22 semivolatile current- and historic-use pesticides and their degradation products. Ksoil-air values were determined for two soils (semiarid and volcanic) under a range of environmentally relevant temperature (10-30 °C) and relative humidity (30-100%) conditions, such that 943 Ksoil-air measurements were made. Measured values were used to derive a predictive equation for pesticide Ksoil-air values based on temperature, relative humidity, soil organic carbon content, and pesticide-specific octanol-air partition coefficients. Pesticide volatilization losses from soil, calculated with the newly derived Ksoil-air predictive equation and a previously described pesticide volatilization model, were compared to previous results and showed that the choice of Ksoil-air predictive equation mainly affected the more-volatile pesticides and that the way in which relative humidity was accounted for was the most critical difference.

  17. Influence of Temperature, Relative Humidity, and Soil Properties on the Soil-Air Partitioning of Semivolatile Pesticides: Laboratory Measurements and Predictive Models.

    PubMed

    Davie-Martin, Cleo L; Hageman, Kimberly J; Chin, Yu-Ping; Rougé, Valentin; Fujita, Yuki

    2015-09-01

    Soil-air partition coefficient (Ksoil-air) values are often employed to investigate the fate of organic contaminants in soils; however, these values have not been measured for many compounds of interest, including semivolatile current-use pesticides. Moreover, predictive equations for estimating Ksoil-air values for pesticides (other than the organochlorine pesticides) have not been robustly developed, due to a lack of measured data. In this work, a solid-phase fugacity meter was used to measure the Ksoil-air values of 22 semivolatile current- and historic-use pesticides and their degradation products. Ksoil-air values were determined for two soils (semiarid and volcanic) under a range of environmentally relevant temperature (10-30 °C) and relative humidity (30-100%) conditions, such that 943 Ksoil-air measurements were made. Measured values were used to derive a predictive equation for pesticide Ksoil-air values based on temperature, relative humidity, soil organic carbon content, and pesticide-specific octanol-air partition coefficients. Pesticide volatilization losses from soil, calculated with the newly derived Ksoil-air predictive equation and a previously described pesticide volatilization model, were compared to previous results and showed that the choice of Ksoil-air predictive equation mainly affected the more-volatile pesticides and that the way in which relative humidity was accounted for was the most critical difference. PMID:26258946

  18. The effect of air temperature and human thermal indices on mortality in Athens, Greece

    NASA Astrophysics Data System (ADS)

    Nastos, Panagiotis T.; Matzarakis, Andreas

    2012-05-01

    This paper investigates whether there is any association between the daily mortality for the wider region of Athens, Greece and the thermal conditions, for the 10-year period 1992-2001. The daily mortality datasets were acquired from the Hellenic Statistical Service and the daily meteorological datasets, concerning daily maximum and minimum air temperature, from the Hellinikon/Athens meteorological station, established at the headquarters of the Greek Meteorological Service. Besides, the daily values of the thermal indices Physiologically Equivalent Temperature (PET) and Universal Thermal Climate Index (UTCI) were evaluated in order to interpret the grade of physiological stress. The first step was the application of Pearson's χ 2 test to the compiled contingency tables, resulting in that the probability of independence is zero ( p = 0.000); namely, mortality is in close relation to the air temperature and PET/UTCI. Furthermore, the findings extracted by the generalized linear models showed that, statistically significant relationships ( p < 0.01) between air temperature, PET, UTCI and mortality exist on the same day. More concretely, on one hand during the cold period (October-March), a 10°C decrease in daily maximum air temperature, minimum air temperature, temperature range, PET and UTCI is related with an increase 13%, 15%, 2%, 7% and 6% of the probability having a death, respectively. On the other hand, during the warm period (April-September), a 10°C increase in daily maximum air temperature, minimum air temperature, temperature range, PET and UTCI is related with an increase 3%, 1%, 10%, 3% and 5% of the probability having a death, respectively. Taking into consideration the time lag effect of the examined parameters on mortality, it was found that significant effects of 3-day lag during the cold period appears against 1-day lag during the warm period. In spite of the general aspect that cold conditions seem to be favourable factors for daily mortality

  19. Relating trends in land surface-air temperature difference to soil moisture and evapotranspiration

    NASA Astrophysics Data System (ADS)

    Veal, Karen; Taylor, Chris; Gallego-Elvira, Belen; Ghent, Darren; Harris, Phil; Remedios, John

    2016-04-01

    Soil water is central to both physical and biogeochemical processes within the Earth System. Drying of soils leads to evapotranspiration (ET) becoming limited or "water-stressed" and is accompanied by rises in land surface temperature (LST), land surface-air temperature difference (delta T), and sensible heat flux. Climate models predict sizable changes to the global water cycle but there is variation between models in the time scale of ET decay during dry spells. The e-stress project is developing novel satellite-derived diagnostics to assess the ability of Earth System Models (ESMs) to capture behaviour that is due to soil moisture controls on ET. Satellite records of LST now extend 15 years or more. MODIS Terra LST is available from 2000 to the present and the Along-Track Scanning Radiometer (ATSR) LST record runs from 1995 to 2012. This paper presents results from an investigation into the variability and trends in delta T during the MODIS Terra mission. We use MODIS Terra and MODIS Aqua LST and ESA GlobTemperature ATSR LST with 2m air temperatures from reanalyses to calculate trends in delta T and "water-stressed" area. We investigate the variability of delta T in relation to soil moisture (ESA CCI Passive Daily Soil Moisture), vegetation (MODIS Monthly Normalized Difference Vegetation Index) and precipitation (TRMM Multi-satellite Monthly Precipitation) and compare the temporal and spatial variability of delta T with model evaporation data (GLEAM). Delta T anomalies show significant negative correlations with soil moisture, in different seasons, in several regions across the planet. Global mean delta T anomaly is small (magnitude mostly less than 0.2 K) between July 2002 and July 2008 and decreases to a minimum in early 2010. The reduction in delta T anomaly coincides with an increase in soil moisture anomaly and NDVI anomaly suggesting an increase in evapotranspiration and latent heat flux with reduced sensible heat flux. In conclusion there have been

  20. [Effects of anomalous rise of air temperature on population mortality].

    PubMed

    Chazov, E I; Boĭtsov, S A

    2012-01-01

    Global climate warming for the last 10 years actualized the problem of mortality rise in some European countries in anomalous summer heat. Russia faced this problem in July-August 2010 when extreme heat entailed a significant elevation of mortality in 31 regions of the country primarily due to coronary heart disease and cerebrovascular diseases. The analysis of foreign researches has shown that old age and living in cities are leading risk factors of deat in anomalous heat. Experience of the European countries and USA evidences that stay in conditioned apartments and early referral for medical assistance are most effective death preventive measures in heat.

  1. Ambient air pollution, temperature and out-of-hospital coronary deaths in Shanghai, China.

    PubMed

    Dai, Jinping; Chen, Renjie; Meng, Xia; Yang, Changyuan; Zhao, Zhuohui; Kan, Haidong

    2015-08-01

    Few studies have evaluated the effects of ambient air pollution and temperature in triggering out-of-hospital coronary deaths (OHCDs) in China. We evaluated the associations of air pollution and temperature with daily OHCDs in Shanghai, China from 2006 to 2011. We applied an over-dispersed generalized additive model and a distributed lag nonlinear model to analyze the effects of air pollution and temperature, respectively. A 10 μg/m(3) increase in the present-day PM10, PM2.5, SO2, NO2 and CO were associated with increases in OHCD mortality of 0.49%, 0.68%, 0.88%, 1.60% and 0.08%, respectively. A 1 °C decrease below the minimum-mortality temperature corresponded to a 3.81% increase in OHCD mortality on lags days 0-21, and a 1 °C increase above minimum-mortality temperature corresponded to a 4.61% increase over lag days 0-3. No effects were found for in-hospital coronary deaths. This analysis suggests that air pollution, low temperature and high temperature may increase the risk of OHCDs.

  2. Temperature changes in rheumatoid hand treated with nitrogen vapors and cold air.

    PubMed

    Korman, Paweł; Straburzyńska-Lupa, Anna; Romanowski, Wojciech; Trafarski, Andrzej

    2012-10-01

    The aim of the study was the thermovisual comparison of mean temperature of hand surface changes after local cryotherapy with vapors of nitrogen (-160°C) and cold air (-30°C). Forty-seven patients with rheumatoid arthritis (39 women and 8 men; average age 56.2 ± 10.5 years) were included in the study. They had the application of topic cryotherapy using nitrogen vapors or cold air on one hand. Main outcome measure was surface temperature of dorsal sides of the cooled and contralateral hands. Thermal images of both hands were taken before and up to 3 h after the treatment. One minute after application, nitrogen vapors induced decrease in surface skin temperature of the cooled hand from 28.9 ± 1.8°C to 17.9 ± 2.2°C, P < 0.05, whereas cold air from 29.4 ± 2.4°C to 23.1 ± 2.2°C, P < 0.05. However, significantly lower temperature was obtained with vapors of nitrogen (P < 0.05). Just after the treatment, a rapid rewarming occurred and hands reached baseline temperature in 15 min in both applications and they did not differ till the end of the procedure. Both nitrogen vapors and cold air induce similar temperature changes in hands with the exclusion of temperature obtained 1 min after the treatment. Changes in non-cooled hands indicate contralateral reaction.

  3. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  4. Extremely cold events and sudden air temperature drops during winter season in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Crhová, Lenka; Valeriánová, Anna; Holtanová, Eva; Müller, Miloslav; Kašpar, Marek; Stříž, Martin

    2014-05-01

    Today a great attention is turned to analysis of extreme weather events and frequency of their occurrence under changing climate. In most cases, these studies are focused on extremely warm events in summer season. However, extremely low values of air temperature during winter can have serious impacts on many sectors as well (e.g. power engineering, transportation, industry, agriculture, human health). Therefore, in present contribution we focus on extremely and abnormally cold air temperature events in winter season in the Czech Republic. Besides the seasonal extremes of minimum air temperature determined from station data, the standardized data with removed annual cycle are used as well. Distribution of extremely cold events over the season and the temporal evolution of frequency of occurrence during the period 1961-2010 are analyzed. Furthermore, the connection of cold events with extreme sudden temperature drops is studied. The extreme air temperature events and events of extreme sudden temperature drop are assessed using the Weather Extremity Index, which evaluates the extremity (based on return periods) and spatial extent of the meteorological extreme event of interest. The generalized extreme value distribution parameters are used to estimate return periods of daily temperature values. The work has been supported by the grant P209/11/1990 funded by the Czech Science Foundation.

  5. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity.

    PubMed

    Bugbee, B; Monje, O; Tanner, B

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature. PMID:11538791

  6. Effect of green roofs on air temperature; measurement study of well-watered and dry conditions

    NASA Astrophysics Data System (ADS)

    Solcerova, Anna; van de Ven, Frans; Wang, Mengyu; van de Giesen, Nick

    2016-04-01

    Rapid urbanization and increasing number and duration of heat waves poses a need for understanding urban climate and ways to mitigate extremely high temperatures. One of repeatedly suggested and often investigated methods to moderate the so called urban heat island are green roofs. This study investigates several extensive green roofs in Utrecht (NL) and their effect on air temperature right above the roof surface. Air temperature was measured 15 and 30 cm above the roof surface and also in the substrate. We show that under normal condition is air above green roof, compared to white gravel roof, colder at night and warmer during day. This suggest that green roofs might help decrease air temperatures at night, when the urban heat island is strongest, but possibly contribute to high temperatures during daytime. We also measured situation when the green roofs wilted and dried out. Under such conditions green roof exhibits more similar behavior to conventional white gravel roof. Interestingly, pattern of soil temperature remains almost the same for both dry and well-prospering green roof, colder during day and warmer at night. As such, green roof works as a buffer of diurnal temperature changes.

  7. The effect of the solar eclipse on the air temperature near the ground

    NASA Astrophysics Data System (ADS)

    Szalowski, Karol

    2002-10-01

    This paper describes the effect of the air temperature decrease in low boundary layer during the solar eclipse with special regard to influence on convectional events. The phenomenon progress was modelled to predict solar radiation flux changes. Then the basic model of local ground and air temperature changes was constructed. The qualitative features of air temperature-time curve during the eclipse were explained. The effect was investigated experimentally on the example of the partial eclipse observed from Szczawnica, Poland on 11th August, 1999. The results of the precise air temperature measurements were presented. The general shape of temperature curve was confirmed. The problem of convection intensity and temporal scales of convectional events was examined. It was observed that the temperature variance decreased over a factor of 2 in the maximum eclipse- centred, 50min long time interval which depicts the reduced convection regime. In addition, the temperature spectrum for long periods obtained for this time range seem to differ significantly from one registered before and after. The convection near the maximum eclipse is characterised by a dominant temporal scale of 22min, while before and after 11-13min scale is the most important.

  8. Interactive short-term effects of equivalent temperature and air pollution on human mortality in Berlin and Lisbon.

    PubMed

    Burkart, Katrin; Canário, Paulo; Breitner, Susanne; Schneider, Alexandra; Scherber, Katharina; Andrade, Henrique; Alcoforado, Maria João; Endlicher, Wilfried

    2013-12-01

    There is substantial evidence that both temperature and air pollution are predictors of mortality. Thus far, few studies have focused on the potential interactive effects between the thermal environment and different measures of air pollution. Such interactions, however, are biologically plausible, as (extreme) temperature or increased air pollution might make individuals more susceptible to the effects of each respective predictor. This study investigated the interactive effects between equivalent temperature and air pollution (ozone and particulate matter) in Berlin (Germany) and Lisbon (Portugal) using different types of Poisson regression models. The findings suggest that interactive effects exist between air pollutants and equivalent temperature. Bivariate response surface models and generalised additive models (GAMs) including interaction terms showed an increased risk of mortality during periods of elevated equivalent temperatures and air pollution. Cold effects were mostly unaffected by air pollution. The study underscores the importance of air pollution control in mitigating heat effects.

  9. Fine particles (PM2.5) in ambient air of Lucknow city due to fireworks on Diwali festival.

    PubMed

    Barman, S C; Singh, Ramesh; Negi, M P S; Bhargava, S K

    2009-09-01

    People burn crackers world over on different occasions in different countries to express their happiness. Fireworks in large amounts aggravate the level of air pollutants and cause significant short-term air quality degradation with possible impact on human health. Fine particles (PM2.5 < or = 2.5 microm), which may pose detrimental effects on human health and ecosystems were monitored in a residential area of Lucknow city to assess the elevated level due to bursting of firecrackers during Diwali festival. The 24 hr mean PM2.5 of normal day, pre Diwali day, Diwali day and post Diwali day was found to be 124, 154, 352 and 174 microg m(-3) respectively and much above the US-EPA limit (65 microg m(-3)). The 12 hr mean concentration of PM2.5 on Diwali night (591 microg m(-3)) increased 3.9 fold than the respective night of normal day (159 microg m(-3)) and was significantly higher (p<0.01) than normal day and pre and post Diwali night. Mean comparison showed that Diwali day was significantly (p<0.01) different from others (except post Diwali day) and for this high accumulation during night time, after fireworks (suspension) was found to be more responsible than the period of lighting of crackers (formation). This study indicated that there is high accumulation of PM2.5 generated due to fireworks on Diwali festival which remains suspended in the air for up to 20 hr During this period, extra mass burden of 289 microg m(-3) equivalent to 1.9 normal day (of this study) was imposed in the environment. The short-term high accumulation of PM2.5 is a matter of serious concern for city dwellers as it can penetrate deep into the lungs and cause many respiratory and cardiovascular diseases.

  10. Simulation of RCC Crack Growth Due to Carbon Oxidation in High-Temperature Gas Environments

    NASA Technical Reports Server (NTRS)

    Titov, E. V.; Levin, D. A.; Picetti, Donald J.; Anderson, Brian P.

    2009-01-01

    The carbon wall oxidation technique coupled with a CFD technique was employed to study the flow in the expanding crack channel caused by the oxidation of the channel carbon walls. The recessing 3D surface morphing procedure was developed and tested in comparison with the arcjet experimental results. The multi-block structured adaptive meshing was used to model the computational domain changes due to the wall recession. Wall regression rates for a reinforced carbon-carbon (RCC) samples, that were tested in a high enthalpy arcjet environment, were computationally obtained and used to assess the channel expansion. The test geometry and flow conditions render the flow regime as the transitional to continuum, therefore Navier-Stokes gas dynamic approach with the temperature jump and velocity slip correction to the boundary conditions was used. The modeled mechanism for wall material loss was atomic oxygen reaction with bare carbon. The predicted channel growth was found to agree with arcjet observations. Local gas flow field results were found to affect the oxidation rate in a manner that cannot be predicted by previous mass loss correlations. The method holds promise for future modeling of materials gas-dynamic interactions for hypersonic flight.

  11. Simulating global and local surface temperature changes due to Holocene anthropogenic land cover change

    NASA Astrophysics Data System (ADS)

    He, Feng; Vavrus, Steve J.; Kutzbach, John E.; Ruddiman, William F.; Kaplan, Jed O.; Krumhardt, Kristen M.

    2014-01-01

    Surface albedo changes from anthropogenic land cover change (ALCC) represent the second largest negative radiative forcing behind aerosol during the industrial era. Using a new reconstruction of ALCC during the Holocene era by Kaplan et al. (2011), we quantify the local and global temperature response induced by Holocene ALCC in the Community Climate System Model, version 4. We find that Holocene ALCC causes a global cooling of 0.17°C due to the biogeophysical effects of land-atmosphere exchange of momentum, moisture, and radiative and heat fluxes. On the global scale, the biogeochemical effects of Holocene ALCC from carbon emissions dominate the biogeophysical effects by causing 0.9°C global warming. The net effects of Holocene ALCC amount to a global warming of 0.73°C during the preindustrial era, which is comparable to the ~0.8°C warming during industrial times. On local to regional scales, such as parts of Europe, North America, and Asia, the biogeophysical effects of Holocene ALCC are significant and comparable to the biogeochemical effect.

  12. Assimilation of Quality Controlled AIRS Temperature Profiles using the NCEP GFS

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste; Iredell, Lena; Rosenberg, Robert

    2013-01-01

    We have previously conducted a number of data assimilation experiments using AIRS Version-5 quality controlled temperature profiles as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The data assimilation and forecast system we used was the Goddard Earth Observing System Model , Version-5 (GEOS-5) Data Assimilation System (DAS), which represents a combination of the NASA GEOS-5 forecast model with the National Centers for Environmental Prediction (NCEP) operational Grid Point Statistical Interpolation (GSI) global analysis scheme. All analyses and forecasts were run at a 0.5deg x 0.625deg spatial resolution. Data assimilation experiments were conducted in four different seasons, each in a different year. Three different sets of data assimilation experiments were run during each time period: Control; AIRS T(p); and AIRS Radiance. In the "Control" analysis, all the data used operationally by NCEP was assimilated, but no AIRS data was assimilated. Radiances from the Aqua AMSU-A instrument were also assimilated operationally by NCEP and are included in the "Control". The AIRS Radiance assimilation adds AIRS observed radiance observations for a select set of channels to the data set being assimilated, as done operationally by NCEP. In the AIRS T(p) assimilation, all information used in the Control was assimilated as well as Quality Controlled AIRS Version-5 temperature profiles, i.e., AIRS T(p) information was substituted for AIRS radiance information. The AIRS Version-5 temperature profiles were presented to the GSI analysis as rawinsonde profiles, assimilated down to a case-by-case appropriate pressure level p(sub best) determined using the Quality Control procedure. Version-5 also determines case-by-case, level-by-level error estimates of the temperature profiles, which were used as the uncertainty of each temperature measurement. These experiments using GEOS-5 have shown that forecasts

  13. A quantitative assessment of the relationship between precipitation deficits and air temperature variations

    NASA Astrophysics Data System (ADS)

    He, B.; Wang, H. L.; Wang, Q. F.; Di, Z. H.

    2015-06-01

    Previous studies have reported precipitation deficits related to temperature extremes. However, how and to what extent precipitation deficits affect surface air temperatures is still poorly understood. In this study, the relationship between precipitation deficits and surface temperatures was examined in China from 1960 to 2012 based on monthly temperature and precipitation records from 565 stations. Significant negative correlations were identified in each season, with the strongest relationships in the summer, indicating that higher temperatures usually accompanied water-deficient conditions and lower temperatures usually accompanied wet conditions. The examination of the correlations based on 30 year moving windows suggested that the interaction between the two variables has declined over the past three decades. Further investigation indicated a higher impact of extreme dry conditions on temperature than that of extreme wet conditions. In addition, a new simple index (Dry Temperature Index, DTI) was developed and used to quantitatively describe the relationship between water deficits and air temperature variations. We tested and compared the DTI in the coldest month (January) and the hottest month (July) of the year, station by station. In both months, the number of stations with a DThighI ≥ 50% was greater than those with a DThighI < 50%, indicating that a greater proportion of higher temperatures occurred during dry conditions. Based on the results, we conclude that water deficits in China are usually correlated to high temperatures but not to low temperatures.

  14. Performance of High Temperature Air Combustion Boiler with Low NOx Emission

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiromichi; Ito, Yoshihito; Tsuruta, Naoki; Yoshikawa, Kunio

    Thermal performance in the experiments and three-dimensional numerical simulations for a high temperature air combustion boiler where fuel can be efficiently combusted by high temperature preheated air (800°C-1000°C) is examined. The boiler can burn not only natural gas but also low calorific gas (e. g. full gasification gas obtained from coal or wastes). In the boiler, four regenerative burners are installed. This boiler has new features that not only air but also gasification gas is heated up to 900°C, and combination of burners is switched every 15 seconds where two burners are used as inlets of fuel and air and the other two burners are used as outlets of exhaust gas. Natural gas and syngas obtained from coal are burned. The NOx emission for each fuel is less than 50ppm. The heat transfer of three-dimensional calculation is predicted higher than that of experiment.

  15. Eleven years of ground-air temperature tracking over different land cover materials

    NASA Astrophysics Data System (ADS)

    Cermák, Vladimír; Dedecek, Petr; Bodri, Louise; Safanda, Jan; Kresl, Milan

    2015-04-01

    We have analyzed series of air, near surface and shallow ground temperatures under four different land covers, namely bare clayey soil, sand, grass and asphalt, collected between 2002 and 2013, monitored at the Geothermal Climate Change Observatory Sporilov. All obtained temperature series revealed a strong dependence of the subsurface thermal regime on the surface cover material. The ground "skin" temperatures are generally warmer than the surface air temperatures for all monitored surfaces; however they mutually differ significantly reflecting the nature of the land surface. Asphalt shows the highest temperatures, temperatures below the grassy surface are the lowest. A special interest was paid to the assessment of the "temperature offset", the difference between the surface ground temperature and the surface air temperature. Even when its instant value varies dramatically on both, daily and annual scale, by up to 30+ K, on a long time scale it is believed to be generally constant. The characteristic 2003-2013 mean offset values for the individual covers are following: asphalt 4.1 K, sand 1.6 K, clay 1.3 K and grass 0.2-0.3 K. All four surface covers revealed their daily and inter-annual cycles. Incident solar radiation is the primary variable in determining the amount of the temperature offset value and its time changes. A linear relationship between air-ground temperature differences and incident solar radiation was detected. The slope of the linear regression between both variables is clearly surface cover dependent. The greatest value of 3.3 K per 100 W.m-2 was found for asphalt, rates of 1.0 to 1.2 apply for bare soil and sand covers and negative slope of -0.44 K per 100 W.m-2 stands for grass, during the day or year the slope rates may vary extensively reflecting the periodic daily and/or annual cycle as well as the irregular instant deviations in solar radiation.

  16. Numerical analysis of air-flow and temperature field in a passenger car compartment

    NASA Astrophysics Data System (ADS)

    Kamar, Haslinda Mohamed; Kamsah, Nazri; Mohammad Nor, Ahmad Miski

    2012-06-01

    This paper presents a numerical study on the temperature field inside a passenger's compartment of a Proton Wira saloon car using computational fluid dynamics (CFD) method. The main goal is to investigate the effects of different glazing types applied onto the front and rear windscreens of the car on the distribution of air-temperature inside the passenger compartment in the steady-state conditions. The air-flow condition in the passenger's compartment is also investigated. Fluent CFD software was used to develop a three-dimensional symmetrical model of the passenger's compartment. Simplified representations of the driver and one rear passenger were incorporated into the CFD model of the passenger's compartment. Two types of glazing were considered namely clear insulated laminated tint (CIL) with a shading coefficient of 0.78 and green insulated laminate tint (GIL) with a shading coefficient of 0.5. Results of the CFD analysis were compared with those obtained when the windscreens are made up of clear glass having a shading coefficient of 0.86. Results of the CFD analysis show that for a given glazing material, the temperature of the air around the driver is slightly lower than the air around the rear passenger. Also, the use of GIL glazing material on both the front and rear windscreens significantly reduces the air temperature inside the passenger's compartment of the car. This contributes to a better thermal comfort condition to the occupants. Swirling air flow condition occurs in the passenger compartment. The air-flow intensity and velocity are higher along the side wall of the passenger's compartment compared to that along the middle section of the compartment. It was also found that the use of glazing materials on both the front and rear windscreen has no significant effects on the air-flow condition inside the passenger's compartment of the car.

  17. Characterization of AIRS temperature and water vapor measurement capability using correlative observations

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Eldering, Annmarie; Lee, Sung-Yung

    2005-01-01

    In this presentation we address several fundamental issues in the measurement of temperature and water vapor by AIRS: accuracy, precision, vertical resolution and biases as a function of cloud amount. We use two correlative data sources. First we compare AIRS total water vapor with that from the Advanced microwave Sounding Radiometer for EOS (AMSR-E) instrument, also onboard the Aqua spacecraft. AMSRE uses a mature methodology with a heritage including the operational Special Sensor Microwave Imager (SSM/I) instruments. AIRS and AMSR-E observations are collocated and simultaneous, providing a very large data set for comparison: about 200,000 over-ocean matches daily. We show small cloud-dependent biases between AIRS and AMSR-E total water vapor for several oceanic regions. Our second correlative data source is several hundred dedicated radiosondes launched during AIRS overpasses.

  18. Opportunities to Reduce Air-Conditioning Loads Through Lower Cabin Soak Temperatures

    SciTech Connect

    Farrington, R.; Cuddy, M.; Keyser, M.; Rugh, J.

    1999-07-12

    Air-conditioning loads can significantly reduce electric vehicle (EV) range and hybrid electric vehicle (HEV) fuel economy. In addition, a new U. S. emissions procedure, called the Supplemental Federal Test Procedure (SFTP), has provided the motivation for reducing the size of vehicle air-conditioning systems in the United States. The SFTP will measure tailpipe emissions with the air-conditioning system operating. If the size of the air-conditioning system is reduced, the cabin soak temperature must also be reduced, with no penalty in terms of passenger thermal comfort. This paper presents the impact of air-conditioning on EV range and HEV fuel economy, and compares the effectiveness of advanced glazing and cabin ventilation. Experimental and modeled results are presented.

  19. Short-term effects of air temperature on mortality and effect modification by air pollution in three cities of Bavaria, Germany: A time-series analysis

    EPA Science Inventory

    Background: Air temperature has been shown to be associated with mortality; however, only very few studies have been conducted in Germany. This study examined the association between daily air temperature and cause-specific mortality in Bavaria, Southern Germany. Moreover, we inv...

  20. Air conditioner operation behaviour based on students' skin temperature in a classroom.

    PubMed

    Song, Gook-Sup; Lim, Jae-Han; Ahn, Tae-Kyung

    2012-01-01

    A total of 25 college students participated in a study to determine when they would use an air conditioner during a lecture in a university classroom. The ambient temperature and relative humidity were measured 75 cm above the floor every minute. Skin temperatures were measured every minute at seven points, according to the recommendation of Hardy and Dubois. The average clothing insulation value (CLO) of subjects was 0.53 ± 0.07 CLO. The mean air velocity in the classroom was 0.13 ± 0.028 m/s. When the subjects turned the air conditioner both on and off, the average ambient temperatures, relative humidity and mean skin temperatures were 27.4 and 23.7 °C (p = 0.000), 40.9 and 40.0% (p = 0.528) and 32.7 and 32.2 °C (p = 0.024), respectively. When the status of the air conditioner was changed, the differences of skin temperatures in core body parts (head, abdomen and thigh) were not statistically significant. However, in the extremities (mid-lower arm, hand, shin and instep), the differences were statistically significant. Subjects preferred a fluctuating environment to a constant temperature condition. We found that a changing environment does not affect classroom study. PMID:21665190

  1. Global surface air temperature in 1995: Return to pre-Pinatubo level

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Ruedy, R.; Sato, M.; Reynolds, R.

    Global surface air temperature has increased about 0.5°C from the minimum of mid-1992, a year after the Mt. Pinatubo eruption. Both a land-based surface air temperature record and a land-marine temperature index place the meteorological year 1995 at approximately the same level as 1990, previously the warmest year in the period of instrumental data. As El Niño warming was small in 1995, the solar cycle near a minimum, and ozone depletion near record levels, the observed high temperature supports the contention of an underlying global warming trend. The pattern of Northern Hemisphere temperature change in recent decades appears to reflect a change of atmospheric dynamics.

  2. Arctic smoke record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Berg, T.; Burkhart, J. F.; Fjæraa, A. M.; Forster, C.; Herber, A.; Hov, Ø.; Lunder, C.; McMillan, W. W.; Oltmans, S.; Shiobara, M.; Simpson, D.; Solberg, S.; Stebel, K.; Ström, J.; Tørseth, K.; Treffeisen, R.; Virkkunen, K.; Yttri, K. E.

    2006-10-01

    In spring 2006, the European Arctic was abnormally warm, setting new historical temperature records. During this warm period, smoke from agricultural fires in Eastern Europe intruded into the European Arctic and caused the most severe air pollution episodes ever recorded there. This paper confirms that biomass burning (BB) was indeed the source of the observed air pollution, studies the transport of the smoke into the Arctic, and presents an overview of the observations taken during the episode. Fire detections from the MODIS instruments aboard the Aqua and Terra satellites were used to estimate the BB emissions. The FLEXPART particle dispersion model was used to show that the smoke was transported to Spitsbergen and Iceland, which was confirmed by MODIS retrievals of the aerosol optical depth (AOD) and AIRS retrievals of carbon monoxide (CO) total columns. Concentrations of halocarbons, carbon dioxide and CO, as well as levoglucosan and potassium, measured at Zeppelin mountain near NyÅlesund, were used to further corroborate the BB source of the smoke at Spitsbergen. The ozone (O3) and CO concentrations were the highest ever observed at the Zeppelin station, and gaseous elemental mercury was also enhanced. A new O3 record was also set at a station on Iceland. The smoke was strongly absorbing - black carbon concentrations were the highest ever recorded at Zeppelin -, and strongly perturbed the radiation transmission in the atmosphere: aerosol optical depths were the highest ever measured at NyÅlesund. We furthermore discuss the aerosol chemical composition, obtained from filter samples, as well as the aerosol size distribution during the smoke event. Photographs show that the snow at a glacier on Spitsbergen became discolored during the episode and, thus, the snow albedo was reduced. Samples of this polluted snow contained strongly enhanced levels of potassium, sulphate, nitrate and ammonium ions, thus relating the discoloration to the deposition of the smoke

  3. Molecular dynamics investigations of mechanical behaviours in monocrystalline silicon due to nanoindentation at cryogenic temperatures and room temperature

    PubMed Central

    Du, Xiancheng; Zhao, Hongwei; Zhang, Lin; Yang, Yihan; Xu, Hailong; Fu, Haishuang; Li, Lijia

    2015-01-01

    Molecular dynamics simulations of nanoindentation tests on monocrystalline silicon (010) surface were conducted to investigate the mechanical properties and deformation mechanism from cryogenic temperature being 10 K to room temperature being 300 K. Furthermore, the load-displacement curves were obtained and the phase transformation was investigated at different temperatures. The results show that the phase transformation occurs both at cryogenic temperatures and at room temperature. By searching for the presence of the unique non-bonded fifth neighbour atom, the metastable phases (Si-III and Si-XII) with fourfold coordination could be distinguished from Si-I phase during the loading stage of nanoindentation process. The Si-II, Si-XIII, and amorphous phase were also found in the region beneath the indenter. Moreover, through the degree of alignment of the metastable phases along specific crystal orientation at different temperatures, it was found that the temperature had effect on the anisotropy of the monocrystalline silicon, and the simulation results indicate that the anisotropy of monocrystalline silicon is strengthened at low temperatures. PMID:26537978

  4. The influence of snow depth and surface air temperature on satellite-derived microwave brightness temperature. [central Russian steppes, and high plains of Montana, North Dakota, and Canada

    NASA Technical Reports Server (NTRS)

    Foster, J. L.; Hall, D. K.; Chang, A. T. C.; Rango, A.; Allison, L. J.; Diesen, B. C., III

    1980-01-01

    Areas of the steppes of central Russia, the high plains of Montana and North Dakota, and the high plains of Canada were studied in an effort to determine the relationship between passive microwave satellite brightness temperature, surface air temperature, and snow depth. Significant regression relationships were developed in each of these homogeneous areas. Results show that sq R values obtained for air temperature versus snow depth and the ratio of microwave brightness temperature and air temperature versus snow depth were not as the sq R values obtained by simply plotting microwave brightness temperature versus snow depth. Multiple regression analysis provided only marginal improvement over the results obtained by using simple linear regression.

  5. Raman-LIF measurements of temperature, major species, OH, and NO in a methane-air bunsen flame

    SciTech Connect

    Nguyen, Q.V.; Dibble, R.W.; Carter, C.D.; Fiechtner, G.J.; Barlow, R.S.

    1996-06-01

    Nonintrusive measurements of temperature, the major species (N{sub 2}, O{sub 2}, H{sub 2}, H{sub 2}O, CO{sub 2}, CO, CH{sub 4}), OH, and NO in an atmospheric pressure, laminar methane-air bunsen flame were obtained using a combination of Raman-Rayleigh scattering and laser-induced fluorescence. Radial profiles were measured at three axial locations for an equivalence ratio of 1.38. Measurements along the centerline of the flame, for equivalence ratios of 1.38, 1.52, and 1.70, were also obtained. The measurements indicate that the inner unburned fuel-air mixture experiences significant preheating as it travels up into the conical flame zone surrounding it. Consequently, the centerline axial temperatures were typically 100--150 K higher than predicted by adiabatic equilibrium for reactants at an initial temperature of 300 K. Because the amount of preheating increases with the equivalence ratio (due to the increased inner flame height), the maximum temperatures (2,000 K) in a Bunsen flame were rather insensitive to the stoichiometry. The authors observed a 20% reduction of the maximum NO concentrations (80 ppm) in a Bunsen flame by increasing the equivalence ratio from 1.38 to 1.70. They also find that using a one-dimensional premixed laminar flame model incorporating finite-rate chemistry, satisfactorily predicts properties such as the temperature, CO, OH, and NO concentrations at the inner flame.

  6. The comparative performance of an aviation engine at normal and high inlet air temperatures

    NASA Technical Reports Server (NTRS)

    Gardiner, Arthur W; Schey, Oscar W

    1928-01-01

    This report presents some results obtained during an investigation to determine the effect of high inlet air temperature on the performance of a Liberty 12 aviation engine. The purpose of this investigation was to ascertain, for normal service carburetor adjustments and a fixed ignition advance, the relation between power and temperature for the range of carburetor air temperatures that may be encountered when supercharging to sea level pressure at altitudes of over 20,000 feet and without intercooling when using plain aviation gasoline and mixtures of benzol and gasoline. The results show that for the conditions of test, both the brake and indicated power decrease with increase in air temperature at a faster rate than given by the theoretical assumption that power varies inversely as the square root of the absolute temperature. On a brake basis, the order of the difference in power for a temperature difference of 120 degrees F. Is 3 to 5 per cent. The observed relation between power and temperature when using the 30-70 blend was found to be linear. But, although these differences are noted, the above theoretical assumption may be considered as generally applicable except where greater precision over a wide range of temperatures is desired, in which case it appears necessary to test the particular engine under the given conditions. (author)

  7. Prediction of air temperature for thermal comfort of people in outdoor environments

    NASA Astrophysics Data System (ADS)

    Huang, Jianhua

    2007-05-01

    Current thermal comfort indices do not take into account the effects of wind and body movement on the thermal resistance and vapor resistance of clothing. This may cause public health problem, e.g. cold-related mortality. Based on the energy balance equation and heat exchanges between a clothed body and the outdoor environment, a mathematical model was developed to determine the air temperature at which an average adult, wearing a specific outdoor clothing and engaging in a given activity, attains thermal comfort under outdoor environment condition. The results indicated low clothing insulation, less physical activity and high wind speed lead to high air temperature prediction for thermal comfort. More accurate air temperature prediction is able to prevent wearers from hypothermia under cold conditions.

  8. The effect of air temperature on the sappan wood extract drying

    NASA Astrophysics Data System (ADS)

    Djaeni, M.; Triyastuti, M. S.; Asiah, N.; Annisa, A. N.; Novita, D. A.

    2015-12-01

    The sappan wood extract contain natural colour called brazilin that can be used as a food colouring and antioxidant. The product is commonly found as a dry extract powder for consummer convenience. The spray dryer with air dehumidification can be an option to retain the colour and antioxidant agent. This paper discusses the effect of air temperature on sappan wood extract drying that was mixed with maltodextrin. As responses, the particle size, final moisture content, and extract solubility degradation were observed. In all cases, the process conducted in temperature ranging 90 - 110°C can retain the brazilin quality as seen in solubility and particle size. In addition, the sappan wood extract can be fully dried with moisture content below 2%. Moreover, with the increase of air temperature, the particle size of dry extract can be smaller.

  9. [Environment of high temperature or air particle matter pollution, and health promotion of exercise].

    PubMed

    Zhao, Jie-xiu; Xu, Min-xiao; Wu, Zhao-zhao

    2014-10-01

    It is important to keep human health in special environment, since the special environment has different effects on health. In this review, we focused on high temperature and air particle matter environment, and health promotion of exercise. Exercise and high temperature are the main non-pharmacological therapeutic interventions of insulin resistance (IR). PGC-1α is key regulatory factor in health promotion of exercise and high temperature. The novel hormone Irisin might be the important pathway through which heat and exercise could have positive function on IR. Air particle matter (PM) is associated with onset of many respiratory diseases and negative effects of exerciser performance. However, regular exercise plays an important role in improving health of respiratory system and lowering the risk induced by PM. Furthermore, free radicals and inflammatory pathways are included in the possible mechanisms of positive physiological effects induced by exercise in air particle matter environment.

  10. Torrefaction and low temperature carbonization of oil palm fiber and Eucalyptus in nitrogen and air atmospheres.

    PubMed

    Lu, Ke-Miao; Lee, Wen-Jhy; Chen, Wei-Hsin; Liu, Shih-Hsien; Lin, Ta-Chang

    2012-11-01

    Torrefaction is a pretreatment method for upgrading biomass as solid fuels. To provide flexible operations for effectively upgrading biomass at lower costs, the aim of this study was to investigate the properties of oil palm fiber and eucalyptus pretreated in nitrogen and air atmospheres at temperatures of 250-350°C for 1h. Based on energy and solid yield and introducing an energy-mass co-benefit index (EMCI), oil palm fiber pretreatment under nitrogen at 300°C provided the solid fuel with higher energy density and less volume compared to other temperatures. Pretreatment of oil palm fiber in air resulted in the fuel with low solid and energy yields and is therefore not recommended. For eucalyptus, nitrogen and air can be employed to upgrade the biomass, and the suggested temperatures are 325 and 275°C, respectively.

  11. Flow and containment characteristics of an air-curtain fume hood operated at high temperatures.

    PubMed

    Chen, Jia-Kun; Huang, Rong Fung; Hsin, Pei-Yi; Hsu, Ching Min; Chen, Chun-Wann

    2012-01-01

    The flow and leakage characteristics of the air-curtain fume hood under high temperature operation (between 100°C and 250°C) were studied. Laser-assisted flow visualization technique was used to reveal the hot plume movements in the cabinet and the critical conditions for the hood-top leakage. The sulfur hexafluoride tracer-gas concentration test method was employed to examine the containment spillages from the sash opening and the hood top. It was found that the primary parameters dominating the behavior of the flow field and hood performance are the sash height and the suction velocity as an air-curtain hood is operated at high temperatures. At large sash height and low suction velocity, the air curtain broke down and accompanied with three-dimensional flow in the cabinet. Since the suction velocity was low and the sash opening was large, the makeup air drawn down from the hood top became insufficient to counter act the rising hot plume. Under this situation, containment leakage from the sash opening and the hood top was observed. At small sash opening and high suction velocity, the air curtain presented robust characteristics and the makeup air flow from the hood top was sufficiently large. Therefore the containment leakages from the sash opening and the hood top were not observed. According to the results of experiments, quantitative operation sash height and suction velocity corresponding to the operation temperatures were suggested. PMID:22293724

  12. Flow and containment characteristics of an air-curtain fume hood operated at high temperatures.

    PubMed

    Chen, Jia-Kun; Huang, Rong Fung; Hsin, Pei-Yi; Hsu, Ching Min; Chen, Chun-Wann

    2012-01-01

    The flow and leakage characteristics of the air-curtain fume hood under high temperature operation (between 100°C and 250°C) were studied. Laser-assisted flow visualization technique was used to reveal the hot plume movements in the cabinet and the critical conditions for the hood-top leakage. The sulfur hexafluoride tracer-gas concentration test method was employed to examine the containment spillages from the sash opening and the hood top. It was found that the primary parameters dominating the behavior of the flow field and hood performance are the sash height and the suction velocity as an air-curtain hood is operated at high temperatures. At large sash height and low suction velocity, the air curtain broke down and accompanied with three-dimensional flow in the cabinet. Since the suction velocity was low and the sash opening was large, the makeup air drawn down from the hood top became insufficient to counter act the rising hot plume. Under this situation, containment leakage from the sash opening and the hood top was observed. At small sash opening and high suction velocity, the air curtain presented robust characteristics and the makeup air flow from the hood top was sufficiently large. Therefore the containment leakages from the sash opening and the hood top were not observed. According to the results of experiments, quantitative operation sash height and suction velocity corresponding to the operation temperatures were suggested.

  13. Air temperature and physiological and subjective responses during competitive singles tennis

    PubMed Central

    Morante, Sarah M; Brotherhood, John R

    2007-01-01

    Objectives This report describes the thermal stresses and strains during competitive singles tennis. Methods Thermoregulatory responses were investigated during best of three set tennis matches among 25 players. A total of 86 observations were made from 43 matches played, covering each season, with ambient temperatures ranging from 14.5 to 38.4°C. Core body temperature and skin temperature were recorded each minute throughout the match, whilst heart rate was logged every 15 s. Body mass and fluid intake were measured before the match, after 30 min of play and at the completion of the match to determine sweat rate. Subjective ratings of thermal strain included thermal comfort, sweatiness and perceived exertion. The thermal environment was assessed by dry bulb, wet bulb and natural wet bulb temperatures, globe temperature and wind speed. Results Mean (SD) core temperature after 30 min of play was 38.4°C (0.4°C), and demonstrated no association with air temperature or wet bulb globe temperature. Mean skin temperature was 31.8°C (2.3°C) ranging from 25.7 to 36.5°C, and showed a positive association with air temperature (p<0.001). Heart rate varied widely during play, resulting in a mean (SD) response of 136.1 (13.7) beats/min and no association with air temperature. Sweat rate averaged 1.0 (0.4) litres/h (0.2–2.4 litres/h) or 12.8 (5.5) ml/kg/h (2.7–26.0 ml/kg/h), and demonstrated a positive relationship with air temperature (p<0.001). All subjective responses showed positive correlations with air temperature (p<0.001). Conclusions Stressful environmental conditions produce a high skin temperature and rating of thermal discomfort. However, overall thermoregulatory strain during tennis is moderate, with core temperature remaining within safe levels. PMID:17646242

  14. Design and Development of an air-cooled Temperature-Swing Adsorption Compressor for Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.

    2003-01-01

    The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. We have a developed a temperature-swing adsorption compressor (TSAC) for performing these tasks that is energy efficient, quiet, and has no wearing parts. This paper discusses the design features of a TSAC hardware that uses air as the cooling medium and has Space Station application.

  15. The Impact of Individual Anthropogenic Emissions Sectors on the Global Burden of Human Mortality due to Ambient Air Pollution

    PubMed Central

    Silva, Raquel A.; Adelman, Zachariah; Fry, Meridith M.; West, J. Jason

    2016-01-01

    Background: Exposure to ozone and fine particulate matter (PM2.5) can cause adverse health effects, including premature mortality due to cardiopulmonary diseases and lung cancer. Recent studies quantify global air pollution mortality but not the contribution of different emissions sectors, or they focus on a specific sector. Objectives: We estimated the global mortality burden of anthropogenic ozone and PM2.5, and the impact of five emissions sectors, using a global chemical transport model at a finer horizontal resolution (0.67° × 0.5°) than previous studies. Methods: We performed simulations for 2005 using the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4), zeroing out all anthropogenic emissions and emissions from specific sectors (All Transportation, Land Transportation, Energy, Industry, and Residential and Commercial). We estimated premature mortality using a log-linear concentration–response function for ozone and an integrated exposure–response model for PM2.5. Results: We estimated 2.23 (95% CI: 1.04, 3.33) million deaths/year related to anthropogenic PM2.5, with the highest mortality in East Asia (48%). The Residential and Commercial sector had the greatest impact globally—675 (95% CI: 428, 899) thousand deaths/year—and in most regions. Land Transportation dominated in North America (32% of total anthropogenic PM2.5 mortality), and it had nearly the same impact (24%) as Residential and Commercial (27%) in Europe. Anthropogenic ozone was associated with 493 (95% CI: 122, 989) thousand deaths/year, with the Land Transportation sector having the greatest impact globally (16%). Conclusions: The contributions of emissions sectors to ambient air pollution–related mortality differ among regions, suggesting region-specific air pollution control strategies. Global sector-specific actions targeting Land Transportation (ozone) and Residential and Commercial (PM2.5) sectors would particularly benefit human health. Citation: Silva RA

  16. Increasing the Upper Temperature Oxidation Limit of Alumina Forming Austenitic Stainless Steels in Air with Water Vapor

    SciTech Connect

    Brady, Michael P; Unocic, Kinga A; Lance, Michael J; Santella, Michael L; Yamamoto, Yukinori; Walker, Larry R

    2011-01-01

    A family of alumina-forming austenitic (AFA) stainless steels is under development for use in aggressive oxidizing conditions from {approx}600-900 C. These alloys exhibit promising mechanical properties but oxidation resistance in air with water vapor environments is currently limited to {approx}800 C due to a transition from external protective alumina scale formation to internal oxidation of aluminum with increasing temperature. The oxidation behavior of a series of AFA alloys was systematically studied as a function of Cr, Si, Al, C, and B additions in an effort to provide a basis to increase the upper-temperature oxidation limit. Oxidation exposures were conducted in air with 10% water vapor environments from 800-1000 C, with post oxidation characterization of the 900 C exposed samples by electron probe microanalysis (EPMA), scanning and transmission electron microscopy, and photo-stimulated luminescence spectroscopy (PSLS). Increased levels of Al, C, and B additions were found to increase the upper-temperature oxidation limit in air with water vapor to between 950 and 1000 C. These findings are discussed in terms of alloy microstructure and possible gettering of hydrogen from water vapor at second phase carbide and boride precipitates.

  17. Estimation of surface temperature variations due to changes in sky and solar flux with elevation.

    USGS Publications Warehouse

    Hummer-Miller, S.

    1981-01-01

    Sky and solar radiance are of major importance in determining the ground temperature. Knowledge of their behavior is a fundamental part of surface temperature models. These 2 fluxes vary with elevation and this variation produces temperature changes. Therefore, when using thermal-property differences to discriminate geologic materials, these flux variations with elevation need to be considered. -from Author

  18. Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Chunlin; Wu, Yi; Chen, Zhexin; Yang, Fei; Feng, Ying; Rong, Mingzhe; Zhang, Hantian

    2016-07-01

    Air plasma has been widely applied in industrial manufacture. In this paper, both dry and humid air plasmas' thermodynamic and transport properties are calculated in temperature 300-100000 K and pressure 0.1-100 atm. To build a more precise model of real air plasma, over 70 species are considered for composition. Two different methods, the Gibbs free energy minimization method and the mass action law method, are used to determinate the composition of the air plasma in a different temperature range. For the transport coefficients, the simplified Chapman-Enskog method developed by Devoto has been applied using the most recent collision integrals. It is found that the presence of CO2 has almost no effect on the properties of air plasma. The influence of H2O can be ignored except in low pressure air plasma, in which the saturated vapor pressure is relatively high. The results will serve as credible inputs for computational simulation of air plasma. supported by the National Key Basic Research Program of China (973 Program)(No. 2015CB251002), National Natural Science Foundation of China (Nos. 51521065, 51577145), the Science and Technology Project Funds of the Grid State Corporation (SGTYHT/13-JS-177), the Fundamental Research Funds for the Central Universities, and State Grid Corporation Project (GY71-14-004)

  19. Reproduction of surface air temperature over South Korea using dynamical downscaling and statistical correction

    NASA Astrophysics Data System (ADS)

    Ahn, J.; Lee, J.; Shim, K.; Kim, Y.

    2013-12-01

    In spite of dense meteorological observation conducting over South Korea (The average distance between stations: ~ 12.7km), the detailed topographical effect is not reflected properly due to its mountainous terrains and observation sites mostly situated on low altitudes. A model represents such a topographical effect well, but due to systematic biases in the model, the general temperature distribution is sometimes far different from actual observation. This study attempts to produce a detailed mean temperature distribution for South Korea through a method combining dynamical downscaling and statistical correction. For the dynamical downscaling, a multi-nesting technique is applied to obtain 3-km resolution data with a focus on the domain for the period of 10 years (1999-2008). For the correction of systematic biases, a perturbation method divided into the mean and the perturbation part was used with a different correction method being applied to each part. The mean was corrected by a weighting function while the perturbation was corrected by the self-organizing maps method. The results with correction agree well with the observed pattern compared to those without correction, improving the spatial and temporal correlations as well as the RMSE. In addition, they represented detailed spatial features of temperature including topographic signals, which cannot be expressed properly by gridded observation. Through comparison with in-situ observation with gridded values after objective analysis, it was found that the detailed structure correctly reflected topographically diverse signals that could not be derived from limited observation data. We expect that the correction method developed in this study can be effectively used for the analyses and projections of climate downscaled by using region climate models. Acknowledgements This work was carried out with the support of Korea Meteorological Administration Research and Development Program under Grant CATER 2012-3083 and

  20. Exploration of health risks related to air pollution and temperature in three Latin American cities.

    PubMed

    Romero-Lankao, Patricia; Qin, Hua; Borbor-Cordova, Mercy

    2013-04-01

    This paper explores whether the health risks related to air pollution and temperature extremes are spatially and socioeconomically differentiated within three Latin American cities: Bogota, Colombia, Mexico City, Mexico, and Santiago, Chile. Based on a theoretical review of three relevant approaches to risk analysis (risk society, environmental justice, and urban vulnerability as impact), we hypothesize that health risks from exposure to air pollution and temperature in these cities do not necessarily depend on socio-economic inequalities. To test this hypothesis, we gathered, validated, and analyzed temperature, air pollution, mortality and socioeconomic vulnerability data from the three study cities. Our results show the association between air pollution levels and socioeconomic vulnerabilities did not always correlate within the study cities. Furthermore, the spatial differences in socioeconomic vulnerabilities within cities do not necessarily correspond with the spatial distribution of health impacts. The present study improves our understanding of the multifaceted nature of health risks and vulnerabilities associated with global environmental change. The findings suggest that health risks from atmospheric conditions and pollutants exist without boundaries or social distinctions, even exhibiting characteristics of a boomerang effect (i.e., affecting rich and poor alike) on a smaller scale such as areas within urban regions. We used human mortality, a severe impact, to measure health risks from air pollution and extreme temperatures. Public health data of better quality (e.g., morbidity, hospital visits) are needed for future research to advance our understanding of the nature of health risks related to climate hazards. PMID:23434119

  1. Atmospheric Precipitable Water and its association with Surface Air Temperatures over Different Climate Regims

    NASA Astrophysics Data System (ADS)

    Ye, H.; Fetzer, E. J.; Olsene, E. T.; Granger, S. L.; Kahn, B. H.; Fishbein, E. F.; Chen, L.; Teixeira, J.; Lambrigtsen, B. H.

    2008-12-01

    As a greenhouse gas and a key component in the hydrologic cycle, atmospheric water vapor is very important in the earth's climate system. The relationship between air temperature and water vapor content at the surface and in different layers of the atmosphere have been examined in many studies in trying to better understand the magnitude of water vapor feedback in our climate system. Studies have found large spatial variability and large regional and vertical deviations from the Clapeyron-Clausius relation of constant relative humidity. However, there is an ongoing need to understand the climatology of the relationship between the surface air temperature and total column water vapor, and to examine any potential thresholds associated with sudden changes in this relationship as air temperatures continue to increase. This study uses 5-year total precipitable water vapor records measured by the Atmospheric Infrared Sounders (AIRS) and surface air temperature to examine their relationships at tropical to mid latitude conditions found at 60°S- 60°N for winter and summer seasons. In addition, the relationships will be examined for different climate regimes based on Koppen's system. This will help distinguish the geographical regions and physical processes where different relationships are found. This information will improve our understanding of the regional patterns of water vapor feedback associated with warming climate.

  2. Exploration of health risks related to air pollution and temperature in three Latin American cities

    NASA Astrophysics Data System (ADS)

    Romero-Lankao, P.; Borbor Cordova, M.; Qin, H.

    2013-12-01

    We explore whether the health risks related to air pollution and temperature extremes are spatially and socioeconomically differentiated within three Latin American cities: Bogota, Colombia, Mexico City, Mexico, and Santiago, Chile. Based on a theoretical review of three relevant approaches to risk analysis (risk society, environmental justice, and urban vulnerability as impact), we hypothesize that health risks from exposure to air pollution and temperature in these cities do not necessarily depend on socio-economic inequalities. To test this hypothesis, we gathered, validated, and analyzed temperature, air pollution, mortality and socioeconomic vulnerability data from the three study cities. Our results show the association between air pollution levels and socioeconomic vulnerabilities did not always correlate within the study cities. Furthermore, the spatial differences in socioeconomic vulnerabilities within cities do not necessarily correspond with the spatial distribution of health impacts. The present study improves our understanding of the multifaceted nature of health risks and vulnerabilities associated with global environmental change. The findings suggest that health risks from atmospheric conditions and pollutants exist without boundaries or social distinctions, even exhibiting characteristics of a boomerang effect (i.e., affecting rich and poor alike) on a smaller scale such as areas within urban regions. We used human mortality, a severe impact, to measure health risks from air pollution and extreme temperatures. Public health data of better quality (e.g., morbidity, hospital visits) are needed for future research to advance our understanding of the nature of health risks related to climate hazards.

  3. Exploration of health risks related to air pollution and temperature in three Latin American cities.

    PubMed

    Romero-Lankao, Patricia; Qin, Hua; Borbor-Cordova, Mercy

    2013-04-01

    This paper explores whether the health risks related to air pollution and temperature extremes are spatially and socioeconomically differentiated within three Latin American cities: Bogota, Colombia, Mexico City, Mexico, and Santiago, Chile. Based on a theoretical review of three relevant approaches to risk analysis (risk society, environmental justice, and urban vulnerability as impact), we hypothesize that health risks from exposure to air pollution and temperature in these cities do not necessarily depend on socio-economic inequalities. To test this hypothesis, we gathered, validated, and analyzed temperature, air pollution, mortality and socioeconomic vulnerability data from the three study cities. Our results show the association between air pollution levels and socioeconomic vulnerabilities did not always correlate within the study cities. Furthermore, the spatial differences in socioeconomic vulnerabilities within cities do not necessarily correspond with the spatial distribution of health impacts. The present study improves our understanding of the multifaceted nature of health risks and vulnerabilities associated with global environmental change. The findings suggest that health risks from atmospheric conditions and pollutants exist without boundaries or social distinctions, even exhibiting characteristics of a boomerang effect (i.e., affecting rich and poor alike) on a smaller scale such as areas within urban regions. We used human mortality, a severe impact, to measure health risks from air pollution and extreme temperatures. Public health data of better quality (e.g., morbidity, hospital visits) are needed for future research to advance our understanding of the nature of health risks related to climate hazards.

  4. Global Distribution and Variability of Surface Skin and Surface Air Temperatures as Depicted in the AIRS Version-6 Data Set

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2014-01-01

    In this presentation, we will briefly describe the significant improvements made in the AIRS Version-6 retrieval algorithm, especially as to how they affect retrieved surface skin and surface air temperatures. The global distribution of seasonal 1:30 AM and 1:30 PM local time 12 year climatologies of Ts,a will be presented for the first time. We will also present the spatial distribution of short term 12 year anomaly trends of Ts,a at 1:30 AM and 1:30 PM, as well as the spatial distribution of temporal correlations of Ts,a with the El Nino Index. It will be shown that there are significant differences between the behavior of 1:30 AM and 1:30 PM Ts,a anomalies in some arid land areas.

  5. Concentration, temperature, and density in a hydrogen-air flame by excimer-induced Raman scattering

    NASA Technical Reports Server (NTRS)

    Wehrmeyer, Joseph A.; Bowling, John M.; Pitz, Robert W.

    1988-01-01

    Single-pulse, vibrational Raman scattering (VRS) is an attractive laser diagnostic for the study of supersonic hydrogen-air combustion. The VRS technique gives a complete thermodynamic description of the gas mixture at a point in the reacting flow. Single-pulse, vibrational Raman scattering can simultaneously provide independent measurements of density, temperature, and concentration of each major species (H2, H2O, O2 and N2) in a hydrogen/air turbulent combustor. Also the pressure can be calculated using the ideal gas law. However, single-pulse VRS systems in current use for measurement of turbulent combustion have a number of shortcomings when applied to supersonic flows: (1) slow repetition rate (1 to 5 Hz), (2) poor spatial resolution (0.5x0.3x0.3 cu mm), and (3) marginal time resolution. Most of these shortcomings are due to the use of visible wavelength flash-lamp pumped dye lasers. The advent of UV excimer laser allows the possibility of dramatic improvements in the single-pulse, vibrational Raman scattering. The excimer based VRS probe will greatly improve repetition rate (100 to 500 Hz), spatial resolution (0.1x0.1x0.1 cu mm) and time resolution (30ns). These improvements result from the lower divergence of the UV excimer, higher repetition rate, and the increased Raman cross-sections (15 to 20 times higher) at ultra-violet (UV) wavelengths. With this increased capability, single-pulse vibrational Raman scattering promises to be an ideal non-intrusive probe for the study of hypersonic propulsion flows.

  6. Emissions of an AVCO Lycoming 0-320-DIAD air cooled light aircraft engine as a function of fuel-air ratio, timing, and air temperature and humidity

    NASA Technical Reports Server (NTRS)

    Meng, P. R.; Skorobatckyi, M.; Cosgrove, D. V.; Kempke, E. E., Jr.

    1976-01-01

    A carbureted aircraft engine was operated over a range of test conditions to establish the exhaust levels over the EPA seven-mode emissions cycle. Baseline (full rich production limit) exhaust emissions at an induction air temperature of 59 F and near zero relative humidity were 90 percent of the EPA standard for HC, 35 percent for NOx, and 161 percent for CO. Changes in ignition timing around the standard 25 deg BTDC from 30 deg BTDC to 20 deg BTDC had little effect on the exhaust emissions. Retarding the timing to 15 deg BTDC increased both the HC and CO emissions and decreased NOx emissions. HC and CO emissions decreased as the carburetor was leaned out, while NOx emissions increased. The EPA emission standards were marginally achieved at two leanout conditions. Variations in the quantity of cooling air flow over the engine had no effect on exhaust emissions. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased.

  7. Upper-air temperature change trends above arid region of Northwest China during 1960-2009

    NASA Astrophysics Data System (ADS)

    Chen, Zhongsheng; Chen, Yaning; Xu, Jianhua; Bai, Ling

    2015-04-01

    This study summarized upper-air temperature change trends based on the monthly datasets of 14 sounding stations in the arid region of Northwest China during 1960-2009. Over the investigated period, the change in upper-air temperature measured at eight standard pressure levels shows that an obvious warming at 850-400 hPa, which decreases with altitude, changes to an apparent cooling at 300-50 hPa. There is a positive correlation between the surface and 850-300-hPa temperatures, but a negative correlation between the surface and 200-50-hPa temperatures. Over the full 1960-2009 record, patterns of statistically significant mid-lower tropospheric warming and upper tropospheric and mid-lower stratospheric cooling are clearly evident. Also, the annual temperature cycle indicates that the peak temperature shifts from July in the troposphere to February in the mid-lower stratosphere, suggesting the importance of seasonal trend analysis. We found that the warming in the mid-lower troposphere is more pronounced during the summer, autumn, and winter, whereas the cooling in the upper troposphere and mid-lower stratosphere is larger during the summer and autumn. Furthermore, there are also many regional differences in the upper-air temperature change, regardless of both season and layer.

  8. Long-term air temperature variation in the Karkonosze mountains according to atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Migała, Krzysztof; Urban, Grzegorz; Tomczyński, Karol

    2016-07-01

    The results of meteorological measurements carried out continuously on Mt Śnieżka in Karkonosze mountains since 1880 well document the warming observed on a global scale. Data analysis indicates warming expressed by an increase in the mean annual air temperature of 0.8 °C/100 years. A much higher temperature increase was recorded in the last two decades at the turn of the twenty-first century. Mean decade air temperatures increased from -0.1 to 1.5 °C. It has been shown that there are relationships between air temperature at Mt Śnieżka and global mechanisms of atmospheric and oceanic circulation. Thermal conditions of the Karkonosze (Mt Śnieżka) accurately reflect global climate trends and impact of the North Atlantic Oscillation (NAO) index, macrotypes of atmospheric circulation in Europe (GWL) and Atlantic Multidecadal Oscillation (AMO). The increase in air temperature during the 1989-2012 solar magnetic cycle may reveal a synergy effect to which astrophysical effects and atmospheric and oceanic circulation effects contribute, modified by constantly increasing anthropogenic factors.

  9. Air Temperature Evolution for the Last 10 Years in the National Petroleum Reserve Alaska

    NASA Astrophysics Data System (ADS)

    Vas, D. A.; Toniolo, H. A.; Kemnitz, R.; Bailey, J. P.

    2014-12-01

    The National Petroleum Reserve-Alaska (NPR-A), an area of approximately 23 million acres, extends from the north side of the Brooks Range to the Arctic Ocean. The Bureau of Land Management (BLM), as a part of studies focused on establishing baseline conditions for weather and hydrological parameters, installed six weather and gauging stations along the NPR-A. This work concentrates on weather conditions, specifically air temperature. Data collected in each of these sites include air temperature (in all the stations), while summer precipitation and wind parameters were collected only at three stations. We present an initial summary of air temperature evolution in the stations, from the installation of each site to September 30, 2013. Available information indicates that the entire region followed a pronounced warming trend, finishing with the 2010/2011 winter, which was the warmest winter recorded in each station. A nearly 20 percent increase in annual cumulative freezing degree days (ACFDD) occurred between the 2011/2012 and 2012/2013 winters. A preliminary analysis of air temperature on a monthly basis shows that, in general, the months of January and March of 2012 contributed the most to the increase in the ACFDD. In particular, the mean monthly temperature in March was in the vicinity of -35 °C in all the stations, which certainly marked 2012 as the coldest March on record.

  10. Electrochemical Surface Potential due to Classical Point Charge Models Drives Anion Adsorption to the Air-Water Interface

    SciTech Connect

    Baer, Marcel D.; Stern, Abraham C.; Levin, Yan; Tobias, Douglas J.; Mundy, Christopher J.

    2012-06-07

    Herein, we present research that suggests that the underlying physics that drive simple empirical models of anions (e.g. point charge, no polarization) to the air-water interface, with water described by SPC/E, or related partial charge models is different than when both ions and water are modeled with quantum mechanical based interactions. Specifically, we will show that the driving force of ions to the air-water interface for point charge models results from both cavitation and the negative electrochemical surface potential. We will demonstrate that we can fully characterize the role of the free energy due to the electrochemical surface potential computed from simple empirical models and its role in ionic adsorption within the context of dielectric continuum theory (DCT). Our research suggests that a significant part of the electrochemical surface potential in empirical models appears to be an artifact of the failure of point charge models in the vicinity of a broken symmetry. This work was supported by the U.S. Department of Energy‘s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the Department of Energy by Battelle.

  11. CO2 CH4 flux Air temperature Soil temperature and Soil moisture, Barrow, Alaska 2013 ver. 1

    SciTech Connect

    Margaret Torn

    2015-01-14

    This dataset consists of field measurements of CO2 and CH4 flux, as well as soil properties made during 2013 in Areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) measurements of CO2 and CH4 flux made from June to September (ii) Calculation of corresponding Gross Primary Productivity (GPP) and CH4 exchange (transparent minus opaque) between atmosphere and the ecosystem (ii) Measurements of Los Gatos Research (LGR) chamber air temperature made from June to September (ii) measurements of surface layer depth, type of surface layer, soil temperature and soil moisture from June to September.

  12. Effects of a ceramic coating on metal temperatures of an air-cooled turbine vane

    NASA Astrophysics Data System (ADS)

    Gladden, H. J.; Liebert, C. H.

    1980-02-01

    The metal temperatures of air cooled turbine vanes both uncoated and coated with the NASA thermal barrier system were studied experimentally. Current and advanced gas turbine engine conditions were simulated at reduced temperatures and pressures. Airfoil metal temperatures were significantly reduced, both locally and on the average, by use of the the coating. However, at low gas Reynolds number, the ceramic coating tripped a laminar boundary layer on the suction surface, and the resulting higher heat flux increased the metal temperatures. Simulated coating loss was also investigated and shown to increase local metal temperatures. However, the metal temperatures in the leading edge region remained below those of the uncoated vane tested at similar conditions. Metal temperatures in the trailing edge region exceeded those of the uncoated vane.

  13. Effects of a ceramic coating on metal temperatures of an air-cooled turbine vane

    NASA Technical Reports Server (NTRS)

    Gladden, H. J.; Liebert, C. H.

    1980-01-01

    The metal temperatures of air cooled turbine vanes both uncoated and coated with the NASA thermal barrier system were studied experimentally. Current and advanced gas turbine engine conditions were simulated at reduced temperatures and pressures. Airfoil metal temperatures were significantly reduced, both locally and on the average, by use of the the coating. However, at low gas Reynolds number, the ceramic coating tripped a laminar boundary layer on the suction surface, and the resulting higher heat flux increased the metal temperatures. Simulated coating loss was also investigated and shown to increase local metal temperatures. However, the metal temperatures in the leading edge region remained below those of the uncoated vane tested at similar conditions. Metal temperatures in the trailing edge region exceeded those of the uncoated vane.

  14. An Experimental Investigation Into the Temperature Profile of a Compliant Foil Air Bearing

    NASA Technical Reports Server (NTRS)

    Radil, Kevin; Zeszotek, Michelle

    2004-01-01

    A series of tests was performed to determine the internal temperature profile in a compliant bump-type foil journal air bearing operating at room temperature under various speeds and load conditions. The temperature profile was collected by instrumenting a foil bearing with nine, type K thermocouples arranged in the center and along the bearing s edges in order to measure local temperatures and estimate thermal gradients in the axial and circumferential directions. To facilitate the measurement of maximum temperatures from viscous shearing in the air film, the thermocouples were tack welded to the backside of the bumps that were in direct contact with the top foil. The mating journal was coated with a high temperature solid lubricant that, together with the bearing, underwent high temperature start-stop cycles to produce a smooth, steady-state run-in surface. Tests were conducted at speeds from 20 to 50 krpm and loads ranging from 9 to 222 N. The results indicate that, over the conditions tested, both journal rotational speed and radial load are responsible for heat generation with speed playing a more significant role in the magnitude of the temperatures. The temperature distribution was nearly symmetric about the bearing center at 20 and 30 krpm but became slightly skewed toward one side at 40 and 50 krpm. Surprisingly, the maximum temperatures did not occur at the bearing edge where the minimum film thickness is expected but rather in the middle of the bearing where analytical investigations have predicted the air film to be much thicker. Thermal gradients were common during testing and were strongest in the axial direction from the middle of the bearing to its edges, reaching 3.78 8C/mm. The temperature profile indicated the circumferential thermal gradients were negligible.

  15. Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with climate.

    PubMed

    Tang, X; Wilson, S R; Solomon, K R; Shao, M; Madronich, S

    2011-02-01

    Air pollution will be directly influenced by future changes in emissions of pollutants, climate, and stratospheric ozone, and will have significant consequences for human health and the environment. UV radiation is one of the controlling factors for the formation of photochemical smog, which includes tropospheric ozone (O(3)) and aerosols; it also initiates the production of hydroxyl radicals (˙OH), which control the amount of many climate- and ozone-relevant gases (e.g., methane and HCFCs) in the atmosphere. Numerical models predict that future changes in UV radiation and climate will modify the trends and geographic distribution of ˙OH, thus affecting the formation of photochemical smog in many urban and regional areas. Concentrations of ˙OH are predicted to decrease globally by an average of 20% by 2100, with local concentrations varying by as much as a factor of two above and below current values. However, significant differences between modelled and measured values in a limited number of case studies show that chemistry of hydroxyl radicals in the atmosphere is not fully understood. Photochemically produced tropospheric ozone is projected to increase. If emissions of anthropogenic air pollutants from combustion of fossil fuels, burning of biomass, and agricultural activities continue to increase, concentrations of tropospheric O(3) will tend to increase over the next 20-40 years in certain regions of low and middle latitudes because of interactions of emissions, chemical processes, and climate change. Climate-driven increases in temperature and humidity will also increase production of tropospheric O(3) in polluted regions, but reduce it in more pristine regions. Higher temperatures tend to increase emissions of nitrogen oxides (NO(x)) from some soils and release of biogenic volatile organic compounds (VOCs) from vegetation, leading to greater background concentrations of ozone in the troposphere. The net effects of future changes in UV radiation

  16. A new approach for highly resolved air temperature measurements in urban areas

    NASA Astrophysics Data System (ADS)

    Buttstädt, M.; Sachsen, T.; Ketzler, G.; Merbitz, H.; Schneider, C.

    2011-02-01

    In different fields of applied local climate investigation, highly resolved data of air temperature are of great importance. As a part of the research programme entitled City2020+, which deals with future climate conditions in agglomerations, this study focuses on increasing the quantity of urban air temperature data intended for the analysis of their spatial distribution. A new measurement approach using local transport buses as "riding thermometers" is presented. By this means, temperature data with a very high temporal and spatial resolution could be collected during scheduled bus rides. The data obtained provide the basis for the identification of thermally affected areas and for the investigation of factors in urban structure which influence the thermal conditions. Initial results from the ongoing study, which show the temperature distribution along different traverses through the city of Aachen, are presented.

  17. SIRS: An Experiment to Measure the Free Air Temperature from a Satellite.

    PubMed

    Wark, D Q

    1970-08-01

    The Satellite Infrared Spectrometer (SIRS) on the Nimbus III satellite was designed to measure the earth's spectral radiances in the 15-microm band of carbon dioxide. From simultaneous measurements of spectral radiances it is possible to obtain the vertical temperature profile of the atmosphere. The measurements are approximated by the integral equation of radiative transfer, modified by one or two layers of clouds. A solution requires that the surface radiative temperature and the surface air temperature be known. By iteration, a solution based upon the statistical behavior of the atmosphere is obtained for the free air temperature and the cloud heights and amounts. Examples are presented, comparing the SIRS soundings with coincident radiosonde soundings. The results from this experiment indicate that the technique can be applied as a routine observing tool for meteorological use.

  18. The statistical inhomogeneity of surface air temperature in global atmospheric reanalyses

    NASA Astrophysics Data System (ADS)

    Ferguson, C. R.; Lee, M. H.

    2015-12-01

    Recently, a new generation of so-called climate reanalyses has emerged, including the 161-year NOAA—Cooperative Institute for Research in Environmental Sciences (NOAA-CIRES) Twentieth Century Reanalysis Version 2c (20CR V2c), the 111-year ECMWF pilot reanalysis of the twentieth century (ERA-20C), and the 55-year JMA conventional reanalysis (JRA-55C). These reanalyses were explicitly designed to achieve improved homogeneity through assimilation of a fixed subset of (mostly surface) observations. We apply structural breakpoint analysis to evaluate inhomogeneity of the surface air temperature in these reanalyses (1851-2011). For the modern satellite era (1979-2013), we intercompare their inhomogeneity to that of all eleven available satellite reanalyses. Where possible, we distinguish between breakpoints that are likely linked to climate variability and those that are likely due to an artificial observational network shift. ERA-20C is found to be the most homogenous reanalysis, with 40% fewer artificial breaks than 20CR V2c. Despite its gains in homogeneity, continued improvements to ERA-20C are needed. In this presentation, we highlight the most spatially extensive artificial break events in ERA-20C.

  19. On the Multi-scale Variability of High-frequency Surface Air Temperature

    NASA Astrophysics Data System (ADS)

    Cavanaugh, N. R.; Shen, S. S. P.

    2014-12-01

    We demonstrate that the first four statistical moments of sub-daily surface air temperature (SAT) anomalies exhibit large spatial patterns, globally, which differ from moment-to-moment and that many regions have statistically significant trends in moments from 1950-2010; these results imply that high-frequency SAT anomaly distributions are nearly identically distributed over very large spatial scales and that these distributions are undergoing characteristic changes in shape due to either decadal variability or climate change. Further, we examine the spatial scaling structure of higher-order and non-linear spatial correlations up to fourth-order which determine the variability distributions of SAT at larger spatial scales. Higher-order moment statistics suggest that SAT scales as an approximately locally homogeneous and isotropic quasi-Gaussian random field whose higher-order moments can be determined by functions of pair correlations, which in turn are related to regionally varying decorrelation length scales. These results have implications for the study of multi-scale atmospheric variability, extremes, and climate change involving geographically smooth variables and helps to define the theory which underlies the success of statistical downscaling techniques.

  20. Cool Roofs in Guangzhou, China: Outdoor Air Temperature Reductions during Heat Waves and Typical Summer Conditions.

    PubMed

    Cao, Meichun; Rosado, Pablo; Lin, Zhaohui; Levinson, Ronnen; Millstein, Dev

    2015-12-15

    In this paper, we simulate temperature reductions during heat-wave events and during typical summer conditions from the installation of highly reflective "cool" roofs in the Chinese megacity of Guangzhou. We simulate temperature reductions during six of the strongest historical heat-wave events over the past decade, finding average urban midday temperature reductions of 1.2 °C. In comparison, we simulate 25 typical summer weeks between 2004 and 2008, finding average urban midday temperature reductions of 0.8 °C, indicating that air temperature sensitivity to urban albedo in Guangzhou varies with meteorological conditions. We find that roughly three-fourths of the variance in air temperature reductions across all episodes can be accounted for by a linear regression, including only three basic properties related to the meteorological conditions: mean daytime temperature, humidity, and ventilation to the greater Guangzhou urban area. While these results highlight the potential for cool roofs to mitigate peak temperatures during heat waves, the temperature reductions reported here are based on the upper bound case, which increases albedos of all roofs (but does not modify road albedo or wall albedo).

  1. Equatorial range limits of an intertidal ectotherm are more linked to water than air temperature.

    PubMed

    Seabra, Rui; Wethey, David S; Santos, António M; Gomes, Filipa; Lima, Fernando P

    2016-10-01

    As climate change is expected to impose increasing thermal stress on intertidal organisms, understanding the mechanisms by which body temperatures translate into major biogeographic patterns is of paramount importance. We exposed individuals of the limpet Patella vulgata Linnaeus, 1758, to realistic experimental treatments aimed at disentangling the contribution of water and air temperature for the buildup of thermal stress. Treatments were designed based on temperature data collected at the microhabitat level, from 15 shores along the Atlantic European coast spanning nearly 20° of latitude. Cardiac activity data indicated that thermal stress levels in P. vulgata are directly linked to elevated water temperature, while high air temperature is only stressful if water temperature is also high. In addition, the analysis of the link between population densities and thermal regimes at the studied locations suggests that the occurrence of elevated water temperature may represent a threshold P. vulgata is unable to tolerate. By combining projected temperatures with the temperature threshold identified, we show that climate change will likely result in the westward expansion of the historical distribution gap in the Bay of Biscay (southwest France), and northward contraction of the southern range limit in south Portugal. These findings suggest that even a minor relaxing of the upwelling off northwest Iberia could lead to a dramatic increase in thermal stress, with major consequences for the structure and functioning of the intertidal communities along Iberian rocky shores.

  2. Equatorial range limits of an intertidal ectotherm are more linked to water than air temperature.

    PubMed

    Seabra, Rui; Wethey, David S; Santos, António M; Gomes, Filipa; Lima, Fernando P

    2016-10-01

    As climate change is expected to impose increasing thermal stress on intertidal organisms, understanding the mechanisms by which body temperatures translate into major biogeographic patterns is of paramount importance. We exposed individuals of the limpet Patella vulgata Linnaeus, 1758, to realistic experimental treatments aimed at disentangling the contribution of water and air temperature for the buildup of thermal stress. Treatments were designed based on temperature data collected at the microhabitat level, from 15 shores along the Atlantic European coast spanning nearly 20° of latitude. Cardiac activity data indicated that thermal stress levels in P. vulgata are directly linked to elevated water temperature, while high air temperature is only stressful if water temperature is also high. In addition, the analysis of the link between population densities and thermal regimes at the studied locations suggests that the occurrence of elevated water temperature may represent a threshold P. vulgata is unable to tolerate. By combining projected temperatures with the temperature threshold identified, we show that climate change will likely result in the westward expansion of the historical distribution gap in the Bay of Biscay (southwest France), and northward contraction of the southern range limit in south Portugal. These findings suggest that even a minor relaxing of the upwelling off northwest Iberia could lead to a dramatic increase in thermal stress, with major consequences for the structure and functioning of the intertidal communities along Iberian rocky shores. PMID:27109165

  3. Cool Roofs in Guangzhou, China: Outdoor Air Temperature Reductions during Heat Waves and Typical Summer Conditions.

    PubMed

    Cao, Meichun; Rosado, Pablo; Lin, Zhaohui; Levinson, Ronnen; Millstein, Dev

    2015-12-15

    In this paper, we simulate temperature reductions during heat-wave events and during typical summer conditions from the installation of highly reflective "cool" roofs in the Chinese megacity of Guangzhou. We simulate temperature reductions during six of the strongest historical heat-wave events over the past decade, finding average urban midday temperature reductions of 1.2 °C. In comparison, we simulate 25 typical summer weeks between 2004 and 2008, finding average urban midday temperature reductions of 0.8 °C, indicating that air temperature sensitivity to urban albedo in Guangzhou varies with meteorological conditions. We find that roughly three-fourths of the variance in air temperature reductions across all episodes can be accounted for by a linear regression, including only three basic properties related to the meteorological conditions: mean daytime temperature, humidity, and ventilation to the greater Guangzhou urban area. While these results highlight the potential for cool roofs to mitigate peak temperatures during heat waves, the temperature reductions reported here are based on the upper bound case, which increases albedos of all roofs (but does not modify road albedo or wall albedo). PMID:26523605

  4. Simulating global and local surface temperature changes due to Holocene anthropogenic land cover change

    NASA Astrophysics Data System (ADS)

    He, F.; Vavrus, S. J.; Kutzbach, J. E.; Ruddiman, W. F.; Kaplan, J. O.; Krumhardt, K. M.

    2015-12-01

    Surface albedo changes from anthropogenic land cover change (ALCC) represent the second-largest negative radiative forcing behind aerosol during the industrial era. Using a new reconstruction of ALCC during the Holocene era by Kaplan et al. [2011], we quantify the local and global temperature response induced by Holocene ALCC in the Community Climate System Model, version 4 (CCSM4). With 1-degree resolution of the CCSM4 slab-ocean model,we find that Holocene ALCC cause a global cooling of 0.17 °C due to the biogeophysical effects of land-atmosphere exchange of momentum, moisture, radiative and heat fluxes. On the global scale, the biogeochemical effects of Holocene ALCC from carbon emissions dominate the biogeophysical effects by causing 0.9 °C global warming. The net effects of Holocene ALCC amount to a global warming of 0.73 °C during the pre-industrial era, which is comparable to the ~0.8 °C warming during industrial times. On local to regional scales, such as parts of Europe, North America and Asia, the biogeophysical effects of Holocene ALCC are significant and comparable to the biogeochemical effect. The lack of ocean dynamics in the 1° CCSM4 slab-ocean simulations could underestimate the climate sensitivity because of the lack of feedbacks from ocean heat transport [Kutzbach et al., 2013; Manabe and Bryan, 1985]. In 1° CCSM4 fully coupled simulations, the climate sensitivity is ~65% larger than the 1° CCSM4 slab-ocean simulations during the Holocene (5.3 °C versus 3.2 °C) [Kutzbach et al., 2013]. With this greater climate sensitivity, the biogeochemical effects of Holocene ALCC could have caused a global warming of ~1.5 °C, and the net biogeophysical and biogeochemical effects of Holocene ALCC could cause a global warming of 1.2 °C during the preindustrial era in our simulations, which is 50% higher than the global warming of ~0.8 °C during industrial times.

  5. Effects of air and water temperatures on resting metabolism of auklets and other diving birds.

    PubMed

    Richman, Samantha E; Lovvorn, James R

    2011-01-01

    For small aquatic endotherms, heat loss while floating on water can be a dominant energy cost, and requires accurate estimation in energetics models for different species. We measured resting metabolic rate (RMR) in air and on water for a small diving bird, the Cassin's auklet (Ptychoramphus aleuticus), and compared these results to published data for other diving birds of diverse taxa and sizes. For 8 Cassin's auklets (~165 g), the lower critical temperature was higher on water (21 °C) than in air (16 °C). Lowest values of RMR (W kg⁻¹) averaged 19% higher on water (12.14 ± 3.14 SD) than in air (10.22 ± 1.43). At lower temperatures, RMR averaged 25% higher on water than in air, increasing with similar slope. RMR was higher on water than in air for alcids, cormorants, and small penguins but not for diving ducks, which appear exceptionally resistant to heat loss in water. Changes in RMR (W) with body mass either in air or on water were mostly linear over the 5- to 20-fold body mass ranges of alcids, diving ducks, and penguins, while cormorants showed no relationship of RMR with mass. The often large energetic effects of time spent floating on water can differ substantially among major taxa of diving birds, so that relevant estimates are critical to understanding their patterns of daily energy use. PMID:21527823

  6. Effects of air and water temperatures on resting metabolism of auklets and other diving birds.

    PubMed

    Richman, Samantha E; Lovvorn, James R

    2011-01-01

    For small aquatic endotherms, heat loss while floating on water can be a dominant energy cost, and requires accurate estimation in energetics models for different species. We measured resting metabolic rate (RMR) in air and on water for a small diving bird, the Cassin's auklet (Ptychoramphus aleuticus), and compared these results to published data for other diving birds of diverse taxa and sizes. For 8 Cassin's auklets (~165 g), the lower critical temperature was higher on water (21 °C) than in air (16 °C). Lowest values of RMR (W kg⁻¹) averaged 19% higher on water (12.14 ± 3.14 SD) than in air (10.22 ± 1.43). At lower temperatures, RMR averaged 25% higher on water than in air, increasing with similar slope. RMR was higher on water than in air for alcids, cormorants, and small penguins but not for diving ducks, which appear exceptionally resistant to heat loss in water. Changes in RMR (W) with body mass either in air or on water were mostly linear over the 5- to 20-fold body mass ranges of alcids, diving ducks, and penguins, while cormorants showed no relationship of RMR with mass. The often large energetic effects of time spent floating on water can differ substantially among major taxa of diving birds, so that relevant estimates are critical to understanding their patterns of daily energy use.

  7. Analysis of a workplace air particulate sample by synchronous luminescence and room-temperature phosphorescence

    SciTech Connect

    Vo-Dinh, T.; Gammage, R.B.; Martinez, P.R.

    1981-02-01

    An analysis of a XAD-2 resin extract of a particulate air sample collected at an industrial environment was conducted by use of two simple spectroscopic methods performed at ambient temperature, the synchronous luminescence and room-temperature phosphorescence techniques. Results of the analysis of 13 polynuclear aromatic compounds including anthracene, benzo(a)pyrene, benzo(e)pyrene, 2,3-benzofluorene, chrysene, 1,2,5,6-dibenzanthracene, dibenzthiophene, fluoranthene, fluorene, phenanthrene, perylene, pyrene, and tetracene were reported.

  8. GSOD Based Daily Global Mean Surface Temperature and Mean Sea Level Air Pressure (1982-2011)

    DOE Data Explorer

    Xuan Shi, Dali Wang

    2014-05-05

    This data product contains all the gridded data set at 1/4 degree resolution in ASCII format. Both mean temperature and mean sea level air pressure data are available. It also contains the GSOD data (1982-2011) from NOAA site, contains station number, location, temperature and pressures (sea level and station level). The data package also contains information related to the data processing methods

  9. Effects of light intensity light quality and air velocity on temperature in plant reproductive organs

    NASA Astrophysics Data System (ADS)

    Kitaya, Y.; Hirai, H.

    Excess temperature increase in plant reproductive organs such as anthers and stigmata could cause fertility impediments and thus produce sterile seeds under artificial lighting conditions in closed plant growth facilities There is a possibility that the aberration was caused by an excess increase in temperatures of reproductive organs in Bioregenerative Life Support Systems under microgravity conditions in space The fundamental study was conducted to know the thermal situation of the plant reproductive organs as affected by light intensity light quality and air velocity on the earth and to estimate the excess temperature increase in the reproductive organs in closed plant growth facilities in space Thermal images of reproductive organs of rice and strawberry were captured using infrared thermography at an air temperature of 10 r C The temperatures in flowers at 300 mu mol m -2 s -1 PPFD under the lights from red LEDs white LEDs blue LEDs fluorescent lamps and incandescent lamps increased by 1 4 1 7 1 9 6 0 and 25 3 r C respectively for rice and by 2 8 3 4 4 1 7 8 and 43 4 r C respectively for strawberry The flower temperatures increased with increasing PPFD levels The temperatures in petals anthers and stigmas of strawberry at 300 mu mol m -2 s -1 PPFD under incandescent lamps increased by 32 7 29 0 and 26 6 r C respectively at 0 1 m s -1 air velocity and by 20 6 18 5 and 15 9 r C respectively at 0 8 m s -1 air velocity The temperatures of reproductive organs decreased with increasing

  10. An Analytical Solution for Mechanical Responses Induced by Temperature and Air Pressure in a Lined Rock Cavern for Underground Compressed Air Energy Storage

    NASA Astrophysics Data System (ADS)

    Zhou, Shu-Wei; Xia, Cai-Chu; Du, Shi-Gui; Zhang, Ping-Yang; Zhou, Yu

    2015-03-01

    Mechanical responses induced by temperature and air pressure significantly affect the stability and durability of underground compressed air energy storage (CAES) in a lined rock cavern. An analytical solution for evaluating such responses is, thus, proposed in this paper. The lined cavern of interest consists of three layers, namely, a sealing layer, a concrete lining and the host rock. Governing equations for cavern temperature and air pressure, which involve heat transfer between the air and surrounding layers, are established first. Then, Laplace transform and superposition principle are applied to obtain the temperature around the lined cavern and the air pressure during the operational period. Afterwards, a thermo-elastic axisymmetrical model is used to analytically determine the stress and displacement variations induced by temperature and air pressure. The developments of temperature, displacement and stress during a typical operational cycle are discussed on the basis of the proposed approach. The approach is subsequently verified with a coupled compressed air and thermo-mechanical numerical simulation and by a previous study on temperature. Finally, the influence of temperature on total stress and displacement and the impact of the heat transfer coefficient are discussed. This paper shows that the temperature sharply fluctuates only on the sealing layer and the concrete lining. The resulting tensile hoop stresses on the sealing layer and concrete lining are considerably large in comparison with the initial air pressure. Moreover, temperature has a non-negligible effect on the lined cavern for underground compressed air storage. Meanwhile, temperature has a greater effect on hoop and longitudinal stress than on radial stress and displacement. In addition, the heat transfer coefficient affects the cavern stress to a higher degree than the displacement.

  11. Temperature Effects on He bubbles production due to cascades in alpha-iron

    SciTech Connect

    Yang, Li; Zu, Xiaotao; Xiao, H Y.; Gao, Fei; Liu, K Z.; Heinisch, Howard L.; Kurtz, Richard J.; Yang, S Z.

    2006-07-15

    The effects of irradiation temperature on the formation of He?vacancy clusters by displacement cascades in *-Fe are investigated by molecular dynamics (MD) methods. The irradiation temperatures of 100 and 600K are considered for primary knock-on atom (PKA) energy, Ep, from 500 eV to 20 keV. The concentration of He in Fe varies from 1 to 5 at.%. We find that the number of Frenkel pairs (NF) at 600K is slightly lower than that at 100K for the same He concentration and Ep, but the number of He?vacancy clusters increases with increasing temperature for the same He concentration and energy recoils. However, the mean size of He?vacancy clusters is independent on temperature. The mechanisms of He bubble nucleation in displacement cascades at different temperatures are discussed in detail.

  12. Regional change in snow water equivalent-surface air temperature relationship over Eurasia during boreal spring

    NASA Astrophysics Data System (ADS)

    Wu, Renguang; Chen, Shangfeng

    2016-10-01

    Present study investigates local relationship between surface air temperature and snow water equivalent (SWE) change over mid- and high-latitudes of Eurasia during boreal spring. Positive correlation is generally observed around the periphery of snow covered region, indicative of an effect of snow on surface temperature change. In contrast, negative correlation is usually found over large snow amount area, implying a response of snow change to wind-induced surface temperature anomalies. With the seasonal retreat of snow covered region, region of positive correlation between SWE and surface air temperature shifts northeastward from March to May. A diagnosis of surface heat flux anomalies in April suggests that the snow impact on surface air temperature is dominant in east Europe and west Siberia through modulating surface shortwave radiation. In contrast, atmospheric effect on SWE is important in Siberia and Russia Far East through wind-induced surface sensible heat flux change. Further analysis reveals that atmospheric circulation anomalies in association with snowmelt over east Siberia may be partly attributed to sea surface temperature anomalies in the North Atlantic and the atmospheric circulation anomaly pattern associated with snowmelt over Russia Far East has a close association with the Arctic Oscillation.

  13. Study on the effect of high-temperature air treatment on particulate CdS

    NASA Astrophysics Data System (ADS)

    Zhengshi, Chen; Huqing, Zhang; Zhensheng, Jin

    1989-07-01

    The influence of high-temperature air treatment on the surface composition and structure of CdS was studied by means of XPS, XRD, and H +/OH - adsorption. The results show that the relative concentration of surface oxygen atoms increases considerably with duration of the air treatment, but there is no apparent change in percentage of oxygen atoms consumed in forming CdSO 4. In the ion sputtering of samples treated with different times, it was found that the CdO can be formed deep within the CdS particles, but formation of CdSO 4 takes place only at the surface. The high-temperature air treatment also increases the surface basicity of CdS and the content of hexagonal crystal form in bulk CdS.

  14. Suspended sediment from the Gangotri Glacier: Quantification, variability and associations with discharge and air temperature

    NASA Astrophysics Data System (ADS)

    Haritashya, Umesh K.; Singh, Pratap; Kumar, Naresh; Gupta, R. P.

    2006-04-01

    To understand the sediment delivery variation for a Himalayan Glacier (Gangotri Glacier, Garhwal Himalayas) and to determine its relationship with discharge and air temperature, suspended sediment samples and discharge data were collected near the glacier snout (4000 m) for four melt seasons during the period 2000-2003. These data were used to estimate suspended sediment concentration (SSC), suspended sediment load (SSL), sediment yield and erosion rate in the glacier melt stream (Bhagirathi). The monthly distribution of suspended sediment and its variability from year to year have been examined. Mean monthly SSC for May, June, July, August, September and October were found to be 1942, 2063, 3658, 2551, 734 and 136 mg l -1, respectively. Maximum SSC in meltwater was observed in July followed by August. It was found that the cumulative percentage delivery of SSC precedes discharge throughout the melt season. Mean monthly total SSL for May, June, July, August, September and October during the study period was found to be 149, 423, 1220, 746, 143 and 5×10 3 ton, respectively. The strong variability is found in SSL ( Cv=1.1) than SSC ( Cv=0.8) because computation of SSL includes both discharge ( Cv=0.6) and SSC. Delivery response of SSL in terms of percentage of total load is less in the early part of the melt season than in the later stage in comparison to that of discharge. This may be due to the fact that in the beginning of the melt season low melt rate conditions prevails and thus, the low discharge velocity could not flush out stored glacial sediment. It has been observed that 59-64% of the sediment passed through the channel by the time 50% of the total discharge passed. The average suspended sediment yield for the whole melt season from the study area was estimated to be about 4834 ton km -2 and corresponding erosion rate was 1.8 mm. The relationship between mean monthly SSC and discharge ( R2=0.99) is much better than the daily SSC and discharge ( R2

  15. Air temperature, radiation budget and area changes of Quisoquipina glacier in the Cordillera Vilcanota (Peru)

    NASA Astrophysics Data System (ADS)

    Suarez, Wilson; Macedo, Nicolás; Montoya, Nilton; Arias, Sandro; Schauwecker, Simone; Huggel, Christian; Rohrer, Mario; Condom, Thomas

    2015-04-01

    The Peruvian Andes host about 71% of all tropical glaciers. Although several studies have focused on glaciers of the largest glaciered mountain range (Cordillera Blanca), other regions have received little attention to date. In 2011, a new program has been initiated with the aim of monitoring glaciers in the centre and south of Peru. The monitoring program is managed by the Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI) and it is a joint project together with the Universidad San Antonio Abad de Cusco (UNSAAC) and the Autoridad Nacional del Agua (ANA). In Southern Peru, the Quisoquipina glacier has been selected due to its representativeness for glaciers in the Cordillera Vilcanota considering area, length and orientation. The Cordillera Vilcanota is the second largest mountain range in Peru with a glaciated area of approximately 279 km2 in 2009. Melt water from glaciers in this region is partly used for hydropower in the dry season and for animal breeding during the entire year. Using Landsat 5 images, we could estimate that the area of Quisoquipina glacier has decreased by approximately 11% from 3.66 km2 in 1990 to 3.26 km2 in 2010. This strong decrease is comparable to observations of other tropical glaciers. In 2011, a meteorological station has been installed on the glacier at 5180 m asl., measuring air temperature, wind speed, relative humidity, net short and longwave radiation and atmospheric pressure. Here, we present a first analysis of air temperature and the radiation budget at the Quisoquipina glacier for the first three years of measurements. Additionally, we compare the results from Quisoquipina glacier to results obtained by the Institut de recherche pour le développement (IRD) for Zongo glacier (Bolivia) and Antizana glacier (Ecuador). For both, Quisoquipina and Zongo glacier, net shortwave radiation may be the most important energy source, thus indicating the important role of albedo in the energy balance of the glacier

  16. Manage postharvest deficit irrigation of peach trees using canopy to air temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field study was conducted to use mid-day canopy to air temperature difference (delta T) to manage postharvest deficit irrigation of peach trees in San Joaquin Valley of California and its performance was evaluated. Delta T thresholds were selected, based on previous years’ stem water potential and...

  17. Response of sugarcane to carbon dioxide enrichment and elevated air temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four sugarcane cultivars (CP 72-2086, CP 73-1547, CP 88-1508, and CP 80-1827) were grown in elongated temperature-gradient greenhouses (TGG) at ambient or elevated carbon dioxide (CO2) of 360 or 720 µmol CO2 mol-1 air (ppm, mole fraction basis), respectively. Elevated CO2 was maintained by injection...

  18. Comparison of MODIS-derived land surface temperatures with near-surface soil and air temperature measurements in continuous permafrost terrain

    NASA Astrophysics Data System (ADS)

    Hachem, S.; Duguay, C. R.; Allard, M.

    2011-05-01

    In Arctic and sub-Arctic regions, meteorological stations are scattered and poorly distributed geographically; they are mostly located along coastal areas and are often unreachable by road. Given that high-latitude regions are the ones most significantly affected by recent climate warming, there is a need to supplement existing meteorological station networks with spatially continuous measurements such as those obtained by spaceborne platforms. In particular, land surface (skin) temperature (LST) retrieved from satellite sensors offer the opportunity to utilize remote sensing technology to obtain a consistent coverage of a key parameter for climate, permafrost, and hydrological research. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra and Aqua satellite platforms offers the potential to provide spatial estimates of near-surface temperature values. In this study, LST values from MODIS were compared to ground-based near-surface air and soil temperature measurements obtained at herbaceous and shrub tundra sites located in the continuous permafrost zone of northern Québec, Canada, and the North Slope of Alaska, USA. LST values were found to be better correlated with near-surface air temperature (1-2 m above the ground) than with soil temperature (3-5 cm below the ground) measurements. A comparison between mean daily air temperature from ground-based station measurements and mean daily MODIS LST, calculated from daytime and nighttime temperature values of both Terra and Aqua acquisitions, for all sites and all seasons pooled together reveals a high correlation between the two sets of measurements (R>0.93 and mean difference of -1.86 °C). Mean differences ranged between -0.51 °C and -5.13 °C due to the influence of surface heterogeneity within the MODIS 1 km2 grid cells at some sites. Overall, it is concluded that MODIS offers a great potential for monitoring surface temperature changes in high-latitude tundra regions and provides a

  19. Using Satellite-Based Spatiotemporal Resolved Air Temperature Exposure to Study the Association between Ambient Air Temperature and Birth Outcomes in Massachusetts

    PubMed Central

    Melly, Steven J.; Coull, Brent A.; Nordio, Francesco; Schwartz, Joel D.

    2015-01-01

    Background Studies looking at air temperature (Ta) and birth outcomes are rare. Objectives We investigated the association between birth outcomes and daily Ta during various prenatal exposure periods in Massachusetts (USA) using both traditional Ta stations and modeled addresses. Methods We evaluated birth outcomes and average daily Ta during various prenatal exposure periods in Massachusetts (USA) using both traditional Ta stations and modeled address Ta. We used linear and logistic mixed models and accelerated failure time models to estimate associations between Ta and the following outcomes among live births > 22 weeks: term birth weight (≥ 37 weeks), low birth weight (LBW; < 2,500 g at term), gestational age, and preterm delivery (PT; < 37 weeks). Models were adjusted for individual-level socioeconomic status, traffic density, particulate matter ≤ 2.5 μm (PM2.5), random intercept for census tract, and mother’s health. Results Predicted Ta during multiple time windows before birth was negatively associated with birth weight: Average birth weight was 16.7 g lower (95% CI: –29.7, –3.7) in association with an interquartile range increase (8.4°C) in Ta during the last trimester. Ta over the entire pregnancy was positively associated with PT [odds ratio (OR) = 1.02; 95% CI: 1.00, 1.05] and LBW (OR = 1.04; 95% CI: 0.96, 1.13). Conclusions Ta during pregnancy was associated with lower birth weight and shorter gestational age in our study population. Citation Kloog I, Melly SJ, Coull BA, Nordio F, Schwartz JD. 2015. Using satellite-based spatiotemporal resolved air temperature exposure to study the association between ambient air temperature and birth outcomes in Massachusetts. Environ Health Perspect 123:1053–1058; http://dx.doi.org/10.1289/ehp.1308075 PMID:25850104

  20. Studies of Temperature Elevation Due to the Pre-flame Reaction in a Spark-ignition Engine with CARS Temperature Measurements Using Fuels of Various Octane Numbers

    NASA Astrophysics Data System (ADS)

    Choi, Inyong; Chun, Kwang Min; Hahn, Jae Won; Park, Chul-Woung

    The unburned end-gas temperatures in a combustion chamber of a conventional 4-cylinder DOHC spark-ignition engine were measured using the broadband CARS temperature measurement technique. The test engine was fueled with primary reference fuel 80 and gasoline with research octane numbers of 70.9, 83.4, 91.5 and 100.4. The measured CARS temperatures were compared with the adiabatic core temperatures calculated from the measured pressures. Significant heating by pre-flame reaction in the end gas zone was observed in the late part of compression stroke under both knocking and non-knocking conditions. The measured CARS temperatures when the cylinder pressures were above 1400kPa were higher than the calculated adiabatic core temperatures. These results indicate that some exothermic reactions exist in relatively low pressure and temperature regions. The CARS temperatures began to be higher than the adiabatic core temperature when the end-gas temperatures reached 700K. The temperature elevation due to the pre-flame reaction correlated well with the unburned gas CARS temperature for different research octane number fuels tested.

  1. Particulate air pollution and short-term mortality due to specific causes among the elderly in Madrid (Spain): seasonal differences.

    PubMed

    Jiménez, Eva; Linares, Cristina; Martínez, David; Díaz, Julio

    2011-10-01

    A time-series study was conducted to ascertain the short-term effects of different-sized airborne particulate matter (PM) on daily respiratory and cardiovascular cause-specific mortality in winter and summer, among subjects aged over 75 years in Madrid. Poisson regression was used to analyse the time-series, in which the dependent variable was daily mortality due to different specific respiratory and circulatory causes, and the principal independent variables were daily mean PM10, PM2.5 and PM10-2.5 concentrations; other variables: other air pollutants (chemicals, biotic and acoustic), influenza, trend, seasonality and autocorrelation of the series. The results indicated an association between coarser PM fractions (PM10 and PM10-2.5) and respiratory-specific mortality on the one hand, and between PM2.5 and cardiovascular-specific mortality on the other. While the risk of mortality due to exposure to particulate matter was greater in summer than in winter, this difference was statistically significant solely for total organic-cause mortality.

  2. Cloud-induced uncertainties in AIRS and ECMWF temperature and specific humidity

    NASA Astrophysics Data System (ADS)

    Wong, Sun; Fetzer, Eric J.; Schreier, Mathias; Manipon, Gerald; Fishbein, Evan F.; Kahn, Brian H.; Yue, Qing; Irion, Fredrick W.

    2015-03-01

    The uncertainties of the Atmospheric Infrared Sounder (AIRS) Level 2 version 6 specific humidity (q) and temperature (T) retrievals are quantified as functions of cloud types by comparison against Integrated Global Radiosonde Archive radiosonde measurements. The cloud types contained in an AIRS/Advanced Microwave Sounding Unit footprint are identified by collocated Moderate Resolution Imaging Spectroradiometer retrieved cloud optical depth (COD) and cloud top pressure. We also report results of similar validation of q and T from European Centre for Medium-Range Weather Forecasts (ECMWF) forecasts (EC) and retrievals from the AIRS Neural Network (NNW), which are used as the initial state for AIRS V6 physical retrievals. Differences caused by the variation in the measurement locations and times are estimated using EC, and all the comparisons of data sets against radiosonde measurements are corrected by these estimated differences. We report in detail the validation results for AIRS GOOD quality control, which is used for the AIRS Level 3 climate products. AIRS GOOD quality q reduces the dry biases inherited from the NNW in the middle troposphere under thin clouds but enhances dry biases in thick clouds throughout the troposphere (reaching -30% at 850 hPa near deep convective clouds), likely because the information contained in AIRS retrievals is obtained in cloud-cleared areas or above clouds within the field of regard. EC has small moist biases (~5-10%), which are within the uncertainty of radiosonde measurements, in thin and high clouds. Temperature biases of all data are within ±1 K at altitudes above the 700 hPa level but increase with decreasing altitude. Cloud-cleared retrievals lead to large AIRS cold biases (reaching about -2 K) in the lower troposphere for large COD, enhancing the cold biases inherited from the NNW. Consequently, AIRS GOOD quality T root-mean-squared errors (RMSEs) are slightly smaller than the NNW errors in thin clouds (1.5-2.5 K) but

  3. PERMEABILITY CHANGES IN CRYSTALLINE ROCKS DUE TO TEMPERATURE: EFFECTS OF MINERAL ASSEMBLAGE.

    USGS Publications Warehouse

    Morrow, C.A.; Moore, Diane E.; Byerlee, J.D.; ,

    1985-01-01

    The change in permeability with time of granite, quartzite, anorthosite and gabbro was measured while these rocks were subjected to a temperature gradient. Permeability reductions of up to two orders of magnitude were observed, with the greatest reactions occurring in the quartzite. These changes are thought to be caused by dissolution of minerals at high temperatures, and redeposition of the dissolved material at lower temperatures. Quartz appears to be an important mineral in this self-sealing process. If very low permeability is desired around a nuclear waste repository in crystalline rocks, then a quartz-rich rock may be the most appropriate host.

  4. Second Law Violations by Means of a Stratification of Temperature Due to Force Fields

    NASA Astrophysics Data System (ADS)

    Trupp, Andreas

    2002-11-01

    In 1868 J.C. Maxwell proved that a perpetual motion machine of the second kind would become possible, if the equilibrium temperature in a vertical column of gas subject to gravity were a function of height. However, Maxwell had claimed that the temperature had to be the same at all points of the column. So did Boltzmann. Their opponent was Loschmidt. He claimed that the equilibrium temperature declined with height, and that a perpetual motion machine of the second kind operating by means of such column was compatible with the second law of thermodynamics. Extending the general idea behind Loschmidt's concept to other force fields, gravity can be replaced by molecular forces acting on molecules that try to escape from the surface of a liquid into the vapor space. Experiments proving the difference of temperature between the liquid and the vapor phase were conducted in the 19th century already.

  5. Transparency power calculation in Yb3+-doped fiber due to temperature variations

    NASA Astrophysics Data System (ADS)

    De la Cruz-May, L.; Mejia-Beltran, E.; Flores, A.; Alvarez-Chavez, J. A.; Martinez-Piñon, F.

    2010-10-01

    The critical power level provides an objective tool for the determination of the maximum power available in a fiber laser based on physical parameters as: core diameter, temperature, and absorption and emission cross section for both the pump and laser wavelengths. This work presents a theoretical study of critical power levels when Ytterbium-doped fibers are exposed to changes of temperature. We found that critical power curves extend their wavelength dependence, ranging from 1 μm to 1.2 μm when fibers were heated up 300°K. Also we found that critical power values are large than those obtained in conditions of room temperature. While low critical powers were obtained at lower temperatures (around 77°K) with a reduced interval of wavelengths from 1 μm to 1.1 μm.

  6. Transparency powers levels in Yb 3+-doped fiber due to temperature changes

    NASA Astrophysics Data System (ADS)

    de la Cruz-May, L.; Flores-Gil, A.; Mejía, E. B.; Rodríguez-Rodriguez, J. H.; Álvarez-Chávez, J. A.

    2011-03-01

    The critical power level provides an objective tool for the determination of the maximum power available in a fiber laser based on physical parameters such as core diameter, temperature, and absorption and emission cross section for both the pump and laser wavelengths. This work presents a theoretical study of critical power levels when Ytterbium-doped fibers are exposed to changes of temperatures. We found that critical power curves extend their wavelength dependence, ranging from 1 μm to 1.2-μm when fibers were heated up 300 K. However, critical power values were rather high compared to the values obtained at room temperature. Nevertheless, low critical powers were obtained at low temperatures as 77 K in a reduced interval of wavelengths, i.e., from 1-μm to 1.1-μm.

  7. Effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding.

    PubMed

    Secilmis, Asli; Bulbul, Mehmet; Sari, Tugrul; Usumez, Aslihan

    2013-01-01

    The neodymium/yttrium-aluminum-garnet (Nd/YAG) laser has been suggested to repair broken prostheses in the mouth. This study investigated the effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding. Three intact human maxillary molars were prepared for full-veneer crown. For each tooth, dentin thicknesses in mesiobuccal cusp was 2, 3, or 4 mm. Twenty dies were duplicated from each of the prepared teeth. For metal copings with 0.5-mm thickness, wax patterns were prepared with dip wax technique directly onto each of dies. All patterns were sprued and invested. The castings were made using a nickel-chromium alloy (Nicromed Premium, Neodontics). A hole with 0.5-mm diameter was prepared on the mesiobuccal cusp of each crown. The Nd/YAG laser (9.85 W; 1 Hz repetition rate; fluence, 1.230 J/cm(2); Fidelis Plus 3, Fotona) was used for welding with or without air cooling (n = 10). The temperature rise was measured in pulpal chamber with a J-type thermocouple wire that was connected to a data logger. Differences between start and highest temperature reading were taken, and temperature rise values were compared using two-way analysis of variance and Tukey's honestly significant difference tests (α = .05). Pulpal temperature rise varied significantly depending on the dentin thickness and air cooling (p < 0.05). The non-air cooling group induced significantly the highest temperature increases. There were no significant differences between 2- and 3-mm dentin thicknesses groups (p > 0.05); however, pulpal temperature rise was the lowest for 4-mm dentin thickness group (p < 0.05). The highest values of thermal increase were found in the pulp chamber (6.8°C) when no air cooling was used in 2-mm dentin thickness group. Laser welding on base metal castings with Nd/YAG laser can be applied with air cooling to avoid temperature rises known to adversely affect pulpal health when dentin thickness is 2 or 3 mm.

  8. Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice-albedo feedback

    NASA Astrophysics Data System (ADS)

    Austin, Jay A.; Colman, Steven M.

    2007-03-01

    Lake Superior summer (July-September) surface water temperatures have increased approximately 2.5°C over the interval 1979-2006, equivalent to a rate of (11 +/- 6) × 10-2°C yr-1, significantly in excess of regional atmospheric warming. This discrepancy is caused by declining winter ice cover, which is causing the onset of the positively stratified season to occur earlier at a rate of roughly a half day per year. An earlier start of the stratified season significantly increases the period over which the lake warms during the summer months, leading to a stronger trend in mean summer temperatures than would be expected from changes in summer air temperature alone.

  9. STUDY ON AIR INGRESS MITIGATION METHODS IN THE VERY HIGH TEMPERATURE GAS COOLED REACTOR (VHTR)

    SciTech Connect

    Chang H. Oh

    2011-03-01

    An air-ingress accident followed by a pipe break is considered as a critical event for a very high temperature gas-cooled reactor (VHTR). Following helium depressurization, it is anticipated that unless countermeasures are taken, air will enter the core through the break leading to oxidation of the in-core graphite structure. Thus, without mitigation features, this accident might lead to severe exothermic chemical reactions of graphite and oxygen. Under extreme circumstances, a loss of core structural integrity may occur along with excessive release of radiological inventory. Idaho National Laboratory under the auspices of the U.S. Department of Energy is performing research and development (R&D) that focuses on key phenomena important during challenging scenarios that may occur in the VHTR. Phenomena Identification and Ranking Table (PIRT) studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Oh et al. 2006, Schultz et al. 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) requirements are part of the experimental validation plan. This paper discusses about various air-ingress mitigation concepts applicable for the VHTRs. The study begins with identifying important factors (or phenomena) associated with the air-ingress accident by using a root-cause analysis. By preventing main causes of the important events identified in the root-cause diagram, the basic air-ingress mitigation ideas can be conceptually derived. The main concepts include (1) preventing structural degradation of graphite supporters; (2) preventing local stress concentration in the supporter; (3) preventing graphite oxidation; (4) preventing air ingress; (5) preventing density gradient driven flow; (4) preventing fluid density gradient; (5) preventing fluid temperature gradient; (6) preventing high temperature. Based on the basic concepts listed above, various air

  10. Temperature measurements in hypersonic air flows using laser-induced O2 fluorescence

    NASA Technical Reports Server (NTRS)

    Laufer, Gabriel; Mckenzie, Robert L.

    1988-01-01

    An investigation is reported of the use of laser-induced fluorescence on oxygen for the measurement of air temperature and its fluctuations owing to turbulence in hypersonic wind tunnel flows. The results show that for temperatures higher than 60 K and densities higher than 0.01 amagat, the uncertainty in the temperature measurement can be less than 2 percent if it is limited by photon-statistical noise. The measurement is unaffected by collisional quenching and, if the laser fluence is kept below 1.5 J/sq cm, it is also unaffected by nonlinear effects which are associated with depletion of the absorbing states.

  11. Fast tomographic measurements of temperature in an air plasma cutting torch

    NASA Astrophysics Data System (ADS)

    Hlína, J.; Šonský, J.; Gruber, J.; Cressault, Y.

    2016-03-01

    Temperatures in an air plasma jet were measured using a tomographic experimental arrangement providing time-resolved scans of plasma optical radiation in the spectral band 559-601 nm from two directions. The acquired data and subsequent processing yielded time-resolved temperature distributions in measurement planes perpendicular to the plasma jet axis with a temporal resolution of 1 μs. The measurement system and evaluation methods afforded detailed information about the influence of high-frequency ripple modulation of the arc current on plasma temperature.

  12. Prediction of health risk due to polycyclic aromatic hydrocarbons present in urban air in Rio de Janeiro, Brazil.

    PubMed

    Rainho, C R; Velho, A M A; Corrêa, S M; Mazzei, J L; Aiub, C A F; Felzenszwalb, I

    2013-02-28

    Risk assessment can provide a comprehensive estimate of potential effects of contaminants under specific, well-defined, and well-described circumstances, providing quantitative relationships between exposure and effects to identify and to define areas of concern. We investigated the mutagenic activity of particulate matter in air samples collected from three sites in Rio de Janeiro city. Samples were collected using a high-volume sampler at Avenida Brasil, at Campus of Universidade do Estado do Rio de Janeiro, and at Rebouças Tunnel. Six polycyclic aromatic hydrocarbons were quantified by gas chromatography/mass spectrometry. Salmonella typhimurium TA98 and the derivative strains TA98/1.8-DNP(6), YG1021, and YG1024, commonly used in mutagenicity assays, were treated (10-50 µg/plate), with and without exogenous metabolization. The highest values for the polycyclic aromatic hydrocarbons were detected at Rebouças Tunnel. For chrysene, as an example, the concentration was nearly 200 times higher than that established by the US Environmental Protection Agency. Frequent traffic jams can place bus drivers who go through the Rebouças Tunnel at risk of exposure to up to 0.69 ng/m(3) benzo(a) pyrene. Independent of exogenous metabolization, mutagenicity was detected in strains YG1021 and YG1024 at all the sites, suggesting nitro and amino derivatives of polycyclic aromatic hydrocarbons. Rebouças Tunnel air samples gave the highest values for rev/µg and rev/m(3). This could be due to the fact that the long, enclosed passageway through a mountain restricts ventilation. The cancer risk estimate in this study was 10(-3) for the benzo(a)pyrene, at the two sites, indicating a high risk.

  13. The interrelationship between air temperature and humidity as applied locally to the skin: The resultant response on skin temperature and blood flow with age differences

    PubMed Central

    Petrofsky, Jerrold S.; Berk, Lee; Alshammari, Faris; Lee, Haneul; Hamdan, Adel; Yim, Jong Eun; Kodawala, Yusufi; Patel, Dennis; Nevgi, Bhakti; Shetye, Gauri; Moniz, Harold; Chen, Wei Ti; Alshaharani, Mastour; Pathak, Kunal; Neupane, Sushma; Somanaboina, Karunakar; Shenoy, Samruddha; Cho, Sungwan; Dave, Bargav; Desai, Rajavi; Malthane, Swapnil; Al-Nakhli, Hani

    2012-01-01

    Summary Background Most studies of the skin and how it responds to local heat have been conducted with either water, thermodes, or dry heat packs. Very little has been accomplished to look at the interaction between air humidity and temperature on skin temperature and blood flow. With variable air temperatures and humidity’s around the world, this, in many ways, is a more realistic assessment of environmental impact than previous water bath studies. Material/Methods Eight young and 8 older subjects were examined in an extensive series of experiments where on different days, air temperature was 38, 40, or 42°C. and at each temperature, humidity was either 0%, 25%, 50%, 75%, or 100% humidity. Over a 20 minute period of exposure, the response of the skin in terms of its temperature and blood flow was assessed. Results For both younger and older subjects, for air temperatures of 38 and 40°C., the humidity of the air had no effect on the blood flow response of the skin, while skin temperature at the highest humidity was elevated slightly. However, for air temperatures of 42°C., at 100% humidity, there was a significant elevation in skin blood flow and skin temperature above the other four air humidity’s (p<0.05). In older subjects, the blood flow response was less and the skin temperature was much higher than younger individuals for air at 42°C. and 100% humidity (p<0.05). Conclusions Thus, in older subjects, warm humid air caused a greater rise in skin temperature with less protective effect of blood flow to protect the skin from overheating than is found in younger subjects. PMID:22460091

  14. Air - water temperature relationships in the trout streams of southeastern Minnesota’s carbonate - sandstone landscape

    USGS Publications Warehouse

    Krider, Lori A.; Magner, Joseph A.; Perry, Jim; Vondracek, Bruce C.; Ferrington, Leonard C.

    2013-01-01

    Carbonate-sandstone geology in southeastern Minnesota creates a heterogeneous landscape of springs, seeps, and sinkholes that supply groundwater into streams. Air temperatures are effective predictors of water temperature in surface-water dominated streams. However, no published work investigates the relationship between air and water temperatures in groundwater-fed streams (GWFS) across watersheds. We used simple linear regressions to examine weekly air-water temperature relationships for 40 GWFS in southeastern Minnesota. A 40-stream, composite linear regression model has a slope of 0.38, an intercept of 6.63, and R2 of 0.83. The regression models for GWFS have lower slopes and higher intercepts in comparison to surface-water dominated streams. Regression models for streams with high R2 values offer promise for use as predictive tools for future climate conditions. Climate change is expected to alter the thermal regime of groundwater-fed systems, but will do so at a slower rate than surface-water dominated systems. A regression model of intercept vs. slope can be used to identify streams for which water temperatures are more meteorologically than groundwater controlled, and thus more vulnerable to climate change. Such relationships can be used to guide restoration vs. management strategies to protect trout streams.

  15. INVESTIGATION OF A NOVEL AIR BRAZING COMPOSITION FOR HIGH-TEMPERATURE, OXIDATION-RESISTANT CERAMIC JOINING

    SciTech Connect

    Weil, K. Scott; Hardy, John S.; Darsell, Jens T.

    2004-01-30

    One of the challenges in developing a useful ceramic joining technique is in producing a joint that offers good strength under high temperature and highly oxidizing operating conditions. Unfortunately many of the commercially available active metal ceramic brazing alloys exhibit oxidation behaviors which are unacceptable for use in a high temperature application. We have developed a new approach to ceramic brazing, referred to as air brazing, that employs an oxide wetting agent dissolved in a molten noble metal solvent, in this case CuO in Ag, such that acceptable wetting behavior occurs on a number of ceramic substrates. In an effort to explore how to increase the operating temperature of this type of braze, we have investigated the effect of ternary palladium additions on the wetting characteristics of our standard Ag-CuO air braze composition

  16. Improving 7-Day Forecast Skill by Assimilation of Retrieved AIRS Temperature Profiles

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Rosenberg, Bob

    2016-01-01

    We conducted a new set of Data Assimilation Experiments covering the period January 1 to February 29, 2016 using the GEOS-5 DAS. Our experiments assimilate all data used operationally by GMAO (Control) with some modifications. Significant improvement in Global and Southern Hemisphere Extra-tropical 7-day forecast skill was obtained when: We assimilated AIRS Quality Controlled temperature profiles in place of observed AIRS radiances, and also did not assimilate CrISATMS radiances, nor did we assimilate radiosonde temperature profiles or aircraft temperatures. This new methodology did not improve or degrade 7-day Northern Hemispheric Extra-tropical forecast skill. We are conducting experiments aimed at further improving of Northern Hemisphere Extra-tropical forecast skill.

  17. Precipitation and Air Temperature Impact on Seasonal Variations of Groundwater Levels

    NASA Astrophysics Data System (ADS)

    Vitola, Ilva; Vircavs, Valdis; Abramenko, Kaspars; Lauva, Didzis; Veinbergs, Arturs

    2012-12-01

    The aim of this study is to clarify seasonal effects of precipitation and temperature on groundwater level changes in monitoring stations of the Latvia University of Agriculture - Mellupīte, Bērze and Auce. Groundwater regime and level fluctuations depend on climatic conditions such as precipitation intensity, evapotranspiration, surface runoff and drainage, as well as other hydrological factors. The relationship between precipitation, air temperature and groundwater level fluctuations could also lead and give different perspective of possible changes in groundwater quality. Using mathematical statistics and graphic-analytic methods it is concluded that autumn and winter precipitation has the dominant impact on groundwater level fluctuations, whereas spring and summer season fluctuations are more dependent on the air temperature.

  18. European seasonal mortality and influenza incidence due to winter temperature variability

    NASA Astrophysics Data System (ADS)

    Ballester, Joan; Rodó, Xavier; Robine, Jean-Marie; Herrmann, François Richard

    2016-10-01

    Recent studies have vividly emphasized the lack of consensus on the degree of vulnerability (see ref. ) of European societies to current and future winter temperatures. Here we consider several climate factors, influenza incidence and daily numbers of deaths to characterize the relationship between winter temperature and mortality in a very large ensemble of European regions representing more than 400 million people. Analyses highlight the strong association between the year-to-year fluctuations in winter mean temperature and mortality, with higher seasonal cases during harsh winters, in all of the countries except the United Kingdom, the Netherlands and Belgium. This spatial distribution contrasts with the well-documented latitudinal orientation of the dependency between daily temperature and mortality within the season. A theoretical framework is proposed to reconcile the apparent contradictions between recent studies, offering an interpretation to regional differences in the vulnerability to daily, seasonal and long-term winter temperature variability. Despite the lack of a strong year-to-year association between winter mean values in some countries, it can be concluded that warmer winters will contribute to the decrease in winter mortality everywhere in Europe.

  19. Determining Land Surface Temperature Relations with Land Use-Land Cover and Air Pollution

    NASA Astrophysics Data System (ADS)

    Kahya, Ceyhan; Bektas Balcik, Filiz; Burak Oztaner, Yasar; Guney, Burcu

    2016-04-01

    Rapid population growth in conjunction with unplanned urbanization, expansion, and encroachment into the limited agricultural fields and green areas have negative impacts on vegetated areas. Land Surface Temperature (LST), Urban Heat Islands (UHI) and air pollution are the most important environmental problems that the extensive part of the world suffers from. The main objective of this research is to investigate the relationship between LST, air pollution and Land Use-Land Cover (LULC) in Istanbul, using Landsat 8 OLI satellite image. Mono-window algorithm is used to compute LST from Landsat 8 TIR data. In order to determine the air pollution, in-situ measurements of particulate matter (PM10) of the same day as the Landsat 8 OLI satellite image are obtained. The results of this data are interpolated using the Inverse Distance Weighted (IDW) method and LULC categories of Istanbul were determined by using remote sensing indices. Error matrix was created for accuracy assessment. The relationship between LST, air pollution and LULC categories are determined by using regression analysis method. Keywords: Land Surface Temperature (LST), air pollution, Land Use-Land Cover (LULC), Istanbul

  20. Impacts of grassland types and vegetation cover changes on surface air temperature in the regions of temperate grassland of China

    NASA Astrophysics Data System (ADS)

    Shen, Xiangjin; Liu, Binhui; Li, Guangdi; Yu, Pujia; Zhou, Daowei

    2016-10-01

    The sensitivity of surface air temperature response to different grassland types and vegetation cover changes in the regions of temperate grassland of China was analyzed by observation minus reanalysis (OMR) method. The basis of the OMR approach is that reanalysis data are insensitive to local surface properties, so the temperature differences between surface observations and reanalysis can be attributed to land effects. Results showed that growing-season air temperature increased by 0.592 °C/decade in the regions of temperate grassland of China, with about 31 % of observed warming associated with the effects of grassland types and vegetation cover changes. For different grassland types, the growing-season OMR trend was the strongest for temperate desert steppe (0.259 °C/decade) and the weakest for temperate meadow (0.114 °C/decade). Our results suggest that the stronger intraseasonal changes of grassland vegetation are present, the more sensitive the OMR trend responds to the intraseasonal vegetation cover changes. In August and September, the OMR of temperate meadow showed a weak cooling trend. For temperate meadow, about 72.2 and 72.6 % of surface cooling were explained by both grassland type and increase of vegetation cover for August and September, respectively. For temperate steppe and temperate desert steppe, due to the limited soil moisture and little evaporative cooling feedback, the vegetation changes have no significant effect on the surface air temperature. These results indicate that the impact of grassland types and vegetation cover changes should be considered when projecting further climate change in the temperate grassland region of China.

  1. Multiplicity fluctuations due to the temperature fluctuations in high-energy nuclear collisions

    SciTech Connect

    Wilk, Grzegorz; Wlodarczyk, Zbigniew

    2009-05-15

    We investigate the multiplicity fluctuations observed in high-energy nuclear collisions attributing them to intrinsic fluctuations of temperature of the hadronizing system formed in such processes. To account for these fluctuations, we replace the usual Boltzmann-Gibbs (BG) statistics by the nonextensive Tsallis statistics characterized by the nonextensivity parameter q, with |q-1| being a direct measure of fluctuation. In the limit of vanishing fluctuations, q{yields}1 and Tsallis statistics converge to the usual BG. We evaluate the nonextensivity parameter q and its dependence on the hadronizing system size from the experimentally observed collision centrality dependence of the mean multiplicity and its variance Var(N). We attribute the observed system size dependence of q to the finiteness of the hadronizing source, with q=1 corresponding to an infinite, thermalized source with a fixed temperature, and with q>1 (which is observed) corresponding to a finite source in which both the temperature and energy fluctuate.

  2. Data Assimilation Experiments using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2008-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AlRS data. Version 5 contains accurate case-by-case error estimates for most derived products, which are also used for quality control. We have conducted forecast impact experiments assimilating AlRS quality controlled temperature profiles using the NASA GEOS-5 data assimilation system, consisting of the NCEP GSI analysis coupled with the NASA FVGCM. Assimilation of quality controlled temperature profiles resulted in significantly improved forecast skill in both the Northern Hemisphere and Southern Hemisphere Extra-Tropics, compared to that obtained from analyses obtained when all data used operationally by NCEP except for AlRS data is assimilated. Experiments using different Quality Control thresholds for assimilation of AlRS temperature retrievals showed that a medium quality control threshold performed better than a tighter threshold, which provided better overall sounding accuracy; or a looser threshold, which provided better spatial coverage of accepted soundings. We are conducting more experiments to further optimize this balance of spatial coverage and sounding accuracy from the data assimilation perspective. In all cases, temperature soundings were assimilated well below cloud level in partially cloudy cases. The positive impact of assimilating AlRS derived atmospheric temperatures all but vanished when only AIRS stratospheric temperatures were assimilated. Forecast skill resulting from assimilation of AlRS radiances uncontaminated by clouds, instead of AlRS temperature soundings, was only slightly better than that resulting from assimilation of only stratospheric AlRS temperatures. This reduction in forecast skill is most likely the result of significant loss of tropospheric information when only AIRS radiances unaffected by clouds are used in the data assimilation process.

  3. Snow removal and ambient air temperature effects on forest soil temperatures in northern Vermont

    NASA Astrophysics Data System (ADS)

    Wang, D.; Decker, K. L.; Waite, C.; Scherbatskoy, T.

    2003-12-01

    We measured deciduous forest soil temperatures under control (unmanipulated) and snow-free (where snow is manually removed) conditions for four winters (at three soil depths) to determine effects of a snow cover reduction such as may occur as a result of climate change on Vermont forest soils. The four winters we studied were characterized as:`cold and snowy', `warm with low snow', `cold with low snow', and `cool with low snow'. Snow-free soils were colder than controls at 5 and 15 cm depth for all years, and at all depths in the two cold winters. Soil thermal variability generally decreased with both increased snow cover and soil depth. The effect of snow cover on soil freeze-thaw events was highly dependent on both the depth of snow and the soil temperature. Snow kept the soil warm and reduced soil temperature variability, but often this caused soil to remain near 0 deg C, resulting in more freeze-thaw events under snow at one or more soil depths. During the `cold snowy' winter, soils under snow had daily averages consistently >0 deg C, whereas snow-free soil temperatures commonly dropped below -3 deg C. During the `warm' year, temperatures of soil under snow were often lower than those of snow-free soils. The warmer winter resulted in less snow cover to insulate soil from freezing in the biologically active top 30 cm. The possible consequences of increased soil freezing include more root mortality and nutrient loss which would potentially alter ecosystem dynamics, decrease productivity of some tree species, and increase sugar maple mortality in northern hardwood forests.

  4. Temperature and structural changes of water clusters in vacuum due to evaporation.

    PubMed

    Caleman, Carl; van der Spoel, David

    2006-10-21

    This paper presents a study on evaporation of pure water clusters. Molecular dynamics simulations between 20 ns and 3 micros of clusters ranging from 125 to 4096 molecules in vacuum were performed. Three different models (SPC, TIP4P, and TIP5P) were used to simulate water, starting at temperatures of 250, 275, and 300 K. We monitored the temperature, the number of hydrogen bonds, the tetrahedral order, the evaporation, the radial distribution functions, and the diffusion coefficients. The three models behave very similarly as far as temperature and evaporation are concerned. Clusters starting at a higher temperature show a higher initial evaporation rate and therefore reach the point where evaporation stop (around 240 K) sooner. The radius of the clusters is decreased by 0.16-0.22 nm after 0.5 micros (larger clusters tend to decrease their radius slightly more), which corresponds to around one evaporated molecule per nm(2). The cluster temperature seems to converge towards 215 K independent of cluster size, when starting at 275 K. We observe only small structural changes, but the clusters modeled by TIP5P show a larger percentage of molecules with low diffusion coefficient as t-->infinity, than those using the two other water models. TIP4P seems to be more structured and more hydrogen bonds are formed than in the other models as the temperature falls. The cooling rates are in good agreement with experimental results, and evaporation rates agree well with a phenomenological expression based on experimental observations. PMID:17059273

  5. High room temperature optical polarization due to spin-valley coupling in monolayer WS2

    NASA Astrophysics Data System (ADS)

    Hanbicki, A. T.; McCreary, K. M.; Kioseoglou, G.; Currie, M.; Hellberg, C. S.; Friedman, A. L.; Jonker, B. T.

    2016-05-01

    We prepare single-layer WS2 films such that the photoluminescence is from either the neutral exciton or the negatively charged trion. While the neutral exciton emission has zero polarization at room temperature, we observe a room temperature optical polarization in excess of 40% for the trion. Using an applied gate voltage, we can modulate the electron density, and subsequently the polarization of the trion emission continuously from 20-40%. Both the polarization and the emission energy monotonically track the gate voltage with the emission energy increasing by 45 meV. We discuss the role electron capture by the exciton has on suppressing the intervalley scattering process.

  6. Time scales of the European surface air temperature variability: The role of the 7-8 year cycle

    NASA Astrophysics Data System (ADS)

    Jajcay, Nikola; Hlinka, Jaroslav; Kravtsov, Sergey; Tsonis, Anastasios A.; Paluš, Milan

    2016-01-01

    Air temperature variability on different time scales exhibits recurring patterns and quasi-oscillatory phenomena. Climate oscillations with the period about 7-8 years have been observed in many instrumental records in Europe. Although these oscillations are weak if considering their amplitude, they might have nonnegligible influence on temperature variability on shorter time scales due to cross-scale interactions recently observed by Paluš (2014). In order to quantify the cross-scale influence, we propose a simple conditional mean approach which estimates the effect of the cycle with the period close to 8 years on the amplitude of the annual cycle in surface air temperature (SAT) in the range 0.7-1.4°C and the effect on the overall variability of the SAT anomalies (SATA) leads to the changes 1.5-1.7°C in the annual SATA means. The strongest effect in the winter SATA means reaches 4-5°C in central European station and reanalysis data.

  7. Observed screen (air) and GCM surface/screen temperatures: Implications for outgoing longwave fluxes at the surface

    SciTech Connect

    Garratt, J.R.

    1995-05-01

    There is direct evidence that excess net radiation calculated in general circulation models at continental surfaces (of about 11-17 W m{sup -2} (20%-27%) on an annual basis) is not only due to overestimates in annual incoming shortwave fluxes of 9-18 W m{sup -2} (6%-9%), but also to underestimates in outgoing longwave fluxes. THe bias in the outgoing longwave flux is deduced from a comparison of screen-air temperature observations, available as a global climatology of mean monthly values, and model-calculated surface and screen-air temperatures. An underestimate in the screen temperature computed in general circulation models over continents, of about 3 K on an annual basis, implies an underestimate in the outgoing longwave flux, averaged in six models under study, of 11-15 W m{sup -2} (3%-4%). For a set of 22 inland stations studied previously, the residual bias on an annual basis (the residual is the net radiation minus incoming shortwave plus outgoing longwave) varies between 18 and -23 W m{sup -2} for the models considered. Additional biases in one or both of the reflected shortwave and incoming longwave components cannot be ruled out. 13 refs., 3 figs., 5 tabs.

  8. Air temperature field distribution estimations over a Chinese mega-city using MODIS land surface temperature data: the case of Shanghai

    NASA Astrophysics Data System (ADS)

    Ma, Weichun; Zhou, Liguo; Zhang, Hao; Zhang, Ya