Zhang, Fa-wei; Li, Hong-qin; Li, Ying-nian; Li, Yi-kang; Lin, Li
2009-03-01
With Mexican Hat function as mother function, a wavelet analysis was conducted on the periodic fluctuation features of air temperature, precipitation, and aboveground net primary production (ANPP) in the Alpine Meadow Ecosystem Research Station, Chinese Academy of Sciences from 1980 to 2007. The results showed that there was a main period of 13 years for the annual fluctuations of air temperature, precipitation, and ANPP. A secondary period of 2 years for the annual fluctuations of air temperature and ANPP had lesser influence, whereas that of 4 years for the annual fluctuation of precipitation had greater effect. Lagged correlation analysis indicated that the annual fluctuation of ANNP was mainly controlled by the air temperature in a 20 years scale and had a weak 5-9 years lag effect, but there was a less correlation between ANPP and precipitation.
Precipitation and Air Temperature Impact on Seasonal Variations of Groundwater Levels
NASA Astrophysics Data System (ADS)
Vitola, Ilva; Vircavs, Valdis; Abramenko, Kaspars; Lauva, Didzis; Veinbergs, Arturs
2012-12-01
The aim of this study is to clarify seasonal effects of precipitation and temperature on groundwater level changes in monitoring stations of the Latvia University of Agriculture - Mellupīte, Bērze and Auce. Groundwater regime and level fluctuations depend on climatic conditions such as precipitation intensity, evapotranspiration, surface runoff and drainage, as well as other hydrological factors. The relationship between precipitation, air temperature and groundwater level fluctuations could also lead and give different perspective of possible changes in groundwater quality. Using mathematical statistics and graphic-analytic methods it is concluded that autumn and winter precipitation has the dominant impact on groundwater level fluctuations, whereas spring and summer season fluctuations are more dependent on the air temperature.
Toward a fuzzy logic control of the infant incubator.
Reddy, Narender P; Mathur, Garima; Hariharan, S I
2009-10-01
Premature birth is a world wide problem. Thermo regulation is a major problem in premature infants. Premature infants are often kept in infant incubators providing convective heating. Currently either the incubator air temperature is sensed and used to control the heat flow, or infant's skin temperature is sensed and used in the close loop control. Skin control often leads to large fluctuations in the incubator air temperature. Air control also leads to skin temperature fluctuations. The question remains if both the infant's skin temperature and the incubator air temperature can be simultaneously used in the control. The purpose of the present study was to address this question by developing a fuzzy logic control which incorporates both incubator air temperature and infant's skin temperature to control the heating. The control was evaluated using a lumped parameter mathematical model of infant-incubator system (Simon, B. N., N. P. Reddy, and A. Kantak, J. Biomech. Eng. 116:263-266, 1994). Simulation results confirmed previous experimental results that the on-off skin control could lead to fluctuations in the incubator air temperature, and the air control could lead to too slow rise time in the core temperature. The fuzzy logic provides a smooth control with the desired rise time.
Evaluation of short-term tracer fluctuations in groundwater and soil air in a two year study
NASA Astrophysics Data System (ADS)
Jenner, Florian; Mayer, Simon; Aeschbach, Werner; Weissbach, Therese
2016-04-01
The application of gas tracers like noble gases (NGs), SF6 or CFCs in groundwater studies such as paleo temperature determination requires a detailed understanding of the dynamics of reactive and inert gases in the soil air with which the infiltrating water equilibrates. Due to microbial gas consumption and production, NG partial pressures in soil air can deviate from atmospheric air, an effect that could bias noble gas temperatures estimates if not taken into account. So far, such an impact on NG contents in groundwater has not been directly demonstrated. We provide the first long-term study of the above mentioned gas tracers and physical parameters in both the saturated and unsaturated soil zone, sampled continuously for more than two years near Mannheim (Germany). NG partial pressures in soil air correlate with soil moisture and the sum value of O2+CO2, with a maximal significant enhancement of 3-6% with respect to atmospheric air during summer time. Observed seasonal fluctuations result in a mass dependent fractionation of NGs in soil air. Concentrations of SF6 and CFCs in soil air are determined by corresponding fluctuations in local atmospheric air, caused by industrial emissions. Arising concentration peaks are damped with increasing soil depth. Shallow groundwater shows short-term NG fluctuations which are smoothed within a few meters below the water table. A correlation between NG contents of soil air and of groundwater is observable during strong recharge events. However, there is no evidence for a permanent influence of seasonal variations of soil air composition on shallow groundwater. Fluctuating NG contents in shallow groundwater are rather determined by variations of soil temperature and water table level. Our data gives evidence for a further temperature driven equilibration of groundwater with entrapped air bubbles within the topmost saturated zone, which permanently occurs even some years after recharge. Local subsurface temperature fluctuations may thus lead to subsequent variations of NG contents in groundwater, independent of the former recharge temperature. This effect is of major importance for gas tracer applications in recent and shallow groundwater.
High-frequency fluctuations of surface temperatures in an urban environment
NASA Astrophysics Data System (ADS)
Christen, Andreas; Meier, Fred; Scherer, Dieter
2012-04-01
This study presents an attempt to resolve fluctuations in surface temperatures at scales of a few seconds to several minutes using time-sequential thermography (TST) from a ground-based platform. A scheme is presented to decompose a TST dataset into fluctuating, high-frequency, and long-term mean parts. To demonstrate the scheme's application, a set of four TST runs (day/night, leaves-on/leaves-off) recorded from a 125-m-high platform above a complex urban environment in Berlin, Germany is used. Fluctuations in surface temperatures of different urban facets are measured and related to surface properties (material and form) and possible error sources. A number of relationships were found: (1) Surfaces with surface temperatures that were significantly different from air temperature experienced the highest fluctuations. (2) With increasing surface temperature above (below) air temperature, surface temperature fluctuations experienced a stronger negative (positive) skewness. (3) Surface materials with lower thermal admittance (lawns, leaves) showed higher fluctuations than surfaces with high thermal admittance (walls, roads). (4) Surface temperatures of emerged leaves fluctuate more compared to trees in a leaves-off situation. (5) In many cases, observed fluctuations were coherent across several neighboring pixels. The evidence from (1) to (5) suggests that atmospheric turbulence is a significant contributor to fluctuations. The study underlines the potential of using high-frequency thermal remote sensing in energy balance and turbulence studies at complex land-atmosphere interfaces.
Variability of Winter Air Temperature in Mid-Latitude Europe
NASA Technical Reports Server (NTRS)
Otterman, J.; Ardizzone, J.; Atlas, R.; Bungato, D.; Cierniewski, J.; Jusem, J. C.; Przybylak, R.; Schubert, S.; Starr, D.; Walczewski, J.
2002-01-01
The aim of this paper is to report extreme winter/early-spring air temperature (hereinafter temperature) anomalies in mid-latitude Europe, and to discuss the underlying forcing to these interannual fluctuations. Warm advection from the North Atlantic in late winter controls the surface-air temperature, as indicated by the substantial correlation between the speed of the surface southwesterlies over the eastern North Atlantic (quantified by a specific Index Ina) and the 2-meter level air temperatures (hereinafter Ts) over Europe, 45-60 deg N, in winter. In mid-March and subsequently, the correlation drops drastically (quite often it is negative). This change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature: absorption of insolation replaces the warm advection as the dominant control. This forcing by maritime-air advection in winter was demonstrated in a previous publication, and is re-examined here in conjunction with extreme fluctuations of temperatures in Europe. We analyze here the interannual variability at its extreme by comparing warm-winter/early-spring of 1989/90 with the opposite scenario in 1995/96. For these two December-to-March periods the differences in the monthly mean temperature in Warsaw and Torun, Poland, range above 10 C. Short-term (shorter than a month) fluctuations of the temperature are likewise very strong. We conduct pentad-by-pentad analysis of the surface-maximum air temperature (hereinafter Tmax), in a selected location, examining the dependence on Ina. The increased cloudiness and higher amounts of total precipitable water, corollary effects to the warm low-level advection. in the 1989/90 winter, enhance the positive temperature anomalies. The analysis of the ocean surface winds is based on the Special Sensor Microwave/Imager (SSM/I) dataset; ascent rates, and over land wind data are from the European Centre for Medium-Range Weather Forecasts (ECMWF); maps of 2-m temperature, cloud cover and precipitable water are from the National Centers for Environmental Prediction (NCEP) Reanalysis.
NASA Astrophysics Data System (ADS)
Bogoev, Ivan; Helbig, Manuel; Sonnentag, Oliver
2015-04-01
A growing number of studies report systematic differences in CO2 flux estimates obtained with the two main types of gas analyzers: compared to eddy-covariance systems based on closed-path (CP) gas analyzers, systems with open-path (OP) gas analyzers systematically overestimate CO2 uptake during daytime periods with high positive sensible heat fluxes, while patterns for differences in nighttime CO2 exchange are less obvious. These biases have been shown to correlate with the sign and the magnitude of the sensible heat flux and to introduce large uncertainties when calculating annual CO2 budgets. In general, CP and OP gas analyzers commonly used to measure the CO2 density in the atmosphere operate on the principle of infrared light absorption approximated by Beer-Lambert's law. Non-dispersive interference-based optical filter elements are used to select spectral bands with strong attenuation of light transmission, characteristic to the gas of interest. The intensity of the light passing through the optical sensing path depends primarily on the amount of absorber gas in the measurement volume. Besides the density of the gas, barometric pressure and air temperature are additional factors affecting the strength and the half-width of the absorption lines. These so-called spectroscopic effects are accounted for by measuring barometric pressure and air temperature in the sensing path and scaling the light-intensity measurements before applying the calibration equation. This approach works well for CP gas analyzers with an intake tube that acts as a low-pass filter on fast air-temperature fluctuations. Low-frequency response temperature sensors in the measurement cell are therefore sufficient to account for spectroscopic temperature effects. In contrast, OP gas analyzers are exposed to high-frequency air-temperature fluctuations associated with the atmospheric surface-layer turbulent heat exchange. If not corrected adequately, these fast air-temperature variations can cause systematic errors in the CO2 density measurements. Under conditions of high positive or negative sensible heat flux, air-temperature fluctuations are correlated with fluctuations of the vertical wind component and can lead to significant biases in the CO2 flux estimates. This study demonstrates that sonically derived fast-response air temperature in the optical sensing path of an OP gas analyzer can replace the slow-response measurements from the temperature sensor as a scaling parameter in the calibration model to correct for these air temperature-induced spectroscopic effects. Our approach is evaluated by comparison between different OP and CP gas analyzer-based eddy-covariance systems in ecosystems with low CO2 uptake under a range of sensible heat flux regimes and varying meteorological parameters. We show that ignoring high-frequency spectroscopic effects can lead to false interpretations of net ecosystem CO2 exchange for specific site and environmental conditions.
Environmentally Powered Yarn Arrays that Sense, Actuate, Harvest, and Store Energy (NBIT III)
2016-11-15
than the gravimetric power generation capability of a cars combustion engine and (2) functioned as a torsional artificial muscle to rotate a heavy...rotor to over 90,000 rpm. By driving this torsional actuation using 19.6C fluctuations in air temperature, we obtained an average output electrical ...rpm. By driving this torsional actuation using 19.6°C fluctuations in air temperature, we obtained an average output electrical power of 124 W per
NASA Astrophysics Data System (ADS)
Mohr, Manuel; Laemmel, Thomas; Maier, Martin; Zeeman, Matthias; Longdoz, Bernard; Schindler, Dirk
2017-04-01
The exchange of greenhouse gases between the soil and the atmosphere is highly relevant for the climate of the Earth. Recent research suggests that wind-induced air pressure fluctuations can alter the soil gas transport and therefore soil gas efflux significantly. Using a newly developed method, we measured soil gas transport in situ in a well aerated forest soil. Results from these measurements showed that the commonly used soil gas diffusion coefficient is enhanced up to 30% during periods of strong wind-induced air pressure fluctuations. The air pressure fluctuations above the forest floor are only induced at high above-canopy wind speeds (> 5 m s-1) and lie in the frequency range 0.01-0.1 Hz. Moreover, the amplitudes of air pressure fluctuations in this frequency range show a clear quadratic dependence on mean above-canopy wind speed. However, the origin of these wind-induced pressure fluctuations is still unclear. Airflow measurements and high-precision air pressure measurements were conducted at three different vegetation-covered sites (conifer forest, deciduous forest, grassland) to investigate the spatial variability of dominant air pressure fluctuations, their origin and vegetation-dependent characteristics. At the conifer forest site, a vertical profile of air pressure fluctuations was measured and an array consisting of five pressure sensors were installed at the forest floor. At the grassland site, the air pressure measurements were compared with wind observations made by ground-based LIDAR and spatial temperature observations from a fibre-optic sensing network (ScaleX Campaign 2016). Preliminary results show that at all sites the amplitudes of relevant air pressure fluctuations increase with increasing wind speed. Data from the array measurements reveal that there are no time lags between the air pressure signals of different heights, but a time lag existed between the air pressure signals of the sensors distributed laterally on the forest floor, suggesting a horizontal propagation of the air pressure waves.
NASA Technical Reports Server (NTRS)
Massey, G. A.; Lemon, C. J.
1984-01-01
A tunable line-narrowed ArF laser can selectively excite several rotation al lines of the Schumann-Runge band system of O2 in air. The resulting ultraviolet fluorescence can be monitored at 90 deg to the laser beam axis, permitting space and time resolved observation of density and temperature fluctuations in turbulence. Experiments and calculations show that + or - 1 K, + or - 1 percent density, 1 cu mm spatial, and 1 microsecond temporal resolution can be achieved simultaneously under some conditions.
Kim, Siyeon; Lee, Joo-Young
2016-04-01
The aim of this study was to investigate stable and valid measurement sites of skin temperatures as a non-invasive variable to predict deep-body temperature while wearing firefighters' personal protective equipment (PPE) during air temperature changes. Eight male firefighters participated in an experiment which consisted of 60-min exercise and 10-min recovery while wearing PPE without self-contained breathing apparatus (7.75 kg in total PPE mass). Air temperature was periodically fluctuated from 29.5 to 35.5 °C with an amplitude of 6 °C. Rectal temperature was chosen as a deep-body temperature, and 12 skin temperatures were recorded. The results showed that the forehead and chest were identified as the most valid sites to predict rectal temperature (R(2) = 0.826 and 0.824, respectively) in an environment with periodically fluctuated air temperatures. This study suggests that particular skin temperatures are valid as a non-invasive variable when predicting rectal temperature of an individual wearing PPE in changing ambient temperatures. Practitioner Summary: This study should offer assistance for developing a more reliable indirect indicating system of individual heat strain for firefighters in real time, which can be used practically as a precaution of firefighters' heat-related illness and utilised along with physiological monitoring.
Molecular Rayleigh Scattering Diagnostic for Dynamic Temperature, Velocity, and Density Measurements
NASA Technical Reports Server (NTRS)
Mielke, Amy R.; Elam, Kristie A.; Sung, Chi-Jen
2006-01-01
A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 16 kHz. A high power CW laser beam is focused at a point in an air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 16 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. A low speed heated jet is used to validate the measurement of temperature fluctuations and an acoustically excited nozzle flow is studied to validate velocity fluctuation measurements. Power spectral density calculations of the property fluctuations, as well as mean and fluctuating quantities are presented. Temperature fluctuation results are compared with constant current anemometry measurements and velocity fluctuation results are compared with constant temperature anemometry measurements at the same locations.
NASA Astrophysics Data System (ADS)
Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu
2017-12-01
Compressed air energy storage (CAES) is a technology that uses compressed air to store surplus electricity generated from low power consumption time for use at peak times. This paper presents a thermo-mechanical modeling for the thermodynamic and mechanical responses of a lined rock cavern used for CAES. The simulation was accomplished in COMSOL Multiphysics and comparisons of the numerical simulation and some analytical solutions validated the thermo-mechanical modeling. Air pressure and temperatures in the sealing layer and concrete lining exhibited a similar trend of ‘up-down-down-up’ in one cycle. Significant temperature fluctuation occurred only in the concrete lining and sealing layer, and no strong fluctuation was observed in the host rock. In the case of steel sealing, principal stresses in the sealing layer were larger than those in the concrete and host rock. The maximum compressive stresses of the three layers and the displacement on the cavern surface increased with the increase of cycle number. However, the maximum tensile stresses exhibited the opposite trend. Polymer sealing achieved a relatively larger air temperature and pressure compared with steel and air-tight concrete sealing. For concrete layer thicknesses of 0 and 0.1 m and an initial air pressure of 4.5 MPa, the maximum rock temperature could reach 135 °C and 123 °C respectively in a 30 day simulation.
Regional hydrologic response of loblolly pine to air temperature and precipitation changes
Steven G. McNulty; James M. Vose; Wayne T. Swank
1997-01-01
Large deviations in average annual air temperatures and total annual precipitation were observed across the Southern United States during the last 50 years, and these fluctuations could become even larger during the next century. The authors used PnET-IIS, a monthly time-step forest process model that uses soil, vegetation, and climate inputs to assess the influence of...
Measurement of temperature and density fluctuations in turbulence using an ultraviolet laser
NASA Technical Reports Server (NTRS)
Massey, G. A.
1984-01-01
Noninvasive measurement of density and temperature fluctuations in turbulent air flow was examined. The approach used fluorescence of oxygen molecules which are selectively excited by a tunable vacuum ultraviolet laser beam. The strength of the fluorescence signal and its dependence on laser wavelength vary with the density and temperature of the air in the laser beam. Because fluorescence can be detected at 90 degrees from the beam propagation direction, spatial resolution in three dimensions, rather than path-integrated measurements can be achieved. With spatial resolutions of the order of a millimeter and at supersonic air velocities it is necessary to perform each measurement in a time of the order of a microsecond; this is possible by by using laser pulses of ten nanosecond duration. In this method atmospheric O2 is excited by the emission of a tunable ArF excimer laser, and the fluorescence, which spans the 210 to 420 range, is detected by an ultraviolet phototube.
Survival of rapidly fluctuating natural low winter temperatures by High Arctic soil invertebrates.
Convey, Peter; Abbandonato, Holly; Bergan, Frode; Beumer, Larissa Teresa; Biersma, Elisabeth Machteld; Bråthen, Vegard Sandøy; D'Imperio, Ludovica; Jensen, Christina Kjellerup; Nilsen, Solveig; Paquin, Karolina; Stenkewitz, Ute; Svoen, Mildrid Elvik; Winkler, Judith; Müller, Eike; Coulson, Stephen James
2015-12-01
The extreme polar environment creates challenges for its resident invertebrate communities and the stress tolerance of some of these animals has been examined over many years. However, although it is well appreciated that standard air temperature records often fail to describe accurately conditions experienced at microhabitat level, few studies have explicitly set out to link field conditions experienced by natural multispecies communities with the more detailed laboratory ecophysiological studies of a small number of 'representative' species. This is particularly the case during winter, when snow cover may insulate terrestrial habitats from extreme air temperature fluctuations. Further, climate projections suggest large changes in precipitation will occur in the polar regions, with the greatest changes expected during the winter period and, hence, implications for the insulation of overwintering microhabitats. To assess survival of natural High Arctic soil invertebrate communities contained in soil and vegetation cores to natural winter temperature variations, the overwintering temperatures they experienced were manipulated by deploying cores in locations with varying snow accumulation: No Snow, Shallow Snow (30 cm) and Deep Snow (120 cm). Air temperatures during the winter period fluctuated frequently between +3 and -24 °C, and the No Snow soil temperatures reflected this variation closely, with the extreme minimum being slightly lower. Under 30 cm of snow, soil temperatures varied less and did not decrease below -12 °C. Those under deep snow were even more stable and did not decline below -2 °C. Despite these striking differences in winter thermal regimes, there were no clear differences in survival of the invertebrate fauna between treatments, including oribatid, prostigmatid and mesostigmatid mites, Araneae, Collembola, Nematocera larvae or Coleoptera. This indicates widespread tolerance, previously undocumented for the Araneae, Nematocera or Coleoptera, of both direct exposure to at least -24 °C and the rapid and large temperature fluctuations. These results suggest that the studied polar soil invertebrate community may be robust to at least one important predicted consequence of projected climate change. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J. (Inventor)
1979-01-01
Pressure fluctuations in air or other gases in an area of elevated temperature are measured using a condenser microphone located in the area of elevated temperature and electronics for processing changes in the microphone capacitance located outside the area the area and connected to the microphone by means of high-temperature cable assembly. The microphone includes apparatus for decreasing the undesirable change in microphone sensitivity at high temperatures. The high temperature cable assembly operates as a half-wavelength transmission line in an AM carrier system and maintains a large temperature gradient between the two ends of the cable assembly. The processing electronics utilizes a voltage controlled oscillator for automatic tuning thereby increasing the sensitivity of the measuring apparatus.
ARIMA representation for daily solar irradiance and surface air temperature time series
NASA Astrophysics Data System (ADS)
Kärner, Olavi
2009-06-01
Autoregressive integrated moving average (ARIMA) models are used to compare long-range temporal variability of the total solar irradiance (TSI) at the top of the atmosphere (TOA) and surface air temperature series. The comparison shows that one and the same type of the model is applicable to represent the TSI and air temperature series. In terms of the model type surface air temperature imitates closely that for the TSI. This may mean that currently no other forcing to the climate system is capable to change the random walk type variability established by the varying activity of the rotating Sun. The result should inspire more detailed examination of the dependence of various climate series on short-range fluctuations of TSI.
Johnny L. Boggs; Steven G. McNulty
2010-01-01
The objective of this study is to describe winter and summer surface air and forest floor temperature patterns and diurnal fluctuations in high-elevation red spruce (Picea rubens Sarg.) forests with different levels of canopy cover. In 1988, a series of 10- x 10-meter plots (control, low nitrogen [N] addition, and high nitrogen addition) were...
Measurements of fluctuating gas temperatures using compensated fine wire thermocouples
NASA Astrophysics Data System (ADS)
Nina, M. N. R.; Pita, G. P.
1985-09-01
Thermocouples with three different wire diameters (15, 40 and 50 microns) were used in association with an analog compensation circuit connected to a data acquisition system. Measurements of the time constant were performed using two different heating techniques; Joule effect and external heating by laser beam. The thermocouples were used to quantify the fluctuating temperature field in a hot air jet and in a premixed propane flame. In the reacting case the catalytic effect was evaluated by comparing coated and uncoated wires. Conclusions were also obtained regarding frequency spectra, temperature probability distribution function and time constant.
Cold Spots in the Martian Polar Regions: Evidence of Carbon Dioxide Depletion?
NASA Technical Reports Server (NTRS)
Weiss, Benjamin P.; Ingersoll, Andrew P.
2000-01-01
Regions of very low, rapidly varying brightness temperatures have been observed near the martian winter poles by several spacecraft. One possibility is that the CO2 condensation temperature is lowered by depletion of CO2 in the air at the surface. We estimate the rate at which this low-molecular-weight air would disperse into the high-molecular-weight air above and show that it is generally faster than the rate of supply. This dispersal could be prevented if there is a strong temperature inversion (warm air above colder air) near the surface. Without an inversion, the entire atmospheric column could become depleted. However, depleted columns take a long time to form, and they are inconsistent with the rapid fluctuations in the cold spot locations and temperatures. Because low-altitude temperature inversions cannot be ruled out by existing observations, CO2 depletion is still a viable explanation for the martian cold spots.
A molecular Rayleigh scattering setup to measure density fluctuations in thermal boundary layers
NASA Astrophysics Data System (ADS)
Panda, J.
2016-12-01
A Rayleigh scattering-based density fluctuation measurement system was set up inside a low-speed wind tunnel of NASA Ames Research Center. The immediate goal was to study the thermal boundary layer on a heated flat plate. A large number of obstacles had to be overcome to set up the system, such as the removal of dust particles using air filters, the use of photoelectron counting electronics to measure low intensity light, an optical layout to minimize stray light contamination, the reduction in tunnel vibration, and an expanded calibration process to relate photoelectron arrival rate to air density close to the plate surface. To measure spectra of turbulent density fluctuations, a two-PMT cross-correlation system was used to minimize the shot noise floor. To validate the Rayleigh measurements, temperature fluctuations spectra were calculated from density spectra and then compared with temperature spectra measured with a cold-wire probe operated in constant current mode. The spectra from the downstream half of the plate were found to be in good agreement with cold-wire probe, whereas spectra from the leading edge differed. Various lessons learnt are discussed. It is believed that the present effort is the first measurement of density fluctuations spectra in a boundary layer flow.
Molecular Rayleigh Scattering Diagnostic for Measurement of High Frequency Temperature Fluctuations
NASA Technical Reports Server (NTRS)
Mielke, Amy F.; Elam, Kristie A.
2005-01-01
A novel technique for measurement of high frequency temperature fluctuations in unseeded gas flows using molecular Rayleigh scattering is investigated. The spectrum of laser light scattered from molecules in a gas flow is resolved using a Fabry-Perot interferometer. The width of the spectral peak is broadened by thermal motion of the molecules and hence is related to gas temperature. The interference fringe pattern containing spectral information is divided into four concentric regions using a series of mirrors angled with respect to one another. Light from each of these regions is directed towards photomultiplier tubes and sampled at 10 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows measurement of gas temperature. Independently monitoring the total scattered intensity provides a measure of gas density. This technique also has the potential to simultaneously measure a single component of flow velocity by monitoring the spectral peak location. Measurements of gas temperature and density are demonstrated using a low speed heated air jet surrounded by an unheated air co-flow. Mean values of temperature and density are shown for radial scans across the jet flow at a fixed axial distance from the jet exit plane. Power spectra of temperature and density fluctuations at several locations in the jet are also shown. The instantaneous measurements have fairly high uncertainty; however, long data records provide highly accurate statistically quantities, which include power spectra. Mean temperatures are compared with thermocouple measurements as well as the temperatures derived from independent density measurements. The accuracy for mean temperature measurements was +/- 7 K.
A computer model for predicting grapevine cold hardiness
USDA-ARS?s Scientific Manuscript database
We developed a robust computer model of grapevine bud cold hardiness that will aid in the anticipation of and response to potential injury from fluctuations in winter temperature and from extreme cold events. The model uses time steps of 1 day along with the measured daily mean air temperature to ca...
NASA Technical Reports Server (NTRS)
Mielke, Amy F.; Elam, Kristie A.; Sung, Chih-Jen
2007-01-01
A molecular Rayleigh scattering technique is developed to measure time-resolved gas velocity, temperature, and density in unseeded turbulent flows at sampling rates up to 32 kHz. A high power continuous-wave laser beam is focused at a point in an air flow field and Rayleigh scattered light is collected and fiber-optically transmitted to the spectral analysis and detection equipment. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. Photomultiplier tubes operated in the photon counting mode allow high frequency sampling of the circular interference pattern to provide time-resolved flow property measurements. An acoustically driven nozzle flow is studied to validate velocity fluctuation measurements, and an asymmetric oscillating counterflow with unequal enthalpies is studied to validate the measurement of temperature fluctuations. Velocity fluctuations are compared with constant temperature anemometry measurements and temperature fluctuations are compared with constant current anemometry measurements at the same locations. Time-series and power spectra of the temperature and velocity measurements are presented. A numerical simulation of the light scattering and detection process was developed and compared with experimental data for future use as an experiment design tool.
Corrosion detector apparatus for universal assessment of pollution in data centers
Hamann, Hendrik F.; Klein, Levente I.
2015-08-18
A compact corrosion measurement apparatus and system includes an air fan, a corrosion sensor, a temperature sensor, a humidity sensor, a heater element, and an air flow sensor all under control to monitor and maintain constant air parameters in an environment and minimize environmental fluctuations around the corrosion sensor to overcome the variation commonly encountered in corrosion rate measurement. The corrosion measurement apparatus includes a structure providing an enclosure within which are located the sensors. Constant air flow and temperature is maintained within the enclosure where the corrosion sensor is located by integrating a variable speed air fan and a heater with the corresponding feedback loop control. Temperature and air flow control loops ensure that corrosivity is measured under similar conditions in different facilities offering a general reference point that allow a one to one comparison between facilities with similar or different pollution levels.
Influence of temperature fluctuations on infrared limb radiance: a new simulation code
NASA Astrophysics Data System (ADS)
Rialland, Valérie; Chervet, Patrick
2006-08-01
Airborne infrared limb-viewing detectors may be used as surveillance sensors in order to detect dim military targets. These systems' performances are limited by the inhomogeneous background in the sensor field of view which impacts strongly on target detection probability. This background clutter, which results from small-scale fluctuations of temperature, density or pressure must therefore be analyzed and modeled. Few existing codes are able to model atmospheric structures and their impact on limb-observed radiance. SAMM-2 (SHARC-4 and MODTRAN4 Merged), the Air Force Research Laboratory (AFRL) background radiance code can be used to in order to predict the radiance fluctuation as a result of a normalized temperature fluctuation, as a function of the line-of-sight. Various realizations of cluttered backgrounds can then be computed, based on these transfer functions and on a stochastic temperature field. The existing SIG (SHARC Image Generator) code was designed to compute the cluttered background which would be observed from a space-based sensor. Unfortunately, this code was not able to compute accurate scenes as seen by an airborne sensor especially for lines-of-sight close to the horizon. Recently, we developed a new code called BRUTE3D and adapted to our configuration. This approach is based on a method originally developed in the SIG model. This BRUTE3D code makes use of a three-dimensional grid of temperature fluctuations and of the SAMM-2 transfer functions to synthesize an image of radiance fluctuations according to sensor characteristics. This paper details the working principles of the code and presents some output results. The effects of the small-scale temperature fluctuations on infrared limb radiance as seen by an airborne sensor are highlighted.
Wuytack, Tatiana; Wuyts, Karen; Van Dongen, Stefan; Baeten, Lander; Kardel, Fatemeh; Verheyen, Kris; Samson, Roeland
2011-10-01
We aimed at evaluating the effect of low-level air pollution on leaf area fluctuating asymmetry (FAA) and specific leaf area (SLA) of Salix alba L., taking into account other environmental factors. Cuttings were grown in standardized conditions in the near vicinity of air quality measuring stations in Belgium. Variability of SLA and FAA between measuring stations explained 83% and 7.26%, respectively, of the total variability. FAA was not influenced by air pollution or environmental factors such as shading, herbivory, air temperature and humidity. SLA was increased by an increase in shadow, while NO(x) and O(3) concentrations had only a marginal influence. The influence of SO(2) concentration was negligible. Although our data analysis suggests a relationship between SLA and NO(x)/O(3) concentration, the absence of a straightforward relationship between FAA and SLA and air pollution still questions the usefulness of these bio-indicators for monitoring air pollution. Copyright © 2011 Elsevier Ltd. All rights reserved.
Shimizu, S; Kagawa, J; Ishiguro, M
2001-07-01
The number of nocturnal visits of asthmatic attack patients to the emergency room of Yokohama Medical Association's Clinic from January 1990 to December 1991 was compared to daily levels of air pollution (NO, NO2, SO2 and SPM) and weather (temperature and relative humidity) variables measured in Yokohama City. Trend-cycle components (Trend) that control for the weekly effects, other irregular variance for asthmatic attack incidence and environmental parameter measurements were estimated from the original data series using the method of Akaike and Ishiguro (1980). The rate of increase for each environmental parameter was then calculated from its trend-cycle components. We classified the data into four stages on the basis of rising and falling temperature and humidity. For each stage of temperature and humidity, fluctuation we estimated correlations between the number of asthmatic attack visits and original data series measurements, estimated trend-cycle components, and calculated rates of increase for each of the air pollutants. The daily number of asthmatic attack visits was negatively correlated to the daily mean values of all air pollutants, but positively correlated to the daily mean temperature and relative humidity. The trend-cycle components of the air pollutants were also negatively correlated to the frequencies of asthmatic attacks (p < 0.01 for all pollutants except NO2). In contrast, the number of asthmatic attack visits were in general positively correlated with increasing levels of pollutants. Furthermore, when both temperature and relative humidity decreased, significant correlations (r > 0.31, p < 0.001) between the number of asthmatic attacks and increased rates of all air pollutants were observed (r: NO2 > NO > SO2 > SPM).
Analysis of the fluctuations of a laser beam due to thermal turbulence
NASA Astrophysics Data System (ADS)
Ndlovu, Sphumelele C.; Chetty, Naven
2014-07-01
A laser beam propagating in air and passing through a point diffraction interferometer (PDI) produces stable interferograms that can be used to extract wavefront data such as major atmospheric characteristics: turbulence strength, inner scale and outer scale of the refractive index. These parameters need to be taken into consideration when developing defense laser weapons since they can be affected by thermal fluctuations that are due to the changes in temperature in close proximity to the propagating beam and results in phase shifts that can be used to calculate the temperature which causes wavefront perturbations on a propagating beam.
Cheng, Y; Lin, Z
2015-12-01
The motivation of this study is stimulated by a lack of knowledge about the difference of airflow characteristics between a novel air distribution method [i.e., stratum ventilation (SV)] and conventional air distribution methods [i.e., mixing ventilation (MV) and displacement ventilation (DV)]. Detailed air velocity and temperature measurements were conducted in the occupied zone of a classroom with dimensions of 8.8 m (L) × 6.1 m (W) × 2.4 m (H). Turbulence intensity and power spectrum of velocity fluctuation were calculated using the measured data. Thermal comfort and cooling efficiency were also compared. The results show that in the occupied zone, the airflow characteristics among MV, DV, and SV are different. The turbulent airflow fluctuation is enhanced in this classroom with multiple thermal manikins due to thermal buoyancy and airflow mixing effect. Thermal comfort evaluations indicate that in comparison with MV and DV, a higher supply air temperature should be adopted for SV to achieve general thermal comfort with low draft risk. Comparison of the mean air temperatures in the occupied zone reveals that SV is of highest cooling efficiency, followed by DV and then MV. This study reports the unique profiles of flow, temperature, turbulence intensity, and power spectrum of stratum ventilation, which can have a number of implications for both knowledge and understanding of the flow characteristics in a stratum-ventilated room. With respect to the former, it expounds the fundamental characteristics of this air distribution method; and with respect to the latter, it reveals the mechanism of thermal comfort and energy saving under stratum ventilation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Wang, Cailin; Wu, Jidong; Wang, Xu; He, Xin; Li, Ning
2017-12-01
North China Plain has undergone severe warming trends since the 1950s, but whether this trend is the same during different growth phases for crops remains unknown. Thus, we analyzed the non-linear changes in the minimum temperature (T min ), mean temperature (T mean ) and maximum temperature (T max ) using the Ensemble Empirical Mode Decomposition method during each growth stage of summer maize based on daily temperature data from 1960 to 2014. Our results strongly suggest that the trends and fluctuations in temperature change are non-linear. These changes can be categorized into four types of trend change according to the combinations of decreasing and increasing trends, and 8 fluctuation modes dominated by the fluctuations of expansion and shrinkage. The amplitude of the fluctuation is primarily expansion in the sowing-jointing stage and shrinkage in the jointing-maturity stage. Moreover, the temperature changes are inconsistent within each growth stage and are not consistent with the overall warming trend observed over the last 55 years. A transition period occurred in both the 1980s and the 1990s for temperatures during the sowing-tasseling stage. Furthermore, the cooling trend of the T max was significant in the sowing-emergence stage, while this cooling trend was not obvious for both T mean and T min in the jointing-tasseling stage. These results showed that temperature change was significantly different in different stages of the maize growth season. The results can serve as a scientific basis for a better understanding of the actual changes in the regional surface air temperature and agronomic heat resources.
NASA Astrophysics Data System (ADS)
Deng, Qimin; Nian, Da; Fu, Zuntao
2018-02-01
Previous studies in the literature show that the annual cycle of surface air temperature (SAT) is changing in both amplitude and phase, and the SAT departures from the annual cycle are long-term correlated. However, the classical definition of temperature anomalies is based on the assumption that the annual cycle is constant, which contradicts the fact of changing annual cycle. How to quantify the impact of the changing annual cycle on the long-term correlation of temperature anomaly variability still remains open. In this paper, a recently developed data adaptive analysis tool, the nonlinear mode decomposition (NMD), is used to extract and remove time-varying annual cycle to reach the new defined temperature anomalies in which time-dependent amplitude of annual cycle has been considered. By means of detrended fluctuation analysis, the impact induced by inter-annual variability from the time-dependent amplitude of annual cycle has been quantified on the estimation of long-term correlation of long historical temperature anomalies in Europe. The results show that the classical climatology annual cycle is supposed to lack inter-annual fluctuation which will lead to a maximum artificial deviation centering around 600 days. This maximum artificial deviation is crucial to defining the scaling range and estimating the long-term persistence exponent accurately. Selecting different scaling range could lead to an overestimation or underestimation of the long-term persistence exponent. By using NMD method to extract the inter-annual fluctuations of annual cycle, this artificial crossover can be weakened to extend a wider scaling range with fewer uncertainties.
Turbulent reacting flow computations including turbulence-chemistry interactions
NASA Technical Reports Server (NTRS)
Narayan, J. R.; Girimaji, S. S.
1992-01-01
A two-equation (k-epsilon) turbulence model has been extended to be applicable for compressible reacting flows. A compressibility correction model based on modeling the dilatational terms in the Reynolds stress equations has been used. A turbulence-chemistry interaction model is outlined. In this model, the effects of temperature and species mass concentrations fluctuations on the species mass production rates are decoupled. The effect of temperature fluctuations is modeled via a moment model, and the effect of concentration fluctuations is included using an assumed beta-pdf model. Preliminary results obtained using this model are presented. A two-dimensional reacting mixing layer has been used as a test case. Computations are carried out using the Navier-Stokes solver SPARK using a finite rate chemistry model for hydrogen-air combustion.
Observational analysis of air-sea fluxes and sea water temperature offshore South China Sea
NASA Astrophysics Data System (ADS)
Bi, X.; Huang, J.; Gao, Z.; Liu, Y.
2017-12-01
This paper investigates the air-sea fluxes (momentum flux, sensible heat flux and latent heat flux) from eddy covariance method based on data collected at an offshore observation tower in the South China Sea from January 2009 to December 2016 and sea water temperature (SWT) on six different levels based on data collected from November 2011 to June 2013. The depth of water at the tower over the sea averages about 15 m. This study presents the in-situ measurements of continuous air-sea fluxes and SWT at different depths. Seasonal and diurnal variations in air-sea fluxes and SWT on different depths are examined. Results show that air-sea fluxes and all SWT changed seasonally; sea-land breeze circulation appears all the year round. Unlike winters where SWT on different depths are fairly consistent, the difference between sea surface temperature (SST) and sea temperature at 10 m water depth fluctuates dramatically and the maximum value reaches 7 °C during summer.
NASA Technical Reports Server (NTRS)
Mielke, Amy F.; Elam, Kristie A.; Sung, Chih-Jen; Panda, Jayanta
2006-01-01
A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 10 kHz. A high power CW laser beam is focused at a point in a heated air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature, velocity, and density of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 10 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. Power spectral density calculations of temperature, velocity, and density fluctuations, as well as mean and fluctuating quantities are demonstrated for various radial locations in the jet flow at a fixed axial distance from the jet exit plane. Results are compared with constant current anemometry and pitot probe measurements at the same locations.
NASA Technical Reports Server (NTRS)
Tacina, Kathleen M.; Hicks, Yolanda R.
2017-01-01
The combustion dynamics of two 7-point lean direct injection (LDI) combustor configurations are compared. This 7-point LDI configuration has a circular cross section, with a center ("pilot") fuel-air mixer surrounded by six outer ("main") fuel-air mixers. Each fuel-air mixer consists of an axial air swirler followed by a converging-diverging venturi. A simplex fuel injector is inserted through the center of the air swirler, with the fuel injector tip located near the venturi throat. All 7 fuel-air mixers are identical except for the swirler blade angle. In the 'all-60' configuration, the swirler blade angle was 60 deg for all fuel-air mixers. In the '45-60' configuration, the swirler blade angle was 60 deg on the center and 45 deg on the outer fuel-air mixers. Testing was done in a 5-atm flame tube with inlet air temperatures from 630 to 830 F and equivalence ratios from 0.2 to 0.7. Combustion dynamics were measured using a cooled PCB pressure transducer flush-mounted in the wall of the combustor test section. Both configurations had large pressure fluctuations (greater than 2 psi peak-peak) near 730 Hz, the quarter-wave frequency. The all-60 configuration also had large pressure fluctuations near 1170 Hz; the 45-60 configuration did not. The 45-60 configuration had large pressure fluctuations near 480 Hz; the all-60 configuration did not.
Thomas G. Shelton; J.T. Vogt; Marla J. Tanley; Arthur G. Appel
2003-01-01
Monthly abundance and caste proportions of subterranean termites (Reticulitennes spp.) inhabiting red imported fire ant (Solenopsis invicta Buren) mounds were recorded during 1999 and 2000 from a relatively undisturbed forest edge in Tuskegee, Alabama. Temperature data were also recorded at these mounds; mean air, soil, and mound temperatures followed a sine model over...
Soil Temperature Triggers the Onset of Photosynthesis in Korean Pine
Wu, Jiabing; Guan, Dexin; Yuan, Fenhui; Wang, Anzhi; Jin, Changjie
2013-01-01
In forest ecosystems, the onset of spring photosynthesis may have an important influence on the annual carbon balance. However, triggers for the onset of photosynthesis have yet to be clearly identified, especially for temperate evergreen conifers. The effects of climatic factors on recovery of photosynthetic capacity in a Korean pine forest were investigated in the field. No photosynthesis was detectable when the soil temperature was below 0°C even if the air temperature was far beyond 15°C. The onset of photosynthesis and sap flow was coincident with the time of soil thawing. The rates of recovery of photosynthetic capacity highly fluctuated with air temperature after onset of photosynthesis, and intermittent frost events remarkably inhibited the photosynthetic capacity of the needles. The results suggest that earlier soil thawing is more important than air temperature increases in triggering the onset of photosynthesis in Korean pine in temperate zones under global warming scenarios. PMID:23755227
Coherent entropy induced and acoustic noise separation in compact nozzles
NASA Astrophysics Data System (ADS)
Tao, Wenjie; Schuller, Thierry; Huet, Maxime; Richecoeur, Franck
2017-04-01
A method to separate entropy induced noise from an acoustic pressure wave in an harmonically perturbed flow through a nozzle is presented. It is tested on an original experimental setup generating simultaneously acoustic and temperature fluctuations in an air flow that is accelerated by a convergent nozzle. The setup mimics the direct and indirect noise contributions to the acoustic pressure field in a confined combustion chamber by producing synchronized acoustic and temperature fluctuations, without dealing with the complexity of the combustion process. It allows generating temperature fluctuations with amplitude up to 10 K in the frequency range from 10 to 100 Hz. The noise separation technique uses experiments with and without temperature fluctuations to determine the relative level of acoustic and entropy fluctuations in the system and to identify the nozzle response to these forcing waves. It requires multi-point measurements of acoustic pressure and temperature. The separation method is first validated with direct numerical simulations of the nonlinear Euler equations. These simulations are used to investigate the conditions for which the separation technique is valid and yield similar trends as the experiments for the investigated flow operating conditions. The separation method then gives successfully the acoustic reflection coefficient but does not recover the same entropy reflection coefficient as predicted by the compact nozzle theory due to the sensitivity of the method to signal noises in the explored experimental conditions. This methodology provides a framework for experimental investigation of direct and indirect combustion noises originating from synchronized perturbations.
Thermoelectric Air/Soil Energy-Harvesting Device
NASA Technical Reports Server (NTRS)
Snyder, Jeffrey; Fleurial, Jean-Pierre; Lawrence, Eric
2005-01-01
A proposed thermoelectric device would exploit natural temperature differences between air and soil to harvest small amounts of electric energy. Because the air/soil temperature difference fluctuates between nighttime and daytime, it is almost never zero, and so there is almost always some energy available for harvesting. Unlike photovoltaic cells, the proposed device could operate in the absence of sunlight. Unlike a Stirling engine, which could be designed to extract energy from the air/soil temperature difference, the proposed device would contain no moving parts. The main attractive feature of the proposed device would be high reliability. In a typical application, this device would be used for low-power charging of a battery that would, in turn, supply high power at brief, infrequent intervals for operating an instrumentation package containing sensors and communication circuits. The device (see figure) would include a heat exchanger buried in soil and connected to a heat pipe extending up to a short distance above the ground surface. A thermoelectric microgenerator (TEMG) would be mounted on top of the heat pipe. The TEMG could be of an advanced type, now under development, that could maintain high (relative to prior thermoelectric generators) power densities at small temperature differentials. A heat exchanger exposed to the air would be mounted on top of the TEMG. It would not matter whether the air was warmer than the soil or the soil warmer than the air: as long as there was a nonzero temperature difference, heat would flow through the device and electricity would be generated. A study of factors that could affect the design and operation of the device has been performed. These factors include the thermal conductances of the soil, the components of the device, the contacts between the components of the device, and the interfaces between the heat exchangers and their environments. The study included experiments that were performed on a model of the device to demonstrate feasibility. Because a TEMG suitable for this device was not available, a brass dummy component having a known thermal conductance of 1.68 W/K was substituted for the TEMG in the models to enable measurement of heat flows. The model included a water-based heat pipe 30 in. (76.2 cm) long and 1 in. (2.54 cm) in diameter, wrapped with polyethylene insulation to reduce radial heat flow. Several different side heat exchangers were tested. On the basis of the measurements, it was predicted that if a prototype of the device were equipped with a TEMG, daily temperature fluctuations would cause its output power to fluctuate between 0 and about 0.1 mW, peaking to 0.35 mW during early afternoon.
NASA Astrophysics Data System (ADS)
Asher, W. E.; Jessup, A. T.; Liang, H.; Zappa, C. J.
2008-12-01
The air-sea flux, F, of a sparingly soluble nonreactive gas can be expressed as F = kG(CS-CW), where kG is the gas transfer velocity, CS is the concentration of gas that would be expected in the water if the system were in Henry's Gas Law equilibrium, and CW is the gas concentration in the bulk water. An analogous relationship for the net heat flux can also be written using the heat transfer velocity, kH, and the bulk-skin temperature difference in the aqueous phase. Surface divergence theory for the air-water transfer of gas and heat predicts that kG and kH will scale as the square root of the surface divergence rate, r. However, because of the interaction between diffusivity and the scale depth of the surface divergences, the scale factor for heat is likely to be different from the scale factor for gases. Infrared imagery was used to measure the timescales of variations in temperature at a water surface and laser-induced fluorescence (LIF) was used to measure temporal fluctuations in aqueous-phase concentrations of carbon dioxide (CO2) at a water surface. The rate at which these temperature and concentration fluctuations occur is then assumed to be related to r. The divergence rates derived for temperature from the IR images can be compared to the rates for gas derived from the LIF measurements to understand how r estimated from the two measurements differ. The square root of r is compared to concurrently measured kG for helium and sulfur hexafluoride to test the assumption that r1/2 scales with kG. Additionally, we measured kH using the active controlled flux technique, and those heat transfer velocities can also be used to test for a r1/2 dependence. All measurements reported here were made in the APL-UW synthetic jet array facility.
Effects of tree canopy on rural highway pavement condition, safety, and maintenance.
DOT National Transportation Integrated Search
2017-02-01
An integral part of Ohios roadscape is the canopy cover alongside and above the pavement. Roadside trees are valued for their natural beauty and because they provide shade, moderate temperature fluctuation, control evaporation, block air movement,...
Study on Combustion Oscillation of Premixed Flame with Pilot Fuel at Elevated Pressures
NASA Astrophysics Data System (ADS)
Ohtsuka, Masaya; Yoshida, Shohei; Hirata, Yoshitaka; Kobayashi, Nariyoshi
Acoustically-coupled combustion oscillation is studied for premixed flame with pilot fuel to be used in gas turbine combustors. Premixed gas is passed through swirl vanes and burnt with the centrally injected pilot fuel. The dependencies of pressure, fuel to air ratio, premixed fuel rate, inlet velocity and air temperature on the combustion oscillation are investigated. Two kinds of oscillation modes of ˜100Hz and ˜350Hz are activated according to inlet velocities. Fluctuating pressures are amplified when the premixed fuel rate is over ˜80% at elevated pressures. The fluctuating pressure peak moves to a higher premixed fuel ratio region with increased pressure or fuel to air ratio for the Helmholz type mode. Combustion oscillation occurs when the pilot fuel velocity is changed proportionally with the flame length.
[Effects of land use type on diurnal dynamics of environment microclimate in Karst zone].
Li, Sheng; Ren, Hua-Dong; Yao, Xiao-Hua; Zhang, Shou-Gong
2009-02-01
In June 2007, the diurnal dynamics of light intensity, air temperature, air relative humidity, soil temperature, and surface soil (0-5 cm) water content of five land use types in the typical Karst zone of Lingyun City in Guangxi Zhuang Autonomous Region were observed. The results showed that different land use types altered the composition, coverage, and height of aboveground vegetation, which in turn changed the environment microclimate to different degree. The microclimate quality was in the order of forestland > shrub land > grassland > farmland > rock land. On rock land, the light intensity, air temperature, air relative humidity, soil temperature, and soil water content were higher, and the diurnal variation of the five climatic factors was notable, with the microclimatic conditions changed towards drier and hotter. Compared with those on rock land, the light intensity on forestland, shrub land, grassland, and farmland decreased by 96.4%, 52.0%, 17.0% and 44.2%, air temperature decreased by 30.1%, 20.2%, 12.7% and 17.8%, air relative humidity increased by 129.2%, 57.2%, 18.0% and 41.2%, soil temperature decreased by 11.5%, 8%, 2.5% and 5.5%, and soil water content increased by 42.6%, 33.2%, 15.7% and 14.0%, respectively. The five climatic factors on forestland and shrub land had lesser fluctuation, with the microclimate tended to cool and wet. Light intensity, air temperature, and soil temperature correlated positively with each other, and had negative correlations with air relative humidity and soil water content. A positive correlation was observed between air temperature and soil water content.
Controlled simulation of optical turbulence in a temperature gradient air chamber
NASA Astrophysics Data System (ADS)
Toselli, Italo; Wang, Fei; Korotkova, Olga
2016-05-01
Atmospheric turbulence simulator is built and characterized for in-lab optical wave propagation with controlled strength of the refractive-index fluctuations. The temperature gradients are generated by a sequence of heat guns with controlled individual strengths. The temperature structure functions are measured in two directions transverse to propagation path with the help of a thermocouple array and used for evaluation of the corresponding refractive-index structure functions of optical turbulence.
Water reuse systems: A review of the principal components
Lucchetti, G.; Gray, G.A.
1988-01-01
Principal components of water reuse systems include ammonia removal, disease control, temperature control, aeration, and particulate filtration. Effective ammonia removal techniques include air stripping, ion exchange, and biofiltration. Selection of a particular technique largely depends on site-specific requirements (e.g., space, existing water quality, and fish densities). Disease control, although often overlooked, is a major problem in reuse systems. Pathogens can be controlled most effectively with ultraviolet radiation, ozone, or chlorine. Simple and inexpensive methods are available to increase oxygen concentration and eliminate gas supersaturation, these include commercial aerators, air injectors, and packed columns. Temperature control is a major advantage of reuse systems, but the equipment required can be expensive, particularly if water temperature must be rigidly controlled and ambient air temperature fluctuates. Filtration can be readily accomplished with a hydrocyclone or sand filter that increases overall system efficiency. Based on criteria of adaptability, efficiency, and reasonable cost, we recommend components for a small water reuse system.
[Dendrochronology of Chinese pine in Mulan-Weichang, Hebei Province: a primary study].
Cui, Ming-xing; He, Xing-yuan; Chen, Wei; Chen, Zhen-ju; Zhou, Chang-hong; Wu, Tao
2008-11-01
Dendroclimatic methods were used to investigate the relationships between the growth of Chinese pine (Pinus tabulaeformis Carr.) and the climatic parameters in Mulan-Weichang of Hebei Province. The results showed that Chinese pine presented high sensitivity to climatic changes, and its earlywood width showed the highest sensitivity. There was a significant negative correlation between the tree-ring width chronology of Chinese pine and the air temperature in May-June. The precipitation and relative humidity in June had strong positive effects on the growth of earlywood, the precipitation from September to next September had significant positive effects on Chinese pine growth, and the relative humidity in winter more strongly affected the growth of latewood than of earlywood. There was a definite correlation between the tree-ring width chronology of Chinese pine and the large scale climate fluctuation. From 1951 to 2006, the increase of air temperature in study area was significant, and the sensitivity of Chinese pine to the variations of local temperature and precipitation decreased, presenting an inverse transforming trend with increasing temperature. Greater differences were observed between the reconstructed and observed data of mean temperature in May - June in a century scale, suggesting that the tree-ring growth of Chinese pine in study area had a greater fluctuation of sensitivity to the variation of climatic factors.
El Nino-southern oscillation related fluctuations of the marine carbon cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winguth, A.M.E.; Heimann, M.; Kurz, K.D.
The yearly increase in global atmospheric carbon dioxide concentration is not constant, fluctuating around a mean growth rate. Some previous work has been done looking at the relationship of CO2 fluctuations with the El Nino-Southern Oscillation (ENSO) events in the Pacific. This paper describes the response of the three-dimensional ocean circulation model (Hamburg LSG) coupled on-line with a oceanic carbon cycle model (HAMOCC-3) to realistic wind and air temperature field anomalies. The focus is the marine carbon cycle and the interannual variations of carbon fluxes between ocean and atmosphere during the strong El Nino of 1982/83. 53 refs., 14 figs.
Air conditioner operation behaviour based on students' skin temperature in a classroom.
Song, Gook-Sup; Lim, Jae-Han; Ahn, Tae-Kyung
2012-01-01
A total of 25 college students participated in a study to determine when they would use an air conditioner during a lecture in a university classroom. The ambient temperature and relative humidity were measured 75 cm above the floor every minute. Skin temperatures were measured every minute at seven points, according to the recommendation of Hardy and Dubois. The average clothing insulation value (CLO) of subjects was 0.53 ± 0.07 CLO. The mean air velocity in the classroom was 0.13 ± 0.028 m/s. When the subjects turned the air conditioner both on and off, the average ambient temperatures, relative humidity and mean skin temperatures were 27.4 and 23.7 °C (p = 0.000), 40.9 and 40.0% (p = 0.528) and 32.7 and 32.2 °C (p = 0.024), respectively. When the status of the air conditioner was changed, the differences of skin temperatures in core body parts (head, abdomen and thigh) were not statistically significant. However, in the extremities (mid-lower arm, hand, shin and instep), the differences were statistically significant. Subjects preferred a fluctuating environment to a constant temperature condition. We found that a changing environment does not affect classroom study. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Zhu; Shi, Peijun; Zhang, Zhao; Meng, Yongchang; Luan, Yibo; Wang, Jiwei
2017-09-01
Separating out the influence of climatic trend, fluctuations and extreme events on crop yield is of paramount importance to climate change adaptation, resilience, and mitigation. Previous studies lack systematic and explicit assessment of these three fundamental aspects of climate change on crop yield. This research attempts to separate out the impacts on rice yields of climatic trend (linear trend change related to mean value), fluctuations (variability surpassing the "fluctuation threshold" which defined as one standard deviation (1 SD) of the residual between the original data series and the linear trend value for each climatic variable), and extreme events (identified by absolute criterion for each kind of extreme events related to crop yield). The main idea of the research method was to construct climate scenarios combined with crop system simulation model. Comparable climate scenarios were designed to express the impact of each climate change component and, were input to the crop system model (CERES-Rice), which calculated the related simulated yield gap to quantify the percentage impacts of climatic trend, fluctuations, and extreme events. Six Agro-Meteorological Stations (AMS) in Hunan province were selected to study the quantitatively impact of climatic trend, fluctuations and extreme events involving climatic variables (air temperature, precipitation, and sunshine duration) on early rice yield during 1981-2012. The results showed that extreme events were found to have the greatest impact on early rice yield (-2.59 to -15.89%). Followed by climatic fluctuations with a range of -2.60 to -4.46%, and then the climatic trend (4.91-2.12%). Furthermore, the influence of climatic trend on early rice yield presented "trade-offs" among various climate variables and AMS. Climatic trend and extreme events associated with air temperature showed larger effects on early rice yield than other climatic variables, particularly for high-temperature events (-2.11 to -12.99%). Finally, the methodology use to separate out the influences of the climatic trend, fluctuations, and extreme events on crop yield was proved to be feasible and robust. Designing different climate scenarios and feeding them into a crop system model is a potential way to evaluate the quantitative impact of each climate variable.
Microclimatic Performance of a Free-Air Warming and CO2 Enrichment Experiment in Windy Wyoming, USA
LeCain, Daniel; Smith, David; Morgan, Jack; Kimball, Bruce A.; Pendall, Elise; Miglietta, Franco
2015-01-01
In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO2) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO2 enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night) but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms-1 average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO2 had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO2. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much of the time. PMID:25658313
Microclimatic performance of a free-air warming and CO₂ enrichment experiment in windy Wyoming, USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeCain, Daniel; Smith, David; Morgan, Jack
In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO₂) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO₂ enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night)more » but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms⁻¹ average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO₂ had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO₂. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much of the time.« less
Microclimatic performance of a free-air warming and CO₂ enrichment experiment in windy Wyoming, USA
LeCain, Daniel; Smith, David; Morgan, Jack; ...
2015-02-06
In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO₂) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO₂ enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night)more » but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms⁻¹ average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO₂ had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO₂. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much of the time.« less
Image quality on the Kuiper Airborne Observatory. I - Results of the first flight series
NASA Technical Reports Server (NTRS)
Elliot, J. L.; Dunham, E. W.; Baron, R. L.; Watts, A. W.; Kruse, S. E.; Rose, W. C.; Gillespie, C. M., Jr.
1989-01-01
The NASA Kuiper Airborne Observatory (KAO) was flown three times during June and July, 1984 in order to study the causes of the poor seeing obtained with the 0.9-m telescope. High-speed pressure and temperature sensors were placed in the telescope cavity. Several thousand stellar images were recorded under various flight and optical configurations. It is found that the long-exposure image size is affected by telescope tracking errors, imperfect optics, poor optical alignment, telescope and instrument vibration, thermal fluctuations in the telescope cavity, and density fluctuations in the shear layer that forms the boundary between the cavity air and outside air. Possible ways to improve the quality of the images are discussed.
Finite-rate chemistry effects in a Mach 2 reacting flow
NASA Technical Reports Server (NTRS)
Cheng, T. S.; Wehrmeyer, J. A.; Pitz, R. W.; Jarrett, O., Jr.; Northam, G. B.
1991-01-01
UV spontaneous vibrational Raman scattering and laser-induced predissociative fluorescence (LIPF) are combined and applied to a supersonic flame. For the first time, simultaneous measurements of temperature, major species (H2, O2, N2, H2O), and minor species (OH) concentrations are obtained with a 'single' excimer laser in a supersonic-lifted hydrogen-air diffusion flame. In the supersonic flame, a small amount of reaction occurs upstream of the lifted flame base, due to shock wave interactions and mixing with hot vitiated air. The strong turbulent mixing and high total enthalpy fluctuations lead to nonequilibrium values of temperature, and major and minor species concentrations. Combustion occurs farther downstream of the lifted region where slow three-body recombination reactions result in superequilibrium OH concentrations that depress the temperatures below their equilibrium values. Farther downstream, ambient air entrainment contaminates flame properties.
222Rn variations in Mystery Cave, Minnesota
Lively, R.S.; Krafthefer, B.C.
1995-01-01
222Rn concentrations and meteorological parameters were measured at 4- h intervals over a 2-y period in Mystery Cave, southeastern Minnesota. Continuous radon monitors and meteorological sensors connected to data loggers were installed at several locations along commercial tour routes. 222Rn concentrations ranged as high as 25 kBq m-3 in summer and 20 kBq m-3 in winter. Average winter concentrations were lower than summer by at least a factor of two. Seasonal radon variations were correlative with outside air temperatures. During the winter, radon concentrations were observed to fluctuate periodically by factors of 20 or more in under 24 h. Both the long- and short-term variations are correlative with temperature- induced mixing of cave air with surface air.
Relative air temperature analysis external building on Gowa Campus
NASA Astrophysics Data System (ADS)
Mustamin, Tayeb; Rahim, Ramli; Baharuddin; Jamala, Nurul; Kusno, Asniawaty
2018-03-01
This study aims to data analyze the relative temperature and humidity of the air outside the building. Data retrieval taken from weather monitoring device (monitoring) Vaisala, RTU (Remote Terminal Unit), Which is part of the AWS (Automatic Weather Stations) Then Processing data processed and analyzed by using Microsoft Excel program in the form of graph / picture fluctuation Which shows the average value, standard deviation, maximum value, and minimum value. Results of data processing then grouped in the form: Daily, and monthly, based on time intervals every 30 minutes. The results showed Outside air temperatures in March, April, May and September 2016 Which entered in the thermal comfort zone according to SNI standard (Indonesian National Standard) only at 06.00-10.00. In late March to early April Thermal comfort zone also occurs at 15.30-18.00. The highest maximum air temperature occurred in September 2016 at 11.01-11.30 And the lowest minimum value in September 2016, time 6:00 to 6:30. The result of the next analysis shows the level of data conformity with thermal comfort zone based on SNI (Indonesian National Standard) every month.
Continuous measurement of air-water gas exchange by underwater eddy covariance
NASA Astrophysics Data System (ADS)
Berg, Peter; Pace, Michael L.
2017-12-01
Exchange of gases, such as O2, CO2, and CH4, over the air-water interface is an important component in aquatic ecosystem studies, but exchange rates are typically measured or estimated with substantial uncertainties. This diminishes the precision of common ecosystem assessments associated with gas exchanges such as primary production, respiration, and greenhouse gas emission. Here, we used the aquatic eddy covariance technique - originally developed for benthic O2 flux measurements - right below the air-water interface (˜ 4 cm) to determine gas exchange rates and coefficients. Using an acoustic Doppler velocimeter and a fast-responding dual O2-temperature sensor mounted on a floating platform the 3-D water velocity, O2 concentration, and temperature were measured at high-speed (64 Hz). By combining these data, concurrent vertical fluxes of O2 and heat across the air-water interface were derived, and gas exchange coefficients were calculated from the former. Proof-of-concept deployments at different river sites gave standard gas exchange coefficients (k600) in the range of published values. A 40 h long deployment revealed a distinct diurnal pattern in air-water exchange of O2 that was controlled largely by physical processes (e.g., diurnal variations in air temperature and associated air-water heat fluxes) and not by biological activity (primary production and respiration). This physical control of gas exchange can be prevalent in lotic systems and adds uncertainty to assessments of biological activity that are based on measured water column O2 concentration changes. For example, in the 40 h deployment, there was near-constant river flow and insignificant winds - two main drivers of lotic gas exchange - but we found gas exchange coefficients that varied by several fold. This was presumably caused by the formation and erosion of vertical temperature-density gradients in the surface water driven by the heat flux into or out of the river that affected the turbulent mixing. This effect is unaccounted for in widely used empirical correlations for gas exchange coefficients and is another source of uncertainty in gas exchange estimates. The aquatic eddy covariance technique allows studies of air-water gas exchange processes and their controls at an unparalleled level of detail. A finding related to the new approach is that heat fluxes at the air-water interface can, contrary to those typically found in the benthic environment, be substantial and require correction of O2 sensor readings using high-speed parallel temperature measurements. Fast-responding O2 sensors are inherently sensitive to temperature changes, and if this correction is omitted, temperature fluctuations associated with the turbulent heat flux will mistakenly be recorded as O2 fluctuations and bias the O2 eddy flux calculation.
Body condition of Morelet’s Crocodiles (Crocodylus moreletii) from northern Belize
Mazzotti, Frank J.; Cherkiss, Michael S.; Brandt, Laura A.; Fujisaki, Ikuko; Hart, Kristen; Jeffery, Brian; McMurry, Scott T.; Platt, Steven G.; Rainwater, Thomas R.; Vinci, Joy
2012-01-01
Body condition factors have been used as an indicator of health and well-being of crocodilians. We evaluated body condition of Morelet's Crocodiles (Crocodylus moreletii) in northern Belize in relation to biotic (size, sex, and habitat) and abiotic (location, water level, and air temperature) factors. We also tested the hypothesis that high water levels and warm temperatures combine or interact to result in a decrease in body condition. Size class, temperature, and water level explained 20% of the variability in condition of Morelet's Crocodiles in this study. We found that adult crocodiles had higher condition scores than juveniles/subadults but that sex, habitat, and site had no effect. We confirmed our hypothesis that warm temperatures and high water levels interact to decrease body condition. We related body condition of Morelet's Crocodiles to natural fluctuations in air temperatures and water levels in northern Belize, providing baseline conditions for population and ecosystem monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Haw; Hsia, Chih-Hao
Novel Mn.sup.2+-doped quantum dots are provided. These Mn.sup.2+-doped quantum dots exhibit excellent temperature sensitivity in both organic solvents and water-based solutions. Methods of preparing the Mn.sup.2+-doped quantum dots are provided. The Mn.sup.2+-doped quantum dots may be prepared via a stepwise procedure using air-stable and inexpensive chemicals. The use of air-stable chemicals can significantly reduce the cost of synthesis, chemical storage, and the risk associated with handling flammable chemicals. Methods of temperature sensing using Mn.sup.2+-doped quantum dots are provided. The stepwise procedure provides the ability to tune the temperature-sensing properties to satisfy specific needs for temperature sensing applications. Water solubility maymore » be achieved by passivating the Mn.sup.2+-doped quantum dots, allowing the Mn.sup.2+-doped quantum dots to probe the fluctuations of local temperature in biological environments.« less
Helmuth, Brian; Choi, Francis; Matzelle, Allison; Torossian, Jessica L.; Morello, Scott L.; Mislan, K.A.S.; Yamane, Lauren; Strickland, Denise; Szathmary, P. Lauren; Gilman, Sarah E.; Tockstein, Alyson; Hilbish, Thomas J.; Burrows, Michael T.; Power, Anne Marie; Gosling, Elizabeth; Mieszkowska, Nova; Harley, Christopher D.G.; Nishizaki, Michael; Carrington, Emily; Menge, Bruce; Petes, Laura; Foley, Melissa M.; Johnson, Angela; Poole, Megan; Noble, Mae M.; Richmond, Erin L.; Robart, Matt; Robinson, Jonathan; Sapp, Jerod; Sones, Jackie; Broitman, Bernardo R.; Denny, Mark W.; Mach, Katharine J.; Miller, Luke P.; O’Donnell, Michael; Ross, Philip; Hofmann, Gretchen E.; Zippay, Mackenzie; Blanchette, Carol; Macfarlan, J.A.; Carpizo-Ituarte, Eugenio; Ruttenberg, Benjamin; Peña Mejía, Carlos E.; McQuaid, Christopher D.; Lathlean, Justin; Monaco, Cristián J.; Nicastro, Katy R.; Zardi, Gerardo
2016-01-01
At a proximal level, the physiological impacts of global climate change on ectothermic organisms are manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic sensors that approximate the thermal characteristics of intertidal mussels at 71 sites worldwide, from 1998-present. Loggers recorded temperatures at 10–30 min intervals nearly continuously at multiple intertidal elevations. Comparisons against direct measurements of mussel tissue temperature indicated errors of ~2.0–2.5 °C, during daily fluctuations that often exceeded 15°–20 °C. Geographic patterns in thermal stress based on biomimetic logger measurements were generally far more complex than anticipated based only on ‘habitat-level’ measurements of air or sea surface temperature. This unique data set provides an opportunity to link physiological measurements with spatially- and temporally-explicit field observations of body temperature. PMID:27727238
NASA Astrophysics Data System (ADS)
Helmuth, Brian; Choi, Francis; Matzelle, Allison; Torossian, Jessica L.; Morello, Scott L.; Mislan, K. A. S.; Yamane, Lauren; Strickland, Denise; Szathmary, P. Lauren; Gilman, Sarah E.; Tockstein, Alyson; Hilbish, Thomas J.; Burrows, Michael T.; Power, Anne Marie; Gosling, Elizabeth; Mieszkowska, Nova; Harley, Christopher D. G.; Nishizaki, Michael; Carrington, Emily; Menge, Bruce; Petes, Laura; Foley, Melissa M.; Johnson, Angela; Poole, Megan; Noble, Mae M.; Richmond, Erin L.; Robart, Matt; Robinson, Jonathan; Sapp, Jerod; Sones, Jackie; Broitman, Bernardo R.; Denny, Mark W.; Mach, Katharine J.; Miller, Luke P.; O'Donnell, Michael; Ross, Philip; Hofmann, Gretchen E.; Zippay, Mackenzie; Blanchette, Carol; Macfarlan, J. A.; Carpizo-Ituarte, Eugenio; Ruttenberg, Benjamin; Peña Mejía, Carlos E.; McQuaid, Christopher D.; Lathlean, Justin; Monaco, Cristián J.; Nicastro, Katy R.; Zardi, Gerardo
2016-10-01
At a proximal level, the physiological impacts of global climate change on ectothermic organisms are manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic sensors that approximate the thermal characteristics of intertidal mussels at 71 sites worldwide, from 1998-present. Loggers recorded temperatures at 10-30 min intervals nearly continuously at multiple intertidal elevations. Comparisons against direct measurements of mussel tissue temperature indicated errors of ~2.0-2.5 °C, during daily fluctuations that often exceeded 15°-20 °C. Geographic patterns in thermal stress based on biomimetic logger measurements were generally far more complex than anticipated based only on ‘habitat-level’ measurements of air or sea surface temperature. This unique data set provides an opportunity to link physiological measurements with spatially- and temporally-explicit field observations of body temperature.
Variation of the shower lateral spread with air temperature at the ground
NASA Astrophysics Data System (ADS)
Wilczyńska, B.; Engel, R.; Homola, P.; Keilhauer, B.; Klages, H.; Pękala, J.; Wilczyński, H.
The vertical profile of air density at a given site varies considerably with time. Well understood seasonal differences are present, but sizeable effects on shorter time scales, like day to night or day to day variations, are also observed. In consequence, the Moliere radius changes, influencing the lateral distribution of particles in the air showers and therefore may influence the shower detection in surface detector arrays. In air shower reconstruction, usually seasonal average profiles of the atmosphere are used, because local daily measurements of the profile are rarely available. Therefore, the daily fluctuations of the atmosphere are not accounted for. This simplification increases the inaccuracies of shower reconstruction. We show that a universal correlation exists between the ground temperature and the shape of the atmospheric profile, up to altitudes of several kilometers, hence providing a method to reduce inaccuracies in shower reconstruction due to weather variation.
Morning Martian Atmospheric Temperature Gradients and Fluctuations Observed by Mars Pathfinder
NASA Technical Reports Server (NTRS)
Mihalov, John D.; Haberle, R. M.; Murphy, J. R.; Seiff, A.; Wilson, G. R.
1999-01-01
We have studied the most prominent atmospheric temperature fluctuations observed during Martian mornings by Mars Pathfinder and have concluded, based on comparisons with wind directions, that they appear to be a result of atmospheric heating associated with the Lander spacecraft. Also, we have examined the morning surface layer temperature lapse rates, which are found to decrease as autumn approaches at the Pathfinder location, and which have mean (and median) values as large as 7.3 K/m in the earlier portions of the Pathfinder landed mission. It is plausible that brief isolated periods with gradients twice as steep are associated with atmospheric heating adjacent to Lander air bag material. In addition, we have calculated the gradient with height of the structure function obtained with Mars Pathfinder, for Mars' atmospheric temperatures measured within about 1.3 m from the surface, assuming a power law dependence, and have found that these gradients superficially resemble those reported for the upper region of the terrestrial stable boundary layer.
Errors induced by catalytic effects in premixed flame temperature measurements
NASA Astrophysics Data System (ADS)
Pita, G. P. A.; Nina, M. N. R.
The evaluation of instantaneous temperature in a premixed flame using fine-wire Pt/Pt-(13 pct)Rh thermocouples was found to be subject to significant errors due to catalytic effects. An experimental study was undertaken to assess the influence of local fuel/air ratio, thermocouple wire diameter, and gas velocity on the thermocouple reading errors induced by the catalytic surface reactions. Measurements made with both coated and uncoated thermocouples showed that the catalytic effect imposes severe limitations on the accuracy of mean and fluctuating gas temperature in the radical-rich flame zone.
NASA Technical Reports Server (NTRS)
Cihlar, J. (Principal Investigator)
1980-01-01
Progress in the compilation and analysis of airborne and ground data to determine the relationship between the maximum surface minus maximum air temperature differential (delta Tsa) and available water (PAW) is reported. Also, results of an analysis of HCMM images to determine the effect of cloud cover on the availability of HCMM-type data are presented. An inverse relationship between delta Tsa and PAW is indicated along with stable delta Tsa vs. PAW distributions for fully developed canopies. Large variations, both geographical and diurnal, in the cloud cover images are reported. The average monthly daytime cloud cover fluctuated between 40 and 60 percent.
Temperature uniformity in the CERN CLOUD chamber
NASA Astrophysics Data System (ADS)
Dias, António; Ehrhart, Sebastian; Vogel, Alexander; Williamson, Christina; Almeida, João; Kirkby, Jasper; Mathot, Serge; Mumford, Samuel; Onnela, Antti
2017-12-01
The CLOUD (Cosmics Leaving OUtdoor Droplets) experiment at CERN (European Council for Nuclear Research) investigates the nucleation and growth of aerosol particles under atmospheric conditions and their activation into cloud droplets. A key feature of the CLOUD experiment is precise control of the experimental parameters. Temperature uniformity and stability in the chamber are important since many of the processes under study are sensitive to temperature and also to contaminants that can be released from the stainless steel walls by upward temperature fluctuations. The air enclosed within the 26 m3 CLOUD chamber is equipped with several arrays (strings
) of high precision, fast-response thermometers to measure its temperature. Here we present a study of the air temperature uniformity inside the CLOUD chamber under various experimental conditions. Measurements were performed under calibration conditions and run conditions, which are distinguished by the flow rate of fresh air and trace gases entering the chamber at 20 and up to 210 L min-1, respectively. During steady-state calibration runs between -70 and +20 °C, the air temperature uniformity is better than ±0.06 °C in the radial direction and ±0.1 °C in the vertical direction. Larger non-uniformities are present during experimental runs, depending on the temperature control of the make-up air and trace gases (since some trace gases require elevated temperatures until injection into the chamber). The temperature stability is ±0.04 °C over periods of several hours during either calibration or steady-state run conditions. During rapid adiabatic expansions to activate cloud droplets and ice particles, the chamber walls are up to 10 °C warmer than the enclosed air. This results in temperature differences of ±1.5 °C in the vertical direction and ±1 °C in the horizontal direction, while the air returns to its equilibrium temperature with a time constant of about 200 s.
Characterizing Air Temperature Changes in the Tarim Basin over 1960–2012
Peng, Dongmei; Wang, Xiujun; Zhao, Chenyi; Wu, Xingren; Jiang, Fengqing; Chen, Pengxiang
2014-01-01
There has been evidence of warming rate varying largely over space and between seasons. However, little has been done to evaluate the spatial and temporal variability of air temperature in the Tarim Basin, northwest China. In this study, we collected daily air temperature from 19 meteorological stations for the period of 1960–2012, and analyzed annual mean temperature (AMT), the annual minimum (Tmin) and maximum temperature (Tmax), and mean temperatures of all twelve months and four seasons and their anomalies. Trend analyses, standard deviation of the detrended anomaly (SDDA) and correlations were carried out to characterize the spatial and temporal variability of various mean air temperatures. Our data showed that increasing trend was much greater in the Tmin (0.55°C/10a) than in the AMT (0.25°C/10a) and Tmax (0.12°C/10a), and the fluctuation followed the same order. There were large spatial variations in the increasing trends of both AMT (from −0.09 to 0.43 °C/10a) and Tmin (from 0.15 to 1.12°C/10a). Correlation analyses indicated that AMT had a significantly linear relationship with Tmin and the mean temperatures of four seasons. There were also pronounced changes in the monthly air temperature from November to March at decadal time scale. The seasonality (i.e., summer and winter difference) of air temperature was stronger during the period of 1960–1979 than over the recent three decades. Our preliminary analyses indicated that local environmental conditions (such as elevation) might be partly responsible for the spatial variability, and large scale climate phenomena might have influences on the temporal variability of air temperature in the Tarim Basin. In particular, there was a significant correlation between index of El Niño-Southern Oscillation (ENSO) and air temperature of May (P = 0.004), and between the index of Pacific Decadal Oscillation (PDO) and air temperature of July (P = 0.026) over the interannual to decadal time scales. PMID:25375648
Laser beam propagation in atmospheric turbulence
NASA Technical Reports Server (NTRS)
Murty, S. S. R.
1979-01-01
The optical effects of atmospheric turbulence on the propagation of low power laser beams are reviewed in this paper. The optical effects are produced by the temperature fluctuations which result in fluctuations of the refractive index of air. The commonly-used models of index-of-refraction fluctuations are presented. Laser beams experience fluctuations of beam size, beam position, and intensity distribution within the beam due to refractive turbulence. Some of the observed effects are qualitatively explained by treating the turbulent atmosphere as a collection of moving gaseous lenses of various sizes. Analytical results and experimental verifications of the variance, covariance and probability distribution of intensity fluctuations in weak turbulence are presented. For stronger turbulence, a saturation of the optical scintillations is observed. The saturation of scintillations involves a progressive break-up of the beam into multiple patches; the beam loses some of its lateral coherence. Heterodyne systems operating in a turbulent atmosphere experience a loss of heterodyne signal due to the destruction of coherence.
Simultaneous Temperature and Velocity Measurements in a Large-Scale, Supersonic, Heated Jet
NASA Technical Reports Server (NTRS)
Danehy, P. M.; Magnotti, G.; Bivolaru, D.; Tedder, S.; Cutler, A. D.
2008-01-01
Two laser-based measurement techniques have been used to characterize an axisymmetric, combustion-heated supersonic jet issuing into static room air. The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) measurement technique measured temperature and concentration while the interferometric Rayleigh scattering (IRS) method simultaneously measured two components of velocity. This paper reports a preliminary analysis of CARS-IRS temperature and velocity measurements from selected measurement locations. The temperature measurements show that the temperature along the jet axis remains constant while dropping off radially. The velocity measurements show that the nozzle exit velocity fluctuations are about 3% of the maximum velocity in the flow.
Investigation of the Temperature Fluctuation of Single-Phase Fluid Based Microchannel Heat Sink.
Wang, Tao; Wang, Jiejun; He, Jian; Wu, Chuangui; Luo, Wenbo; Shuai, Yao; Zhang, Wanli; Lee, Chengkuo
2018-05-10
The temperature fluctuation in a single-phase microchannel heat sink (MCHS) is investigated using the integrated temperature sensors with deionized water as the coolant. Results show that the temperature fluctuation in single phase is not negligible. The causes of the temperature fluctuation are revealed based on both simulation and experiment. It is found that the inlet temperature fluctuation and the gas bubbles separated out from coolant are the main causes. The effect of the inlet temperature fluctuation is global, where the temperatures at different locations change simultaneously. Meanwhile, the gas bubble effect is localized where the temperature changes at different locations are not synchronized. In addition, the relation between temperature fluctuation and temperature gradient is established. The temperature fluctuation increases with the temperature gradient accordingly.
Atmospheric pressure near the land surface is constantly changing, due both to short-term diurnal temperature fluctuations as well as longer-term cycles due to the passage of high-and-low-pressure weather systems. Depending upon soil properties, such as air-filled porosity and a...
Study on spectral features of terahertz wave propagating in the air
NASA Astrophysics Data System (ADS)
Kang, Shengwu
2018-03-01
Now, Terahertz technology has been widely used in many fields, which is mainly related to imaging detection. While the frequency range of the terahertz-wave is located between microwave and visible light, whether the existing visible light principle is applicable to terahertz-wave should be studied again. Through experiment, we measure the terahertz-wave field amplitude distribution on the receiving plane perpendicular to the direction of propagation in the air and picture out the energy distribution curve; derive an energy decay formula of terahertz wave based on the results; design a terahertz wavelength apparatus using the F-P interferometer theory; test the wavelength between 1 and 3 THz from the SIFIR-50THz laser of American Corehent company; finally analyze the related factors affecting the measurement precision including the beam incident angle, mechanical vibration, temperature fluctuation and the refractive index fluctuation.
Mathematical modelling of cyclic pressure swing adsorption processes
NASA Astrophysics Data System (ADS)
Skvortsov, S. A.; Akulinin, E. I.; Golubyatnikov, O. O.; Dvoretsky, D. S.; Dvoretsky, S. I.
2018-05-01
The paper discusses the results of a numerical analysis of the properties and regimes of the adsorption air separation and oxygen concentration process with a purity of ∼ 40-60%, carried out in a 2-adsorption vacuum-pressure plant with a granular zeolite adsorbent 13X with a productivity of 1.6 · 10-5 m3/s. Computational experiments were carried out using the developed mathematical model and the influence of temperature, pressure, reflux ratio, the duration of the adsorption and desorption stages, the harmonic fluctuations of the inlet pressure during the adsorption stage and the outlet pressure during the desorption stage on the kinetics, and the efficiency of the air separation process by the PSA method were investigated. It is established that the specially organized harmonic fluctuations of the inlet pressure at the stage of adsorption and outlet pressure during the desorption stage lead to an increase in the purity of product oxygen by 4% (vol.).
European Climate and Pinot Noir Grape-Harvest Dates in Burgundy, since the 17th Century
NASA Astrophysics Data System (ADS)
Tourre, Y. M.
2011-12-01
Time-series of growing season air temperature anomalies in the Parisian region and of 'Pinot Noir' grape-harvest dates (GHD) in Burgundy (1676-2004) are analyzed in the frequency-domain. Variability of both time-series display three significant frequency-bands (peaks significant at the 5% level) i.e., a low-frequency band (multi-decadal) with a 25-year peak period; a 3-to-8 year band period (inter-annual) with a 3.1-year peak period; and a 2-to-3 year band period (quasi-biennial) with a 2.4-year peak period. Joint sea surface temperature/sea level pressure (SST/SLP) empirical orthogonal functions (EOF) analyses during the 20th century, along with spatio-temporal patterns for the above frequency-bands are presented. It is found that SST anomalies display early significant spatial SST patterns in the North Atlantic Ocean (air temperature lagging by 6 months) similar to those obtained from EOF analyses. It is thus proposed that the robust power spectra for the above frequency-bands could be linked with Atlantic climate variability metrics modulating Western European climate i.e., 1) the global Multi-decadal Oscillation (MDO) with its Atlantic Multi-decadal Oscillation (AMO) footprint; 2) the Atlantic Inter-Annual (IA) fluctuations; and 3) the Atlantic Quasi-Biennial (QB) fluctuations, respectively. Moreover these specific Western European climate signals have effects on ecosystem health and can be perceived as contributors to the length of the growing season and the timing of GHD in Burgundy. Thus advance knowledge on the evolution and phasing of the above climate fluctuations become important elements for viticulture and wine industry management. It is recognized that anthropogenic effects could have modified time-series patterns presented here, particularly since the mid 1980s.
Extreme Winter/Early-Spring Temperature Anomalies in Central Europe
NASA Technical Reports Server (NTRS)
Otterman, Joseph; Atlas, Robert; Ardizzone, Joseph; Brakke, Thomas; Chou, Shu-Hsien; Jusem, Juan Carlos; Glantz, Michael; Rogers, Jeff; Sud, Yogesh; Susskind, Joel
2000-01-01
Extreme seasonal fluctuations of the surface-air temperature characterize the climate of central Europe, 45-60 deg North Temperature difference between warm 1990 and cold 1996 in the January-March period, persisting for more than two weeks at a time, amounted to 18 C for extensive areas. These anomalies in the surface-air temperature stem in the first place from differences in the low level flow from the eastern North-Atlantic: the value of the Index 1na of southwesterlies over the eastern North-Atlantic was 8.0 m/s in February 1990, but only 2.6 m/ s in February 1996. The primary forcing by warm advection to positive anomalies in monthly mean surface temperature produced strong synoptic-scale uplift at the 700 mb level over some regions in Europe. The strong uplift contributed in 1990 to a much larger cloud-cover over central Europe, which reduced heat-loss to space (greenhouse effect). Thus, spring arrived earlier than usual in 1990, but later than usual in 1996.
Zhou, Xiaoming; Lin, Haiyan; Zhang, Shigang; Ren, Jianwei; Wang, Zhe; Zhang, Yun; Wang, Mansen; Zhang, Qunye
2016-01-01
The rules and mechanisms of seasonal changes in plasma lipid levels, which may be related to annual rhythmicity of incidence and mortality of cardiovascular diseases, are still controversial. The objectives of this study were to study the effects of climatic factors on plasma lipid levels and to preliminarily reveal mechanisms of annual rhythmicity of plasma lipid levels. A longitudinal study was performed using health examination data of 5 consecutive years (47,270 subjects) in Jinan, China. The climate in Jinan is typical temperate continental monsoon climate with huge temperature difference between winter and summer (>30°C). After considering and adjusting those classical lipid-associated risk factors, such as age, gender, diet, exercise, blood pressure, body weight, change of body weight, body mass index, glycemia, alanine aminotransferase, and creatinine, only air temperature could still significantly affect plasma lipid levels among the main climatic factors (humidity, precipitation, and so forth). For men, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol was decreased significantly 0.35, 0.18, and 0.06 mmol/L, respectively, whereas triglyceride was increased significantly 0.12 mmol/L for every 10°C increase in air temperature. For women, total cholesterol and high-density lipoprotein cholesterol were decreased notably 0.73 and 0.32 mmol/L, and low-density lipoprotein cholesterol was increased significantly 0.26 mmol/L for every 10°C increase in air temperature, whereas triglyceride was not significantly affected by air temperature. Air temperature is an independent risk factor for plasma lipid levels besides those classical lipid-associated risk factors. The annual air temperature fluctuations might be an important mechanism of the seasonal changes of lipids. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Paden, Cynthia A.; Winant, Clinton D.; Abbott, Mark R.
1991-01-01
SST variability in the northern Gulf of California is examined on the basis of findings of two years of satellite infrared imagery (1984-1986). Empirical orthogonal functions of the temporal and spatial SST variance for 20 monthly mean images show that the dominant SST patterns are generated by spatially varying tidal mixing in the presence of seasonal heating and cooling. Atmospheric forcing of the northern gulf appears to occur over large spatial scales. Area-averaged SSTs for the Guaymas Basin, island region, and northern basin exhibit significant fluctuations which are highly correlated. These fluctuations in SST correspond to similar fluctuations in the air temperature which are related to synoptic weather events over the gulf. A regression analysis of the SST relative to the fortnightly tidal range shows that tidal mixing occurs over the sills in the island region as well as on the shallow northern shelf. Mixing over the sills occurs as a result of large breaking internal waves of internal hydraulic jumps which mix over water in the upper 300-500 m.
NASA Astrophysics Data System (ADS)
He, Xuechao; Sun, Jinhua; Yuen, K. K.; Ding, Yibin; Chen, Sining
2008-11-01
Experiments of flame propagation in a small, closed rectangular duct with a 90° bend were performed for a propane-air mixture. The high speed camera and Schlieren techniques were used to record images of flame propagation process in the combustion pipe. Meanwhile, the fine thermocouples and ion current probes were applied to measure the temperature distribution and reaction intensity of combustion. The characteristics of propane-air flame and its microstructure were analyzed in detail by the experimental results. In the test, the special tulip flame formation was observed. Around the bend, the flame tip proceeded more quickly at the lower side with the flame front elongated toward the axial direction. And transition to turbulent flame occurred. It was suggested that fluctuations of velocity, ion current and temperature were mainly due to the comprehensive effects of multi-wave and the intense of turbulent combustion.
NASA Astrophysics Data System (ADS)
Nazarova, Larisa; Diekmann, Bernhard; Pestrjakova, Ludmila; Herzschuh, Ulrike; Subetto, Dmitry
2010-05-01
Yakutia (Russia, northeastern part of Eurasia) represents one of Earths most extreme climatic settings in the world with deep-reaching frozen ground and a semiarid continental climate with highest seasonal temperature contrasts in the northern hemisphere. The amplitude of temperature variations around the year sometimes exceeds 100oC. There are few examples of quantitative palaeoecological studies in Siberia and these data have to be tested by quantitative studies from other sites in this region, inferred from different proxies and using regional calibration datasets and temperature models that are still lacking. Chironomid midges (Insecta, Diptera, Chironomidae) have been widely used to reconstruct past climate variability in many areas of Western Europe and North America. A chironomid-mean July air temperature inference model has been developed, based on a modern calibration set of 200 lakes sampled along a transect from 110° to 159° E and 61° to73° N in northern Russia. The inference model was applied to sediment cores from 2 lakes in the Central Yakutia in order to reconstruct past July air temperatures. The lacustrine records span mid- to late Holocene. The downcore variability in the chironomid assemblages and the composition of organic matter give evidence of climate-driven and interrelated changes in biological productivity, lacustrine trophic states, and lake-level fluctuations. Three phases of the climate development in Central Yakutia can be derived from the geochemical composition of the lake cores and according to the inferred from chironomid assemblages mean July air ToC. Content of organic matters reached maximal values in the period between 7000-4500 yBP. Sedimentation rate is especially high, numerous molluscs shells are found in sediments. All this along with the reconstructed air temperature confirmed that Mid Holocene optimum in Central Yakutia took place in this period with the maximal temperatures up to 4oC above present day ToC. Strong faunistic changes take place after 4500 yBP. Temperature reconstruction has shown that around 4500 ka BP air temperature went down up to 2oC below modern temperature. These observations confirm end of Holocene climate optimum at this time. The lake status record reveals a long-term trend towards lake-level lowering in the course of climate deterioration after 4.2 cal. ka BP and reduced evaporation as well as progressive sediment infill. This long-term trend is overprinted by short-term fluctuations at centennial time scales with high lake levels and decreased biological productivity during cool climate spells with reduced evaporation, as also observed in modern thermokarst lakes of Central Yakutia.
NASA Astrophysics Data System (ADS)
Cao, Ling; Che, Wenbin
2018-05-01
For the central air-conditioning energy-saving, it is common practice to use a wide range of PTD controllers in engineering to optimize energy savings. However, the shortcomings of the PTD controller have also been magnified on this issue, such as: calculation accuracy is not enough, the calculation time is too long. Particle swarm optimization has the advantage of fast convergence. This paper is based on Particle Swarm Optimization apply in PTD controller tuning parameters in order to achieve the purpose of saving energy while ensuring comfort. The algorithm proposed in this paper can adjust the weight according to the change of population fitness, reduce the weights of particles with lower fitness and enhance the weights of particles with higher fitness in the population, and fully release the population vitality. The method in this paper is validated by the TRNSYS model based on the central air-conditioning system. The experimental results show that the room temperature fluctuation is small, the overshoot is small, the adjustment speed is fast, and the energy-saving fluctuates at 10%.
Effect of snow cover on soil frost penetration
NASA Astrophysics Data System (ADS)
Rožnovský, Jaroslav; Brzezina, Jáchym
2017-12-01
Snow cover occurrence affects wintering and lives of organisms because it has a significant effect on soil frost penetration. An analysis of the dependence of soil frost penetration and snow depth between November and March was performed using data from 12 automated climatological stations located in Southern Moravia, with a minimum period of measurement of 5 years since 2001, which belong to the Czech Hydrometeorological institute. The soil temperatures at 5 cm depth fluctuate much less in the presence of snow cover. In contrast, the effect of snow cover on the air temperature at 2 m height is only very small. During clear sky conditions and no snow cover, soil can warm up substantially and the soil temperature range can be even higher than the range of air temperature at 2 m height. The actual height of snow is also important - increased snow depth means lower soil temperature range. However, even just 1 cm snow depth substantially lowers the soil temperature range and it can therefore be clearly seen that snow acts as an insulator and has a major effect on soil frost penetration and soil temperature range.
NASA Technical Reports Server (NTRS)
Tacina, K. M.; Chang, C. T.; Lee, P.; Mongia, H.; Podboy, D. P.; Dam, B.
2015-01-01
Dynamic pressure measurements were taken during flame-tube emissions testing of three second-generation swirl-venturi lean direct injection (SV-LDI) combustor configurations. These measurements show that combustion dynamics were typically small. However, a small number of points showed high combustion dynamics, with peak-to-peak dynamic pressure fluctuations above 0.5 psi. High combustion dynamics occurred at low inlet temperatures in all three SV-LDI configurations, so combustion dynamics were explored further at low temperature conditions. A point with greater than 1.5 psi peak-to-peak dynamic pressure fluctuations was identified at an inlet temperature of 450!F, a pressure of 100 psia, an air pressure drop of 3%, and an overall equivalence ratio of 0.35. This is an off design condition: the temperature and pressure are typical of 7% power conditions, but the equivalence ratio is high. At this condition, the combustion dynamics depended strongly on the fuel staging. Combustion dynamics could be reduced significantly without changing the overall equivalence ratio by shifting the fuel distribution between stages. Shifting the fuel distribution also decreased NOx emissions.
Fusi, Marco; Cannicci, Stefano; Daffonchio, Daniele; Mostert, Bruce; Pörtner, Hans-Otto; Giomi, Folco
2016-01-01
The principle of oxygen and capacity limitation of thermal tolerance in ectotherms suggests that the long-term upper limits of an organism's thermal niche are equivalent to the upper limits of the organism's functional capacity for oxygen provision to tissues. Air-breathing ectotherms show wider thermal tolerances, since they can take advantage of the higher availability of oxygen in air than in water. Bimodal species move from aquatic to aerial media and switch between habitats in response to environmental variations such as cyclical or anomalous temperature fluctuations. Here we tested the prediction that bimodal species cope better with thermal stress than truly aquatic species using the crab Pachygrapsus marmoratus as a model species. When in water, oxygen consumption rates of P. marmoratus acutely rise during warming. Beyond a temperature threshold of 23 °C the crab's aerobic metabolism in air remains lower than in water. In parallel, the haemolymph oxygen partial pressure of submerged animals progressive decreases during warming, while it remains low but constant during emersion. Our results demonstrate the ability of a bimodal breathing ectotherm to extend its thermal tolerance during air-breathing, suggesting that there are temperature-related physiological benefits during the evolution of the bimodal life style. PMID:26758742
Fusi, Marco; Cannicci, Stefano; Daffonchio, Daniele; Mostert, Bruce; Pörtner, Hans-Otto; Giomi, Folco
2016-01-13
The principle of oxygen and capacity limitation of thermal tolerance in ectotherms suggests that the long-term upper limits of an organism's thermal niche are equivalent to the upper limits of the organism's functional capacity for oxygen provision to tissues. Air-breathing ectotherms show wider thermal tolerances, since they can take advantage of the higher availability of oxygen in air than in water. Bimodal species move from aquatic to aerial media and switch between habitats in response to environmental variations such as cyclical or anomalous temperature fluctuations. Here we tested the prediction that bimodal species cope better with thermal stress than truly aquatic species using the crab Pachygrapsus marmoratus as a model species. When in water, oxygen consumption rates of P. marmoratus acutely rise during warming. Beyond a temperature threshold of 23 °C the crab's aerobic metabolism in air remains lower than in water. In parallel, the haemolymph oxygen partial pressure of submerged animals progressive decreases during warming, while it remains low but constant during emersion. Our results demonstrate the ability of a bimodal breathing ectotherm to extend its thermal tolerance during air-breathing, suggesting that there are temperature-related physiological benefits during the evolution of the bimodal life style.
A local sensor for joint temperature and velocity measurements in turbulent flows
NASA Astrophysics Data System (ADS)
Salort, Julien; Rusaouën, Éléonore; Robert, Laurent; du Puits, Ronald; Loesch, Alice; Pirotte, Olivier; Roche, Philippe-E.; Castaing, Bernard; Chillà, Francesca
2018-01-01
We present the principle for a micro-sensor aimed at measuring local correlations of turbulent velocity and temperature. The operating principle is versatile and can be adapted for various types of flow. It is based on a micro-machined cantilever, on the tip of which a platinum resistor is patterned. The deflection of the cantilever yields an estimate for the local velocity, and the impedance of the platinum yields an estimate for the local temperature. The velocity measurement is tested in two turbulent jets: one with air at room temperature which allows us to compare with well-known calibrated reference anemometers, and another one in the GReC jet at CERN with cryogenic gaseous helium which allows a much larger range of resolved turbulent scales. The recording of temperature fluctuations is tested in the Barrel of Ilmenau which provides a controlled turbulent thermal flow in air. Measurements in the wake of a heated or cooled cylinder demonstrate the capability of the sensor to display the cross correlation between temperature and velocity correctly.
NASA Astrophysics Data System (ADS)
Nagasaka, Yuji; Kobayashi, Yusuke
2007-09-01
The surface tension and the viscosity of molten LiNbO 3 (LN) having the congruent composition have been measured simultaneously in a temperature range from 1537 to 1756 K under argon gas and dry-air atmospheres. The present measurement technique involves surface laser-light scattering (SLLS) that detects nanometer-order-amplitude surface waves usually regarded as ripplons excited by thermal fluctuations. This technique's non-invasive nature allows it to avoid the experimental difficulties of conventional techniques resulting from the insertion of an actuator in the melt. The results of surface tension measurement obtained under a dry-air atmosphere are about 5% smaller than those obtained under an argon atmosphere near the melting temperature, and the temperature dependence of the surface tension under a dry-air atmosphere is twice that under an argon atmosphere. The uncertainty of surface tension measurement is estimated to be ±2.6% under argon and ±1.9% under dry air. The temperature dependence of viscosity can be well correlated with the results of Arrhenius-type equations without any anomalous behavior near the melting point. The viscosities obtained under a dry-air atmosphere were slightly smaller than those obtained under an argon atmosphere. The uncertainty of viscosity measurement is estimated to be ±11.1% for argon and ±14.3% for dry air. Moreover, we observed the real-time dynamic behavior of the surface tension and the viscosity of molten LN in response to argon and dry-air atmospheres.
NASA Technical Reports Server (NTRS)
Goldstein, D.; Magnotti, F.; Chinitz, W.
1983-01-01
Reaction rates in turbulent, reacting flows are reviewed. Assumed probability density functions (pdf) modeling of reaction rates is being investigated in relation to a three variable pdf employing a 'most likely pdf' model. Chemical kinetic mechanisms treating hydrogen air combustion is studied. Perfectly stirred reactor modeling of flame stabilizing recirculation regions was used to investigate the stable flame regions for silane, hydrogen, methane, and propane, and for certain mixtures thereof. It is concluded that in general, silane can be counted upon to stabilize flames only when the overall fuel air ratio is close to or greater than unity. For lean flames, silane may tend to destabilize the flame. Other factors favoring stable flames are high initial reactant temperatures and system pressure.
NASA Astrophysics Data System (ADS)
Muschinski, A.; Hu, K.; Root, L. M.; Tichkule, S.; Wijesundara, S. N.
2010-12-01
Mean values and fluctuations of angles-of-arrival (AOAs) of light emitted from astronomical or terrestrial sources and observed through a telescope equipped with a CCD camera carry quantitative information about certain statistics of the wind and temperature field, integrated along the propagation path. While scintillometry (i.e., the retrieval of atmospheric quantities from light intensity fluctuations) has been a popular technique among micrometeorologists for many years, there have been relatively few attempts to utilize AOA observations to probe the atmospheric surface layer (ASL). Here we report results from a field experiment that we conducted at the Boulder Atmospheric Observatory (BAO) site near Erie, CO, in June 2010. During the night of 15/16 June, the ASL was characterized by intermittent turbulence and intermittent gravity-wave events. We measured temperature and wind with 12 sonics (R.M. Young, Model 81000, sampling rate 31 Hz) mounted on two portable towers at altitudes between 1.45 m and 4.84 m AGL; air pressure with two quartz-crystal barometers (Paroscientific, 10 Hz); and AOAs by means of a CCD camera (Lumenera, Model 075M, thirty 640x480 frames per second) attached to a 14-inch, Schmidt-Cassegrain telescope (Meade, Model LX200GPS) pointing at a rectangular array of four test lights (LEDs, vertical spacing 8 cm, horizontal spacing 10 cm) located at a distance of 182 m. The optical path was horizontal and 1.7 m above flat ground. The two towers were located 2 m away from the optical path. In our presentation, we focus on AOA retrievals of the following quantities: temporal fluctuations of the path-averaged, vertical temperature gradient; mean values and fluctuations of the path-averaged, lateral wind velocity; and mean values and fluctuations of the path-averaged temperature turbulence structure parameter. We compare the AOA retrievals with the collocated and simultaneous point measurements obtained with the sonics, and we analyze our observations in the framework of the Monin-Obukhov theory. The AOA techniques enable us to detect temporal fluctuations of the path-averaged vertical temperature gradient (estimated over a height increment defined by the telescope's aperture diameter) down to a few millikelvins per meter, which probably cannot be achieved with sonics. Extremely small wind velocities can also be resolved. Therefore, AOA techniques are well suited for observations of the nocturnal surface layer under quiet conditions. AOA retrieval techniques have major advantages over scintillometric techniques because AOAs can be understood within the framework of the weak-scattering theory or even geometrical optics (the eikonal-fluctuation theory), while the well-known "saturation effect" makes the weak-scattering theory invalid for intensity fluctuations in the majority of cases of practical relevance.
Arve, Louise E; Kruse, Ole Mathis Opstad; Tanino, Karen K; Olsen, Jorunn E; Futsæther, Cecilia; Torre, Sissel
2017-04-01
Previous studies have shown that plants developed under high relative air humidity (RH>85%) develop malfunctioning stomata and therefor have increased transpiration and reduced desiccation tolerance when transferred to lower RH conditions and darkness. In this study, plants developed at high RH were exposed to daily VPD fluctuations created by changes in temperature and/or RH to evaluate the potential improvements in stomatal functioning. Daily periods with an 11°C temperature increase and consequently a VPD increase (vpd: 0.36-2.37KPa) reduced the stomatal apertures and improved the stomatal functionality and desiccation tolerance of the rosette plant Arabidopsis thaliana. A similar experiment was performed with only a 4°C temperature increase and/or a RH decrease on tomato. The results showed that a daily change in VPD (vpd: 0.36-1.43KPa) also resulted in improved stomatal responsiveness and decreased water usage during growth. In tomato, the most effective treatment to increase the stomatal responsiveness to darkness as a signal for closure was daily changes in RH without a temperature increase. Copyright © 2017 Elsevier GmbH. All rights reserved.
Improved Apparatus for the Measurement of Fluctuations of Air Speed in Turbulent Flow
NASA Technical Reports Server (NTRS)
Mock, W C , Jr; Dryden, H L
1934-01-01
This report describes recent improvements in the design of the equipment associated with the hot-wire anemometer for the measurement of fluctuating air speeds in turbulent air flow, and presents the results of some experimental investigations dealing with the response of the hot wire to speed fluctuations of various frequencies. Attempts at measuring the frequency of the fluctuations encountered in the Bureau of Standards' 54-inch wind tunnel are also reported. In addition, the difficulties encountered in the use of such apparatus and the precautions found helpful in avoiding them are discussed.
Hou, Lan-Gong; Zou, Song-Bing; Xiao, Hong-Lang; Yang, Yong-Gang
2013-01-01
The standardized FAO56 Penman-Monteith model, which has been the most reasonable method in both humid and arid climatic conditions, provides reference evapotranspiration (ETo) estimates for planning and efficient use of agricultural water resources. And sensitivity analysis is important in understanding the relative importance of climatic variables to the variation of reference evapotranspiration. In this study, a non-dimensional relative sensitivity coefficient was employed to predict responses of ETo to perturbations of four climatic variables in the Ejina oasis northwest China. A 20-year historical dataset of daily air temperature, wind speed, relative humidity and daily sunshine duration in the Ejina oasis was used in the analysis. Results have shown that daily sensitivity coefficients exhibited large fluctuations during the growing season, and shortwave radiation was the most sensitive variable in general for the Ejina oasis, followed by air temperature, wind speed and relative humidity. According to this study, the response of ETo can be preferably predicted under perturbation of air temperature, wind speed, relative humidity and shortwave radiation by their sensitivity coefficients.
NASA Astrophysics Data System (ADS)
Katselis, George; Koukou, Katerina; Dimitriou, Evagelos; Koutsikopoulos, Constantin
2007-07-01
In the present study we analysed the daily seaward migratory behaviour of four dominant euryhaline fish species (Mugilidae: Liza saliens, Liza aurata, Mugil cephalus and Sparidae: Sparus aurata) in the Messolonghi Etoliko lagoon system (Western Greek coast) based on the daily landings' time series of barrier traps and assessed the relationship between their migratory behaviour and various climatic variables (air temperature and atmospheric pressure) and the lunar cycle. A 2-year time series of daily fish landings (1993 and 1994), a long time series of daily air temperature and daily temperature range (1991 1998) as well as a 4-year time series of the daily atmospheric pressure (1994 1997) and daily pressure range were used. Harmonic models (HM) consisting of annual and lunar cycle harmonic components explained most (R2 > 0.80) of the mean daily species landings and temperature variations, while a rather low part of the variation (0.18 < R2 < 0.27) was explained for pressure, daily pressure range and daily temperature range. In all the time series sets the amplitude of the annual component was highest. The model values of all species revealed two important migration periods (summer and winter) corresponding to the spawning and refuge migrations. The lunar cycle effect on species' daily migration rates and the short-term fluctuation of daily migration rates were rather low. However, the short-term fluctuation of some species' daily migration rates during winter was greater than during summer. In all species, the main migration was the spawning migration. The model lunar components of the species landings showed a monthly oscillation synchronous to the full moon (S. aurata and M. cephalus) or a semi-monthly oscillation synchronous to the new and full moon (L. aurata and L. saliens). Bispectral analysis of the model values and the model residuals' time series revealed that the species daily migration were correlated (coherencies > 0.6) to the daily fluctuations of the climatic variables at seasonal, mid and short-term scales.
On the assumption of vanishing temperature fluctuations at the wall for heat transfer modeling
NASA Technical Reports Server (NTRS)
Sommer, T. P.; So, R. M. C.; Zhang, H. S.
1993-01-01
Boundary conditions for fluctuating wall temperature are required for near-wall heat transfer modeling. However, their correct specifications for arbitrary thermal boundary conditions are not clear. The conventional approach is to assume zero fluctuating wall temperature or zero gradient for the temperature variance at the wall. These are idealized specifications and the latter condition could lead to an ill posed problem for fully-developed pipe and channel flows. In this paper, the validity and extent of the zero fluctuating wall temperature condition for heat transfer calculations is examined. The approach taken is to assume a Taylor expansion in the wall normal coordinate for the fluctuating temperature that is general enough to account for both zero and non-zero value at the wall. Turbulent conductivity is calculated from the temperature variance and its dissipation rate. Heat transfer calculations assuming both zero and non-zero fluctuating wall temperature reveal that the zero fluctuating wall temperature assumption is in general valid. The effects of non-zero fluctuating wall temperature are limited only to a very small region near the wall.
Horsák, Michal; Polášková, Vendula; Zhai, Marie; Bojková, Jindřiška; Syrovátka, Vít; Šorfová, Vanda; Schenková, Jana; Polášek, Marek; Peterka, Tomáš; Hájek, Michal
2018-09-01
Climate warming and associated environmental changes lead to compositional shifts and local extinctions in various ecosystems. Species closely associated with rare island-like habitats such as groundwater-dependent spring fens can be severely threatened by these changes due to a limited possibility to disperse. It is, however, largely unknown to what extent mesoclimate affects species composition in spring fens, where microclimate is buffered by groundwater supply. We assembled an original landscape-scale dataset on species composition of the most waterlogged parts of isolated temperate spring fens in the Western Carpathian Mountains along with continuously measured water temperature and hydrological, hydrochemical, and climatic conditions. We explored a set of hypotheses about the effects of mesoclimate air and local spring-water temperature on compositional variation of aquatic (macroinvertebrates), semi-terrestrial (plants) and terrestrial (land snails) components of spring-fen biota, categorized as habitat specialists and other species (i.e. matrix-derived). Water temperature did not show a high level of correlation with mesoclimate. For all components, fractions of compositional variation constrained to temperature were statistically significant and higher for habitat specialists than for other species. The importance of air temperature at the expense of water temperature and its fluctuation clearly increased with terrestriality, i.e. from aquatic macroinvertebrates via vegetation (bryophytes and vascular plants) to land snails, with January air temperature being the most important factor for land snails and plant specialists. Some calcareous-fen specialists with a clear distribution centre in temperate Europe showed a strong affinity to climatically cold sites in our study area and may hence be considered as threatened by climate warming. We conclude that prediction models solely based on air temperature may provide biased estimates of future changes in spring fen communities, because their aquatic and semiterrestrial components are largely affected by water temperature that is modified by local hydrological and landscape settings. Copyright © 2018 Elsevier B.V. All rights reserved.
Understanding the link between malaria risk and climate.
Paaijmans, Krijn P; Read, Andrew F; Thomas, Matthew B
2009-08-18
The incubation period for malaria parasites within the mosquito is exquisitely temperature-sensitive, so that temperature is a major determinant of malaria risk. Epidemiological models are increasingly used to guide allocation of disease control resources and to assess the likely impact of climate change on global malaria burdens. Temperature-based malaria transmission is generally incorporated into these models using mean monthly temperatures, yet temperatures fluctuate throughout the diurnal cycle. Here we use a thermodynamic malaria development model to demonstrate that temperature fluctuation can substantially alter the incubation period of the parasite, and hence malaria transmission rates. We find that, in general, temperature fluctuation reduces the impact of increases in mean temperature. Diurnal temperature fluctuation around means >21 degrees C slows parasite development compared with constant temperatures, whereas fluctuation around <21 degrees C speeds development. Consequently, models which ignore diurnal variation overestimate malaria risk in warmer environments and underestimate risk in cooler environments. To illustrate the implications further, we explore the influence of diurnal temperature fluctuation on malaria transmission at a site in the Kenyan Highlands. Based on local meteorological data, we find that the annual epidemics of malaria at this site cannot be explained without invoking the influence of diurnal temperature fluctuation. Moreover, while temperature fluctuation reduces the relative influence of a subtle warming trend apparent over the last 20 years, it nonetheless makes the effects biologically more significant. Such effects of short-term temperature fluctuations have not previously been considered but are central to understanding current malaria transmission and the consequences of climate change.
The Extremely Warm Early Winter 2000 in Europe: What is the Forcing
NASA Technical Reports Server (NTRS)
Otterman, J.; Angell, J. K.; Atlas, R.; Ardizzone, J.; Demaree, G.; Jusem, J. C.; Koslowsky, D.; Terry, J.; Einaudi, Franco (Technical Monitor)
2001-01-01
High variability characterizes the winter climate of central Europe: interannual fluctuations in the surface-air temperature as large as 18 C over large areas are fairly common. The extraordinary early-winter 2000 in Europe appears to be a departure to an unprecedented extreme of the existing climate patterns. Such anomalous events affect agriculture, forestry, fuel consumption, etc., and thus deserve in-depth analysis. Our analysis indicates that the high anomalies of the surface-air temperature are predominantly due to the southwesterly flow from the eastern North Atlantic, with a weak contribution by southerly flow from the western Mediterranean. Backward trajectories based on the SSM/I and NCEP Reanalysis datasets traced from west-central Europe indicate that the warm air masses flowing into Europe originate in the southern North Atlantic, where the surface-air temperatures exceed by 15c or more the climatic norms in Europe for late-November or early-December. Because such large ocean-to-continent temperature differences characterize the winter conditions, we refer to this episode which started in late November as occurring in the early winter. In this season, with the sun low over the horizon in Europe, absorption of insolation by the surface has little significance. The effect of cloudiness, a corollary to the low-level maritime-air advection, is a warming by a reduction of heat loss (greenhouse effect). In contrast, in the summer, clouds, by reducing absorption of insolation, produce a cooling, effect at the surface.
Army Research Laboratory. 1999 Annual Review
1999-01-01
identification, and tracking of moving vehicles. Sound scattering in the air is caused by fluctuations in temperature, Cj , and winds, C*. Most Army models of...realistic inhomogeneous atmosphere. Hill Three-Dimensional Modeling and Simulation of Kinetic Energy Penetrators and Armor Materials During Ballistic...versions of these tools have been tested on a model muzzle brake fluid flow problem for ARDEC Benet Labs and on a helicopter rotor aerody- namics problem
Energy saving technologies of the decentralized ventilation of buildings
NASA Astrophysics Data System (ADS)
Mansurov, R. Sh; Rafalskaya, T. A.
2017-11-01
The growing aspiration to energy saving and efficiency of energy leads to necessity to build tight enough buildings. As a result of this the quantity of infiltration air appears insufficient for realization of necessary air exchange in. One of decisions of the given problem is development and application for ventilation of premises of the decentralized forced-air and exhaust systems (DFAES) with recuperative or regenerative heat-exchangers. For an estimation of efficiency of DFAES following basic parameters have been certain: factor of energy saving; factor of efficiency of energy; factor of a heat transfer; factor of an effective utilization of a surface of heat exchange. Were estimated temperature of forced air; actual speed of an air jet on an entrance in a served zone; actual noise level; the charge of external air. Tests of DFAES were spent in natural conditions at which DFAES influenced all set of factors both an external climate, and an internal microclimate of a premise, and also the arrangement on a wind side or behind wind side of a building, influence of surrounding building, fluctuation of temperature of external air is considered. Proceeding from results and the analysis of the lead researches recommendations have been developed for development and manufacture of new sample of DFAES.
Nocturnal Air Seiches in the Arizona Meteor Crater
NASA Astrophysics Data System (ADS)
Muschinski, A.; Fritts, D. C.; Zhong, S.; Oncley, S. P.
2011-12-01
The Arizona Meteor Crater near Winslow, AZ is 170 m deep, has a diameter of 1.2 km, and it has a nearly circular shape. The motivation of the Meteor Crater Experiment (METCRAX), conducted in October 2006, was to use the Meteor Crater as a natural laboratory to study atmospheric phenomena that are typical for small basins. Among other observations, high-resolution wind, temperature and pressure measurements were collected with sonics and microbarometers, respectively, during the entire month. The sensors were mounted between 0.5 m and 8.5 m AGL on seven portable towers, five of which were located within the crater and two on the crater rim. Here we report observations of nocturnal air seiches, that is, standing gravity waves associated with the time-harmonic sloshing of the cold-air pool that forms at the bottom of the crater due to radiative cooling at night. We present time series, spectra, and spectrograms of temperature, wind and pressure fluctuations that characterize those air seiches. Typical seiche periods were 15 min. We compare the observations with the time-harmonic solutions of the shallow-water equation and with numerical simulations.
NASA Astrophysics Data System (ADS)
Charvat, P.; Pech, O.; Hejcik, J.
2013-04-01
The paper deals with experimental investigations of the performance of a solar air collector with latent heat thermal storage integrated with the solarabsorber. The main purpose of heat storage in solar thermal systems is to store heat when the supply of solar heat exceeds demand and release it when otherwise. A number of heat storage materials can be used for this purpose; the phase change materials among them. Short-term latent heat thermal storage integrated with the solar absorber can stabilize the air temperature at the outlet of the collector on cloudy days when solar radiation intensity incident on a solar collector fluctuates significantly. Two experimental front-and-back pass solar air collectors of the same dimensions have been built for the experimental investigations. One collector had a "conventional" solar absorber made of a metal sheet while the solar absorber of the other collector consisted of containers filled with organic phase change material. The experimental collectors were positioned side by side during the investigations to ensure the same operating conditions (incident solar radiation, outdoor temperature).
NASA Astrophysics Data System (ADS)
Lim, H. S.; Lee, J. Y.; Yoon, H.
2016-12-01
Soil temperatures, water temperatures, and weather parameters were monitored at a variety of locations in the vicinity of King Sejong station, King George Island, Antarctica, during summer 2010-2011. Thermal characteristics of soil and water were analysed using time-series analyses, apparent thermal diffusivity (ATD), and active layer thickness. The temperatures of pond water and nearby seawater showed the distinctive diurnal variations and correlated strongly with solar radiation (r = 0.411-0.797). Soil temperature (0.1-0.3 m depth) also showed diurnal fluctuations that decreased with depth and were directly linked to air temperature (r = 0.513-0.783) rather than to solar radiation; correlation decreased with depth and the time lag in the response increased by 2-3 hours per 0.1 m of soil depth. Owing to the lack of snow cover, summertime soil temperature was not decoupled from air temperature. Estimated ATD was between 0.022 and 29.209 mm2/sec, showed temporal and spatial variations, and correlated strongly with soil moisture content. The maximum estimated active layer thickness in the study area was a 41-70 cm, which is consistent with values reported in the previous work.
Displacement measurement with over-determined interferometer
NASA Astrophysics Data System (ADS)
Lazar, Josef; Holá, Miroslava; Hrabina, Jan; Buchta, Zdeněk.; Číp, Ondřej; Oulehla, Jindřich
2012-01-01
We present a concept combining traditional displacement incremental interferometry with a tracking refractometer following the fluctuations of the refractive index of air. This concept is represented by an interferometric system of three Michelson-type interferometers where two are arranged in a counter-measuring configuration and the third one is set to measure the changes of the fixed length, here the measuring range of the overall displacement. In this configuration the two counter-measuring interferometers have identical beam paths with proportional parts of the overall one. The fixed interferometer with its geometrical length of the measuring beam linked to a mechanical reference made of a high thermal-stability material (Zerodur) operates as a tracking refractometer monitoring the atmospheric refractive index directly in the beam path of the displacement measuring interferometers. This principle has been demonstrated experimentally through a set of measurements in a temperature controlled environment under slowly changing refractive index of air in comparison with its indirect measurement through Edlen formula. With locking of the laser optical frequency to fixed value of the overall optical length the concept can operate as an interferometric system with compensation of the fluctuations of the refractive index of air.
Inherited hypoxia: A new challenge for reoligotrophicated lakes under global warming
NASA Astrophysics Data System (ADS)
Jenny, Jean-Philippe; Arnaud, Fabien; Alric, Benjamin; Dorioz, Jean-Marcel; Sabatier, Pierre; Meybeck, Michel; Perga, Marie-Elodie
2014-12-01
The Anthropocene is characterized by a worldwide spread of hypoxia, among other manifestations, which threatens aquatic ecosystem functions, services, and biodiversity. The primary cause of hypoxia onset in recent decades is human-triggered eutrophication. Global warming has also been demonstrated to contribute to the increase of hypoxic conditions. However, the precise role of both environmental forcings on hypoxia dynamics over the long term remains mainly unknown due to a lack of historical monitoring. In this study, we used an innovative paleolimnological approach on three large European lakes to quantify past hypoxia dynamics and to hierarchies the contributions of climate and nutrients. Even for lake ecosystems that have been well oxygenated over a millennia-long period, and regardless of past climatic fluctuations, a shift to hypoxic conditions occurred in the 1950s in response to an unprecedented rise in total phosphorus concentrations above 10 ± 5 µg P L-1. Following this shift, hypoxia never disappeared despite the fact that environmental policies succeeded in drastically reducing lake phosphorus concentrations. During that period, decadal fluctuations in hypoxic volume were great, ranging between 0.5 and 8% of the total lake volumes. We demonstrate, through statistical modeling, that these fluctuations were essentially driven by climatic factors, such as river discharge and air temperature. In lakes Geneva and Bourget, which are fed by large river systems, fluctuations in hypoxic volume were negatively correlated with river discharge. In contrast, the expansion of hypoxia has been related only to warmer air temperatures at Annecy, which is fed by small river systems. Hence, we outline a theoretical framework assuming that restored lake ecosystems have inherited hypoxia from the eutrophication period and have shifted to a new stable state with new key controls of water and ecosystem quality. We suggest that controlling river discharge may be a complementary strategy for local management of lakes fed by large river systems.
The direct simulation of high-speed mixing-layers without and with chemical heat release
NASA Technical Reports Server (NTRS)
Sekar, B.; Mukunda, H. S.; Carpenter, M. H.
1991-01-01
A direct numerical simulation of high speed reacting and non-reacting flows for H2-air systems is presented. The calculations are made for a convective Mach number of 0.38 with hyperbolic tangent initial profile and finite rate chemical reactions. A higher-order numerical method is used in time accurate mode to time advance the solution to a statistical steady state. About 600 time slices of all the variables are then stored for statistical analysis. It is shown that most of the problems of high-speed combustion with air are characterized by relatively weak heat release. The present study shows that: (1) the convective speed is reduced by heat release by about 10 percent at this convective Mach number M(sub c) = 0.38; (2) the variation of the mean and rms fluctuation of temperature can be explained on the basis of temperature fluctuation between the flame temperature and the ambient; (3) the growth rate with heat release is reduced by 7 percent; and (4) the entrainment is reduced by 25 percent with heat release. These differences are small in comparison with incompressible flow dynamics, and are argued to be due to the reduced importance of heat release in comparison with the large enthalpy gradients resulting from the large-scale vortex dynamics. It is finally suggested that the problems of reduced mixing in high-speed flows are not severely complicated by heat release.
NASA Astrophysics Data System (ADS)
Peñaloza-Murillo, Marcos A.; Pasachoff, Jay M.
2015-04-01
We analyze mathematically air temperature measurements made near the ground by the Williams College expedition to observe the first total occultation of the Sun [TOS (commonly known as a total solar eclipse)] of the 21st century in Lusaka, Zambia, in the afternoon of June 21, 2001. To do so, we have revisited some earlier and contemporary methods to test their usefulness for this analysis. Two of these methods, based on a radiative scheme for solar radiation modeling and that has been originally applied to a morning occultation, have successfully been combined to obtain the delay function for an afternoon occultation, via derivation of the so-called instantaneous temperature profiles. For this purpose, we have followed the suggestion given by the third of these previously applied methods to calculate this function, although by itself it failed to do so at least for this occultation. The analysis has taken into account the limb-darkening, occultation and obscuration functions. The delay function obtained describes quite fairly the lag between the solar radiation variation and the delayed air temperature measured. Also, in this investigation, a statistical study has been carried out to get information on the convection activity produced during this event. For that purpose, the fluctuations generated by turbulence has been studied by analyzing variance and residuals. The results, indicating an irreversible steady decrease of this activity, are consistent with those published by other studies. Finally, the air temperature drop due to this event is well estimated by applying the empirical scheme given by the fourth of the previously applied methods, based on the daily temperature amplitude and the standardized middle time of the occultation. It is demonstrated then that by using a simple set of air temperature measurements obtained during solar occultations, along with some supplementary data, a simple mathematical analysis can be achieved by applying of the four methods reviewed here.
Attribution of glacier fluctuations to climate change
NASA Astrophysics Data System (ADS)
Oerlemans, J.
2012-04-01
Glacier retreat is a worlwide phenomenon, which started around the middle of the 19th century. During the period 1800-1850 the number of retreating and advancing glaciers was roughly equal (based on 42 records from different continents). During the period 1850-1900 about 92% of all mountain glaciers became shorter (based on 65 records). After this, the percentage of shrinking glaciers has been around 90% until the present time. The glacier signal is rather coherent over the globe, especially when surging and calving glaciers are not considered (for such glaciers the response to climate change is often masked by length changes related to internal dynamics). From theoretical studies as well as extensive meteorological work on glaciers, the processes that control the response of glaciers to climate change are now basically understood. It is useful to make a difference between geometric factors (e.g. slope, altitudinal range, hypsometry) and climatic setting (e.g. seasonal cycle, precipitation). The most sensitive glaciers appear to be flat glaciers in a maritime climate. Characterizing the dynamic properties of a glacier requires at least two quantities: the climate sensitivity, expressing how the equilibrium glacier state depends on the climatic conditions, and the response time, indicating how fast a glacier approaches a new equilibrium state after a stepwise change in the climatic forcing. These quantities can be estimated from relatively simple theory, showing that differences among glaciers are substantial. For larger glaciers, climate sensitivities (in terms of glacier length) vary from 1 to 8 km per 100 m change in the equilibrium-line altitude. Response times are mainly in the range of 20 to 200 years, with most values between 30 and 80 years. Changes in the equilibrium-line altitude or net mass balance of a glacier are mainly driven by fluctuations in air temperature, precipitation, and global radiation. Energy-balance modelling for many glaciers shows that, globally speaking, a 1 K temperature increase has the same effect as a ~25% decrease in precipitation, or a ~15% increase in global radiation. However, the relative importance of these drivers depends significantly on the climatic setting (notably continentality). In this contribution I will give a brief survey of glacier fluctuations over the past few centuries, and provide arguments that on the worldwide scale air temperature must have been the main driver of these fluctuations. A history of global mean temperature that explains the observed glacier fluctuations best will be discussed. On smaller spatial (regional) and temporal (decades) scales, changes in precipitation become important. Both with respect to the attribution problem (what caused the glacier fluctuations in the past?) and the projection issue (what will happen in the next 100 years?), it is important that many more glaciers are explicitly studied with numerical models. I will argue that for non-calving glaciers these models can be relatively simple.
The variability of California summertime marine stratus: impacts on surface air temperatures
Iacobellis, Sam F.; Cayan, Daniel R.
2013-01-01
This study investigates the variability of clouds, primarily marine stratus clouds, and how they are associated with surface temperature anomalies over California, especially along the coastal margin. We focus on the summer months of June to September when marine stratus are the dominant cloud type. Data used include satellite cloud reflectivity (cloud albedo) measurements, hourly surface observations of cloud cover and air temperature at coastal airports, and observed values of daily surface temperature at stations throughout California and Nevada. Much of the anomalous variability of summer clouds is organized over regional patterns that affect considerable portions of the coast, often extend hundreds of kilometers to the west and southwest over the North Pacific, and are bounded to the east by coastal mountains. The occurrence of marine stratus is positively correlated with both the strength and height of the thermal inversion that caps the marine boundary layer, with inversion base height being a key factor in determining their inland penetration. Cloud cover is strongly associated with surface temperature variations. In general, increased presence of cloud (higher cloud albedo) produces cooler daytime temperatures and warmer nighttime temperatures. Summer daytime temperature fluctuations associated with cloud cover variations typically exceed 1°C. The inversion-cloud albedo-temperature associations that occur at daily timescales are also found at seasonal timescales.
NASA Astrophysics Data System (ADS)
McDermott, Frank; Phillips, Dominika
2017-04-01
The conventional view that hydrological inputs (e.g. drip-water degassing) comprise the dominant source of cave air CO2 has been challenged by recent studies that emphasise the importance of direct advection of gaseous CO2from above and beneath cave voids (e.g. 'soil air' and 'ground air'). A better understanding of CO2 gas budgets in caves is important, not only for the correct interpretation of δ13C values and 14C activity data in speleothems, but also for an understanding of the wider role of karst in the global carbon cycle as a source or sink of atmospheric CO2. This study presents new results from a combined air-temperature and CO2 monitoring programme at a small multi-chamber cave in SE Ireland (Ballynamintra cave, Co. Waterford), building on an earlier study at this cave (Baldini et al., 2006). Episodic, low-amplitude but temporally coherent diurnal-scale cave air temperature fluctuations detected almost simultaneously by a series of temperature loggers within the cave were used to detect air mass advection. The sequence and pattern of temperature fluctuations at different locations within the cave enabled the identification of discrete air-inflow and air-outflow events. These diurnal-scale events occur episodically throughout the year in the winter/ spring and summer/autumn temperature ventilation regimes of the cave. Importantly, changes in cave air pCO2 values recorded by an infra-red logger located in the inner chamber a few metres from the back of the cave occur contemporaneously with the air-mass displacement events, and are consistent with direct advection of CO2-rich soil air via fractures in the subjacent cave roof and walls. In the winter regime, episodic diurnal-scale air outflow events draw CO2-rich air over the logger, resulting in short-lived pulses of air, typically containing c. 0.7% CO2 (by volume), several times the ambient cave air CO2 values at this site. Similar events occur during the summer/autumn thermal regime, but these reach higher CO2values (1-1.2%), similar to those measured previously in the overlying soil. Overall, the data confirm an important role for soil and/or ground air sources at this cave and indicate that the episodic CO2 inputs are not controlled by drip-water inputs,. Some recent studies have additionally argued that advected 'ground-air' is not only an important constituent of cave air, but also an important source of carbon in speleothems. This claim is critically evaluated here using 14C activity measurements from actively growing zero-age soda-straw stalactites from the small inner chamber of the cave where the CO2 monitoring was carried out. Surprisingly, soda-straws collected from within a few metres of each other in this inner chamber exhibit quite different 14C activities (93-101 pMC), and are not identical as might be expected if complete carbon isotope exchange had occurred between the dissolved inorganic carbon and the cave atmosphere. The reasons for this will be discussed, drawing on the results of published kinetic models for degassing and isotope exchange. Overall, it is concluded that while the CO2 budget of the air in Ballynamintra cave is dominated by directly advected soil air, water transported dissolved inorganic carbon (DIC) likely remains an important carbon source for its speleothems. Baldini, J.U.L., Baldini, L.M., McDermott, F. and Clipson, N. (2006) Carbon dioxide sources, sinks, and spatial variability in shallow temperate zone caves: evidence from Ballynamintra Cave, Ireland. Journal of Cave and Karst Studies, 68, 4-11.
NASA Technical Reports Server (NTRS)
Chinitz, W.; Foy, E.; Rowan, G.; Goldstein, D.
1982-01-01
The use of probability theory to determine the effects of turbulent fluctuations on reaction rates in turbulent combustion systems is briefly reviewed. Results are presented for the effect of species fluctuations in particular. It is found that turbulent fluctuations of species act to reduce the reaction rates, in contrast with the temperature fluctuations previously determined to increase Arrhenius reaction rate constants. For the temperature fluctuations, a criterion is set forth for determining if, in a given region of a turbulent flow field, the temperature can be expected to exhibit ramp like fluctuations. Using the above results, along with results previously obtained, a model is described for testing the effects of turbulent fluctuations of temperature and species on reaction rates in computer programs dealing with turbulent reacting flows. An alternative model which employs three variable probability density functions (temperature and two species) and is currently being formulated is discussed as well.
Modification of the degree-day formula for diurnal meltwater generation and refreezing
NASA Astrophysics Data System (ADS)
Žaknić-Ćatović, Ana; Howard, Ken W. F.; Ćatović, Zlatko
2018-02-01
The standard degree-day, temperature-index approach to calculating snowmelt generation and refreezing (the SDD method) is convenient and popularly used but seriously miscalculates the volumes of water that change phase on days when temperatures fluctuate either side of the freezing point. Additionally, the SDD method does not provide any estimate of the duration of daily melting and refreezing events. A modified version of the standard formula is introduced (the MDD method) that overcomes such problems by removing dependence on a single temperature index (the average daily temperature estimated over a 24-h period beginning at midnight) and instead transfers reliance onto daily air temperature extremes (maximum and minimum temperatures) at known times of occurrence. In this way, the modified formula retains the simplicity of the standard approach while targeting those segments of the diurnal air temperature curve that directly relate to periods of melting and freezing. Newly introduced temperature and time degree-day parameters allow the duration of melting and refreezing events to be estimated. The MDD method was evaluated for two sites in the snow-belt region of Canada where the availability of hourly records of daily temperature allowed the required MDD input parameters to be calculated reliably and thus used for comparative purposes. During testing, the MDD input parameters were obtained from daily temperature extremes and their times of occurrence, using two alternative approaches to synthetic air temperature curve generation, one linear, the other trigonometric. Very good agreement was obtained in both cases and confirms the value of the MDD approach. However, there is no significant benefit to be gained by using air temperature approximating functions more complicated than the linear method for supplementing the missing continuous air temperature measurements. Finally, the MDD approach is not seen as a replacement for the regular SDD method, so much as tool that can be applied when the SDD methodology is likely to become unreliable. This is best achieved by using a hybrid SDD-MDD algorithm that invokes the MDD approach only when the necessary conditions arise.
NASA Astrophysics Data System (ADS)
Majumdar, Arun K.; Land, Phillip; Siegenthaler, John
2014-10-01
New results for characterizing laser intensity fluctuation statistics of a laser beam transmitted through a random air-water interface relevant to underwater communications are presented. A laboratory watertank experiment is described to investigate the beam wandering effects of the transmitted beam. Preliminary results from the experiment provide information about histograms of the probability density functions of intensity fluctuations for different wind speeds measured by a CMOS camera for the transmitted beam. Angular displacements of the centroids of the fluctuating laser beam generates the beam wander effects. This research develops a probabilistic model for optical propagation at the random air-water interface for a transmission case under different wind speed conditions. Preliminary results for bit-error-rate (BER) estimates as a function of fade margin for an on-off keying (OOK) optical communication through the air-water interface are presented for a communication system where a random air-water interface is a part of the communication channel.
NASA Astrophysics Data System (ADS)
Griffiths, J.; Riley, M. J. W.; Borman, A.; Dowding, C.; Kirk, A.; Bickerton, R.
2015-03-01
Laser induced spark ignition offers the potential for greater reliability and consistency in ignition of lean air/fuel mixtures. This increased reliability is essential for the application of gas turbines as primary or secondary reserve energy sources in smart grid systems, enabling the integration of renewable energy sources whose output is prone to fluctuation over time. This work details a study into the effect of flow velocity and temperature on minimum ignition energies in laser-induced spark ignition in an atmospheric combustion test rig, representative of a sub 15 MW industrial gas turbine (Siemens Industrial Turbomachinery Ltd., Lincoln, UK). Determination of minimum ignition energies required for a range of temperatures and flow velocities is essential for establishing an operating window in which laser-induced spark ignition can operate under realistic, engine-like start conditions. Ignition of a natural gas and air mixture at atmospheric pressure was conducted using a laser ignition system utilizing a Q-switched Nd:YAG laser source operating at 532 nm wavelength and 4 ns pulse length. Analysis of the influence of flow velocity and temperature on ignition characteristics is presented in terms of required photon flux density, a useful parameter to consider during the development laser ignition systems.
Ullah, Mohammad Shaef; Lim, Un Taek
2015-06-01
Frankliniella occidentalis (Pergande) and Frankliniella intonsa (Trybom) are sympatric pests of many greenhouse and field crops in Korea. We compared the influence of constant (27.3°C) and fluctuating temperatures (23.8-31.5°C, with an average of 27.3°C) on the life table characteristics of F. occidentalis and F. intonsa held at a photoperiod of 16:8 (L:D) h and 45±5% relative humidity. The development times of both F. occidentalis and F. intonsa were significantly affected by temperature fluctuation, species, and sex. The development time from egg to adult of F. intonsa was shorter than that for F. occidentalis at both constant and fluctuating temperatures. Survival of immature life stages was higher under fluctuating than constant temperature for both thrips species. The total and daily production of first instars was higher in F. intonsa (90.4 and 4.2 at constant temperature, and 95.7 and 3.9 at fluctuating temperatures) than that of F. occidentalis (58.7 and 3.3 at constant temperature, and 60.5 and 3.1 at fluctuating temperatures) under both constant and fluctuating temperatures. The percentage of female offspring was greater in F. intonsa (72.1-75.7%) than in F. occidentalis (57.4-58.7%) under both temperature regimes. The intrinsic rate of natural increase (rm) was higher at constant temperature than at fluctuating temperature for both thrips species. F. intonsa had a higher rm value (0.2146 and 0.2004) than did F. occidentalis (0.1808 and 0.1733), under both constant and fluctuating temperatures, respectively. The biological response of F. occidentalis and F. intonsa to constant and fluctuating temperature was found to be interspecifically different, and F. intonsa may have higher pest potential than F. occidentalis based on the life table parameters we are reporting first here. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A study on suppressing transmittance fluctuations for air-gapped Glan-type polarizing prisms
NASA Astrophysics Data System (ADS)
Zhang, Chuanfa; Li, Dailin; Zhu, Huafeng; Li, Chuanzhi; Jiao, Zhiyong; Wang, Ning; Xu, Zhaopeng; Wang, Xiumin; Song, Lianke
2018-05-01
Light intensity transmittance is a key parameter for the design of polarizing prisms, while sometimes its experimental curves based on spatial incident angle presents periodical fluctuations. Here, we propose a novel method for completely suppressing these fluctuations via setting a glued error angle in the air gap of Glan-Taylor prisms. The proposal consists of: an accurate formula of the intensity transmittance for Glan-Taylor prisms, a numerical simulation and a contrast experiment of Glan-Taylor prisms for analyzing the causes of the fluctuations, and a simple method for accurately measuring the glued error angle. The result indicates that when the setting glued error angle is larger than the critical angle for a certain polarizing prism, the fluctuations can be completely suppressed, and a smooth intensity transmittance curve can be obtained. Besides, the critical angle in the air gap for suppressing the fluctuations is decreased with the increase of beam spot size. This method has the advantage of having less demand for the prism position in optical systems.
Insects in fluctuating thermal environments.
Colinet, Hervé; Sinclair, Brent J; Vernon, Philippe; Renault, David
2015-01-07
All climate change scenarios predict an increase in both global temperature means and the magnitude of seasonal and diel temperature variation. The nonlinear relationship between temperature and biological processes means that fluctuating temperatures lead to physiological, life history, and ecological consequences for ectothermic insects that diverge from those predicted from constant temperatures. Fluctuating temperatures that remain within permissive temperature ranges generally improve performance. By contrast, those which extend to stressful temperatures may have either positive impacts, allowing repair of damage accrued during exposure to thermal extremes, or negative impacts from cumulative damage during successive exposures. We discuss the mechanisms underlying these differing effects. Fluctuating temperatures could be used to enhance or weaken insects in applied rearing programs, and any prediction of insect performance in the field-including models of climate change or population performance-must account for the effect of fluctuating temperatures.
Air Temperature Distribution Measurement Using Asynchronous-Type Sound Probe
NASA Astrophysics Data System (ADS)
Katano, Yosuke; Wakatsuki, Naoto; Mizutani, Koichi
2009-07-01
In conventional temperature measurement using a sound probe, the operation beginnings of two acoustic sensors must be completely synchronized to measure time of flight (TOF), tf, because the precision of synchronization determines TOF measurement accuracy. A wireless local area network (LAN) is convenient for constructing a sensing grid; however, it causes a fluctuation in the delay of millisecond order. Therefore, it cannot provide sufficient precision for synchronizing acoustic sensors. In previous studies, synchronization was achieved by a trigger line using a coaxial cable; however, the cable reduces the flexibility of a wireless sensing grid especially in larger-scale measurement. In this study, an asynchronous-type sound probe is devised to compensate for the effect of the delay of millisecond order caused by the network. The validity of the probe was examined, and the air temperature distribution was measured using this means. A matrix method is employed to obtain the distribution. Similar results were observed using both asynchronous-type sound probes and thermocouples. This shows the validity of the use of a sensing grid with an asynchronous-type sound probe for temperature distribution measurement even if the trigger line is omitted.
Kaiser, Elias; Kromdijk, Johannes; Harbinson, Jeremy; Heuvelink, Ep; Marcelis, Leo F M
2017-01-01
Plants depend on photosynthesis for growth. In nature, factors such as temperature, humidity, CO 2 partial pressure, and spectrum and intensity of irradiance often fluctuate. Whereas irradiance intensity is most influential and has been studied in detail, understanding of interactions with other factors is lacking. We tested how photosynthetic induction after dark-light transitions was affected by CO 2 partial pressure (20, 40, 80 Pa), leaf temperatures (15·5, 22·8, 30·5 °C), leaf-to-air vapour pressure deficits (VPD leaf-air ; 0·5, 0·8, 1·6, 2·3 kPa) and blue irradiance (0-20 %) in tomato leaves (Solanum lycopersicum). Rates of photosynthetic induction strongly increased with CO 2 partial pressure, due to increased apparent Rubisco activation rates and reduced diffusional limitations. High leaf temperature produced slightly higher induction rates, and increased intrinsic water use efficiency and diffusional limitation. High VPD leaf-air slowed down induction rates and apparent Rubisco activation and (at 2·3 kPa) induced damped stomatal oscillations. Blue irradiance had no effect. Slower apparent Rubisco activation in elevated VPD leaf-air may be explained by low leaf internal CO 2 partial pressure at the beginning of induction. The environmental factors CO 2 partial pressure, temperature and VPD leaf-air had significant impacts on rates of photosynthetic induction, as well as on underlying diffusional, carboxylation and electron transport processes. Furthermore, maximizing Rubisco activation rates would increase photosynthesis by at most 6-8 % in ambient CO 2 partial pressure (across temperatures and humidities), while maximizing rates of stomatal opening would increase photosynthesis by at most 1-3 %. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Investigation of the characteristics and stability of air-staged flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballester, J.; Sanz, A.; Gonzalez, M.A.
The influence of burner aerodynamics on the characteristics of the flame has been studied by means of detailed measurements in a laboratory gas-fired furnace. The distribution of air between two concentric injections and the swirl numbers of both air streams were systematically varied. As a result, a broad range of flames were obtained. The spatial distribution of temperature and species revealed important differences in the configuration of the flame, for which plausible interpretations are proposed. Air-staged flames led to reductions in NO{sub x} emissions down to one third. The fluctuations in pressure and heat release (estimated from OH* chemiluminescence) weremore » characterised in detail. Their standard deviations varied widely with the burner settings, reaching the highest values in some regimes close to flame extinction and also for high staging ratios. Analysis in the frequency domain revealed some characteristic peaks in the pressure spectra, some of them associated with resonant modes of the combustion chamber and the burner. Cross-correlations between the pressure and chemiluminescence signals indicated the onset of thermo-acoustic instabilities for highly air-staged flames, but not for non-staged regimes. This is attributed to the partial premixing achieved before the second combustion stage. The results confirm that the Rayleigh index is related to the magnitude of the fluctuations but, for the cases explored, the threshold associated with the onset of thermo-acoustic coupling might be different depending on the degree of premixing. (author)« less
NASA Astrophysics Data System (ADS)
Jiang, Lei; Sun, You-Fang; Zhang, Yu-Yang; Zhou, Guo-Wei; Li, Xiu-Bao; McCook, Laurence J.; Lian, Jian-Sheng; Lei, Xin-Ming; Liu, Sheng; Cai, Lin; Qian, Pei-Yuan; Huang, Hui
2017-12-01
Diurnal fluctuations in seawater temperature are ubiquitous on tropical reef flats. However, the effects of such dynamic temperature variations on the early stages of corals are poorly understood. In this study, we investigated the responses of larvae and new recruits of Pocillopora damicornis to two constant temperature treatments (29 and 31 °C) and two diurnally fluctuating treatments (28-31 and 30-33 °C with daily means of 29 and 31 °C, respectively) simulating the 3 °C diel oscillations at 3 m depth on the Luhuitou fringing reef (Sanya, China). Results showed that the thermal stress on settlement at 31 °C was almost negated by the fluctuating treatment. Further, neither elevated temperature nor temperature fluctuations caused bleaching responses in recruits, while the maximum excitation pressure over photosystem II (PSII) was reduced under fluctuating temperatures. Although early growth and development were highly stimulated at 31 °C, oscillations of 3 °C had little effects on budding and lateral growth at either mean temperature. Nevertheless, daytime encounters with the maximum temperature of 33 °C in fluctuating 31 °C elicited a notable reduction in calcification compared to constant 31 °C. These results underscore the complexity of the effects caused by diel temperature fluctuations on early stages of corals and suggest that ecologically relevant temperature variability could buffer warming stress on larval settlement and dampen the positive effects of increased temperatures on coral growth.
Feng, Jingjie; Zhou, Congcong; He, Cheng; Li, Yuan; Ye, Xuesong
2017-04-01
In this paper, a miniaturized wearable core body temperature (CBT) monitoring system based on the dual heat flux (DHF) principle was developed. By interspersing calcium carbonate powder in PolyDimethylsiloxane (PDMS), a reformative heat transfer medium was produced to reduce the thermal equilibrium time. Besides, a least mean square (LMS) algorithm based active noise cancellation (ANC) method was adopted to diminish the impact of ambient temperature fluctuations. Theoretical analyses, finite element simulation, experiments on a hot plate and human volunteers were performed. The results showed that the proposed system had the advantages of small size, reduced initial time (~23.5 min), and good immunity to fluctuations of the air temperature. For the range of 37-41 °C on the hot plate, the error compared with a Fluke high accuracy thermometer was 0.08 ± 0.20 °C. In the human experiments, the measured temperature in the rest trial (34 subjects) had a difference of 0.13 ± 0.22 °C compared with sublingual temperature, while a significant increase of 1.36 ± 0.44 °C from rest to jogging was found in the exercise trial (30 subjects). This system has the potential for reliable continuous CBT measurement in rest and can reflect CBT variations during exercise.
Seasonal patterns of body temperature and microhabitat selection in a lacertid lizard
NASA Astrophysics Data System (ADS)
Ortega, Zaida; Pérez-Mellado, Valentín
2016-11-01
In temperate areas, seasonal changes entail a source of environmental variation potentially important for organisms. Temperate ectotherms may be adapted to the seasonal fluctuations in environmental traits. For lizards, behavioural adaptations regarding microhabitat selection could arise to improve thermoregulation during the different seasons. However, little is still known about which traits influence microhabitat selection of lizards and their adaptation to seasonality. Here we used Podarcis guadarramae to study the role of potential intrinsic (body size, sex, age) and environmental traits (air and substrate temperatures, wind speed, and sunlight) in the seasonal changes of body temperatures and microhabitat selection of lizards. We measured body temperatures of lizards in the same habitat during the four seasons and compared the climatic variables of the microhabitats selected by lizards with the mean climatic conditions available in their habitat. Body temperatures were similar for adult males, adult females, and juveniles within each season, being significantly higher in summer than in the other seasons, and in spring than in winter. The same pattern was found regarding substrate and air temperatures of the selected microhabitats. Wind speed and air temperature did not affect body temperatures, while body length was marginally significant and substrate temperatures and season did affect the body temperatures of lizards. Our results during the whole year support the idea that the seasonality could be the most important factor affecting body temperatures of these temperate species. Regarding microhabitat selection, environmental constraints, as environmental temperatures and wind speed, affected the seasonal changes on behavioural thermoregulation of lizards. This effect was similar between sexes and age classes, and was independent of body size. In addition, importance of sunlight exposure of the selected microhabitats (full sun, filtered sun, or shade) also changed between seasons. Hence, environmental constraints were the main forces driving seasonal changes in microhabitat selection.
NASA Astrophysics Data System (ADS)
Painter, Thomas H.; Skiles, S. McKenzie; Deems, Jeffrey S.; Brandt, W. Tyler; Dozier, Jeff
2018-01-01
Common practice and conventional wisdom hold that fluctuations in air temperature control interannual variability in snowmelt and subsequent river runoff. However, recent observations in the Upper Colorado River Basin confirm that net solar radiation and by extension radiative forcing by dust deposited on snow cover exerts the primary forcing on snowmelt. We show that the variation in the shape of the rising limb of the annual hydrograph is controlled by variability in dust radiative forcing and surprisingly is independent of variations in winter and spring air temperatures. These observations suggest that hydroclimatic modeling must be improved to account for aerosol forcings of the water cycle. Anthropogenic climate change will likely reduce total snow accumulations and cause snowmelt runoff to occur earlier. However, dust radiative forcing of snowmelt is likely consuming important adaptive capacity that would allow human and natural systems to be more resilient to changing hydroclimatic conditions.
Suppression of Air Refractive Index Variations in High-Resolution Interferometry
Lazar, Josef; Číp, Ondřej; Čížek, Martin; Hrabina, Jan; Buchta, Zdeněk
2011-01-01
The influence of the refractive index of air has proven to be a major problem on the road to improvement of the uncertainty in interferometric displacement measurements. We propose an approach with two counter-measuring interferometers acting as a combination of tracking refractometer and a displacement interferometer referencing the wavelength of the laser source to a mechanical standard made of a material with ultra-low thermal expansion. This technique combines length measurement within a specified range with measurement of the refractive index fluctuations in one axis. Errors caused by different position of the interferometer laser beam and air sensors are thus eliminated. The method has been experimentally tested in comparison with the indirect measurement of the refractive index of air in a thermal controlled environment. Over a 1 K temperature range an agreement on the level of 5 × 10−8 has been achieved. PMID:22164036
Thermodynamic characteristics of a novel wind-solar-liquid air energy storage system
NASA Astrophysics Data System (ADS)
Ji, W.; Zhou, Y.; Sun, Y.; Zhang, W.; Pan, C. Z.; Wang, J. J.
2017-12-01
Due to the nature of fluctuation and intermittency, the utilization of wind and solar power will bring a huge impact to the power grid management. Therefore a novel hybrid wind-solar-liquid air energy storage (WS-LAES) system was proposed. In this system, wind and solar power are stored in the form of liquid air by cryogenic liquefaction technology and thermal energy by solar thermal collector, respectively. Owing to the high density of liquid air, the system has a large storage capacity and no geographic constraints. The WS-LAES system can store unstable wind and solar power for a stable output of electric energy and hot water. Moreover, a thermodynamic analysis was carried out to investigate the best system performance. The result shows that the increases of compressor adiabatic efficiency, turbine inlet pressure and inlet temperature all have a beneficial effect.
Heat and mass transfer of liquid nitrogen in coal porous media
NASA Astrophysics Data System (ADS)
Lang, Lu; Chengyun, Xin; Xinyu, Liu
2018-04-01
Liquid nitrogen has been working as an important medium in fire extinguishing and prevention, due to its efficiency in oxygen exclusion and heat removal. Such a technique is especially crucial for coal industry in China. We built a tunnel model with a temperature monitor system (with 36 thermocouples installed) to experimentally study heat and mass transfer of liquid nitrogen in non-homogeneous coal porous media (CPM), and expected to optimize parameters of liquid nitrogen injection in engineering applications. Results indicate that injection location and amount of liquid nitrogen, together with air leakage, significantly affect temperature distribution in CPM, and non-equilibrium heat inside and outside of coal particles. The injection position of liquid nitrogen determines locations of the lowest CPM temperature and liquid nitrogen residual. In the deeper coal bed, coal particles take longer time to reach thermal equilibrium between their surface and inside. Air leakage accelerates temperature increase at the bottom of the coal bed, which is a major reason leading to fire prevention inefficiency. Measurement fluctuation of CPM temperature may be caused by incomplete contact of coal particles with liquid nitrogen flowing in the coal bed. Moreover, the secondary temperature drop (STD) happens and grows with the more injection of liquid nitrogen, and the STD phenomenon is explained through temperature distributions at different locations.
Flow Disturbance Characterization Measurements in the National Transonic Facility
NASA Technical Reports Server (NTRS)
King, Rudolph A.; Andino, Marlyn Y.; Melton, Latunia; Eppink, Jenna; Kegerise, Michael A.; Tsoi, Andrew
2012-01-01
Recent flow measurements have been acquired in the National Transonic Facility (NTF) to assess the unsteady flow environment in the test section. The primary purpose of the test is to determine the feasibility of the NTF to conduct laminar-flow-control testing and boundary-layer transition sensitive testing. The NTF can operate in two modes, warm (air) and cold/cryogenic (nitrogen) test conditions for testing full and semispan scaled models. The warm-air mode enables low to moderately high Reynolds numbers through the use of high tunnel pressure, and the nitrogen mode enables high Reynolds numbers up to flight conditions, depending on aircraft type and size, utilizing high tunnel pressure and cryogenic temperatures. NASA's Environmentally Responsible Aviation (ERA) project is interested in demonstrating different laminar-flow technologies at flight-relevant operating conditions throughout the transonic Mach number range and the NTF is well suited for the initial ground-based demonstrations. Roll polar data at selected test conditions were obtained to look at the uniformity of the flow disturbance field in the test section. Data acquired from the rake probes included mean total temperatures, mean and fluctuating static/total pressures, and mean and fluctuating hot-wire measurements. . Based on the current measurements and previous data, an assessment was made that the NTF is a suitable facility for ground-based demonstrations of laminar-flow technologies at flight-relevant conditions in the cryogenic mode.
Manning, Andrew H.; Caine, Jonathan S.
2007-01-01
Bedrock groundwater in alpine watersheds is poorly understood, mainly because of a scarcity of wells in alpine settings. Groundwater noble gas, age, and temperature data were collected from springs and wells with depths of 3–342 m in Handcart Gulch, an alpine watershed in Colorado. Temperature profiles indicate active groundwater circulation to a maximum depth (aquifer thickness) of about 200 m, or about 150 m below the water table. Dissolved noble gas data show unusually high excess air concentrations (>0.02 cm3 STP/g, ΔNe > 170%) in the bedrock, consistent with unusually large seasonal water table fluctuations (up to 50 m) observed in the upper part of the watershed. Apparent 3H/3He ages are positively correlated with sample depth and excess air concentrations. Integrated samples were collected from artesian bedrock wells near the trunk stream and are assumed to approximate flow‐weighted samples reflecting bedrock aquifer mean residence times. Exponential mean ages for these integrated samples are remarkably consistent along the stream, four of five being from 8 to 11 years. The tracer data in combination with other hydrologic and geologic data support a relatively simple conceptual model of groundwater flow in the watershed in which (1) permeability is primarily a function of depth; (2) water table fluctuations increase with distance from the stream; and (3) recharge, aquifer thickness, and porosity are relatively uniform throughout the watershed in spite of the geological complexity of the Proterozoic crystalline rocks that underlie it.
Blanchet, Guillaume; Guillet, Sébastien; Calliari, Baptiste; Corona, Christophe; Edvardsson, Johannes; Stoffel, Markus; Bragazza, Luca
2017-01-01
Ring width (TRW) chronologies from Siberian (Pinus sibirica) and Scots (Pinus sylvestris) pine trees were sampled at Mukhrino - a large mire complex in central-western Siberia - to evaluate the impacts of hydroclimatic variability on tree growth over the last three centuries. For this purpose, we compared climate-growth correlation profiles from trees growing on peat soils with those growing on adjacent mineral soils. Tree growth at both peat and mineral soils was positively correlated to air temperature during the vegetation period. This finding can be explained by (i) the positive influence of temperature on plant physiological processes (i.e. growth control) during the growing season and (ii) the indirect impact of air temperatures on water table fluctuations. We observe also a strong link between TRW and the winter Palmer Drought Severity Index (PDSI), especially in Siberian pine, reflecting the isolating effect of snow and limited freezing damage in roots. Significant negative relations were, by contrast, observed between bog TRW chronologies and hydroclimatic indices during spring and summer; they are considered an expression of the negative impacts of high water levels and moist peat soils on root development. Some unusually old bog pines - exhibiting >500 growth rings - apparently colonized the site at the beginning of the Little Ice Age, and therefore seem to confirm that (i) peat conditions may have been drier in Siberia than in most other regions of western Europe during this period. At the same time, the bog trees also point to (ii) their strong dependence on surface conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Treidel, L A; Carter, A W; Bowden, R M
2016-02-01
Our understanding of how oxidative stress resistance phenotypes are affected by the developmental environment is limited. One component of the developmental environment, which is likely central to early life oxidative stress among ectothermic and oviparous species, is that of temperature. We investigated how incubation temperature manipulations affect oxidative damage and total antioxidant capacity (TAC) in red-eared slider turtle (Trachemys scripta elegans) hatchlings. First, to determine whether temperature fluctuations elicit oxidative stress, eggs from clutches were randomly assigned to either a constant (29.5 °C) or daily fluctuating temperature incubation (28.7 ± 3 °C) treatment. Second, to assess the effect of temperature fluctuation frequency on oxidative stress, eggs were incubated in one of three fluctuating incubation regimes: 28.7 ± 3 °C fluctuations every 12 h (hyper), 24 h (normal) or 48 h (hypo). Third, we tested the influence of average incubation temperature by incubating eggs in a daily fluctuating incubation temperature regime with a mean temperature of 26.5 °C (low), 27.1 °C (medium) or 27.7 °C (high). Although the accumulation of oxidative damage in hatchlings was unaffected by any thermal manipulation, TAC was affected by both temperature fluctuation frequency and average incubation temperature. Individuals incubated with a low frequency of temperature fluctuations had reduced TAC, while incubation at a lower average temperature was associated with enhanced TAC. These results indicate that although sufficient to prevent oxidative damage, TAC is influenced by developmental thermal environments, potentially because of temperature-mediated changes in metabolic rate. The observed differences in TAC may have important future consequences for hatchling fitness and overwinter survival. © 2016. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
White, A. E.
2009-11-01
Multi-field fluctuation measurements provide opportunities for rigorous comparison between experiment and nonlinear gyrokinetic turbulence simulations. A unique set of diagnostics on DIII-D allows for simultaneous study of local, long-wavelength (0 < kθρs< 0.5) electron temperature and density fluctuations in the core plasma (0.4 < ρ< 0.8). Previous experiments in L-mode indicate that normalized electron temperature fluctuation levels (40 < f < 400,kHz) increase with radius from ˜0.4% at ρ= 0.5 to ˜2% at ρ=0.8, similar to simultaneously measured density fluctuations. Electron cyclotron heating (ECH) is used to increase Te, which increases electron temperature fluctuation levels and electron heat transport in the experiments. In contrast, long wavelength density fluctuation levels change very little. The different responses are consistent with increased TEM drive relative to ITG-mode drive. A new capability at DIII-D is the measurement of phase angle between electron temperature and density fluctuations using coupled correlation electron cyclotron emission radiometer and reflectometer diagnostics. Linear and nonlinear GYRO runs have been used to design validation experiments that focus on measurements of the phase angle. GYRO shows that if Te and ∇Te increase 50% in a beam-heated L-mode plasma (ρ=0.5), then the phase angle between electron temperature and density fluctuations decreases 30%-50% and electron temperature fluctuation levels increase a factor of two more than density fluctuations. Comparisons between these predictions and experimental results will be presented.
Inelastic Light Scattering Measurements of a Pressure-Induced Quantum Liquid in KCuF3
NASA Astrophysics Data System (ADS)
Yuan, S.; Kim, M.; Seeley, J. T.; Lee, J. C. T.; Lal, S.; Abbamonte, P.; Cooper, S. L.
2012-11-01
Pressure-dependent, low-temperature inelastic light (Raman) scattering measurements of KCuF3 show that applied pressure above P*˜7kbar suppresses a previously observed structural phase transition temperature to zero temperature in KCuF3, resulting in the development of a fluctuational (quasielastic) response near T˜0K. This pressure-induced fluctuational response—which we associate with slow fluctuations of the CuF6 octahedral orientation—is temperature independent and exhibits a characteristic fluctuation rate that is much larger than the temperature, consistent with quantum fluctuations of the CuF6 octahedra. A model of pseudospin-phonon coupling provides a qualitative description of both the temperature- and pressure-dependent evolution of the Raman spectra of KCuF3.
Turbulent Mixing at the Edge of a Cloud
NASA Astrophysics Data System (ADS)
Shaw, Raymond; Beals, Matthew; Fugal, Jacob; Kumar, Bipin; Lu, Jiang; Schumacher, Joerg; Stith, Jeffrey
2013-11-01
Numerical and field experiments have been brought to bear on the question of how atmospheric clouds respond when they experience turbulent mixing with their environment. Simply put, we ask when a cloud is diluted, do all droplets evaporate uniformly (homogeneous mixing) or does a subset of droplets evaporate completely, leaving the remaining droplets unaffected (inhomogeneous mixing)? First, the entrainment of clear air and its subsequent mixing with a filament of cloudy air is studied in DNS that combine the Eulerian description of the turbulent velocity, temperature and vapor fields with a Lagrangian cloud droplet ensemble. The simulations provide guidance on the proper definition of the thermodynamic response time for the Damkoehler number, and demonstrate the transition from inhomogeneous to homogeneous mixing as mixing progresses within the inertial subrange. Second, an airborne digital holographic instrument (Holodec) shows that cloud edges are inhomogeneous at the centimeter scales. In local cloud volumes the droplet size distribution fluctuates strongly in number density but with a nearly unchanging mean droplet diameter, until the fluctuations finally cascade to the centimeter scale, when the droplet diameter begins to respond.
El-Mashad, Hamed M; Zeeman, Grietje; van Loon, Wilko K P; Bot, Gerard P A; Lettinga, Gatze
2004-11-01
The influence of temperature, 50 and 60 degrees C, at hydraulic retention times (HRTs) of 20 and 10 days, on the performance of anaerobic digestion of cow manure has been investigated in completely stirred tank reactors (CSTRs). Furthermore, the effect of both daily downward and daily upward temperature fluctuations has been studied. In the daily downward temperature fluctuation regime the temperatures of each reactor was reduced by 10 degrees C for 10 h while in the daily upward fluctuation regime the temperature of each reactor was increased 10 degrees C for 5 h. The results show that the methane production rate at 60 degrees C is lower than that at 50 degrees C at all experimental conditions of imposed HRT except when downward temperature fluctuations were applied at an HRT of 10 days. It also was found that the free ammonia concentration not only affects the acetate-utilising bacteria but also the hydrolysis and acidification process. The upward temperature fluctuation affects the maximum specific methanogenesis activity more severely as compared to imposed downward temperature fluctuations. The results clearly reveal the possibility of using available solar energy at daytime to heat up the reactor(s) without the need of heat storage during nights, especially at an operational temperature of 50 degrees C and at a 20 days HRT, and without the jeopardising of the overheating.
Fluctuation spectroscopy: From Rayleigh-Jeans waves to Abrikosov vortex clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varlamov, A. A.; Galda, A.; Glatz, A.
Superconducting (SC) fluctuations, discovered in the late 1960s, have constituted an important research area in superconductivity as they are manifest in a variety of phenomena. Indeed, the underlying physics of SC fluctuations makes it possible to elucidate the fundamental properties of the superconducting state. The interest in SC fluctuation phenomena was further enhanced with the discovery of cuprate high-temperature superconductors (HTSs). In these materials, superconducting fluctuations appear over a wide range of temperatures due to the superconductors extremely short coherence lengths and low effective dimensionality of the electron systems. These strong fluctuations lead to anomalous properties of the normal statemore » in some HTS materials. Within the framework of the phenomenological Ginzburg-Landau theory, and more extensively in the diagrammatic microscopic approach based on BCS theory, SC fluctuations as well as other quantum contributions (weak localization, etc.) enabled a new way to investigate and characterize disordered electron systems, granular metals, Josephson structures, artificial superlattices, and others. The characteristic feature of SC fluctuations is its strong dependence on temperature and magnetic field in the vicinity of the superconducting phase transition. This dependence allows the separation of fluctuation effects from other contributions and provides information about the microscopic parameters of a material, in particular, the critical temperature and the zero-temperature critical magnetic field. As such, SC fluctuations are very sensitive to the relaxation processes that break phase coherence and can be used as a versatile characterization instrument for SCs: Fluctuation spectroscopy has emerged as a powerful tool for studying the properties of superconducting systems on a quantitative level. Here the physics of SC fluctuations is reviewed, commencing from a qualitative description of thermodynamic fluctuations close to the critical temperature and quantum fluctuations at zero temperature in the vicinity of the second critical field. The analysis of the latter allows us to present fluctuation formation as a fragmentation of the Abrikosov lattice. Finally, this review highlights a series of experimental findings followed by microscopic description and numerical analysis of the effects of fluctuations on numerous properties of superconductors in the entire phase diagram and beyond the superconducting phase.« less
Fluctuation spectroscopy: From Rayleigh-Jeans waves to Abrikosov vortex clusters
Varlamov, A. A.; Galda, A.; Glatz, A.
2018-03-27
Superconducting (SC) fluctuations, discovered in the late 1960s, have constituted an important research area in superconductivity as they are manifest in a variety of phenomena. Indeed, the underlying physics of SC fluctuations makes it possible to elucidate the fundamental properties of the superconducting state. The interest in SC fluctuation phenomena was further enhanced with the discovery of cuprate high-temperature superconductors (HTSs). In these materials, superconducting fluctuations appear over a wide range of temperatures due to the superconductors extremely short coherence lengths and low effective dimensionality of the electron systems. These strong fluctuations lead to anomalous properties of the normal statemore » in some HTS materials. Within the framework of the phenomenological Ginzburg-Landau theory, and more extensively in the diagrammatic microscopic approach based on BCS theory, SC fluctuations as well as other quantum contributions (weak localization, etc.) enabled a new way to investigate and characterize disordered electron systems, granular metals, Josephson structures, artificial superlattices, and others. The characteristic feature of SC fluctuations is its strong dependence on temperature and magnetic field in the vicinity of the superconducting phase transition. This dependence allows the separation of fluctuation effects from other contributions and provides information about the microscopic parameters of a material, in particular, the critical temperature and the zero-temperature critical magnetic field. As such, SC fluctuations are very sensitive to the relaxation processes that break phase coherence and can be used as a versatile characterization instrument for SCs: Fluctuation spectroscopy has emerged as a powerful tool for studying the properties of superconducting systems on a quantitative level. Here the physics of SC fluctuations is reviewed, commencing from a qualitative description of thermodynamic fluctuations close to the critical temperature and quantum fluctuations at zero temperature in the vicinity of the second critical field. The analysis of the latter allows us to present fluctuation formation as a fragmentation of the Abrikosov lattice. Finally, this review highlights a series of experimental findings followed by microscopic description and numerical analysis of the effects of fluctuations on numerous properties of superconductors in the entire phase diagram and beyond the superconducting phase.« less
Fluctuation spectroscopy: From Rayleigh-Jeans waves to Abrikosov vortex clusters
NASA Astrophysics Data System (ADS)
Varlamov, A. A.; Galda, A.; Glatz, A.
2018-01-01
Superconducting (SC) fluctuations, discovered in the late 1960s, have constituted an important research area in superconductivity as they are manifest in a variety of phenomena. Indeed, the underlying physics of SC fluctuations makes it possible to elucidate the fundamental properties of the superconducting state. The interest in SC fluctuation phenomena was further enhanced with the discovery of cuprate high-temperature superconductors (HTSs). In these materials, superconducting fluctuations appear over a wide range of temperatures due to the superconductors extremely short coherence lengths and low effective dimensionality of the electron systems. These strong fluctuations lead to anomalous properties of the normal state in some HTS materials. Within the framework of the phenomenological Ginzburg-Landau theory, and more extensively in the diagrammatic microscopic approach based on BCS theory, SC fluctuations as well as other quantum contributions (weak localization, etc.) enabled a new way to investigate and characterize disordered electron systems, granular metals, Josephson structures, artificial superlattices, and others. The characteristic feature of SC fluctuations is its strong dependence on temperature and magnetic field in the vicinity of the superconducting phase transition. This dependence allows the separation of fluctuation effects from other contributions and provides information about the microscopic parameters of a material, in particular, the critical temperature and the zero-temperature critical magnetic field. As such, SC fluctuations are very sensitive to the relaxation processes that break phase coherence and can be used as a versatile characterization instrument for SCs: Fluctuation spectroscopy has emerged as a powerful tool for studying the properties of superconducting systems on a quantitative level. Here the physics of SC fluctuations is reviewed, commencing from a qualitative description of thermodynamic fluctuations close to the critical temperature and quantum fluctuations at zero temperature in the vicinity of the second critical field. The analysis of the latter allows us to present fluctuation formation as a fragmentation of the Abrikosov lattice. This review highlights a series of experimental findings followed by microscopic description and numerical analysis of the effects of fluctuations on numerous properties of superconductors in the entire phase diagram and beyond the superconducting phase.
NASA Astrophysics Data System (ADS)
Briggs, M. A.; Johnson, Z. C.; Snyder, C.; Hitt, N. P.; White, E. A.; Lane, J. W., Jr.; Nelms, D. L.
2016-12-01
Conventional wisdom indicates that while short-term (e.g. diurnal) thermal variance in streams may be attenuated by groundwater seepage, annual temperature swings will essentially track the local air temperature signal. However, the temperature of shallow (less than 5 m depth) groundwater from seepage zones may not be constant and near the local mean air temperature, but instead will fluctuate seasonally, and show a pronounced phase lag from the annual air signal. The degree of phase lag will be dependent on the rate of vertical fluid and heat exchange through shallow aquifer sediments. Gaining headwater streams might be expected to adopt similar phase lags to local seepage zones. We explore these dynamics through 9 mountain watersheds in Shenandoah National Park, VA, USA that harbor critical habitat for cold-water brook trout (Salvelinus fontinalis). Daily paired air and stream water temperature records were collected for up to 5 years at several stream locations along each watershed. Sinusoids fit to multiple-year data from more than 100 total locations indicate an average phase shift from air to surface water of approximately 10 d; this may primarily be due to strong conductive exchange with the rocky alluvial aquifer in generally incised and shaded channels. A subset of these transects (n=4) showed phase-lags greater than 20 d, coinciding with locations of particularly pronounced diurnal variance attenuation, indicating strong groundwater influence. Shallow bedrock, evaluated throughout the watersheds with passive seismic methods, restricts downward infiltration of precipitation in the mountain bedrock aquifers. Numerical 1D vertical aquifer models indicate similar phase lags in shallow groundwater at the bedrock contact to that observed in stream seepage zones. Therefore, contrary to conventional wisdom, shaded mountain streams with strong groundwater influence may adopt the annual thermal signature of the adjacent aquifer, shifting the stream thermal maxima timing from that predicted by air temperature. This research illustrates the utility of long-term paired air/stream thermal records, which further refine the evaluation of apparent groundwater influence to aquatic habitat.
Design of Solar Heat Sheet for Air Heaters
NASA Astrophysics Data System (ADS)
Priya, S. Shanmuga; Premalatha, M.; Thirunavukkarasu, I.
2011-12-01
The technique of harnessing solar energy for drying offers significant potential to dry agricultural products such as food grains, fruits, vegetables and medicinal plants, thereby eliminating many of the problems experienced with open-sun drying and industrial drying, besides saving huge quantities of fossil fuels. A great deal of experimental work over the last few decades has already demonstrated that agricultural products can be satisfactorily dehydrated using solar energy. Various designs of small scale solar dryers have been developed in the recent past, mainly for drying agricultural products. Major problems experienced with solar dryers are their non-reliability as their operation largely depends on local weather conditions. While back-up heaters and hybrid dryers partly solved this issue, difficulties in controlling the drying air temperature and flow rate remains a problem, and affects the quality of the dried product. This study is aimed at eliminating the fluctuations in the quality of hot air supplied by simple solar air heaters used for drying fruits, vegetables and other applications. It is an attempt to analyse the applicability of the combination of an glazed transpired solar collector (tank), thermal storage and a intake fan(suction fan) to achieve a steady supply of air at a different atmospheric temperature and flow rate for drying fruits and vegetables. Development of an efficient, low-cost and reliable air heating system for drying applications is done.
Climatic variation and runoff from partially-glacierised Himalayan tributary basins of the Ganges.
Collins, David N; Davenport, Joshua L; Stoffel, Markus
2013-12-01
Climate records for locations across the southern slope of the Himalaya between 77°E and 91°E were selected together with discharge measurements from gauging stations on rivers draining partially-glacierised basins tributary to the Ganges, with a view to assessing impacts of climatic fluctuations on year-to-year variations of runoff during a sustained period of glacier decline. The aims were to describe temporal patterns of variation of glaciologically- and hydrologically-relevant climatic variables and of river flows from basins with differing percentages of ice-cover. Monthly precipitation and air temperature records, starting in the mid-nineteenth century at high elevation sites and minimising data gaps, were selected from stations in the Global Historical Climatology Network and CRUTEM3. Discharge data availability was limited to post 1960 for stations in Nepal and at Khab in the adjacent Sutlej basin. Strengths of climate-runoff relationships were assessed by correlation between overlapping portions of annual data records. Summer monsoon precipitation dominates runoff across the central Himalaya. Flow in tributaries of the Ganges in Nepal fluctuated from year to year but the general background level of flow was usually maintained from the 1960s to 2000s. Flow in the Sutlej, however, declined by 32% between the 1970s and 1990s, reflecting substantially reduced summer precipitation. Over the north-west Ganges-upper Sutlej area, monsoon precipitation declined by 30-40% from the 1960s to 2000s. Mean May-September air temperatures along the southern slope of the central Himalayas dipped from the 1960s, after a long period of slow warming or sustained temperatures, before rising rapidly from the mid-1970s so that in the 2000s summer air temperatures reached those achieved in earlier warmer periods. There are few measurements of runoff from highly-glacierised Himalayan headwater basins; runoff from one of which, Langtang Khola, was less than that of the monsoon-dominated Narayani river, in which basin Langtang is nested. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Deming, J. W.; Ewert, M.; Bowman, J. S.
2013-12-01
The brines of polar winter sea ice are inhabited by significant densities of microbes (Bacteria and Archaea) that experience a range of extreme conditions depending on location in, and age of, the ice. Newly formed sea ice in winter expels microbes (and organic exudates) onto the surface of the ice, where they can be wicked into frost flowers or into freshly deposited snow, resulting in populations at the ice-air and air-snow interfaces characterized by even more extreme conditions. The influence of snow thickness over the ice on the fate of these microbes, and their potential for dispersal or mediation of exchanges with other components of the ice-snow system, is not well known. Examination of in situ temperature data from the Mass Balance Observatory (MBO) offshore of Barrow, Alaska, during the winter of 2011 allowed recognition of an hierarchy of fluctuation regimes in temperature and (by calculation) brine salinity, where the most stable conditions were encountered within the sea ice and the least stable highest in the snow cover, where temperature fluctuations were significantly more energetic as determined by an analysis of power spectral density. A prior analysis of snow thickness near the MBO had already revealed significant ablation events, potentially associated with bacterial mortality, that would have exposed the saline (microbe-rich) snow layer to wind-based dispersal. To better understand the survival of marine bacteria under these dynamic and extreme conditions, we conducted laboratory experiments with Arctic bacterial isolates, subjecting them to simulations of the freezing regimes documented at the MBS. The impact of the fluctuation regime was shown to be species-specific, with the organism of narrower temperature and salinity growth ranges suffering 30-50% mortality (which could be partially relieved by providing protection against salt-shock). This isolate, the psychrophilic marine bacterium Colwellia psychrerythraea strain 34H (temperature range of -12 to 18°C, salinity range of 20 to 50), was originally isolated from Arctic marine sediments. The other isolate, the psychrotolerant and extremely halophilic bacterium Psychrobacter sp. strain 7E (temperature range of -1 [possibly lower] to 25°C, salinity range of 32 to 125), not only survived the most extreme conditions but demonstrated a potentially effective dispersal strategy of cell fragmentation and miniaturization (resulting in higher cell numbers). This extremophile was isolated from upper winter sea-ice brine in the Beaufort Sea. Bacterial survival and dispersal from sea-ice brines in Arctic winter thus appears to depend on the nature of the organisms involved and on the thickness of snow cover, which determines how dynamic and extreme are the exposure conditions. The observed species-specific reactions to extreme and fluctuating conditions may help to explain the different structures of microbial communities inhabiting the range of environments defined by the ice-snow system and provide model organisms and research directions for future work to evaluate potential activity or exchanges with other components of the system.
FACE: Free-Air CO{sub 2} Enrichment for plant research in the field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrey, G.R.
1992-08-01
Research programs concerning the effects of Carbon Dioxide(CO){sub 2} on cotton plants are described. Biological responses studied include foliage response to CO{sub 2} fluctuations; yield of cotton exposed to CO{sub 2} enrichment; responses of photosynthesis and stomatal conductance to elevated CO{sub 2} in field-grown cotton; cotton leaf and boll temperatures; root response to CO{sub 2} enrichment; and evaluations of cotton response to CO{sub 2} enrichment with canopy reflectance observations.
FACE: Free-Air CO[sub 2] Enrichment for plant research in the field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrey, G.R.
1992-08-01
Research programs concerning the effects of Carbon Dioxide(CO)[sub 2] on cotton plants are described. Biological responses studied include foliage response to CO[sub 2] fluctuations; yield of cotton exposed to CO[sub 2] enrichment; responses of photosynthesis and stomatal conductance to elevated CO[sub 2] in field-grown cotton; cotton leaf and boll temperatures; root response to CO[sub 2] enrichment; and evaluations of cotton response to CO[sub 2] enrichment with canopy reflectance observations.
Wu, Man-Chang; Sun, Ke-Wei; Zhang, Yong
2006-01-01
A laboratory-scale experiment was carried out to assess the influence of temperature fluctuation on thermophilic anaerobic digestion of municipal organic solid waste (MOSW). Heating failure was simulated by decreasing temperature suddenly from 55 °C to 20 °C suddenly; 2 h time is needed for temperature decrease and recovery. Under the conditions of 8.0 g/(L·d) and 15 d respectively for MOSW load and retention time, following results were noted: (1) biogas production almost stopped and VFA (volatile fatty acid) accumulated rapidly, accompanied by pH decrease; (2) with low temperature (20 °C) duration of 1, 5, 12 and 24 h, it took 3, 11, 56 and 72 h for the thermophilic anaerobic digestion system to reproduce methane after temperature fluctuation; (3) the longer the low temperature interval lasted, the more the methanogenic bacteria would decay; hydrolysis, acidification and methanogenesis were all influenced by temperature fluctuation; (4) the thermophilic microorganisms were highly resilient to temperature fluctuation. PMID:16502503
Response of Fusarium solani to Fluctuating Temperatures
Keith F. Jensen; Phillip E. Reynolds; Phillip E. Reynolds
1971-01-01
The purpose of this study was to measure growth under a range of constant temperatures and under a series of fluctuating temperature regimes, and to determine if growth in the fluctuating temperiture regimes could be predicted satisfactorily from the growth data collected in the constant temperature experiments. Growth was measured on both agar and liquid culture to...
Impact of fine particulate fluctuation and other variables on Beijing's air quality index.
Chen, Bo; Lu, Shaowei; Li, Shaoning; Wang, Bing
2015-04-01
We analyzed fluctuation in Beijing's air quality over 328 days, based on air quality grades and air quality data from 35 atmospheric monitoring stations. Our results show the air over Beijing is subject to pollution 152 days of the year, or 46.34%. Among all pollutants, fine particulates, solid or liquid, 2.5 μm or less in size (PM2.5), appeared most frequently as the primary pollutant: 249 days, or 76% of the sample year (328 days). Nitrogen dioxide (NO2) and coarse particulates (PM10) cause the least pollution, appearing only 7 and 3 days, or 2 and 1% of the sample year, respectively. In Beijing, fine particulates like PM2.5 vary seasonally: 154.54 ± 18.60 in winter > 145.22 ± 18.61 in spring > 140.16 ± 20.76 in autumn > 122.37 ± 13.42 in summer. Air quality is best in August and worst in December, while various districts in Beijing experience different air quality. To be specific, from south to north and from west to east, air quality tends to improve. Meteorological elements have a constraining effect on air pollutants, which means there is a linear correlation between the air quality index and humidity, rainfall, wind speed, and temperature. Under a typical pollution scenario, the higher the air quality index (AQI) value, the lower the wind speed and the greater the relative humidity; the lower the AQI value, the higher the wind speed and lower the relative humidity. Analysis of influencing factors reveals that the air pollution is mainly particulate matter produced by burning coal, vehicle emissions, volatile oils and gas, fast development of food services, emissions from the surrounding region, and natural dust clouds formed in arid areas to the northwest. Topography affects the distribution of meteorological conditions, in turn varying air quality over the region from one location to another. Human activities also exercise impact on urban air quality with dual functions.
Winkel, Eric S; Elbing, Brian R; Ceccio, Steven L; Perlin, Marc; Dowling, David R
2008-05-01
The hydrodynamic pressure fluctuations that occur on the solid surface beneath a turbulent boundary layer are a common source of flow noise. This paper reports multipoint surface pressure fluctuation measurements in water beneath a high-Reynolds-number turbulent boundary layer with wall injection of air to reduce skin-friction drag. The experiments were conducted in the U.S. Navy's Large Cavitation Channel on a 12.9-m-long, 3.05-m-wide hydrodynamically smooth flat plate at freestream speeds up to 20 ms and downstream-distance-based Reynolds numbers exceeding 200 x 10(6). Air was injected from one of two spanwise slots through flush-mounted porous stainless steel frits (approximately 40 microm mean pore diameter) at volume flow rates from 17.8 to 142.5 l/s per meter span. The two injectors were located 1.32 and 9.78 m from the model's leading edge and spanned the center 87% of the test model. Surface pressure measurements were made with 16 flush-mounted transducers in an "L-shaped" array located 10.7 m from the plate's leading edge. When compared to no-injection conditions, the observed wall-pressure variance was reduced by as much as 87% with air injection. In addition, air injection altered the inferred convection speed of pressure fluctuation sources and the streamwise coherence of pressure fluctuations.
Chua, Y Z; Zorn, R; Holderer, O; Schmelzer, J W P; Schick, C; Donth, E
2017-03-14
The aim of this paper is to decide which of the two possible thermodynamic expressions for the cooperativity length in glass forming liquids is the correct one. In the derivation of these two expressions, the occurrence of temperature fluctuations in the considered nanoscale subsystems is either included or neglected. Consequently, our analysis gives also an answer to the widely discussed problem whether temperature fluctuations have to be generally accounted for in thermodynamics or not. To this end, the characteristic length-scales at equal times and temperatures for propylene glycol were determined independently from AC calorimetry in both the above specified ways and from quasielastic neutron scattering (QENS), and compared. The result shows that the cooperative length determined from QENS coincides most consistently with the cooperativity length determined from AC calorimetry measurements for the case that the effect of temperature fluctuations is incorporated in the description. This conclusion indicates that-accounting for temperature fluctuations-the characteristic length can be derived by thermodynamic considerations from the specific parameters of the liquid at glass transition and that temperature does fluctuate in small systems.
Yang, Weinan; Zou, Shanmei; He, Meilin; Fei, Cong; Luo, Wei; Zheng, Shiyan; Chen, Bo; Wang, Changhai
2016-02-01
It was economically feasible to screen strains adaptive to wide temperature fluctuation for outdoor cultivation without temperature control. In this research, three Chlorella strains from arctic glacier, desert soil and temperate native lake were isolated and identified. The growth, biochemical composition, lipid content and fatty acid composition of each strain cultured under the mode of diurnal temperature fluctuations were compared. All the three Chlorella strains showed desirable abilities of accumulating lipid under diurnal temperature fluctuations and their fatty acid profiles were suitable for biodiesel production, although the growth and biochemical composition were seemed to be region-specific. The highest lipid content was at 51.83±2.49% DW, 42.80±2.97% DW and 36.13±2.27% DW under different temperature fluctuation of 11 °C, 25 °C, 7 °C, respectively. The results indicated that the three Chlorella strains could be promising biodiesel feedstock for outdoor cultivation by the cultural mode of diurnal temperature fluctuations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Merello, Paloma; García-Diego, Fernando-Juan; Zarzo, Manuel
2014-08-01
Chemometrics has been applied successfully since the 1990s for the multivariate statistical control of industrial processes. A new area of interest for these tools is the microclimatic monitoring of cultural heritage. Sensors record climatic parameters over time and statistical data analysis is performed to obtain valuable information for preventive conservation. A case study of an open-air archaeological site is presented here. A set of 26 temperature and relative humidity data-loggers was installed in four rooms of Ariadne's house (Pompeii). If climatic values are recorded versus time at different positions, the resulting data structure is equivalent to records of physical parameters registered at several points of a continuous chemical process. However, there is an important difference in this case: continuous processes are controlled to reach a steady state, whilst open-air sites undergo tremendous fluctuations. Although data from continuous processes are usually column-centred prior to applying principal components analysis, it turned out that another pre-treatment (row-centred data) was more convenient for the interpretation of components and to identify abnormal patterns. The detection of typical trajectories was more straightforward by dividing the whole monitored period into several sub-periods, because the marked climatic fluctuations throughout the year affect the correlation structures. The proposed statistical methodology is of interest for the microclimatic monitoring of cultural heritage, particularly in the case of open-air or semi-confined archaeological sites. Copyright © 2014 Elsevier B.V. All rights reserved.
Beam Energy Scan of Specific Heat Through Temperature Fluctuations in Heavy Ion Collisions
NASA Astrophysics Data System (ADS)
Basu, Sumit; Nandi, Basanta K.; Chatterjee, Sandeep; Chatterjee, Rupa; Nayak, Tapan
2016-01-01
Temperature fluctuations may have two distinct origins, first, quantum fluctuations that are initial state fluctuations, and second, thermodynamical fluctuations. We discuss a method of extracting the thermodynamic temperature from the mean transverse momentum of pions, by using controllable parameters such as centrality of the system, and range of the transverse momenta. Event-by-event fluctuations in global temperature over a large phase space provide the specific heat of the system. We present Beam Energy Scan of specific heat from data, AMPT and HRG model prediction. Experimental results from NA49, STAR, PHENIX, PHOBOS and ALICE are combined to obtain the specific heat as a function of beam energy. These results are compared to calculations from AMPT event generator, HRG model and lattice calculations, respectively.
Evidence of atmospheric gravity wave perturbations of the Brunt-Vaisala frequency in the atmosphere
NASA Technical Reports Server (NTRS)
Good, R. E.; Beland, R. W.; Brown, J. H.; Dewan, E. M.
1986-01-01
A series of high altitude, medium resolution, measurements of temperature, pressure and turbulence have been performed by the Air Force Geophysics Laboratory. These measurements were conducted using the VIZ Manufacturing Co. microsondes with attached micro-thermal probes measuring the temperature structure coefficient. A typical atmospheric temperature measurement is given. Several small temperature inversions are evident in the troposphere. The stratosphere is marked with numerous fluctuations in the temperature profile. Microsondes provide temperature and pressure measurements every 4 seconds up to a maximum altitude of 30 km (MSL). Since the average ascent rate is 5 m/s, the altitude interval between the measurement reports is 20 m. The potential temperature is calculated from the temperature and pressure. Spectral analysis of atmospheric Brunt-Vaisala frequencies reveal spectra similiar to the velocity spectra of Dewan et al. (1984), Daniels (1982), and Endlich and Singleton (1969). The Brunt-Vaisala spectra indicate the existence of separate, distinguishable wave modes.
Spatial patterns of stream temperatures and electric conductivity in a mesoscale catchment
NASA Astrophysics Data System (ADS)
Lieder, Ernestine; Weiler, Markus; Blume, Theresa
2017-04-01
Stream temperature and electric conductivity (EC) are both relatively easily measured and can provide valuable information on runoff generation processes and catchment storage.This study investigates the spatial variability of stream temperature and EC in a mesoscale basin. We focus on the mesoscale (sub-catchments and reach scale), and long term (seasonal / annual) stream temperature and EC patterns. Our study basin is the Attert catchment in Luxembourg (288km2), which contains multiple sub-catchments of different geology, topography and land use patterns. We installed 90 stream temperature and EC sensors at sites across the basin in summer 2015. The collected data is complemented by land use and discharge data and an extensive climate data set. Thermal sensitivity was calculated as the slope of daily air temperature-water-temperature regression line and describes the sensitivity of stream temperature to long term environmental change. Amplitude sensitivity was calculated as slope of the daily air and water temperature amplitude regression and describes the short term warming capacity of the stream. We found that groups with similar long term thermal and EC patterns are strongly related to different geological units. The sandstone reaches show the coldest temperatures and lowest annual thermal sensitivity to air temperature. The slate reaches are characterized by comparably low EC and high daily temperature amplitudes and amplitude sensitivity. Furthermore, mean annual temperatures and thermal sensitivities increase exponentially with drainage area, which can be attributed to the accumulation of heat throughout the system. On the reach scale, daily stream temperature fluctuations or sensitivities were strongly influenced by land cover distribution, stream shading and runoff volume. Daily thermal sensitivities were low for headwater streams; peaked for intermediate reaches in the middle of the catchment and then decreased again further downstream with increasing drainage area. Combining spatially distributed time series of stream temperatures and EC with information about geology, landscape and climate provides insight into the underlying hydrological processes and allows for the identification of thermally sensitive regions and reaches.
Electrostatic and magnetic measurements of turbulence and transport in Extrap T2
NASA Astrophysics Data System (ADS)
Möller, Anders; Sallander, Eva
1999-10-01
Langmuir probe and magnetic pick-up coil measurements are used to study edge turbulence in the Extrap T2 reversed field pinch. Magnetic fluctuations resonant outside the toroidal field reversal surface are observed where previously only fluctuations in the spectra of potential and electron density and temperature have been measured. Results are presented which imply that these fluctuations are coupled to and also correlated to the internally resonant tearing mode fluctuations. Evidence of coupling between low-frequency (<100 kHz) and high-frequency fluctuations is also presented. The normalized floating potential fluctuations are seen to increase with the edge electron temperature. This causes an increase of the potential and density fluctuation driven transport with the temperature which is faster than linear. These results, in combination, are consistent with a picture where internally resonant fluctuations couple to edge fluctuations through radial heat conduction from the stochastic core to the edge.
Fernández, A S; Larsen, M; Wolstrup, J; Grønvold, J; Nansen, P; Bjørn, H
1999-08-01
The effect of temperature on radial growth and predatory activity of different isolates of nematode-trapping fungi was assessed. Four isolates of Duddingtonia flagrans and one isolate of Arthrobotrys oligospora were inoculated on petri dishes containing either cornmeal agar (CMA) or faecal agar and then incubated for 14 days under three different constant and fluctuating temperature regimes. The radial growth was similar on the two substrates at each temperature regime. All fungal isolates showed a higher growth rate at a constant 20 degrees C. At 10 degrees and 15 degrees C, all D. flagrans isolates showed very similar patterns of radial growth at both constant and fluctuating temperatures. At 20 degrees C, they grew significantly faster at constant than at fluctuating temperatures. A. oligospora grew significantly faster than all D. flagrans isolates except when incubated at a fluctuating 20 degrees C. Spores of each fungal isolate were added to faecal cultures containing eggs of Cooperia oncophora at a concentration of 6250 spores/g faeces. The cultures were incubated for 14 days at the same temperature regimes described above. Control faeces (without fungal material) were also cultured. More larvae were recovered from the fungus-treated cultures incubated at a constant 10 degrees or 15 degrees C than from those incubated at the respective fluctuating temperatures, except for one D. flagrans isolate. Incubation at 20 degrees C showed the opposite effect. The general reduction observed in the number of nematode larvae due to fungal trapping was 18-25% and 48-80% for a constant and fluctuating 10 degrees C, 70-96% and 93-95% for a constant and fluctuating 15 degrees C, and 63-98% and 0-25% for a constant and fluctuating 20 degrees C, respectively.
Stability of athlete blood passport parameters during air freight.
Ashenden, M; Sharpe, K; Plowman, J; Allbon, G; Lobigs, L; Baron, A; Gore, C J
2014-10-01
Fluctuations in ambient temperature and pressure, as well as physical jostling, may affect the stability of whole blood samples transported by air freight. The aim of this study was to characterize the stability of key blood variables during air freight and to investigate whether vibration or reduced pressure alone affected results. Over a 72-h interval, we evaluated the stability of full blood count indices (plus reticulocytes) in tubes that were air-freighted a total of 2, 10 and 28 h. We also examined the impact of 24 h of reduced atmospheric pressure (750 hpa or approximately 2500 m.a.s.l) and vibration (5 Hz). Samples were measured on a Sysmex XT-2000i instrument. The two key variables in the context of antidoping (haemoglobin concentration, reticulocytes) remained stable over a 72-h period regardless of the duration of air freight. Atmospheric pressure and vibration had no discernible effect. Whole blood samples stored in NanoCool devices can be relied upon to remain stable for at least 72 h despite interim air freight. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Zorita, Eduardo; Frankignoul, Claude
1997-02-01
The climate variability in the North Atlantic sector is investigated in a 325-yr integration of the ECHAM1/ LSG coupled ocean-atmosphere general circulation model. At the interannual timescale, the coupled model behaves realistically and sea surface temperature (SST) anomalies arise as a response of the oceanic surface layer to the stochastic forcing by the atmosphere, with the heat exchanges both generating and damping the SST anomalies. In the ocean interior, the temperature spectra are red up to a period of about 20 years, and substantial decadal fluctuations are found in the upper kilometer or so of the water column. Using extended empirical orthogonal function analysis, two distinct quasi-oscillatory modes of ocean-atmosphere variability are identified, with dominant periods of about 20 and 10 years, respectively. The oceanic changes in both modes reflect the direct forcing by the atmosphere through anomalous air-sea fluxes and Ekman pumping, which after some delay affects the intensity of the subtropical and subpolar gyres. The SST is also strongly modulated by the gyre currents. In the thermocline, the temperature and salinity fluctuations are in phase, as if caused by thermocline displacements, and they have no apparent connection with the thermohaline circulation. The 20-yr mode is the most energetic one; it is easily seen in the thermocline and can be found in SST data, but it is not detected in the atmosphere alone. As there is no evidence of positive ocean-atmosphere feedback, the 20-yr mode primarily reflects the passive response of the ocean to atmospheric fluctuations, which may be in part associated with climate anomalies appearing a few years earlier in the North Pacific. The 10-yr mode is more surface trapped in the ocean. Although the mode is most easily seen in the temperature variations of the upper few hundred meters of the ocean, it is also detected in the atmosphere alone and thus appears to be a coupled ocean-atmosphere mode. In both modes, the surface heat flux acts neutrally on the associated SST anomalies once they have been generated, so that their persistence appears to be due in part to an overall adjustment of the air-sea heat exchanges to the SST patterns.
Seasonal variation of cold-induced vasooscillation on rabbit ear central artery.
Takeoka, M
1990-12-01
We studied the seasonal variation of vasooscillation of a rabbit ear central artery induced by exposure of the earlobes to - 7 degrees C liquid. The data were collected over a period of 10 years and analyzed by month. a) The index of arterial temperature fluctuation (IATF), i.e., activation index of cold-induced vasooscillation (CIVO), ranged from 114.5 +/- 26.7 (mean +/- SE) in January to 386.7 +/- 36.1 in June. A significant variation over all 12 months was revealed by analysis of variance (P less than 0.01). The values measured in May (317.1 +/- 47.3), June (386.7 +/- 36.1), and July (315.1 +/- 36.0) were significantly larger than those of other months. b) The monthly IATFs were correlated with the open air temperatures (r = 0.7017, P less than 0.05); however, the peak IATF occurred in June, while the peak open air temperature was in August. c) There was no seasonal variation of the arterial temperature either before or at 18-20 min after -7 degrees C immersion. Arterial temperature was not related to IATF during -7 degrees C exposure. d) When measuring-site temperature was steady, the thermistor temperature changed in parallel with the output from a laser blood volume meter. e) The CIVO was independent of systemic blood pressure and heart rate, which suggested that the occurrence of CIVO was regulated by changes in local vascular resistance.
Shadowgraph Study of Gradient Driven Fluctuations
NASA Technical Reports Server (NTRS)
Cannell, David; Nikolaenko, Gennady; Giglio, Marzio; Vailati, Alberto; Croccolo, Fabrizio; Meyer, William
2002-01-01
A fluid or fluid mixture, subjected to a vertical temperature and/or concentration gradient in a gravitational field, exhibits greatly enhanced light scattering at small angles. This effect is caused by coupling between the vertical velocity fluctuations due to thermal energy and the vertically varying refractive index. Physically, small upward or downward moving regions will be displaced into fluid having a refractive index different from that of the moving region, thus giving rise to the enhanced scattering. The scattered intensity is predicted to vary with scattering wave vector q, as q(sup -4), for sufficiently large q, but the divergence is quenched by gravity at small q. In the absence of gravity, the long wavelength fluctuations responsible for the enhanced scattering are predicted to grow until limited by the sample dimensions. It is thus of interest to measure the mean-squared amplitude of such fluctuations in the microgravity environment for comparison with existing theory and ground based measurements. The relevant wave vectors are extremely small, making traditional low-angle light scattering difficult or impossible because of stray elastically scattered light generated by optical surfaces. An alternative technique is offered by the shadowgraph method, which is normally used to visualize fluid flows, but which can also serve as a quantitative tool to measure fluctuations. A somewhat novel shadowgraph apparatus and the necessary data analysis methods will be described. The apparatus uses a spatially coherent, but temporally incoherent, light source consisting of a super-luminescent diode coupled to a single-mode optical fiber in order to achieve extremely high spatial resolution, while avoiding effects caused by interference of light reflected from the various optical surfaces that are present when using laser sources. Results obtained for a critical mixture of aniline and cyclohexane subjected to a vertical temperature gradient will be presented. The sample was confined between two horizontal parallel sapphire plates with a vertical spacing of 1 mm. The temperatures of the sapphire plates were controlled by independent circulating water loops that used Peltier devices to add or remove heat from the room air as required. For a mixture with a temperature gradient, two effects are involved in generating the vertical refractive index gradient, namely thermal expansion and the Soret effect, which generates a concentration gradient in response to the applied temperature gradient. For the aniline/cyclohexane system, the denser component (aniline) migrates toward the colder surface. Consequently, when heating from above, both effects result in the sample density decreasing with altitude and are stabilizing in the sense that no convective motion occurs regardless of the magnitude of the applied temperature gradient. The Soret effect is strong near a binary liquid critical point, and thus the dominant effect is due to the induced concentration gradient. The results clearly show the divergence at low q and the predicted gravitational quenching. Results obtained for different applied temperature gradients at varying temperature differences from the critical temperature, clearly demonstrate the predicted divergence of the thermal diffusion ratio. Thus, the more closely the critical point is approached, the smaller becomes the temperature gradient required to generate the same signal. Two different methods have been used to generate pure concentration gradients. In the first, a sample cell was filled with a single fluid, ethylene glycol, and a denser miscible fluid, water, was added from below thus establishing a sharp interface to begin the experiment. As time went on the two fluids diffused into each other, and large amplitude fluctuations were clearly observed at low q. The effects of gravitational quenching were also evident. In the second method, the aniline/cyclohexane sample was used, and after applying a vertical temperature gradient for several hours, the top and bottom temperatures were set equal and the thermal gradient died on a time scale of seconds, leaving the Soret induced concentration gradient in place. Again, large-scale fluctuations were observed and died away slowly in amplitude as diffusion destroyed the initial concentration gradient.
Hwang, Jing-Shiang; Nadziejko, Christine; Chen, Lung Chi
2005-04-01
Normal mice (C57) and mice prone to develop atherosclerosis (ApoE-/-) were implanted with electrocardiograph (EKG), core body temperature, and motion transmitters were exposed daily for 6 h to Tuxedo, NY, concentrated ambient particles (CAPs) for 5 day/wk during the spring and summer of 2003. The series of 5-min EKG monitoring and body-temperature measurements were obtained for each animal in the CAPs and filtered air sham exposure groups. Our hypothesis was that chronic exposure could cause cumulative health effects. We used our recently developed nonparametric method to estimate the daily time periods that mean heart rates (HR), body temperature, and physical activity differed significantly between the CAPs and sham exposed group. CAPs exposure most affected heart rate between 1:30 a.m. and 4:30 a.m. With the response variables being the average heart rate, body temperature, and physical activity, we adopted a two-stage modeling approach to obtain the estimates of chronic and acute effects on the changes of these three response variables. In the first stage, a time-varying model estimated daily crude effects. In the second stage, the true means of the estimated crude effects were modeled with a polynominal function of time for chronic effects, a linear term of daily CAPs exposure concentrations for acute effects, and a random component for unknown noise. A Bayesian framework combined these two stages. There were significant decreasing patterns of HR, body temperature, and physical activity for the ApoE-/- mice over the 5 mo of CAPs exposure, with smaller and nonsignificant changes for the C57 mice. The chronic effect changes of the three response variables for ApoE-/- mice were maximal in the last few weeks. There was also a significant relationship between CAPs exposure concentration and short-term changes of heart rate in ApoE-/- mice during exposure. Response variables were also defined for examining fluctuations of 5-min heart rates within long (i.e., 3-6 h) and short time periods (i.e., approximately 15 min). The results for the ApoE-/- mice showed that heart-rate fluctuation within the longer periods increased to 1.35-fold by the end of exposure experiment, while the heart-rate fluctuation within 15 min decreased to 0.7-fold.
Growth and survival of Apache Trout under static and fluctuating temperature regimes
Recsetar, Matthew S.; Bonar, Scott A.; Feuerbacher, Olin
2014-01-01
Increasing stream temperatures have important implications for arid-region fishes. Little is known about effects of high water temperatures that fluctuate over extended periods on Apache Trout Oncorhynchus gilae apache, a federally threatened species of southwestern USA streams. We compared survival and growth of juvenile Apache Trout held for 30 d in static temperatures (16, 19, 22, 25, and 28°C) and fluctuating diel temperatures (±3°C from 16, 19, 22 and 25°C midpoints and ±6°C from 19°C and 22°C midpoints). Lethal temperature for 50% (LT50) of the Apache Trout under static temperatures (mean [SD] = 22.8 [0.6]°C) was similar to that of ±3°C diel temperature fluctuations (23.1 [0.1]°C). Mean LT50 for the midpoint of the ±6°C fluctuations could not be calculated because survival in the two treatments (19 ± 6°C and 22 ± 6°C) was not below 50%; however, it probably was also between 22°C and 25°C because the upper limb of a ±6°C fluctuation on a 25°C midpoint is above critical thermal maximum for Apache Trout (28.5–30.4°C). Growth decreased as temperatures approached the LT50. Apache Trout can survive short-term exposure to water temperatures with daily maxima that remain below 25°C and midpoint diel temperatures below 22°C. However, median summer stream temperatures must remain below 19°C for best growth and even lower if daily fluctuations are high (≥12°C).
Characterization of a Combined CARS and Interferometric Rayleigh Scattering System
NASA Technical Reports Server (NTRS)
Tedder, Sarah A.; Bivolaru, Daniel; Danehy, Paul M.; Weikl, M. C.; Beyrau, F.; Seeger, T.; Cutler, Andrew D.
2007-01-01
This paper describes the characterization of a combined Coherent anti-Stokes Raman Spectroscopy and Interferometric Rayleigh Scattering (CARS-IRS) system by reporting the accuracy and precision of the measurements of temperature, species mole fraction of N2, O2, and H2, and two-components of velocity. A near-adiabatic H2-air Hencken burner flame was used to provide known properties for measurements made with the system. The measurement system is also demonstrated in a small-scale Mach 1.6 H2-air combustion-heated supersonic jet with a co-flow of H2. The system is found to have a precision that is sufficient to resolve fluctuations of flow properties in the mixing layer of the jet.
Experimental investigation of wood combustion in a fixed bed with hot air.
Markovic, Miladin; Bramer, Eddy A; Brem, Gerrit
2014-01-01
Waste combustion on a grate with energy recovery is an important pillar of municipal solid waste (MSW) management in the Netherlands. In MSW incinerators fresh waste stacked on a grate enters the combustion chamber, heats up by radiation from the flame above the layer and ignition occurs. Typically, the reaction zone starts at the top of the waste layer and propagates downwards, producing heat for drying and devolatilization of the fresh waste below it until the ignition front reaches the grate. The control of this process is mainly based on empiricism. MSW is a highly inhomogeneous fuel with continuous fluctuating moisture content, heating value and chemical composition. The resulting process fluctuations may cause process control difficulties, fouling and corrosion issues, extra maintenance, and unplanned stops. In the new concept the fuel layer is ignited by means of preheated air (T>220 °C) from below without any external ignition source. As a result a combustion front will be formed close to the grate and will propagate upwards. That is why this approach is denoted by upward combustion. Experimental research has been carried out in a batch reactor with height of 4.55 m, an inner diameter of 200 mm and a fuel layer height up to 1m. Due to a high quality two-layer insulation adiabatic conditions can be assumed. The primary air can be preheated up to 350 °C, and the secondary air is distributed via nozzles above the waste layer. During the experiments, temperatures along the height of the reactor, gas composition and total weight decrease are continuously monitored. The influence of the primary air speed, fuel moisture and inert content on the combustion characteristics (ignition rate, combustion rate, ignition front speed and temperature of the reaction zone) is evaluated. The upward combustion concept decouples the drying, devolatilization and burnout phase. In this way the moisture and inert content of the waste have almost no influence on the combustion process. In this paper an experimental comparison between conventional and reversed combustion is presented. Copyright © 2013 Elsevier Ltd. All rights reserved.
Temperature Dependence and Energetics of Single Ions at the Aqueous Liquid-Vapor Interface
Ou, Shuching; Patel, Sandeep
2014-01-01
We investigate temperature-dependence of free energetics with two single halide anions, I− and Cl−, crossing the aqueous liquid-vapor interface through molecular dynamics simulations. The result shows that I− has a modest surface stability of 0.5 kcal/mol at 300 K and the stability decreases as the temperature increases, indicating the surface adsorption process for the anion is entropically disfavored. In contrast, Cl− shows no such surface state at all temperatures. Decomposition of free energetics reveals that water-water interactions provide a favorable enthalpic contribution, while the desolvation of ion induces an increase in free energy. Calculations of surface fluctuations demonstrate that I− generates significantly greater interfacial fluctuations compared to Cl−. The fluctuation is attributed to the malleability of the solvation shells, which allows for more long-ranged perturbations and solvent density redistribution induced by I− as the anion approaches the liquid-vapor interface. The increase in temperature of the solvent enhances the inherent thermally-excited fluctuations and consequently reduces the relative contribution from anion to surface fluctuations, which is consistent with the decrease in surface-stability of I−. Our results indicate a strong correlation with induced interfacial fluctuations and anion surface stability; moreover, resulting temperature dependent behavior of induced fluctuations suggests the possibility of a critical level of induced fluctuations associated with surface stability. PMID:23537166
Long-term persistence of the spatial organization of plume lifetime in turbulent air avalanches
NASA Astrophysics Data System (ADS)
Crouzeix, C.; Le Mouël, J.; Perrier, F.; Shnirman, M. G.
2005-12-01
Temperature measurements have been performed in the vertical access pit of an underground quarry in winter, when outside temperature is low and induce turbulent avalanches of cold air in the pit. The measured time series are studied with a non-linear method based on absolute differences, which has been recently proposed as an adequate tool in the case of modulated jitter: a high-frequency signal multiplied by a long-term component (for example the sunspot number). The thermal fluctuations associated with the turbulent plumes are proved to offer an almost perfect realization of a modulated jitter. The lifetime, estimated from the method as a function of time and position in the pit, is of the order of 10 to 25 minutes, remarkably constant in time for each sensor and independent of the forcing. A significant and persistent spatial variation is also observed, indicating a long-term intrinsic organization of the turbulent air flow in the pit. Such stable organization may be a universal feature of chaotic phenomena. Furthermore, the properties of turbulent air avalanches and of sunspots determined by this method appear similar. This may be due to a common underlying physical mechanism. Modulated jitter, which are probably present in numerous natural processes, can be studied using the method presented here.
NASA Astrophysics Data System (ADS)
Horemans, B.; Schalm, O.; De Wael, K.; Cardell, C.; Van Grieken, R.
2012-07-01
The world famous Alhambra monument in Granada, Southern Spain, listed as UNESCO world cultural heritage since 1984, represents probably the most beautiful example of Islamic art and architecture from the Middle Ages in Europe. It is visited by ca. 2 million people annually. Granada is situated in a natural basin, surrounded by mountains with altitudes up to 3500 m. Due to this topography and the prevailing low wind speeds, pollution-derived and especially traffic-derived particulate matter often accumulates in the urban air. In order to evaluate the potential conservation risks from the surrounding air, the atmospheric composition in the Alhambra monument was evaluated. Indoor temperature and relative humidity fluctuations were evaluated for their potential degenerative effects. Furthermore, the atmospheric composition in the Alhambra was analyzed in terms of inorganic gases (NO2, SO2, O3, and NH3) and black carbon. It was found that the open architecture protected the indoor environments from developing a potentially harmful microclimate, such as the build-up of humidity resulting from the huge number of daily tourists. On the downside, the strong ventilation made the indoor air hardly different from outdoor air, as characterized by strong diurnal temperature and relative humidity gradients and high traffic-derived pollutant levels.
Coherent Anti-Stokes Raman Scattering (CARS) as a Probe for Supersonic Hydrogen-Fuel/Air Mixing
NASA Technical Reports Server (NTRS)
Danehy, P. M.; O'Byrne, S.; Cutler, A. D.; Rodriguez, C. G.
2003-01-01
The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) method was used to measure temperature and the absolute mole fractions of N2, O2 and H2 in a supersonic non-reacting fuel-air mixing experiment. Experiments were conducted in NASA Langley Research Center s Direct Connect Supersonic Combustion Test Facility. Under normal operation of this facility, hydrogen and air burn to increase the enthalpy of the test gas and O2 is added to simulate air. This gas is expanded through a Mach 2 nozzle and into a combustor model where fuel is then injected, mixes and burns. In the present experiment the O2 of the test gas is replaced by N2. The lack of oxidizer inhibited combustion of the injected H2 fuel jet allowing the fuel/air mixing process to be studied. CARS measurements were performed 427 mm downstream of the nozzle exit and 260 mm downstream of the fuel injector. Maps were obtained of the mean temperature, as well as the N2, O2 and H2 mean mole fraction fields. A map of mean H2O vapor mole fraction was also inferred from these measurements. Correlations between different measured parameters and their fluctuations are presented. The CARS measurements are compared with a preliminary computational prediction of the flow.
Prediction of Turbulent Temperature Fluctuations in Hot Jets
NASA Technical Reports Server (NTRS)
Debonis, James R.
2017-01-01
Large-eddy simulations were used to investigate turbulent temperature fluctuations and turbulent heat flux in hot jets. A high-resolution finite-difference Navier-Stokes solver, WRLES, was used to compute the flow from a 2-inch round nozzle. Several different flow conditions, consisting of different jet Mach numbers and temperature ratios, were examined. Predictions of mean and fluctuating velocities were compared to previously obtained particle image velocimetry data. Predictions of mean and fluctuating temperature were compared to new data obtained using Raman spectroscopy. Based on the good agreement with experimental data for the individual quantities, the combined quantity turbulent heat flux was examined.
Tanaka, Kazuhiro; Watari, Yasuhiko
2017-06-01
The onion fly Delia antiqua advances its eclosion timing with decreasing temperature amplitude to compensate for a depth-dependent phase delay of the zeitgeber. To elucidate whether or not naturally occurring day-to-day variations in the amplitude of soil temperature cycle disturb this compensatory response, we monitored daily variations in the temperature amplitude in natural soils and evaluated the impact on adult eclosion timing. Our results indicated that both median and variance of the soil temperature amplitude become smaller as depth increases. Insertion of a larger temperature fluctuation into the thermoperiod with smaller temperature amplitude induced a stronger phase delay, while insertion of a smaller temperature fluctuation into the thermoperiod with larger temperature amplitude had a weaker phase-advancing effect. It is therefore expected that larger diurnal temperature fluctuations disturb the compensatory response, particularly if they occur at deeper locations, while smaller temperature fluctuations do so only at shallower locations. Under natural conditions, however, the probability of occurrence of smaller or larger temperature fluctuations in shallower or deeper soils, respectively, is relatively small. Thus, naturally occurring day-to-day variations in the temperature amplitude rarely disturb the compensatory response, thereby having a subtle or negligible impact on adult eclosion timing.
Steady and unsteady calculations on thermal striping phenomena in triple-parallel jet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Y. Q.; Merzari, E.; Thomas, J. W.
2017-02-01
The phenomenon of thermal striping is encountered in liquid metal cooled fast reactors (LMFR), in which temperature fluctuation due to convective mixing between hot and cold fluids can lead to a possibility of crack initiation and propagation in the structure due to high cycle thermal fatigue. Using sodium experiments of parallel triple jets configuration performed by Japan Atomic Energy Agency (JAEA) as benchmark, numerical simulations were carried out to evaluate the temperature fluctuation characteristics in fluid and the transfer characteristics of temperature fluctuation from fluid to structure, which is important to assess the potential thermal fatigue damage. In this study,more » both steady (RANS) and unsteady (URANS, LES) methods were applied to predict the temperature fluctuations of thermal striping. The parametric studies on the effects of mesh density and boundary conditions on the accuracy of the overall solutions were also conducted. The velocity, temperature and temperature fluctuation intensity distribution were compared with the experimental data. As expected, steady calculation has limited success in predicting the thermal–hydraulic characteristics of the thermal striping, highlighting the limitations of the RANS approach in unsteady heat transfer simulations. The unsteady results exhibited reasonably good agreement with experimental results for temperature fluctuation intensity, as well as the average temperature and velocity components at the measurement locations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harriman, L.; Simkins, D.
Beads of perspiration dripping from pipes and valves are a nuisance to mop up, but they are a telltale sign of the problems that excess humidity can cause. Fluctuations in the delicate balance of temperature and moisture in process environments are often the culprit for the corrosion, condensation, and clogging and sticking that bottlenecks plant operations and slows down production. Dehumidification is used to prevent moisture regain, condensation and corrosion, and to promote the drying of heat-sensitive products. There are three methods for removing moisture from air: Squeeze out water by increasing the pressure; though commonly used for compressed airmore » and other applications at elevated pressures, it is virtually never used to remove moisture in atmospheric pressure applications. Compressor equipment and operating costs are prohibitive, compared with those for conventional methods for dehumidifying air at ambient pressures; Condense water by chilling the surrounding air; and Pull out water by passing air across the surface of a desiccant. The paper discusses desiccation versus cooling, system design, and project management.« less
Duncan, Alison B.; Gonzalez, Andrew; Kaltz, Oliver
2013-01-01
Environmental fluctuations are important for parasite spread and persistence. However, the effects of the spatial and temporal structure of environmental fluctuations on host–parasite dynamics are not well understood. Temporal fluctuations can be random but positively autocorrelated, such that the environment is similar to the recent past (red noise), or random and uncorrelated with the past (white noise). We imposed red or white temporal temperature fluctuations on experimental metapopulations of Paramecium caudatum, experiencing an epidemic of the bacterial parasite Holospora undulata. Metapopulations (two subpopulations linked by migration) experienced fluctuations between stressful (5°C) and permissive (23°C) conditions following red or white temporal sequences. Spatial variation in temperature fluctuations was implemented by exposing subpopulations to the same (synchronous temperatures) or different (asynchronous temperatures) temporal sequences. Red noise, compared with white noise, enhanced parasite persistence. Despite this, red noise coupled with asynchronous temperatures allowed infected host populations to maintain sizes equivalent to uninfected populations. It is likely that this occurs because subpopulations in permissive conditions rescue declining subpopulations in stressful conditions. We show how patterns of temporal and spatial environmental fluctuations can impact parasite spread and host population abundance. We conclude that accurate prediction of parasite epidemics may require realistic models of environmental noise. PMID:23966645
Characterization of the NASA Langley Arc Heated Scramjet Test Facility Using NO PLIF
NASA Technical Reports Server (NTRS)
Kidd, F. Gray, III; Narayanaswamy, Venkateswaran; Danehy, Paul M.; Inman, Jennifer A.; Bathel, Brett F.; Cabell, Karen F.; Hass, Neal E.; Capriotti, Diego P.; Drozda, Tomasz G.; Johansen, Criag T.
2014-01-01
The nitric oxide planar laser-induced fluorescence (NO PLIF) imaging was used to characterize the air flow of the NASA Langley Arc Heated Scramjet Test Facility (AHSTF) configured with a Mach 6 nozzle. The arc raises the enthalpy of the test gas in AHSTF, producing nitric oxide. Nitric oxide persists as the temperature drops through the nozzle into the test section. NO PLIF was used to qualitatively visualize the flowfield at different experimental conditions, measure the temperature of the gas flow exiting the facility nozzle, and visualize the wave structure downstream of the nozzle at different operating conditions. Uniformity and repeatability of the nozzle flow were assessed. Expansion and compression waves on the free-jet shear layer as the nozzle flow expands into the test section were visualized. The main purpose of these experiments was to assess the uniformity of the NO in the freestream gas for planned experiments, in which NO PLIF will be used for qualitative fuel-mole-fraction sensitive imaging. The shot-to-shot fluctuations in the PLIF signal, caused by variations in the overall laser intensity as well as NO concentration and temperature variations in the flow was 20-25% of the mean signal, as determined by taking the standard deviation of a set of images obtained at constant conditions and dividing by the mean. The fluctuations within individual images, caused by laser sheet spatial variations as well as NO concentration and temperature variations in the flow, were about 28% of the mean in images, determined by taking standard deviation within individual images, dividing by the mean in the same image and averaged over the set of images. Applying an averaged laser sheet intensity correction reduced the within-image intensity fluctuations to about 10% suggesting that the NO concentration is uniform to within 10%. There was no significant difference in flow uniformity between the low and high enthalpy settings. While not strictly quantitative, the temperature maps show qualitative agreement with the computations of the flow.
NASA Astrophysics Data System (ADS)
Colombero, C.; Baillet, L.; Comina, C.; Jongmans, D.; Larose, E.; Valentin, J.; Vinciguerra, S.
2018-06-01
Monitoring the temporal evolution of resonance frequencies and velocity changes detected from ambient seismic noise recordings can help in recognizing reversible and irreversible modifications within unstable rock volumes. With this aim, the long-term ambient seismic noise data set acquired at the potentially unstable cliff of Madonna delSasso (NW Italian Alps) was analysed in this study, using both spectral analysis and cross-correlation techniques. Noise results were integrated and compared with direct displacement measurements and meteorological data, to understand the long-term evolution of the cliff. No irreversible modifications in the stability of the site were detected over the monitored period. Conversely, daily and seasonal air temperature fluctuations were found to control resonance frequency values, amplitudes and directivities and to induce reversible velocity changes within the fractured rock mass. The immediate modification in the noise parameters due to temperature fluctuations was interpreted as the result of rock mass thermal expansion and contraction, inducing variations in the contact stiffness along the fractures isolating two unstable compartments. Differences with previous case studies were highlighted in the long-term evolution of noise spectral amplitudes and directivities, due to the complex 3-D fracture setting of the site and to the combined effects of the two unstable compartments.
Yamamoto, Ayako; Palter, Jaime B
2016-03-15
Northern Hemisphere climate responds sensitively to multidecadal variability in North Atlantic sea surface temperature (SST). It is therefore surprising that an imprint of such variability is conspicuously absent in wintertime western European temperature, despite that Europe's climate is strongly influenced by its neighbouring ocean, where multidecadal variability in basin-average SST persists in all seasons. Here we trace the cause of this missing imprint to a dynamic anomaly of the atmospheric circulation that masks its thermodynamic response to SST anomalies. Specifically, differences in the pathways Lagrangian particles take to Europe during anomalous SST winters suppress the expected fluctuations in air-sea heat exchange accumulated along those trajectories. Because decadal variability in North Atlantic-average SST may be driven partly by the Atlantic Meridional Overturning Circulation (AMOC), the atmosphere's dynamical adjustment to this mode of variability may have important implications for the European wintertime temperature response to a projected twenty-first century AMOC decline.
Falcón, Wilfredo; Baxter, Rich P; Furrer, Samuel; Bauert, Martin; Hatt, Jean-Michel; Schaepman-Strub, Gabriela; Ozgul, Arpat; Bunbury, Nancy; Clauss, Marcus; Hansen, Dennis M
2018-02-01
We studied the temperature relations of wild and zoo Aldabra giant tortoises ( Aldabrachelys gigantea ) focusing on (1) the relationship between environmental temperature and tortoise activity patterns ( n = 8 wild individuals) and (2) on tortoise body temperature fluctuations, including how their core and external body temperatures vary in relation to different environmental temperature ranges (seasons; n = 4 wild and n = 5 zoo individuals). In addition, we surveyed the literature to review the effect of body mass on core body temperature range in relation to environmental temperature in the Testudinidae. Diurnal activity of tortoises was bimodally distributed and influenced by environmental temperature and season. The mean air temperature at which activity is maximized was 27.9°C, with a range of 25.8-31.7°C. Furthermore, air temperature explained changes in the core body temperature better than did mass, and only during the coldest trial, did tortoises with higher mass show more stable temperatures. Our results, together with the overall Testudinidae overview, suggest that, once variation in environmental temperature has been taken into account, there is little effect of mass on the temperature stability of tortoises. Moreover, the presence of thermal inertia in an individual tortoise depends on the environmental temperatures, and we found no evidence for inertial homeothermy. Finally, patterns of core and external body temperatures in comparison with environmental temperatures suggest that Aldabra giant tortoises act as mixed conformer-regulators. Our study provides a baseline to manage the thermal environment of wild and rewilded populations of an important island ecosystem engineer species in an era of climate change.
Investigations on the self-excited oscillations in a kerosene spray flame
DOE Office of Scientific and Technical Information (OSTI.GOV)
de la Cruz Garcia, M.; Mastorakos, E.; Dowling, A.P.
2009-02-15
A laboratory scale gas turbine type burner at atmospheric pressure and with air preheat was operated with aviation kerosene Jet-A1 injected from a pressure atomiser. Self-excited oscillations were observed and analysed to understand better the relationship between the spray and thermo-acoustic oscillations. The fluctuations of CH{sup *} chemiluminescence measured simultaneously with the pressure were used to determine the flame transfer function. The Mie scattering technique was used to record spray fluctuations in reacting conditions with a high speed camera. Integrating the Mie intensity over the imaged region gave a temporal signal acquired simultaneously with pressure fluctuations and the transfer functionmore » between the light scattered from the spray and the velocity fluctuations in the plenum was evaluated. Phase Doppler anemometry was used for axial velocity and drop size measurements at different positions downstream the injection plane and for various operating conditions. Pressure spectra showed peaks at a frequency that changed with air mass flow rate. The peak for low air mass flow rate operation was at 220 Hz and was associated with a resonance of the supply plenum. At the same global equivalence ratio but at high air mass flow rates, the pressure spectrum peak was at 323 Hz, a combustion chamber resonant frequency. At low air flow rates, the spray fluctuation motion was pronounced and followed the frequency of the pressure oscillation. At high air flow rates, more effective evaporation resulted in a complete disappearance of droplets at an axial distance of about 1/3 burner diameters from the injection plane, leading to a different flame transfer function and frequency of the self-excited oscillation. The results highlight the sensitivity of the self-excited oscillation to the degree of mixing achieved before the main recirculation zone. (author)« less
NASA Astrophysics Data System (ADS)
Creely, A. J.; Freethy, S. J.; Burke, W. M.; Conway, G. D.; Leccacorvi, R.; Parkin, W. C.; Terry, D. R.; White, A. E.
2018-05-01
A newly upgraded correlation electron cyclotron emission (CECE) diagnostic has been installed on the ASDEX Upgrade tokamak and has begun to perform experimental measurements of electron temperature fluctuations. CECE diagnostics measure small amplitude electron temperature fluctuations by correlating closely spaced heterodyne radiometer channels. This upgrade expanded the system from six channels to thirty, allowing simultaneous measurement of fluctuation level radial profiles without repeat discharges, as well as opening up the possibility of measuring radial turbulent correlation lengths. Newly refined statistical techniques have been developed in order to accurately analyze the fluctuation data collected from the CECE system. This paper presents the hardware upgrades for this system and the analysis techniques used to interpret the raw data, as well as measurements of fluctuation spectra and fluctuation level radial profiles.
Puc, Małgorzata
2012-01-01
Pollen grains are one of the most important groups of atmospheric biological particles that originate allergic processes. Knowledge of intradiurnal variation of the atmospheric pollen may be useful for the treatment and prevention of pollen allergies. Intradiurnal fluctuation of hourly pollen counts in 24 h are related to the daily rhythm of anther opening, and modified by various interacting factors. Flowering and pollen production of individual species are influenced by genetic, phenological, ecological, meteorological and climatic factors. Estimation of the intradiurnal variability in the pollen count permits evaluation of the threat posed by allergens over a given area. Measurements performed in Szczecin over a period of 7 years (2006-2012) permitted analysis of hourly variation of the pollen count of birch (Betula) and ash (Fraxinus) in 24 h, and evaluation of the impact of weather conditions and the concentration of gas air pollutants on the intradiurnal patterns of both taxa. Aerobiological monitoring was conducted using a Hirst volumetric trap (Lanzoni VPPS 2000). Consecutive phases during the day were defined as 1, 5, 25, 50, 75, 95, 99% of annual total pollen. The analysis revealed that 50% of total daily pollen was noted at 14:00 for Betula and Fraxinus. The hourly distribution of birch pollen count skewed to the left and the majority of pollen of this taxon appears in the air in the first 12 hours of the day. However, for ash, the hourly distribution of pollen count skewed to the right. Statistically significant correlation was noted between the Betula and Fraxinus pollen concentration and the mean air temperature, relative humidity, wind speed, air pressure, total radiation and nitrogen oxides (NO(x)).
NASA Technical Reports Server (NTRS)
Mcronald, A. D.
1975-01-01
Mean density and temperature fluctuations were measured across the turbulent, cooled-wall boundary layer in a continuous hypersonic (Mach 9.4) wind tunnel in air, using the nitrogen fluorescence excited by a 50 kV electron beam. Data were taken at three values of the tunnel stagnation pressure, the corresponding free stream densities being equivalent to 1.2, 4.0, and 7.4 torr at room temperature, and the boundary layer thicknesses about 4.0, 4.5, and 6.0 inches. The mean temperature and density profiles were similar to those previously determined in the same facility by conventional probes (static and pitot pressure, total temperature). A static pressure variation of about 50% across the boundary layer was found, the shape of the variation changing somewhat for the three stagnation pressure levels. The quadrupole model for rotational temperature spectra gave closer agreement with the free stream isentropic level (approximately 44 K) than the dipole model.
NASA Technical Reports Server (NTRS)
Duan, Lian; Choudhari, Meelan M.
2014-01-01
Direct numerical simulations (DNS) of Mach 6 turbulent boundary layer with nominal freestream Mach number of 6 and Reynolds number of Re(sub T) approximately 460 are conducted at two wall temperatures (Tw/Tr = 0.25, 0.76) to investigate the generated pressure fluctuations and their dependence on wall temperature. Simulations indicate that the influence of wall temperature on pressure fluctuations is largely limited to the near-wall region, with the characteristics of wall-pressure fluctuations showing a strong temperature dependence. Wall temperature has little influence on the propagation speed of the freestream pressure signal. The freestream radiation intensity compares well between wall-temperature cases when normalized by the local wall shear; the propagation speed of the freestream pressure signal and the orientation of the radiation wave front show little dependence on the wall temperature.
Novikov Engine with Fluctuating Heat Bath Temperature
NASA Astrophysics Data System (ADS)
Schwalbe, Karsten; Hoffmann, Karl Heinz
2018-04-01
The Novikov engine is a model for heat engines that takes the irreversible character of heat fluxes into account. Using this model, the maximum power output as well as the corresponding efficiency of the heat engine can be deduced, leading to the well-known Curzon-Ahlborn efficiency. The classical model assumes constant heat bath temperatures, which is not a reasonable assumption in the case of fluctuating heat sources. Therefore, in this article the influence of stochastic fluctuations of the hot heat bath's temperature on the optimal performance measures is investigated. For this purpose, a Novikov engine with fluctuating heat bath temperature is considered. Doing so, a generalization of the Curzon-Ahlborn efficiency is found. The results can help to quantify how the distribution of fluctuating quantities affects the performance measures of power plants.
High-precision temperature control and stabilization using a cryocooler.
Hasegawa, Yasuhiro; Nakamura, Daiki; Murata, Masayuki; Yamamoto, Hiroya; Komine, Takashi
2010-09-01
We describe a method for precisely controlling temperature using a Gifford-McMahon (GM) cryocooler that involves inserting fiber-reinforced-plastic dampers into a conventional cryosystem. Temperature fluctuations in a GM cryocooler without a large heat bath or a stainless-steel damper at 4.2 K are typically of the order of 200 mK. It is particularly difficult to control the temperature of a GM cryocooler at low temperatures. The fiber-reinforced-plastic dampers enabled us to dramatically reduce temperature fluctuations at low temperatures. A standard deviation of the temperature fluctuations of 0.21 mK could be achieved when the temperature was controlled at 4.200 0 K using a feedback temperature control system with two heaters. Adding the dampers increased the minimum achievable temperature from 3.2 to 3.3 K. Precise temperature control between 4.200 0 and 300.000 K was attained using the GM cryocooler, and the standard deviation of the temperature fluctuations was less than 1.2 mK even at 300 K. This technique makes it possible to control and stabilize the temperature using a GM cryocooler.
Inner-outer predictive wall model for wall-bounded turbulence in hypersonic flow
NASA Astrophysics Data System (ADS)
Martin, M. Pino; Helm, Clara M.
2017-11-01
The inner-outer predictive wall model of Mathis et al. is modified for hypersonic turbulent boundary layers. The model is based on a modulation of the energized motions in the inner layer by large scale momentum fluctuations in the logarithmic layer. Using direct numerical simulation (DNS) data of turbulent boundary layers with free stream Mach number 3 to 10, it is shown that the variation of the fluid properties in the compressible flows leads to large Reynolds number (Re) effects in the outer layer and facilitate the modulation observed in high Re incompressible flows. The modulation effect by the large scale increases with increasing free-stream Mach number. The model is extended to include spanwise and wall-normal velocity fluctuations and is generalized through Morkovin scaling. Temperature fluctuations are modeled using an appropriate Reynolds Analogy. Density fluctuations are calculated using an equation of state and a scaling with Mach number. DNS data are used to obtain the universal signal and parameters. The model is tested by using the universal signal to reproduce the flow conditions of Mach 3 and Mach 7 turbulent boundary layer DNS data and comparing turbulence statistics between the modeled flow and the DNS data. This work is supported by the Air Force Office of Scientific Research under Grant FA9550-17-1-0104.
Effect of Contraction on Turbulence and Temperature Fluctuations Generated by a Warm Grid
NASA Technical Reports Server (NTRS)
Mills, Robert R., Jr.; Corrsin, Stanley
1959-01-01
Hot-wire anemometer measurements were made of several statistical properties of approximately homogeneous and isotropic fields of turbulence and temperature fluctuations generated by a warm grid in a uniform airstream sent through a 4-to-1 contraction. These measurements were made both in the contraction and in the axisymmetric domain farther downstream. In addition to confirming the well-known turbulence anisotropy induced by strain, the data show effects on the skewnesses of both longitudinal velocity fluctuation (which has zero skewness in isotropic turbulence) and its derivative. The concomitant anisotropy in the temperature field accelerates the decay of temperature fluctuations.
1/f noise: diffusive systems and music
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voss, R.F.
1975-11-01
Measurements of the 1/f voltage noise in continuous metal films are reported. At room temperature, samples of pure metals and bismuth (with a carrier density smaller by 10/sup 5/) of similar volume had comparable noise. The results suggest that the noise arises from equilibrium temperature fluctuations modulating the resistance. Spatial correlation of the noise implied that the fluctuations obey a diffusion equation. The empirical inclusion of an explicit 1/f region and appropriate normalization lead to excellent agreement with the measured noise. If the fluctuations are assumed to be spatially correlated, the diffusion equation can yield an extended 1/f region inmore » the power spectrum. The temperature response of a sample to delta and step function power inputs is shown to have the same shape as the autocorrelation function for uncorrelated and correlated temperature fluctuations, respectively. The spectrum obtained from the cosine transform of the measured step function response is in excellent agreement with the measured 1/f voltage noise spectrum. Spatially correlated equilibrium temperature fluctuations are not the dominant source of 1/f noise in semiconductors and metal films. However, the agreement between the low-frequency spectrum of fluctuations in the mean-square Johnson noise voltage and the resistance fluctuation spectrum measured in the presence of a current demonstrates that in these systems the 1/f noise is also due to equilibrium resistance fluctuations. Loudness fluctuations in music and speech and pitch fluctuations in music also show the 1/f behavior. 1/f noise sources, consequently, are demonstrated to be the natural choice for stochastic composition. 26 figures, 1 table. (auth)« less
McGovern, R H; Feddes, J J; Robinson, F E; Hanson, J A
2000-03-01
The effects of diurnal temperature fluctuations and removal of respirable dust, by application of canola oil to straw litter, on growth, carcass traits, and the degree of ascites was evaluated with 1,200 male broilers studied in two replicated 6-wk trials. Each trial used four pens of 150 birds. The temperature treatment consisted of a fluctuation of 3 C in temperature above the required temperature during the day (0600 to 1800 h) and 3 C below the required temperature at night (1800 to 0600 h) for a 6 C change in daily temperature. The control temperature was constant. All pens had the same mean daily temperature. In each trial, one control temperature pen and one fluctuation temperature pen received bi-weekly applications of canola oil to the litter (1.1 L/m2 of oil over 6 wk). At 6 wk of age, 30 birds from each pen were killed for determination of breast muscle, fatpad, and heart weights. All birds were scored for lesions of ascites at time of processing. A score of 0 or 1 represented slight pericardial effusion, slight pulmonary congestion, and edema. A score of 4 represented birds with marked accumulation of ascitic fluid in one or more ceolomic cavities (other than the pericardium) and advanced liver lesions. A cross-sectional image of each 4-mm heart slice (cross-section of the ventricles) was digitally recorded, and with image analysis we determined the right ventricular area (RVA), left ventricular area (LVA), and total heart area (HA). The final BW of the broilers were significantly different, the oiled-litter treatment (2,249 g) had lower weight gain compared with the nonoiled litter treatment (2,293 g). There were no differences in fatpad weight, shank length, lung weight, and percentage breast muscle between the main treatments. The Pectoralis minor and Pectoralis major weight were significantly heavier in the temperature fluctuation treatment than in the control temperature treatment by 3.0 and 12.0 g, respectively. The birds subjected to the control temperature treatment had a lower RVW than the birds subjected to the fluctuating temperature treatment. Temperature fluctuations also resulted in a 1.4% increase in the incidence of mortality. Temperature fluctuations negatively impact broiler growth due to heat loss when litter oiling was excessive.
Experimental investigation of wood combustion in a fixed bed with hot air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markovic, Miladin, E-mail: m.markovic@utwente.nl; Bramer, Eddy A.; Brem, Gerrit
Highlights: • Upward combustion is a new combustion concept with ignition by hot primary air. • Upward combustion has three stages: short drying, rapid devolatilization and char combustion. • Variation of fuel moisture and inert content have little influence on the combustion. • Experimental comparison between conventional and upward combustion is presented. - Abstract: Waste combustion on a grate with energy recovery is an important pillar of municipal solid waste (MSW) management in the Netherlands. In MSW incinerators fresh waste stacked on a grate enters the combustion chamber, heats up by radiation from the flame above the layer and ignitionmore » occurs. Typically, the reaction zone starts at the top of the waste layer and propagates downwards, producing heat for drying and devolatilization of the fresh waste below it until the ignition front reaches the grate. The control of this process is mainly based on empiricism. MSW is a highly inhomogeneous fuel with continuous fluctuating moisture content, heating value and chemical composition. The resulting process fluctuations may cause process control difficulties, fouling and corrosion issues, extra maintenance, and unplanned stops. In the new concept the fuel layer is ignited by means of preheated air (T > 220 °C) from below without any external ignition source. As a result a combustion front will be formed close to the grate and will propagate upwards. That is why this approach is denoted by upward combustion. Experimental research has been carried out in a batch reactor with height of 4.55 m, an inner diameter of 200 mm and a fuel layer height up to 1 m. Due to a high quality two-layer insulation adiabatic conditions can be assumed. The primary air can be preheated up to 350 °C, and the secondary air is distributed via nozzles above the waste layer. During the experiments, temperatures along the height of the reactor, gas composition and total weight decrease are continuously monitored. The influence of the primary air speed, fuel moisture and inert content on the combustion characteristics (ignition rate, combustion rate, ignition front speed and temperature of the reaction zone) is evaluated. The upward combustion concept decouples the drying, devolatilization and burnout phase. In this way the moisture and inert content of the waste have almost no influence on the combustion process. In this paper an experimental comparison between conventional and reversed combustion is presented.« less
NASA Astrophysics Data System (ADS)
Chua, Y. Z.; Zorn, R.; Holderer, O.; Schmelzer, J. W. P.; Schick, C.; Donth, E.
2017-03-01
The aim of this paper is to decide which of the two possible thermodynamic expressions for the cooperativity length in glass forming liquids is the correct one. In the derivation of these two expressions, the occurrence of temperature fluctuations in the considered nanoscale subsystems is either included or neglected. Consequently, our analysis gives also an answer to the widely discussed problem whether temperature fluctuations have to be generally accounted for in thermodynamics or not. To this end, the characteristic length-scales at equal times and temperatures for propylene glycol were determined independently from AC calorimetry in both the above specified ways and from quasielastic neutron scattering (QENS), and compared. The result shows that the cooperative length determined from QENS coincides most consistently with the cooperativity length determined from AC calorimetry measurements for the case that the effect of temperature fluctuations is incorporated in the description. This conclusion indicates that—accounting for temperature fluctuations—the characteristic length can be derived by thermodynamic considerations from the specific parameters of the liquid at glass transition and that temperature does fluctuate in small systems.
NASA Astrophysics Data System (ADS)
Guo, Zhouchao; Lu, Tao; Liu, Bo
2017-04-01
Turbulent penetration can occur when hot and cold fluids mix in a horizontal T-junction pipe at nuclear plants. Caused by the unstable turbulent penetration, temperature fluctuations with large amplitude and high frequency can lead to time-varying wall thermal stress and even thermal fatigue on the inner wall. Numerous cases, however, exist where inner wall temperatures cannot be measured and only outer wall temperature measurements are feasible. Therefore, it is one of the popular research areas in nuclear science and engineering to estimate temperature fluctuations on the inner wall from measurements of outer wall temperatures without damaging the structure of the pipe. In this study, both the one-dimensional (1D) and the two-dimensional (2D) inverse heat conduction problem (IHCP) were solved to estimate the temperature fluctuations on the inner wall. First, numerical models of both the 1D and the 2D direct heat conduction problem (DHCP) were structured in MATLAB, based on the finite difference method with an implicit scheme. Second, both the 1D IHCP and the 2D IHCP were solved by the steepest descent method (SDM), and the DHCP results of temperatures on the outer wall were used to estimate the temperature fluctuations on the inner wall. Third, we compared the temperature fluctuations on the inner wall estimated by the 1D IHCP with those estimated by the 2D IHCP in four cases: (1) when the maximum disturbance of temperature of fluid inside the pipe was 3°C, (2) when the maximum disturbance of temperature of fluid inside the pipe was 30°C, (3) when the maximum disturbance of temperature of fluid inside the pipe was 160°C, and (4) when the fluid temperatures inside the pipe were random from 50°C to 210°C.
Pogozhykh, Denys; Pogozhykh, Olena; Prokopyuk, Volodymyr; Kuleshova, Larisa; Goltsev, Anatoliy; Blasczyk, Rainer; Mueller, Thomas
2017-03-11
Successful implementation of rapidly advancing regenerative medicine approaches has led to high demand for readily available cellular suspensions. In particular, multipotent stromal cells (MSCs) of placental origin have shown therapeutic efficiency in the treatment of numerous pathologies of varied etiology. Up to now, cryopreservation is the only effective way to preserve the viability and unique properties of such cells in the long term. However, practical biobanking is often associated with repeated temperature fluctuations or interruption of a cold chain due to various technical, transportation, and stocking events. While biochemical processes are expected to be suspended during cryopreservation, such temperature fluctuations may lead to accumulation of stress as well as to periodic release of water fractions in the samples, possibly leading to damage during long-term storage. In this study, we performed a comprehensive analysis of changes in cell survival, vital parameters, and differentiation potential, as well as transgene expression of placental MSCs after temperature fluctuations within the liquid nitrogen steam storage, mimicking long-term preservation in practical biobanking, transportation, and temporal storage. It was shown that viability and metabolic parameters of placental MSCs did not significantly differ after temperature fluctuations in the range from -196 °C to -100 °C in less than 20 cycles in comparison to constant temperature storage. However, increasing the temperature range to -80 °C as well as increasing the number of cycles leads to significant lowering of these parameters after thawing. The number of apoptotic changes increases depending on the number of cycles of temperature fluctuations. Besides, adhesive properties of the cells after thawing are significantly compromised in the samples subjected to temperature fluctuations during storage. Differentiation potential of placental MSCs was not compromised after cryopreservation with constant end temperatures or with temperature fluctuations. However, regulation of various genes after cryopreservation procedures significantly varies. Interestingly, transgene expression was not compromised in any of the studied samples. Alterations in structural and functional parameters of placental MSCs after long-term preservation should be considered in practical biobanking due to potential temperature fluctuations in samples. At the same time, differentiation potential and transgene expression are not compromised during studied storage conditions, while variation in gene regulation is observed.
NASA Astrophysics Data System (ADS)
Schwab, Michael; Klaus, Julian; Pfister, Laurent; Weiler, Markus
2015-04-01
Diurnal fluctuations in stream-flow are commonly explained as being triggered by the daily evapotranspiration cycle in the riparian zone, leading to stream flow minima in the afternoon. While this trigger effect must necessarily be constrained by the extent of the growing season of vegetation, we here show evidence of daily stream flow maxima in the afternoon in a small headwater stream during the dormant season. We hypothesize that the afternoon maxima in stream flow are induced by viscosity changes of riparian water that is caused by diurnal temperature variations of the near surface groundwater in the riparian zone. The patterns were observed in the Weierbach headwater catchment in Luxembourg. The catchment is covering an area of 0.45 km2, is entirely covered by forest and is dominated by a schistous substratum. DOC concentration at the outlet of the catchment was measured with the field deployable UV-Vis spectrometer spectro::lyser (scan Messtechnik GmbH) with a high frequency of 15 minutes over several months. Discharge was measured with an ISCO 4120 Flow Logger. During the growing season, stream flow shows a frequently observed diurnal pattern with discharge minima in the afternoon. During the dormant season, a long dry period with daily air temperature amplitudes of around 10 ° C occurred in March and April 2014, with discharge maxima in the afternoon. The daily air temperature amplitude led to diurnal variations in the water temperature of the upper 10 cm of the riparian zone. Higher riparian water temperatures cause a decrease in water viscosity and according to the Hagen-Poiseuille equation, the volumetric flow rate is inversely proportional to viscosity. Based on the Hagen-Poiseuille equation and the viscosity changes of water, we calculated higher flow rates of near surface groundwater through the riparian zone into the stream in the afternoon which explains the stream flow maxima in the afternoon. With the start of the growing season, the viscosity induced diurnal effect is overlain by the stronger influence of evapotranspiration. Diurnal DOC fluctuations show daily maxima in the afternoon. While daily variations in DOC concentrations are often explained by faster in-stream biogeochemical processes during daylight, we here propose that the viscosity effect in the riparian zone could explain the afternoon peaks in DOC concentrations. Our records show that daily water temperature variations and therefore viscosity changes only occur in the near surface parts of the riparian zone, where the DOC concentrations are higher than in deeper parts of the riparian zone. We calculated, that the viscosity induced higher flow rates from the near surface parts of the riparian zone can explain the DOC concentration maxima in the afternoon. As the viscosity effect does not disappear during the growing season but is just smaller than the evapotranspiration effect, the DOC concentration pattern is not changing between the dormant and growing seasons. The different controls of diurnal fluctuations of stream-flow and water quality concentrations need to be carefully considered in order to better understand the different patterns in catchment hydrology.
Adaptation to fluctuations in temperature by nine species of bacteria.
Saarinen, Kati; Laakso, Jouni; Lindström, Leena; Ketola, Tarmo
2018-03-01
Rapid environmental fluctuations are ubiquitous in the wild, yet majority of experimental studies mostly consider effects of slow fluctuations on organism. To test the evolutionary consequences of fast fluctuations, we conducted nine independent experimental evolution experiments with bacteria. Experimental conditions were same for all species, and we allowed them to evolve either in fluctuating temperature alternating rapidly between 20°C and 40°C or at constant 30°C temperature. After experimental evolution, we tested the performance of the clones in both rapid fluctuation and in constant environments (20°C, 30°C and 40°C). Results from experiments on these nine species were combined meta-analytically. We found that overall the clones evolved in the fluctuating environment had evolved better efficiency in tolerating fluctuations (i.e., they had higher yield in fluctuating conditions) than the clones evolved in the constant environment. However, we did not find any evidence that fluctuation-adapted clones would have evolved better tolerance to any measured constant environments (20°C, 30°C, and 40°C). Our results back up recent empirical findings reporting that it is hard to predict adaptations to fast fluctuations using tolerance curves.
Prediction of seasonal water-table fluctuations in La Pampa and Buenos Aires, Argentina
NASA Astrophysics Data System (ADS)
Tanco, Raúl; Kruse, Eduardo
2001-07-01
The fluctuation of the water table east of La Pampa province and northwest of Buenos Aires province, Argentina, influences agricultural production in the region because it is closely related to the alternation of dry and wet periods. Sea-surface temperature (SST) anomalies have been used as predictors to forecast atmospheric variables in different regions of the world. The objective of this work is to present a simple model to forecast seasonal rainfall using SST distribution in the Pacific Ocean as a predictor. Once the relationship between precipitation and water-table fluctuations was established, a methodology for the prediction of water-table fluctuations was developed. A good agreement between observed and predicted water-table fluctuations was found when estimating water-table fluctuations in the summer and autumn seasons. Résumé. Les fluctuations de la nappe à l'est de la province de La Pampa et au nord-ouest de la province de Buenos Aires (Argentine) influence la production agricole de la région parce qu'elle est étroitement liée à l'alternance de saisons sèches et humides. Les anomalies de la température de surface de l'océan (SST) ont été utilisées comme prédicteurs pour prévoir les variables atmosphériques dans différentes régions du monde. L'objectif de ce travail est de présenter un modèle simple de prévision des précipitations saisonnières en utilisant comme prédicteur la distribution des SST dans l'Océan Pacifique. Une fois que la relation entre les fluctuations des précipitations et celles de la nappe a été établie, une méthodologie de prédiction des variations de la nappe a été mise au point. Un bon accord entre les variations de la nappe observées et celles prédites a été trouvé pour les estimations des variations de nappe en été et en automne. Resumen. La fluctuación del nivel freático al este de la provincia de La Pampa y al nordeste de la de Buenos Aires (Argentina) repercute en la producción agrícola de la región, ya que está íntimamente relacionada con la alternancia de períodos secos y húmedos. Se ha utilizado las anomalías de la temperatura superficial del mar (TSM) para predecir las variables atmosféricas en diferentes áreas del mundo. El objetivo de este trabajo es presentar un modelo sencillo para pronosticar la precipitación estacional por medio de la distribución de TSM en el Océano Pacífico. Una vez establecida la relación entre la precipitación y las fluctuaciones del nivel freático, se desarrolló una metodología para predecir las fluctuaciones de éste. Se obtuvo un buen ajuste entre las fluctuaciones predichas y observadas del nivel freático en las estaciones de verano y otoño.
Improved boundary layer heat transfer calculations near a stagnation point
NASA Technical Reports Server (NTRS)
Ahn, Kyung Hwan
1990-01-01
A thermal design of a solar receiver has been developed for the solutions of problems involving phase-change thermal energy storage and natural convection loss. Two dimensional axisymmetrical solidification and melting of materials contained between two concentric cylinders of finite length has been studied for thermal energy storage analysis. For calculation of free convection loss inside receiver cavity, two dimensional axisymmetrical, laminar, transient free convection including radiation effects has been studied using integral/finite difference method. Finite difference equations are derived for the above analysis subject to constant or variable material properties, initial conditions, and boundary conditions. The validity of the analyses has been substantiated by comparing results of the present general method with available analytic solutions or numerical results reported in the literature. Both explicit and implicit schemes are tested in phase change analysis with different number of nodes ranging from 4 to 18. The above numerical methods have been applied to the existing solar receiver analyzing computer code as additional subroutines. The results were computed for one of the proposed Brayton cycle solar receiver models running under the actual environmental conditions. Effect of thermal energy storage on the thermal behavior of the receiver has been estimated. Due to the thermal energy storage, about 65% reduction on working gas outlet temperature fluctuation has been obtained; however, maximum temperature of thermal energy storage containment has been increased about 18%. Also, effect of natural convection inside a receiver cavity on the receiver heat transfer has been analyzed. The finding indicated that thermal stratification occurs during the sun time resulting in higher receiver temperatures at the outlet section of the gas tube, and lower temperatures at the inlet section of the gas tube when compared with the results with no natural convection. Due to heat supply from the air during the shade time, minimum temperature has been increased, while maximum temperature has been reduced due to convection loss to air. Consequently, cyclic temperature fluctuation has been reduced 29% for working gas and 16% for thermal energy storage containment. On the other hand, despite the presence of the natural convection the time-averaged temperatures for receiver components were found to be similar for two cases with/without natural convection (maximum difference was 1.8%).
NASA Astrophysics Data System (ADS)
Aristizábal, María. F.; Fewings, Melanie R.; Washburn, Libe
2017-10-01
In the Santa Barbara Channel, California, and around the Northern Channel Islands, water temperature fluctuations in the diurnal and semidiurnal frequency bands are intermittent, with amplitudes that vary on time scales of days to weeks. The cause of this intermittency is not well understood. We studied the effects of the barotropic tide, vertical stratification, propagation of coastal-trapped waves, regional wind relaxations, and diurnal-band winds on the intermittency of the temperature fluctuations during 1992-2015. We used temperature data from 43 moorings in 10-200 m water depth and wind data from two buoys and one land station. Subtidal-frequency changes in vertical stratification explain 20-40% of the intermittency in diurnal and semidiurnal temperature fluctuations at time scales of days to weeks. Along the mainland north of Point Conception and at the Northern Channel Islands, the relaxation of upwelling-favorable winds substantially increases vertical stratification, accounting for up to 55% of the subtidal-frequency variability in stratification. As a result of the enhanced stratification, wind relaxations enhance the diurnal and semidiurnal temperature fluctuations at those sites, even though the diurnal-band wind forcing decreases during wind relaxation. A linear model where the background stratification is advected vertically explains a substantial fraction of the temperature fluctuations at most sites. The increase of vertical stratification and subsequent increase in diurnal and semidiurnal temperature fluctuations during wind relaxation is a mechanism that can supply nutrients to the euphotic zone and kelp forests in the Channel in summer when upwelling is weak.
Stabilization of composition fluctuations in mixed membranes by hybrid lipids
NASA Astrophysics Data System (ADS)
Safran, Samuel; Palmieri, Benoit
2013-03-01
A ternary mixture model is proposed to describe composition fluctuations in mixed membranes composed of saturated, unsaturated and hybrid lipids. The asymmetric hybrid lipid has one saturated and one unsaturated hydrocarbon chain and it can reduce the packing incompatibility between saturated and unsaturated lipids. A methodology to recast the free-energy of the lattice in terms of a continuous isotropic field theory is proposed and used to analyze composition fluctuations above the critical temperature. The effect of hybrid lipids on fluctuations domains rich in saturated/unsaturated lipids is predicted. The correlation length of such fluctuations decreases significantly with increasing amounts of hybrids even if the temperature is maintained close to the critical temperature. This provides an upper bound for the domain sizes expected in rafts stabilized by hybrids, above the critical temperature. When the hybrid composition of the membrane is increased further, a crossover value is found above which ``stripe-like'' fluctuations are observed. The wavelength of these fluctuations decreases with increasing hybrid fraction and tends toward a molecular size in a membrane that contains only hybrids.
Peng, Jing; Cao, Zhen-Dong; Fu, Shi-Jian
2014-10-01
We investigated the effects of constant and diel-fluctuating temperature acclimation on the thermal tolerance, swimming capacity, specific dynamic action (SDA) and growth performance of juvenile Chinese bream (Parabramis pekinensis). The critical thermal maxima (CTmax), critical thermal minima (CTmin), lethal thermal maxima (LTmax), lethal thermal minima (LTmin), critical swimming speed (Ucrit) and fast-start escape response after 30 d acclimation to three constant temperatures (15, 20 and 25 °C) and one diel-fluctuating temperature (20±5 °C) were measured. In addition, feeding rate (FR), feeding efficiency (FE) and specific growth rate (SGR) were measured. The diel-fluctuating temperature group showed lower CTmin than the 20 °C group but a similar CTmax, indicating a wider thermal scope. SDA linearly increased with the temperature. Temperature variation between 20 and 25 °C had little effect on either swimming or growth performance. However, fish in the 15 °C group exhibited much poorer swimming and growth performance than those in the 20 °C group. Ucrit decreased slightly under low acclimation temperature due to the pronounced improvement in swimming efficiency under cold temperature. Fish in the diel-fluctuating temperature group fed more but exhibited similar SGR compared to 20 °C group, possibly due in part to an increase in energy expenditure to cope with the temperature fluctuation. The narrower thermal scope and lower CTmax of Chinese bream together with the conservation of CTmax with temperature acclimation, suggests that local water temperature elevations may have more profound effects on Chinese bream than on other fish species in the Three Gorges Reservoir. Copyright © 2014 Elsevier Inc. All rights reserved.
Rotational Raman-based temperature measurements in a high-velocity, turbulent jet
NASA Astrophysics Data System (ADS)
Locke, Randy J.; Wernet, Mark P.; Anderson, Robert C.
2018-01-01
Spontaneous rotational Raman scattering spectroscopy is used to acquire measurements of the mean and root mean square (rms) temperature fluctuations in turbulent, high-velocity heated jets. Raman spectra in air were obtained across a matrix of radial and axial locations downstream from a 50 mm diameter nozzle operating from subsonic to supersonic conditions over a wide range of temperatures and Mach numbers, in accordance with the Tanna matrix frequently used in jet noise studies. These data were acquired in the hostile, high noise (115 dB) environment of a large scale open air test facility at NASA Glenn Research Center (GRC). Temperature estimates were determined by performing non-linear least squares fitting of the single shot spectra to the theoretical rotational Stokes spectra of N2 and O2. The laser employed in this study was a high energy, long-pulsed, frequency doubled Nd:YAG laser. One thousand single-shot spectra were acquired at each spatial coordinate. Mean temperature and rms temperature variations were calculated at each measurement location. Excellent agreement between the averaged and single-shot temperatures was observed with an accuracy better than 2.5% for temperature, and rms variations in temperature between ±2.2% at 296 K and ±4.5% at 850 K. The mean and normalized rms temperatures measured here were then compared to NASA’s Consensus data set of PIV velocity and turbulence measurements in similar jet flows. The results of this and planned follow-on studies will support NASA GRC’s development of physics-based jet noise prediction, turbulence modeling and aeroacoustic source modeling codes.
Moisture buffer capacity of cement-lime plasters with enhanced thermal storage capacity
NASA Astrophysics Data System (ADS)
Fořt, Jan; Pavlíková, Milena; Pavlík, Zbyšek
2017-07-01
Indoor air temperature and relative humidity represent important parameters for health and working efficiency of buildings occupants. Beside the moderation of temperature, investigation of hygric properties of building materials with connection to indoor relative humidity variation became recognized as a relevant factor for energy efficient building maintenance. The moisture buffer value introduced in the Nordtest protocol can be used for estimation of moisture buffer capacity of building materials or their multi-layered systems. In this paper, both the ideal and real moisture buffer values are examined on the basis of simulation of diurnal relative humidity fluctuations in plasters with incorporated PCM admixture. Retrieved data points to a complex effect of the tested plasters on possible moderation of buildings interior climate.
Seasonal variation of cold-induced vasooscillation on rabbit ear central artery
NASA Astrophysics Data System (ADS)
Takeoka, Michiko
1990-09-01
We studied the seasonal variation of vasooscillation of a rabbit ear central artery induced by exposure of the earlobes to-7°C liquid. The data were collected over a period of 10 years and analyzed by month. a) The index of arterial temperature fluctuation (IATF) i.e., activation index of cold-induced vasooscillatior (CIVO), ranged from 114.5±26.7 (mean±SE) in January to 386.7±36.1 in June. A significant variation over all 12 months was revealed by analysis of variance ( P<0.01). The values measured in May (317.1±47.3), June (386.7±36.1), and July (315.1±36.0) were significantly larger than those of other months. b) The monthly IATFs were correlated with the open air temperatures ( r=0.7017, P<0.05); however, the peak IATF occurred in June, while the peak open air temperature was in August. c) There was no seasonal variation of the arterial temperature either before or at 18 20 min after-7°C immersion. Arterial temperature was not related to IATF during-7°C exposure. d) When measuring-site temperature was steady, the thermistor temperature changed in parallel with the output from a laser blood volume meter. e) The CIVO was independent of systemic blood pressure and heart rate, which suggested that the occurrence of CIVO was regulated by changes in local vascular resistance.
NASA Astrophysics Data System (ADS)
Grzybowski, H.; Mosdorf, R.
2016-09-01
The temperature fluctuations occurring in flow boiling in parallel minichannels with diameter of 1 mm have been experimentally investigated and analysed. The wall temperature was recorded at each minichannel outlet by thermocouple with 0.08 mm diameter probe. The time series where recorded during dynamic two-phase flow instabilities which are accompanied by chaotic temperature fluctuations. Time series were denoised using wavelet decomposition and were analysed using cross recurrence plots (CRP) which enables the study of two time series synchronization.
Comparison between S. T. radar and in situ balloon measurements
NASA Technical Reports Server (NTRS)
Dalaudier, F.; Barat, J.; Bertin, F.; Brun, E.; Crochet, M.; Cuq, F.
1986-01-01
A campaign for simultaneous in situ and remote observation of both troposphere and stratosphere took place near Aire-sur-l'Adour (in southeastern France) on May 4, 1984. The aim of this campaign was a better understanding of the physics of radar echoes. The backscattered signal obtained with a stratosphere-troposphere radar both at the vertical and 15 deg. off vertical is compared with the velocity and temperature measurements made in the same region (about 10 km north of the radar site) by balloon-borne ionic anenometers and temperature sensors. In situ measurements clearly indicate that the temperature fluctuations are not always consistent with the standard turbulent theory. Nevertheless, the assumptions generally made (isotropy and turbulent field in k) and the classical formulation so derived for radar reflectivity are able to reproduce the shape of the radar return power profiles in oblique directions. Another significant result is the confirmation of the role played by the atmospheric stratification in the vertical echo power. It is important to develop these simultaneous in situ and remote experiments for a better description of the dynamical and thermal structure of the atmosphere and for a better understanding of the mechanisms governing clear-air radar reflectivity.
Time dependent heat transfer rates in high Reynolds number hypersonic flowfields
NASA Technical Reports Server (NTRS)
Flanagan, Michael J.
1992-01-01
Time dependent heat transfer rates have been calculated from time dependent temperature measurements in the vicinity of shock-wave boundary-layer interactions due to conical compression ramps on an axisymmetric body. The basic model is a cylindrical body with a 10 degree conical nose. Four conical ramps, 20, 25, 30, and 35 degrees serve as shock wave generators. Flowfield surveys have been made in the vicinity of the conical ramp vertex, the separation point, and the reattachment point. A significant effort was made to characterize the natural frequencies and relative powers of the resulting fluctuations in heat transfer rates. This research effort, sponsored jointly by NASA and the Air Force, was conducted in the Air Force Flight Dynamics Directorate High Reynolds Facility. The nominal freestream Mach number was 6, and the freestream Reynolds numbers ranged from 2.2 million/ft to 30.0 million/ft. Experimental results quantify temperature response and the resulting heat transfer rates as a function of ramp angle and Reynolds number. The temperature response within the flowfield appears to be steady-state for all compression ramp angles and all Reynolds numbers, and hence, the heat transfer rates appear to be steady-state.
Time dependent heat transfer rates in high Reynolds number hypersonic flowfields
NASA Astrophysics Data System (ADS)
Flanagan, Michael J.
1992-09-01
Time dependent heat transfer rates have been calculated from time dependent temperature measurements in the vicinity of shock-wave boundary-layer interactions due to conical compression ramps on an axisymmetric body. The basic model is a cylindrical body with a 10 degree conical nose. Four conical ramps, 20, 25, 30, and 35 degrees serve as shock wave generators. Flowfield surveys have been made in the vicinity of the conical ramp vertex, the separation point, and the reattachment point. A significant effort was made to characterize the natural frequencies and relative powers of the resulting fluctuations in heat transfer rates. This research effort, sponsored jointly by NASA and the Air Force, was conducted in the Air Force Flight Dynamics Directorate High Reynolds Facility. The nominal freestream Mach number was 6, and the freestream Reynolds numbers ranged from 2.2 million/ft to 30.0 million/ft. Experimental results quantify temperature response and the resulting heat transfer rates as a function of ramp angle and Reynolds number. The temperature response within the flowfield appears to be steady-state for all compression ramp angles and all Reynolds numbers, and hence, the heat transfer rates appear to be steady-state.
NASA Astrophysics Data System (ADS)
Berman, N. S.; Fernando, H. J. S.; Colomer, J.; Levy, M.; Zieren, L.
1997-11-01
In order to extend our understanding of the thermally driven atmospheric winds and their influence on pollutant transport, a hot air balloon experiment was conducted over a four day period in June, 1997 near Nogales, Arizona. The focus was on the early morning break-up of the stable down-slope and down-valley flow and the establishment of a convective boundary layer near the surface in the absence of synoptic winds. Temperature, elevation, position and particulate matter concentration were measured aloft and temperature gradient and wind velocity were measured at ground level. The wind velocity within the stable layer was generally less than 1.5 m/s. Just above the stable layer (about 300 meters above the valley) the wind shifted leading to an erosion of the stable layer from above. Surface heating after sunrise created a convective layer which rose from the ground until the stable layer was destroyed. Examples of temperature fluctuation measurements at various elevations during the establishment of the convective flow will be presented. Implications of results for turbulence parameterizations needed for numerical models of wind fields in complex terrain will be discussed.
Airborne pollen and spores of León (Spain)
NASA Astrophysics Data System (ADS)
Fernández-González, Delia; Suarez-Cervera, María; Díaz-González, Tomás; Valencia-Barrera, Rosa María
1993-06-01
A qualitative and quantitative analysis of airborne pollen and spores was carried out over 2 years (from September 1987 to August 1989) in the city of León. Slides were prepared daily using a volumetric pollen trap, which was placed on the Faculty of Veterinary Science building (University of León) 12m above ground-level. Fifty-one pollen types were observed; the most important of these were: Cupressaceae during the winter, Pinus and Quercus in spring, and Poaceae, Leguminosae and Chenopodiaceae in the summer. The results also showed the existence of a rich mould spore assemblage in the atmosphere. The group of Amerospores ( Penicillium, Aspergillus and Cladosporium) as well as Dictyospores ( Alternaria) were the most abundant; Puccinia was common in the air in August. Fluctuations in the total pollen and spores m3 of air were compared with meteorological parameters (temperature, relative humidity and rainfall). From the daily sampling of the atmosphere of León, considering the maximum and minimum temperature and duration of rainfall, the start of the pollen grain season was observed generally to coincide with a rise in temperature in the absence of rain.
Dual-Pump CARS Temperature and Species Concentration Measurements in a Supersonic Combustor
NASA Technical Reports Server (NTRS)
O'Byrne, S.; Danehy, P. M.; Tedder, S. A.; Cutler, A. D.
2007-01-01
The dual-pump coherent anti-Stokes Raman scattering (CARS) method was used to measure temperature and the mole fractions of N2 and O2 in a supersonic combustor. Experiments were conducted in NASA Langley Research Center s Direct Connect Supersonic Combustion Test Facility. In this facility, H2 and oxygen-enriched air burn to increase the enthalpy of the simulated air test gas. This gas is expanded through a Mach 2 nozzle and into a combustor model consisting of a short constant-area section followed by a small rearward-facing step and another constant-area section. At the end of this straight section, H2 fuel is injected at Mach 2 and at a 30 angle with respect to the freestream. One wall of the duct then expands at a 3 angle for over 1 meter. The ensuing combustion is probed optically through ports in the side of the combustor. Dual-pump CARS measurements were performed at the facility nozzle exit and at four planes downstream of fuel injection. Maps are presented of the mean temperature, as well as N2 and O2 mean mole fraction fields. Correlations between fluctuations of the different measured parameters are also presented.
[Monitoring of brightness temperature fluctuation of water in SHF range].
Ivanov, Yu D; Kozlov, A F; Galiullin, R A; Tatu, V Yu; Vesnin, S G; Ziborov, V S; Ivanova, N D; Pleshakova, T O
2017-01-01
The purpose of the research consisted in detection of fluctuation of brightness temperature (TSHF) of water in the area of the temperature Т = 42°С (that is critical for human) during its evaporation by SHF radiometry. Methods: Monitoring of the changes in brightness temperature of water in superhigh frequency (SHF) range (3.8-4.2 GHz) near the phase transition temperature of water Т = 42°С during its evaporation in the cone dielectric cell. The brightness temperature measurements were carried out using radiometer. Results: Fluctuation with maximum of brightness temperature was detected in 3.8-4.2 GHz frequency range near at the temperature of water Т = 42°С. It was characteristic for these TSHF fluctuations that brightness temperature rise time in this range of frequencies in ~4°С temperature range with 0.05-15°С/min gradient and a sharp decrease during 10 s connected with measuring vapor conditions. Then nonintensive fluctuation series was observed. At that, the environment temperature remained constant. Conclusion: The significant increasing in brightness temperature of water during its evaporation in SHF range near the temperature of Т ~42°С were detected. It was shown that for water, ТSHF pull with the amplitude DТSHF ~4°C are observed. At the same time, thermodynamic temperature virtually does not change. The observed effects can be used in the development of the systems for diadnostics of pathologies in human and analytical system.
Survival of Apache Trout eggs and alevins under static and fluctuating temperature regimes
Recsetar, Matthew S.; Bonar, Scott A.
2013-01-01
Increased stream temperatures due to global climate change, livestock grazing, removal of riparian cover, reduction of stream flow, and urbanization will have important implications for fishes worldwide. Information exists that describes the effects of elevated water temperatures on fish eggs, but less information is available on the effects of fluctuating water temperatures on egg survival, especially those of threatened and endangered species. We tested the posthatch survival of eyed eggs and alevins of Apache Trout Oncorhynchus gilae apache, a threatened salmonid, in static temperatures of 15, 18, 21, 24, and 27°C, and also in treatments with diel fluctuations of ±3°C around those temperatures. The LT50 for posthatch survival of Apache Trout eyed eggs and alevins was 17.1°C for static temperatures treatments and 17.9°C for the midpoints of ±3°C fluctuating temperature treatments. There was no significant difference in survival between static temperatures and fluctuating temperatures that shared the same mean temperature, yet there was a slight difference in LT50s. Upper thermal tolerance of Apache Trout eyed eggs and alevins is much lower than that of fry to adult life stages (22–23°C). Information on thermal tolerance of early life stages (eyed egg and alevin) will be valuable to those restoring streams or investigating thermal tolerances of imperiled fishes.
Indoor air quality at the Correr Museum, Venice, Italy.
Camuffo, D; Brimblecombe, P; Van Grieken, R; Busse, H J; Sturaro, G; Valentino, A; Bernardi, A; Blades, N; Shooter, D; De Bock, L; Gysels, K; Wieser, M; Kim, O
1999-09-15
Two multidisciplinary field surveys, one in winter and the other in summer have monitored the indoor microclimate, air pollution, deposition and origin of the suspended particulate matter and microorganisms of the Correr Museum, Venice. In addition, this study was focused to identify the problems caused by the heating and air conditioning system (HAC) and the effects due to the presence of carpets. Heating and air conditioning systems (HACs), when chiefly designed for human welfare, are not suitable for conservation and can cause dangerous temperature and humidity fluctuations. Improvements at the Correr Museum have been achieved with the assistance of environmental monitoring. The carpet has a negative influence as it retains particles and bacteria which are resuspended each time people walk on it. The indoor/outdoor pollutants ratio is greater in the summertime, when doors and windows are more frequently open to allow for better ventilation, illustrating that this ratio is mainly governed by the free exchange of the air masses. The chemical composition, size and origin of the suspended particulate matter have been identified, as well as the bacteria potentially dangerous to the paintings. Some general suggestions for improving indoor air quality are reported in the conclusions.
Ketola, Tarmo; Mikonranta, Lauri; Zhang, Ji; Saarinen, Kati; Ormälä, Anni-Maria; Friman, Ville-Petri; Mappes, Johanna; Laakso, Jouni
2013-10-01
Environmental fluctuations can select for generalism, which is also hypothesized to increase organisms' ability to invade novel environments. Here, we show that across a range of temperatures, opportunistic bacterial pathogen Serratia marcescens that evolved in fluctuating temperature (daily variation between 24°C and 38°C, mean 31°C) outperforms the strains that evolved in constant temperature (31°C). The growth advantage was also evident in novel environments in the presence of parasitic viruses and predatory protozoans, but less clear in the presence of stressful chemicals. Adaptation to fluctuating temperature also led to reduced virulence in Drosophila melanogaster host, which suggests that generalism can still be costly in terms of reduced fitness in other ecological contexts. While supporting the hypothesis that evolution of generalism is coupled with tolerance to several novel environments, our results also suggest that thermal fluctuations driven by the climate change could affect both species' invasiveness and virulence. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Analysis of TIMS performance subjected to simulated wind blast
NASA Technical Reports Server (NTRS)
Jaggi, S.; Kuo, S.
1992-01-01
The results of the performance of the Thermal Infrared Multispectral Scanner (TIMS) when it is subjected to various wind conditions in the laboratory are described. Various wind conditions were simulated using a 24 inch fan or combinations of air jet streams blowing toward either or both of the blackbody surfaces. The fan was used to simulate a large volume of air flow at moderate speeds (up to 30 mph). The small diameter air jets were used to probe TIMS system response in reaction to localized wind perturbations. The maximum nozzle speed of the air jet was 60 mph. A range of wind directions and speeds were set up in the laboratory during the test. The majority of the wind tests were conducted under ambient conditions with the room temperature fluctuating no more than 2 C. The temperature of the high speed air jet was determined to be within 1 C of the room temperature. TIMS response was recorded on analog tape. Additional thermistor readouts of the blackbody temperatures and thermocouple readout of the ambient temperature were recorded manually to be compared with the housekeeping data recorded on the tape. Additional tests were conducted under conditions of elevated and cooled room temperatures. The room temperature was varied between 19.5 to 25.5 C in these tests. The calibration parameters needed for quantitative analysis of TIMS data were first plotted on a scanline-by-scanline basis. These parameters are the low and high blackbody temperature readings as recorded by the TIMS and their corresponding digitized count values. Using these values, the system transfer equations were calculated. This equation allows us to compute the flux for any video count by computing the slope and intercept of the straight line that relates the flux to the digital count. The actual video of the target (the lab floor in this case) was then compared with a simulated target. This simulated target was assumed to be a blackbody at emissivity of .95 degrees and the temperature was assumed to be at ambient temperature as recorded by the TIMS for each scanline. Using the slope and the intercept the flux corresponding to this target was converted into digital counts. The counts were observed to have a strong correlation with the actual video as recorded by the TIMS. The attached graphs describe the performance of the TIMS when compressed air is blown at each one of the blackbodies at different speeds. The effect of blowing a fan and changing the room temperature is also being analyzed. Results indicate that the TIMS system responds to variation in wind speed in real time and maintains the capability to produce accurate temperatures on a scan line basis.
Rotational Raman-Based Temperature Measurements in a High-Velocity Turbulent Jet
NASA Technical Reports Server (NTRS)
Locke, Randy J.; Wernet, Mark P.; Anderson, Robert C.
2017-01-01
Spontaneous rotational Raman scattering spectroscopy is used to acquire the first ever high quality, spatially-resolved measurements of the mean and root mean square (rms) temperature fluctuations in turbulent, high-velocity heated jets. Raman spectra in air were obtained across a matrix of radial and axial locations downstream from a 50 mm diameter nozzle operating from subsonic to supersonic conditions over a wide range of temperatures and Mach numbers, in accordance with the Tanna matrix frequently used in jet noise studies. These data were acquired in the hostile, high noise (115 dB) environment of a large scale open air test facility at NASA Glenn Research Center (GRC). Temperature estimates were determined by performing nonlinear least squares fitting of the single shot spectra to the theoretical rotational Stokes spectra of N2 and O2, using a custom in-house code developed specifically for this investigation. The laser employed in this study was a high energy, long-pulsed, frequency doubled Nd:YAG laser. One thousand single-shot spectra were acquired at each spatial coordinate. Mean temperature and rms temperature variations were calculated at each measurement location. Excellent agreement between the averaged and single-shot temperatures was observed with an accuracy better than 2.5 percent for temperature, and rms variations in temperature between +/-2.2 percent at 296 K and +/-4.5 percent at 850 K. The results of this and planned follow-on studies will support NASA GRC's development of physics-based jet noise prediction, turbulence modeling and aeroacoustic source modeling codes.
Quantifying climate changes of the Common Era for Finland
NASA Astrophysics Data System (ADS)
Luoto, Tomi P.; Nevalainen, Liisa
2017-10-01
In this study, we aim to quantify summer air temperatures from sediment records from Southern, Central and Northern Finland over the past 2000 years. We use lake sediment archives to estimate paleotemperatures applying fossil Chironomidae assemblages and the transfer function approach. The used enhanced Chironomidae-based temperature calibration set was validated in a 70-year high-resolution sediment record against instrumentally measured temperatures. Since the inferred and observed temperatures showed close correlation, we deduced that the new calibration model is reliable for reconstructions beyond the monitoring records. The 700-year long temperature reconstructions from three sites at multi-decadal temporal resolution showed similar trends, although they had differences in timing of the cold Little Ice Age (LIA) and the initiation of recent warming. The 2000-year multi-centennial reconstructions from three different sites showed resemblance with each other having clear signals of the Medieval Climate Anomaly (MCA) and LIA, but with differences in their timing. The influence of external forcing on climate of the southern and central sites appeared to be complex at the decadal scale, but the North Atlantic Oscillation (NAO) was closely linked to the temperature development of the northern site. Solar activity appears to be synchronous with the temperature fluctuations at the multi-centennial scale in all the sites. The present study provides new insights into centennial and decadal variability in air temperature dynamics in Northern Europe and on the external forcing behind these trends. These results are particularly useful in comparing regional responses and lags of temperature trends between different parts of Scandinavia.
Assessing Near-surface Heat, Water Vapor and Carbon Dioxide Exchange Over a Coastal Salt-marsh
NASA Astrophysics Data System (ADS)
Bogoev, I.; O'Halloran, T. L.; LeMoine, J.
2017-12-01
Coastal ecosystems play an important role in mitigating the effects of climate change by storing significant quantities of carbon. A growing number of studies suggest that vegetated estuarine habitats, specifically salt marshes, have high long-term rates of carbon sequestration, perhaps even higher than mature tropical and temperate forests. Large amounts of carbon, accumulated over thousands of years, are stored in the plant materials and sediment. Improved understanding of the factors that control energy and carbon exchange is needed to better guide restoration and conservation management practices. To that end, we recently established an observation system to study marsh-atmosphere interactions within the North Inlet-Winyah Bay National Estuarine Research Reserve. Near-surface fluxes of heat, water vapor (H2O) and carbon dioxide (CO2) were measured by an eddy-covariance system consisting of an aerodynamic open-path H2O / CO2 gas analyzer with a spatially integrated 3D sonic anemometer/thermometer (IRGASON). The IRGASON instrument provides co-located and highly synchronized, fast response H2O, CO2 and air- temperature measurements, which eliminates the need for spectral corrections associated with the separation between the sonic anemometer and the gas analyzer. This facilitates calculating the instantaneous CO2 molar mixing ratio relative to dry air. Fluxes computed from CO2 and H2O mixing ratios, which are conserved quantities, do not require post-processing corrections for air-density changes associated with temperature and water vapor fluctuations. These corrections are particularly important for CO2, because they could be even larger than the measured flux. Here we present the normalized frequency spectra of air temperature, water vapor and CO2, as well as their co-spectra with the co-located vertical wind. We also show mean daily cycles of sensible, latent and CO2 fluxes and analyze correlations with air/water temperature, wind speed and light availability.
Reaction of wood radius of multiple tree species to changing environmental conditions
NASA Astrophysics Data System (ADS)
Merganicova, Katarina; Merganic, Jan; Sitkova, Zuzana; Lestianska, Adriana; Strelcova, Katarina; Valent, Peter; Jezik, Marek
2017-04-01
Dendrometers are frequently used to study the radial dynamics of forest trees. Since the fluctuations of tree stem radius are caused by multiple factors including changes in tree water status and the actual tree growth, the methods used to derive the radial growth from dendrometer data provide us with the estimates of diurnal radial increments rather than their precise values. In addition, dendrometers react to environmental conditions themselves, which can in some cases cause misinterpretation of measured values. In the presented study we aimed at analysing the reaction of band dendrometers and wood radius of 7 different tree species on changing environmental conditions. The data come from a controlled experiment performed in the climate chambers, in which we placed 5 stand-alone dendrometers and 30 wooden pieces representing 7 different tree species equipped with band dendrometers. Air temperature and air humidity were controlled inside the chambers and their impact on wood radius and dendrometers was analysed. The results showed that both wooden pieces and dendrometers reacted to changes in air temperature and air humidity, while the reaction was species specific and dependent on the actual water status of wooden pieces. The overall trend of measured radial changes of wooden pieces followed the changes in temperature, i.e. the increase in temperature caused the increase in the measured radii. The change in air humidity explained less than 50% of the variation in radial measurements. The obtained results indicate that although the band dendrometers applied in the study were able to measure values with the precision of one micrometre, the differences between the measurements of up to ten micrometres need not represent the actual changes in stem radius, but may only reflect the reactions of the instrument to surrounding conditions. Hence, the measurements by dendrometers must always be examined thoroughly with regard to all the multiple effects before any conclusions based on them are stated.
Abaturov, L V; Nosova, N G
2007-01-01
The studies by IR spectroscopy of the temperature dependence of the H-D exchange rate of the RNase A peptide NH atoms permit one to characterize two types of conformation fluctuations, local and global. A comparison with the temperature dependence of the proteolytic degradation rate of RNase A shows that similar in nature fluctuations allow for the H-D exchange of NH atoms and the splitting of peptide bonds of the native protein. In the low temperature region, both processes occur through local fluctuations, by way of the EX2 mechanism, and in the high temperature region, they occur through global fluctuations with the overall denaturation desorganization of the native structure, by way of the EX1 mechanism. The biphasic dependence of the rate of H-D exchange and proteolytic degradation of RNase A on urea concentration is also explained by the combination of local and global fluctuations.
Influence of climate on malaria transmission depends on daily temperature variation.
Paaijmans, Krijn P; Blanford, Simon; Bell, Andrew S; Blanford, Justine I; Read, Andrew F; Thomas, Matthew B
2010-08-24
Malaria transmission is strongly influenced by environmental temperature, but the biological drivers remain poorly quantified. Most studies analyzing malaria-temperature relations, including those investigating malaria risk and the possible impacts of climate change, are based solely on mean temperatures and extrapolate from functions determined under unrealistic laboratory conditions. Here, we present empirical evidence to show that, in addition to mean temperatures, daily fluctuations in temperature affect parasite infection, the rate of parasite development, and the essential elements of mosquito biology that combine to determine malaria transmission intensity. In general, we find that, compared with rates at equivalent constant mean temperatures, temperature fluctuation around low mean temperatures acts to speed up rate processes, whereas fluctuation around high mean temperatures acts to slow processes down. At the extremes (conditions representative of the fringes of malaria transmission, where range expansions or contractions will occur), fluctuation makes transmission possible at lower mean temperatures than currently predicted and can potentially block transmission at higher mean temperatures. If we are to optimize control efforts and develop appropriate adaptation or mitigation strategies for future climates, we need to incorporate into predictive models the effects of daily temperature variation and how that variation is altered by climate change.
NASA Astrophysics Data System (ADS)
Kube, R.; Garcia, O. E.; Theodorsen, A.; Brunner, D.; Kuang, A. Q.; LaBombard, B.; Terry, J. L.
2018-06-01
The Alcator C-Mod mirror Langmuir probe system has been used to sample data time series of fluctuating plasma parameters in the outboard mid-plane far scrape-off layer. We present a statistical analysis of one second long time series of electron density, temperature, radial electric drift velocity and the corresponding particle and electron heat fluxes. These are sampled during stationary plasma conditions in an ohmically heated, lower single null diverted discharge. The electron density and temperature are strongly correlated and feature fluctuation statistics similar to the ion saturation current. Both electron density and temperature time series are dominated by intermittent, large-amplitude burst with an exponential distribution of both burst amplitudes and waiting times between them. The characteristic time scale of the large-amplitude bursts is approximately 15 μ {{s}}. Large-amplitude velocity fluctuations feature a slightly faster characteristic time scale and appear at a faster rate than electron density and temperature fluctuations. Describing these time series as a superposition of uncorrelated exponential pulses, we find that probability distribution functions, power spectral densities as well as auto-correlation functions of the data time series agree well with predictions from the stochastic model. The electron particle and heat fluxes present large-amplitude fluctuations. For this low-density plasma, the radial electron heat flux is dominated by convection, that is, correlations of fluctuations in the electron density and radial velocity. Hot and dense blobs contribute only a minute fraction of the total fluctuation driven heat flux.
Stream-aquifer interactions in the Straight River area, Becker and Hubbard counties, Minnesota
Stark, J.R.; Armstrong, David S.; Zwilling, Daniel R.
1994-01-01
Daily fluctuations of stream temperature are as great as 15 degrees Celsius during the summer, primarily in response to changes in air temperature. Ground-water discharge to the Straight River decreases stream temperature during the summer. Results of simulations from a stream-temperature model indicate that daily changes in stream temperature are strongly influenced by solar radiation, wind speed, stream depth, and ground-water inflow. Results of simulations from ground-water-flow and stream-temperature models developed for the investigation indicate a significant decrease in ground-water flow could result from ground-water withdrawal at rates similar to those measured during 1988. This reduction in discharge to the stream could result in an increase in stream temperature of 0.5 to 1.5 degrees Celsius. Nitrate concentrations in shallow wells screened at the water table, in some areas, are locally greater than the limit set by the Minnesota Pollution Control Agency. Nitrate concentrations in water from deeper wells and in the stream are low, generally less than 1.0 milligram per liter.
Hall, D.K.; Williams, R.S.; Casey, K.A.; DiGirolamo, N.E.; Wan, Z.
2006-01-01
Mean, clear-sky surface temperature of the Greenland Ice Sheet was measured for each melt season from 2000 to 2005 using Moderate-Resolution Imaging Spectroradiometer (MODIS)–derived land-surface temperature (LST) data-product maps. During the period of most-active melt, the mean, clear-sky surface temperature of the ice sheet was highest in 2002 (−8.29 ± 5.29°C) and 2005 (−8.29 ± 5.43°C), compared to a 6-year mean of −9.04 ± 5.59°C, in agreement with recent work by other investigators showing unusually extensive melt in 2002 and 2005. Surface-temperature variability shows a correspondence with the dry-snow facies of the ice sheet; a reduction in area of the dry-snow facies would indicate a more-negative mass balance. Surface-temperature variability generally increased during the study period and is most pronounced in the 2005 melt season; this is consistent with surface instability caused by air-temperature fluctuations.
Campbell, W.B.; Emlen, J.M.; Hershberger, W.K.
1998-01-01
Developmental stability, or homeostasis, facilitates the production of consistent phenotypes by buffering against stress. Fluctuating asymmetry is produced by developmental instability and is manifested as small random departures from bilateral symmetry. Increased fluctuating asymmetry is thought to parallel compromised fitness, in part, because stress promotes energy dissipation. Compensatory energy expenditures within the organism are required to complete development, thus promoting instability through reductions in homeostasis. Increased heterozygosity may enhance developmental stability by reducing energy dissipation from stress through increased metabolic efficiency, possibly by providing greater flexibility in metabolic pathways. Traditionally, fluctuating asymmetry has been used as a bioindicator of chronic stress, provided that selective mortality of less fit individuals did not reduce stress-mediated increases in fluctuating asymmetry to background levels produced by natural developmental error, or create data inconsistencies such as higher asymmetry in groups exposed to lower stress. Unfortunately, absence of selective mortality and its effects, while often assumed, can be difficult to substantiate. We integrated measures of early growth, mortality, fluctuating asymmetry (mandibular pores, pectoral finrays, pelvic finrays, and gillrakers on the upper and lower arms of the first branchial arch) and directional asymmetry (branchiostegal rays) to assess chronic thermal stress (fluctuating temperatures as opposed to ambient temperatures) in developing eggs from two different coho salmon (Oncorhynchus kisutch) stocks and their reciprocal hybrids. Hybridization provided insight on the capacity of heterozygosity to reduce stress during development. Although egg losses were consistently higher in crosses exposed to fluctuating temperatures, egg mortality was predominantly a function of maternal stock of origin. Post-hatch losses were higher in crosses exposed to ambient temperatures than in crosses exposed to fluctuating temperatures during embryogenesis. Observed patterns of early growth revealed no heterosis, but instead reflected maternal effects, with some crosses slowing growth and yolk utilization when exposed to fluctuating temperatures. Analyses of fluctuating asymmetry also showed no effects from heterosis. While analyses of composite asymmetry scores and branchiostegal rays were inconclusive, analyses of individual characters showed significantly higher fluctuating asymmetry in pelvic finray counts and a marginal change in the numbers of fish asymmetric for this character in crosses exposed to chronic thermal stress. In contrast, the fluctuating asymmetry in lower gillraker counts was significantly higher in crosses exposed to ambient temperatures and there were significantly more fish asymmetric for this character. Data on mortalities and fluctuating asymmetry indicate pelvic finray development was thermally stressed, while the heightened fluctuating asymmetry in lower gillraker counts under ambient temperatures was due to a greater frequency of less fit fish that had not been culled by thermal stress. Changes in early growth patterns in response to developmental stress yielded no parallel responses in meristic characters. We conclude that chronic thermal stress produced both selectively lethal and sublethal effects that directly shaped fluctuating asymmetry and fitness profiles in these crosses. Implicit in this conclusion is that developmental instability analyses can detect more than just chronic sublethal stress, thus providing substantial credence for using instability studies as proactive bioassessment methodologies.
Tentative detection of clear-air turbulence using a ground-based Rayleigh lidar.
Hauchecorne, Alain; Cot, Charles; Dalaudier, Francis; Porteneuve, Jacques; Gaudo, Thierry; Wilson, Richard; Cénac, Claire; Laqui, Christian; Keckhut, Philippe; Perrin, Jean-Marie; Dolfi, Agnès; Cézard, Nicolas; Lombard, Laurent; Besson, Claudine
2016-05-01
Atmospheric gravity waves and turbulence generate small-scale fluctuations of wind, pressure, density, and temperature in the atmosphere. These fluctuations represent a real hazard for commercial aircraft and are known by the generic name of clear-air turbulence (CAT). Numerical weather prediction models do not resolve CAT and therefore provide only a probability of occurrence. A ground-based Rayleigh lidar was designed and implemented to remotely detect and characterize the atmospheric variability induced by turbulence in vertical scales between 40 m and a few hundred meters. Field measurements were performed at Observatoire de Haute-Provence (OHP, France) on 8 December 2008 and 23 June 2009. The estimate of the mean squared amplitude of bidimensional fluctuations of lidar signal showed excess compared to the estimated contribution of the instrumental noise. This excess can be attributed to atmospheric turbulence with a 95% confidence level. During the first night, data from collocated stratosphere-troposphere (ST) radar were available. Altitudes of the turbulent layers detected by the lidar were roughly consistent with those of layers with enhanced radar echo. The derived values of turbulence parameters Cn2 or CT2 were in the range of those published in the literature using ST radar data. However, the detection was at the limit of the instrumental noise and additional measurement campaigns are highly desirable to confirm these initial results. This is to our knowledge the first successful attempt to detect CAT in the free troposphere using an incoherent Rayleigh lidar system. The built lidar device may serve as a test bed for the definition of embarked CAT detection lidar systems aboard airliners.
Inferring frail life expectancies in Chicago from daily fluctuations in elderly mortality.
Murray, Christian J; Lipfert, Frederick W
2013-07-01
Susceptible sub-populations with existing disease have exhibited stronger relationships between air quality and mortality in time-series studies, but their associated life expectancies have largely been overlooked. Murray and Nelson developed a new time-series model that estimated a small unobserved (frail) sub-population and their resulting life expectancies in Philadelphia, including environment relationships. As a further example in a different geographic area, we used this model with 1987-2000 daily mortality data in Chicago and found a stable frail population at risk of ∼900 persons with a mean life expectancy of ∼11 days; fewer than two daily deaths were associated with air pollution. We considered daily concentrations of CO, NO₂, O₃, PM₁₀ and SO₂, and found PM₁₀ and O₃ to have stronger associations with frail mortality. Our estimates of life expectancy and air pollution and temperature relationships are similar to those found in other studies that used different methods. Temperature was more important than air pollution during the 1995 heat wave, when mortality risks increased dramatically after 2 d exposure and life expectancies decreased to 3-5 d. Modeling this event separately had substantial effects on lagged mortality--air pollution relationships and the population at risk. The premises of the Murray-Nelson model were supported by simultaneously considering an additional subgroup of non-frail individuals; they contributed only ∼1% of total elderly deaths. We conclude that frail life expectancies estimated by the Murray-Nelson model are robust, and that under these conditions non-frail persons have little risk of acute mortality, with or without contributions from air pollution.
Long-range correlation in cosmic microwave background radiation.
Movahed, M Sadegh; Ghasemi, F; Rahvar, Sohrab; Tabar, M Reza Rahimi
2011-08-01
We investigate the statistical anisotropy and gaussianity of temperature fluctuations of Cosmic Microwave Background (CMB) radiation data from the Wilkinson Microwave Anisotropy Probe survey, using the Multifractal Detrended Fluctuation Analysis, Rescaled Range, and Scaled Windowed Variance methods. Multifractal Detrended Fluctuation Analysis shows that CMB fluctuations has a long-range correlation function with a multifractal behavior. By comparing the shuffled and surrogate series of CMB data, we conclude that the multifractality nature of the temperature fluctuation of CMB radiation is mainly due to the long-range correlations, and the map is consistent with a gaussian distribution.
Modeling turbulent/chemistry interactions using assumed pdf methods
NASA Technical Reports Server (NTRS)
Gaffney, R. L, Jr.; White, J. A.; Girimaji, S. S.; Drummond, J. P.
1992-01-01
Two assumed probability density functions (pdfs) are employed for computing the effect of temperature fluctuations on chemical reaction. The pdfs assumed for this purpose are the Gaussian and the beta densities of the first kind. The pdfs are first used in a parametric study to determine the influence of temperature fluctuations on the mean reaction-rate coefficients. Results indicate that temperature fluctuations significantly affect the magnitude of the mean reaction-rate coefficients of some reactions depending on the mean temperature and the intensity of the fluctuations. The pdfs are then tested on a high-speed turbulent reacting mixing layer. Results clearly show a decrease in the ignition delay time due to increases in the magnitude of most of the mean reaction rate coefficients.
Because the rate of isoprene (2-methyl-1,3-butadiene) emission from plants is highly temperature-dependent, we investigated the natural fluctuations on leaf temperature and the effects of rapid temperature change on isoprene emission of red oak (Quercus rubra L.) leaves at the to...
Maxwell's Demon at work: Two types of Bose condensate fluctuations in power-law traps.
Grossmann, S; Holthaus, M
1997-11-10
After discussing the idea underlying the Maxwell's Demon ensemble, we employ this ensemble for calculating fluctuations of ideal Bose gas condensates in traps with power-law single-particle energy spectra. Two essentially different cases have to be distinguished. If the heat capacity is continuous at the condensation point, the fluctuations of the number of condensate particles vanish linearly with temperature, independent of the trap characteristics. In this case, microcanonical and canonical fluctuations are practically indistinguishable. If the heat capacity is discontinuous, the fluctuations vanish algebraically with temperature, with an exponent determined by the trap, and the micro-canonical fluctuations are lower than their canonical counterparts.
Romeijn, Nico; Verweij, Ilse M; Koeleman, Anne; Mooij, Anne; Steimke, Rosa; Virkkala, Jussi; van der Werf, Ysbrand; Van Someren, Eus J W
2012-12-01
Vigilance is affected by induced and spontaneous skin temperature fluctuations. Whereas sleep deprivation strongly affects vigilance, no previous study examined in detail its effect on human skin temperature fluctuations and their association with vigilance. In a repeated-measures constant routine design, skin temperatures were assessed continuously from 14 locations while performance was assessed using a reaction time task, including eyes-open video monitoring, performed five times a day for 2 days, after a normal sleep or sleep deprivation night. Participants were seated in a dimly lit, temperature-controlled laboratory. Eight healthy young adults (five males, age 22.0 ± 1.8 yr (mean ± standard deviation)). One night of sleep deprivation. Mixed-effect regression models were used to evaluate the effect of sleep deprivation on skin temperature gradients of the upper (ear-mastoid), middle (hand-arm), and lower (foot-leg) body, and on the association between fluctuations in performance and in temperature gradients. Sleep deprivation induced a marked dissociation of thermoregulatory skin temperature gradients, indicative of attenuated heat loss from the hands co-occurring with enhanced heat loss from the feet. Sleep deprivation moreover attenuated the association between fluctuations in performance and temperature gradients; the association was best preserved for the upper body gradient. Sleep deprivation disrupts coordination of fluctuations in thermoregulatory skin temperature gradients. The dissociation of middle and lower body temperature gradients may therefore be evaluated as a marker for sleep debt, and the upper body gradient as a possible aid in vigilance assessment when sleep debt is unknown. Importantly, our findings suggest that sleep deprivation affects the coordination between skin blood flow fluctuations and the baroreceptor-mediated cardiovascular regulation that prevents venous pooling of blood in the lower limbs when there is the orthostatic challenge of an upright posture.
How two types of fluctuating temperature affect the growth of Fusarium solani
Keith F. Jensen; Phillip E. Reynolds
1969-01-01
Growth of six isolates of Fusarium solani on potato dextrose agar was determined with (1) continually changing temperature programs, (2) programs consisting of two alternating constant temperatures, and (3) a constant temperature program. All programs had a mean of 70º F. Growth increased with an increase in temperature fluctuation of 10 or...
Time-Resolved Rayleigh Scattering Measurements in Hot Gas Flows
NASA Technical Reports Server (NTRS)
Mielke, Amy F.; Elam, Kristie A.; Sung, Chih-Jen
2008-01-01
A molecular Rayleigh scattering technique is developed to measure time-resolved gas velocity, temperature, and density in unseeded gas flows at sampling rates up to 32 kHz. A high power continuous-wave laser beam is focused at a point in an air flow field and Rayleigh scattered light is collected and fiber-optically transmitted to the spectral analysis and detection equipment. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. Photomultipler tubes operated in the photon counting mode allow high frequency sampling of the circular interference pattern to provide time-resolved flow property measurements. Mean and rms velocity and temperature fluctuation measurements in both an electrically-heated jet facility with a 10-mm diameter nozzle and also in a hydrogen-combustor heated jet facility with a 50.8-mm diameter nozzle at NASA Glenn Research Center are presented.
Ko, Young Joon; Kim, Dong Yeong; Won, Sung Sik; Ahn, Chang Won; Kim, Ill Won; Kingon, Angus I; Kim, Seung-Hyun; Ko, Jae-Hyeon; Jung, Jong Hoon
2016-03-01
In spite of extremely high piezoelectric and pyroelectric coefficients, there are few reports on flexible ferroelectric perovskite film based nanogenerators (NGs). Here, we report the successful growth of a flexible Pb(Zr0.52Ti0.48)O3 (PZT) film and its application to hybrid piezoelectric-pyroelectric NG. A highly flexible Ni-Cr metal foil substrate with a conductive LaNiO3 bottom electrode enables the growth of flexible PZT film having high piezoelectric (140 pC/N) and pyroelectric (50 nC/cm(2)K) coefficients at room temperature. The flexible PZT-based NG effectively scavenges mechanical vibration and thermal fluctuation from sources ranging from the human body to the surroundings such as wind. Furthermore, it stably generates electric current even at elevated temperatures of 100 °C, relative humidity of 70%, and pH of 13 by virtue of its high Curie temperature and strong resistance for water and base. As proof of power generation under harsh environments, we demonstrate the generation of extremely high current at the exhaust pipe of a car, where hot CO and CO2 gases are rapidly expelled to air. This work expands the application of flexible PZT film-based NG for the scavenging mechanical vibration and thermal fluctuation energies even at extreme conditions.
Germann, Anja; Oh, Young-Joo; Schmidt, Tomm; Schön, Uwe; Zimmermann, Heiko; von Briesen, Hagen
2013-10-01
The ability to analyze cryopreserved peripheral blood mononuclear cell (PBMC) from biobanks for antigen-specific immunity is necessary to evaluate response to immune-based therapies. To ensure comparable assay results, collaborative research in multicenter trials needs reliable and reproducible cryopreservation that maintains cell viability and functionality. A standardized cryopreservation procedure is comprised of not only sample collection, preparation and freezing but also low temperature storage in liquid nitrogen without any temperature fluctuations, to avoid cell damage. Therefore, we have developed a storage approach to minimize suboptimal storage conditions in order to maximize cell viability, recovery and T-cell functionality. We compared the influence of repeated temperature fluctuations on cell health from sample storage, sample sorting and removal in comparison to sample storage without temperature rises. We found that cyclical temperature shifts during low temperature storage reduce cell viability, recovery and immune response against specific-antigens. We showed that samples handled under a protective hood system, to avoid or minimize such repeated temperature rises, have comparable cell viability and cell recovery rates to samples stored without any temperature fluctuations. Also T-cell functionality could be considerably increased with the use of the protective hood system compared to sample handling without such a protection system. This data suggests that the impact of temperature fluctuation on cell integrity should be carefully considered in future clinical vaccine trials and consideration should be given to optimal sample storage conditions. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Petrie, Matthew; Wildeman, A.M.; Bradford, John B.; Hubbard, R.M.; Lauenroth, W.K.
2016-01-01
The persistence of ponderosa pine and lodgepole pine forests in the 21st century depends to a large extent on how seedling emergence and establishment are influenced by driving climate and environmental variables, which largely govern forest regeneration. We surveyed the literature, and identified 96 publications that reported data on dependent variables of seedling emergence and/or establishment and one or more independent variables of air temperature, soil temperature, precipitation and moisture availability. Our review suggests that seedling emergence and establishment for both species is highest at intermediate temperatures (20 to 25 °C), and higher precipitation and higher moisture availability support a higher percentage of seedling emergence and establishment at daily, monthly and annual timescales. We found that ponderosa pine seedlings may be more sensitive to temperature fluctuations whereas lodgepole pine seedlings may be more sensitive to moisture fluctuations. In a changing climate, increasing temperatures and declining moisture availability may hinder forest persistence by limiting seedling processes. Yet, only 23 studies in our review investigated the effects of driving climate and environmental variables directly. Furthermore, 74 studies occurred in a laboratory or greenhouse, which do not often replicate the conditions experienced by tree seedlings in a field setting. It is therefore difficult to provide strong conclusions on how sensitive emergence and establishment in ponderosa and lodgepole pine are to these specific driving variables, or to investigate their potential aggregate effects. Thus, the effects of many driving variables on seedling processes remain largely inconclusive. Our review stresses the need for additional field and laboratory studies to better elucidate the effects of driving climate and environmental variables on seedling emergence and establishment for ponderosa and lodgepole pine.
A new simple compact refractometer applied to measurements of air density fluctuations
NASA Astrophysics Data System (ADS)
Fang, H.; Juncar, P.
1999-07-01
We describe a new simple, compact refractometer for air refractive index measurements. It consists of a double plane-plane Fabry Perot interferometer. Both interferometers consisting of Zerodur spacers of thickness of 1 and 100 mm are illuminated independently by the same single mode laser diode. The shorter cavity allows unambiguous identification of the transmission peak of the longer one to which the laser frequency is servo-locked. The refractive index of air is obtained via a heterodyne comparison with a second laser locked to a hyperfine component of the rubidium D2 line. We obtain a resolution of order 10-10 and accuracy of a few times 10-8. The metrological characteristics of the interferometer in vacuum are presented. Initial results for refractive index measurements agree with values calculated using the revised Edlen formulas. We also describe how this refractometer is used to measure variations of the density of air and their correlation with changes of refractive index of air. The density of air is used to make buoyancy corrections when comparing mass standards of different volume. Our preliminary results indicate that the values of air density determined by refractometry agree with those calculated using the Comité International des Poids et Mesures formula, which is based on measurements of temperature, pressure, moisture content, and CO2 concentration.
Fuel Temperature Fluctuations During Storage
NASA Astrophysics Data System (ADS)
Levitin, R. E.; Zemenkov, Yu D.
2016-10-01
When oil and petroleum products are stored, their temperature significantly impacts how their properties change. The paper covers the problem of determining temperature fluctuations of hydrocarbons during storage. It provides results of the authors’ investigations of the stored product temperature variations relative to the ambient temperature. Closeness and correlation coefficients between these values are given. Temperature variations equations for oil and petroleum products stored in tanks are deduced.
Prediction of Turbulent Temperature Fluctuations in Hot Jets
NASA Technical Reports Server (NTRS)
DeBonis, James R.
2017-01-01
Large-eddy simulations (LES) were used to investigate turbulent temperature fluctuations and turbulent heat flux in hot jets. A high-resolution finite-difference Navier-Stokes solver was used to compute the flow from a 2-inch round nozzle. Three different flow conditions of varying jet Mach numbers and temperature ratios were examined. The LES results showed that the temperature field behaves similar to the velocity field, but with a more rapidly spreading mixing layer. Predictions of mean, mu-bar(sub i), and fluctuating, mu'(sub i), velocities were compared to particle image velocimetry data. Predictions of mean, T-bar, and fluctuating, T', temperature were compared to data obtained using Rayleigh scattering and Raman spectroscopy. Very good agreement with experimental data was demonstrated for the mean and fluctuating velocities. The LES correctly predicts the behavior of the turbulent temperature field, but over-predicts the levels of the fluctuations. The turbulent heat flux was examined and compared to Reynolds-averaged Navier-Stokes (RANS) results. The LES and RANS simulations produced very similar results for the radial heat flux. However, the axial heat flux obtained from the LES differed significantly from the RANS result in both structure and magnitude, indicating that the gradient diffusion type model in RANS is inadequate. Finally, the LES data was used to compute the turbulent Prandtl number and verify that a constant value of 0.7 used in the RANS models is a reasonable assumption.
Brine Convection, Temperature Fluctuations, and Permeability in Winter Antarctic Land-Fast Sea Ice
NASA Astrophysics Data System (ADS)
Wongpan, P.; Hughes, K. G.; Langhorne, P. J.; Smith, I. J.
2018-01-01
Vertical temperature strings are used in sea ice research to study heat flow, ice growth rate, and ocean-ice-atmosphere interaction. We demonstrate the feasibility of using temperature fluctuations as a proxy for fluid movement, a key process for supplying nutrients to Antarctic sea ice algal communities. Four strings were deployed in growing, land-fast sea ice in McMurdo Sound, Antarctica. By smoothing temperature data with the robust LOESS method, we obtain temperature fluctuations that cannot be explained by insolation or atmospheric heat loss. Statistical distributions of these temperature fluctuations are investigated with sensitivities to the distance from the ice-ocean interface, average ice temperature, and sea ice structure. Fluctuations are greatest close to the base (<50 mm) at temperatures >-3°C, and are discrete events with an average active period of 43% compared to 11% when the ice is colder (-3°C to -5°C). Assuming fluctuations occur when the Rayleigh number, derived from mushy layer theory, exceeds a critical value of 10 we approximate the harmonic mean permeability of this thick (>1 m) sea ice in terms of distance from the ice-ocean interface. Near the base, we obtain values in the same range as those measured by others in Arctic spring and summer. The permeability between the ice-ocean interface and 0.05 ± 0.04 m above it is of order 10-9 m2. Columnar and incorporated platelet ice permeability distributions in the bottom 0.1 m of winter Antarctic sea ice are statistically significantly different although their arithmetic means are indistinguishable.
2013-01-01
The rate of any chemical reaction or process occurring in the brain depends on temperature. While it is commonly believed that brain temperature is a stable, tightly regulated homeostatic parameter, it fluctuates within 1–4 °C following exposure to salient arousing stimuli and neuroactive drugs, and during different behaviors. These temperature fluctuations should affect neural activity and neural functions, but the extent of this influence on neurochemical measurements in brain tissue of freely moving animals remains unclear. In this Review, we present the results of amperometric evaluations of extracellular glutamate and glucose in awake, behaving rats and discuss how naturally occurring fluctuations in brain temperature affect these measurements. While this temperature contribution appears to be insignificant for glucose because its extracellular concentrations are large, it is a serious factor for electrochemical evaluations of glutamate, which is present in brain tissue at much lower levels, showing smaller phasic fluctuations. We further discuss experimental strategies for controlling the nonspecific chemical and physical contributions to electrochemical currents detected by enzyme-based biosensors to provide greater selectivity and reliability of neurochemical measurements in behaving animals. PMID:23448428
NASA Technical Reports Server (NTRS)
Lahav, N.; White, D.; Chang, S.
1978-01-01
As geologically relevant models of prebiotic environments, systems consisting of clay, water, and amino acids were subjected to cyclic variations in temperature and water content. Fluctuations of both variables produced longer oligopeptides in higher yields than were produced by temperature fluctuations alone. The results suggest that fluctuating environments provided a favorable geological setting in which the rate and extent of chemical evolution would have been determined by the number and frequency of cycles.
Magnetic Field Effects on the Fluctuation Corrections to the Sound Attenuation in Liquid ^3He
NASA Astrophysics Data System (ADS)
Zhao, Erhai; Sauls, James A.
2002-03-01
We investigated the effect of a magnetic field on the excess sound attenuation due to order parameter fluctuations in bulk liquid ^3He and liquid ^3He in aerogel for temperatures just above the corresponding superfluid transition temperatures. The fluctuation corrections to the acoustic attenuation are sensitive to magnetic field pairbreaking, aerogel scattering as well as the spin correlations of fluctuating pairs. Calculations of the corrections to the zero sound velocity, δ c_0, and attenuation, δα_0, are carried out in the ladder approximation for the singular part of the quasiparticle-quasiparticle scattering amplitude(V. Samalam and J. W. Serene, Phys. Rev. Lett. \\underline41), 497 (1978). as a function of frequency, temperature, impurity scattering and magnetic field strength. The magnetic field suppresses the fluctuation contributions to the attenuation of zero sound. With increasing magnetic field the temperature dependence of δα_0(t) crosses over from δα_0(t) ~√ t to δα_0(t) ~ t, where t=T/Tc -1 is the reduced temperature.
Uetake, Katsuji; Une, Yumi; Ito, Shu; Yamabe, Marino; Toyoda, Hideto; Tanaka, Toshio
2014-10-01
To assess the stress level of cheetahs reared in Japan and to identify the prime components of the climatic conditions that affect their thermal stress, fecal corticosterone was monitored for 8 months from May to the following January. A total of 203 fecal samples were gathered in the morning from seven adult cheetahs that were kept at a zoological garden in Wakayama, Japan. Cheetahs were on exhibit singly or together with a harmonious conspecific during the day, but housed singly at night. Although the monthly fluctuation in corticosterone concentrations was not significant, the concentrations were relatively low during the summer season. Individual differences among cheetahs and the interaction effect between individual and month on the corticosterone concentrations were significant. Whereas the corticosterone concentrations negatively correlated with air temperature, they were positively correlated with the amount of rainfall. The highest air temperature and the amount of rainfall were extracted as the prime factors affecting corticosterone concentrations. These results suggest that cheetahs reared in Japan are somewhat subjected to thermal stress, particularly on cooler and/or rainy days. © 2014 Japanese Society of Animal Science.
Singh, Dharminder; Yadav, Sanjeev; Rajesh, V M; Mohanty, Pravakar
2018-05-24
This work was focused on finding the groundnut shell (GNS) gasification performance in a fluidized bed gasifier with bubbling air as gasification medium. GNS in powder form (a mixture of different particle size as given in table 8 in the article) was gasified using naturally available river sand as bed material, top of the bed feeding, conventional charcoal as bed heating medium, and two cyclones for proper cleaning and cooling the product gas. Experiments were performed using different operating conditions such as equivalence ratio (ER) between 0.29 and 0.33, bed temperature between 650°C and 800°C, and feedstock feeding rate between 36 and 31.7 kg/h. Different parameters were evaluated to study the gasifier performance such as gas yield, cold gas efficiency, carbon conversion efficiency (CCE), and high heating value. The most suitable ER value was found to be 0.31, giving the most stable bed temperature profile at 714.4°C with 5-10% fluctuation. Cold gas efficiency and CCE at optimal ER of 0.31 was found to be 71.8% and 91%, respectively.
Sea ice radar signatures from ERS-1 SAR during late Summer and Fall in the Beaufort and Chukchi Seas
NASA Technical Reports Server (NTRS)
Holt, Benjamin; Cunningham, Glenn; Kwok, Ron
1993-01-01
A study which examines ERS-1 C band SAR (Synthetic Aperture Radar) imagery of sea ice obtained in the Beaufort and Chukchi Seas from mid Summer through Fall freeze up and early Winter in 1991 is presented. Radar backscatter statistics of sea ice were obtained from the imagery, using common floes tracked through consecutive repeat images whenever possible. During the Summer months, strong fluctuations in ice signatures of several dB are observed over 2 to 3 day periods, which are found to be closely related to air temperature excursions above and below freezing that alters the phase of the ice surface. As air temperatures drop steadily below freezing in the Fall, the signatures of the pack ice increase in brightness and become more stable with time. Multiyear ice is distinguished from rough and smooth first year ice. There are also variations in the multiyear signatures with latitude. Large variations are seen in new ice and open water contained within leads which results in ambiguous classification.
Computational Study of Near-limit Propagation of Detonation in Hydrogen-air Mixtures
NASA Technical Reports Server (NTRS)
Yungster, S.; Radhakrishnan, K.
2002-01-01
A computational investigation of the near-limit propagation of detonation in lean and rich hydrogen-air mixtures is presented. The calculations were carried out over an equivalence ratio range of 0.4 to 5.0, pressures ranging from 0.2 bar to 1.0 bar and ambient initial temperature. The computations involved solution of the one-dimensional Euler equations with detailed finite-rate chemistry. The numerical method is based on a second-order spatially accurate total-variation-diminishing (TVD) scheme, and a point implicit, first-order-accurate, time marching algorithm. The hydrogen-air combustion was modeled with a 9-species, 19-step reaction mechanism. A multi-level, dynamically adaptive grid was utilized in order to resolve the structure of the detonation. The results of the computations indicate that when hydrogen concentrations are reduced below certain levels, the detonation wave switches from a high-frequency, low amplitude oscillation mode to a low frequency mode exhibiting large fluctuations in the detonation wave speed; that is, a 'galloping' propagation mode is established.
Remote atmospheric probing by ground to ground line of sight optical methods
NASA Technical Reports Server (NTRS)
Lawrence, R. S.
1969-01-01
The optical effects arising from refractive-index variations in the clear air are qualitatively described, and the possibilities are discussed of using those effects for remotely sensing the physical properties of the atmosphere. The effects include scintillations, path length fluctuations, spreading of a laser beam, deflection of the beam, and depolarization. The physical properties that may be measured include the average temperature along the path, the vertical temperature gradient, and the distribution along the path of the strength of turbulence and the transverse wind velocity. Line-of-sight laser beam methods are clearly effective in measuring the average properties, but less effective in measuring distributions along the path. Fundamental limitations to the resolution are pointed out and experiments are recommended to investigate the practicality of the methods.
Universal inverse power-law distribution for temperature and rainfall in the UK region
NASA Astrophysics Data System (ADS)
Selvam, A. M.
2014-06-01
Meteorological parameters, such as temperature, rainfall, pressure, etc., exhibit selfsimilar space-time fractal fluctuations generic to dynamical systems in nature such as fluid flows, spread of forest fires, earthquakes, etc. The power spectra of fractal fluctuations display inverse power-law form signifying long-range correlations. A general systems theory model predicts universal inverse power-law form incorporating the golden mean for the fractal fluctuations. The model predicted distribution was compared with observed distribution of fractal fluctuations of all size scales (small, large and extreme values) in the historic month-wise temperature (maximum and minimum) and total rainfall for the four stations Oxford, Armagh, Durham and Stornoway in the UK region, for data periods ranging from 92 years to 160 years. For each parameter, the two cumulative probability distributions, namely cmax and cmin starting from respectively maximum and minimum data value were used. The results of the study show that (i) temperature distributions (maximum and minimum) follow model predicted distribution except for Stornowy, minimum temperature cmin. (ii) Rainfall distribution for cmin follow model predicted distribution for all the four stations. (iii) Rainfall distribution for cmax follows model predicted distribution for the two stations Armagh and Stornoway. The present study suggests that fractal fluctuations result from the superimposition of eddy continuum fluctuations.
NASA Technical Reports Server (NTRS)
Smith, M.
1972-01-01
Fluctuations in electron density and temperature coupled through Ohm's law are studied for an ionizable medium. The nonlinear effects are considered in the limit of a third order quasi-linear treatment. Equations are derived for the amplitude of the fluctuation. Conditions under which a steady state can exist in the presence of the fluctuation are examined and effective transport properties are determined. A comparison is made to previously considered second order theory. The effect of third order terms indicates the possibility of fluctuations existing in regions predicted stable by previous analysis.
Twentieth century bipolar seesaw of the Arctic and Antarctic surface air temperatures
NASA Astrophysics Data System (ADS)
Chylek, Petr; Folland, Chris K.; Lesins, Glen; Dubey, Manvendra K.
2010-04-01
Understanding the phase relationship between climate changes in the Arctic and Antarctic regions is essential for our understanding of the dynamics of the Earth's climate system. In this paper we show that the 20th century de-trended Arctic and Antarctic temperatures vary in anti-phase seesaw pattern - when the Arctic warms the Antarctica cools and visa versa. This is the first time that a bi-polar seesaw pattern has been identified in the 20th century Arctic and Antarctic temperature records. The Arctic (Antarctic) de-trended temperatures are highly correlated (anti-correlated) with the Atlantic Multi-decadal Oscillation (AMO) index suggesting the Atlantic Ocean as a possible link between the climate variability of the Arctic and Antarctic regions. Recent accelerated warming of the Arctic results from a positive reinforcement of the linear warming trend (due to an increasing concentration of greenhouse gases and other possible forcings) by the warming phase of the multidecadal climate variability (due to fluctuations of the Atlantic Ocean circulation).
Liu, Yupeng; Yu, Deyong; Su, Yun; Hao, Ruifang
2014-12-01
Climate change comprises three fractions of trend, fluctuation, and extreme event. Assessing the effect of climate change on terrestrial ecosystem requires an understanding of the action mechanism of these fractions, respectively. This study examined 11 years of remotely sensed-derived net primary productivity (NPP) to identify the impacts of the trend and fluctuation of climate change as well as extremely low temperatures caused by a freezing disaster on ecosystem productivity in Hunan province, China. The partial least squares regression model was used to evaluate the contributions of temperature, precipitation, and photosynthetically active radiation (PAR) to NPP variation. A climatic signal decomposition and contribution assessment model was proposed to decompose climate factors into trend and fluctuation components. Then, we quantitatively evaluated the contributions of each component of climatic factors to NPP variation. The results indicated that the total contribution of the temperature, precipitation, and PAR to NPP variation from 2001 to 2011 in Hunan province is 85 %, and individual contributions of the temperature, precipitation, and PAR to NPP variation are 44 % (including 34 % trend contribution and 10 % fluctuation contribution), 5 % (including 4 % trend contribution and 1 % fluctuation contribution), and 36 % (including 30 % trend contribution and 6 % fluctuation contribution), respectively. The contributions of temperature fluctuation-driven NPP were higher in the north and lower in the south, and the contributions of precipitation trend-driven NPP and PAR fluctuation-driven NPP are higher in the west and lower in the east. As an instance of occasionally triggered disturbance in 2008, extremely low temperatures and a freezing disaster produced an abrupt decrease of NPP in forest and grass ecosystems. These results prove that the climatic trend change brought about great impacts on ecosystem productivity and that climatic fluctuations and extreme events can also alter the ecosystem succession process, even resulting in an alternative trajectory. All of these findings could improve our understanding of the impacts of climate change on the provision of ecosystem functions and services and can also provide a basis for policy makers to apply adaptive measures to overcome the unfavorable influence of climate change.
Alternating-Current Equipment for the Measurement of Fluctuations of Air Speed in Turbulent Flow
NASA Technical Reports Server (NTRS)
Mock, W C , Jr
1937-01-01
Recent electrical and mechanical improvements have been made in the equipment developed at the National Bureau of Standards for measurement of fluctuations of air speed in turbulent flow. Data useful in the design of similar equipment are presented. The design of rectified alternating-current power supplies for such apparatus is treated briefly, and the effect of the power supplies on the performance of the equipment is discussed.
Intraseasonal Characteristics Of North Atlantic Oscillation
NASA Astrophysics Data System (ADS)
Bojariu, R.; Gimeno, L..; de La Torre, L.; Nieto, R.
There is evidence of a temporal structure of regional response to the NAO variability in the cold season (e.g. NAO-related climate fluctuations reveal their strongest signal in January). To document the details of NAO intraseasonal characteristics we anal- ysed surface and upper air variables (air surface temperature, sea-ice concentration, sea surface temperature, and sea level pressure and geopotential heights at 700 hPa level) in individual months, from November to April. The data consist of 40 years of monthly reanalyses (1961-2000) extracted from the NCAR-NCEP data set. In ad- dition, snow cover data are used (monthly snow cover frequencies from the Climate Prediction Centre and number of days with snow cover from the Former Soviet Union Hydrological Snow Surveys available at the National Snow and Ice Data Centre). A NAO-related signal with predictive potential has been identified in November air surface temperature over Europe and SLP and geopotential heights over Eurasia. Neg- ative thermal anomalies over the Central Europe and positive geopotential anomalies at 700 hPa over a latitudinal belt from Arabic Peninsula to Pacific Ocean are associated with a high NAO index in the following winter. The November thermal anomalies that seem to be related to the NAO interannual persistence are also linked with the fluctu- ations of snow cover over Europe. Both tropical and high latitude influences may play a role in the onset of the November signal and in further NAO development.
[Rainfall effects on the sap flow of Hedysarum scoparium.
Yang, Qiang; Zha, Than Shan; Jia, Xin; Qin, Shu Gao; Qian, Duo; Guo, Xiao Nan; Chen, Guo Peng
2016-03-01
In arid and semi-arid areas, plant physiological responses to water availability depend largely on the intensity and frequency of rain events. Knowledge on the responses of xerophytic plants to rain events is important for predicting the structure and functioning of dryland ecosystems under changing climate. The sap flow of Hedysarum scoparium in the Mu Us Sand Land was continuously measured during the growing season of 2012 and 2013. The objectives were to quantify the dynamics of sap flow under different weather conditions, and to examine the responses of sap flow to rain events of different sizes. The results showed that the daily sap flow rates of H. scoparium were lower on rainy days than on clear days. On clear days, the sap flow of H. scoparium showed a midday plateau, and was positively correlated with solar radiation and relative humidity. On rainy days, the sap flow fluctuated at low levels, and was positively correlated with solar radiation and air temperature. Rain events not only affected the sap flow on rainy days through variations in climatic factors (e.g., solar radiation and air temperature), but also affected post-rainfall sap flow velocities though changes in soil moisture. Small rain events (<20 mm) did not change the sap flow, whereas large rain events (>20 mm) significantly increased the sap flow on days following rainfall. Rain-wetted soil conditions not only resulted in higher sap flow velocities, but also enhanced the sensitivity of sap flow to solar radiation, vapor pressure deficit and air temperature.
Effects of Anode Arc Root Fluctuation on Coating Quality During Plasma Spraying
NASA Astrophysics Data System (ADS)
An, Lian-Tong; Gao, Yang; Sun, Chengqi
2011-06-01
To obtain a coating of high quality, a new type of plasma torch was designed and constructed to increase the stability of the plasma arc and reduce the air entrainment into the plasma jet. The torch, called bi-anode torch, generates an elongated arc with comparatively high arc voltage and low arc fluctuation. Spraying experiments were carried out to compare the quality of coatings deposited by a conventional torch and a bi-anode torch. Alumina coatings and tungsten carbide coatings were prepared to appraise the heating of the sprayed particles in the plasma jets and the entrainment of the surrounding air into the plasma jets, respectively. The results show that anode arc root fluctuation has only a small effect on the melting rate of alumina particles. On the other hand, reduced air entrainment into the plasma jet of the bi-anode torch will drastically reduce the decarbonization of tungsten carbide coatings.
Advection from the North Atlantic as the Forcing of Winter Greenhouse Effect Over Europe
NASA Technical Reports Server (NTRS)
Otterman, J.; Angell, J.; Atlas, R.; Bungato, D.; Shubert, S.; Starr, David OC.; Susskind, J.; Wu, M.-L. C.
2002-01-01
In winter, large interannual fluctuations in the surface temperature are observed over central Europe. Comparing warm February 1990 with cold February 1996, a satellite-retrieved surface (skin) temperature difference of 9.8 K is observed for the region 50-60 degrees N; 5-35 degrees E. Previous studies show that advection from the North Atlantic constitutes the forcing to such fluctuations. The advection is quantified by Index I(sub na), the average of the ocean-surface wind speed over the eastern North Atlantic when the direction is from the southwest (when the wind is from another direction, it counts as a zero speed to the average). Average I(sub na) for February 1990 was 10.6 m/s, but for February 1996 I(sub na) was only 2.4 m/s. A large value of I(sub na) means a strong southwesterly flow which brings warm and moist air into central Europe at low level, producing a steeper tropospheric lapse rate. Strong ascending motions at 700 mb are observed in association with the occurrence of enhanced warm, moist advection from the ocean in February 1990 producing clouds and precipitation. Total precipitable water and cloud-cover fraction have larger values in February 1990 than in 1996. The difference in the greenhouse effect between these two scenarios, this reduction in heat loss to space, can be translated into a virtual radiative heating of 2.6 W/square m above the February 1990 surface/atmosphere system, which contributes to a warming of the surface on the order of 2.6 K. Accepting this estimate as quantitatively meaningful, we evaluate the direct effect, the rise in the surface temperature in Europe as a result of maritime-air inflow, as 7.2 K (9.8 K-2.6 K). Thus, fractional reinforcement by the greenhouse effect is 2.6/7.2, or 36%, a substantial positive feedback.
Secondary ionization in a flat universe
NASA Technical Reports Server (NTRS)
Atrio-Barandela, F.; Doroshkevich, A. G.
1994-01-01
We analyze the effect of a secondary ionization on the evolution of temperature fluctuations in cosmic background radiation. The main results presented in this paper are appropriate analytic expressions of the transfer function relating temperature fluctuations to matter density perturbations at recombination for all possible recombination histories. Furthermore, we particularize our calculation to the standard cold dark matter model, where we study the erasure of primordial temperature fluctuations and calculate the magnitude and angular scale of the damping induced by a late recombination.
Dayananda, Buddhi; Gray, Sarah; Pike, David; Webb, Jonathan K
2016-07-01
Communal nesting lizards may be vulnerable to climate warming, particularly if air temperatures regulate nest temperatures. In southeastern Australia, velvet geckos Oedura lesueurii lay eggs communally inside rock crevices. We investigated whether increases in air temperatures could elevate nest temperatures, and if so, how this could influence hatching phenotypes, survival, and population dynamics. In natural nests, maximum daily air temperature influenced mean and maximum daily nest temperatures, implying that nest temperatures will increase under climate warming. To determine whether hotter nests influence hatchling phenotypes, we incubated eggs under two fluctuating temperature regimes to mimic current 'cold' nests (mean = 23.2 °C, range 10-33 °C) and future 'hot' nests (27.0 °C, 14-37 °C). 'Hot' incubation temperatures produced smaller hatchlings than did cold temperature incubation. We released individually marked hatchlings into the wild in 2014 and 2015, and monitored their survival over 10 months. In 2014 and 2015, hot-incubated hatchlings had higher annual mortality (99%, 97%) than cold-incubated (11%, 58%) or wild-born hatchlings (78%, 22%). To determine future trajectories of velvet gecko populations under climate warming, we ran population viability analyses in Vortex and varied annual rates of hatchling mortality within the range 78- 96%. Hatchling mortality strongly influenced the probability of extinction and the mean time to extinction. When hatchling mortality was >86%, populations had a higher probability of extinction (PE: range 0.52- 1.0) with mean times to extinction of 18-44 years. Whether future changes in hatchling survival translate into reduced population viability will depend on the ability of females to modify their nest-site choices. Over the period 1992-2015, females used the same communal nests annually, suggesting that there may be little plasticity in maternal nest-site selection. The impacts of climate change may therefore be especially severe on communal nesting species, particularly if such species occupy thermally challenging environments. © 2016 John Wiley & Sons Ltd.
Westby, K. M.
2015-01-01
Biotic and abiotic factors change seasonally and impact life history in temperate-zone ectotherms. Temperature and photoperiod are factors that change in predictable ways. Most studies testing for effects of temperature on vectors use constant temperatures and ignore potential correlated effects of photoperiod. In two experiments, we tested for effects of larval rearing environments creating ecologically relevant temperatures and photoperiods simulating early and late season conditions (June and August), or constant temperatures (cool and warm) with the June or August photoperiods, respectively. We determined effects on survivorship, development, size, and a composite performance index in a temperate-zone population of Aedes triseriatus (Say). We followed cohorts of resulting females, all held under the same environmental conditions, to assess carry-over effects of rearing conditions for larvae on longevity, blood feeding, and egg production. Larval survivorship was affected by treatment in one experiment. Development time was greater in the June and cool treatments, but the constant and fluctuating temperatures did not differ. Significantly larger mosquitoes were produced in fluctuating versus constant temperature treatments. There were no significant treatment effects on the composite performance index. Adult female longevity was lower after rearing at constant versus fluctuating temperature, but there was no difference between June and August, nor did size affect longevity. There was no effect of treatments on blood feeding and a limited effect on egg production. We conclude that seasonal temperatures and photoperiods during development have limited effects on this population of A. triseriatus and find little evidence of strong effects of fluctuating versus constant temperatures. PMID:26336255
Detecting temperature fluctuations at equilibrium.
Dixit, Purushottam D
2015-05-21
The Gibbs and the Boltzmann definition of temperature agree only in the macroscopic limit. The ambiguity in identifying the equilibrium temperature of a finite-sized 'small' system exchanging energy with a bath is usually understood as a limitation of conventional statistical mechanics. We interpret this ambiguity as resulting from a stochastically fluctuating temperature coupled with the phase space variables giving rise to a broad temperature distribution. With this ansatz, we develop the equilibrium statistics and dynamics of small systems. Numerical evidence using an analytically tractable model shows that the effects of temperature fluctuations can be detected in the equilibrium and dynamical properties of the phase space of the small system. Our theory generalizes statistical mechanics to small systems relevant in biophysics and nanotechnology.
NASA Astrophysics Data System (ADS)
Ausloos, M.; Dorbolo, S.
A logarithmic behavior is hidden in the linear temperature regime of the electrical resistivity R(T) of some YBCO sample below 2Tc where "pairs" break apart, fluctuations occur and "a gap is opening". An anomalous effect also occurs near 200 K in the normal state Hall coefficient. In a simulation of oxygen diffusion in planar 123 YBCO, an anomalous behavior is found in the oxygen-vacancy motion near such a temperature. We claim that the behavior of the specific heat above and near the critical temperature should be reexamined in order to show the influence and implications of fluctuations and dimensionality on the nature of the phase transition and on the true onset temperature.
NASA Astrophysics Data System (ADS)
Zeh, Jeanne A.; Bonilla, Melvin M.; Su, Eleanor J.; Padua, Michael V.; Anderson, Rachel V.; Zeh, David W.
2014-01-01
Recent theory suggests that global warming may be catastrophic for tropical ectotherms. Although most studies addressing temperature effects in ectotherms utilize constant temperatures, Jensen's inequality and thermal stress considerations predict that this approach will underestimate warming effects on species experiencing daily temperature fluctuations in nature. Here, we tested this prediction in a neotropical pseudoscorpion. Nymphs were reared in control and high-temperature treatments under a constant daily temperature regime, and results compared to a companion fluctuating-temperature study. At constant temperature, pseudoscorpions outperformed their fluctuating-temperature counterparts. Individuals were larger, developed faster, and males produced more sperm, and females more embryos. The greatest impact of temperature regime involved short-term, adult exposure, with constant temperature mitigating high-temperature effects on reproductive traits. Our findings demonstrate the importance of realistic temperature regimes in climate warming studies, and suggest that exploitation of microhabitats that dampen temperature oscillations may be critical in avoiding extinction as tropical climates warm.
Mastrandrea, Leonarda; Amodio, Maria Luisa; Pati, Sandra; Colelli, Giancarlo
2017-07-01
The effect of storage conditions on flavor-related volatile composition of wild rocket ( Diplotaxis tenuifolia ) was investigated on Modified Atmosphere packed (MAP) leaves stored under isothermal and non-isothermal conditions. In a first experiment the effect of MAP was compared to the storage in air at 5 °C; a second experiment aimed to study the effect of non isothermal conditions, with two temperature abuses (at 13 °C for 24 h) during a 5 °C. Twenty-four volatiles were detected, including C6, C5, isothiocyanate, lipid-derived and sulfur compounds. In the first experiment, MAP-stored rocket showed a slower loss of typical flavour volatiles (thiocyanates and isothiocyanates) and a slower production of off-flavors until 6 days of storage, compared to leaves stored in air. After this time, dimethyl sulfide and acetaldehyde dramatically increased in MAP-stored rocket samples. In the second experiment, samples stored under non-isothermal conditions showed lower O 2 and higher CO 2 concentrations than samples stored under isothermal conditions. Rocket leaves stored under non-isothermal conditions showed an increased production of volatiles responsible of off-flavors (acetaldehyde and dimethyl sulfide) following temperature abuse comparing to storage in isothermal condition. Thus, dimethyl sulfide and acetaldehyde could be effective markers for tracking the effect of temperature fluctuations on rocket during storage.
"Fluctuoscopy" of Superconductors
NASA Astrophysics Data System (ADS)
Varlamov, A. A.
Study of fluctuation phenomena in superconductors (SCs) is the subject of great fundamental and practical importance. Understanding of their physics allowed to clear up the fundamental properties of SC state. Being predicted in 1968, one of the fluctuation effects, namely paraconductivity, was experimentally observed almost simultaneously. Since this time, fluctuations became a noticeable part of research in the field of superconductivity, and a variety of fluctuation effects have been discovered. The new wave of interest to fluctuations (FL) in superconductors was generated by the discovery of cuprate oxide superconductors (high-temperature superconductors, HTS), where, due to extremely short coherence length and low effective dimensionality of the electron system, superconductive fluctuations manifest themselves in a wide range of temperatures. Moreover, anomalous properties of the normal state of HTS were attributed by many theorists to strong FL in these systems. Being studied in the framework of the phenomenological Ginzburg-Landau theory and, more extensively, in diagrammatic microscopic approach, SC FLs side by side with other quantum corrections (weak localization, etc.) became a new tool for investigation and characterization of such new systems as HTS, disordered electron systems, granular metals, Josephson structures, artificial super-lattices, etc. The characteristic feature of SC FL is their strong dependence on temperature and magnetic fields in the vicinity of phase transition. This allows one to definitely separate the fluctuation effects from other contributions and to use them as the source of information about the microscopic parameters of a material. By their origin, SC FLs are very sensitive to relaxation processes, which break phase coherence. This allows using them for versatile characterization of SC. Today, one can speak about the " fluctuoscopy" of superconductive systems. In review, we present the qualitative picture both of thermodynamic fluctuations close to critical temperature T c0and quantum fluctuations at zero temperature and in vicinity of the second critical field H c2(0). Then in the frameworks of the Ginzburg-Landau theory, we discuss the characteristic crossovers in fluctuation properties of superconductive nanoparticles and layered superconductors. We present the general expression for fluctuation magneto-conductivity valid through all phase diagram of superconductor and apply it to study of the quantum phase transition close to H c2(0). Fluctuation analysis of this transition allows us to present the scenario of fluctuation defragmentation of the Abrikosov lattice.
Beck-Johnson, Lindsay M; Nelson, William A; Paaijmans, Krijn P; Read, Andrew F; Thomas, Matthew B; Bjørnstad, Ottar N
2017-03-01
Temperature is a key environmental driver of Anopheles mosquito population dynamics; understanding its central role is important for these malaria vectors. Mosquito population responses to temperature fluctuations, though important across the life history, are poorly understood at a population level. We used stage-structured, temperature-dependent delay-differential equations to conduct a detailed exploration of the impacts of diurnal and annual temperature fluctuations on mosquito population dynamics. The model allows exploration of temperature-driven temporal changes in adult age structure, giving insights into the population's capacity to vector malaria parasites. Because of temperature-dependent shifts in age structure, the abundance of potentially infectious mosquitoes varies temporally, and does not necessarily mirror the dynamics of the total adult population. In addition to conducting the first comprehensive theoretical exploration of fluctuating temperatures on mosquito population dynamics, we analysed observed temperatures at four locations in Africa covering a range of environmental conditions. We found both temperature and precipitation are needed to explain the observed malaria season in these locations, enhancing our understanding of the drivers of malaria seasonality and how temporal disease risk may shift in response to temperature changes. This approach, tracking both mosquito abundance and age structure, may be a powerful tool for understanding current and future malaria risk.
Quantum and superconducting fluctuations effects in disordered Nb 1- xTa x thin films above Tc
NASA Astrophysics Data System (ADS)
Giannouri, M.; Papastaikoudis, C.
1999-05-01
Disordered Nb 1- xTa x thin films are prepared with e-gun coevaporation. The influence of the β-phase of tantalum in the critical temperature Tc is observed as a function of the substrate temperature. The measurements of transverse magnetoresistance at various isothermals are interpreted in terms of weak-localization and superconducting fluctuations. From the fitting procedure, the phase breaking rate τφ-1 and the Larkin parameter βL are estimated as a function of temperature. Conclusions about the dominant inelastic scattering mechanisms at various temperature regions as well as for the dominant mechanism of superconducting fluctuations near the transition temperature are extracted.
Giant current fluctuations in an overheated single-electron transistor
NASA Astrophysics Data System (ADS)
Laakso, M. A.; Heikkilä, T. T.; Nazarov, Yuli V.
2010-11-01
Interplay of cotunneling and single-electron tunneling in a thermally isolated single-electron transistor leads to peculiar overheating effects. In particular, there is an interesting crossover interval where the competition between cotunneling and single-electron tunneling changes to the dominance of the latter. In this interval, the current exhibits anomalous sensitivity to the effective electron temperature of the transistor island and its fluctuations. We present a detailed study of the current and temperature fluctuations at this interesting point. The methods implemented allow for a complete characterization of the distribution of the fluctuating quantities, well beyond the Gaussian approximation. We reveal and explore the parameter range where, for sufficiently small transistor islands, the current fluctuations become gigantic. In this regime, the optimal value of the current, its expectation value, and its standard deviation differ from each other by parametrically large factors. This situation is unique for transport in nanostructures and for electron transport in general. The origin of this spectacular effect is the exponential sensitivity of the current to the fluctuating effective temperature.
Evidence for pressure-tuned quantum structural fluctuations in KCuF3
NASA Astrophysics Data System (ADS)
Yuan, S.; Kim, M.; Seeley, J.; Lal, S.; Abbamonte, P.; Cooper, S. L.
2012-02-01
Frustrated magnetic systems are currently of great interest because of the possibility that these materials exhibit novel ground states such as orbital and spin liquids. We provide evidence in the orbital-ordering material KCuF3 for pressure-tuned quantum melting of a static structural phase to a phase that dynamically fluctuates even near T ˜ 0K.[1] Pressure-dependent Raman scattering measurements show that applied pressure above P* ˜ 7kbar reverses a low temperature structural distortion in KCuF3, resulting in the development of a φ ˜ 0 fluctuational (quasielastic) response near T ˜ 0K. This pressure-induced fluctuational response is temperature independent and exhibits a characteristic fluctuation rate that is much larger than the temperature, γ >> KBT, consistent with quantum fluctuations of the CuF6 octahedra. We show that a previous developed model of pseudospin-phonon coupling qualitatively describes both the temperature- and pressure-dependent evolution of the Raman spectra of KCuF3. Work supported by the U.S. Department of Energy under Award No. DE-FG02-07ER46453 and by the National Science Foundation under Grant NSF DMR 08-56321. [4pt] [1] S. Yuan et al., arXiv:1107.1433 (2011).
Temperature and density anti-correlations in solar wind fluctuations
NASA Technical Reports Server (NTRS)
Zank, G. P.; Matthaeus, W. H.; Klein, L. W.
1990-01-01
Recent theoretical investigations of low Mach number flows, that describe two distinct approaches by fluids to the incompressible regime are summarized. The first includes the effects of relatively strong density and temperature fluctuations (Type I), while the second places fluctuations in mechanical pressure, density, and temperature on an equal footing (Type II). In the latter case, the relations between density and pressure are recovered, whereas the former case yields departures from incompressible behavior in that density and temperature fluctuations are predicted to be anti-correlated. It is suggested that nearly incompressible fluids can be classified as either Type I or II, and it is shown that the well-known pressure-balanced structures represent a subclass of static solutions within this classification. Two examples from Voyager data illustrate the potential for observing these distinct nearly incompressible dynamical ordering in the solar wind.
Climatic Variation and River Flows in Himalayan Basins Upstream of Large Dams
NASA Astrophysics Data System (ADS)
Eaton, D.; Collins, D. N.
2014-12-01
High specific discharges from Himalayan headwater basins feed major reservoirs generating hydropower and supplying water to irrigation schemes across the Punjab plains of north-west India and Pakistan. Flow arises from seasonal winter snow cover, summer monsoon precipitation and melting glacier ice in varying proportions and differing absolute quantities along west -east axes of the Karakoram and western Himalaya. Discharge records for stations above Tarbela (Indus), Mangla (Jhelum), Marala (Chenab) and Bhakra (Sutlej) dams have been examined for periods between 1920 and 2009, together with precipitation and air temperature data for stations with long records (within the period 1893 to 2013) at elevations between 234 and 3015 m a.s.l. Ice-cover age in the basins above the dams was between 1 and 12 %. Flows in the Sutlej, Chenab and Jhelum reached maxima in the 1950s before declining to the 1970s. Flow in the Chenab and Jhelum increased to 1950s levels in the 1990s, before falling steeply into the 2000s mimicking variations in winter and monsoon precipitation. Discharge in the Indus at Tarbela increased from the 1970s, reaching a maximum in the late 1980s/early 1990s, before declining back to 1970s levels in the 2000s, flow being influenced not only by precipitation fluctuations but also by changes in air temperature affecting glacier melt in headwater basins. Runoff at Bhakra was augmented by flow from the Beas-Sutlej link canal after 1977, but natural flow in the Sutlej above Luhri reduced considerably from the 1990s influenced by declining flows in the relatively dry but large Tibetan portion of the basin area. Large year-to-year fluctuations of reservoir inflows are nonetheless based on significant sustained underlying discharge levels at all four reservoirs.
Effects of fluctuating temperature and food availability on reproduction and lifespan.
Schwartz, Tonia S; Pearson, Phillip; Dawson, John; Allison, David B; Gohlke, Julia M
2016-12-15
Experimental studies on energetics and aging often remove two major factors that in part regulate the energy budget in a normal healthy individual: reproduction and fluctuating environmental conditions that challenge homeostasis. Here we use the cyclical parthenogenetic Daphnia pulex to evaluate the role of a fluctuating thermal environment on both reproduction and lifespan across six food concentrations. We test the hypotheses that (1) caloric restriction extends lifespan; (2) maximal reproduction will come with a cost of shortened lifespan; and (3) at a given food concentration, relative to a metabolically equivalent constant temperature environment a diel fluctuating thermal environment will alter the allocation of energy to reproduction and lifespan to maintain homeostasis. We did not identify a level of food concentration that extended lifespan in response to caloric restriction, and we found no cost of reproduction in terms of lifespan. Rather, the individuals at the highest food levels generally had the highest reproductive output and the longest lifespans, the individuals at the intermediate food level decreased reproduction and maintained lifespan, and the individuals at the three lower food concentrations had a decrease in reproduction and lifespan as would be predicted with increasing levels of starvation. Fluctuating temperature had no effect on lifespan at any food concentration, but delayed time to reproductive maturity and decreased early reproductive output at all food concentrations. This suggests that a fluctuating temperature regimen activates molecular pathways that alter energy allocation. The costs of fluctuating temperature on reproduction were not consistent across the lifespan. Statistical interactions for age of peak reproduction and lifetime fecundity suggest that senescence of the reproductive system may vary between temperature regimens at the different food concentrations. Copyright © 2016 Elsevier Inc. All rights reserved.
Effects of fluctuating temperature and food availability on reproduction and lifespan
Schwartz, Tonia S.; Pearson, Phillip; Dawson, John; Allison, David B.; Gohlke, Julia M.
2016-01-01
Experimental studies on energetics and aging often remove two major factors that in part regulate the energy budget in a normal healthy individual: reproduction and fluctuating environmental conditions that challenge homeostasis. Here we use the cyclical parthenogenetic Daphnia pulex to evaluate the role of a fluctuating thermal environment on both reproduction and lifespan across six food concentrations. We test the hypotheses that (1) caloric restriction extends lifespan; (2) maximal reproduction will come with a cost of shortened lifespan; and (3) at a given food concentration, relative to a metabolically equivalent constant temperature environment a diel fluctuating thermal environment will alter the allocation of energy to reproduction and lifespan to maintain homeostasis. We did not identify a level of food concentration that extended lifespan in response to caloric restriction, and we found no cost of reproduction in terms of lifespan. Rather, the individuals at the highest food levels generally had the highest reproductive output and the longest lifespans, the individuals at the intermediate food level decreased reproduction and maintained lifespan, and the individuals at the three lower food concentrations had a decrease in reproduction and lifespan as would be predicted with increasing levels of starvation. Fluctuating temperature had no effect on lifespan at any food concentration, but delayed time to reproductive maturity and decreased early reproductive output at all food concentrations. This suggests that a fluctuating temperature regimen activates molecular pathways that alter energy allocation. The costs of fluctuating temperature on reproduction were not consistent across the lifespan. Statistical interactions for age of peak reproduction and lifetime fecundity suggest that senescence of the reproductive system may vary between temperature regimens at the different food concentrations. PMID:27364192
Lin, Hao; Shavezipur, Mohammad; Yousef, Ahmed; Maleky, Farnaz
2016-03-01
Accurate prediction of growth of undesirable organisms (e.g., Pseudomonas fluorescens) in perishable foods (e.g., milk), held under sub-ideal storage conditions, can help ensure the quality and safety of these foods at the point of consumption. In this investigation, we inoculated sterile milk with P. fluorescens (~10(3) cfu/mL) and monitored inoculum growth behavior at constant and fluctuating storage temperatures. Three storage temperatures, 4 °C, 15 °C and 29 °C, were selected to simulate proper refrigeration conditions (4 °C) and temperature abuse, respectively. To simulate temperature fluctuation, milk held at 4 °C was subjected to temperature shifts to 15 °C or 29 °C for 4 to 6h. A modified logistic model was used to obtain the best-fit curve for the microbial growth under constant storage temperature. The specific growth rates at 4 °C, 15 °C, and 29 °C, obtained from experimental data, were 0.056 ± 0.00, 0.17 ± 0.05, and 0.46 ± 0.02 h(-1), respectively, and the lag time values were 29.5 ± 4.2, 12.7 ± 4.4, and 2.8 ± 0.3h, respectively. A model predicting bacterial growth under different temperature fluctuations was obtained using the growth parameters extracted from constant temperature experiments. Growth behavior predicted by the fluctuating temperature model and that obtained experimentally were in good agreement. Lag time exhibited a larger variation compared with specific growth rate, suggesting that it depends not only on growth temperature but also on the sample population and temperature gradient. Additionally, experimental data showed that changing the temperature during the lag phase induced an additional lag time before growth; however, no significant lag time was observed under the temperature fluctuation during the exponential phase. The results of this study provide information for precise shelf-life determination and reduction of food waste, particularly for milk and milk-containing food products. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Li, Yingnan; Kang, Wanmo; Han, Yiwen; Song, Youngkeun
2018-01-23
Fragmented forests generate a variety of forest edges, leading to microclimates in the edge zones that differ from those in the forest interior. Understanding microclimatic variation is an important consideration for managers because it helps when making decisions about how to restrict the extent of edge effects. Thus, our study attempted to characterize the changing microclimate features at an urban forest edge located on Mt. Gwanak, Seoul, South Korea. We examined edge effects on air temperature, relative humidity, soil temperature, soil moisture, and photosynthetically active radiation (PAR) during the hottest three consecutive days in August 2016. Results showed that each variable responded differently to the edge effects. This urban forest edge had an effect on temporal changes at a diurnal scale in all microclimate variables, except soil moisture. In addition, all variables except relative humidity were significantly influenced by the edge effect up to 15 m inward from the forest boundary. The relative humidity fluctuated the most and showed the deepest extent of the edge effect. Moreover, the edge widths calculated from the relative humidity and air temperature both peaked in the late afternoon (16:00 h). Our findings provide a reference for forest managers in designing urban forest zones and will contribute to the conservation of fragmented forests in urban areas.
Modeling 100,000-year climate fluctuations in pre-Pleistocene time series
NASA Technical Reports Server (NTRS)
Crowley, Thomas J.; Kim, Kwang-Yul; Mengel, John G.; Short, David A.
1992-01-01
A number of pre-Pleistocene climate records exhibit significant fluctuations at the 100,000-year (100-ky) eccentricity period, before the time of such fluctuations in global ice volume. The origin of these fluctuations has been obscure. Results reported here from a modeling study suggest that such a response can occur over low-altitude land areas involved in monsoon fluctuations. The twice yearly passage of the sun across the equator and the seasonal timing of perihelion interact to increase both 100-ky and 400-ky power in the modeled temperature field. The magnitude of the temperature response is sufficiently large to leave an imprint on the geologic record, and simulated fluctuations resemble those found in records of Triassic lake levels.
REINVENTING PERSONAL EXPOSURE TO PARTICULATE MATTER
Recent epidemiologic studies of modern air pollution show statistically significant relationships between fluctuations of daily non-trauma mortality and fluctuations of daily ambient particulate matter (PM) levels at low concentrations. A review of historic smoke-fog (smog)episo...
Three responses to small changes in stream temperature by autumn-emerging aquatic insects
Judith L. Li; Sherri L. Johnson; Janel Banks Sobota
2011-01-01
In this experimental study, conducted in coastal Oregon USA, we examined how small increases in summer water temperatures affected aquatic insect growth and autumn emergence. We maintained naturally fluctuating temperatures from 2 nearby streams and a 3rd regime, naturally fluctuating temperatures warmed by 3-5°C, in flow-through troughs from mid...
Evaluation of a locally homogeneous model of spray evaporation
NASA Technical Reports Server (NTRS)
Shearer, A. J.; Faeth, G. M.; Tamura, H.
1978-01-01
Measurements were conducted on an evaporating spray in a stagnant environment. The spray was formed using an air-atomizing injector to yield a Sauter mean diameter of the order of 30 microns. The region where evaporation occurred extended approximately 1 m from the injector for the test conditions. Profiles of mean velocity, temperature, composition, and drop size distribution, as well as velocity fluctuations and Reynolds stress, were measured. The results are compared with a locally homogeneous two-phase flow model which implies no velocity difference and thermodynamic equilibrium between the phases. The flow was represented by a k-epsilon-g turbulence model employing a clipped Gaussian probability density function for mixture fraction fluctuations. The model provides a good representation of earlier single-phase jet measurements, but generally overestimates the rate of development of the spray. Using the model predictions to represent conditions along the centerline of the spray, drop life-history calculations were conducted which indicate that these discrepancies are due to slip and loss of thermodynamic equilibrium between the phases.
NASA Astrophysics Data System (ADS)
Guzman, F.; Marandet, Y.; Tamain, P.; Bufferand, H.; Ciraolo, G.; Ghendrih, Ph; Guirlet, R.; Rosato, J.; Valentinuzzi, M.
2015-12-01
In magnetized fusion devices, cross field impurity transport is often dominated by turbulence, in particular in the scrape-off layer. In these outer regions of the plasma, fluctuations of plasma parameters can be comparable to mean values, and the way ionization and recombination sources are treated in transport codes becomes questionnable. In fact, sources are calculated using the mean density and temperature values, with no account of fluctuations. In this work we investigate the modeling uncertainties introduced by this approximation, both qualitatively and quantitatively for the local ionization equilibrium. As a first step transport effects are neglected, and their role will be discussed in a companion paper. We show that temperature fluctuations shift the ionization balance towards lower temperatures, essentially because of the very steep temperature dependence of the ionization rate coefficients near the threshold. To reach this conclusion, a thorough analysis of the time scales involved is carried out, in order to devise a proper way of averaging over fluctuations. The effects are found to be substantial only for fairly large relative fluctuation levels for temperature, that is of the order of a few tens of percents.
NASA Astrophysics Data System (ADS)
von Suchodoletz, H.; Oberhänsli, H.; Hambach, U.; Zöller, L.; Fuchs, M.; Faust, D.
2010-08-01
Aeolian sediments trapped in volcanically dammed valleys on Lanzarote, Canary Islands, were investigated in order to reveal environmental changes over the last 180 ka. Clay content and frequency-dependent magnetic susceptibility were used as proxies for pedogenesis and palaeo-soil moisture. During the last 180 ka, these proxies showed a general pattern of enhanced soil moisture during glacials and stadials and more arid conditions during interglacials and interstadials. Comparisons of these results with proxies from regional palaeoclimate studies identified a positive correlation with proxies of trade-wind strength off northwest Africa and inverse correlations with both sea surface temperatures in the northeast Atlantic and the extent of Mediterranean vegetation. Possible causes for the observed pattern include a glacial enhancement of precipitation from westerly cyclones, a change in relative humidity due to fluctuating air temperatures and an occasional influence of the African summer monsoon. Although it is not yet possible to clearly differentiate among these factors, it is clear that the first two factors must have been primarily dominant. These results represent the first quasi-continuous terrestrial data testifying to environmental changes in the northwest African coastal area for the last 180 ka and complement the abundant data derived from marine cores of the region. High latitude dynamics had a major influence in this area and were intermediated by North Atlantic sea surface temperatures. A possible negative correlation can also be observed with the orbital obliquity cycle with a 10 ka time lag, which is similar to the lag recorded from North Atlantic sea surface temperatures.
Thornton, J
2000-07-01
To determine if the microclimate is detrimental to horses during international air transportation in an enclosed container. On each of two 12 h and two 24 h flights three horses were transported in an enclosed container designed to prevent exposure to insect vectors. Heart rates were monitored throughout and blood samples were collected periodically. Air in the container was sampled for bacteria and fungal spores and the temperature and relative humidity were recorded inside and outside the container periodically during the flight. On the two 12 h flights similar observations were made on three horses transported in regular open containers, which were used as controls. Heart rates during the flights reflected any agitation of the horses. Agitation was only mild and generally associated with take-off and landing. There were no changes in haematological or blood biochemical values that suggested any detrimental effects of the flights. The temperature in the Airstable was relatively constant during each flight (means ranged from 18.7 to 23.4 degrees C) and was significantly warmer than in the cargo hold (range 13.9 to 18.3 degrees C). Relative humidity fluctuated more widely and reflected the ambient humidity during airport stops. The numbers of bacteria and fungal spores in the Airstable air varied during the flights but were of no apparent significance to the horses' health. The Airstable proved a convenient means to transport horses on international flights and caused no discernible ill effects on the horses studied.
Boundary layers at a dynamic interface: Air-sea exchange of heat and mass
NASA Astrophysics Data System (ADS)
Szeri, Andrew J.
2017-04-01
Exchange of mass or heat across a turbulent liquid-gas interface is a problem of critical interest, especially in air-sea transfer of natural and anthropogenic gases involved in the study of climate. The goal in this research area is to determine the gas flux from air to sea or vice versa. For sparingly soluble nonreactive gases, this is controlled by liquid phase turbulent velocity fluctuations that act on the thin species concentration boundary layer on the liquid side of the interface. If the fluctuations in surface-normal velocity w' and gas concentration c' are known, then it is possible to determine the turbulent contribution to the gas flux. However, there is no suitable fundamental direct approach in the general case where neither w' nor c' can be easily measured. A new approach is presented to deduce key aspects about the near-surface turbulent motions from measurements that can be taken by an infrared (IR) camera. An equation is derived with inputs being the surface temperature and heat flux, and a solution method developed for the surface-normal strain experienced over time by boundary layers at the interface. Because the thermal and concentration boundary layers experience the same near-surface fluid motions, the solution for the surface-normal strain determines the gas flux or gas transfer velocity. Examples illustrate the approach in the cases of complete surface renewal, partial surface renewal, and insolation. The prospects for use of the approach in flows characterized by sheared interfaces or rapid boundary layer straining are explored.
Lebard, David N; Matyushov, Dmitry V
2008-12-01
Molecular dynamics simulations have revealed a dramatic increase, with increasing temperature, of the amplitude of electrostatic fluctuations caused by water at the active site of metalloprotein plastocyanin. The increased breadth of electrostatic fluctuations, expressed in terms of the reorganization energy of changing the redox state of the protein, is related to the formation of the hydrophobic protein-water interface, allowing large-amplitude collective fluctuations of the water density in the protein's first solvation shell. On top of the monotonic increase of the reorganization energy with increasing temperature, we have observed a spike at approximately 220 K also accompanied by a significant slowing of the exponential collective Stokes shift dynamics. In contrast to the local density fluctuations of the hydration-shell waters, these spikes might be related to the global property of the water solvent crossing the Widom line or undergoing a weak first-order transition.
Zero-point fluctuations in naphthalene and their effect on charge transport parameters.
Kwiatkowski, Joe J; Frost, Jarvist M; Kirkpatrick, James; Nelson, Jenny
2008-09-25
We calculate the effect of vibronic coupling on the charge transport parameters in crystalline naphthalene, between 0 and 400 K. We find that nuclear fluctuations can cause large changes in both the energy of a charge on a molecule and on the electronic coupling between molecules. As a result, nuclear fluctuations cause wide distributions of both energies and couplings. We show that these distributions have a small temperature dependence and that, even at high temperatures, vibronic coupling is dominated by the effect of zero-point fluctuations. Because of the importance of zero-point fluctuations, we find that the distributions of energies and couplings have substantial width, even at 0 K. Furthermore, vibronic coupling with high energy modes may be significant, even though these modes are never thermally activated. Our results have implications for the temperature dependence of charge mobilities in organic semiconductors.
Thermal performance curves under daily thermal fluctuation: A study in helmeted water toad tadpoles.
Bartheld, José L; Artacho, Paulina; Bacigalupe, Leonardo
2017-12-01
Most research in physiological ecology has focused on the effects of mean changes in temperature under the classic "hot vs cold" acclimation treatment; however, current evidence suggests that an increment in both the mean and variance of temperature could act synergistically to amplify the negative effects of global temperature increase and how it would affect fitness and performance-related traits in ectothermic organisms. We assessed the effects of acclimation to daily variance of temperature on thermal performance curves of swimming speed in helmeted water toad tadpoles (Calyptocephalella gayi). Acclimation treatments were 20°C ± 0.1 SD (constant) and 20°C ± 1.5 SD (fluctuating). We draw two key findings: first, tadpoles exposed to daily temperature fluctuation had reduced maximal performance (Z max ), and flattened thermal performance curves, thus supporting the "vertical shift or faster-slower" hypothesis, and suggesting that overall swimming performance would be lower through an examination of temperatures under more realistic and ecologically-relevant fluctuating regimens; second, there was significant interindividual variation in performance traits by means of significant repeatability estimates. Our present results suggest that the widespread use of constant acclimation temperatures in laboratory experiments to estimate thermal performance curves (TPCs) may lead to an overestimation of actual organismal performance. We encourage the use of temperature fluctuation acclimation treatments to better understand the variability of physiological traits, which predict ecological and evolutionary responses to global change. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Suamir, I. N.; Sukadana, I. B. P.; Arsana, M. E.
2018-01-01
One energy-saving technology that starts gaining attractive for hotel industry application in Indonesia is the utilization of waste heat of a central air conditioning system to heat water for domestic hot water supply system. Implementing the technology for such application at a hotel was found that hot water capacity generated from the heat recovery system could satisfy domestic hot water demand of the hotel. The gas boilers installed in order to back up the system have never been used. The hot water supply, however, was found to be instable with hot water supply temperature fluctuated ranging from 45 °C to 62 °C. The temperature fluctuations reaches 17 °C, which is considered instable and can reduce hot water usage comfort level. This research is aimed to optimize the thermal energy storage in order to minimize the temperature instability of heat recovery hot water supply system. The research is a case study approach based on cooling and hot water demands of a hotel in Jakarta-Indonesia that has applied water cooled chillers with heat recovery systems. The hotel operation with 329 guest rooms and 8 function rooms showed that hot water production in the heat recovery system completed with 5 m3 thermal energy storage (TES) could not hold the hot water supply temperature constantly. The variations of the cooling demand and hot water demands day by day were identified. It was found that there was significant mismatched of available time (hours) between cooling demand which is directly correlated to the hot water production from the heat recovery system and hot water usage. The available TES system could not store heat rejected from the condenser of the chiller during cooling demand peak time between 14.00 and 18.00 hours. The extra heat from the heat recovery system consequently increases the temperature of hot water up to 62 °C. It is about 12 K above 50 °C the requirement hot water temperature of the hotel. In contrast, the TES could not deliver proper temperature of hot water during peak hot water demand and on that time between 06.00 and 10.00 hours, the hotel also experiences a low cooling demand. Subsequently, the temperature of hot water supplied drops down as low as 45 °C. The study was found that optimization on the TES can significantly minimize temperature variation of the hot water supplied to the hotel appliances. A TES of 30 m3 storage capacity is considered the optimum capacity which can reduce the temperature fluctuation from 17 K down to 3 K. The study also found that maintaining the storage temperature relatively lower than the condenser temperature could increase hot water production of the heat recovery system.
NASA Astrophysics Data System (ADS)
Böttcher, N.; Nagel, T.; Goerke, U.; Khaledi, K.; Lins, Y.; König, D.; Schanz, T.; Köhn, D.; Attia, S.; Rabbel, W.; Bauer, S.; Kolditz, O.
2013-12-01
In the course of the Energy Transition in Germany, the focus of the country's energy sources is shifting from fossil to renewable and sustainable energy carriers. Since renewable energy sources, such as wind and solar power, are subjected to annual, seasonal, and diurnal fluctuations, the development and extension of energy storage capacities is a priority in German R&D programs. Common methods of energy storage are the utilization of subsurface caverns as a reservoir for natural or artificial fuel gases, such as hydrogen, methane, or the storage of compressed air. The construction of caverns in salt rock is inexpensive in comparison to solid rock formations due to the possibility of solution mining. Another advantage of evaporite as a host material is the self-healing capacity of salt rock. Gas caverns are capable of short-term energy storage (hours to days), so the operating pressures inside the caverns are fluctuating periodically with a high number of cycles. This work investigates the influence of fluctuating operation pressures on the stability of the host rock of gas storage caverns utilizing numerical models. Therefore, we developed a coupled Thermo-Hydro-Mechanical (THM) model based on the finite element method utilizing the open-source software platform OpenGeoSys. Our simulations include the thermodynamic behaviour of the gas during the loading/ unloading of the cavern. This provides information on the transient pressure and temperature distribution on the cavern boundary to calculate the deformation of its geometry. Non-linear material models are used for the mechanical analysis, which describe the creep and self-healing behavior of the salt rock under fluctuating loading pressures. In order to identify the necessary material parameters, we perform experimental studies on the mechanical behaviour of salt rock under varying pressure and temperature conditions. Based on the numerical results, we further derive concepts for monitoring THM quantities in the vicinity of the cavern. These programs will allow detecting changes of the host rock properties during the construction and operation of the storage facility. The developed model will be used by public authorities for land use planning issues.
Baryon number, strangeness, and electric charge fluctuations in QCD at high temperature
NASA Astrophysics Data System (ADS)
Cheng, M.; Hegde, P.; Jung, C.; Karsch, F.; Kaczmarek, O.; Laermann, E.; Mawhinney, R. D.; Miao, C.; Petreczky, P.; Schmidt, C.; Soeldner, W.
2009-04-01
We analyze baryon number, strangeness, and electric charge fluctuations as well as their correlations in QCD at high temperature. We present results obtained from lattice calculations performed with an improved staggered fermion action (p4 action) at two values of the lattice cutoff with almost physical up and down quark masses and a physical value for the strange quark mass. We compare these results, with an ideal quark gas at high temperature and a hadron resonance gas model at low temperature. We find that fluctuations and correlations are well described by the former already for temperatures about 1.5 times the transition temperature. At low temperature qualitative features of the lattice results are quite well described by a hadron resonance gas model. Higher order cumulants, which become increasingly sensitive to the light pions, however, show deviations from a resonance gas in the vicinity of the transition temperature.
Potyrailo, Radislav A.; Surman, Cheryl
2013-01-01
Uncontrolled fluctuations of ambient temperature in the field typically greatly reduce accuracy of gas sensors. In this study, we developed an approach for the self-correction against fluctuations of ambient temperature of individual gas and vapor sensors. The main innovation of our work is in the temperature correction which is accomplished without the need for a separate uncoated reference sensor or a separate temperature sensor. Our sensors are resonant inductor-capacitor-resistor (LCR) transducers coated with sensing materials and operated as multivariable passive (battery-free) radio-frequency identification (RFID) sensors. Using our developed approach, we performed quantitation of an exemplary vapor over the temperature range from 25 to 40 °C. This technical solution will be attractive in numerous applications where temperature stabilization of a gas sensor or addition of auxiliary temperature or uncoated reference sensors is prohibitive. PMID:23956496
Santi, Daniele; Magnani, Elisa; Michelangeli, Marco; Grassi, Roberto; Vecchi, Barbara; Pedroni, Gioia; Roli, Laura; De Santis, Maria Cristina; Baraldi, Enrica; Setti, Monica; Trenti, Tommaso; Simoni, Manuela
2018-04-01
Male fertility is progressively declining in many developed countries, but the relationship between male infertility and environmental factors is still unclear. To assess the influence of environmental temperature and air pollution on semen parameters, using a big-data approach. A big data analysis of parameters related to 5131 men, living in a province of Northern Italy and undergoing semen analyses between January 2010 and March 2016 was performed. Ambient temperature was recorded on the day of analysis and the 90 days prior to the analysis and the average value of particulate matter (PM) and NO2 in the year of the test. All data were acquired by geocoding patients residential address. A data warehouse containing 990,904,591 data was generated and analysed by multiple regressions. 5573 semen analyses were collected. Both maximum and minimum temperatures registered on the day of collection were inversely related to total sperm number (p < .001), non-progressive motility (NPrM) (p < .005) and normal forms (p < .001). Results were confirmed considering temperature in the 30 and 60 days before collection, but not in the 90 days before collection. Total sperm number was lower in summer/autumn (p < .001) and was inversely related with daylight duration (p < .001). PM10 and PM2.5 were inversely related to PrM (p < .001 and p < .005) and abnormal forms (p < .001). This is the first evaluation of the relationship between male fertility-related parameters and environment using a big-data approach. A seasonal change in semen parameters was found, with a fluctuation related to both temperature and daylight duration. A negative correlation between air pollution and semen quality is suggested. Such seasonal and environmental associations should be considered when assessing changes of male fertility-related parameters over time. Copyright © 2018 Elsevier Ltd. All rights reserved.
The thin brown line: The crucial role of peat in protecting permafrost in Arctic Alaska
NASA Astrophysics Data System (ADS)
Gaglioti, B.; Mann, D. H.; Farquharson, L. M.; Baughman, C. A.; Jones, B. M.; Romanovsky, V. E.; Williams, A. P.; Andreu-Hayles, L.
2017-12-01
Ongoing warming threatens to thaw Arctic permafrost and release its stored carbon, which could trigger a permafrost-carbon feedback capable of augmenting global warming. The effects of warming air temperatures on permafrost are complicated by the fact that across much of the Arctic and Subarctic a mat of living plants and decaying litter cover the ground and buffer underlying permafrost from air temperatures. For simplicity here, we refer to this organic mat as "peat". Because this peat modifies heat flow between ground and air, the rate and magnitude of permafrost responses to changing climate - and hence the permafrost-carbon feedback - are partly slaved to the peat layer's slower dynamics. To explore this relationship, we used 14C-age offsets within lake sediments in Alaskan watersheds underlain by yedoma deposits to track the changing responses of permafrost thaw to fluctuating climate as peat accumulated over the last 14,000 years. As the peat layer built up, warming events became less effective at thawing permafrost and releasing ancient carbon. Consistent with this age-offset record, the geological record shows that early in post-glacial times when the peat cover was still thin and limited in extent, warm intervals triggered extensive thermokarst that resulted in rapid aggradation of floodplains. Today in contrast, hillslopes and floodplains remain stable despite rapid warming, probably because of the buffering effects of the extensive peat cover. Another natural experiment is provided by tundra fires like the 2007 Anaktuvuk River fire that removed the peat cover from tundra underlain by continuous permafrost and resulted in widespread thermkarsting. Further support for peat's critical role in protecting permafrost comes from the results of modeling how permafrost temperatures under different peat thicknesses respond to warming air temperature. Although post-industrial warming has not yet surpassed the buffering capacity of 14,000 years of peat buildup in Arctic Alaska, modeling suggests that a threshold is imminent.
ARE MALES MORE SUSCEPTIBLE TO AMBIENT PM THAN FEMALES?
Recent epidemiologic studies of modern air pollution show statistically significant relationships between fluctuations of daily non-trauma mortality and fluctuations of daily ambient particulate matter (PM) levels at low concentrations. A review of historic smoke-fog (smog)episo...
The role of large scale motions on passive scalar transport
NASA Astrophysics Data System (ADS)
Dharmarathne, Suranga; Araya, Guillermo; Tutkun, Murat; Leonardi, Stefano; Castillo, Luciano
2014-11-01
We study direct numerical simulation (DNS) of turbulent channel flow at Reτ = 394 to investigate effect of large scale motions on fluctuating temperature field which forms a passive scalar field. Statistical description of the large scale features of the turbulent channel flow is obtained using two-point correlations of velocity components. Two-point correlations of fluctuating temperature field is also examined in order to identify possible similarities between velocity and temperature fields. The two-point cross-correlations betwen the velocity and temperature fluctuations are further analyzed to establish connections between these two fields. In addition, we use proper orhtogonal decompotion (POD) to extract most dominant modes of the fields and discuss the coupling of large scale features of turbulence and the temperature field.
NASA Technical Reports Server (NTRS)
Foy, E.; Ronan, G.; Chinitz, W.
1982-01-01
A principal element to be derived from modeling turbulent reacting flows is an expression for the reaction rates of the various species involved in any particular combustion process under consideration. A temperature-derived most-likely probability density function (pdf) was used to describe the effects of temperature fluctuations on the Arrhenius reaction rate constant. A most-likely bivariate pdf described the effects of temperature and species concentrations fluctuations on the reaction rate. A criterion is developed for the use of an "appropriate" temperature pdf. The formulation of models to calculate the mean turbulent Arrhenius reaction rate constant and the mean turbulent reaction rate is considered and the results of calculations using these models are presented.
Laser Raman Diagnostics in Subsonic and Supersonic Turbulent Jet Diffusion Flames.
NASA Astrophysics Data System (ADS)
Cheng, Tsarng-Sheng
1991-02-01
UV spontaneous vibrational Raman scattering combined with laser-induced predissociative fluorescence (LIPF) is developed for temperature and multi-species concentration measurements. For the first time, simultaneous measurements of temperature, major species (H_2, O_2, N_2, H_2O), and minor species (OH) concentrations are made with a "single" narrowband KrF excimer laser in subsonic and supersonic lifted turbulent hydrogen-air diffusion flames. The UV Raman system is calibrated with a flat -flame diffusion burner operated at several known equivalence ratios from fuel-lean to fuel-rich. Temperature measurements made by the ratio of Stokes/anti-Stokes signal and by the ideal gas law are compared. Single-shot uncertainties for temperature and concentration measurements are analyzed with photon statistics. Calibration constants and bandwidth factors are used in the data reduction program to arrive at temperature and species concentration measurements. UV Raman measurements in the subsonic lifted turbulent diffusion flame indicate that fuel and oxidizer are in rich, premixed, and unignited conditions in the center core of the lifted flame base. The unignited mixtures are due to rapid turbulent mixing that affects chemical reaction. Combustion occurs in an intermittent annular turbulent flame brush with strong finite-rate chemistry effects. The OH radical exists in sub-equilibrium and super-equilibrium concentrations. Major species and temperature are found with non-equilibrium values. Further downstream the super-equilibrium OH radicals decay toward equilibrium through slow three-body recombination reactions. In the supersonic lifted flame, a little reaction occurs upstream of the flame base, due to shock wave interactions and mixing with hot vitiated air. The strong turbulent mixing and total enthalpy fluctuations lead to temperature, major, and minor species concentrations with non-equilibrium values. Combustion occurs farther downstream of the lifted region. Slow three-body recombination reactions result in super-equilibrium OH concentrations that depress temperature below the equilibrium values. Near the equilibrium region, ambient air entrainment contaminates flame properties. These simultaneous measurements of temperature and multi-species concentrations allow a better understanding of the complex turbulence-chemistry interactions and provide information for the input and validation of CFD models.
Impacts of abrupt climate changes in the Levant from Last Glacial Dead Sea levels
NASA Astrophysics Data System (ADS)
Torfstein, Adi; Goldstein, Steven L.; Stein, Mordechai; Enzel, Yehouda
2013-06-01
A new, detailed lake level curve for Lake Lisan (the Last Glacial Dead Sea) reveals a high frequency of abrupt fluctuations during Marine Isotope Stage 3 (MIS3) compared to the relatively high stand characterizing MIS2, and the significantly lower Holocene lake. The lake level fluctuations reflect the hydrological conditions in the large watershed of the lake, which in turn reflects the hydro-climatic conditions in the central Levant region. The new curve shows that the fluctuations coincide on millennial timescales with temperature variations recorded in Greenland. Four patterns of correlation are observed through the last ice age: (1) maximum lake elevations were reached during MIS2, the coldest interval; (2) abrupt lake level drops to the lowest elevations coincided with the occurrence of Heinrich (H) events; (3) the lake returned to higher-stand conditions along with warming in Greenland that followed H-events; (4) significant lake level fluctuations coincided with virtually every Greenland stadial-interstadial cycle. Over glacial-interglacial time-scales, Northern Hemisphere glacial cooling induces extreme wetness in the Levant, with high lake levels reaching ˜160 m below mean sea level (mbmsl), approximately 240 m above typical Holocene levels of ˜400 mbmsl. These orbital time-scale shifts are driven by expansions of the European ice sheet, which deflect westerly storm tracks southward to the Eastern Mediterranean, resulting in increased sea-air temperature gradients that invoke increased cyclogenesis, and enhanced moisture delivery to the Levant. The millennial-scale lake level drops associated with Greenland stadials are most extreme during Heinrich stadials and reflect abrupt cooling of the Eastern Mediterranean atmosphere and sea-surface, which weaken the cyclogenic rain engine and cause extreme Levant droughts. During the recovery from the effect of Heinrich stadials, the regional climate configuration resumed typical glacial conditions, with enhanced Levant precipitation and a rise in Lake Lisan levels. Similar cyclicity in the transfer of moisture to the Levant affected lake levels during all of the non-Heinrich stadial-interstadial cycles.
Molecular Dynamics Approach in Designing Thermostable Aspergillus niger Xylanase
NASA Astrophysics Data System (ADS)
Malau, N. D.; Sianturi, M.
2017-03-01
Molecular dynamics methods we have applied as a tool in designing thermostable Aspergillus niger Xylanase, by examining Root Mean Square Deviation (RMSD) and The Stability of the Secondary Structure of enzymes structure at its optimum temperature and compare with its high temperature behavior. As RMSD represents structural fluctuation at a particular temperature, a better understanding of this factor will suggest approaches to bioengineer these enzymes to enhance their thermostability. In this work molecular dynamic simulations of Aspergillus niger xylanase (ANX) have been carried at 400K (optimum catalytic temperature) for 2.5 ns and 500K (ANX reported inactive temperature) for 2.5 ns. Analysis have shown that the Root Mean Square Deviation (RMSD) significant increase at higher temperatures compared at optimum temperature and some of the secondary structures of ANX that have been damaged at high temperature. Structural analysis revealed that the fluctuations of the α-helix and β-sheet regions are larger at higher temperatures compared to the fluctuations at optimum temperature.
Resonant tunneling of fluctuation Cooper pairs
Galda, Alexey; Mel'nikov, A. S.; Vinokur, V. M.
2015-02-09
Superconducting fluctuations have proved to be an irreplaceable source of information about microscopic and macroscopic material parameters that could be inferred from the experiment. According to common wisdom, the effect of thermodynamic fluctuations in the vicinity of the superconducting transition temperature, T c, is to round off all of the sharp corners and discontinuities, which otherwise would have been expected to occur at T c. Here we report the current spikes due to radiation-induced resonant tunneling of fluctuation Cooper pairs between two superconductors which grow even sharper and more pronounced upon approach to T c. This striking effect offers anmore » unprecedented tool for direct measurements of fluctuation Cooper pair lifetime, which is key to our understanding of the fluctuation regime, most notably to nature of the pseudogap state in high-temperature superconductors. Lastly, our finding marks a radical departure from the conventional view of superconducting fluctuations as a blurring and rounding phenomenon.« less
Resonant tunneling of fluctuation Cooper pairs
Galda, Alexey; Mel'nikov, A. S.; Vinokur, V. M.
2015-01-01
Superconducting fluctuations have proved to be an irreplaceable source of information about microscopic and macroscopic material parameters that could be inferred from the experiment. According to common wisdom, the effect of thermodynamic fluctuations in the vicinity of the superconducting transition temperature, Tc, is to round off all of the sharp corners and discontinuities, which otherwise would have been expected to occur at Tc. Here we report the current spikes due to radiation-induced resonant tunneling of fluctuation Cooper pairs between two superconductors which grow even sharper and more pronounced upon approach to Tc. This striking effect offers an unprecedented tool for direct measurements of fluctuation Cooper pair lifetime, which is key to our understanding of the fluctuation regime, most notably to nature of the pseudogap state in high-temperature superconductors. Our finding marks a radical departure from the conventional view of superconducting fluctuations as a blurring and rounding phenomenon. PMID:25661237
Resonant tunneling of fluctuation Cooper pairs.
Galda, Alexey; Mel'nikov, A S; Vinokur, V M
2015-02-09
Superconducting fluctuations have proved to be an irreplaceable source of information about microscopic and macroscopic material parameters that could be inferred from the experiment. According to common wisdom, the effect of thermodynamic fluctuations in the vicinity of the superconducting transition temperature, Tc, is to round off all of the sharp corners and discontinuities, which otherwise would have been expected to occur at Tc. Here we report the current spikes due to radiation-induced resonant tunneling of fluctuation Cooper pairs between two superconductors which grow even sharper and more pronounced upon approach to Tc. This striking effect offers an unprecedented tool for direct measurements of fluctuation Cooper pair lifetime, which is key to our understanding of the fluctuation regime, most notably to nature of the pseudogap state in high-temperature superconductors. Our finding marks a radical departure from the conventional view of superconducting fluctuations as a blurring and rounding phenomenon.
Fluctuation of a Piston in Vacuum Induced by Thermal Radiation Pressure
NASA Astrophysics Data System (ADS)
Inui, Norio
2017-10-01
We consider the displacement of a piston dividing a vacuum cavity at a finite temperature T induced by fluctuations in the thermal radiation pressure. The correlation function of the thermal radiation pressure is calculated using the theoretical framework developed by Barton, which was first applied to the fluctuation of the Casimir force at absolute zero. We show that the variance of the radiation pressure at a fixed point is proportional to T8 and evaluate the mean square displacement for a piston with a small cross section in a characteristic correlation timescale ħ/(kBT). At room temperature, the contribution of the thermal radiation to the fluctuation is larger than that of the vacuum fluctuation.
Smith, D R; Kaye, S M; Lee, W; Mazzucato, E; Park, H K; Bell, R E; Domier, C W; Leblanc, B P; Levinton, F M; Luhmann, N C; Menard, J E; Yuh, H
2009-06-05
Electron gyroscale fluctuation measurements in National Spherical Torus Experiment H-mode plasmas with large toroidal rotation reveal fluctuations consistent with electron temperature gradient (ETG) turbulence. Large toroidal rotation in National Spherical Torus Experiment plasmas with neutral beam injection generates ExB flow shear rates comparable to ETG linear growth rates. Enhanced fluctuations occur when the electron temperature gradient is marginally stable with respect to the ETG linear critical gradient. Fluctuation amplitudes decrease when the ExB flow shear rate exceeds ETG linear growth rates. The observations indicate that ExB flow shear can be an effective suppression mechanism for ETG turbulence.
NASA Technical Reports Server (NTRS)
Magnotti, F.; Diskin, G.; Matulaitis, J.; Chinitz, W.
1984-01-01
The use of silane (SiH4) as an effective ignitor and flame stabilizing pilot fuel is well documented. A reliable chemical kinetic mechanism for prediction of its behavior at the conditions encountered in the combustor of a SCRAMJET engine was calculated. The effects of hydrogen addition on hydrocarbon ignition and flame stabilization as a means for reduction of lengthy ignition delays and reaction times were studied. The ranges of applicability of chemical kinetic models of hydrogen-air combustors were also investigated. The CHARNAL computer code was applied to the turbulent reaction rate modeling.
A Case Study of the Mechanisms Modulating the Evolution of Valley Fog
NASA Astrophysics Data System (ADS)
Hang, C.; Nadeau, D. F.; Gultepe, I.; Hoch, S. W.; Román-Cascón, C.; Pryor, K.; Fernando, H. J. S.; Creegan, E. D.; Leo, L. S.; Silver, Z.; Pardyjak, E. R.
2016-09-01
We present a valley fog case study in which radiation fog is modulated by topographic effects using data obtained from a field campaign conducted in Heber Valley, Utah from January 7-February 1, 2015, as part of the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program. We use data collected on January 9, 2015 to gain insight into relationships between typical shallow radiation fog, turbulence, and gravity waves associated with the surrounding topography. A ≈ 10-30 m fog layer formed by radiative cooling was observed from 0720 to 0900 MST under cold air temperatures (≈-9 °C), near-saturated (relative humidity with respect to water ≈95 %), and calm wind (mostly <0.5 m s-1) conditions. Drainage flows were observed occasionally prior to fog formation, which modulated heat exchanges between air masses through the action of internal gravity waves and cold-air pool sloshing. The fog appeared to be triggered by cold-air advection from the south (≈200°) at 0700 MST. Quasi-periodic oscillations were observed before and during the fog event with a time period of about 15 min. These oscillations were detected in surface pressure, temperature, sensible heat flux, incoming longwave radiation, and turbulent kinetic energy measurements. We hypothesize that the quasi-periodic oscillations were caused by atmospheric gravity waves with a time period of about 10-20 min based on wavelet analysis. During the fog event, internal gravity waves led to about 1 °C fluctuations in air temperatures. After 0835 MST when net radiation became positive, fog started to dissipate due to the surface heating and heat absorption by the fog particles. Overall, this case study provides a concrete example of how fog evolution is modulated by very weak thermal circulations in mountainous terrain and illustrates the need for high density vertical and horizontal measurements to ensure that the highly spatially varying physics in complex terrain are sufficient for hypothesis testing.
Electron Thermal Transport due to Magnetic Diffusion in the MST RFP
NASA Astrophysics Data System (ADS)
Reusch, J. A.; Anderson, J. K.; den Hartog, D. J.; Forest, C. B.; Kasten, C. P.; Schnack, D. D.; Stephens, H. D.
2011-10-01
Comparison of measurements made in the MST RFP to the results from extensive nonlinear resistive MHD simulations has provided two key observations. First, trapped particles reduce electron thermal diffusion; inclusion of this effect is required for quantitative agreement of simulation to measurement. Second, the structure and evolution of long-wavelength temperature fluctuations measured in MST shows remarkable qualitative similarity to fluctuations appearing in a finite-pressure simulation. These simulations were run at parameters matching those of 400 kA discharges in MST (S ~ 4 ×106). In a zero β simulation, the measured χe is compared to the thermal diffusion due to parallel losses along diffusing magnetic field lines, χst =v∥Dmag . Agreement is only found if the reduction in χst due to trapped particles is taken into account. In a second simulation, the pressure field was evolved self consistently assuming Ohmic heating and anisotropic thermal conduction. Fluctuations in the simulated temperature are very similar in character and time evolution to temperature fluctuations measured in MST. This includes m = 1 , n = 6 fluctuations that flatten the temperature profile as well as m = 1 , n = 5 fluctuations that generate hot island structures near the core shortly after sawtooth crashes. This work supported by the US DOE and NSF.
Brain hyperthermia and temperature fluctuations during sexual interaction in female rats.
Mitchum, Robert D; Kiyatkin, Eugene A
2004-03-12
Since the metabolic activity of neural cells is accompanied by heat release, brain temperature monitoring provides insight into behavior-associated changes in neural activity. In the present study, local temperatures were continuously recorded in several brain structures (nucleus accumbens, medial-preoptic hypothalamus and hippocampus) and a non-locomotor head muscle (musculus temporalis) in a receptive female rat during sexually arousing stimulation and subsequent copulatory behavior with an experienced male. Placement of the male into a neighboring compartment increased the female's temperature (approximately 0.8 degrees C) and additional, transient increases (approximately 0.2 degrees C) occurred when the rats were allowed to see and smell each other through a transparent barrier. Temperatures gradually increased further as the male repeatedly mounted and achieved intromissions, peaked 2-3 min after male's ejaculation (0.2-0.4 degrees C), and abruptly dropped until the male initiated a new copulatory cycle. Similar biphasic fluctuations accompanied subsequent copulatory cycles. Although both arousal-related temperature increases and biphasic fluctuations associated with copulatory cycles were evident in each recording location, brain sites showed consistently faster and stronger increases than the muscle, suggesting metabolic brain activation as the primary source of brain temperature fluctuations and a force behind associated changes in brain temperature. Robust brain hyperthermia and the generally similar pattern of phasic temperature fluctuations associated with individual events of sexual interaction found in males and females suggest widespread neural activation (motivational arousal) as a driving force underlying this cooperative motivated behavior in animals of both sexes. Females, however, showed different temperature changes in association with the initial (first mount or intromission) and final (ejaculation) events of each copulatory cycle, suggesting sex-specific differences in neural activity associated with the initiation and regulation of sexual behavior.
Goode, Daniel J.
1998-01-01
The use of environmental tracers in characterization of ground-water systems is investigated through mathematical modeling of ground-water age and atmospheric tracer transport, and by a field study at the Mirror Lake site, New Hampshire. Theory is presented for modeling ground-water age using the advective-dispersive transport equation. The transport equation includes a zero-order source of unit strength, corresponding to the rate of aging, and can accommodate matrix diffusion and other exchange processes. The effect of temperature fluctuations and layered soils on transport of atmospheric gases to the water table is investigated using a one-dimensional numerical model of chlorofluorocarbon (CFC-11) transport. The nonlinear relation between temperature and Henry's Law coefficient (reflecting air/water phase partitioning) can cause the apparent recharge temperature to be elevated above the annual mean temperature where the water table is shallow. In addition, fine-grained soils can isolate the air phase in the unsaturated zone from the atmosphere. At the USGS' Mirror Lake, New Hampshire fractured-rock research site CFC concentrations near the water table are depleted where dissolved oxygen is low. CFC-11 and CFC-113 are completely absent under anaerobic conditions, while CFC-12 is as low as one-third of modern concentrations. Anaerobic biodegradation apparently consumes CFC's near the water table at this site. One area of active degradation appears to be associated with streamflow loss to ground water. Soil gas concentrations are generally close to atmospheric levels, although some spatial correlation is observed between depleted concentrations of CFC-11 and CFC-113 in soil gas and water-table samples. Results of unsaturated-zone monitoring indicate that recharge occurs throughout the year in the watershed, even during summer evapotranspiration periods, and that seasonal temperature fluctuations occur as much as 5 meters below land surface. Application of ground-water age and CFC-11 transport models to the large-scale ground-water system at Mirror Lake illustrates the similarities between age and chemical transport. Generally, bedrock porosities required to match observed apparent ages from CFC concentrations are high relative to porosities measured on cores. Although matrix diffusion has no effect on steady-state age, it can significantly reduce CFC concentrations in fractured rock in which the effective porosity is low.
North Atlantic Origin of Interdecadal variability of Siberian High
NASA Astrophysics Data System (ADS)
Kim, Seon-Hwa; Sung, Mi-Kyung; Kim, Baek-Min
2017-04-01
We suggest that the changes in the mean atmospheric circulation structure in the North Atlantic Ocean upstream region of Eurasian continent play an important role in the interdecadal variability of Siberian High (SH) through the modulation of Ural blocking frequency. Previous studies suggested that the interdecadal variability of SH is partly explained by the Arctic Oscillation. However, in this study, we emphasize the role of 'Warm Arctic and Cold Eurasia (WACE)', which is the second mode of winter surface air temperature variability over Eurasia. We show that the correlation between SH and WACE is high in general compared to that between SH and AO. However, the correlation between SH and WACE does not always exhibit high constant value. It shows a distinctive interdecadal fluctuation in the correlation. We found that this fluctuation in the correlation is due to the interdecadal fluctuation of the continental trough over the North Atlantic and the resultant strengthening of in-situ atmospheric baroclinicity. This accompanies changes in the transient vorticity flux divergence which leads to the downstream wave development and anomalous anticyclonic flow near Ural region. Obviously, the existence of anticyclonic flow over Ural region helps more frequent occurrence of Ural blocking and it is shown that this condition favors positive WACE event, which links to an intensified SH.
Peng, De-Li; Song, Bo; Yang, Yang; Niu, Yang; Sun, Hang
2016-01-01
Extrafloral structures are supposed to have evolved to protect flowers from harsh physical environments but might have effects on pollination. Overlapping leaves cover flowers in Eriophyton wallichii, an alpine perennial endemic to the Himalaya-Hengduan Mountains. In previous study, it has showed that these extrafloral leaves can protect interior flowers from temperature fluctuations caused by drastic solar radiation fluctuations, but these leaves may also protect interior flowers from rain wash and UVB damage, and we do not know which one is the main function. In this study, we investigated whether rain and UVB protection are the main functions of overlapping leaves covering flowers and their potential impact on pollination. We first measured the intensities of UVB radiation in open air, beneath leaves and corollas, and then examined pollen susceptibility to different intensities of UVB and rain in the laboratory to estimate whether corollas per se protect interior pollen from UVB and rain damage. We also carried out pollination treatments and observed pollinator visitation of flowers with and without leaves in the field to assess whether the overlapping leaves covering flowers impair pollinator attraction. Our results showed that (1) water and strong UVB significantly decreased pollen germinability, but corollas per se could protect pollen from UVB and rain damage; (2) no autonomous self-pollination and apomixis occurred, and pollinators were essential for the reproduction of E. wallichii; however, flower coverage by overlapping leaves did not limit pollination. We suggested that rain and UVB protection was not the main function of overlapping leaves covered flowers, given that this protection can be provided by corollas per se. Alternatively, this extrafloral structure in E. wallichii may have evolved in response to extreme high temperatures associated with the strong solar radiation fluctuations. This indicates that, even in alpine plants, extreme high temperature may affect the evolution of plant extrafloral structures.
Peng, De-Li; Song, Bo; Yang, Yang; Niu, Yang; Sun, Hang
2016-01-01
Extrafloral structures are supposed to have evolved to protect flowers from harsh physical environments but might have effects on pollination. Overlapping leaves cover flowers in Eriophyton wallichii, an alpine perennial endemic to the Himalaya-Hengduan Mountains. In previous study, it has showed that these extrafloral leaves can protect interior flowers from temperature fluctuations caused by drastic solar radiation fluctuations, but these leaves may also protect interior flowers from rain wash and UVB damage, and we do not know which one is the main function. In this study, we investigated whether rain and UVB protection are the main functions of overlapping leaves covering flowers and their potential impact on pollination. We first measured the intensities of UVB radiation in open air, beneath leaves and corollas, and then examined pollen susceptibility to different intensities of UVB and rain in the laboratory to estimate whether corollas per se protect interior pollen from UVB and rain damage. We also carried out pollination treatments and observed pollinator visitation of flowers with and without leaves in the field to assess whether the overlapping leaves covering flowers impair pollinator attraction. Our results showed that (1) water and strong UVB significantly decreased pollen germinability, but corollas per se could protect pollen from UVB and rain damage; (2) no autonomous self-pollination and apomixis occurred, and pollinators were essential for the reproduction of E. wallichii; however, flower coverage by overlapping leaves did not limit pollination. We suggested that rain and UVB protection was not the main function of overlapping leaves covered flowers, given that this protection can be provided by corollas per se. Alternatively, this extrafloral structure in E. wallichii may have evolved in response to extreme high temperatures associated with the strong solar radiation fluctuations. This indicates that, even in alpine plants, extreme high temperature may affect the evolution of plant extrafloral structures. PMID:27716786
Effect of temperature gradient on liquid-liquid phase separation in a polyolefin blend.
Jiang, Hua; Dou, Nannan; Fan, Guoqiang; Yang, Zhaohui; Zhang, Xiaohua
2013-09-28
We have investigated experimentally the structure formation processes during phase separation via spinodal decomposition above and below the spinodal line in a binary polymer blend system exposed to in-plane stationary thermal gradients using phase contrast optical microscopy and temperature gradient hot stage. Below the spinodal line there is a coupling of concentration fluctuations and thermal gradient imposed by the temperature gradient hot stage. Also under the thermal gradient annealing phase-separated domains grow faster compared with the system under homogeneous temperature annealing on a zero-gradient or a conventional hot stage. We suggest that the in-plane thermal gradient accelerates phase separation through the enhancement in concentration fluctuations in the early and intermediate stages of spinodal decomposition. In a thermal gradient field, the strength of concentration fluctuation close to the critical point (above the spinodal line) is strong enough to induce phase separation even in one-phase regime of the phase diagram. In the presence of a temperature gradient the equilibrium phase diagrams are no longer valid, and the systems with an upper critical solution temperature can be quenched into phase separation by applying the stationary temperature gradient. The in-plane temperature gradient drives enhanced concentration fluctuations in a binary polymer blend system above and below the spinodal line.
Thermal fluctuation within nests and predicted sex ratio of Morelet's Crocodile.
Escobedo-Galván, Armando H; López-Luna, Marco A; Cupul-Magaña, Fabio G
2016-05-01
Understanding the interplay between thermal variations and sex ratio in reptiles with temperature-dependent sex determination is the first step for developing long-term conservation strategies. In case of crocodilians, the information is fragmentary and insufficient for establishing a general framework to consider how thermal fluctuation influence sex determination under natural conditions. The main goal of this study was to analyze thermal variation in nests of Crocodylus moreletii and to discuss the potential implications for predicting offspring sex ratio. The study was carried out at the Centro de Estudios Tecnológicos del Mar N° 2 and at the Sistemas Productivos Cocodrilo, Campeche, Mexico. Data was collected in the nesting season of Morelet's Crocodiles during three consecutive seasons (2007-2009). Thermal fluctuations for multiple areas of the nest chamber were registered by data loggers. We calculate the constant temperature equivalent based on thermal profiles among nests to assess whether there are differences between the nest temperature and its equivalent to constant temperature. We observed that mean nest temperature was only different among nests, while daily thermal fluctuations vary depending on the depth position within the nest chamber, years and nests. The constant temperature equivalent was different among and within nests, but not among survey years. We observed differences between constant temperature equivalent and mean nest temperature both at the top and in the middle of the nest cavities, but were not significantly different at the bottom of nest cavities. Our results enable examine and discuss the relevance of daily thermal fluctuations to predict sex ratio of the Morelet's Crocodile. Copyright © 2016 Elsevier Ltd. All rights reserved.
Air-induction aspirator-aerators cut heat loss to the atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodel, A.E.
1993-04-01
The efficiency of biological treatment at the Amoco Chemical's Cedar Bayou plant's activated-sludge wastewater-treatment system was reduced when outdoor temperatures fell below 65[degrees]F. Amoco experienced microbe fragmenting and failure to settle in final clarification, especially during winter. Meeting permit standards during winter was a concern. With mechanical aerators, water is pumped upward and thrown into the air. Much heat loss in the aerated basin was from evaporation and conduction of the mechanical aerator spray. The plant's wastewater staff decided to replace the aerators with subsurface, propeller-type aerator-mixers. These air-induction, aspirating aerator-mixers employ a system that eliminates the spray action throughmore » which evaporation and conduction can occur. The aspirator-aeration systems also have saved energy. The units do not have to overcome the forces of gravity, as with mechanical, surface splasher aerators, which required more horsepower and higher energy consumption to throw the water up into the air. The new units can be conveniently turned on and off to match a fluctuating flow. Since the Cedar Bayou plant installed the system, the aspirator-aerators' subsurface mixing capabilities have made winter permit compliance a steadfast routine.« less
Mondal, Mintu; Kamlapure, Anand; Chand, Madhavi; Saraswat, Garima; Kumar, Sanjeev; Jesudasan, John; Benfatto, L; Tripathi, Vikram; Raychaudhuri, Pratap
2011-01-28
We explore the role of phase fluctuations in a three-dimensional s-wave superconductor, NbN, as we approach the critical disorder for destruction of the superconducting state. Close to critical disorder, we observe a finite gap in the electronic spectrum which persists at temperatures well above T(c). The superfluid density is strongly suppressed at low temperatures and evolves towards a linear-T variation at higher temperatures. These observations provide strong evidence that phase fluctuations play a central role in the formation of a pseudogap state in a disordered s-wave superconductor.
The Impact of Greenspace on Thermal Comfort in a Residential Quarter of Beijing, China.
Wu, Zhifeng; Kong, Fanhua; Wang, Yening; Sun, Ranhao; Chen, Liding
2016-12-08
With the process of urbanization, a large number of residential quarters, which is the main dwelling form in the urban area of Beijing, have been developed in last three decades to accommodate the rising population. In the context of intensification of urban heat island (UHI), the potential degradation of the thermal environment of residential quarters can give rise to a variety of problems affecting inhabitants' health. This paper reports the results of a numerical study of the thermal conditions of a residential quarter on a typical summertime day under four greening modification scenarios, characterized by different leaf area density (LAD) profiles. The modelling results demonstrated that vegetation could evidently reduce near-surface air temperature, with the combination of grass and mature trees achieving as much as 1.5 °C of air temperature decrease compared with the non-green scenario. Vegetation can also lead to smaller air temperature fluctuations, which contribute to a more stable microclimate. The Universal Thermal Climate Index (UTCI) was then calculated to represent the variation of thermal environment of the study area. While grass is helpful in improving outdoor thermal comfort, trees are more effective in reducing the duration and expansion of suffering from severe heat stress. The results of this study showed that proper maintenance of vegetation, especially trees, is significant to improving the outdoor thermal environment in the summer season. In consideration of the deficiency of the current code in the management of greenspace in residential areas, we hope the results reported here will help promote the improvement of the code and related regulations for greenspace management.
The Impact of Greenspace on Thermal Comfort in a Residential Quarter of Beijing, China
Wu, Zhifeng; Kong, Fanhua; Wang, Yening; Sun, Ranhao; Chen, Liding
2016-01-01
With the process of urbanization, a large number of residential quarters, which is the main dwelling form in the urban area of Beijing, have been developed in last three decades to accommodate the rising population. In the context of intensification of urban heat island (UHI), the potential degradation of the thermal environment of residential quarters can give rise to a variety of problems affecting inhabitants’ health. This paper reports the results of a numerical study of the thermal conditions of a residential quarter on a typical summertime day under four greening modification scenarios, characterized by different leaf area density (LAD) profiles. The modelling results demonstrated that vegetation could evidently reduce near-surface air temperature, with the combination of grass and mature trees achieving as much as 1.5 °C of air temperature decrease compared with the non-green scenario. Vegetation can also lead to smaller air temperature fluctuations, which contribute to a more stable microclimate. The Universal Thermal Climate Index (UTCI) was then calculated to represent the variation of thermal environment of the study area. While grass is helpful in improving outdoor thermal comfort, trees are more effective in reducing the duration and expansion of suffering from severe heat stress. The results of this study showed that proper maintenance of vegetation, especially trees, is significant to improving the outdoor thermal environment in the summer season. In consideration of the deficiency of the current code in the management of greenspace in residential areas, we hope the results reported here will help promote the improvement of the code and related regulations for greenspace management. PMID:27941659
NASA Astrophysics Data System (ADS)
Zhao, Bing; Hu, Jianhui; Chen, Wujun; Qiu, Zhenyu; Zhou, Jinyu; Qu, Yegao; Ge, Binbin
2016-10-01
The amorphous silicon photovoltaic (a-Si PV) cells are widely used for electricity generation from solar energy. When the a-Si PV cells are integrated into building roofs, such as ETFE (ethylene-tetrafouoroethylene) cushions, the temperature characteristics are indispensible for evaluating the thermal performances of a-Si PV and its constructions. This temperature value is directly dependent on the solar irradiance, wind velocity, ambient temperature and installation form. This paper concerns the field experiments and numerical modeling on the temperature characteristics and temperature value of the a-Si PV integrated in a double-layer ETFE cushion structure. To this end, an experimental model composed of two a-Si PV cells and a double-layer ETFE cushion was developed, and the corresponding experiments were carried out under two typical weather conditions (summer sunny and summer cloudy). The theoretical thermal model was developed based on an energy balance equation taking the short wave radiation, long wave radiation, convection and generated power into account. The measured solar irradiance and air temperature were used as real weather conditions for the thermal model. The corresponding differential equation of the a-Si PV temperature varying with the solar irradiance and air temperature was solved by a newly developed program based on the numerical method. The measured results show that the influence of solar irradiance on the temperature is much more significant than the other parameters, and the maximum temperature variation under sunny conditions is greater than that under cloudy conditions. The comparative study between the experimental and numerical results shows the correct predictions of the a-Si PV temperature under the sunny and cloudy conditions. The maximum difference is 3.9 °C with the acceptable reasons of the solar irradiance fluctuation and the PV thermal response time. These findings will provide useful observations and explanations for evaluating the PV and building performances in relation to temperature.
Single-shot gas-phase thermometry by time-to-frequency mapping of coherence dephasing.
Yue, Orin; Bremer, Marshall T; Pestov, Dmitry; Gord, James R; Roy, Sukesh; Dantus, Marcos
2012-08-09
We demonstrate a single-beam coherent anti-Stokes Raman scattering (CARS) technique for gas-phase thermometry that assesses the species-specific local gas temperature by single-shot time-to-frequency mapping of Raman-coherence dephasing. The proof-of-principle experiments are performed with air in a temperature-controlled gas cell. Impulsive excitation of molecular vibrations by an ultrashort pump/Stokes pulse is followed by multipulse probing of the 2330 cm(-1) Raman transition of N(2). This sequence of colored probe pulses, delayed in time with respect to each other and corresponding to three isolated spectral bands, imprints the coherence dephasing onto the measured CARS spectrum. For calibration purposes, the dephasing rates are recorded at various gas temperatures, and the relationship is fitted to a linear regression. The calibration data are then used to determine the gas temperature and are shown to provide better than 15 K accuracy. The described approach is insensitive to pulse energy fluctuations and can, in principle, gauge the temperature of multiple chemical species in a single laser shot, which is deemed particularly valuable for temperature profiling of reacting flows in gas-turbine combustors.
Sebok, Eva; Engesgaard, Peter; Duque, Carlos
2017-08-24
This study presented the monitoring and quantification of streambed sedimentation and scour in a stream with dynamically changing streambed based on measured phase and amplitude of the diurnal signal of sediment temperature time series. With the applied method, changes in streambed elevation were estimated on a sub-daily scale with 2-h intervals without continuous maintenance of the measurement system, thus making both high temporal resolution and long-term monitoring of streambed elevations possible. Estimates of streambed elevation showed that during base flow conditions streambed elevation fluctuates by 2-3 cm. Following high stream stages, scouring of 2-5 cm can be observed even at areas with low stream flow and weak currents. Our results demonstrate that weather variability can induce significant changes in the stream water and consequently sediment temperatures influencing the diurnal temperature signal in such an extent that the sediment thickness between paired temperature sensors were overestimated by up to 8 cm. These observations have significant consequences on the design of vertical sensor spacing in high-flux environments and in climates with reduced diurnal variations in air temperature.
NASA Astrophysics Data System (ADS)
Mohr, Manuel; Laemmel, Thomas; Maier, Martin; Schindler, Dirk
2017-04-01
Commonly it is assumed that soil gas transport is dominated by molecular diffusion. Few recent studies indicate that the atmosphere above the soil triggers non-diffusive gas transport processes in the soil, which can enhance soil gas transport and therefore soil gas efflux significantly. During high wind speed conditions, the so called pressure pumping effect has been observed: the enhancement of soil gas transport through dynamic changes in the air pressure field above the soil. However, the amplitudes and frequencies of the air pressure fluctuations responsible for pressure pumping are still uncertain. Moreover, an in situ observation of the pressure pumping effect is still missing. To investigate the pressure pumping effect, airflow measurements above and below the canopy of a Scots pine forest and high-precision relative air pressure measurements were conducted in the below-canopy space and in the soil over a measurement period of 16 weeks. To monitor the soil gas transport, a newly developed gas measurement system was used. The gas measurement system continuously injects helium as a tracer gas into the soil until a diffusive steady state is reached. With the steady state concentration profile of the tracer gas, it is possible to inversely model the gas diffusion coefficient profile of the soil. If the gas diffusion coefficient profile differed from steady state, we deduced that the soil gas transport is not only diffusive, but also influenced by non-diffusive processes. Results show that the occurrence of small air pressure fluctuations is strongly dependent on the mean above-canopy wind speed. The wind-induced air pressure fluctuations have mean amplitudes up to 10 Pa and lie in the frequency range 0.01-0.1 Hz. To describe the pumping motion of the air pressure field, the pressure pumping coefficient (PPC) was defined as the mean change in pressure per second. The PPC shows a clear quadratic dependence on mean above-canopy wind speed. Empirical modelling of the measured topsoil helium concentration demonstrated that the PPC is the most important predictor for changes in the topsoil helium concentration. Comparison of time periods with high PPC and periods of low PPC showed that the soil gas diffusion coefficient in depths between 5-10 cm increased up to 30% during periods of high PPC compared to steady state. Thus, the air pressure fluctuations observed in the atmosphere and described by the PPC penetrate into the soil and influence the topsoil gas transport.
NASA Astrophysics Data System (ADS)
Bolan, B. A.; Soles, C. L.; Hristov, H. A.; Gidley, D. W.; Yee, A. F.
1996-03-01
A new method is proposed for the evaluation of the hole volume in amorphous polymers based upon PALS data measured over a temperature of 110 to 480 K. Extrapolation of the "open hole" volume to 0 K allows its separation into that attributed to the segmental motions of the polymer chains (dynamic) and that due to inefficient packing (static). The dynamic hole volume is correlated to thermodynamic volume/density fluctuations and its temperature dependencies are in good agreement with SAXS data. Several thermosetting epoxy materials are also studied over a similar temperature range with the "open hole" volume being separated into its dynamic and static components. How these two components affect diffusional properties of these systems is examined in detail. It is also shown that the o-Ps can localize in a nearly 100material (PET), we therefore conclude that PALS measures more than the "free volume" necessary for segmental motion. Work supported by the Air Force Office of Scientific Research (AFOSR) grant # F49620-95-1-0037.
White, A E; Schmitz, L; Peebles, W A; Carter, T A; Rhodes, T L; Doyle, E J; Gourdain, P A; Hillesheim, J C; Wang, G; Holland, C; Tynan, G R; Austin, M E; McKee, G R; Shafer, M W; Burrell, K H; Candy, J; DeBoo, J C; Prater, R; Staebler, G M; Waltz, R E; Makowski, M A
2008-10-01
A correlation electron cyclotron emission (CECE) diagnostic has been used to measure local, turbulent fluctuations of the electron temperature in the core of DIII-D plasmas. This paper describes the hardware and testing of the CECE diagnostic and highlights the importance of measurements of multifield fluctuation profiles for the testing and validation of nonlinear gyrokinetic codes. The process of testing and validating such codes is critical for extrapolation to next-step fusion devices. For the first time, the radial profiles of electron temperature and density fluctuations are compared to nonlinear gyrokinetic simulations. The CECE diagnostic at DIII-D uses correlation radiometry to measure the rms amplitude and spectrum of the electron temperature fluctuations. Gaussian optics are used to produce a poloidal spot size with w(o) approximately 1.75 cm in the plasma. The intermediate frequency filters and the natural linewidth of the EC emission determine the radial resolution of the CECE diagnostic, which can be less than 1 cm. Wavenumbers resolved by the CECE diagnostic are k(theta) < or = 1.8 cm(-1) and k(r) < or = 4 cm(-1), relevant for studies of long-wavelength turbulence associated with the trapped electron mode and the ion temperature gradient mode. In neutral beam heated L-mode plasmas, core electron temperature fluctuations in the region 0.5 < r/a < 0.9, increase with radius from approximately 0.5% to approximately 2%, similar to density fluctuations that are measured simultaneously with beam emission spectroscopy. After incorporating "synthetic diagnostics" to effectively filter the code output, the simulations reproduce the characteristics of the turbulence and transport at one radial location r/a = 0.5, but not at a second location, r/a = 0.75. These results illustrate that measurements of the profiles of multiple fluctuating fields can provide a significant constraint on the turbulence models employed by the code.
Li, Xing-hua; Han, Fang; Zhang, Cun-hou; Na, Ri-su; Liu, Peng-tao
2009-01-01
By using wavelet transform and remote sensing techniques, the influence of climate change on the unique mosaic landscape of sand land-wetland in middle-east Inner Mongolia in 1961 -2005 was studied. The results showed that in 1961-2005, the annual air temperature in study area had an increment of 0.32 degrees C x (10 a)(-1), the annual precipitation fluctuated with a cycle of 30 years and of 15 years, and the annual average wind speed decreased by 0.26 m x s(-1) x (10 a)(-1). In the southeast part of study area, which located in the places between Hunshandake sand land and Keerqin Deserts, there was a district, in which, the climatic characteristics did not change evidently. Until 2010, the study area would still have an increasing air temperature, lesser precipitation, and decreasing wind speed. Under the influence of warming and drying, the total area of Hunshandake sand land and the wetland around reduced year after year, and, with the vegetation degradation on sand land, wetland shrunk and lake dried up, moving sand land enlarged ceaselessly, while immovable and semi-moving sand lands reduced obviously.
Barometric fluctuations in wells tapping deep unconfined aquifers
Weeks, Edwin P.
1979-01-01
Water levels in wells screened only below the water table in unconfined aquifers fluctuate in response to atmospheric pressure changes. These fluctuations occur because the materials composing the unsaturated zone resist air movement and have capacity to store air with a change in pressure. Consequently, the translation of any pressure change at land surface is slowed as it moves through the unsaturated zone to the water table, but it reaches the water surface in the well instantaneously. Thus a pressure imbalance is created that results in a water level fluctuation. Barometric effects on water levels in unconfined aquifers can be computed by solution of the differential equation governing the flow of gas in the unsaturated zone subject to the appropriate boundary conditions. Solutions to this equation for two sets of boundary conditions were applied to compute water level response in a well tapping the Ogallala Formation near Lubbock, Texas from simultaneous microbarograph records. One set of computations, based on the step function unit response solution and convolution, resulted in a very good match between computed and measured water levels. A second set of computations, based on analysis of the amplitude ratios of simultaneous cyclic microbarograph and water level fluctuations, gave inconsistent results in terms of the unsaturated zone pneumatic properties but provided useful insights on the nature of unconfined-aquifer water level fluctuations.
Abaturov, L V; Nosova, N G; Shliapnikova, S V
2006-01-01
Two main types of conformational fluctuations--local and global are characteristic of the native protein structure and revealed by hydrogen exchange. The probability of those fluctuations changes to a different extent upon hemoglobin oxygenation, changing of pH, splitting of the intersubunit contacts. To compare with the influence of the heme removal the rate of the H-D exchange of the peptide NH atoms of the human apoHb was studied at the pH range 5.5-9.0 and temperature 10-38 degrees C by the IR spectroscopy. The removal of the heme increases the rate of the H-D exchange of the 80% peptide NH atoms with the factor retardation of the exchange rate (P) in the range approximately 10(2)-10(8). For the most of the peptide NH atoms the probability of the local fluctuations weakly depends on the temperature, the enthalpy changes upon all such local conformational transitions deltaH(op) degrees are 0-15 kcal/M. Characterized by the stronger temperature dependence the global fluctuations are not arised upon the temperature increases up to 38 degrees C at pH 7.0 inspite of in these conditions the slow denaturation and aggregation of apoHb begin to occur. Upon the destabilization of the apoHb structure by the simultaneous decreasing of pH to 5.5 and temperature to 10 degrees C the global fluctuations of the apoHb native structure described by deltaH(op)o < 0 begin to intensify. The mechanism of the overall intensification of the local fluctuations upon the heme removal, the peculiarity of the heat denaturation of apoHb in conditions, close to that existing upon the selfassembly of Hb in vivo, and analogy between low temperature global fluctuations and cold denaturation of globular proteins are discussed.
Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature.
Yadav, Brijesh K; Shrestha, Shristi R; Hassanizadeh, S Majid
2012-09-01
An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of varying soil-water temperature on biodegradation of toluene under aerobic conditions. To see the seasonal impact of temperature, three sets of batch experiments were conducted at three different constant temperatures: 10°C, 21°C, and 30°C. These conditions were considered to represent (1) winter, (2) spring and/or autumn, and (3) summer seasons, respectively, at many polluted sites. Three additional sets of batch experiments were performed under fluctuating soil-water temperature cases (21<>10°C, 30<>21°C, and 10<>30°C) to mimic the day-night temperature patterns expected during the year. The batches were put at two different temperatures alternatively to represent the day (high-temperature) and night (low-temperature) times. The results of constant- and fluctuating-temperature experiments show that toluene degradation is strongly dependent on soil-water temperature level. An almost two-fold increase in toluene degradation time was observed for every 10°C decrease in temperature for constant-temperature cases. Under fluctuating-temperature conditions, toluene degraders were able to overcome the temperature stress and continued thriving during all considered weather scenarios. However, a slightly longer time was taken compared to the corresponding time at daily mean temperature conditions. The findings of this study are directly useful for bioremediation of hydrocarbon-polluted sites having significant diurnal and seasonal variations of soil-water temperature.
Electromagnetic fluctuations for anisotropic media and the generalized Kirchhoff's law
NASA Technical Reports Server (NTRS)
Yueh, Simon H.; Kwok, R.
1993-01-01
In this paper the polarimetric emission parameters for anisotropic media are derived using the generalized Kirchhoff's law for media with a uniform temperature and the fluctuation-dissipation theory for media with a temperature profile. Both finite-size objects and half-space media are considered. When the object has a uniform temperature across its body, the Kirchhoff's law, based on the condition of energy conservation in thermal equilibrium is generalized to obtain the emission parameters of an anisotropic medium, which can be interpreted as the absorptivity or the absorption cross section of the complementary object with a permittivity that is the transpose of the original object. When the medium has a nonuniform temperature distribution, the fluctuation-dissipation theory is applied for deriving the covariances between vector components of the thermal currents and, consequently, the covariances of the polarizations of electric fields radiated by the thermal currents. To verify the formulas derived from the fluctuation-dissipation theory, we let the temperature of the object be a constant and show that the results reduce to those obtained from the generalized Kirchhoff's law.
NASA Astrophysics Data System (ADS)
Duan, Y.; Durand, M. T.; Jezek, K. C.; Yardim, C.; Bringer, A.; Aksoy, M.; Johnson, J. T.
2017-12-01
The ultra-wideband software-defined microwave radiometer (UWBRAD) is designed to provide ice sheet internal temperature product via measuring low frequency microwave emission. Twelve channels ranging from 0.5 to 2.0 GHz are covered by the instrument. A Greenland air-borne demonstration was demonstrated in September 2016, provided first demonstration of Ultra-wideband radiometer observations of geophysical scenes, including ice sheets. Another flight is planned for September 2017 for acquiring measurements in central ice sheet. A Bayesian framework is designed to retrieve the ice sheet internal temperature from simulated UWBRAD brightness temperature (Tb) measurements over Greenland flight path with limited prior information of the ground. A 1-D heat-flow model, the Robin Model, was used to model the ice sheet internal temperature profile with ground information. Synthetic UWBRAD Tb observations was generated via the partially coherent radiation transfer model, which utilizes the Robin model temperature profile and an exponential fit of ice density from Borehole measurement as input, and corrupted with noise. The effective surface temperature, geothermal heat flux, the variance of upper layer ice density, and the variance of fine scale density variation at deeper ice sheet were treated as unknown variables within the retrieval framework. Each parameter is defined with its possible range and set to be uniformly distributed. The Markov Chain Monte Carlo (MCMC) approach is applied to make the unknown parameters randomly walk in the parameter space. We investigate whether the variables can be improved over priors using the MCMC approach and contribute to the temperature retrieval theoretically. UWBRAD measurements near camp century from 2016 was also treated with the MCMC to examine the framework with scattering effect. The fine scale density fluctuation is an important parameter. It is the most sensitive yet highly unknown parameter in the estimation framework. Including the fine scale density fluctuation greatly improved the retrieval results. The ice sheet vertical temperature profile, especially the 10m temperature, can be well retrieved via the MCMC process. Future retrieval work will apply the Bayesian approach to UWBRAD airborne measurements.
Ishikawa, C Millikin; Bledsoe, C S
2000-12-01
In a 3-year study, seasonal and daily soil water fluctuations in a California blue oak woodland were investigated by measuring soil water potential (Ψ s ) at hourly intervals. Soil water potential remained relatively high well into the annual summer drought, with values above -0.5 MPa until June even in a dry year. As drought progressed, Ψ s (at 25, 50, 75, and 100 cm depth) decreased to less than -3 MPa, providing evidence for continued blue oak root activity throughout the summer. We observed diurnal Ψ s fluctuations (gradual increase at night and rapid decrease during daytime) characteristic of hydraulic lift, a process by which plant roots redistribute water from wet to dry soil layers. These diurnal fluctuations were observed at all four soil depths and began to appear when Ψ s reached approximately -0.3 MPa. When Ψ s reached approximately -3 MPa, fluctuations became "offset" from those typical of hydraulic lift. These offset fluctuations (apparent at low water potentials when temperature fluctuations were large) closely followed diurnal fluctuations in soil temperature. We propose that these offset patterns resulted from a combination of hydraulic lift cessation and an over-correction for temperature in the model used to calculate Ψ s from raw sensor data. The appearance and disappearance of hydraulic lift fluctuations seemed to depend on Ψ s . While soil temperatures and dates at which hydraulic lift appeared (and disappeared) were significantly different between wet and dry years, Ψ s values associated with hydraulic lift appearance were not significantly different. Hydraulic lift occurred too late in summer to benefit annual forage grasses. However, water released by blue oak trees at night could slow the rate of soil water depletion and extend blue oaks' growing season.
Frost risk for overwintering crops in a changing climate
NASA Astrophysics Data System (ADS)
Vico, Giulia; Weih, Martin
2013-04-01
Climate change scenarios predict a general increase in daily temperatures and a decline in snow cover duration. On the one hand, higher temperature in fall and spring may facilitate the development of overwintering crops and allow the expansion of winter cropping in locations where the growing season is currently too short. On the other hand, higher temperatures prior to winter crop dormancy slow down frost hardening, enhancing crop vulnerability to temperature fluctuation. Such vulnerability may be exacerbated by reduced snow cover, with potential further negative impacts on yields in extremely low temperatures. We propose a parsimonious probabilistic model to quantify the winter frost damage risk for overwintering crops, based on a coupled model of air temperature, snow cover, and crop minimum tolerable temperature. The latter is determined by crop features, previous history of temperature, and snow cover. The temperature-snow cover model is tested against meteorological data collected over 50 years in Sweden and applied to winter wheat varieties differing in their ability to acquire frost resistance. Hence, exploiting experimental results assessing crop frost damage under limited temperature and snow cover realizations, this probabilistic framework allows the quantification of frost risk for different crop varieties, including in full temperature and precipitation unpredictability. Climate change scenarios are explored to quantify the effects of changes in temperature mean and variance and precipitation regime over crops differing in winter frost resistance and response to temperature.
Darban, D A; Gowen, S R; Pembroke, B; Mahar, A N
2005-03-01
Growth room and glasshouse experiment was conducted to investigate the effect of constant and fluctuating temperatures on the development of Pasteuria penetrans a hyperparasite of root-knot nematodes. Tomato plants (Lycopersicon esculentum Mill) were inoculated with Meloidogyne javanica second-stage juveniles attached with endospores of P. penetrans and were grown in growth room at 26-29 degrees C and in glasshouse at 20-32 degrees C. The tomato plants were sampled from the growth room after 600 degree-days based on 17 degrees C/d, accumulating each day above a base temperature of 10 degrees C and from the glasshouse after 36 calendar days. Temperature affected the development of P. penetrans directly. The rate of development at constant temperature in growth room was faster than that in the glasshouse at fluctuating temperatures.
Darban, D.A.; Gowen, S.R.; Pembroke, B.; Mahar, A.N.
2005-01-01
Growth room and glasshouse experiment was conducted to investigate the effect of constant and fluctuating temperatures on the development of Pasteuria penetrans a hyperparasite of root-knot nematodes. Tomato plants (Lycopersicon esculentum Mill) were inoculated with Meloidogyne javanica second-stage juveniles attached with endospores of P. penetrans and were grown in growth room at 26–29 °C and in glasshouse at 20–32 °C. The tomato plants were sampled from the growth room after 600 degree-days based on 17 °C/d, accumulating each day above a base temperature of 10 °C and from the glasshouse after 36 calendar days. Temperature affected the development of P. penetrans directly. The rate of development at constant temperature in growth room was faster than that in the glasshouse at fluctuating temperatures. PMID:15682497
Nonequilibrium Brownian motion beyond the effective temperature.
Gnoli, Andrea; Puglisi, Andrea; Sarracino, Alessandro; Vulpiani, Angelo
2014-01-01
The condition of thermal equilibrium simplifies the theoretical treatment of fluctuations as found in the celebrated Einstein's relation between mobility and diffusivity for Brownian motion. Several recent theories relax the hypothesis of thermal equilibrium resulting in at least two main scenarios. With well separated timescales, as in aging glassy systems, equilibrium Fluctuation-Dissipation Theorem applies at each scale with its own "effective" temperature. With mixed timescales, as for example in active or granular fluids or in turbulence, temperature is no more well-defined, the dynamical nature of fluctuations fully emerges and a Generalized Fluctuation-Dissipation Theorem (GFDT) applies. Here, we study experimentally the mixed timescale regime by studying fluctuations and linear response in the Brownian motion of a rotating intruder immersed in a vibro-fluidized granular medium. Increasing the packing fraction, the system is moved from a dilute single-timescale regime toward a denser multiple-timescale stage. Einstein's relation holds in the former and is violated in the latter. The violation cannot be explained in terms of effective temperatures, while the GFDT is able to impute it to the emergence of a strong coupling between the intruder and the surrounding fluid. Direct experimental measurements confirm the development of spatial correlations in the system when the density is increased.
A large temperature fluctuation may trigger an epidemic erythromelalgia outbreak in China
NASA Astrophysics Data System (ADS)
Liu, Tao; Zhang, Yonghui; Lin, Hualiang; Lv, Xiaojuan; Xiao, Jianpeng; Zeng, Weilin; Gu, Yuzhou; Rutherford, Shannon; Tong, Shilu; Ma, Wenjun
2015-03-01
Although erythromelalgia (EM) has been documented in the literature for almost 150 years, it is still poorly understood. To overcome this limitation, we examined the spatial distribution of epidemic EM, and explored the association between temperature fluctuation and epidemic EM outbreaks in China. We searched all peer-reviewed literature on primary epidemic EM outbreaks in China. A two-stage model was used to characterize the relationship between temperature fluctuation and epidemic EM outbreaks. We observed that epidemic EM outbreaks were reported from 13 provinces during 1960-2014 and they mainly occurred between February and March in southern China. The majority of EM cases were middle school students, with a higher incidence rate in female and resident students. The major clinical characteristics of EM cases included burning, sharp, tingling and/or stinging pain in toes, soles and/or dorsum of feet, fever, erythema and swelling. A large ``V''-shaped fluctuation of daily average temperature (TM) observed during the epidemic EM outbreaks was significantly associated with the number of daily EM cases (β = 1.22, 95%CI: 0.66 ~ 1.79), which indicated that this ``V''-shaped fluctuation of TM probably triggered the epidemic EM outbreaks.
Coherent X-ray Scattering from Liquid-Air Interfaces
NASA Astrophysics Data System (ADS)
Shpyrko, Oleg
Advances in synchrotron x-ray scattering techniques allow studies of structure and dynamics of liquid surfaces with unprecedented resolution. I will review x-ray scattering measurements of thermally excited capillary fluctuations in liquids, thin polymer liquid films and polymer surfaces in confined geometry. X-ray Diffuse scattering profile due to Debye-Waller like roughening of the surface allows to probe the distribution of capillary fluctuations over a wide range of length scales, while using X-ray Photon Correlation Spectroscopy (XPCS) one is able to directly couple to nanoscale dynamics of these surface fluctuations, over a wide range of temporal and spacial scales. I will also discuss recent XPCS measurements of lateral diffusion dynamics in Langmuir monolayers assembled at the liquid-air interface. This research was supported by NSF CAREER Grant 0956131.
Using Temperature-Dependent Phenomena at Oxide Surfaces for Species Recognition in Chemical Sensing.
NASA Astrophysics Data System (ADS)
Semancik, Steve; Meier, Douglas; Evju, Jon; Benkstein, Kurt; Boger, Zvi; Montgomery, Chip
2006-03-01
Nanostructured films of SnO2 and TiO2 have been deposited on elements in MEMS arrays to fabricate solid state conductometric gas microsensors. The multilevel platforms within an array, called microhotplates, are individually addressable for localized temperature control and measurement of sensing film electrical conductance. Temperature variations of the microhotplates are employed in thermally-activated CVD oxide film growth, and for rapid temperature-programmed operation of the microsensors. Analytical information on environmental gas phase composition is produced temporally as purposeful thermal fluctuations provide energetic and kinetic control of surface reaction and adsorption/desorption phenomena. Resulting modulations of oxide adsorbate populations cause changing charge transfer behavior and measurable conductance responses. Rich data streams from different sensing films in the arrays have been analyzed by Artificial Neural Networks (ANN) to successfully recognize low concentration species in mixed gases. We illustrate capabilities of the approach and technology in the homeland security area, where dangerous chemicals (TICs, CWSs and CWAs) have been detected at 10-100 ppb levels in interference-spiked air backgrounds.
NASA Astrophysics Data System (ADS)
Lei, Huimin
2016-04-01
The North China Plain, the largest agricultural production area in China, is a water-limited region where more than 50% of the nation's wheat and 33% of its maize production is grown. Evapotranspiration (ET) is a major component of the water balance in this agricultural ecosystem. Thus, hydrological cycle is very sensitive to the seasonal and interannual variability in ET. Understanding the variability in ET at different temporal scales and identifying out the dominant factor among the climatic factors (i.e., physical factors), crop factors (i.e., biological factors), and anthropogenic factors (i.e., irrigation) regulating ET is vital for promoting the development of agro-hydrological modeling. However, little is known about how ecosystem-level ET of irrigated cropland responds to these physical and biological factors over the long term, e.g., greater than 10 years. We have operated an eddy-covariance tower in a winter wheat-summer maize cropland for a 10-year period from 2005 through 2015, providing continuous measurements of ET and its relevant variables. The 10-year measurement period covers episodes of extremely high to low annual precipitation and higher air temperatures. The 10-year dataset provides opportunity to investigate the response of site-specific ecosystem ET to the variability of environmental factors. In this study, we reconcile an agro-hydrological model and the observations, to separate the physical and biological controls on ET fluctuations at different temporal scales. First, the model is calibrated carefully based on the observations. Second, a number of model runs are designed to disentangle the influence of climate, irrigation and biological drivers through constrained simulations. The climate drivers include precipitation, air temperature, air humidity, wind speed, and solar radiation, and the biological drivers include leaf area index and leaf-level stomatal conductance. In addition, the impacts of the variability in irrigation on ET will be studied. Last, based on the numerical runs, the dominant factor at each temporal scale (i.e., from weekly to annual) is identified.
Clow, G.D.; Saltus, R.W.; Waddington, E.D.
1996-01-01
We describe a high-precision (0.1-1.0 mK) borehole-temperature (BT) logging system developed at the United States Geological Survey (USGS) for use in remote polar regions. We discuss calibration, operational and data-processing procedures, and present an analysis of the measurement errors. The system is modular to facilitate calibration procedures and field repairs. By interchanging logging cables and temperature sensors, measurements can be made in either shallow air-filled boreholes or liquid-filled holes up to 7 km deep. Data can be acquired in either incremental or continuous-logging modes. The precision of data collected by the new logging system is high enough to detect and quantify various thermal effects at the milli-Kelvin level. To illustrate this capability, we present sample data from the 3 km deep borehole at GISP2, Greenland, and from a 130m deep air-filled hole at Taylor Dome, Antarctica. The precision of the processed GTSP2 continuous temperature logs is 0.25-0.34 mK, while the accuracy is estimated to be 4.5 mK. The effects of fluid convection and the dissipation of the thermal disturbance caused by drilling the borehole are clearly visible in the data. The precision of the incremental Taylor Dome measurements varies from 0.11 to 0.32mK, depending on the wind strength during the experiments. With this precision, we found that temperature fluctuations and multi-hour trends in the BT measurements correlate well with atmospheric-pressure changes.
Hierarchical Regularity in Multi-Basin Dynamics on Protein Landscapes
NASA Astrophysics Data System (ADS)
Matsunaga, Yasuhiro; Kostov, Konstatin S.; Komatsuzaki, Tamiki
2004-04-01
We analyze time series of potential energy fluctuations and principal components at several temperatures for two kinds of off-lattice 46-bead models that have two distinctive energy landscapes. The less-frustrated "funnel" energy landscape brings about stronger nonstationary behavior of the potential energy fluctuations at the folding temperature than the other, rather frustrated energy landscape at the collapse temperature. By combining principal component analysis with an embedding nonlinear time-series analysis, it is shown that the fast fluctuations with small amplitudes of 70-80% of the principal components cause the time series to become almost "random" in only 100 simulation steps. However, the stochastic feature of the principal components tends to be suppressed through a wide range of degrees of freedom at the transition temperature.
Spin-wave thermal population as temperature probe in magnetic tunnel junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Goff, A., E-mail: adrien.le-goff@u-psud.fr; Devolder, T.; Nikitin, V.
We study whether a direct measurement of the absolute temperature of a Magnetic Tunnel Junction (MTJ) can be performed using the high frequency electrical noise that it delivers under a finite voltage bias. Our method includes quasi-static hysteresis loop measurements of the MTJ, together with the field-dependence of its spin wave noise spectra. We rely on an analytical modeling of the spectra by assuming independent fluctuations of the different sub-systems of the tunnel junction that are described as macrospin fluctuators. We illustrate our method on perpendicularly magnetized MgO-based MTJs patterned in 50 × 100 nm{sup 2} nanopillars. We apply hard axismore » (in-plane) fields to let the magnetic thermal fluctuations yield finite conductance fluctuations of the MTJ. Instead of the free layer fluctuations that are observed to be affected by both spin-torque and temperature, we use the magnetization fluctuations of the sole reference layers. Their much stronger anisotropy and their much heavier damping render them essentially immune to spin-torque. We illustrate our method by determining current-induced heating of the perpendicularly magnetized tunnel junction at voltages similar to those used in spin-torque memory applications. The absolute temperature can be deduced with a precision of ±60 K, and we can exclude any substantial heating at the spin-torque switching voltage.« less
Bid, Aveek; Raychaudhuri, A K
2016-11-11
We report a detailed experimental study of the resistance fluctuations measured at low temperatures in high quality metal nanowires ranging in diameter from 15-200 nm. The wires exhibit co-existing face-centered-cubic and 4H hcp phases of varying degrees as determined from the x-ray diffraction data. We observe the appearance of a large non-Gaussian noise for nanowires of diameter smaller than 50 nm over a certain temperature range around ≈30 K. The diameter range ∼30 nm, where the noise has maxima coincides with the maximum volume fraction of the co-existing 4H hcp phase thus establishing a strong link between the fluctuation and the phase co-existence. The resistance fluctuation in the same temperature range also shows a deviation of [Formula: see text] behavior at low frequency with appearance of single frequency Lorentzian type contribution in the spectral power density. The fluctuations are thermally activated with an activation energy [Formula: see text] meV, which is of same order as the activation energy of creation of stacking fault in FCC metals that leads to the co-existing crystallographic phases. Combining the results of crystallographic studies of the nanowires and analysis of the resistance fluctuations we could establish the correlation between the appearance of the large resistance noise and the onset of phase co-existence in these nanowires.
Gary, S. Peter
2015-04-06
Plasma turbulence consists of an ensemble of enhanced, broadband electromagnetic fluctuations, typically driven by multi-wave interactions which transfer energy in wavevector space via non- linear cascade processes. In addition, temperature anisotropy instabilities in collisionless plasmas are driven by quasi-linear wave–particle interactions which transfer particle kinetic energy to field fluctuation energy; the resulting enhanced fluctuations are typically narrowband in wavevector magnitude and direction. Whatever their sources, short-wavelength fluctuations are those at which charged particle kinetic, that is, velocity-space, properties are important; these are generally wavelengths of the order of or shorter than the ion inertial length or the thermal ion gyroradius.more » The purpose of this review is to summarize and interpret recent computational results concerning short-wavelength plasma turbulence, short-wavelength temperature anisotropy instabilities and relationships between the two phenomena.« less
NASA Astrophysics Data System (ADS)
Kholodov, A. L.
2011-12-01
This report concerns the changes of the dynamics of snow warming influence on the permafrost temperature at the northern Yakutia. Snow is a key factor determines the thermal state of permafrost here. Despite of the absence of air temperature latitudinal zonality mean annual ground temperature decreases northward approximately 1 centigrade per latitude degree due to changes of the snow warming impact. At the north-western part with a relatively maritime climate warming influence of the snow is 0.5 to 1.5°C, while in the southern and eastern part with more continental climate it is 3.5 to 4.5°C. Snow redistribution within the some types of landscape at the beginning of the winter season can lead to the extremely fast freezing of the active layer and cooling of the permafrost within such types of landscapes. The main goal of the current research was to estimate snow warming impact dynamics over the last 30 years in the northern Yakutia. We took in consideration changes of the three main parameters, are determining snow cover thermal state: - snow thickness; - amplitude of air temperature seasonal oscillation; - temperature during the winter period during. Following conclusion can be done based on the data analysis: Interannual changes of snow warming influence are tenth to first centigrades, what is comparable with air temperature fluctuations. During the 1980-90s snow impact on the permafrost stood stable in the south-eastern part of the region or had a slightly negative trend in the western part. It could be explained by the changes of snow thickness, reduced thermal resistivity of snow due to winter warming and decreasing of the amplitude of seasonal temperature oscillation in the western part of the region. Since the end of 90s general increasing of the snow cover warming influence was noticed for the entire investigated territory. These results correspond with data of modern permafrost temperature observations have been done in the region during the last decades. Most of monitoring sites did not show sustainable changes of the permafrost temperature until the end of 90s years of the XX century, but recent measurements record increasing of the mean annual ground temperature at the most of monitoring sites in the region.
On the variability of the Priestley-Taylor coefficient over water bodies
NASA Astrophysics Data System (ADS)
Assouline, Shmuel; Li, Dan; Tyler, Scott; Tanny, Josef; Cohen, Shabtai; Bou-Zeid, Elie; Parlange, Marc; Katul, Gabriel G.
2016-01-01
Deviations in the Priestley-Taylor (PT) coefficient αPT from its accepted 1.26 value are analyzed over large lakes, reservoirs, and wetlands where stomatal or soil controls are minimal or absent. The data sets feature wide variations in water body sizes and climatic conditions. Neither surface temperature nor sensible heat flux variations alone, which proved successful in characterizing αPT variations over some crops, explain measured deviations in αPT over water. It is shown that the relative transport efficiency of turbulent heat and water vapor is key to explaining variations in αPT over water surfaces, thereby offering a new perspective over the concept of minimal advection or entrainment introduced by PT. Methods that allow the determination of αPT based on low-frequency sampling (i.e., 0.1 Hz) are then developed and tested, which are usable with standard meteorological sensors that filter some but not all turbulent fluctuations. Using approximations to the Gram determinant inequality, the relative transport efficiency is derived as a function of the correlation coefficient between temperature and water vapor concentration fluctuations (RTq). The proposed approach reasonably explains the measured deviations from the conventional αPT = 1.26 value even when RTq is determined from air temperature and water vapor concentration time series that are Gaussian-filtered and subsampled to a cutoff frequency of 0.1 Hz. Because over water bodies, RTq deviations from unity are often associated with advection and/or entrainment, linkages between αPT and RTq offer both a diagnostic approach to assess their significance and a prognostic approach to correct the 1.26 value when using routine meteorological measurements of temperature and humidity.
NASA Astrophysics Data System (ADS)
von Suchodoletz, H.; Oberhänsli, H.; Hambach, U.; Zöller, L.; Fuchs, M.; Faust, D.
2009-04-01
On Lanzarote (Canary Islands), dust-borne sediments trapped in valleys dammed by volcanic material were investigated in order to reveal environmental changes during the Late Quaternary. Clay content and frequency dependent magnetic susceptibility are used as proxies of pedogenesis and trace back changes of palaeo-soil moisture during the last 180 ka, showing a pattern of generally enhanced soil moisture during glacials and stadials and more arid conditions during warm periods. These results are compared with proxies from local palaeoclimate studies, showing that there is a positive correlation with proxies of trade wind strength off NW Africa and sea surface temperatures in the NE-Atlantic, and an inverse correlation with the extent of mediterranean vegetation. Possible causes for the observed pattern include a glacial enhancement of precipitation from westerly cyclones, an occasional influence of the African summer monsoon and a relative humidity change triggered by fluctuating air temperatures. Although no clear differentiation between the influences of these factors is possible yet, it is clear that the first and the last one must have dominated during most of the time. These results are the first quasi continuous terrestrial data testifying to environmental changes in the NW African coastal area for the last 180 ka, and complement the abundant data derived from marine cores of the region. The results from this study demonstrate a dominant influence of high latitude dynamics in this area intermediated by North Atlantic sea surface temperatures. This influence is supported by a negative correlation of our proxies with the orbital obliquity cycle, including a time lag of about 10 ka similar to that recorded from North Atlantic sea surface temperatures.
Dealing with Variations over Space and Time in Urban Vegetation-Air Quality Assessment
NASA Astrophysics Data System (ADS)
Tan, P. Y.
2017-12-01
Studies on role of urban vegetation ameliorate poor air quality frequently encountered in urban areas should aim to answer a pertinent question: what is the net impact of urban vegetation in improving public health directly or indirectly through removal of air pollutants? Answers to this question need to consider that role of urban vegetation in air quality improvement is not just dependent on physical and physiological processes mediated by plants, it is also highly dependent on atmospheric processes. The roles of these two components thus need to be separated. This uncertainty is further complicated by heterogeneity of air quality over spatial scales and fluctuations in air quality over time. Singapore is used to illustrate these complexities. Between seasons, the main external source of atmospheric pollutants is aerosols from biomass burning in plantations in surrounding SE Asian countries, and air quality is highly dependent on wind directions dictated by monsoon systems. When air quality does deteriorate from transboundary pollution, there are also spatial differences within the city, as air pollutant levels differ in different regions. Rainfall from monsoons and other rain-bearing weather systems over Singapore also dictate the relative amounts of wet and dry deposition and the persistence of particulate matter deposited on vegetation surfaces. For locally generated air pollutants, diurnal fluctuations of anthropogenic activities, such as vehicular emissions between peak and non-peak hours, should also lead to fluctuations over the day. Not only does air quality vary from region to region, air quality within a vertical transect in the urban canopy layer also differs due to urban morphology and urban elements. A pedestrian along a treed street may experience poorer air quality than one living on highrise building, despite proximity to vegetation. There are thus interactions between climate, weather and urban context, which lead to spatial heterogeneity over multiple scales and temporal variations in air quality. They present challenges in field studies seeking to establish causality between urban vegetation, air quality improvement and public health status. Suggestions on approaches and additional questions that need to be asked will be shared during the panel discussion.
Influence of longitudinal spin fluctuations on the phase transition features in chiral magnets
NASA Astrophysics Data System (ADS)
Belemuk, A. M.; Stishov, S. M.
2018-04-01
Using the classical Monte Carlo calculations, we investigate the effects of longitudinal spin fluctuations on the helimagnetic transition in a Heisenberg magnet with the Dzyaloshinskii-Moriya interaction. We use variable spin amplitudes in the framework of the spin-lattice Hamiltonian. It is this kind of fluctuations that naturally occur in an itinerant system. We show that the basic features of the helical phase transition are not changed much by the longitudinal spin fluctuations though the transition temperature Tc and the fluctuation hump seen in specific heat at T >Tc is significantly affected. We report thermodynamic and structural effects of these fluctuations. By increasing the system size in the Monte Carlo modeling, we are able to reproduce the ring shape scattering intensity above the helimagnetic transition temperature Tc, which transforms into the spiral spots seen below Tc in the neutron scattering experiments.
Ion heating and short wavelength fluctuations in a helicon plasma source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scime, E. E.; Carr, J. Jr.; Galante, M.
2013-03-15
For typical helicon source parameters, the driving antenna can couple to two plasma modes; the weakly damped 'helicon' wave, and the strongly damped, short wavelength, slow wave. Here, we present direct measurements, obtained with two different techniques, of few hundred kHz, short wavelength fluctuations that are parametrically driven by the primary antenna and localized to the edge of the plasma. The short wavelength fluctuations appear for plasma source parameters such that the driving frequency is approximately equal to the lower hybrid frequency. Measurements of the steady-state ion temperature and fluctuation amplitude radial profiles suggest that the anomalously high ion temperaturesmore » observed at the edge of helicon sources result from damping of the short wavelength fluctuations. Additional measurements of the time evolution of the ion temperature and fluctuation profiles in pulsed helicon source plasmas support the same conclusion.« less
Prevosto, L; Kelly, H; Mancinelli, B
2013-12-01
This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core.
NASA Astrophysics Data System (ADS)
Konno, Rikio; Hatayama, Nobukuni; Takahashi, Yoshinori
2018-05-01
We have investigated the temperature dependence of the magnetic susceptibility of itinerant nearly ferromagnetic compounds based on the spin fluctuation theory. It is based on the conservation of the local spin amplitude that consists of both the thermal and the zero-point components. The linear dependence of the zero-point spin fluctuation amplitude on the inverse of magnetic susceptibility is usually assumed. The purpose of our present study is to include its higher order terms and to see their effects on the magnetic susceptibility. For the thermal amplitude, it shows T2-linear temperature dependence at low temperatures.
Role of critical fluctuations in the formation of a skyrmion lattice in MnSi
NASA Astrophysics Data System (ADS)
Chubova, N. M.; Moskvin, E. V.; Dyad'kin, V. A.; Dewhurst, Ch.; Maleev, S. V.; Grigor'ev, S. V.
2017-11-01
The region in the H- T phase diagram near the critical temperature ( T c ) of the cubic helicoidal MnSi magnet is comprehensively studied by small-angle neutron diffraction. Magnetic field H is applied along the [111] axis. The experimental geometry is chosen to simultaneously observe the following three different magnetic states of the system: (a) critical fluctuations of a spin spiral with randomly orientated wavevector k f , (b) conical structure with k c ǁ H, and (c) hexagonal skyrmion lattice with k sk ⊥ H. Both states (conical structure, and skyrmion lattice) are shown to exist above critical temperature T c = 29 K against the background of the critical fluctuations of a spin spiral. The conical lattice is present up to the temperatures where fluctuation correlation length ξ becomes comparable with pitch of spiral d s . The skyrmion lattice is localized near T c and is related to the fluctuations of a spiral with correlation length ξ ≈ 2 d s , and the propagation vector is normal to the field ( k sk ⊥ H). These spiral fluctuations are assumed to be the defects that stabilize the skyrmion lattice and promote its formation.
Spectral Behavior of Weakly Compressible Aero-Optical Distortions
NASA Astrophysics Data System (ADS)
Mathews, Edwin; Wang, Kan; Wang, Meng; Jumper, Eric
2016-11-01
In classical theories of optical distortions by atmospheric turbulence, an appropriate and key assumption is that index-of-refraction variations are dominated by fluctuations in temperature and the effects of turbulent pressure fluctuations are negligible. This assumption is, however, not generally valid for aero-optical distortions caused by turbulent flow over an optical aperture, where both temperature and pressures fluctuations may contribute significantly to the index-of-refraction fluctuations. A general expression for weak fluctuations in refractive index is derived using the ideal gas law and Gladstone-Dale relation and applied to describe the spectral behavior of aero-optical distortions. Large-eddy simulations of weakly compressible, temporally evolving shear layers are then used to verify the theoretical results. Computational results support theoretical findings and confirm that if the log slope of the 1-D density spectrum in the inertial range is -mρ , the optical phase distortion spectral slope is given by - (mρ + 1) . The value of mρ is then shown to be dependent on the ratio of shear-layer free-stream densities and bounded by the spectral slopes of temperature and pressure fluctuations. Supported by HEL-JTO through AFOSR Grant FA9550-13-1-0001 and Blue Waters Graduate Fellowship Program.
Dufour, Boris; Morin, Hubert
2010-07-01
Research on cambium phenology in trees and its limiting factors in natural conditions is still at an early stage of development, restricting our capacity to precisely evaluate the effect of growing season length and climate fluctuations on tracheid production. The first objective of this paper was to describe cambial tracheid production phenology of black spruce (Picea mariana (Mills.) BSP). Repeated tree ring sampling was performed from 2002 to 2006 on four sites (48 degrees 13.78' N, 71 degrees 15.18' W; 48 degrees 51.92' N, 70 degrees 20.57' W; 49 degrees 43.92' N, 71 degrees 56.88' W; and 50 degrees 41.78' N, 72 degrees 11.03' W) representative of closed black spruce forest in Quebec, Canada. The timing of cambial initiation and cambial cessation in black spruce differs from year to year, the first occurring on 4 June on average, whereas the second occurs on 15 August. During a single year, these events do not vary significantly in space within the study area. The duration of cambial tracheid production does not vary significantly in either time or space. The second objective of this study was to identify the climatic factors that explain variations in initiation and cessation. Air temperature and humidity, soil temperature and water content, rain precipitations, snow cover as well as photosynthetically active radiation were monitored at each studied site. These were then used to create sets of candidate regressors to explain timing of phenological events. Timing of cambial initiation is primarily dependent on mean temperature between mid-March and initiation itself. Vapor pressure during this period is also important but in a negative way. A significant effect of the previous year's August soil and air temperature conditions suggests a link with spring bud activity resumption, an interpretation that is supported by an analysis significantly linking measured timing of bud break to cambial initiation. Cessation of cambial tracheid production is influenced by factors linked to photosynthesis during the period from mid-July to cessation. Those related to water status, namely saturation vapor pressure, soil water content and vapor pressure are particularly influential, but light intensity and soil temperature also have an effect. Also, because mid-July corresponds to the timing of bud set and because the previous late summer's soil temperature has a significant effect, a clear link is established with apical cessation.
Spontaneous Fluctuations of PO2 in the Rabbit Somatosensory Cortex.
Linsenmeier, Robert A; Aksenov, Daniil P; Faber, Holden M; Makar, Peter; Wyrwicz, Alice M
2016-01-01
In many tissues, PO2 fluctuates spontaneously with amplitudes of a few mmHg. Here we further characterized these oscillations. PO2 recordings were made from the whisker barrel cortex of six rabbits with acutely or chronically placed polarographic electrodes. Measurements were made while rabbits were awake and while anesthetized with isoflurane, during air breathing, and during 100% oxygen inspiration. In awake rabbits, 90% of the power was between 0 and 20 cycles per minute (cpm), not uniformly distributed over this range, but with a peak frequently near 10 cpm. This was much slower than heart or respiratory rhythms and is similar to the frequency content observed in other tissues. During hyperoxia, total power was higher than during air-breathing, and the dominant frequencies tended to shift toward lower values (0-10 cpm). These observations suggest that at least the lower frequency fluctuations represent efforts by the circulation to regulate local PO2. There were no consistent changes in total power during 0.5 or 1.5% isoflurane anesthesia, but the power shifted to lower frequencies. Thus, both hyperoxia and anesthesia cause characteristic, but distinct, changes in spontaneous fluctuations. These PO2 fluctuations may be caused by vasomotion, but other factors cannot be ruled out.
Effect of Heating on Turbulent Density Fluctuations and Noise Generation From High Speed Jets
NASA Technical Reports Server (NTRS)
Panda, Jayanta; Seasholtz, Richard G.; Elam, Kristie A.; Mielke, Amy F.; Eck, Dennis G.
2004-01-01
Heated jets in a wide range of temperature ratios (TR), and acoustic Mach numbers (Ma) were investigated experimentally using far field microphones and a molecular Rayleigh scattering technique. The latter provided density fluctuations measurements. Two sets of operating conditions were considered: (1) TR was varied between 0.84 and 2.7 while Ma was fixed at 0.9; (2) Ma was varied between 0.6 and 1.48, while TR was fixed at 2.27. The implementation of the molecular Rayleigh scattering technique required dust removal and usage of a hydrogen combustor to avoid soot particles. Time averaged density measurements in the first set of data showed differences in the peripheral density shear layers between the unheated and heated jets. The nozzle exit shear layer showed increased turbulence level with increased plume temperature. Nevertheless, further downstream the density fluctuations spectra are found to be nearly identical for all Mach number and temperature ratio conditions. To determine noise sources a correlation study between plume density fluctuations and far field sound pressure fluctuations was conducted. For all jets the core region beyond the end of the potential flow was found to be the strongest noise source. Except for an isothermal jet, the correlations did not differ significantly with increasing temperature ratio. The isothermal jet created little density fluctuations. Although the far field noise from this jet did not show any exceptional trend, the flow-sound correlations were very low. This indicated that the density fluctuations only acted as a "tracer parameter" for the noise sources.
USDA-ARS?s Scientific Manuscript database
Insects exposed to low temperature often have high mortality or exhibit sublethal effects. A growing number of recent studies have shown beneficial effects of exposing insects to recurrent brief warm pulses during low temperature stress (fluctuating thermal regimes, FTR). The physiological underpinn...
Dynamic and spectroscopic characteristics of atmospheric gliding arc in gas-liquid two-phase flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tu, X.; Yu, L.; Yan, J. H.
In this study, an atmospheric alternating-current gliding arc device in gas-liquid two-phase flow has been developed for the purpose of waste water degradation. The dynamic behavior of the gas-liquid gliding arc is investigated through the oscillations of electrical signals, while the spatial evolution of the arc column is analyzed by high speed photography. Different arc breakdown regimes are reported, and the restrike mode is identified as the typical fluctuation characteristic of the hybrid gliding arc in air-water mixture. Optical emission spectroscopy is employed to investigate the active species generated in the gas-liquid plasma. The axial evolution of the OH (309more » nm) intensity is determined, while the rotational and vibrational temperatures of the OH are obtained by a comparison between the experimental and simulated spectra. The significant discrepancy between the rotational and translational temperatures has also been discussed.« less
Brown, Robin G.; Nichols, William D.
1990-01-01
Meteorological data were collected over bare soil at a site for low-level radioactive-waste burial near Beatty, Nevada, from November 1977 to May 1980. The data include precipitation, windspeed, wind direction, incident solar radiation, reflected solar radiation, net radiation, dry- and wet-bulb air temperatures at three heights, soil temperature at five depths, and soil-heat flux at three depths. Mean relative humidity was computed for each day of the collection period for which data are available.A discussion is presented of the study site and the instrumentation and procedures used for collecting and processing the data. Selected data from November 1977 to May 1980 are presented in tabular form. Diurnal fluctuations of selected meteorological variables for representative summer and winter periods are graphically presented. The effects on selected variables of a partial solar eclipse are also discussed
Denny, M W; Dowd, W W
2012-03-15
As the air temperature of the Earth rises, ecological relationships within a community might shift, in part due to differences in the thermal physiology of species. Prediction of these shifts - an urgent task for ecologists - will be complicated if thermal tolerance itself can rapidly evolve. Here, we employ a mechanistic approach to predict the potential for rapid evolution of thermal tolerance in the intertidal limpet Lottia gigantea. Using biophysical principles to predict body temperature as a function of the state of the environment, and an environmental bootstrap procedure to predict how the environment fluctuates through time, we create hypothetical time-series of limpet body temperatures, which are in turn used as a test platform for a mechanistic evolutionary model of thermal tolerance. Our simulations suggest that environmentally driven stochastic variation of L. gigantea body temperature results in rapid evolution of a substantial 'safety margin': the average lethal limit is 5-7°C above the average annual maximum temperature. This predicted safety margin approximately matches that found in nature, and once established is sufficient, in our simulations, to allow some limpet populations to survive a drastic, century-long increase in air temperature. By contrast, in the absence of environmental stochasticity, the safety margin is dramatically reduced. We suggest that the risk of exceeding the safety margin, rather than the absolute value of the safety margin, plays an underappreciated role in the evolution of thermal tolerance. Our predictions are based on a simple, hypothetical, allelic model that connects genetics to thermal physiology. To move beyond this simple model - and thereby potentially to predict differential evolution among populations and among species - will require significant advances in our ability to translate the details of thermal histories into physiological and population-genetic consequences.
Is Global Warming Accelerating?
NASA Astrophysics Data System (ADS)
Shukla, J.; Delsole, T. M.; Tippett, M. K.
2009-12-01
A global pattern that fluctuates naturally on decadal time scales is identified in climate simulations and observations. This newly discovered component, called the Global Multidecadal Oscillation (GMO), is related to the Atlantic Meridional Oscillation and shown to account for a substantial fraction of decadal fluctuations in the observed global average sea surface temperature. IPCC-class climate models generally underestimate the variance of the GMO, and hence underestimate the decadal fluctuations due to this component of natural variability. Decomposing observed sea surface temperature into a component due to anthropogenic and natural radiative forcing plus the GMO, reveals that most multidecadal fluctuations in the observed global average sea surface temperature can be accounted for by these two components alone. The fact that the GMO varies naturally on multidecadal time scales implies that it can be predicted with some skill on decadal time scales, which provides a scientific rationale for decadal predictions. Furthermore, the GMO is shown to account for about half of the warming in the last 25 years and hence a substantial fraction of the recent acceleration in the rate of increase in global average sea surface temperature. Nevertheless, in terms of the global average “well-observed” sea surface temperature, the GMO can account for only about 0.1° C in transient, decadal-scale fluctuations, not the century-long 1° C warming that has been observed during the twentieth century.
NASA Technical Reports Server (NTRS)
Miles, T.; Grose, W. L.; Russell, J. M., III; Remsberg, E. E.
1987-01-01
Radiosonde (RS)and satellite-derived (Nimbus-7 LIMS) 100-mb temperatures over New Zealand at 12 GMT are compared for the 1978-79 summer. The colocated LIMS temperature information consists of synoptically mapped values (for 12 GMT), as well as the primary nighttime orbital retrievals valid at about 1030 GMT. The RS time series of temperature is dominated by temporal fluctuations associated mainly with the eastward passage of waves which have characteristic periods of 4-5 and 11-12 days and peak-to-peak amplitudes of 10-15 K. The LIMS temperatures and the corresponding temperature time series are also found to exhibit quite close agreement (in terms of temporal phase for the latter) with the RS data. However, the LIMS-mapped temperature fluctuations suffer from a noticeable attenuation in amplitude (approaching 50 percent for higher-frequency fluctuations), which will affect the accuracy of LIMS-derived estimates of dynamical quantities such as wind velocity and relative vorticity in the lower stratosphere.
Superconductivity and fluctuations in Ba 1–pK pFe 2As 2 and Ba(Fe 1–nCo n) 2As 2
Böhm, T.; Hosseinian Ahangharnejhad, R.; Jost, D.; ...
2016-08-11
In this paper, we study the interplay of fluctuations and superconductivity in BaFe 2As 2 (Ba-122) compounds with Ba and Fe substituted by K (p doping) and Co (n doping), respectively. To this end, we measured electronic Raman spectra as a function of polarization and temperature. We observe gap excitations and fluctuations for all doping levels studied. The response from fluctuations is much stronger for Co substitution and, according to the selection rules and the temperature dependence, originates from the exchange of two critical spin fluctuations with characteristic wave vectors (±π,0) and (0,±π). At 22% K doping (p = 0.22),more » we find the same selection rules and spectral shape for the fluctuations but the intensity is smaller by a factor of 5. Since there exists no nematic region above the orthorhombic spin-density-wave (SDW) phase, the identification of the fluctuations via the temperature dependence is not possible. The gap excitations in the superconducting state indicate strongly anisotropic near-nodal gaps for Co substitution which make the observation of collective modes difficult. The variation with doping of the spectral weights of the A 1g and B 1g gap features does not support the influence of fluctuations on Cooper pairing. Thus, the observation of Bardasis–Schrieffer modes inside the nearly clean gaps on the K-doped side remains the only experimental evidence for the relevance of fluctuations for pairing.« less
Influence of temperature fluctuations on equilibrium
ice sheet volume
NASA Astrophysics Data System (ADS)
Bøgeholm Mikkelsen, Troels; Grinsted, Aslak; Ditlevsen, Peter
2018-01-01
Forecasting the future sea level relies on accurate modeling of the response of the Greenland and Antarctic ice sheets to changing temperatures. The surface mass balance (SMB) of the Greenland Ice Sheet (GrIS) has a nonlinear response to warming. Cold and warm anomalies of equal size do not cancel out and it is therefore important to consider the effect of interannual fluctuations in temperature. We find that the steady-state volume of an ice sheet is biased toward larger size if interannual temperature fluctuations are not taken into account in numerical modeling of the ice sheet. We illustrate this in a simple ice sheet model and find that the equilibrium ice volume is approximately 1 m SLE (meters sea level equivalent) smaller when the simple model is forced with fluctuating temperatures as opposed to a stable climate. It is therefore important to consider the effect of interannual temperature fluctuations when designing long experiments such as paleo-spin-ups. We show how the magnitude of the potential bias can be quantified statistically. For recent simulations of the Greenland Ice Sheet, we estimate the bias to be 30 Gt yr-1 (24-59 Gt yr-1, 95 % credibility) for a warming of 3 °C above preindustrial values, or 13 % (10-25, 95 % credibility) of the present-day rate of ice loss. Models of the Greenland Ice Sheet show a collapse threshold beyond which the ice sheet becomes unsustainable. The proximity of the threshold will be underestimated if temperature fluctuations are not taken into account. We estimate the bias to be 0.12 °C (0.10-0.18 °C, 95 % credibility) for a recent estimate of the threshold. In light of our findings it is important to gauge the extent to which this increased variability will influence the mass balance of the ice sheets.
NASA Astrophysics Data System (ADS)
Gopikishan, S.; Banerjee, I.; Pathak, Anand; Mahapatra, S. K.
2017-08-01
Floating potential fluctuations, plasma parameters and deposition rate have been investigated as a function of axial distance during deposition of copper in direct current (DC) magnetron sputtering system. Fluctuations were analyzed using phase space, power spectra and amplitude bifurcation plots. It has been observed that the fluctuations are modified from chaotic to ordered state with increase in the axial distance from cathode. Plasma parameters such as electron density (ne), electron temperature (Te) and deposition rate (Dr) were measured and correlated with plasma fluctuations. It was found that more the deposition rate, greater the grain size, higher the electron density, higher the electron temperature and more chaotic the oscillations near the cathode. This observation could be helpful to the thin film technology industry to optimize the required film.
2014-01-01
Background THz experiments have been used to characterize the picosecond time scale fluctuations taking place in the model, globular protein crambin. Results Using both hydration and temperature as an experimental parameter, we have identified collective fluctuations (<= 200 cm−1) in the protein. Observation of the protein dynamics in the THz spectrum from both below and above the glass transition temperature (Tg) has provided unique insight into the microscopic interactions and modes that permit the solvent to effectively couple to the protein thermal fluctuations. Conclusions Our findings suggest that the solvent dynamics on the picosecond time scale not only contribute to protein flexibility but may also delineate the types of fluctuations that are able to form within the protein structure. PMID:25184036
Nernst effect from fluctuating pairs in the pseudogap phase of the cuprates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levchenko, A.; Norman, M. R.; Varlamov, A. A.
2011-01-31
The observation of a large Nernst signal in cuprates above the superconducting transition temperature has attracted much attention. A potential explanation is that it originates from superconducting fluctuations. Although the Nernst signal is indeed consistent with Gaussian fluctuations for overdoped cuprates, Gaussian theory fails to describe the temperature dependence seen for underdoped cuprates. Here, we consider the vertex correction to Gaussian theory resulting from the pseudogap. This yields a Nernst signal in good agreement with the data.
Measurements of temperature and pressure fluctuations in the T prime 2 cryogenic wind tunnel
NASA Technical Reports Server (NTRS)
Blanchard, A.; Dor, J. B.; Breil, J. F.
1980-01-01
Cold wire measurement of temperature fluctuations were made in a DERAT T'2 induction powered cryogenic wind tunnel for 2 types of liquid nitrogen injectors. Thermal turbulence measured in the tranquilization chamber depends to a great extent on the injector used; for fine spray of nitrogen drops, this level of turbulence seemed completely acceptable. Fluctuations in static pressure taken from the walls of the vein by Kulite sensors showed that there was no increase in aerodynamic noise during cryogenic gusts.
Acoustic temperature measurement in a rocket noise field.
Giraud, Jarom H; Gee, Kent L; Ellsworth, John E
2010-05-01
A 1 μm diameter platinum wire resistance thermometer has been used to measure temperature fluctuations generated during a static GEM-60 rocket motor test. Exact and small-signal relationships between acoustic pressure and acoustic temperature are derived in order to compare the temperature probe output with that of a 3.18 mm diameter condenser microphone. After preliminary plane wave tests yielded good agreement between the transducers within the temperature probe's ∼2 kHz bandwidth, comparison between the temperature probe and microphone data during the motor firing show that the ±∼3 K acoustic temperature fluctuations are a significant contributor to the total temperature variations.
Who’s on top? SST proxy comparison from the Peru Margin Upwelling System
NASA Astrophysics Data System (ADS)
Chazen, C.; Herbert, T.; Altabet, M. A.
2009-12-01
The Peru Margin upwelling region is situated at the interface between the poleward Peru Undercurrent and the equatorward Peru Coastal current. Strong coastal winds force cold, nutrient-rich thermocline waters to the surface. Sea surface temperatures in this region fluctuate sub-annually with changes in the position of the Intertropical convergence zone (ITCZ) and sub-decadally with modifications in the strength of Walker Circulation. In contrast, the temperature of the Peru Margin thermocline is stable, isolated from surface winds and slow to respond to major perturbations in surface temperature. Using high resolution sampling (6-7 year) across an annually laminated sediment core from the heart of the Peru Margin upwelling system (15°S) we explore how Uk’37 temperatures compare with TEX86 temperatures across a 200-year interval in the Mid-late Holocene. Mean late Holocene Uk’37 temperatures, extracted from a high sedimentation rate core from the Peru Margin are similar to modern mean annual sea surface temperatures at 15°S. Multi-decadal-scale (50-100 year) Uk’37 temperature fluctuations oscillate about the mean by 1.5°C. These rapid temperature changes are coherent with fluctuations in surface productivity (C37total and Biogenic Silica) in addition to sub-surface denitrification (δ15N). In contrast, TEX86 temperatures derived from identical samples exhibit colder temperatures than modern mean annual conditions and virtually no temperature fluctuation. We posit that TEX86 values are recording temperatures below the photic zone near the mix-layer-thermocline boundary and may, on longer timescales provide invaluable information about thermocline temperature. With this interpretation in mind, we present a TEX86-based long-term thermocline reconstruction over the Holocene.
NASA Astrophysics Data System (ADS)
Stephens, Hillary Dianne
Tearing mode induced magnetic islands have a significant impact on the thermal characteristics of magnetically confined plasmas such as those in the reversed-field-pinch. Using a state-of-the-art Thomson scattering (TS) diagnostic, electron temperature fluctuations correlated with magnetic tearing modes have been observed on the Madison Symmetric Torus reversed-field-pinch. The TS diagnostic consists of two independently triggerable Nd:YAG lasers that can each pulse up to 15 times each plasma discharge and 21 General Atomics polchromators equipped with avalanche photodiode modules. Detailed calibrations focusing on accuracy, ease of use and repeatability and in-situ measurements have been performed on the system. Electron temperature (Te) profiles are acquired at 25 kHz with 2 cm or less resolution along the minor radius, sufficient to measure the effect of an island on the profile as the island rotates by the measurement point. Bayesian data analysis techniques are developed and used to detect fluctuations over an ensemble of shots. Four cases are studied; standard plasmas in quiescent periods, through sawteeth, through core reconnection events and in plasmas where the tearing mode activity is decreased. With a spectrum of unstable tearing modes, remnant islands that tend to flatten the temperature profile are present in the core between sawtooth-like reconnection events. This flattening is characteristic of rapid parallel heat conduction along helical magnetic field lines. The spatial structure of the temperature fluctuations show that the location of the rational surface of the m/n = 1/6 tearing mode is significantly further in than equilibrium suggestions predict. The fluctuations also provide a measurement of the remnant island width which is significantly smaller than the predicted full island width. These correlated fluctuations disappear during both global and core reconnection events. In striking contrast to temperature flattening, a temperature gradient within an m/m = 1/5 island is observed just after a global reconnection event. This suggests local heating and relatively good confinement within the island. Local power balance calculations suggest reduced thermal transport within this island. During improved confinement plasmas with reduced stochasticity, brought about by a reduction in tearing instability temperature fluctuations correlated with magnetic modes are small with characteristic fluctuation amplitudes of T˜e/Te ˜ 2%.
USDA-ARS?s Scientific Manuscript database
Recently, we determined that rapidly cooling pigs after acute heat stress (HS) resulted in a pathological condition, and because rapid temperature fluctuations are often associated with reduced reproductive success in sows it lends itself to the hypothesis that these conditions may be linked. Study ...
Chen, Z-Z; Xu, L-X; Li, L-L; Wu, H-B; Xu, Y-Y
2018-06-21
The oriental fruit moth, Grapholita molesta, is an important pest in many commercial orchards including apple, pear and peach orchards, and responsible for substantial economic losses every year. To help in attaining a comprehensive and thorough understanding of the ecological tolerances of G. molesta, we collected life history data of individuals reared on apples under different constant temperature regimes and compared the data with moths reared under a variable outdoor temperature environment. Because G. molesta individuals reared at a constant 25°C had the heaviest pupal weight, the highest survival rate from egg to adult, highest finite rate of increase, and greatest fecundity, 25°C was considered as the optimum developmental temperature. The G. molesta population reared at a constant 31°C had the shortest development time, lowest survival rate and fecundity, resulting in population parameters of r < 0, λ < 1, lead to negative population growth. The population parameters r and λ reared under fluctuating temperature were higher than that reared under constant temperatures, the mean generation time (T) was shorter than it was in all of the constant temperatures treatments. This would imply that the outdoor G. molesta population would have a higher population growth potential and faster growth rate than indoor populations raised at constant temperatures. G. molesta moths reared under fluctuating temperature also had a higher fertility than moths reared under constant temperatures (except at 25°C). Our findings indicated that the population raised under outdoor fluctuating temperature conditions had strong environment adaptiveness.
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet
2001-01-01
Concerns about damaging the Earth's ozone layer as a result of high levels of nitrogen oxides (known collectively as NOx) from high-altitude, high-speed aircraft have prompted the study of lean premixed prevaporized (LPP) combustion in aircraft engines. LPP combustion reduces NOx emissions principally by reducing the peak flame temperatures inside an engine. Recent advances in LPP technologies have realized exceptional reductions in pollutant emissions (single-digit ppm NOx for example). However, LPP combustion also presents major challenges: combustion instability and dynamic coupling effects between fluctuations in heat-release rate, dynamic pressure, and fuel pressure. These challenges are formidable and can literally shake an engine apart if uncontrolled. To better understand this phenomenon so that it can be controlled, we obtained real-time laser absorption measurements of the fuel vapor concentration (and equivalence ratio) simultaneously with the dynamic pressure, flame luminosity, and time-averaged gaseous emissions measurements in a research-type jet-A-fueled LPP combustor. The measurements were obtained in NASA Glenn Research Center's CE-5B optically accessible flame tube facility. The CE-5B facility provides inlet air temperatures and pressures similar to the actual operating conditions of real aircraft engines. The laser absorption measurements were performed using an infrared 3.39 micron HeNe laser in conjunction with a visible HeNe laser for liquid droplet scattering compensation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esker, Paul David
2001-01-01
This thesis investigated the biology and importance of the corn flea beetle vector and its role in the Stewart's disease of corn pathosystem. This was accomplished by determining the number of corn flea beetle generations that occur in Iowa and by quantifying the proportions of those populations found to be infested with the causal agent of Stewart's disease, pantoea stewartii. In addition, a preliminary study was conducted to determine how soil temperature was influenced by air temperature and how this may be applied to forecasting for Stewart's disease of corn. Research using yellow sticky cards and sweep netting demonstrated thatmore » there are overwintering, first, and second field generations of the corn flea beetle in Iowa. It was also observed that there was a period during June of both 1999 and 2000 when corn flea beetles were not found, which is important new management information. This research has also demonstrated that the incidence of P. stewartii-infested corn flea beetles can be monitored by ELISA testing and that the incidence fluctuates greatly throughout the corn growing season. The initial level of inoculum (P. stewartii-infested corn flea beetles in the adult overwintering generation) does not remain static during the spring as was previously hypothesized. This signals that additional research is needed concerning the mechanisms of fluctuation in the proportion of beetles infested with P. stewartii.« less
NASA Astrophysics Data System (ADS)
Brauckmann, Hannes J.; Eckhardt, Bruno; Schumacher, Jörg
2017-03-01
Rayleigh-Bénard convection and Taylor-Couette flow are two canonical flows that have many properties in common. We here compare the two flows in detail for parameter values where the Nusselt numbers, i.e. the thermal transport and the angular momentum transport normalized by the corresponding laminar values, coincide. We study turbulent Rayleigh-Bénard convection in air at Rayleigh number Ra=107 and Taylor-Couette flow at shear Reynolds number ReS=2×104 for two different mean rotation rates but the same Nusselt numbers. For individual pairwise related fields and convective currents, we compare the probability density functions normalized by the corresponding root mean square values and taken at different distances from the wall. We find one rotation number for which there is very good agreement between the mean profiles of the two corresponding quantities temperature and angular momentum. Similarly, there is good agreement between the fluctuations in temperature and velocity components. For the heat and angular momentum currents, there are differences in the fluctuations outside the boundary layers that increase with overall rotation and can be related to differences in the flow structures in the boundary layer and in the bulk. The study extends the similarities between the two flows from global quantities to local quantities and reveals the effects of rotation on the transport.
Evaluation of a locally homogeneous model of spray evaporation
NASA Technical Reports Server (NTRS)
Shearer, A. J.; Faeth, G. M.
1979-01-01
A model of spray evaporation which employs a second-order turbulence model in conjunction with the locally homogeneous flow approximation, which implies infinitely fast interphase transport rates is presented. Measurements to test the model were completed for single phase constant and variable density jets, as well as an evaporating spray in stagnant air. Profiles of mean velocity, composition, temperature and drop size distribution as well as velocity fluctuations and Reynolds stress, were measured within the spray. Predictions were in agreement with measurements in single phase flows and also with many characteristics of the spray, e.g. flow width, radial profiles of mean and turbulent quantities, and the axial rate of decay of mean velocity and mixture fraction.
Predictions of spray combustion interactions
NASA Technical Reports Server (NTRS)
Shuen, J. S.; Solomon, A. S. P.; Faeth, G. M.
1984-01-01
Mean and fluctuating phase velocities; mean particle mass flux; particle size; and mean gas-phase Reynolds stress, composition and temperature were measured in stationary, turbulent, axisymmetric, and flows which conform to the boundary layer approximations while having well-defined initial and boundary conditions in dilute particle-laden jets, nonevaporating sprays, and evaporating sprays injected into a still air environment. Three models of the processes, typical of current practice, were evaluated. The local homogeneous flow and deterministic separated flow models did not provide very satisfactory predictions over the present data base. In contrast, the stochastic separated flow model generally provided good predictions and appears to be an attractive approach for treating nonlinear interphase transport processes in turbulent flows containing particles (drops).
2001-06-19
KENNEDY SPACE CENTER, Fla. -- At Launch Complex 17-B, Cape Canaveral Air Force Station, the canister is removed from the Microwave Anisotropy Probe (MAP). Launch of MAP via a Boeing Delta II rocket is scheduled for June 30. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures
2001-06-19
KENNEDY SPACE CENTER, Fla. -- Workers at Launch Complex 17-B, Cape Canaveral Air Force Station, place protective covers around the Microwave Anisotropy Probe (MAP) spacecraft. Launch of MAP via a Boeing Delta II rocket is scheduled for June 30. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures
Quantum phase slip phenomenon in ultra-narrow superconducting nanorings
NASA Astrophysics Data System (ADS)
Arutyunov, Konstantin Yu.; Hongisto, Terhi T.; Lehtinen, Janne S.; Leino, Leena I.; Vasiliev, Alexander L.
2012-02-01
The smaller the system, typically - the higher is the impact of fluctuations. In narrow superconducting wires sufficiently close to the critical temperature Tc thermal fluctuations are responsible for the experimentally observable finite resistance. Quite recently it became possible to fabricate sub-10 nm superconducting structures, where the finite resistivity was reported within the whole range of experimentally obtainable temperatures. The observation has been associated with quantum fluctuations capable to quench zero resistivity in superconducting nanowires even at temperatures T-->0. Here we demonstrate that in tiny superconducting nanorings the same phenomenon is responsible for suppression of another basic attribute of superconductivity - persistent currents - dramatically affecting their magnitude, the period and the shape of the current-phase relation. The effect is of fundamental importance demonstrating the impact of quantum fluctuations on the ground state of a macroscopically coherent system, and should be taken into consideration in various nanoelectronic applications.
Zhou, Hongxuan; Hu, Dan; Wang, Xiaolin; Han, Fengsen; Li, Yuanzheng; Wu, Xiaogang; Ma, Shengli
2016-01-01
The temperature of the surface soil layer around different orientation walls was investigated horizontally along several construction-soil micro-gradients in Beijing, China. On a diurnal scale, similar fluctuating trends in T0 and T50 (temperature of surface soil layer, 0 and 0.5 m from the building baseline) adjacent to the external walls of buildings with the same orientation usually appeared under similar micrometeorological conditions. The difference between T0 and T50 (ΔT0–50) can be considered an indicator of the intensity of the horizontal heat effects: higher ΔT0–50 values correspond to greater intensities. The values of ΔT0–50 for south-, north-, east- and west-facing sides of buildings were highest on sunny days in summer and exhibited values of 6.61 K, 1.64 K, 5.93 K and 2.76 K, respectively. The scope of horizontal heat impacts (Sh) changed on a diurnal scale between zero and the maximum, which fluctuated with the micrometeorological conditions. The maximum values of Sh were 0.30, 0.15, 0.20 and 0.20 m for south-, north-, east-, and west-facing walls. The ΔT0–50 was related to solar radiation, horizontal heat flux, relative humidity, wind speed, soil moisture differences and air temperature; the relative importance of these factors was 36.22%, 31.80%, 19.19%, 2.67%, 3.68% and 6.44%, respectively. PMID:26728627
Thermo-mechanical modelling of salt caverns due to fluctuating loading conditions.
NASA Astrophysics Data System (ADS)
Böttcher, N.
2015-12-01
This work summarizes the development and application of a numerical model for the thermo-mechanical behaviour of salt caverns during cyclic gas storage. Artificial salt caverns are used for short term energy storage, such as power-to-gas or compressed air energy storage. Those applications are characterized by highly fluctuating operation pressures due to the unsteady power levels of power plants based on renewable energy. Compression and expansion of the storage gases during loading and unloading stages lead to rapidly changing temperatures in the host rock of the caverns. This affects the material behaviour of the host rock within a zone that extends several meters into the rock mass adjacent to the cavern wall, and induces thermo-mechanical stresses and alters the creep response.The proposed model features the thermodynamic behaviour of the storage medium, conductive heat transport in the host rock, as well as temperature dependent material properties of rock salt using different thermo-viscoplastic material models. The utilized constitutive models are well known and state-of-the-art in various salt mechanics applications. The model has been implemented into the open-source software platform OpenGeoSys. Thermal and mechanical processes are solved using a finite element approach, coupled via a staggered coupling scheme. The simulation results allow the conclusion, that the cavern convergence rate (and thus the efficiency of the cavern) is highly influenced by the loading cycle frequency and the resulting gas temperatures. The model therefore allows to analyse the influence of operation modes on the cavern host rock or on neighbouring facilities.
The Effect of Temperature Changes in Vitreoretinal Surgery
Romano, Mario R.; Romano, Vito; Mauro, Alessandro; Angi, Martina; Costagliola, Ciro; Ambrosone, Luigi
2016-01-01
Purpose Recent studies on temperature control in biology and medicine have found the temperature as a new instrument in healthcare. In this manuscript, we reviewed the effects of temperature and its potential role in pars plana vitrectomy. We also examined the relationship between intraocular pressure, viscosity, and temperature in order to determine the best balance to manipulate the tamponades during the surgery. Methods A literature review was performed to identify potentially relevant studies on intraocular temperature. Physics equations were applied to explain the described effects of temperature changes on the behavior of the endotamponades commonly used during vitreoretinal surgery. We also generated an operating diagram on the pressure–temperature plane for the values of both vapor–liquid equilibrium and intraocular pressure. Results The rapid circulation of fluid in the vitreous cavity reduces the heat produced by the retinal and choroidal surface, bringing the temperature toward room temperature (22°C, deep hypothermia). Temperature increases with endolaser treatment, air infusion, and the presence of silicone oil. The variations in temperature during vitreoretinal surgery are clinically significant, as the rheology of tamponades can be better manipulated by modulating intraocular pressure and temperature. Conclusions During vitreoretinal surgery, the intraocular temperature showed rapid and significant fluctuations at different steps of the surgical procedure inside the vitreous cavity. Temperature control can modulate the rheology of tamponades. Translational Relevance Intraoperative temperature control can improve neuroprotection during vitreoretinal surgery, induce the vaporization of perfluorcarbon liquid, and change the shear viscosity of silicone oil. PMID:26929884
NASA Astrophysics Data System (ADS)
Vagnoni, Elena; Andolfatto, Loïc; Favrel, Arthur; Avellan, François
2016-11-01
The penetration of the electrical grid by intermittent renewable energy sources induces grid fluctuations which must be compensated in order to guarantee the stability of the grid. Hydropower plants can supply reactive power to ensure the grid stabilization by operating in condenser mode. In this operating mode, the turbine operates with the tail water depressed to let the runner spin in air to reduce the power consumption. Pressurized air is injected in the draft tube cone to maintain the water level below the runner and this induces air-water interaction phenomena which cause important power losses. Flow visualization and pressure fluctuation measurements are performed in a reduced scale physical model of a Francis turbine operating in condenser mode to investigate the dynamics of the air-water interaction in the draft tube cone which causes the sloshing motion of the free surface. An image post-processing method is developed, enabling a quantitative description of the sloshing motion. The latter depends on the Froude number. By increasing the value of the Froude number, the amplitude of the sloshing motion decreases, as well as the amplitude of the pressure fluctuations. The frequency of the sloshing motion corresponds to the first natural frequency of the water volume.
From mean-field localized magnetism to itinerant spin fluctuations in the "nonmetallic metal" FeCrAs
NASA Astrophysics Data System (ADS)
Plumb, K. W.; Stock, C.; Rodriguez-Rivera, J. A.; Castellan, J.-P.; Taylor, J. W.; Lau, B.; Wu, W.; Julian, S. R.; Kim, Young-June
2018-05-01
FeCrAs displays an unusual electrical response that is neither metallic in character nor divergent at low temperatures, as expected for an insulating response, and therefore it has been termed a "nonmetal metal." The anomalous resistivity occurs for temperatures below ˜900 K. We have carried out neutron scattering experiments on powder and single crystal samples to study the magnetic dynamics and critical fluctuations in FeCrAs. Magnetic neutron diffraction measurements find Cr3 + magnetic order setting in at TN=115 K ˜10 meV with a mean-field critical exponent. Using neutron spectroscopy we observe gapless, high velocity, magnetic fluctuations emanating from magnetic positions with propagation wave vector q⃗0=(1/3 ,1/3 ) , which persists up to at least 80 meV ˜927 K, an energy scale much larger than TN. Despite the mean-field magnetic order at low temperatures, the magnetism in FeCrAs therefore displays a response which resembles that of itinerant magnets at high energy transfers. We suggest that the presence of stiff high-energy spin fluctuations extending up to a temperature scale of ˜900 K is the origin of the unusual temperature dependence of the resistivity.
Operational characteristics of the J-PARC cryogenic hydrogen system for a spallation neutron source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatsumoto, Hideki; Ohtsu, Kiichi; Aso, Tomokazu
2014-01-29
The J-PARC cryogenic hydrogen system provides supercritical hydrogen with the para-hydrogen concentration of more than 99 % and the temperature of less than 20 K to three moderators so as to provide cold pulsed neutron beams of a higher neutronic performance. Furthermore, the temperature fluctuation of the feed hydrogen stream is required to be within ± 0.25 K. A stable 300-kW proton beam operation has been carried out since November 2012. The para-hydrogen concentrations were measured during the cool-down process. It is confirmed that para-hydrogen always exists in the equilibrium concentration because of the installation of an ortho-para hydrogen convertor.more » Propagation characteristics of temperature fluctuation were measured by temporarily changing the heater power under off-beam condition to clarify the effects of a heater control for thermal compensation on the feed temperature fluctuation. The experimental data gave an allowable temperature fluctuation of ± 1.05 K. It is clarified through a 286-kW and a 524-kW proton beam operations that the heater control would be applicable for the 1-MW proton beam operation by extrapolating from the experimental data.« less
Fluctuation-induced conductivity in melt-textured Pr-doped YBa2Cu3O7-δ composite superconductor
NASA Astrophysics Data System (ADS)
Opata, Yuri Aparecido; Monteiro, João Frederico Haas Leandro; Siqueira, Ezequiel Costa; Rodrigues, Pedro Júnior; Jurelo, Alcione Roberto
2018-04-01
In this study, the effects of thermal fluctuations on the electrical conductivity in melt-textured YBa2Cu3O7-δ, Y0.95Pr0.05Ba2Cu3O7-δ and (YBa2Cu3O7-δ)0.95-(PrBa2Cu3O7-δ)0.05 composite superconductor were considered. The composite superconductor samples were prepared through the top seeding method using melt-textured NdBa2Cu3O7-d seeds. The resistivity measurements were performed with a low-frequency, low-current AC technique in order to extract the temperature derivative and analyze the influence of the praseodymium ion on the normal superconductor transition and consequently on the fluctuation regimes. The results show that the resistive transition is a two-step process. In the normal phase, above the critical temperature, Gaussian and critical fluctuation regimes were identified, while below the critical temperature, in the regime near the approach to the zero-resistance state, the fluctuation conductivity diverges as expected in a paracoherent-coherent transition.
Nonequilibrium Brownian Motion beyond the Effective Temperature
Gnoli, Andrea; Puglisi, Andrea; Sarracino, Alessandro; Vulpiani, Angelo
2014-01-01
The condition of thermal equilibrium simplifies the theoretical treatment of fluctuations as found in the celebrated Einstein’s relation between mobility and diffusivity for Brownian motion. Several recent theories relax the hypothesis of thermal equilibrium resulting in at least two main scenarios. With well separated timescales, as in aging glassy systems, equilibrium Fluctuation-Dissipation Theorem applies at each scale with its own “effective” temperature. With mixed timescales, as for example in active or granular fluids or in turbulence, temperature is no more well-defined, the dynamical nature of fluctuations fully emerges and a Generalized Fluctuation-Dissipation Theorem (GFDT) applies. Here, we study experimentally the mixed timescale regime by studying fluctuations and linear response in the Brownian motion of a rotating intruder immersed in a vibro-fluidized granular medium. Increasing the packing fraction, the system is moved from a dilute single-timescale regime toward a denser multiple-timescale stage. Einstein’s relation holds in the former and is violated in the latter. The violation cannot be explained in terms of effective temperatures, while the GFDT is able to impute it to the emergence of a strong coupling between the intruder and the surrounding fluid. Direct experimental measurements confirm the development of spatial correlations in the system when the density is increased. PMID:24714671
Santana, Victor M; Baeza, M Jaime; Blanes, M Carmen
2013-01-01
This study aims to determine the role that both direct effects of fire and subsequent daily temperature fluctuations play in the seed bank dynamics of obligate seeders from the Mediterranean Basin. The short yet high soil temperatures experienced due to passage of fire are conflated with the lower, but longer, temperatures experienced by daily fluctuations which occur after removing vegetation. These germination cues are able to break seed dormancy, but it is difficult to assess their specific level of influence because they occur consecutively after summer fires, just before the flush of germination in the wet season (autumn). By applying experimental fires, seed treatments were imposed that combined fire exposure/non-fire exposure with exposure to microhabitats under a gradient of disturbance (i.e. gaps opened by fire, mechanical brushing and intact vegetation). The seeds used were representative of the main families of obligate seeders (Ulex parviflorus, Cistus albidus and Rosmarinus officinalis). Specifically, an assessment was made of (1) the proportion of seeds killed by fire, (2) seedling emergence under field conditions and (3) seeds which remained ungerminated in soil. For the three species studied, the factors that most influenced seedling emergence and seeds remaining ungerminated were microhabitats with higher temperature fluctuations after fire (gaps opened by fire and brushing treatments). The direct effect of fire decreased the seedling emergence of U. parviflorus and reduced the proportion of seeds of R. officinalis remaining ungerminated. The relevance of depleting vegetation (and subsequent daily temperature fluctuation in summer) suggests that studies focusing on lower temperature thresholds for breaking seed dormancy are required. This fact also supports the hypothesis that the seeding capacity in Mediterranean Basin obligate seeders may have evolved as a response to a wide range of disturbances, and not exclusively to fire.
Long-term Lake Evaporation Measurements in Southeastern Brazil
NASA Astrophysics Data System (ADS)
Dias, N. L.; Cancelli, D. M.
2007-05-01
We report here for the first time the results of a long-term (37 months) campaign of lake evaporation measurements with the eddy-covariance (EC) method. The measurements were made at Furnas Lake, a large lake (1440 km2) in Southeastern Brazil (20° 44'S, 45° 58'W and 771.8 m ASL). Mean and maximum depths at the Maximum Normal Operating Level are 13 m and 90 m respectively. Taking advantage of a long drought during 2000--2001, a large metal tower was erected over the lake's dry bed. After the water level recovered, we were left with a stable platform for performing EC measurements in one of the lake's many basins. Fetch conditions over the prevailing wind directions were excellent (1000 m from the North, and more than 3000 m from the East), with the closest land at 420 m (from NE) and 440 m (from SW). Measurements included hourly means of water surface temperature, air temperature, specific humidity, downwelling solar radiation, net radiation, wind speed, and wind direction. 10-Hz eddy covariance measurements were made of turbulent fluctuations of 3 wind components, sonic virtual temperature, air temperature (with a fine-wire thermocouple) and of fluctuating specific humidity with a specially adapted capacitive hygrometer. The validation of this sensor to measure latent heat fluxes at high frequency was made on intensive field campaigns that deployed state-of-the art Ultra-Violet and Infra-Red fast-response hygrometers. Our data analysis indicates that atmospheric stability can be far from neutral, and that it plays a very important role in the mass-transfer and heat-transfer equations for the water vapor and sensible heat fluxes. We have also found that significantly different scalar roughenesses for water vapor and for sensible heat were necessary to calibrate properly the Monin-Obukhov Similarity Theory (MOST)-based transfer equations. Due to these differences, gradient-based Bowen ratios (as usually applied in the Energy Budget Bowen Ratio method in the absence of turbulence measurements) do not agree with flux-based Bowen ratios given directly by the ratio of the sensible heat flux and the latent heat flux. Finally, we give the mean monthly values for these two fluxes from July, 2003 to June, 2006 (with 5 months of missing data).
Static and Dynamic Disorder in Bacterial Light-Harvesting Complex LH2: A 2DES Simulation Study.
Rancova, Olga; Abramavicius, Darius
2014-07-10
Two-dimensional coherent electronic spectroscopy (2DES) is a powerful technique in distinguishing homogeneous and inhomogeneous broadening contributions to the spectral line shapes of molecular transitions induced by environment fluctuations. Using an excitonic model of a double-ring LH2 aggregate, we perform simulations of its 2DES spectra and find that the model of a harmonic environment cannot provide a consistent set of parameters for two temperatures: 77 K and room temperature. This indicates the highly anharmonic nature of protein fluctuations for the pigments of the B850 ring. However, the fluctuations of B800 ring pigments can be assumed as harmonic in this temperature range.
Condensate fluctuations of interacting Bose gases within a microcanonical ensemble.
Wang, Jianhui; He, Jizhou; Ma, Yongli
2011-05-01
Based on counting statistics and Bogoliubov theory, we present a recurrence relation for the microcanonical partition function for a weakly interacting Bose gas with a finite number of particles in a cubic box. According to this microcanonical partition function, we calculate numerically the distribution function, condensate fraction, and condensate fluctuations for a finite and isolated Bose-Einstein condensate. For ideal and weakly interacting Bose gases, we compare the condensate fluctuations with those in the canonical ensemble. The present approach yields an accurate account of the condensate fluctuations for temperatures close to the critical region. We emphasize that the interactions between excited atoms turn out to be important for moderate temperatures.
Ou, Shuching; Cui, Di; Patel, Sandeep
2014-01-01
The guanidinium cation (C(NH2)3+) is a highly stable cation in aqueous solution due to its efficient solvation by water molecules and resonance stabilization of the charge. Its salts increase the solubility of nonpolar molecules (”salting-in”) and decrease the ordering of water. It is one of the strongest denaturants used in biophysical studies of protein folding. We investigate the behavior of guanidinium and its derivative, methyl guanidinium (an amino acid analogue) at the air-water surface, using atomistic molecular dynamics (MD) simulations and calculation of potentials of mean force. Methyl guanidinium cation is less excluded from the air-water surface than guanidinium cation, but both cations show orientational dependence of surface affinity. Parallel orientations of the guanidinium ring (relative to the Gibbs dividing surface) show pronounced free energy minima in the interfacial region, while ring orientations perpendicular to the GDS exhibit no discernible surface stability. Calculations of surface fluctuations demonstrate that near the air-water surface, the parallel-oriented cations generate significantly greater interfacial fluctuations compared to other orientations, which induces more long-ranged perturbations and solvent density redistribution. Our results suggest a strong correlation with induced interfacial fluctuations and ion surface stability. These results have implications for interpreting molecular-level, mechanistic action of this osmolyte’s interaction with hydrophobic interfaces as they impact protein denaturation (solubilization). PMID:23937431
Upper temperature tolerance of loach minnow under acute, chronic, and fluctuating thermal regimes
Widmer, A.M.; Carveth, C.J.; Bonar, Scott A.; Simms, J.R.
2006-01-01
We used four methods to estimate the upper lethal temperature of loach minnow Rhinichthys cobitis: the lethal thermal method (LTM), chronic lethal method (CLM), acclimated chronic exposure (ACE) method with static temperatures, and ACE method with diel temperature fluctuations. The upper lethal temperature of this species ranged between 32??C and 38??C, depending on the method and exposure time; however, temperatures as low as 28??C resulted in slowed growth compared with the control groups. In LTM trials, we increased temperatures 0.3??C/min and death occurred at 36.8 ?? 0.2??C (mean ?? SE) for fish (37-19 mm total length) acclimated to 30??C and at 36.4 ?? 0.07??C for fish acclimated to 25??C. In CLM trials, temperatures were increased more slowly (1??C/d), allowing fish to acclimate. Mean temperature at death was 33.4 ?? 0.1??C for fish 25-35 mm and 32.9 ?? 0.4??C for fish 45-50 mm. In the ACE experiment with static temperatures, we exposed fish for 30 d to four constant temperatures. No fish (20-40 mm) survived beyond 30 d at 32??C and the 30-d temperature lethal to 50% of the test animals was 30.6??C. Growth at static 28??C and 30??C was slower than growth at 25??C, suggesting that fish were stressed at sublethal temperatures. In ACE trials with diel temperature fluctuations of 4,6, and 10??C and a 32??C peak temperature, over 80% of fish (20-40 mm) survived 30 d. Although brief exposures to 32??C were not lethal, the growth of fish in the three fluctuating-temperature treatments was significantly less than the growth at the ambient temperature (25-29??C). To minimize thermal stress and buffer against temperature spikes, we recommend that loach minnow habitat be managed to avoid water temperatures above 28??C. ?? Copyright by the American Fisheries Society 2006.
The effects of monthly temperature fluctuations on mortality in the United States from 1921 to 1985
NASA Astrophysics Data System (ADS)
Larsen, Ulla
1990-09-01
The impact of short-term temperature fluctuations on mortality has been studied mainly on historical populations, thus providing a limited ability to generalize to contemporary conditions, which would be more useful in determining public health policies aimed at reducing mortality. Therefore, this study examined the effects of monthly temperature fluctuations on mortality in the United States from 1921 to 1985. Monthly data about mortality from the Vital Statistics and temperature from the National Oceanic and Atmospheric Administration and the US Department of Agriculture Weather Bureau were used. Six states were selected to be studied (Massachusetts, Michigan, Washington, Utah, North Carolina, and Mississippi). The analysis was carried out using distributed lag models. The analysis-showed that warmer than usual temperatures in July and August, and unusually cold temperatures from January to June are linked to higher mortality. From September to December unusually low temperatures are associated with higher mortality in most states, while temperature has no significant effect on mortality in June and September. In January and February mortality is especially affected by unusually cold weather in the southern states of Mississippi and North Carolina. For example, a one degreee drop in the mean temperature in 1921 is associated with a more than 3.5% increase in the February crude death rate in Mississippi and North Carolina and a less than 1% increase in the four other states examined. Finally, in the months from January to March the relationship between monthly fluctuations in the crude death rate and temperature declined over time and became relatively weak by 1985.
Quantum critical scaling and fluctuations in Kondo lattice materials
Yang, Yi-feng; Pines, David; Lonzarich, Gilbert
2017-01-01
We propose a phenomenological framework for three classes of Kondo lattice materials that incorporates the interplay between the fluctuations associated with the antiferromagnetic quantum critical point and those produced by the hybridization quantum critical point that marks the end of local moment behavior. We show that these fluctuations give rise to two distinct regions of quantum critical scaling: Hybridization fluctuations are responsible for the logarithmic scaling in the density of states of the heavy electron Kondo liquid that emerges below the coherence temperature T∗, whereas the unconventional power law scaling in the resistivity that emerges at lower temperatures below TQC may reflect the combined effects of hybridization and antiferromagnetic quantum critical fluctuations. Our framework is supported by experimental measurements on CeCoIn5, CeRhIn5, and other heavy electron materials. PMID:28559308
S. -H. Baek; Gu, G. D.; Utz, Y.; ...
2015-10-26
We report 139La nuclear magnetic resonance studies performed on a La 1.875Ba 0.125CuO 4 single crystal. The data show that the structural phase transitions (high-temperature tetragonal → low-temperature orthorhombic → low-temperature tetragonal phase) are of the displacive type in this material. The 139La spin-lattice relaxation rate T –1 1 sharply upturns at the charge-ordering temperature T CO = 54 K, indicating that charge order triggers the slowing down of spin fluctuations. Detailed temperature and field dependencies of the T –1 1 below the spin-ordering temperature T SO=40 K reveal the development of enhanced spin fluctuations in the spin-ordered state formore » H ∥ [001], which are completely suppressed for large fields along the CuO 2 planes. Lastly, our results shed light on the unusual spin fluctuations in the charge and spin stripe ordered lanthanum cuprates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. -H. Baek; Gu, G. D.; Utz, Y.
We report 139La nuclear magnetic resonance studies performed on a La 1.875Ba 0.125CuO 4 single crystal. The data show that the structural phase transitions (high-temperature tetragonal → low-temperature orthorhombic → low-temperature tetragonal phase) are of the displacive type in this material. The 139La spin-lattice relaxation rate T –1 1 sharply upturns at the charge-ordering temperature T CO = 54 K, indicating that charge order triggers the slowing down of spin fluctuations. Detailed temperature and field dependencies of the T –1 1 below the spin-ordering temperature T SO=40 K reveal the development of enhanced spin fluctuations in the spin-ordered state formore » H ∥ [001], which are completely suppressed for large fields along the CuO 2 planes. Lastly, our results shed light on the unusual spin fluctuations in the charge and spin stripe ordered lanthanum cuprates.« less
Machackova, Jirina; Wittlingerova, Zdena; Vlk, Kvetoslav; Zima, Jaroslav
2012-01-01
Biodegradation of petroleum hydrocarbons (TPH), mainly jet fuel, had taken place at the former Soviet Army air base in the Czech Republic. The remediation of large-scale petroleum contamination of soil and groundwater has provided valuable information about biosparging efficiency in the sandstone sedimentary bedrock. In 1997 petroleum contamination was found to be present in soil and groundwater across an area of 28 hectares, divided for the clean-up purpose into smaller clean-up fields (several hectares). The total estimated quantity of TPH released to the environment was about 7,000 metric tons. Biosparging was applied as an innovative clean-up technology at the site and was operated over a 10-year period (1997-2008). Importance of a variety of factors that affect bacterial activity in unsaturated and saturated zones was widely studied on the site and influence of natural and technological factors on clean-up efficiency in heavily contaminates areas of clean-up fields (initial contaminant mass 111-452 metric ton/ha) was evaluated. Long-term monitoring of the groundwater temperature has shown seasonal rises and falls of temperature which have caused a fluctuation in biodegradation activity during clean-up. By contrast, an overall rise of average groundwater temperature was observed in the clean-up fields, most probably as a result of the biological activity during the clean-up process. The significant rise of biodegradation rates, observed after air sparging intensification, and strong linear correlation between the air injection rates and biodegradation activities have shown that the air injection rate is the principal factor in biodegradation efficiency in heavily contaminated areas. It has a far more important role for achieving a biodegradation activity than the contamination content which appeared to have had only a slight effect after the removal of about 75% of initial contamination.
Normalized fluctuations, H2O vs n-hexane: Site-correlated percolation
NASA Astrophysics Data System (ADS)
Koga, Yoshikata; Westh, Peter; Sawamura, Seiji; Taniguchi, Yoshihiro
1996-08-01
Entropy, volume and the cross fluctuations were normalized to the average volume of a coarse grain with a fixed number of molecules, within which the local and instantaneous value of interest is evaluated. Comparisons were made between liquid H2O and n-hexane in the range from -10 °C to 120 °C and from 0.1 MPa to 500 MPa. The difference between H2O and n-hexane in temperature and pressure dependencies of these normalized fluctuations was explained in terms of the site-correlated percolation theory for H2O. In particular, the temperature increase was confirmed to reduce the hydrogen bond probability, while the pressure appeared to have little effect on the hydrogen bond probability. According to the Le Chatelier principle, however, the putative formation of ``ice-like'' patches at low temperatures due to the site-correlated percolation requirement is retarded by pressure increases. Thus, only in the limited region of low pressure (<300 MPa) and temperature (<60 °C), the fluctuating ice-like patches are considered to persist.
NASA Astrophysics Data System (ADS)
Markovin, P. A.; Trepakov, V. A.; Tagantsev, A. K.; Deineka, A.; Andreev, D. A.
2016-01-01
The expressions for the spontaneous polar contribution δ n i s to the principal values of the refractive index due to the quadratic electro-optic effect in ferroelectrics have been considered within the phenomenological approach taking into account the polarization fluctuations. A method has been proposed for calculating the magnitude and temperature dependence of the root-mean-square fluctuations of the polarization (short-range local polar order) P sh = < P fl 2 >1/2 below the ferroelectric transition temperature T c from temperature changes in the spontaneous polar contribution δ n i s ( T) if the average spontaneous polarization P s = < P> characterizing the long-range order is determined from independent measurements (for example, from dielectric hysteresis loops). For the case of isotropic fluctuations, the proposed method has made it possible to calculate P sh and P s only from refractometric measurements. It has been shown that, upon interferometric measurements, the method developed in this work allows calculating P sh and P s directly from the measured temperature and electric-field changes in the relative optical path (the specific optical retardation) of the light.
Efficient measurement of point-to-set correlations and overlap fluctuations in glass-forming liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berthier, Ludovic; Charbonneau, Patrick; Department of Physics, Duke University, Durham, North Carolina 27708
Cavity point-to-set correlations are real-space tools to detect the roughening of the free-energy landscape that accompanies the dynamical slowdown of glass-forming liquids. Measuring these correlations in model glass formers remains, however, a major computational challenge. Here, we develop a general parallel-tempering method that provides orders-of-magnitude improvement for sampling and equilibrating configurations within cavities. We apply this improved scheme to the canonical Kob-Andersen binary Lennard-Jones model for temperatures down to the mode-coupling theory crossover. Most significant improvements are noted for small cavities, which have thus far been the most difficult to study. This methodological advance also enables us to study amore » broader range of physical observables associated with thermodynamic fluctuations. We measure the probability distribution of overlap fluctuations in cavities, which displays a non-trivial temperature evolution. The corresponding overlap susceptibility is found to provide a robust quantitative estimate of the point-to-set length scale requiring no fitting. By resolving spatial fluctuations of the overlap in the cavity, we also obtain quantitative information about the geometry of overlap fluctuations. We can thus examine in detail how the penetration length as well as its fluctuations evolve with temperature and cavity size.« less
[Microbial air purity in hospitals. Operating theatres with air conditioning system].
Krogulski, Adam; Szczotko, Maciej
2010-01-01
The aim of this study was to show the influence of air conditioning control for microbial contamination of air inside the operating theatres equipped with correctly working air-conditioning system. This work was based on the results of bacteria and fungi concentration in hospital air obtained since 2001. Assays of microbial air purity conducted on atmospheric air in parallel with indoor air demonstrated that air filters applied in air-conditioning systems worked correctly in every case. To show the problem of fluctuation of bacteria concentration more precisely, every sequences of single results from successive measure series were examined independently.
Thermonuclear runaways in nova outbursts. 2: Effect of strong, instantaneous, local fluctuations
NASA Technical Reports Server (NTRS)
Shankar, Anurag; Arnett, David
1994-01-01
In an attempt to understand the manner in which nova outbursts are initiated on the surface of a white dwarf, we investigate the effects fluctuations have on the evolution of a thermonuclear runaway. Fluctuations in temperature density, or the composition of material in the burning shell may arise due to the chaotic flow field generated by convection when it occurs, or by the accretion process itself. With the aid of two-dimensional reactive flow calculations, we consider cases where a strong fluctutation in temperature arises during the early, quiescent accretion phase or during the later, more dynamic, explosion phase. In all cases we find that an instantaneous, local temperature fluctuation causes the affected material to become Rayleigh-Taylor unstable. The rapid rise and subsequent expansion of matter immediately cools the hot blob, which prevents the lateral propagation of burning. This suggests that local temperature fluctuations do not play a significant role in directly initiating the runaway, especially during the early stages. However, they may provide an efficient mechanism of mixing core material into the envelope (thereby pre-enriching the fuel for subsequent episodes of explosive hydrogen burning) and of mixing substantial amounts of the radioactive nucleus N-13 into the surface layers, making novae potential gamma-ray sources. This suggests that it is the global not the local, evolution of the core-envelope interface to high temperatures which dominates the development of the runaway. We also present a possible new scenario for the initiation of nova outbursts based on our results.
Interplay of superconductivity and magnetic fluctuations in single crystals of BaFe2-xCoxAs2
NASA Astrophysics Data System (ADS)
Bag, Biplab; Kumar, Ankit; Banerjee, S. S.; Vinod, K.; Bharathi, A.
2018-04-01
We report unusual pinning response in optimally doped and overdoped single crystals of BaFe2-xCoxAs2. Here we use magneto-optical imaging technique to measure the local magnetization response which shows an unusual transformation from low temperature diamagnetic state to high temperature positive magnetization response. Our data suggests coexistence of magnetic fluctuation along with superconductivity in the optimally doped crystal. The strength of magnetic fluctuations is the strongest in the optimally doped compound with the highest Tc.
Ou, Shu-Ching; Cui, Di; Wezowicz, Matthew; Taufer, Michela; Patel, Sandeep
2015-06-15
In this study, we examine the temperature dependence of free energetics of nanotube association using graphical processing unit-enabled all-atom molecular dynamics simulations (FEN ZI) with two (10,10) single-walled carbon nanotubes in 3 m NaI aqueous salt solution. Results suggest that the free energy, enthalpy and entropy changes for the association process are all reduced at the high temperature, in agreement with previous investigations using other hydrophobes. Via the decomposition of free energy into individual components, we found that solvent contribution (including water, anion, and cation contributions) is correlated with the spatial distribution of the corresponding species and is influenced distinctly by the temperature. We studied the spatial distribution and the structure of the solvent in different regions: intertube, intratube and the bulk solvent. By calculating the fluctuation of coarse-grained tube-solvent surfaces, we found that tube-water interfacial fluctuation exhibits the strongest temperature dependence. By taking ions to be a solvent-like medium in the absence of water, tube-anion interfacial fluctuation shows similar but weaker dependence on temperature, while tube-cation interfacial fluctuation shows no dependence in general. These characteristics are discussed via the malleability of their corresponding solvation shells relative to the nanotube surface. Hydrogen bonding profiles and tetrahedrality of water arrangement are also computed to compare the structure of solvent in the solvent bulk and intertube region. The hydrophobic confinement induces a relatively lower concentration environment in the intertube region, therefore causing different intertube solvent structures which depend on the tube separation. This study is relevant in the continuing discourse on hydrophobic interactions (as they impact generally a broad class of phenomena in biology, biochemistry, and materials science and soft condensed matter research), and interpretations of hydrophobicity in terms of alternative but parallel signatures such as interfacial fluctuations, dewetting transitions, and enhanced fluctuation probabilities at interfaces. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Huan; Baker, Nathan A.; Wu, Lei
2016-08-05
Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a novel multiphase smoothed dissipative particle dynamics model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension,more » we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semi-analytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models the dynamic processes, such as bubble coalescence and capillary spectra across the interface.« less
A New Black Carbon Sensor for Dense Air Quality Monitoring Networks
Caubel, Julien J.; Cados, Troy E.; Kirchstetter, Thomas W.
2018-01-01
Low-cost air pollution sensors are emerging and increasingly being deployed in densely distributed wireless networks that provide more spatial resolution than is typical in traditional monitoring of ambient air quality. However, a low-cost option to measure black carbon (BC)—a major component of particulate matter pollution associated with adverse human health risks—is missing. This paper presents a new BC sensor designed to fill this gap, the Aerosol Black Carbon Detector (ABCD), which incorporates a compact weatherproof enclosure, solar-powered rechargeable battery, and cellular communication to enable long-term, remote operation. This paper also demonstrates a data processing methodology that reduces the ABCD’s sensitivity to ambient temperature fluctuations, and therefore improves measurement performance in unconditioned operating environments (e.g., outdoors). A fleet of over 100 ABCDs was operated outdoors in collocation with a commercial BC instrument (Magee Scientific, Model AE33) housed inside a regulatory air quality monitoring station. The measurement performance of the 105 ABCDs is comparable to the AE33. The fleet-average precision and accuracy, expressed in terms of mean absolute percentage error, are 9.2 ± 0.8% (relative to the fleet average data) and 24.6 ± 0.9% (relative to the AE33 data), respectively (fleet-average ± 90% confidence interval). PMID:29494528
A New Black Carbon Sensor for Dense Air Quality Monitoring Networks.
Caubel, Julien J; Cados, Troy E; Kirchstetter, Thomas W
2018-03-01
Low-cost air pollution sensors are emerging and increasingly being deployed in densely distributed wireless networks that provide more spatial resolution than is typical in traditional monitoring of ambient air quality. However, a low-cost option to measure black carbon (BC)-a major component of particulate matter pollution associated with adverse human health risks-is missing. This paper presents a new BC sensor designed to fill this gap, the Aerosol Black Carbon Detector (ABCD), which incorporates a compact weatherproof enclosure, solar-powered rechargeable battery, and cellular communication to enable long-term, remote operation. This paper also demonstrates a data processing methodology that reduces the ABCD's sensitivity to ambient temperature fluctuations, and therefore improves measurement performance in unconditioned operating environments (e.g., outdoors). A fleet of over 100 ABCDs was operated outdoors in collocation with a commercial BC instrument (Magee Scientific, Model AE33) housed inside a regulatory air quality monitoring station. The measurement performance of the 105 ABCDs is comparable to the AE33. The fleet-average precision and accuracy, expressed in terms of mean absolute percentage error, are 9.2 ± 0.8% (relative to the fleet average data) and 24.6 ± 0.9% (relative to the AE33 data), respectively (fleet-average ± 90% confidence interval).
Air and wet bulb temperature lapse rates and their impact on snowmaking in a Pyrenean ski resort
NASA Astrophysics Data System (ADS)
López-Moreno, Juan Ignacio; Navarro-Serrano, F.; Azorín-Molina, C.; Sánchez-Navarrete, P.; Alonso-González, E.; Rico, I.; Morán-Tejeda, E.; Buisan, S.; Revuelto, J.; Pons, M.; Vicente-Serrano, S. M.
2018-03-01
A set of 17 air temperature and relative humidity sensors were used to analyze the temporal variability of surface air temperature (Tair), wet bulb temperature (Twb), and daily snowmaking hours (SM, number of hours per day with Twb < - 2 °C), lapse rates, and the occurrence of thermal inversions at the Formigal ski resort (Spanish Pyrenees) from December to March during three consecutive ski seasons (2012-2013, 2013-2014, and 2014-2015). The Tair and Twb lapse rates showed strong hourly and daily variability, with both exhibiting almost identical temporal fluctuations. The Twb exhibited average lapse rates that were slightly steeper (- 5.2 °C/km) than those observed for Tair (- 4.9 °C/km). The less steep lapse rates and most thermal inversions were observed in December. Days having less (more) steep Tair and Twb lapse rates were observed under low (high) wind speeds and high (low) relative humidity and air pressure. The temporal dynamics of the SM lapse rates was more complex, as this involved consideration of the average Tair in the ski resort, in addition to the driving factors of the spatio-temporal variability of Twb. Thus, on a number of cold (warm) days, snowmaking was feasible at all elevations at the ski resort, independently of the slopes of the lapse rates. The SM exhibited an average daily lapse rate of 8.2 h/km, with a progressive trend of increase from December to March. Weather types over the Iberian Peninsula tightly control the driving factors of the Tair, Twb, and SM lapse rates (wind speed, relative humidity, and Tair), so the slopes of the lapse rates and the frequency of inversions in relation to elevation for the three variables are very dependent on the occurrence of specific weather types. The less steep lapse rates occurred associated with advections from the southeast, although low lapse rates also occurred during advections from the east and south, and under anticyclonic conditions. The steepest Tair and Twb lapse rates were observed during north and northwest advections, while the steepest rates for SM were observed during days of cyclonic circulation and advections from the northeast.
Balloon-borne match measurements of mid-latitude cirrus clouds
NASA Astrophysics Data System (ADS)
Cirisan, A.; Luo, B. P.; Engel, I.; Wienhold, F. G.; Krieger, U. K.; Weers, U.; Romanens, G.; Levrat, G.; Jeannet, P.; Ruffieux, D.; Philipona, R.; Calpini, B.; Spichtinger, P.; Peter, T.
2013-10-01
Observations of persistent high supersaturations with respect to ice inside cirrus clouds are challenging our understanding of cloud microphysics and of climate feedback processes in the upper troposphere. Single measurements of a cloudy air mass provide only a snapshot from which the persistence of ice supersaturation cannot be judged. We introduce here the "cirrus match technique" to obtain information of the evolution of clouds and their saturation ratio. The aim of these coordinated balloon soundings is to analyze the same air mass twice. To this end the standard radiosonde equipment is complemented by a frost point hygrometer "SnowWhite" and a particle backscatter detector "COBALD" (Compact Optical Backscatter Aerosol Detector). Extensive trajectory calculations based on regional weather model COSMO forecasts are performed for flight planning and COSMO analyses are used as basis for comprehensive microphysical box modeling (with grid scale 2 km and 7 km, respectively). Here we present the results of matching a cirrus cloud to within 2-15 km, realized on 8 June 2010 over Payerne, Switzerland, and a location 120 km downstream close to Zurich. A thick cirrus was detected over both measurement sites. We show that in order to quantitatively reproduce the measured particle backscatter ratios, the small-scale temperature fluctuations not resolved by COSMO must be superimposed on the trajectories. The stochastic nature of the fluctuations is captured by ensemble calculations. Possibilities for further improvements in the agreement with the measured backscatter data are investigated by assuming a very slow mass accommodation of water on ice, the presence of heterogeneous ice nuclei, or a wide span of (spheroidal) particle shapes. However, the resulting improvements from microphysical refinements are moderate and comparable in magnitude with changes caused by assuming different regimes of temperature fluctuations for clear sky or cloudy sky conditions, highlighting the importance of a proper treatment of subscale fluctuations. The model yields good agreement with the measured backscatter over both sites and reproduces the measured saturation ratios with respect to ice over Payerne. Conversely, the 30% in-cloud supersaturation measured in a massive, 4-km thick cloud layer over Zurich cannot be reproduced, irrespective of the choice of meteorological or microphysical model parameters. The measured supersaturation can only be explained by either resorting to an unknown physical process, which prevents the ice particles from consuming the excess humidity, or - much more likely - by a measurement error, such as a contamination of the sensor housing of the SnowWhite hygrometer by a precipitation drop from a mixed phase cloud just below the cirrus layer or from some very slight rain in the boundary layer. This uncertainty calls for in-flight checks or calibrations of hygrometers under the extreme humidity conditions in the upper troposphere.
NASA Astrophysics Data System (ADS)
Bailly, David; Matray, Jean-Michel; Ababou, Rachid
2014-12-01
The main topic of this communication is the presentation of study, auscultation and supervision procedures of deep geological radioactive waste storage repositories using natural harmonic forcings. In this paper, the effects of natural ventilation on the macroscopic behavior of a clayrock are investigated by means of time series recorded underground over a period of two years in the eastern part of Gallery 1996 at the Tournemire Underground Research Laboratory (URL). This study is based on time series acquired in theatmosphere, at the gallery wall surface, and inside the rock mass. It includes measured signals from 6 thermo-hygrometers, 5 crack-meters (measuring the displacement of 2 shrinkage cracks and 3 tectonic fractures), and a 1 meter-FDR (Frequency Domain Reflectometry) profile probe equipped with 6 sensors for measuring the volumetric pore-water content into the rock mass. Auto-spectral and cross-spectral analyses using the concept of Singular Spectrum Harmonics (SSHs and cross-SSHs) are developed. Our analyses and interpretations focus here mainly on the solar diurnal atmospheric tide (denoted S1 ). This tide corresponds to the insolation cycle of the Earth atmosphere during a mean Solar Day (24 h 00 min). This component is tracked throughout the various measured signals ("Spectral Tracking" of tide fluctuations across signals). This is equivalent, in a way, to analyzing the temporal behavior of the URL during a "Mean Solar Day on Earth". Results indicate that the daily natural forcing caused mainly by a combination of barometric and temperature related fluctuations, is the most important effect overall on our various signals. The daily harmonic induces the fluctuations of gallery air temperature, relative and absolute air humidity and it leads to desaturation of the claystone, which in turn leads to the claystone deformation and damage. The effects of the annual harmonic SA may also be significant (it was fully analyzed in the more complete version of this work); however the SA results are not presented here because the spectral resolution on the annual harmonic is insufficient at this stage with only 2 years and 2 months of clean recorded data. Focusing the present study on daily fluctuations, the cross-spectral time shifts were obtained from the phase spectrum, for the daily component S1, for various pairs of pore-water content sensors located at different distances from the gallery wall. These time shifts were then used to quantify a "spectral velocity" which is found to be on the same order than the hydraulic conductivities deduced previously from pneumatic tests performed in the Excavation Damaged Zone of Gallery 1996.
Sattar, Syed A; Kibbee, Richard J; Zargar, Bahram; Wright, Kathryn E; Rubino, Joseph R; Ijaz, M Khalid
2016-10-01
Although indoor air can spread many pathogens, information on the airborne survival and inactivation of such pathogens remains sparse. Staphylococcus aureus and Klebsiella pneumoniae were nebulized separately into an aerobiology chamber (24.0 m 3 ). The chamber's relative humidity and air temperature were at 50% ± 5% and 20°C ± 2°C, respectively. The air was sampled with a slit-to-agar sampler. Between tests, filtered air purged the chamber of any residual airborne microbes. The challenge in the air varied between 4.2 log 10 colony forming units (CFU)/m 3 and 5.0 log 10 CFU/m 3 , sufficient to show a ≥3 log 10 (≥99.9%) reduction in microbial viability in air over a given contact time by the technologies tested. The rates of biologic decay of S aureus and K pneumoniae were 0.0064 ± 0.00015 and 0.0244 ± 0.009 log 10 CFU/m 3 /min, respectively. Three commercial devices, with ultraviolet light and HEPA (high-efficiency particulate air) filtration, met the product efficacy criterion in 45-210 minutes; these rates were statistically significant compared with the corresponding rates of biologic decay of the bacteria. One device was also tested with repeated challenges with aerosolized S aureus to simulate ongoing fluctuations in indoor air quality; it could reduce each such recontamination to an undetectable level in approximately 40 minutes. The setup described is suitable for work with all major classes of pathogens and also complies with the U.S. Environmental Protection Agency's guidelines (2012) for testing air decontamination technologies. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Osland, Michael J.; Day, Richard H.; Hall, Courtney T.; Brumfield, Marisa D; Dugas, Jason; Jones, William R.
2017-01-01
Within the context of climate change, there is a pressing need to better understand the ecological implications of changes in the frequency and intensity of climate extremes. Along subtropical coasts, less frequent and warmer freeze events are expected to permit freeze-sensitive mangrove forests to expand poleward and displace freeze-tolerant salt marshes. Here, our aim was to better understand the drivers of poleward mangrove migration by quantifying spatiotemporal patterns in mangrove range expansion and contraction across land-ocean temperature gradients. Our work was conducted in a freeze-sensitive mangrove-marsh transition zone that spans a land-ocean temperature gradient in one of the world's most wetland-rich regions (Mississippi River Deltaic Plain; Louisiana, USA). We used historical air temperature data (1893-2014), alternative future climate scenarios, and coastal wetland coverage data (1978-2011) to investigate spatiotemporal fluctuations and climate-wetland linkages. Our analyses indicate that changes in mangrove coverage have been controlled primarily by extreme freeze events (i.e., air temperatures below a threshold zone of -6.3 to -7.6 °C). We expect that in the past 121 years, mangrove range expansion and contraction has occurred across land-ocean temperature gradients. Mangrove resistance, resilience, and dominance were all highest in areas closer to the ocean where temperature extremes were buffered by large expanses of water and saturated soil. Under climate change, these areas will likely serve as local hotspots for mangrove dispersal, growth, range expansion, and displacement of salt marsh. Collectively, our results show that the frequency and intensity of freeze events across land-ocean temperature gradients greatly influences spatiotemporal patterns of range expansion and contraction of freeze-sensitive mangroves. We expect that, along subtropical coasts, similar processes govern the distribution and abundance of other freeze-sensitive organisms. In broad terms, our findings can be used to better understand and anticipate the ecological effects of changing winter climate extremes, especially within the transition zone between tropical and temperate climates.
Estimating the mirror seeing for a large optical telescope with a numerical method
NASA Astrophysics Data System (ADS)
Zhang, En-Peng; Cui, Xiang-Qun; Li, Guo-Ping; Zhang, Yong; Shi, Jian-Rong; Zhao, Yong-Heng
2018-05-01
It is widely accepted that mirror seeing is caused by turbulent fluctuations in the index of air refraction in the vicinity of a telescope mirror. Computational Fluid Dynamics (CFD) is a useful tool to evaluate the effects of mirror seeing. In this paper, we present a numerical method to estimate the mirror seeing for a large optical telescope (∼ 4 m) in cases of natural convection with the ANSYS ICEPAK software. We get the FWHM of the image for different inclination angles (i) of the mirror and different temperature differences (ΔT) between the mirror and ambient air. Our results show that the mirror seeing depends very weakly on i, which agrees with observational data from the Canada-France-Hawaii Telescope. The numerical model can be used to estimate mirror seeing in the case of natural convection although with some limitations. We can determine ΔT for thermal control of the primary mirror according to the simulation, empirical data and site seeing.
NASA Astrophysics Data System (ADS)
Ma, Liuhao; Wang, Zhen; Cheong, Kin-Pang; Ning, Hongbo; Ren, Wei
2018-06-01
We report the first demonstration of heterodyne phase-sensitive dispersion spectroscopy (HPSDS) for the simultaneous temperature and H2O concentration measurements in combustion environments. Two continuous-wave distributed-feedback quantum cascade lasers (DFB-QCLs) at 5.27 and 10.53 µm were used to exploit the strong H2O transitions (1897.52 and 949.53 cm-1) at high temperatures. The injection current of each QCL was modulated at sub-GHz or GHz to generate the three-tone radiation and the dispersion signal was detected by the radio-frequency down-conversion heterodyning. The peak-to-peak ratio of the two H2O dispersion spectra exhibits a monotonic relationship with temperature over the temperature range of 1000-3000 K, indicating the capability of performing two-line thermometry using laser dispersion spectroscopy. We measured the temperatures of CH4/air flames at different equivalence ratios ( Φ = 0.8-1.2), yielding a good agreement with the corresponding thermocouple measurements. In addition, one-dimensional kinetic modeling coupled with a detailed chemical kinetic mechanism (GRI 3.0) was conducted to compare with the measured H2O concentrations using HPSDS. Finally, we demonstrated HPSDS is immune to optical power fluctuations by measuring the dispersion spectra at varied incident laser powers.
Temporal fluctuation of the lead level in the cord blood of neonates in Taipei.
Hwang, Y H; Wang, J D
1990-01-01
From August 1985 to September 1987, 9,502 cord blood samples were obtained from the Taipei Municipal Maternal and Child Hospital. A total of 205 cord blood samples chosen randomly from newborns without parental exposure to lead were analyzed by flameless atomic absorption spectrophotometry. The average blood lead level was .36 +/- .11 mumol/l (7.48 +/- 2.25 micrograms/dl). A similar analysis was performed on samples obtained from 160 newborns whose fathers had occupational lead exposure. In both groups, the average concentration of lead in cord blood in the summer was statistically greater than that in the winter. Air lead and total amount of lead in gasoline consumed in Taipei appeared to be associated with this seasonal fluctuation in the average lead level of cord blood. After considering alternative sources, we conclude that the seasonal fluctuation of cord blood lead is probably influenced by air lead produced from the combustion of gasoline.
An Air Revitalization Model (ARM) for Regenerative Life Support Systems (RLSS)
NASA Technical Reports Server (NTRS)
Hart, Maxwell M.
1990-01-01
The primary objective of the air revitalization model (ARM) is to determine the minimum buffer capacities that would be necessary for long duration space missions. Several observations are supported by the current configuration sizes: the baseline values for each gas and the day to day or month to month fluctuations that are allowed. The baseline values depend on the minimum safety tolerances and the quantities of life support consumables necessary to survive the worst case scenarios within those tolerances. Most, it not all, of these quantities can easily be determined by ARM once these tolerances are set. The day to day fluctuations also require a command decision. It is already apparent from the current configuration of ARM that the tighter these fluctuations are controlled, the more energy used, the more nonregenerable hydrazine consumed, and the larger the required capacities for the various gas generators. All of these relationships could clearly be quantified by one operational ARM.
NASA Astrophysics Data System (ADS)
Robichaud, A.; Ménard, R.
2014-02-01
Multi-year objective analyses (OA) on a high spatiotemporal resolution for the warm season period (1 May to 31 October) for ground-level ozone and for fine particulate matter (diameter less than 2.5 microns (PM2.5)) are presented. The OA used in this study combines model outputs from the Canadian air quality forecast suite with US and Canadian observations from various air quality surface monitoring networks. The analyses are based on an optimal interpolation (OI) with capabilities for adaptive error statistics for ozone and PM2.5 and an explicit bias correction scheme for the PM2.5 analyses. The estimation of error statistics has been computed using a modified version of the Hollingsworth-Lönnberg (H-L) method. The error statistics are "tuned" using a χ2 (chi-square) diagnostic, a semi-empirical procedure that provides significantly better verification than without tuning. Successful cross-validation experiments were performed with an OA setup using 90% of data observations to build the objective analyses and with the remainder left out as an independent set of data for verification purposes. Furthermore, comparisons with other external sources of information (global models and PM2.5 satellite surface-derived or ground-based measurements) show reasonable agreement. The multi-year analyses obtained provide relatively high precision with an absolute yearly averaged systematic error of less than 0.6 ppbv (parts per billion by volume) and 0.7 μg m-3 (micrograms per cubic meter) for ozone and PM2.5, respectively, and a random error generally less than 9 ppbv for ozone and under 12 μg m-3 for PM2.5. This paper focuses on two applications: (1) presenting long-term averages of OA and analysis increments as a form of summer climatology; and (2) analyzing long-term (decadal) trends and inter-annual fluctuations using OA outputs. The results show that high percentiles of ozone and PM2.5 were both following a general decreasing trend in North America, with the eastern part of the United States showing the most widespread decrease, likely due to more effective pollution controls. Some locations, however, exhibited an increasing trend in the mean ozone and PM2.5, such as the northwestern part of North America (northwest US and Alberta). Conversely, the low percentiles are generally rising for ozone, which may be linked to the intercontinental transport of increased emissions from emerging countries. After removing the decadal trend, the inter-annual fluctuations of the high percentiles are largely explained by the temperature fluctuations for ozone and to a lesser extent by precipitation fluctuations for PM2.5. More interesting is the economic short-term change (as expressed by the variation of the US gross domestic product growth rate), which explains 37% of the total variance of inter-annual fluctuations of PM2.5 and 15% in the case of ozone.
Donahue, W; Bongiorni, P; Hearn, R; Rodgers, J; Nath, R; Chen, Z
2012-06-01
To develop and characterize a novel thermal reservoir for consistent and accurate annealing of high-sensitivity thermoluminescence dosimeters (TLD-100H) for dosimetry of brachytherapy sources. The sensitivity of TLD-100H is about 18 times that of TLD-100 which has clear advantages in for interstitial brachytherapy sources. However, the TLD-100H requires a short high temperature annealing cycle (15 min.) and opening and closing the oven door causes significant temperature fluctuations leading to unreliable measurements. A new thermal reservoir made of aluminum alloy was developed to provide stable temperature environment in a standard hot air oven. The thermal reservoir consisted of a 20 cm × 20 cm × 8 cm Al block with a machine-milled chamber in the middle to house the aluminum TLD holding tray. The thermal reservoir was placed inside the oven until it reaches thermal equilibrium with oven chamber. The temperatures of the oven chamber, heat reservoir, and TLD holding tray were monitored by two independent thermo-couples which interfaced digitally to a control computer. A LabView interface was written for monitoring and recording the temperatures in TLD holding tray, the thermal reservoir, and oven chamber. The temperature profiles were measured as a function of oven-door open duration. The settings for oven chamber temperature and oven door open-close duration were optimized to achieve a stable temperature of 240 0C in the TLD holding tray. Complete temperature profiles of the TLD annealing tray over the entire annealing process were obtained. A LabView interface was written for monitoring and recording the temperatures in TLD holding The use of the thermal reservoir has significantly reduced the temperature fluctuations caused by the opening of oven door when inserting the TLD holding tray into the oven chamber. It has enabled consistent annealing of high-sensitivity TLDs. A comprehensive characterization of a custom-built novel thermal reservoir for annealing high-sensitivity TLD has been carried out. It enabled consistent and accurate annealing of high- sensitivity TLDs which could significantly improve the efficiency of brachytherapy source characterizations. Supported in part by NIH grant R01-CA134627. © 2012 American Association of Physicists in Medicine.
Stream temperature variability: why it matters to salmon
E. Ashley Steel; Brian Beckman; Marie Oliver
2014-01-01
Salmon evolved in natural river systems, where temperatures fluctuate daily, weekly, seasonally, and all along a streamâs pathâfrom the mountains to the sea. Climate change and human activities alter this natural variability. Dams, for example, tend to reduce thermal fluctuations.Currently, scientists gauge habitat suitability for aquatic species by...
Spin fluctuation induced linear magnetoresistance in ultrathin superconducting FeSe films
Wang, Qingyan; Zhang, Wenhao; Chen, Weiwei; ...
2017-07-21
The discovery of high-temperature superconductivity in FeSe/STO has trigged great research interest to reveal a range of exotic physical phenomena in this novel material. Here we present a temperature dependent magnetotransport measurement for ultrathin FeSe/STO films with different thickness and protection layers. Remarkably, a surprising linear magnetoresistance (LMR) is observed around the superconducting transition temperatures but absent otherwise. The experimental LMR can be reproduced by magnetotransport calculations based on a model of magnetic field dependent disorder induced by spin fluctuation. Thus, the observed LMR in coexistence with superconductivity provides the first magnetotransport signature for spin fluctuation around the superconducting transitionmore » region in ultrathin FeSe/STO films.« less
The role of the Atlantic Water in multidecadal ocean variability in the Nordic and Barents Seas
NASA Astrophysics Data System (ADS)
Yashayaev, Igor; Seidov, Dan
2015-03-01
The focus of this work is on the temporal and spatial variability of the Atlantic Water (AW). We analyze the existing historic hydrographic data from the World Ocean Database to document the long-term variability of the AW throughflow across the Norwegian Sea to the western Barents Sea. Interannual-to-multidecadal variability of water temperature, salinity and density are analyzed along six composite sections crossing the AW flow and coastal currents at six selected locations. The stations are lined up from southwest to northeast - from the northern North Sea (69°N) throughout the Norwegian Sea to the Kola Section in the Barents Sea (33°30‧E). The changing volume and characteristics of the AW throughflow dominate the hydrographic variability on decadal and longer time scales in the studied area. We examine the role of fluctuations of the volume of inflow versus the variable local factors, such as the air-sea interaction and mixing with the fresh coastal and cold Arctic waters, in controlling the long-term regional variability. It is shown that the volume of the AW, passing through the area and affecting the position of the outer edge of the warm and saline core, correlates well with temperature and salinity averaged over the central portions of the studied sections. The coastal flow (mostly associated with the Norwegian Coastal Current flowing over the continental shelf) is largely controlled by seasonal local heat and freshwater impacts. Temperature records at all six lines show a warming trend superimposed on a series of relatively warm and cold periods, which in most cases follow, with a delay of four to five years, the periods of relatively low and high North Atlantic Oscillation (NAO), and the periods of relatively high and low Atlantic Multidecadal Oscillation (AMO), respectively. In general, there is a relatively high correlation between the year-to-year changes of the NAO and AMO indices, which is to some extent reflected in the (delayed) AW temperature fluctuations. It takes about two years for freshening and salinification events and a much shorter time (of about a year or less) for cooling and warming episodes to propagate or spread across the region. This significant difference in the propagation rates of salinity and temperature anomalies is explained by the leading role of horizontal advection in the propagation of salinity anomalies, whereas temperature is also controlled by the competing air-sea interaction along the AW throughflow. Therefore, although a water parcel moves within the flow as a whole, the temperature, salinity and density anomalies split and propagate separately, with the temperature and density signals leading relative to the salinity signal. A new hydrographic index, coastal-to-offshore density step, is introduced to capture variability in the strength of the AW volume transport. This index shows the same cycles of variability as observed in temperature, NAO and AMO but without an obvious trend.
Dual-Pump CARS Thermometry and Species Concentration Measurements in a Supersonic Combustor
NASA Technical Reports Server (NTRS)
OByrne, Sean; Danehy, Paul M.; Cutler, Andrew D.
2004-01-01
The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) method was used to measure temperature and the absolute mole fractions of N2, O2 and H2 in a supersonic combustor. Experiments were conducted in NASA Langley Research Center's Direct Connect Supersonic Combustion Test Facility. In this facility, hydrogen and air bum to increase the enthalpy of the test gas; O2 is then added to simulate air. This gas is expanded through a Mach 2 nozzle and into a combustor model consisting of a short constant-area section followed by a small rearward facing step and another constant area section. At the end of this straight section H2 fuel is then injected at Mach 2 and at 30 deg. angle with respect to the freestream. One wall of the duct then expands at a 3 deg. angle for over 1 meter. The ensuing combustion is monitored optically through ports in the side of the combustor. CARS measurements were performed at the nozzle exit and at four different planes downstream fuel injection. Maps were obtained of the mean temperature, as well as quantitative N2 and O2 and qualitative H2 mean mole fraction fields. Correlations between fluctuations of the different measured parameters are presented for one of the planes of data.
Termite mounds harness diurnal temperature oscillations for ventilation
King, Hunter; Ocko, Samuel; Mahadevan, L.
2015-01-01
Many species of millimetric fungus-harvesting termites collectively build uninhabited, massive mound structures enclosing a network of broad tunnels that protrude from the ground meters above their subterranean nests. It is widely accepted that the purpose of these mounds is to give the colony a controlled microclimate in which to raise fungus and brood by managing heat, humidity, and respiratory gas exchange. Although different hypotheses such as steady and fluctuating external wind and internal metabolic heating have been proposed for ventilating the mound, the absence of direct in situ measurement of internal air flows has precluded a definitive mechanism for this critical physiological function. By measuring diurnal variations in flow through the surface conduits of the mounds of the species Odontotermes obesus, we show that a simple combination of geometry, heterogeneous thermal mass, and porosity allows the mounds to use diurnal ambient temperature oscillations for ventilation. In particular, the thin outer flutelike conduits heat up rapidly during the day relative to the deeper chimneys, pushing air up the flutes and down the chimney in a closed convection cell, with the converse situation at night. These cyclic flows in the mound flush out CO2 from the nest and ventilate the colony, in an unusual example of deriving useful work from thermal oscillations. PMID:26316023
Termite mounds harness diurnal temperature oscillations for ventilation.
King, Hunter; Ocko, Samuel; Mahadevan, L
2015-09-15
Many species of millimetric fungus-harvesting termites collectively build uninhabited, massive mound structures enclosing a network of broad tunnels that protrude from the ground meters above their subterranean nests. It is widely accepted that the purpose of these mounds is to give the colony a controlled microclimate in which to raise fungus and brood by managing heat, humidity, and respiratory gas exchange. Although different hypotheses such as steady and fluctuating external wind and internal metabolic heating have been proposed for ventilating the mound, the absence of direct in situ measurement of internal air flows has precluded a definitive mechanism for this critical physiological function. By measuring diurnal variations in flow through the surface conduits of the mounds of the species Odontotermes obesus, we show that a simple combination of geometry, heterogeneous thermal mass, and porosity allows the mounds to use diurnal ambient temperature oscillations for ventilation. In particular, the thin outer flutelike conduits heat up rapidly during the day relative to the deeper chimneys, pushing air up the flutes and down the chimney in a closed convection cell, with the converse situation at night. These cyclic flows in the mound flush out CO2 from the nest and ventilate the colony, in an unusual example of deriving useful work from thermal oscillations.
Formation Dynamics of CH3NH3PbI3 Perovskite Following Two-Step Layer Deposition.
Patel, Jay B; Milot, Rebecca L; Wright, Adam D; Herz, Laura M; Johnston, Michael B
2016-01-07
Hybrid metal-halide perovskites have emerged as a leading class of semiconductors for optoelectronic devices because of their desirable material properties and versatile fabrication methods. However, little is known about the chemical transformations that occur in the initial stages of perovskite crystal formation. Here we follow the real-time formation dynamics of MAPbI3 from a bilayer of lead iodide (PbI2) and methylammonium iodide (MAI) deposited through a two-step thermal evaporation process. By lowering the substrate temperature during deposition, we are able to initially inhibit intermixing of the two layers. We subsequently use infrared and visible light transmission, X-ray diffraction, and photoluminescence lifetime measurements to reveal the room-temperature transformations that occur in vacuum and ambient air, as MAI diffuses into the PbI2 lattice to form MAPbI3. In vacuum, the transformation to MAPbI3 is incomplete as unreacted MAI is retained in the film. However, exposure to moist air allows for conversion of the unreacted MAI to MAPbI3, demonstrating that moisture is essential in making MAI more mobile and thus aiding perovskite crystallization. These dynamic processes are reflected in the observed charge-carrier lifetimes, which strongly fluctuate during periods of large ion migration but steadily increase with improving crystallinity.
A millimeter-wave radiometer for detecting microbursts
NASA Technical Reports Server (NTRS)
Mcmillan, Robert
1992-01-01
This paper describes a millimeter-wave radiometer for the detection of wind shear from airborne platforms or at airport terminals. This proposed instrument will operate near the group of atmospheric oxygen absorptions centered near 60 GHz, which it will use to sense temperature from a distance. The instrument will use two channels to provide two different temperature measurements, providing the basis for solution of two equations in two unknowns, which are range to the wind shear plume and its temperature. A third channel will measure ambient atmospheric temperature. Depending on the temperature difference between the wind-shear plume and ambient, the standard deviation of range measurement accuracy is expected to be about 1 km at 5 km range, while the temperature measurement standard deviation will be about one-fourth the temperature difference between plume and ambient at this range. The instrument is expected to perform usefully at ranges up to 10 km, giving adequate warning of the presence of wind shear even for high performance jet aircraft. Other atmospheric hazards which might be detected by this radiometer include aircraft wakes and vortices, clear-air turbulence, and wind rotors, although the latter two phenomena would be detected by an airborne version of the instrument. A separate radiometer channel will be provided in the proposed instrument to detect aircraft wakes and vortices based on perturbation of the spectrum of microscopic atmospheric temperature fluctuations caused by the passage of large aircraft.
Effect of stochastic grain heating on cold dense clouds chemistry
NASA Astrophysics Data System (ADS)
Chen, Long-Fei; Chang, Qiang; Xi, Hong-Wei
2018-06-01
The temperatures of dust grains play important roles in the chemical evolution of molecular clouds. Unlike large grains, the temperature fluctuations of small grains induced by photons may be significant. Therefore, if the grain size distribution is included in astrochemical models, the temperatures of small dust grains may not be assumed to be constant. We simulate a full gas-grain reaction network with a set of dust grain radii using the classical MRN grain size distribution and include the temperature fluctuations of small dust grains. Monte Carlo method is used to simulate the real-time dust grain's temperature fluctuations which is caused by the external low energy photons and the internal cosmic ray induced secondary photons. The increase of dust grains radii as ice mantles accumulate on grain surfaces is also included in our models. We found that surface CO2 abundances in models with grain size distribution and temperature fluctuations are more than one order of magnitude larger than those with single grain size. Small amounts of terrestrial complex organic molecules (COMs) can also be formed on small grains due to the temperature spikes induced by external low energy photons. However, cosmic ray induced secondary photons overheat small grains so that surface CO sublime and less radicals are formed on grains surfaces, thus the production of surface CO2 and COMs decreases by about one order of magnitude. The overheating of small grains can be offset by grain growth so that the formation of surface CO2 and COMs becomes more efficient.
Development of Hollow Steel Ball Macro-Encapsulated PCM for Thermal Energy Storage Concrete
Dong, Zhijun; Cui, Hongzhi; Tang, Waiching; Chen, Dazhu; Wen, Haibo
2016-01-01
The application of thermal energy storage with phase change materials (PCMs) for energy efficiency of buildings grew rapidly in the last few years. In this research, octadecane paraffin was served as a PCM, and a structural concrete with the function of indoor temperature control was developed by using a macro-encapsulated PCM hollow steel ball (HSB). The macro-encapsulated PCM-HSB was prepared by incorporation of octadecane into HSBs through vacuum impregnation. Test results showed that the maximum percentage of octadecane carried by HSBs was 80.3% by mass. The macro-encapsulated PCM-HSB has a latent heat storage capacity as high as 200.5 J/g. The compressive strength of concrete with macro-encapsulated PCM-HSB at 28 days ranged from 22 to 40 MPa. The indoor thermal performance test revealed that concrete with macro-encapsulated octadecane-HSB was capable of reducing the peak indoor air temperature and the fluctuation of indoor temperature. It can be very effective in transferring the heating and cooling loads away from the peak demand times. PMID:28787859
NASA Astrophysics Data System (ADS)
Verdoni, A. P.; Denker, C.; Varsik, J. R.; Shumko, S.; Nenow, J.; Coulter, R.
2007-09-01
The New Solar Telescope (NST) is a 1.6-meter off-axis Gregory-type telescope with an equatorial mount and an open optical support structure. To mitigate the temperature fluctuations along the exposed optical path, the effects of local/dome-related seeing have to be minimized. To accomplish this, NST will be housed in a 5/8-sphere fiberglass dome that is outfitted with 14 active vents evenly spaced around its perimeter. The 14 vents house louvers that open and close independently of one another to regulate and direct the passage of air through the dome. In January 2006, 16 thermal probes were installed throughout the dome and the temperature distribution was measured. The measurements confirmed the existence of a strong thermal gradient on the order of 5° Celsius inside the dome. In December 2006, a second set of temperature measurements were made using different louver configurations. In this study, we present the results of these measurements along with their integration into the thermal control system (ThCS) and the overall telescope control system (TCS).
Development of Hollow Steel Ball Macro-Encapsulated PCM for Thermal Energy Storage Concrete.
Dong, Zhijun; Cui, Hongzhi; Tang, Waiching; Chen, Dazhu; Wen, Haibo
2016-01-19
The application of thermal energy storage with phase change materials (PCMs) for energy efficiency of buildings grew rapidly in the last few years. In this research, octadecane paraffin was served as a PCM, and a structural concrete with the function of indoor temperature control was developed by using a macro-encapsulated PCM hollow steel ball (HSB). The macro-encapsulated PCM-HSB was prepared by incorporation of octadecane into HSBs through vacuum impregnation. Test results showed that the maximum percentage of octadecane carried by HSBs was 80.3% by mass. The macro-encapsulated PCM-HSB has a latent heat storage capacity as high as 200.5 J/g. The compressive strength of concrete with macro-encapsulated PCM-HSB at 28 days ranged from 22 to 40 MPa. The indoor thermal performance test revealed that concrete with macro-encapsulated octadecane-HSB was capable of reducing the peak indoor air temperature and the fluctuation of indoor temperature. It can be very effective in transferring the heating and cooling loads away from the peak demand times.
NASA Technical Reports Server (NTRS)
Acosta, Waldo A.; Chang, Clarence T.
2016-01-01
An experimental investigation of the combustion dynamic characteristics of a research multi-element lean direct injection (LDI) combustor under simulated gas turbine conditions was conducted. The objective was to gain a better understanding of the physical phenomena inside a pressurized flametube combustion chamber under acoustically isolated conditions. A nine-point swirl venturi lean direct injection (SV-LDI) geometry was evaluated at inlet pressures up to 2,413 kPa and non-vitiated air temperatures up to 867 K. The equivalence ratio was varied to obtain adiabatic flame temperatures between 1388 K and 1905 K. Dynamic pressure measurements were taken upstream of the SV-LDI, in the combustion zone and downstream of the exit nozzle. The measurements showed that combustion dynamics were fairly small when the fuel was distributed uniformly and mostly due to fluid dynamics effects. Dynamic pressure fluctuations larger than 40 kPa at low frequencies were measured at 653 K inlet temperature and 1117 kPa inlet pressure when fuel was shifted and the pilot fuel injector equivalence ratio was increased to 0.72.
Evaluation of a locally homogeneous flow model of spray combustion
NASA Technical Reports Server (NTRS)
Mao, C. P.; Szekely, G. A., Jr.; Faeth, G. M.
1980-01-01
A model of spray combustion which employs a second-order turbulence model was developed. The assumption of locally homogeneous flow is made, implying infinitely fast transport rates between the phase. Measurements to test the model were completed for a gaseous n-propane flame and an air atomized n-pentane spray flame, burning in stagnant air at atmospheric pressure. Profiles of mean velocity and temperature, as well as velocity fluctuations and Reynolds stress, were measured in the flames. The predictions for the gas flame were in excellent agreement with the measurements. The predictions for the spray were qualitatively correct, but effects of finite rate interphase transport were evident, resulting in a overstimation of the rate development of the flow. Predictions of spray penetration length at high pressures, including supercritical combustion conditions, were also completed for comparison with earlier measurements. Test conditions involved a pressure atomized n-pentane spray, burning in stagnant air at pressures of 3, 5, and 9 MPa. The comparison between predictions and measurements was fair. This is not a very sensitive test of the model, however, and further high pressure experimental and theoretical results are needed before a satisfactory assessment of the locally homogeneous flow approximation can be made.
NASA Astrophysics Data System (ADS)
Fu, Wei-Jie; Liu, Yu-Xin; Wu, Yue-Liang
2010-01-01
We study fluctuations of conserved charges including baryon number, electric charge, and strangeness as well as the correlations among these conserved charges in the 2+1 flavor Polyakov-Nambu-Jona-Lasinio model at finite temperature. The calculated results are compared with those obtained from recent lattice calculations performed with an improved staggered fermion action at two values of the lattice cutoff with almost physical up and down quark masses and a physical value for the strange quark mass. We find that our calculated results are well consistent with those obtained in lattice calculations except for some quantitative differences for fluctuations related with strange quarks. Our calculations indicate that there is a pronounced cusp in the ratio of the quartic to quadratic fluctuations of baryon number, i.e. χ4B/χ2B, at the critical temperature during the phase transition, which confirms that χ4B/χ2B is a useful probe of the deconfinement and chiral phase transition.
NASA Astrophysics Data System (ADS)
K, Makise; H, Terai; T, Yamashita; S, Miki; Z, Wang; Uzawa Y, Y.; S, Ezaki; T, Odou; B, Shinozaki
2012-12-01
We study on the electric transport properties of epitaxial NbTiN ultrathin films in a range from 2 to 8nm. The films with 4 nm thick shows superconductivity of which mean-field superconducting transition temperature is TC0 = 9.43 K The excess conductance due to superconducting fluctuations was measured at temperatures above TC0. The paraconductivity shows a two-dimensional like behaviour at close to TC0. Experimental results are in good agreement with the sum of Aslamazov - Larkin and Maki - Thompson term for superconducting fluctuation theory. Decreasing temperature below TC0, the current-voltage characteristic shows a crossover from linear to nonlinear behaviour. The exponent α of current-voltage relation, V ~ Iα showed universal jump at TCBKT = 9.33 K As results, we find that there is a consistency between the parametrization of the2D characteristics of fluctuation paraconductivity above TC0 and Berezinskii-Kosterlitz-Thouless type behaviour below TC0.
Temperature in and out of equilibrium: A review of concepts, tools and attempts
NASA Astrophysics Data System (ADS)
Puglisi, A.; Sarracino, A.; Vulpiani, A.
2017-11-01
We review the general aspects of the concept of temperature in equilibrium and non-equilibrium statistical mechanics. Although temperature is an old and well-established notion, it still presents controversial facets. After a short historical survey of the key role of temperature in thermodynamics and statistical mechanics, we tackle a series of issues which have been recently reconsidered. In particular, we discuss different definitions and their relevance for energy fluctuations. The interest in such a topic has been triggered by the recent observation of negative temperatures in condensed matter experiments. Moreover, the ability to manipulate systems at the micro and nano-scale urges to understand and clarify some aspects related to the statistical properties of small systems (as the issue of temperature's ;fluctuations;). We also discuss the notion of temperature in a dynamical context, within the theory of linear response for Hamiltonian systems at equilibrium and stochastic models with detailed balance, and the generalized fluctuation-response relations, which provide a hint for an extension of the definition of temperature in far-from-equilibrium systems. To conclude we consider non-Hamiltonian systems, such as granular materials, turbulence and active matter, where a general theoretical framework is still lacking.
Electrostatic attraction of coupled Wigner crystals: finite temperature effects.
Lau, A W; Pincus, P; Levine, D; Fertig, H A
2001-05-01
In this paper we present a unified physical picture for the electrostatic attraction between two coupled planar Wigner crystals at finite temperature. This model may facilitate our conceptual understanding of counterion-mediated attractions between (highly) similarly charged planes. By adopting an elastic theory, we show that the total attractive force between them can be (approximately) decomposed into a short-ranged and a long-ranged component. They are evaluated below the melting temperature of the Wigner crystals. In particular, we analyze the temperature dependence of the short-ranged attraction, arising from ground-state configuration, and we argue that thermal fluctuations may drastically reduce its strength. Also, the long-range force agrees exactly with that based on the charge-fluctuation approach. Furthermore, we take quantum contributions to the long-ranged (fluctuation-induced) attraction into account and show how the fractional power law, which scales as d(-7/2) for large interplanar distance d at zero temperature, crosses over to the classical regime d(-3) via an intermediate regime of d(-2).
A description of phases with induced hybridisation at finite temperatures
NASA Astrophysics Data System (ADS)
Golosov, D. I.
2018-05-01
In an extended Falicov-Kimball model, an excitonic insulator phase can be stabilised at zero temperature. With increasing temperature, the excitonic order parameter (interaction-induced hybridisation on-site, characterised by the absolute value and phase) eventually becomes disordered, which involves fluctuations of both its phase and (at higher T) its absolute value. In order to build an adequate mean field description, it is important to clarify the nature of degrees of freedom associated with the phase and absolute value of the induced hybridisation, and the corresponding phase space volume. We show that a possible description is provided by the SU(4) parametrisation on-site. In principle, this allows to describe both the lower-temperature regime where phase fluctuations destroy the long-range order, and the higher temperature crossover corresponding to a decrease of absolute value of the hybridisation relative to the fluctuations level. This picture is also expected to be relevant in other contexts, including the Kondo lattice model.
Shi, Xiaoyan; Logvenov, G; Bollinger, A T; Božović, I; Panagopoulos, C; Popović, Dragana
2013-01-01
A central issue for copper oxides is the nature of the insulating ground state at low carrier densities and the emergence of high-temperature superconductivity from that state with doping. Even though this superconductor-insulator transition (SIT) is a zero-temperature transition, measurements are not usually carried out at low temperatures. Here we use magnetoresistance to probe both the insulating state at very low temperatures and the presence of superconducting fluctuations in La(2-x)Sr(x)CuO(4) films, for doping levels that range from the insulator to the superconductor (x = 0.03-0.08). We observe that the charge glass behaviour, characteristic of the insulating state, is suppressed with doping, but it coexists with superconducting fluctuations that emerge already on the insulating side of the SIT. The unexpected quenching of the superconducting fluctuations by the competing charge order at low temperatures provides a new perspective on the mechanism for the SIT.
Climate influence on dengue epidemics in Puerto Rico.
Jury, Mark R
2008-10-01
The variability of the insect-borne disease dengue in Puerto Rico was studied in relation to climatic variables in the period 1979-2005. Annual and monthly reported dengue cases were compared with precipitation and temperature data. Results show that the incidence of dengue in Puerto Rico was relatively constant over time despite global warming, possibly due to the offsetting effects of declining rainfall, improving health care and little change in population. Seasonal fluctuations of dengue were driven by rainfall increases from May to November. Year-to-year variability in dengue cases was positively related to temperature, but only weakly associated with local rainfall and an index of El Nino Southern Oscillation (ENSO). Climatic conditions were mapped with respect to dengue cases and patterns in high and low years were compared. During epidemics, a low pressure system east of Florida draws warm humid air over the northwestern Caribbean. Long-term trends in past observed and future projected rainfall and temperatures were studied. Rainfall has declined slowly, but temperatures in the Caribbean are rising with the influence of global warming. Thus, dengue may increase in the future, and it will be necessary to anticipate dengue epidemics using climate forecasts, to reduce adverse health impacts.
NASA Astrophysics Data System (ADS)
Sachdev, Subir
2014-03-01
The hole-doped cuprate high temperature superconductors enter the pseudogap regime as their superconducting critical temperature, Tc, falls with decreasing hole density. Experiments have probed this regime for over two decades, but we argue that decisive new information has emerged from recent X-ray scattering experiments. The experiments observe incommensurate charge density wave fluctuations whose strength rises gradually over a wide temperature range above Tc, but then decreases as the temperature is lowered below Tc. We propose a theory in which the superconducting and charge-density wave orders exhibit angular fluctuations in a 6-dimensional space. The theory provides a natural quantitative fit to the X-ray data, and is consistent with other observed characteristics of the pseudogap. Results will also be presented on the microscopic origins of these order parameters. Work in collaboration with Lauren Hayward, Roger Melko, David Hawthorn, and Jay Sau.
Ecohydrology of a Sphagnum peatland in transitional climate - an interdysciplinary study
NASA Astrophysics Data System (ADS)
Słowińska, S.; Słowiński, M.; Lamentowicz, M.; Skrzypek, G.
2012-04-01
Sphagnum peatlands of the Central Europe are regarded as the valuable and endangered habitats. Their existence depends on the complex climatic, hydrological, topographical and botanical conditions. Good understanding of peatlands' ecohydrology is crucial for the appropriate environmental management. Our long-term ecological study is focused on a poor fen located in Northern Poland - a unique floristic nature reserve and Nature 2000 area. Main aims of the research were to: a) understand an influence of the temperature and precipitation on the ground water, b) explain an impact of the local climate and the groundwater table level on testate amoebae communities, Sphagnum mosses growth and stable carbon, nitrogen and oxygen isotope compositions, c) use the neo- ecological data for the quantitative palaeoecological reconstructions. We have been conducting the monitoring of the growth of Sphagnum mosses in five plots. Vegetation was sampled three times during the growing season for the stable isotope and testate amoebae analyses (July, September and December 2009). Temperature of the air and acrotelm, air humidity, precipitation and groundwater table were recorded using automatic data loggers. Our research confirmed that even small fluctuation of temperature, precipitation and annual distribution of precipitation have a very strong impact on the hydrology of the peatland. Testate amoeba communities and stable isotopes from Sphagnum clearly indicated the hydrological response of the mire in the different parts of the peatland. The next step is a detailed seasonal study supported by the manipulative warming experiment.
Enhancing the resonance stability of a high-Q micro/nanoresonator by an optical means
NASA Astrophysics Data System (ADS)
Sun, Xuan; Luo, Rui; Zhang, Xi-Cheng; Lin, Qiang
2016-02-01
High-quality optical resonators underlie many important applications ranging from optical frequency metrology, precision measurement, nonlinear/quantum photonics, to diverse sensing such as detecting single biomolecule, electromagnetic field, mechanical acceleration/rotation, among many others. All these applications rely essentially on the stability of optical resonances, which, however, is ultimately limited by the fundamental thermal fluctuations of the devices. The resulting thermo-refractive and thermo-elastic noises have been widely accepted for nearly two decades as the fundamental thermodynamic limit of an optical resonator, limiting its resonance uncertainty to a magnitude 10-12 at room temperature. Here we report a novel approach that is able to significantly improve the resonance stability of an optical resonator. We show that, in contrast to the common belief, the fundamental temperature fluctuations of a high-Q micro/nanoresonator can be suppressed remarkably by pure optical means without cooling the device temperature, which we term as temperature squeezing. An optical wave with only a fairly moderate power launched into the device is able to produce strong photothermal backaction that dramatically suppresses the spectral intensity of temperature fluctuations by five orders of magnitudes and squeezes the overall level (root-mean-square value) of temperature fluctuations by two orders of magnitude. The proposed approach is universally applicable to various micro/nanoresonator platforms and the optimal temperature squeezing can be achieved with an optical Q around 106-107 that is readily available in various current devices. The proposed photothermal temperature squeezing is expected to have profound impact on broad applications of high-Q cavities in sensing, metrology, and integrated nonlinear/quantum photonics.
Georges, Arthur
1989-11-01
Mean daily temperature in natural nests of freshwater turtles with temperature-dependent sex determination is known to be a poor predictor of hatchling sex ratios when nest temperatures fluctuate. To account for this, a model was developed on the assumption that females will emerge from eggs when more than half of embryonic development occurs above the threshold temperature for sex determination rather than from eggs that spend more than half their time above the threshold. The model is consistent with previously published data and in particular explains the phenomenon whereby the mean temperature that best distinguishes between male and female nests decreases with increasing variability in nest temperature. The model, if verified by controlled experiments, has important implications for our understanding of temperature-dependent sex determination in natural nests. Both mean nest temperature and "hours spent above the threshold" will be poor predictors of hatchling sex ratios. Studies designed to investigate latitudinal trends and inter-specific differences in the threshold temperature will need to consider latitudinal and inter-specific variation in the magnitude of diel fluctuations in nest temperature, and variation in factors influencing the magnitude of those fluctuations, such as nest depth. Furthermore, any factor that modifies the relationship between developmental rate and temperature can be expected to influence hatchling sex ratios in natural nests, especially when nest temperatures are close to the threshold.
Optimizing storage temperature of liquid bovine semen diluted in INRA96.
Murphy, Edel M; O' Meara, Ciara; Eivers, Bernard; Lonergan, Patrick; Fair, Sean
2018-06-01
Temperature regulation of liquid bovine semen can be difficult in field situations. Two experiments were carried out to assess the effect of storage temperature on in vitro sperm characteristics and 60-d nonreturn rate (NRR) following artificial insemination (AI) of liquid bovine semen. In experiment 1, the effect of storage of liquid bovine semen in INRA96 diluent (IMV Technologies, L'Aigle, France) at 1 of 5 storage temperatures (5, 15, or 28°C, and fluctuating between 5 and 15°C or 5 and 28°C) on total and progressive motility and kinematic parameters was assessed objectively via computer-assisted sperm analyzer on d 0, 1, 2, 3, and 4 after collection. Fluctuating temperatures were designed to mimic day- to nighttime variation. In experiment 2, we assessed the field fertility of liquid semen stored at a constant 5 or 15°C or in an unregulated manner and compared with that of frozen-thawed semen (total of n = 106,738 inseminations). In experiment 1, we detected a linear decrease in motility with increased duration of storage. Semen stored at a constant 15°C or fluctuating between 5 and 15°C had greater total motility than semen held at 5 or 28°C or fluctuating between 5 and 28°C; however, semen stored at 15°C and fluctuating between 5 and 15°C did not differ from each other. Semen held at a constant 5 or 15°C or fluctuating between 5 and 15°C, although not differing from each other, had higher progressive motility scores than that held at 28°C or fluctuating between 5 and 28°C. Semen stored at a constant 28°C exhibited poor motility and velocity values but had high progressive motion values compared with that all other storage temperatures; however, the other storage temperatures did not differ from each other in relation to motility kinematics. In experiment 2, semen stored at a constant 5°C resulted in a lower 60-d NRR (62.5%) than storage at constant 15°C or unregulated temperature or frozen-thawed semen (73.6, 74.6, and 74.4%, respectively. In conclusion, sperm stored in IRNA96 are quite tolerant in terms of storage temperature, retaining acceptable motility between 5 and 15°C. Storing semen at a constant 15°C resulted in greater in vitro sperm motility and higher NRR rates than storage at 5°C and did not differ in NRR from frozen-thawed semen or semen stored at an unregulated temperature; however, lower storage temperatures were shown to be more detrimental to sperm in vivo than unregulated storage conditions. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aji, D. P. B.; Johari, G. P., E-mail: joharig@mcmaster.ca
Fluctuations confined to local regions in the structure of a glass are observed as the Johari-Goldstein (JG) relaxation. Properties of these regions and their atomic configuration are currently studied by relaxation techniques, by electron microscopy, and by high-energy X-ray scattering and extended x-ray absorption fine structure methods. One expects that these fluctuations (i) would kinetically freeze on cooling a glass, and the temperature coefficient of its enthalpy, dH/dT, would consequently show a gradual decrease with decrease in T, (ii) would kinetically unfreeze on heating the glass toward the glass-liquid transition temperature, T{sub g}, and dH/dT would gradually increase, and (iii)more » there would be a thermal hysteresis indicating the time and temperature dependence of the enthalpy. Since no such features have been found, thermodynamic consequences of these fluctuations are debated. After searching for these features in glasses of different types, we found it in one of the most stable metal alloy glasses of composition Pd{sub 40}Ni{sub 10}Cu{sub 30}P{sub 20}. On cooling from its T{sub g}, dH/dT decreased along a broad sigmoid-shape path as local-region fluctuations kinetically froze. On heating thereafter, dH/dT increased along a similar path as these fluctuations unfroze, and there is hysteresis in the cooling and heating paths, similar to that observed in the T{sub g}-endotherm range. After eliminating other interpretations, we conclude that local-region fluctuations seen as the JG relaxation in the non-equilibrium state of a glass contribute to its entropy, and we suggest conditions under which such fluctuations may be observed.« less
Aji, D P B; Johari, G P
2015-06-07
Fluctuations confined to local regions in the structure of a glass are observed as the Johari-Goldstein (JG) relaxation. Properties of these regions and their atomic configuration are currently studied by relaxation techniques, by electron microscopy, and by high-energy X-ray scattering and extended x-ray absorption fine structure methods. One expects that these fluctuations (i) would kinetically freeze on cooling a glass, and the temperature coefficient of its enthalpy, dH/dT, would consequently show a gradual decrease with decrease in T, (ii) would kinetically unfreeze on heating the glass toward the glass-liquid transition temperature, Tg, and dH/dT would gradually increase, and (iii) there would be a thermal hysteresis indicating the time and temperature dependence of the enthalpy. Since no such features have been found, thermodynamic consequences of these fluctuations are debated. After searching for these features in glasses of different types, we found it in one of the most stable metal alloy glasses of composition Pd40Ni10Cu30P20. On cooling from its Tg, dH/dT decreased along a broad sigmoid-shape path as local-region fluctuations kinetically froze. On heating thereafter, dH/dT increased along a similar path as these fluctuations unfroze, and there is hysteresis in the cooling and heating paths, similar to that observed in the Tg-endotherm range. After eliminating other interpretations, we conclude that local-region fluctuations seen as the JG relaxation in the non-equilibrium state of a glass contribute to its entropy, and we suggest conditions under which such fluctuations may be observed.
Inverse Association between Air Pressure and Rheumatoid Arthritis Synovitis
Furu, Moritoshi; Nakabo, Shuichiro; Ohmura, Koichiro; Nakashima, Ran; Imura, Yoshitaka; Yukawa, Naoichiro; Yoshifuji, Hajime; Matsuda, Fumihiko; Ito, Hiromu; Fujii, Takao; Mimori, Tsuneyo
2014-01-01
Rheumatoid arthritis (RA) is a bone destructive autoimmune disease. Many patients with RA recognize fluctuations of their joint synovitis according to changes of air pressure, but the correlations between them have never been addressed in large-scale association studies. To address this point we recruited large-scale assessments of RA activity in a Japanese population, and performed an association analysis. Here, a total of 23,064 assessments of RA activity from 2,131 patients were obtained from the KURAMA (Kyoto University Rheumatoid Arthritis Management Alliance) database. Detailed correlations between air pressure and joint swelling or tenderness were analyzed separately for each of the 326 patients with more than 20 assessments to regulate intra-patient correlations. Association studies were also performed for seven consecutive days to identify the strongest correlations. Standardized multiple linear regression analysis was performed to evaluate independent influences from other meteorological factors. As a result, components of composite measures for RA disease activity revealed suggestive negative associations with air pressure. The 326 patients displayed significant negative mean correlations between air pressure and swellings or the sum of swellings and tenderness (p = 0.00068 and 0.00011, respectively). Among the seven consecutive days, the most significant mean negative correlations were observed for air pressure three days before evaluations of RA synovitis (p = 1.7×10−7, 0.00027, and 8.3×10−8, for swellings, tenderness and the sum of them, respectively). Standardized multiple linear regression analysis revealed these associations were independent from humidity and temperature. Our findings suggest that air pressure is inversely associated with synovitis in patients with RA. PMID:24454853
Liu, X P; Niu, J L; Kwok, K C S
2011-09-15
This article presents experimental results that illustrate the unsteady characteristics of gas dispersion around a complex-shaped high-rise building for different incident wind directions. A series of wind tunnel experiments were conducted using a 1:30 scale model that represented the real structures under study. The objective of this paper is to study the behaviour of concentration fluctuations through transient analysis. Tracer gas was continuously released from a point source located at different positions, and a time series of fluctuating concentrations were recorded at a large number of points using fast flame ionization detectors. The experimental data were analysed to provide a comprehensive data set including variances and associated statistical quantities. Both the unsteady characteristics of the system and their potential practical impact are presented and discussed. Under crowd living conditions, the air pollutant exhausted from one household could probably re-enter into the neighbouring households, traveling with ambient airflow. Such pollutant dispersion process is defined as air cross-contamination in this study. The results indicate that the wind-induced cross-contamination around the studied type of high-rise building should not be overlooked, and the fluctuating concentrations should be paid attention to particularly during the evaluation of a potential contamination risk. This study can help deepen our understanding of the mechanisms of air cross-contamination, and will be useful for implementing optimization strategies to improve the built environments in metropolitan cities such as Hong Kong. Copyright © 2011 Elsevier B.V. All rights reserved.
The Intrinsic Variability in the Water Vapor Saturation Ratio due to Turbulence
NASA Astrophysics Data System (ADS)
Anderson, J. C.; Cantrell, W. H.; Chandrakar, K. K.; Kostinski, A. B.; Niedermeier, D.; Shaw, R. A.
2017-12-01
In the atmosphere, the concentration of water vapor plays an important role in Earth's weather and climate. The mean concentration of water vapor is key to its efficiency as a greenhouse gas; the fluctuations about the mean are important for heat fluxes near the surface of earth. In boundary layer clouds, fluctuations in the water vapor concentration are linked to turbulence. Conditions representative of boundary layer clouds are simulated in Michigan Tech's multiphase, turbulent reaction chamber, the ∏ chamber, where the boundary conditions are controlled and repeatable. Measurements for temperature and water vapor concentration were recorded under forced Rayleigh-Bénard convection. As expected, the distributions for temperature and water vapor concentration broaden as the turbulence becomes more vigorous. From these two measurements the saturation ratio can be calculated. The fluctuations in the water vapor concentration are more important to the variability in the saturation ratio than fluctuations in temperature. In a cloud, these fluctuations in the saturation ratio can result in some cloud droplets experiencing much higher supersaturations. Those "lucky" droplets grow by condensation at a faster rate than other cloud droplets. The difference in the droplet growth rate could contribute to a broadened droplet distribution, which leads to the onset of collision-coalescence. With more intense turbulence these effect will become more pronounced as the fluctuations about the mean saturation ratio become more pronounced.
NASA Astrophysics Data System (ADS)
Borelli, M. E. S.; Kleinert, H.; Schakel, Adriaan M. J.
2000-03-01
The effect of quantum fluctuations on a nearly flat, nonrelativistic two-dimensional membrane with extrinsic curvature stiffness and tension is investigated. The renormalization group analysis is carried out in first-order perturbative theory. In contrast to thermal fluctuations, which soften the membrane at large scales and turn it into a crumpled surface, quantum fluctuations are found to stiffen the membrane, so that it exhibits a Hausdorff dimension equal to two. The large-scale behavior of the membrane is further studied at finite temperature, where a nontrivial fixed point is found, signaling a crumpling transition.
Efficiency optimization in a correlation ratchet with asymmetric unbiased fluctuations
NASA Astrophysics Data System (ADS)
Ai, Bao-Quan; Wang, Xian-Ju; Liu, Guo-Tao; Wen, De-Hua; Xie, Hui-Zhang; Chen, Wei; Liu, Liang-Gang
2003-12-01
The efficiency of a Brownian particle moving in a periodic potential in the presence of asymmetric unbiased fluctuations is investigated. We found that even on the quasistatic limit there is a regime where the efficiency can be a peaked function of temperature, which proves that thermal fluctuations facilitate the efficiency of energy transformation, contradicting the earlier findings [H. Kamegawa et al., Phys. Rev. Lett. 80, 5251 (1998)]. It is also found that the mutual interplay between temporal asymmetry and spatial asymmetry may induce optimized efficiency at finite temperatures. The ratchet is not most efficient when it gives maximum current.
Yan, Xin-Zhong; Ting, C S
2006-08-11
On the basis of the Hubbard model, we extend the fluctuation-exchange (FLEX) approach to investigating the properties of the antiferromagnetic (AF) phase in electron-doped cuprate superconductors. Furthermore, by incorporating the effect of scatterings due to the disordered dopant atoms into the FLEX formalism, our numerical results show that the antiferromagnetic transition temperature, the onset temperature of pseudogap due to spin fluctuations, the spectral density of the single particle near the Fermi surface, and the staggered magnetization in the AF phase as a function of electron doping can consistently account for the experimental measurements.
2001-06-19
KENNEDY SPACE CENTER, Fla. -- At Launch Complex 17-B, Cape Canaveral Air Force Station, workers keep watch while the Microwave Anisotropy Probe (MAP) is lowered into position on the Delta II rocket below. Launch of MAP via a Boeing Delta II rocket is scheduled for June 30. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures
Characterization of the low-temperature properties of a simplified protein model
NASA Astrophysics Data System (ADS)
Hagmann, Johannes-Geert; Nakagawa, Naoko; Peyrard, Michel
2014-01-01
Prompted by results that showed that a simple protein model, the frustrated Gō model, appears to exhibit a transition reminiscent of the protein dynamical transition, we examine the validity of this model to describe the low-temperature properties of proteins. First, we examine equilibrium fluctuations. We calculate its incoherent neutron-scattering structure factor and show that it can be well described by a theory using the one-phonon approximation. By performing an inherent structure analysis, we assess the transitions among energy states at low temperatures. Then, we examine nonequilibrium fluctuations after a sudden cooling of the protein. We investigate the violation of the fluctuation-dissipation theorem in order to analyze the protein glass transition. We find that the effective temperature of the quenched protein deviates from the temperature of the thermostat, however it relaxes towards the actual temperature with an Arrhenius behavior as the waiting time increases. These results of the equilibrium and nonequilibrium studies converge to the conclusion that the apparent dynamical transition of this coarse-grained model cannot be attributed to a glassy behavior.
q-deformed Einstein's model to describe specific heat of solid
NASA Astrophysics Data System (ADS)
Guha, Atanu; Das, Prasanta Kumar
2018-04-01
Realistic phenomena can be described more appropriately using generalized canonical ensemble, with proper parameter sets involved. We have generalized the Einstein's theory for specific heat of solid in Tsallis statistics, where the temperature fluctuation is introduced into the theory via the fluctuation parameter q. At low temperature the Einstein's curve of the specific heat in the nonextensive Tsallis scenario exactly lies on the experimental data points. Consequently this q-modified Einstein's curve is found to be overlapping with the one predicted by Debye. Considering only the temperature fluctuation effect(even without considering more than one mode of vibration is being triggered) we found that the CV vs T curve is as good as obtained by considering the different modes of vibration as suggested by Debye. Generalizing the Einstein's theory in Tsallis statistics we found that a unique value of the Einstein temperature θE along with a temperature dependent deformation parameter q(T) , can well describe the phenomena of specific heat of solid i.e. the theory is equivalent to Debye's theory with a temperature dependent θD.
NASA Astrophysics Data System (ADS)
Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.
2017-02-01
The influence of spin fluctuations on the thermodynamic properties of a helical ferromagnet MnSi has been investigated in the framework of the Hubbard model with the electronic spectrum determined from the first-principles LDA + U + SO calculation, which is extended taking into account the Hund coupling and the Dzyaloshinskii-Moriya antisymmetric exchange. It has been shown that the ground state of the magnetic material is characterized by large zero-point fluctuations, which disappear at the temperature T* (< T c is the temperature of the magnetic phase transition). In this case, the entropy abruptly increases, and a lambdashaped anomaly appears in the temperature dependence of the heat capacity at constant volume ( C V ( T)). In the temperature range T* < T < T c , thermal fluctuations lead to the disappearance of the inhomogeneous magnetization. The competition between the increase in the entropy due to paramagnon excitations and its decrease as a result of the reduction in the amplitude of local magnetic moments, under the conditions of strong Hund exchange, is responsible for in the appearance of a "shoulder" in the dependence C V ( T)).
Experimental Study of the Relation Between Heat Transfer and Flow Behavior in a Single Microtube
NASA Astrophysics Data System (ADS)
Huang, Shih-Che; Kawanami, Osamu; Kawakami, Kazunari; Honda, Itsuro; Kawashima, Yousuke; Ohta, Haruhiko
2008-09-01
The flow boiling heat transfer in microchannels have become important issue because it is extremely high-performance heat exchanger for electronic devices. For a detailed study on flow boiling heat transfer in a microtube, we have used a transparent heated microtube, which is coated with a thin gold film on its inner wall. The gold film is used as a resistance thermometer to directly evaluate the inner wall temperature averaged over the entire temperature measurement length. At the same time, the transparency of the film enables the observation of fluid behavior. Flow boiling experiments have been carried out using the microtube under the following conditions; mass velocity of 105 kg/m2 s, tube diameter of 1 mm, heat flux in the range of 10 380 kW/m2 s, and the test fluid used is ionized water. Under low heat flux conditions, the fluctuations in the inner wall temperature and mass velocity are closely related; the frequency of these fluctuations is the same. However, the fluctuations in the inner wall temperature and heat transfer coefficient are found to be independent of the fluctuation in the mass velocity under high heat flux conditions.
Periodic and stochastic thermal modulation of protein folding kinetics.
Platkov, Max; Gruebele, Martin
2014-07-21
Chemical reactions are usually observed either by relaxation of a bulk sample after applying a sudden external perturbation, or by intrinsic fluctuations of a few molecules. Here we show that the two ideas can be combined to measure protein folding kinetics, either by periodic thermal modulation, or by creating artificial thermal noise that greatly exceeds natural thermal fluctuations. We study the folding reaction of the enzyme phosphoglycerate kinase driven by periodic temperature waveforms. As the temperature waveform unfolds and refolds the protein, its fluorescence color changes due to FRET (Förster resonant Energy Transfer) of two donor/acceptor fluorophores labeling the protein. We adapt a simple model of periodically driven kinetics that nicely fits the data at all temperatures and driving frequencies: The phase shifts of the periodic donor and acceptor fluorescence signals as a function of driving frequency reveal reaction rates. We also drive the reaction with stochastic temperature waveforms that produce thermal fluctuations much greater than natural fluctuations in the bulk. Such artificial thermal noise allows the recovery of weak underlying signals due to protein folding kinetics. This opens up the possibility for future detection of a stochastic resonance for protein folding subject to noise with controllable amplitude.
Cloud-edge mixing: Direct numerical simulation and observations in Indian Monsoon clouds
NASA Astrophysics Data System (ADS)
Kumar, Bipin; Bera, Sudarsan; Prabha, Thara V.; Grabowski, Wojceich W.
2017-03-01
A direct numerical simulation (DNS) with the decaying turbulence setup has been carried out to study cloud-edge mixing and its impact on the droplet size distribution (DSD) applying thermodynamic conditions observed in monsoon convective clouds over Indian subcontinent during the Cloud Aerosol Interaction and Precipitation Enhancement EXperiment (CAIPEEX). Evaporation at the cloud-edges initiates mixing at small scale and gradually introduces larger-scale fluctuations of the temperature, moisture, and vertical velocity due to droplet evaporation. Our focus is on early evolution of simulated fields that show intriguing similarities to the CAIPEEX cloud observations. A strong dilution at the cloud edge, accompanied by significant spatial variations of the droplet concentration, mean radius, and spectral width, are found in both the DNS and in observations. In DNS, fluctuations of the mean radius and spectral width come from the impact of small-scale turbulence on the motion and evaporation of inertial droplets. These fluctuations decrease with the increase of the volume over which DNS data are averaged, as one might expect. In cloud observations, these fluctuations also come from other processes, such as entrainment/mixing below the observation level, secondary CCN activation, or variations of CCN activation at the cloud base. Despite large differences in the spatial and temporal scales, the mixing diagram often used in entrainment/mixing studies with aircraft data is remarkably similar for both DNS and cloud observations. We argue that the similarity questions applicability of heuristic ideas based on mixing between two air parcels (that the mixing diagram is designed to properly represent) to the evolution of microphysical properties during turbulent mixing between a cloud and its environment.
Progress of the Mars Array Technology Experiment (MATE) on the '01 Lander
NASA Technical Reports Server (NTRS)
Scheiman, D. A.; Baraona, C. R.; Jenkins, P.; Wilt, D.; Krasowski, M.; Greer, L.; Lekki, J.; Spina, D.
1999-01-01
Future missions to Mars will rely heavily on solar power from the sun, various solar cell types and structures must be evaluated to find the optimum. Sunlight on the surface of Mars is altered by air-borne dust that fluctuates in density from day to day. The dust affects both the intensity and spectral content of the sunlight. The MATE flight experiment was designed for this purpose and will fly on the Mars 2001 Surveyor Lander as part of the Mars In-Situ Propellant Production Precursor (MIP) package. MATE will measure the performance of several solar cell technologies and characterize the Martian environment in terms of solar power. This will be done by measuring full IV curves on solar cells, direct and global insolation, temperature, and spectral content. The Lander is is scheduled to launch in April 2001 and arrive on Mars in January of 2002. The site location has not been identified but will be near the equator and last from 100 to 300 days. The intent of this of this paper is to describe and update the progress on MATE. MATE has four main objectives for its mission to Mars. First is to measure the performance of solar cells daily on the surface of Mars, this will determine the day to day fluctuations in sunlight and temperature and provide a nominal power output. Second, in addition to measuring solar cell performance, it will allow for an intercomparison of different solar cell technologies. Third, It will study the long term effects of dust on the solar cells. Fourth and last, it will characterize the mars environment as viewed by the solar cell, measuring spectrum, insolation, and temperature. Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
Qin, Jin; Bai, Hongying; Su, Kai; Liu, Rongjuan; Zhai, Danping; Wang, Jun; Li, Shuheng; Zhou, Qi; Li, Bin
2018-01-01
Previous dendroclimatical studies have been based on the relationship between tree growth and instrumental climate data recorded at lower land meteorological stations, but the climate conditions somehow differ between sampling sites and distant population centers. Thus, in this study, we performed a comparison between the 152-year reconstruction of June to July mean air temperature on the basis of interpolated meteorological data and instrumental meteorological data. The reconstruction explained 38.7% of the variance in the interpolated temperature data (37.2% after the degrees of freedom were adjusted) and 39.6% of the variance in the instrumental temperature data (38.4% after adjustment for loss of degrees of freedom) during the period 1962-2013 AD. The first global warming (the 1920s) and recent warming (1990-2013) found from the reconstructed temperature series match reasonably well with two other reported summer temperature reconstructions from north-central China. Cold periods occurred three times during 1866-1885, 1901-1921, and 1981-2000, while hot periods occurred four times during 1886-1900, 1922-1933, 1953-1966, and 2001-2007. The extreme warm (cold) years are coherent with the documentary drought (flood) events. Significant 31-22-year, 22-18-year, and 12-8-year cycles indicate major fluctuations in regional temperatures may reflect large-scale climatic shifts.
An investigation of combustion and entropy noise
NASA Technical Reports Server (NTRS)
Strahle, W. C.
1977-01-01
The relative importance of entropy and direct combustion noise in turbopropulsion systems and the parameters upon which these noise sources depend were studied. Theory and experiment were employed to determine that at least with the apparatus used here, entropy noise can dominate combustion noise if there is a sufficient pressure gradient terminating the combustor. Measurements included combustor interior fluctuating pressure, near and far field fluctuating pressure, and combustor exit plane fluctuating temperatures, as well as mean pressures and temperatures. Analysis techniques included spectral, cross-correlation, cross power spectra, and ordinary and partial coherence analysis. Also conducted were combustor liner modification experiments to investigate the origin of the frequency content of combustion noise. Techniques were developed to extract nonpropagational pseudo-sound and the heat release fluctuation spectra from the data.
Effect of anisotropy on intensity fluctuations in oceanic turbulence
NASA Astrophysics Data System (ADS)
Baykal, Yahya
2018-04-01
For an optical spherical wave propagating in an oceanic turbulent medium, the effect of anisotropy on the received intensity fluctuations is investigated. For different anisotropy factors, the variations of the scintillation index vs. the ratio that determines the relative strength of temperature and salinity in the index fluctuations, the rate of dissipation of the mean squared temperature, the rate of dissipation of the turbulent kinetic energy, viscosity, link length and the wavelength are plotted. It is found that, for all the oceanic turbulence and the link parameters of interest, as the medium becomes more anisotropic, the intensity of the optical spherical wave fluctuates less. It is concluded that the performance of an optical wireless communication systems (OWCS) operating in anisotropic oceanic turbulence is better than the performance of OWCS operating in isotropic oceanic turbulence.
NASA Astrophysics Data System (ADS)
Dwivedi, Aanchal; Verma, Rohit; Dhar, R.; Dabrowski, R.
2018-05-01
Dielectric characterization of a technologically important room temperature anti-ferroelectric liquid crystal (AFLC) mixture has been carried out as a function of temperature and frequency. The mixture has a phase sequence of I-SmA*-SmC*-SmCA* -SmIA* -Cr. Electrical study for the planar anchoring of the molecules demonstrates seven relaxation mechanisms in various mesophases of the mixture. Dielectric spectrum of paraelectric SmA* phase exhibits a relaxation mechanism due to the tilt fluctuation of the molecules. In ferroelectric SmC* phase, Goldstone mode has been observed due to the fluctuation in azimuthal angle. In antiferroelectric SmCA*and hexatic SmIA* phases two relaxation mechanisms are observed due to bond orientation order & anti-phase fluctuation and rotation around the short axes respectively.
Wang, Y.S.; Miller, D.R.; Anderson, D.E.; Cionco, R.M.; Lin, J.D.
1992-01-01
Turbulent flow within and above an almond orchard was measured with three-dimensional wind sensors and fine-wire thermocouple sensors arranged in a horizontal array. The data showed organized turbulent structures as indicated by coherent asymmetric ramp patterns in the time series traces across the sensor array. Space-time correlation analysis indicated that velocity and temperature fluctuations were significantly correlated over a transverse distance more than 4m. Integral length scales of velocity and temperature fluctuations were substantially greater in unstable conditions than those in stable conditions. The coherence spectral analysis indicated that Davenport's geometric similarity hypothesis was satisfied in the lower frequency region. From the geometric similarity hypothesis, the spatial extents of large ramp structures were also estimated with the coherence functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freethy, S. J., E-mail: simon.freethy@ipp.mpg.de; Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Conway, G. D.
2016-11-15
Turbulent temperature fluctuations are measured on the ASDEX Upgrade tokamak using pairs of closely spaced, narrow-band heterodyne radiometer channels and a standard correlation technique. The pre-detection spacing and bandwidth of the radiometer channel pairs is chosen such that they are physically separated less than a turbulent correlation length, but do not overlap. The radiometer has 4 fixed filter frequency channels and two tunable filter channels for added flexibility in the measurement position. Relative temperature fluctuation amplitudes are observed in a helium plasma to be δT/T = (0.76 ± 0.02)%, (0.67 ± 0.02)%, and (0.59 ± 0.03)% at normalised toroidal fluxmore » radius of ρ{sub tor} = 0.82, 0.75, and 0.68, respectively.« less
Experimental demonstration that a free-falling aerosol particle obeys a fluctuation theorem
NASA Astrophysics Data System (ADS)
Wong, Chun-Shang; Goree, J.; Gopalakrishnan, Ranganathan
2018-05-01
We investigate the fluctuating motion of an aerosol particle falling in air. Using a Millikan-like setup, we tracked a 1-μ m sphere falling at its terminal velocity. We observe occurrences of particles undergoing upward displacements against the force of gravity, so that negative work is done briefly. These negative-work events have a probability that is shown to obey the work fluctuation theorem. This experimental confirmation of the theorem's applicability to aerosols leads us to develop and demonstrate an application: an in situ measurement of an aerosol particle's mass.
Electronic Noise and Fluctuations in Solids
NASA Astrophysics Data System (ADS)
Kogan, Sh.
2008-07-01
Preface; Part I. Introduction. Some Basic Concepts of the Theory of Random Processes: 1. Probability density functions. Moments. Stationary processes; 2. Correlation function; 3. Spectral density of noise; 4. Ergodicity and nonergodicity of random processes; 5. Random pulses and shot noise; 6. Markov processes. General theory; 7. Discrete Markov processes. Random telegraph noise; 8. Quasicontinuous (Diffusion-like) Markov processes; 9. Brownian motion; 10. Langevin approach to the kinetics of fluctuations; Part II. Fluctuation-Dissipation Relations in Equilibrium Systems: 11. Derivation of fluctuation-dissipation relations; 12. Equilibrium noise in quasistationary circuits. Nyquist theorem; 13. Fluctuations of electromagnetic fields in continuous media; Part III. Fluctuations in Nonequilibrium Gases: 14. Some basic concepts of hot-electrons' physics; 15. Simple model of current fluctuations in a semiconductor with hot electrons; 16. General kinetic theory of quasiclassical fluctuations in a gas of particles. The Boltzmann-Langevin equation; 17. Current fluctuations and noise temperature; 18. Current fluctuations and diffusion in a gas of hot electrons; 19. One-time correlation in nonequilibrium gases; 20. Intervalley noise in multivalley semiconductors; 21. Noise of hot electrons emitting optical phonons in the streaming regime; 22. Noise in a semiconductor with a postbreakdown stable current filament; Part IV. Generation-recombination noise: 23. G-R noise in uniform unipolar semiconductors; 24. Noise produced by recombination and diffusion; Part V. Noise in quantum ballistic systems: 25. Introduction; 26. Equilibrium noise and shot noise in quantum conductors; 27. Modulation noise in quantum point contacts; 28. Transition from a ballistic conductor to a macroscopic one; 29. Noise in tunnel junctions; Part VI. Resistance noise in metals: 30. Incoherent scattering of electrons by mobile defects; 31. Effect of mobile scattering centers on the electron interference pattern; 32. Fluctuations of the number of diffusing scattering centers; 33. Temperature fluctuations and the corresponding noise; Part VII. Noise in strongly disordered conductors: 34. Basic ideas of the percolation theory; 35. Resistance fluctuations in percolation systems. 36. Experiments; Part VIII. Low-frequency noise with an 1/f-type spectrum and random telegraph noise: 37. Introduction; 38. Some general properties of 1/f noise; 39. Basic models of 1/f noise; 40./f noise in metals; 41. Low-frequency noise in semiconductors; 42. Magnetic noise in spin glasses and some other magnetic systems; 43. Temperature fluctuations as a possible source of 1/f noise; 44. Random telegraph noise; 45. Fluctuations with 1/f spectrum in other systems; 46. General conclusions on 1/f noise; Part IX. Noise in Superconductors and Superconducting Structures: 47. Noise in Josephson junctions; 48. Noise in type II superconductors; References; Subject index.
Non-Gaussian microwave background fluctuations from nonlinear gravitational effects
NASA Technical Reports Server (NTRS)
Salopek, D. S.; Kunstatter, G. (Editor)
1991-01-01
Whether the statistics of primordial fluctuations for structure formation are Gaussian or otherwise may be determined if the Cosmic Background Explorer (COBE) Satellite makes a detection of the cosmic microwave-background temperature anisotropy delta T(sub CMB)/T(sub CMB). Non-Gaussian fluctuations may be generated in the chaotic inflationary model if two scalar fields interact nonlinearly with gravity. Theoretical contour maps are calculated for the resulting Sachs-Wolfe temperature fluctuations at large angular scales (greater than 3 degrees). In the long-wavelength approximation, one can confidently determine the nonlinear evolution of quantum noise with gravity during the inflationary epoch because: (1) different spatial points are no longer in causal contact; and (2) quantum gravity corrections are typically small-- it is sufficient to model the system using classical random fields. If the potential for two scalar fields V(phi sub 1, phi sub 2) possesses a sharp feature, then non-Gaussian fluctuations may arise. An explicit model is given where cold spots in delta T(sub CMB)/T(sub CMB) maps are suppressed as compared to the Gaussian case. The fluctuations are essentially scale-invariant.
NASA Astrophysics Data System (ADS)
Nieuwendam, Alexandre; Ramos, Miguel; Vieira, Gonçalo
2015-04-01
In permafrost areas the seasonal snow cover is an important factor on the ground thermal regime. Snow depth and timing are important in ground insulation from the atmosphere, creating different snow patterns and resulting in spatially variable ground temperatures. The aim of this work is to characterize the interactions between ground thermal regimes and snow cover and the influence on permafrost spatial distribution. The study area is the ice-free terrains of northwestern Hurd Peninsula in the vicinity of the Spanish Antarctic Station "Juan Carlos I" and Bulgarian Antarctic Station "St. Kliment Ohridski". Air and ground temperatures and snow thickness data where analysed from 4 sites along an altitudinal transect in Hurd Peninsula from 2007 to 2012: Nuevo Incinerador (25 m asl), Collado Ramos (110 m), Ohridski (140 m) and Reina Sofia Peak (275 m). The data covers 6 cold seasons showing different conditions: i) very cold with thin snow cover; ii) cold with a gradual increase of snow cover; iii) warm with thick snow cover. The data shows three types of periods regarding the ground surface thermal regime and the thickness of snow cover: a) thin snow cover and short-term fluctuation of ground temperatures; b) thick snow cover and stable ground temperatures; c) very thick snow cover and ground temperatures nearly constant at 0°C. a) Thin snow cover periods: Collado Ramos and Ohridski sites show frequent temperature variations, alternating between short-term fluctuations and stable ground temperatures. Nuevo Incinerador displays during most of the winter stable ground temperatures; b) Cold winters with a gradual increase of the snow cover: Nuevo Incinerador, Collado Ramos and Ohridski sites show similar behavior, with a long period of stable ground temperatures; c) Thick snow cover periods: Collado Ramos and Ohridski show long periods of stable ground, while Nuevo Incinerador shows temperatures close to 0°C since the beginning of the winter, due to early snow cover, which prevents cooling. Reina Sofia shows a very different behavior from the other sites, with a frequent stabilization of ground temperatures during all the winters, and last until late-fall. This situation could be related to the structure, and physical and thermal properties of snow cover. The analysis of the Freezing Degree Days (FDDs) and freezing n-factor reveals significant interannual variations. Ohridski shows the highest FDDs values followed by Reina Sofia. Nuevo Incinerador showed the lowest FDDs values. The freezing n-factor shows highest values at Ohridski, followed by Collado Ramos and Reina Sofia with very similar values. Nuevo Incinerador shows the lowest n-factor values. Snow cover doesn't insulate the ground from freezing, but depending on its thickness, density and the amount of heat in the ground, it decreases ground temperatures amplitudes and increases delays relative to air temperature changes. Even where snow cover remains several centimeters thick for several months, slow decrease of bottom temperature is possible, reaching a minimum value at the end of the winter. The results demonstrate that Reina Sofia and Ohridski sites, because of the seasonal behavior, FDDs and freezing n-factor, demonstrate higher winter ground cooling. This research was funded by PERMANTAR-3 (PTDC/AAG-GLO/3908/2012) project (Fundação para a Ciência e a Tecnologia of Portugal)
Santana, Victor M.; Baeza, M. Jaime; Blanes, M. Carmen
2013-01-01
Background and Aims This study aims to determine the role that both direct effects of fire and subsequent daily temperature fluctuations play in the seed bank dynamics of obligate seeders from the Mediterranean Basin. The short yet high soil temperatures experienced due to passage of fire are conflated with the lower, but longer, temperatures experienced by daily fluctuations which occur after removing vegetation. These germination cues are able to break seed dormancy, but it is difficult to assess their specific level of influence because they occur consecutively after summer fires, just before the flush of germination in the wet season (autumn). Methods By applying experimental fires, seed treatments were imposed that combined fire exposure/non-fire exposure with exposure to microhabitats under a gradient of disturbance (i.e. gaps opened by fire, mechanical brushing and intact vegetation). The seeds used were representative of the main families of obligate seeders (Ulex parviflorus, Cistus albidus and Rosmarinus officinalis). Specifically, an assessment was made of (1) the proportion of seeds killed by fire, (2) seedling emergence under field conditions and (3) seeds which remained ungerminated in soil. Key Results For the three species studied, the factors that most influenced seedling emergence and seeds remaining ungerminated were microhabitats with higher temperature fluctuations after fire (gaps opened by fire and brushing treatments). The direct effect of fire decreased the seedling emergence of U. parviflorus and reduced the proportion of seeds of R. officinalis remaining ungerminated. Conclusions The relevance of depleting vegetation (and subsequent daily temperature fluctuation in summer) suggests that studies focusing on lower temperature thresholds for breaking seed dormancy are required. This fact also supports the hypothesis that the seeding capacity in Mediterranean Basin obligate seeders may have evolved as a response to a wide range of disturbances, and not exclusively to fire. PMID:23129044
Temperature Ddependence of Anomalous Hall Conductivity in Rashba-type Ferromagnets
NASA Astrophysics Data System (ADS)
Sakuma, Akimasa
2018-03-01
We theoretically investigated the anomalous Hall conductivity (AHC) of Rashba-type ferromagnets at a finite temperature, taking into account spin fluctuation. We observed that the intrinsic AHC increases with increasing temperature. This can be understood from the characteristic nature of the spin chirality in the k-space, which increases with decreasing exchange splitting (EXS) when the spin-orbit interaction is much smaller than the EXS. The extrinsic part of the AHC also increases with temperature owing to the enhancement of the scattering strength of electrons due to the thermal fluctuation of the exchange field.
Density Fluctuation in Asymmetric Nozzle Plumes and Correlation with Far Field Noise
NASA Technical Reports Server (NTRS)
Panda, J.; Zaman, K. B. M. Q.
2001-01-01
A comparative experimental study of air density fluctuations in the unheated plumes of a circular, 4-tabbed-circular, chevron-circular and 10-lobed rectangular nozzles was performed at a fixed Mach number of 0.95 using a recently developed Rayleigh scattering based technique. Subsequently, the flow density fluctuations are cross-correlated with the far field sound pressure fluctuations to determine sources for acoustics emission. The nearly identical noise spectra from the baseline circular and the chevron nozzles are found to be in agreement with the similarity in spreading, turbulence fluctuations, and flow-sound correlations measured in the plumes. The lobed nozzle produced the least low frequency noise, in agreement with the weakest overall density fluctuations and flow-sound correlation. The tabbed nozzle took an intermediate position in the hierarchy of noise generation, intensity of turbulent fluctuation and flow-sound correlation. Some of the features in the 4-tabbed nozzle are found to be explainable in terms of splitting of the jet in a central large core and 4 side jetlets.
Brauckmann, Hannes J.
2017-01-01
Rayleigh–Bénard convection and Taylor–Couette flow are two canonical flows that have many properties in common. We here compare the two flows in detail for parameter values where the Nusselt numbers, i.e. the thermal transport and the angular momentum transport normalized by the corresponding laminar values, coincide. We study turbulent Rayleigh–Bénard convection in air at Rayleigh number Ra=107 and Taylor–Couette flow at shear Reynolds number ReS=2×104 for two different mean rotation rates but the same Nusselt numbers. For individual pairwise related fields and convective currents, we compare the probability density functions normalized by the corresponding root mean square values and taken at different distances from the wall. We find one rotation number for which there is very good agreement between the mean profiles of the two corresponding quantities temperature and angular momentum. Similarly, there is good agreement between the fluctuations in temperature and velocity components. For the heat and angular momentum currents, there are differences in the fluctuations outside the boundary layers that increase with overall rotation and can be related to differences in the flow structures in the boundary layer and in the bulk. The study extends the similarities between the two flows from global quantities to local quantities and reveals the effects of rotation on the transport. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167575
Control of continuous irradiation injury on potatoes with daily temperature cycling
NASA Technical Reports Server (NTRS)
Tibbitts, T. W.; Bennett, S. M.; Cao, W.
1990-01-01
Two controlled-environment experiments were conducted to determine the effects of temperature fluctuations under continuous irradiation on growth and tuberization of two potato (Solanum tuberosum L.) cultivars, Kennebec and Superior. These cultivars had exhibited chlorotic and stunted growth under continuous irradiation and constant temperatures. The plants were grown for 4 weeks in the first experiment and for 6 weeks in the second experiment. Each experiment was conducted under continuous irradiation of 400 micromoles per square meter per second of photosynthetic photon flux and included two temperature treatments: constant 18 degrees C and fluctuating 22 degrees C/14 degrees C on a 12-hour cycle. A common vapor pressure deficit of 0.62 kilopascal was maintained at all temperatures. Plants under constant 18 degrees C were stunted and had chlorotic and abscised leaves and essentially no tuber formation. Plants grown under the fluctuating temperature treatment developed normally, were developing tubers, and had a fivefold or greater total dry weight as compared with those under the constant temperature. These results suggest that a thermoperiod can allow normal plant growth and tuberization in potato cultivars that are unable to develop effectively under continuous irradiation.
Assessment of Urban Infrastructure Impact on New York City Neighborhoods Thermal Variations
NASA Astrophysics Data System (ADS)
Nazari, R.; Ghandehari, M.; Karimi, M.; Vant-hull, B.; Khanbilvardi, R.
2013-12-01
New York City (NYC) is a highly urbanized city with most of the population living in tall buildings. Despite technological improvements and stricter regulations, cities still show increasing signs of environmental stress such as traffic congestion, noise and air quality degradation. Rethinking the current models of city planning could enable to limit these detrimental effects of urbanization. In addition, the built environment creates a new climatic regime which needs a better understanding. Building density, height and emission has a major impact on local temperature and other air quality indicators. Studies have shown that during extreme weather conditions and heat waves the mortality rate in urban areas increases. Cities are comprised of a wide variety of urban settings and various neighborhoods have different physical responses to meteorological events, so it is expected that the temperature and heat stress across a given city to fluctuate sharply. Therefore, this research has focused on neighborhood-scale field campaigns to downscale temperature and air quality predictions from city to neighborhood scale in NYC. In order to assess the temperature variability within the city at street level, during the hottest part of the day, this project used eight mobile units bearing temperature and relative humidity sensors, as well as ten weather stations mounted on light poles in various NYC neighborhoods. This study also looks at fine scale structures in the urban heat island of Manhattan at street level through an infrared camera with the spectral range of 7.5-13 μm in order to relate heat and emissions from building surfaces to land surface characteristics such as building density, vegetation coverage, proximity to water, and albedo. LandSat TM5 images were used (with 30 m resolution) for land surface classification. During the summer and early fall of 2011, 2012 and 2013 extensive field campaigns were performed, the results of which show some persistent patterns that could be related to surface characteristics. This work is a collaboration between the health component of the Consortium for Climate Risk in the Urban Northeast (CCRUN), funded by NOAA Regional Integrated Science Assessment (RISA), and New York University Center for Urban Science and Progress (CUSP).
Ambient temperature and emergency room admissions for acute coronary syndrome in Taiwan
NASA Astrophysics Data System (ADS)
Liang, Wen-Miin; Liu, Wen-Pin; Chou, Sze-Yuan; Kuo, Hsien-Wen
2008-01-01
Acute coronary syndrome (ACS) is an important public health problem around the world. Since there is a considerable seasonal fluctuation in the incidence of ACS, climatic temperature may have an impact on the onset of this disease. The objective of this study was to assess the relationship between the average daily temperature, diurnal temperature range and emergency room (ER) admissions for ACS in an ER in Taichung City, Taiwan. A longitudinal study was conducted which assessed the correlation of the average daily temperature and the diurnal temperature range to ACS admissions to the ER of the city’s largest hospital. Daily ER admissions for ACS and ambient temperature were collected from 1 January 2000 to 31 March 2003. The Poisson regression model was used in the analysis after adjusting for the effects of holiday, season, and air pollutant concentrations. The results showed that there was a negative significant association between the average daily temperature and ER admissions for ACS. ACS admissions to the ER increased 30% to 70% when the average daily temperature was lower than 26.2°C. A positive association between the diurnal temperature range and ACS admissions was also noted. ACS admissions increased 15% when the diurnal temperature range was over 8.3°C. The data indicate that patients suffering from cardiovascular disease must be made aware of the increased risk posed by lower temperatures and larger changes in temperature. Hospitals and ERs should take into account the increased demand of specific facilities during colder weather and wider temperature variations.
NASA Astrophysics Data System (ADS)
Hrbáček, Filip; Nývlt, Daniel; Láska, Kamil
2016-04-01
Antarctic Peninsula region (AP) represents one of the most rapidly warming parts of our planet in the last 50 years. Despite increasing research activities along both western and eastern sides of AP in last decades, there is still a lot of gaps in our knowledge relating to permafrost, active layer and its thermal and physical properties. This study brings new results of active layer monitoring on James Ross Island, which is the largest island in northern AP. Its northern part, Ulu Peninsula, is the largest ice-free area (more than 200 km2) in the region. Due its large area, we focused this study on sites located in different lithologies, which would affect local thermal regime of active layer. Study site (1) at Abernethy Flats area (41 m a.s.l.) lies ~7 km from northern coast. Lithologically is formed by disintegrated Cretaceous calcareous sandstones and siltstones of the Santa Marta Formation. Study site (2) is located at the northern slopes of Berry Hill (56 m a.s.l.), about 0.4 km from northern coastline. Lithology is composed of muddy to intermediate diamictites, tuffaceous siltstones to fine grained sandstones of the Mendel Formation. Data of air temperature at 2 meters above ground and the active layer temperatures at 75 cm deep profiles were obtained from both sites in period 1 January 2012 to 31 December 2014. Small differences were found when comparing mean air temperatures and active temperatures at 5 and 75 cm depth in the period 2012-2014. While the mean air temperatures varied between -7.7 °C and -7.0 °C, the mean ground temperatures fluctuated between -6.6 °C and -6.1 °C at 5 cm and -6.9 °C and -6.0 °C at 75 cm at Abernethy Flats and Berry Hill slopes respectively. Even though ground temperature differences along the profiles weren't pronounced during thawing seasons, the maximum active layer thickness was significantly larger at Berry Hill slopes (80 to 82 cm) than at Abernethy Flats (52 to 64 cm). We assume this differences are affected by local lithology, especially by the higher proportion of fine particles and more thermally conductive minerals, together with higher water saturation are fundamental for higher maximum active layer thickness found at Berry Hill slopes.
NASA Technical Reports Server (NTRS)
Panda, Jayanta; Seasholtz, Richard G.
2003-01-01
Noise sources in high-speed jets were identified by directly correlating flow density fluctuation (cause) to far-field sound pressure fluctuation (effect). The experimental study was performed in a nozzle facility at the NASA Glenn Research Center in support of NASA s initiative to reduce the noise emitted by commercial airplanes. Previous efforts to use this correlation method have failed because the tools for measuring jet turbulence were intrusive. In the present experiment, a molecular Rayleigh-scattering technique was used that depended on laser light scattering by gas molecules in air. The technique allowed accurate measurement of air density fluctuations from different points in the plume. The study was conducted in shock-free, unheated jets of Mach numbers 0.95, 1.4, and 1.8. The turbulent motion, as evident from density fluctuation spectra was remarkably similar in all three jets, whereas the noise sources were significantly different. The correlation study was conducted by keeping a microphone at a fixed location (at the peak noise emission angle of 30 to the jet axis and 50 nozzle diameters away) while moving the laser probe volume from point to point in the flow. The following figure shows maps of the nondimensional coherence value measured at different Strouhal frequencies ([frequency diameter]/jet speed) in the supersonic Mach 1.8 and subsonic Mach 0.95 jets. The higher the coherence, the stronger the source was.
Stochastic analysis of concentration field in a wake region.
Yassin, Mohamed F; Elmi, Abdirashid A
2011-02-01
Identifying geographic locations in urban areas from which air pollutants enter the atmosphere is one of the most important information needed to develop effective mitigation strategies for pollution control. Stochastic analysis is a powerful tool that can be used for estimating concentration fluctuation in plume dispersion in a wake region around buildings. Only few studies have been devoted to evaluate applications of stochastic analysis to pollutant dispersion in an urban area. This study was designed to investigate the concentration fields in the wake region using obstacle model such as an isolated building model. We measured concentration fluctuations at centerline of various downwind distances from the source, and different heights with the frequency of 1 KHz. Concentration fields were analyzed stochastically, using the probability density functions (pdf). Stochastic analysis was performed on the concentration fluctuation and the pdf of mean concentration, fluctuation intensity, and crosswind mean-plume dispersion. The pdf of the concentration fluctuation data have shown a significant non-Gaussian behavior. The lognormal distribution appeared to be the best fit to the shape of concentration measured in the boundary layer. We observed that the plume dispersion pdf near the source was shorter than the plume dispersion far from the source. Our findings suggest that the use of stochastic technique in complex building environment can be a powerful tool to help understand the distribution and location of air pollutants.
Ion temperature fluctuation measurements using a retarding field analyzer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nedzelskiy, I. S.; Silva, C.; Duarte, P.
2011-04-15
The retarding field analyzer (RFA) is a widely used diagnostic tool for the ion temperature measurement in the scrape-off-layer (SOL) of the thermonuclear plasma devices. However, the temporal resolution in the standard RFA application is restricted to the ms timescale. In this paper, a dc operation of the RFA is considered, which allows for the measurement of the plasma ion temperature fluctuations. The method is based on the relation for the RFA current-voltage (I-V) characteristic resulted from a common RFA model of shifted Maxwellian distribution of the analyzed ions, and the measurements of two points on the exponentially decaying regionmore » of the I-V characteristic with two differently dc biased RFA electrodes. The method has been tested and compared with conventional RFA measurements of the ion temperature in the tokamak ISTTOK SOL plasma. An ion temperature of T{sub i}= 17 eV is obtained near the limiter position. The agreement between the results of the two methods is within {approx}25%. The amplitude of the ion temperature fluctuations is found to be around 5 eV at this location. The method has been validated by taking into account the effect of fluctuations in the plasma potential and the noise contamination, proving the reliability of the results obtained. Finally, constrains to the method application are discussed that include a negligible electron emission from the RFA grids and the restriction to operate in the exponentially decaying region of the I-V characteristic.« less
Random fluctuations of optical signal path delay in the atmosphere
NASA Astrophysics Data System (ADS)
Kral, L.; Prochazka, I.; Hamal, K.
2006-09-01
Atmospheric turbulence induces random delay fluctuations to any optical signal transmitted through the air. These fluctuations can influence for example the measurement precision of laser rangefinders. We have found an appropriate theoretical model based on geometrical optics that allows us to predict the amplitude of the random delay fluctuations for different observing conditions. We have successfully proved the applicability of this model by a series of experiments, directly determining the amplitude of the turbulence-induced pulse delay fluctuations by analysis of a high precision laser ranging data. Moreover, we have also shown that a standard theoretical approach based on diffractive propagation of light through inhomogeneous media and implemented using the GLAD software is not suitable for modeling of the optical signal delay fluctuations caused by the atmosphere. These models based on diffractive propagation predict the turbulence-induced optical path length fluctuations of the order of micrometers, whereas the fluctuations predicted by the geometrical optics model (in agreement with our experimental data) are generally larger by two orders of magnitude, i.e. in the submillimeter range. The reason of this discrepancy is a subject to discussion.
Qu, Yan-Fu; Lu, Hong-Liang; Li, Hong; Ji, Xiang
2014-12-01
Studies examining the effects of incubation temperature fluctuation on the phenotype of hatchling reptiles have shown species variation. To examine whether incubation temperature fluctuation has a key role in influencing the phenotype of hatchling Chinese skinks (Plestiodon chinensis), we incubated eggs produced by 20 females under five thermal regimes (treatments). Eggs in three treatments were incubated in three incubators, one set constant at 27°C and two ramp-programmed at 27 ± 3°C and 27 ± 5°C on a cycle of 12h (+) and 12h (-). The remaining eggs were incubated in two chambers: one inside a room where temperatures varied from 23.0 to 31.1°C, with a mean of 27.0°C; the other outside the room where temperatures varied from 20.2 to 35.3°C, with a mean of 26.1°C. We found that: (1) for eggs at a given embryonic stage at ovipositon, the mean rather than the variance of incubation temperatures determined the length of incubation; (2) most (egg mass, embryonic stage at oviposition, incubation length and all examined hatchling traits except tail length and locomotor performance) of the examined variables were affected by clutch; and (3) body mass was the only hatchling trait that differed among the five treatments, but the differences were tiny. These findings suggest that incubation temperature fluctuation has no direct role in influencing incubation length and hatchling phenotype in P. chinensis. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jung, C. G.; Jiang, L.; Luo, Y.
2017-12-01
Understanding net primary production (NPP) response to the key climatic variables, temperature and precipitation, is essential since the response could be represented by one of future consequences from ecosystem responses. Under future climatic warming, fluctuating precipitation is expected. In addition, NPP solely could not explain whole ecosystem response; therefore, not only NPP, but also above- and below-ground NPP (ANPP and BNPP, respectively) need to be examined. This examination needs to include how the plant productions response along temperature and precipitation gradients. Several studies have examined the response of NPP against each of single climatic variable, but understanding the response of ANPP and BNPP to the multiple variables is notably poor. In this study, we used the plant productions data (NPP, ANPP, and BNPP) with climatic variables, i.e., air temperature and precipitation, from 1999 to 2015 under warming and clipping treatments (mimicking hay-harvesting) in C4-grass dominant ecosystem located in central Oklahoma, United States. Firstly, we examined the nonlinear relationships with the climatic variables for NPP, ANPP and BNPP; and then predicted possible responses in the temperature - precipitation space by using a linear mixed effect model. Nonlinearities of NPP, ANPP and BNPP to the climatic variables have been found to show unimodal curves, and nonlinear models have better goodness of fit as shown lower Akaike information criterion (AIC) than linear models. Optimum condition for NPP is represented at high temperature and precipitation level whereas BNPP is maximized at moderate precipitation levels while ANPP has same range of NPP's optimum condition. Clipping significantly reduced ANPP while there was no clipping effect on NPP and BNPP. Furthermore, inclining NPP and ANPP have shown in a range from moderate to high precipitation level with increasing temperature while inclining pattern for BNPP was observed in moderate precipitation level. Overall, the C4-grass dominant ecosystem has a potential for considerable increases in NPP in hotter and wetter conditions as shown a range from moderate to high temperature and precipitation levels; ANPP has peaked at the high temperature and precipitation level, but maximum BNPP needs moderate precipitation level and high temperature.
Bao, Zhongwen; Haberer, Christina M; Maier, Uli; Beckingham, Barbara; Amos, Richard T; Grathwohl, Peter
2016-11-01
Temperature changes can drive cycling of semi-volatile pollutants between different environmental compartments (e.g. atmosphere, soil, plants). To evaluate the impact of daily temperature changes on atmospheric concentration fluctuations we employed a physically based model coupling soil, plants and the atmosphere, which accounts for heat transport, effective gas diffusion, sorption and biodegradation in the soil as well as eddy diffusion and photochemical oxidation in the atmospheric boundary layer of varying heights. The model results suggest that temperature-driven re-volatilization and uptake in soils cannot fully explain significant diurnal concentration fluctuations of atmospheric pollutants as for example observed for polychlorinated biphenyls (PCBs). This holds even for relatively low water contents (high gas diffusivity) and high sorption capacity of the topsoil (high organic carbon content and high pollutant concentration in the topsoil). Observed concentration fluctuations, however, can be easily matched if a rapidly-exchanging environmental compartment, such as a plant layer, is introduced. At elevated temperatures, plants release organic pollutants, which are rapidly distributed in the atmosphere by eddy diffusion. For photosensitive compounds, e.g. some polycyclic aromatic hydrocarbons (PAHs), decreasing atmospheric concentrations would be expected during daytime for the bare soil scenario. This decline is buffered by a plant layer, which acts as a ground-level reservoir. The modeling results emphasize the importance of a rapidly-exchanging compartment above ground to explain short-term atmospheric concentration fluctuations. Copyright © 2016 Elsevier B.V. All rights reserved.
Compressibilities and Volume Fluctuations of Archaeal Tetraether Liposomes
Chong, Parkson Lee-Gau; Sulc, Michael; Winter, Roland
2010-01-01
Bipolar tetraether lipids (BTLs) are abundant in crenarchaeota, which thrive in both thermophilic and nonthermophilic environments, with wide-ranging growth temperatures (4–108°C). BTL liposomes can serve as membrane models to explore the role of BTLs in the thermal stability of the plasma membrane of crenarchaeota. In this study, we focus on the liposomes made of the polar lipid fraction E (PLFE). PLFE is one of the main BTLs isolated from the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. Using molecular acoustics (ultrasound velocimetry and densimetry), pressure perturbation calorimetry, and differential scanning calorimetry, we have determined partial specific adiabatic and isothermal compressibility, their respective compressibility coefficients, partial specific volume, and relative volume fluctuations of PLFE large unilamellar vesicles (LUVs) over a wide range of temperatures (20–85°C). The results are compared with those obtained from liposomes made of dipalmitoyl-L-α-phosphatidylcholine (DPPC), a conventional monopolar diester lipid. We found that, in the entire temperature range examined, compressibilities of PLFE LUVs are low, comparable to those found in gel state of DPPC. Relative volume fluctuations of PLFE LUVs at any given temperature examined are 1.6–2.2 times more damped than those found in DPPC LUVs. Both compressibilities and relative volume fluctuations in PLFE LUVs are much less temperature-sensitive than those in DPPC liposomes. The isothermal compressibility coefficient (βTlipid) of PLFE LUVs changes from 3.59 × 10−10 Pa−1 at 25°C to 4.08 × 10−10 Pa−1 at 78°C. Volume fluctuations of PLFE LUVs change only 0.25% from 30°C to 80°C. The highly damped volume fluctuations and their low temperature sensitivity, echo that PLFE liposomes are rigid and tightly packed. To our knowledge, the data provide a deeper understanding of lipid packing in PLFE liposomes than has been previously reported, as well as a molecular explanation for the low solute permeation and limited membrane lateral motion. The obtained results may help to establish new strategies for rational design of stable BTL-based liposomes for drug/vaccine delivery. PMID:21081080
Ultracold atoms in an optical lattice one millimeter from air
NASA Astrophysics Data System (ADS)
Jervis, Dylan; Edge, Graham; Trotzky, Stefan; McKay, David; Thywissen, Joseph
2013-05-01
Over the past decade, ultracold atoms in optical lattices have shown to be versatile systems able to realize canonical Hamiltonians of condensed matter. High-resolution in-situ imaging of ultracold clouds has furthermore enabled thermometry, equation of state measurements, direct measurement of fluctuations, and unprecedented control. We report on microscopy of ultracold bosons and fermions in a novel configuration where the atoms are harmonically trapped 800 microns away from a 200 micron-thick vacuum window. This window also serves as a retro-reflecting mirror for an optical lattice, into which the atoms can be loaded. Two additional transverse standing waves complete the three-dimensional lattice setup. In free space, we have shown that laser cooling with 405 nm light, on the open 4S1/2-5P3/2 transition, allows for temperatures below the Doppler temperature of the 4S1/2-4P3/2 cycling transition at 767 nm. Microscopy with 405 nm light furthermore reduces the diffraction limit of in-situ imaging.
Fatigue Crack Growth Behavior of 2099-T83 Extrusions in two Different Environments
NASA Astrophysics Data System (ADS)
Goma, Franck Armel Tchitembo; Larouche, Daniel; Bois-Brochu, Alexandre; Blais, Carls; Boselli, Julien; Brochu, Mathieu
Aluminum-lithium alloy 2099-T83 is an advanced material with superior mechanical properties, as compared to traditional alloys used in structural applications, and has been selected for use in the latest generation of airplanes. While this alloy exhibits improved fatigue crack growth (FCG) performance over non-Li alloys, it is of interest to simulate the impact of fluctuating loads under variable temperature during airplane service, particularly in terms of the potential effects of material processing history. In the present paper, the FCG behavior in an Integrally Stiffened Panel (ISP) has been investigated both at room temperature and at 243 K. It has been shown that the resistance to crack growth in a cold environment was higher than in ambient laboratory air. Results of this investigation are discussed from the microfractographic point of view, with regard to the variation of the local extrusion aspect ratio, a parameter which correlates with both the crystallographic texture and the grain structure.
Effect of Fuel Particle Size on the Stability of Swirl Stabilized Flame in a Gas Turbine Combustor
NASA Astrophysics Data System (ADS)
Mishra, R. K.; Kishore Kumar, S.; Chandel, Sunil
2015-05-01
Combustion stability is examined in a swirl stabilized aero gas turbine combustor using computational fluid dynamics. A 22.5° sector of an annular combustor is modeled for the study. Unstructured tetrahedral meshes comprising 1.2 × 106 elements are employed in the model where the governing equations are solved using CFD flow solver CFX using eddy dissipation combustion model. The effect of fuel particle size on the combustion and its stability has been studied at steady state and transient conditions. The time for complete evaporation is increased exponentially when drop size increases. It delays heating up the mixture and subsequent ignition. This strongly affects the stability of the combustion flame as the incoming fresh mixture will have a quenching effect on the existing temperature field. Transient analysis at low fuel-air ratio and high particle size shows that there is a series of flame extinction and re-ignition prior to complete extinction which is observed from the fluctuation of gas temperature in the primary zone.
Ewert, Marcela; Deming, Jody W
2014-08-01
Wintertime measurements near Barrow, Alaska, showed that bacteria near the surface of first-year sea ice and in overlying saline snow experience more extreme temperatures and salinities, and wider fluctuations in both parameters, than bacteria deeper in the ice. To examine impacts of such conditions on bacterial survival, two Arctic isolates with different environmental tolerances were subjected to winter-freezing conditions, with and without the presence of organic solutes involved in osmoprotection: proline, choline, or glycine betaine. Obligate psychrophile Colwellia psychrerythraea strain 34H suffered cell losses under all treatments, with maximal loss after 15-day exposure to temperatures fluctuating between -7 and -25 °C. Osmoprotectants significantly reduced the losses, implying that salinity rather than temperature extremes presents the greater stress for this organism. In contrast, psychrotolerant Psychrobacter sp. strain 7E underwent miniaturization and fragmentation under both fluctuating and stable-freezing conditions, with cell numbers increasing in most cases, implying a different survival strategy that may include enhanced dispersal. Thus, the composition and abundance of the bacterial community that survives in winter sea ice may depend on the extent to which overlying snow buffers against extreme temperature and salinity conditions and on the availability of solutes that mitigate osmotic shock, especially during melting. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Martin, Daniel R; Matyushov, Dmitry V
2012-08-30
We show that electrostatic fluctuations of the protein-water interface are globally non-Gaussian. The electrostatic component of the optical transition energy (energy gap) in a hydrated green fluorescent protein is studied here by classical molecular dynamics simulations. The distribution of the energy gap displays a high excess in the breadth of electrostatic fluctuations over the prediction of the Gaussian statistics. The energy gap dynamics include a nanosecond component. When simulations are repeated with frozen protein motions, the statistics shifts to the expectations of linear response and the slow dynamics disappear. We therefore suggest that both the non-Gaussian statistics and the nanosecond dynamics originate largely from global, low-frequency motions of the protein coupled to the interfacial water. The non-Gaussian statistics can be experimentally verified from the temperature dependence of the first two spectral moments measured at constant-volume conditions. Simulations at different temperatures are consistent with other indicators of the non-Gaussian statistics. In particular, the high-temperature part of the energy gap variance (second spectral moment) scales linearly with temperature and extrapolates to zero at a temperature characteristic of the protein glass transition. This result, violating the classical limit of the fluctuation-dissipation theorem, leads to a non-Boltzmann statistics of the energy gap and corresponding non-Arrhenius kinetics of radiationless electronic transitions, empirically described by the Vogel-Fulcher-Tammann law.
Acoustic Database for Turbofan Engine Core-Noise Sources. I; Volume
NASA Technical Reports Server (NTRS)
Gordon, Grant
2015-01-01
In this program, a database of dynamic temperature and dynamic pressure measurements were acquired inside the core of a TECH977 turbofan engine to support investigations of indirect combustion noise. Dynamic temperature and pressure measurements were recorded for engine gas dynamics up to temperatures of 3100 degrees Fahrenheit and transient responses as high as 1000 hertz. These measurements were made at the entrance of the high pressure turbine (HPT) and at the entrance and exit of the low pressure turbine (LPT). Measurements were made at two circumferential clocking positions. In the combustor and inter-turbine duct (ITD), measurements were made at two axial locations to enable the exploration of time delays. The dynamic temperature measurements were made using dual thin-wire thermocouple probes. The dynamic pressure measurements were made using semi-infinite probes. Prior to the engine test, a series of bench, oven, and combustor rig tests were conducted to characterize the performance of the dual wire temperature probes and to define and characterize the data acquisition systems. A measurement solution for acquiring dynamic temperature and pressure data on the engine was defined. A suite of hardware modifications were designed to incorporate the dynamic temperature and pressure instrumentation into the TECH977 engine. In particular, a probe actuation system was developed to protect the delicate temperature probes during engine startup and transients in order to maximize sensor life. A set of temperature probes was procured and the TECH977 engine was assembled with the suite of new and modified hardware. The engine was tested at four steady state operating speeds, with repeats. Dynamic pressure and temperature data were acquired at each condition for at least one minute. At the two highest power settings, temperature data could not be obtained at the forward probe locations since the mean temperatures exceeded the capability of the probes. The temperature data were processed using software that accounts for the effects of convective and conductive heat transfer. The software was developed under previous NASA sponsored programs. Compensated temperature spectra and compensated time histories corresponding to the dynamic temperature of the gas stream were generated. Auto-spectral and cross-spectral analyses of the data were performed to investigate spectral features, acoustic circumferential mode content, signal coherence, and time delays. The dynamic temperature data exhibit a wideband and fairly flat spectral content. The temperature spectra do not change substantially with operating speed. The pressure spectra in the combustor and ITD exhibit generally similar shapes and amplitudes, making it difficult to identify any features that suggest the presence of indirect combustion noise. Cross-spectral analysis reveal a strong correlation between pressure and temperature fluctuations in the ITD, but little correlation between temperature fluctuations at the entrance of the HPT and pressure fluctuations downstream of it. Temperature fluctuations at the entrance of the low pressure turbine were an order of magnitude smaller than those at the entrance to the high pressure turbine. Time delay analysis of the temperature fluctuations in the combustor was inconclusive, perhaps due to the substantial mixing that occurs between the upstream and downstream locations. Time delay analysis of the temperature fluctuations in the ITD indicate that they convect at the mean flow speed. Analysis of the data did not reveal any convincing indications of the presence of indirect combustion noise. However, this analysis has been preliminary and additional exploration of the data is recommended including the use of more sophisticated signal processing to explore subtle issues that have been revealed but which are not yet fully understood or explained.
NASA Astrophysics Data System (ADS)
Xi, Wang; Xingying, Zhang; Liyang, Zhang; Ling, Gao; Lin, Tian
2015-02-01
The atmospheric carbon dioxide (CO2) concentration exhibits a strong seasonal variation. Analyzing the regional seasonal cycle could help to improve the interpretation of the sources and sinks of CO2 over certain areas. Based on a long-term (2003-2011) retrieved dataset from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), the seasonal cycle and inter-annual variations of column-averaged dry air mole fraction of atmospheric carbon dioxide (XCO2) over China have been analyzed. The result shows that XCO2 over China increases by about 4.2% from 2003 to 2011, but the seasonal fluctuation keeps the similar pattern with the average peak-to-peak amplitude of 9.35 ppm. The highest concentration appears in spring, and the lowest value always occurs in summer. Based on the multi-year averages, it can be discerned that the seasonal signal of XCO2 increases during colder seasons with a drop during the period from December to February of the following year. The potential affecting factors are also discussed in this manuscript, including Normalized Difference Vegetation Index (NDVI), air temperature, and industrial productions in Thermal Power Generation (TPG) and cement that are relative main contributors for the anthropogenic CO2 of China. The seasonal variations of CO2 are highly connected with the changes of NDVI and air temperature. While the increase of the anthropogenic CO2 emission over China since 2003 is probably caused by the rapid growth of coal combustion and cement manufacture.
Acquisition of the spatial temperature distribution of rock faces by using infrared thermography
NASA Astrophysics Data System (ADS)
Beham, Michael; Rode, Matthias; Schnepfleitner, Harald; Sass, Oliver
2013-04-01
Rock temperature plays a central role for weathering and therefore influences the risk potential originating from rockfall processes. So far, for the acquisition of temperature mainly point-based measuring methods have been used and accordingly, two-dimensional temperature data is rare. To overcome this limitation, an infrared camera was used to collect and analyse data on the spatial temperature distribution on 10 x 10 m sections of rock faces in the Gesäuse (900m a.s.l.) and in the Dachsteingebirge (2700m a.s.l.) within the framework of the research project ROCKING ALPS (FWF-P24244). The advantage of infrared thermography to capture area-wide temperatures has hardly ever been used in this context. In order to investigate the differences between north-facing and south-facing rock faces at about the same period of time it was necessary to move the camera between the sites. The resulting offset of the time lapse infrared images made it necessary to develop a sophisticated methodology to rectify the captured images in order to create matching datasets for future analysis. With the relatively simple camera used, one of the main challenges was to find a way to convert the colour-scale or grey-scale values of the rectified image back to temperature values after the rectification process. The processing steps were mainly carried out with MATLAB. South-facing rock faces generally experienced higher temperatures and amplitudes compared to the north facing ones. In view of the spatial temperature distribution, the temperatures of shady areas were clearly below those of sunny ones, with the latter also showing the highest amplitudes. Joints and sun-shaded areas were characterised by attenuated diurnal temperature fluctuations closely paralleled to the air temperature. The temperature of protruding rock parts and of loose debris responded very quick to changes in radiation and air temperatures while massive rock reacted more slowly. The potential effects of temperature on weathering could only be assessed in a qualitative way by now. However, the variability of temperatures and amplitudes on a rather small and homogeneous section of a rockwall is surprisingly high which challenges any statements on weathering effectiveness based on point measurements. In simple terms, the use of infrared thermography has proven its value in the presented pilot study and is going to be a promising tool for research into rock weathering.
Experimental Measurement of Small Scale Multirotor Flows
NASA Astrophysics Data System (ADS)
Connors, Jacob; Weiner, Joseph; Velarde, John-Michael; Glauser, Mark
2017-11-01
Work is being done to create a multirotor Unmanned Air Vehicle (UAV) based anemometer system that would allow for measurement of velocity and spectra in the atmospheric boundary layer. The flow from the UAV's rotors will impact such measurements and hence must be filtered. This study focuses on measuring the fluctuations of the velocity field in the flow both above and below various UAVs to determine first, the feasibility of the creation of the filter, and second, the optimal placement of the system on the body of the UAV. These measurements are taking place in both Syracuse University's subsonic wind tunnel and Skytop Turbulence Lab's Indoor Flow Lab. Constant Temperature Anemometry is being used to measure these velocity field fluctuations across a variety of UAVs with differing characteristics such as size, number of propellers, and rotor blade type. The data from these experiments is being used to define a method to estimate the filter band required to isolate noise from wake effects, and determine ideal sensor placement based on characteristics of the vehicle's design alone. The authors would like to thank The Center for Advanced Systems and Engineering (CASE) at Syracuse University for funding and supporting this work.
NASA Astrophysics Data System (ADS)
Basso, Tessa Chiara; Iovieno, Michele; Bertoldo, Silvano; Perotto, Giovanni; Athanassiou, Athanassia; Canavero, Flavio; Perona, Giovanni; Tordella, Daniela
2017-11-01
An introduction to innovative, bio-compatible, ultralight, disposable radiosondes that are aimed to be passively transported on isopycnic surfaces in cloud and clear air environments. Their goal is to track small-scale fluctuations of velocity, temperature, humidity, acceleration and pressure for several hours within and outside the cloud boundary. With a target weight of 15 g, the volume is chosen such that the probes float on isopycnic surfaces at constant altitudes from 1000 to 3000 m. They are filled with helium gas to obtain a buoyancy force equal to the weight of the system. Transmitters within the probes will send data to receivers on Earth to be analysed and compared with numerical simulations. To minimise their environmental impact, it is foreseen that the disposable radiosondes be made with biodegradable smart materials which keep the desired hydrophobicity and flexibility. These environmentally friendly, hydrophobic balloons will provide an insight into the unsteady life cycle of warm clouds over land, ocean and alpine environments. These explorative observations will contribute to the current understanding of microphysical processes in clouds with the purpose of improving weather prediction and climate modelling.
Sloman, Katherine A; Mandic, Milica; Todgham, Anne E; Fangue, Nann A; Subrt, Peter; Richards, Jeffrey G
2008-03-01
Animals living in the intertidal zone experience regular, predictable fluctuations in physical parameters including temperature, oxygen and salinity and rely on behavioural, physiological and biochemical mechanisms to cope with environmental variation. In the present study, behavioural strategies induced by aquatic hypoxia (e.g. emergence) were performed at similar oxygen tensions across laboratory, mesocosm and field environments; the number of individuals performing these behaviours at any one time was similar in mesocosms and the field. The use of aquatic surface respiration (ASR) was more plastic than emergence behaviour, occurring at a lower oxygen tension in juveniles than adults and being influenced by the addition of alarm substance. Oxygen uptake was lower in air than in water in adults but, in contrast, oxygen uptake was not influenced by the respiratory medium in juveniles. In the laboratory, 72 h of forced emergence did not affect whole body concentrations of lactate but when ASR and emergence were prevented within mesocosm environments there was a significant elevation of lactate. The present study highlights the benefits of transcending traditional laboratory/field boundaries allowing the responses of laboratory-held animals to environmental fluctuation to be integrated with how these animals perform in their natural environment.