Science.gov

Sample records for air temperature heat

  1. Heat tolerance of higher plants cenosis to damaging air temperatures

    NASA Astrophysics Data System (ADS)

    Ushakova, Sofya; Shklavtsova, Ekaterina

    Designing sustained biological-technical life support systems (BTLSS) including higher plants as a part of a photosynthesizing unit, it is important to foresee the multi species cenosis reaction on either stress-factors. Air temperature changing in BTLSS (because of failure of a thermoregulation system) up to the values leading to irreversible damages of photosynthetic processes is one of those factors. However, it is possible to increase, within the certain limits, the plant cenosis tolerance to the unfavorable temperatures’ effect due to the choice of the higher plants possessing resistance both to elevated and to lowered air temperatures. Besides, the plants heat tolerance can be increased when subjecting them during their growing to the hardening off temperatures’ effect. Thus, we have come to the conclusion that it is possible to increase heat tolerance of multi species cenosis under the damaging effect of air temperature of 45 (°) СC.

  2. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  3. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    Johnson, R. K.

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  4. Temperature and Humidity Independent Control Research on Ground Source Heat Pump Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Chen, G.; Wang, L. L.

    Taking green demonstration center building air conditioning system as an example, this paper presents the temperature and humidity independent control system combined with ground source heat pump system, emphasis on the design of dry terminal device system, fresh air system and ground source heat pump system.

  5. Study of Ram-air Heat Exchangers for Reducing Turbine Cooling-air Temperature of a Supersonic Aircraft Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Diaguila, Anthony J; Livingood, John N B; Eckert, Ernst R G

    1956-01-01

    The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude of 70,000 feet. A compressor-bleed-air weight flow of 2.7 pounds per second was assumed for the coolant; ram air was considered as the other fluid. Pressure drops and inlet states of both fluids were prescribed, and ranges of compressor-bleed-air temperature reductions and of the ratio of compressor-bleed to ram-air weight flows were considered.

  6. Duration study for heating and air-conditioning design temperatures

    SciTech Connect

    Snelling, H.J.

    1985-01-01

    Recently, abnormally cold winters and hot summers have generated interest in the duration of time that design temperature values have been equaled or exceeded. ETAC's Engineering Meteorology Section did a pilot study to examine temperature records for several military installations and give some insight into durations that may occur. The authors chose sites to represent different climatic regimes. For each site, the authors generated statistics on the number of occurrences of durations of one, two, three ... up to eight hours for each of the design temperature values (1%, 2 1/2%, and 5% temperatures for the summer months; 99% and 97 1/2% for winter months). The authors also made a study of the longest duration of each design value. The authors used the latest available 15 consecutive years of temperature data for all sites. The authors also made a comparison of data for the 15-year period of record (POR) versus data for the total available POR for some of the sites. Results were inconclusive and indicate that more study is needed.

  7. Heat transfer analysis for high temperature preheated air combustion in furnace

    SciTech Connect

    Taniguchi, H.; Arai, N.; Kudo, K.; Aoki, K.

    1998-07-01

    The high temperature preheated air combustion system has been recently developed and techniques of heat transfer analysis pose important problems in its application to the industrial field. The three-dimensional simulation has to be introduced, therefore, for the above heat transfer analysis with combustion, fluid flow and heat transfer. Another effort may be introduced to reduce the computing time of heat transfer analysis by means of some simplification in software of chemical simulation, etc. If one has introduced the application of the high temperature preheated air combustion technique in natural gas firing, the non-gray radiation should be applied to each radiant gas of CO{sub 2}, H{sub 2}O, CO or CH{sub 4}, in this analysis. Finally, the authors would like to refer the inverse computation of radiation heat transfer in furnace which has been proposed by one of the authors and another researcher in the United States. If one tries to estimate the performance of an industrial furnace, the heat flux on heating material is the most important factor which has been fixed as input data of computation. Therefore, the heat transfer analysis may be sometimes reversed by fixed data of heat flux and proceeded by trial and error method, in order to obtain the initial condition of heat source and furnace facilities.

  8. Cool Roofs in Guangzhou, China: Outdoor Air Temperature Reductions during Heat Waves and Typical Summer Conditions.

    PubMed

    Cao, Meichun; Rosado, Pablo; Lin, Zhaohui; Levinson, Ronnen; Millstein, Dev

    2015-12-15

    In this paper, we simulate temperature reductions during heat-wave events and during typical summer conditions from the installation of highly reflective "cool" roofs in the Chinese megacity of Guangzhou. We simulate temperature reductions during six of the strongest historical heat-wave events over the past decade, finding average urban midday temperature reductions of 1.2 °C. In comparison, we simulate 25 typical summer weeks between 2004 and 2008, finding average urban midday temperature reductions of 0.8 °C, indicating that air temperature sensitivity to urban albedo in Guangzhou varies with meteorological conditions. We find that roughly three-fourths of the variance in air temperature reductions across all episodes can be accounted for by a linear regression, including only three basic properties related to the meteorological conditions: mean daytime temperature, humidity, and ventilation to the greater Guangzhou urban area. While these results highlight the potential for cool roofs to mitigate peak temperatures during heat waves, the temperature reductions reported here are based on the upper bound case, which increases albedos of all roofs (but does not modify road albedo or wall albedo). PMID:26523605

  9. Investigation of the impact of extreme air temperature on river water temperature: case study of the heat episode 2013.

    NASA Astrophysics Data System (ADS)

    Weihs, Philipp; Trimmel, Heidelinde; Goler, Robert; Formayer, Herbert; Holzapfel, Gerda; Rauch, Hans Peter

    2014-05-01

    Water stream temperature is a relevant factor for water quality since it is an important driver of water oxygen content and in turn also reduces or increases stress on the aquatic fauna. The water temperature of streams is determined by the source and inflow water temperature, by the energy balance at the stream surface and by the hydrological regime of the stream. Main factors driving the energy balance of streams are radiation balance and air temperature which influences the sensitive and latent heat flux. The present study investigates the impact of the heat episode of summer 2013 on water temperature of two lowland rivers in south eastern Austria. Within the scope of the project BIO_CLIC routine measurements of water temperature at 33 locations alongside the rivers Pinka and Lafnitz have been performed since spring 2012. In addition meteorological measurements of global shortwave and longwave radiation, air temperature, wind and air humidity have been carried out during this time. For the same time period, data of discharge and water levels of both rivers were provided by the public hydrological office. The heat episode of summer 2013 started, according to the Kysely- definition, on 18 July and lasted until 14 August. The highest air temperature ever recorded in Austria was reported on 8 August at 40.5°C. In Güssing, which is located within the project area, 40.0 °C were recorded. In the lower reaches of the river Pinka, at the station Burg the monthly mean water temperature of August 2013 was with more than 22°C, 1°C higher than the mean water temperature of the same period of the previous years. At the same station, the maximum water temperature of 27.1°C was recorded on 29 July, 9 days prior to the air temperature record. Analysis shows that at the downstream stations the main driving parameter is solar radiation whereas at the upstream stations a better correlation between air temperature and water temperature is obtained. Using the extensive data set

  10. A comparison of urban heat islands mapped using skin temperature, air temperature, and apparent temperature (Humidex), for the greater Vancouver area.

    PubMed

    Ho, Hung Chak; Knudby, Anders; Xu, Yongming; Hodul, Matus; Aminipouri, Mehdi

    2016-02-15

    Apparent temperature is more closely related to mortality during extreme heat events than other temperature variables, yet spatial epidemiology studies typically use skin temperature (also known as land surface temperature) to quantify heat exposure because it is relatively easy to map from satellite data. An empirical approach to map apparent temperature at the neighborhood scale, which relies on publicly available weather station observations and spatial data layers combined in a random forest regression model, was demonstrated for greater Vancouver, Canada. Model errors were acceptable (cross-validated RMSE=2.04 °C) and the resulting map of apparent temperature, calibrated for a typical hot summer day, corresponded well with past temperature research in the area. A comparison with field measurements as well as similar maps of skin temperature and air temperature revealed that skin temperature was poorly correlated with both air temperature (R(2)=0.38) and apparent temperature (R(2)=0.39). While the latter two were more similar (R(2)=0.87), apparent temperature was predicted to exceed air temperature by more than 5 °C in several urban areas as well as around the confluence of the Pitt and Fraser rivers. We conclude that skin temperature is not a suitable proxy for human heat exposure, and that spatial epidemiology studies could benefit from mapping apparent temperature, using an approach similar to the one reported here, to better quantify differences in heat exposure that exist across an urban landscape. PMID:26706765

  11. Velocity and temperature field characteristics of water and air during natural convection heating in cans.

    PubMed

    Erdogdu, Ferruh; Tutar, Mustafa

    2011-01-01

    Presence of headspace during canning is required since an adequate amount allows forming vacuum during the process. Sealing technology may not totally eliminate all entrapped gases, and headspace might affect heat transfer. Not much attention has been given to solve this problem in computational studies, and cans, for example, were mostly assumed to be fully filled with product. Therefore, the objective of this study was to determine velocity and temperature evolution of water and air in cans during heating to evaluate the relevance of headspace in the transport mechanism. For this purpose, canned water samples with a certain headspace were used, and required governing continuity, energy, and momentum equations were solved using a finite volume approach coupled with a volume of fluid element model. Simulation results correlated well with experimental results validating faster heating effects of headspace rather than insulation effects as reported in the literature. The organized velocity motions along the air-water interface were also shown. Practical Application: Canning is a universal and economic method for processing of food products, and presence of adequate headspace is required to form vacuum during sealing of the cans. Since sealing technology may not totally eliminate the entrapped gases, mainly air, headspace might affect heating rates in cans. This study demonstrated the increased heating rates in the presence of headspace in contrast with some studies in the literature. By applying the effect of headspace, required processing time for thermally processed foods can be reduced leading to more rapid processes and lower energy consumptions. PMID:21535663

  12. High-speed measurement of an air transect's temperature shift heated by laser beam

    NASA Astrophysics Data System (ADS)

    Li, WenYu; Jiang, ZongFu; Xi, Fengjie; Li, Qiang; Xie, Wenke

    2005-02-01

    Laser beam heat the air on the optic path, Beam-deflection optical tomography is a non-intrusive method to measure the 2-dimension temperature distribution in the transect. By means of linear Hartmann Sensor at the rate of 27kHz, the optic path was heated by a 2.7μm HF laser, continuous and high time resolution gradients of optic phase were obtained. the result of analysing and calculation showed the temperament shift in the heated beam path was not higher than 50K when the HF laser power was 9W. The experiment showed that it is a practical non-intrusive temperature shift measurement method for a small area aero-optical medium.

  13. Air-Cooled Heat Exchanger for High-Temperature Power Electronics: Preprint

    SciTech Connect

    Waye, S. K.; Lustbader, J.; Musselman, M.; King, C.

    2015-05-06

    This work demonstrates a direct air-cooled heat exchanger strategy for high-temperature power electronic devices with an application specific to automotive traction drive inverters. We present experimental heat dissipation and system pressure curves versus flow rate for baseline and optimized sub-module assemblies containing two ceramic resistance heaters that provide device heat fluxes. The maximum allowable junction temperature was set to 175 deg.C. Results were extrapolated to the inverter scale and combined with balance-of-inverter components to estimate inverter power density and specific power. The results exceeded the goal of 12 kW/L and 12 kW/kg for power density and specific power, respectively.

  14. Recent changes in air temperature, heat waves occurrences, and atmospheric circulation in Northern Africa

    NASA Astrophysics Data System (ADS)

    Fontaine, Bernard; Janicot, Serge; Monerie, Paul-Arthur

    2013-08-01

    study documents the time evolution of air temperature and heat waves occurrences over Northern Africa for the period 1979-2011. A significant warming (1°-3°C), appearing by the mid-1960s over Sahara and Sahel, is associated with higher/lesser frequency of warm/cold temperatures, as with longer duration and higher occurrences of heat waves. Heat waves episodes of at least 4 day duration have been examined after removing the long-term evolution. These episodes are associated with specific anomalies: (i) in spring, positive low-level temperature anomalies over the Sahel and Sahara; low and midlevel cyclonic rotation over Morocco associated with a Rossby wave pattern, lessening the Harmattan; more/less atmospheric moisture westward/eastward to 0°; upward/downward anomalies above the western/eastern regions associated with the Rossby wave pattern; (ii) in summer, a similar but weaker positive low-level temperature anomaly (up to 3°C); less moisture westward to 10°W, a cyclonic anomaly in central Sahel favoring the monsoon eastward to 0° and a midlevel anticyclonic anomaly over the Western Sahara, increasing southward the flux divergence associated with the African Easterly Jet. In March-May, two to three heat waves propagate eastward. They are preceded by an abnormal warm cell over Libya and southwesterlies over the West Sahara. A large trough stands over North Atlantic while midtropospheric subsidence and anticyclonic rotation reinforce over the continent, then migrates toward the Arabian peninsula in breaking up. These signals are spatially coherent and might suggest the role of short Rossby waves with an eastward group velocity and a baroclinic mode, possibly associated with jet stream deformation.

  15. Effects of a Circulating-water Garment and Forced-air Warming on Body Heat Content and Core Temperature

    PubMed Central

    Taguchi, Akiko; Ratnaraj, Jebadurai; Kabon, Barbara; Sharma, Neeru; Lenhardt, Rainer; Sessler, Daniel I.

    2005-01-01

    Background: Forced-air warming is sometimes unable to maintain perioperative normothermia. We therefore compared heat transfer, regional heat distribution, and core rewarming of forced-air warming with a novel circulating-water garment. Methods: Nine volunteers were each evaluated on two randomly ordered study days. They were anesthetized and cooled to a core temperature near 34°C. The volunteers were subsequently warmed for 2.5 hours with either a circulating-water garment or forced-air cover. Overall, heat balance was determined from the difference between cutaneous heat loss (thermal flux transducers) and metabolic heat production (oxygen consumption). Average arm and leg (peripheral) tissue temperatures were determined from 18 intramuscular needle thermocouples, 15 skin thermal flux transducers, and “deep” arm and foot thermometers. Results: Heat production (≈ 60 kcal/h) and loss (≈45 kcal/h) were similar with each treatment before warming. The increase in heat transfer across anterior portions of the skin surface was similar with each warming system (≈65 kcal/h). Forced-air warming had no effect on posterior heat transfer whereas circulating-water transferred 21 ± 9 kcal/h through the posterior skin surface after a half hour of warming. Over 2.5 h, circulating-water thus increased body heat content 56% more than forced air. Core temperatures thus increased faster than with circulating water than forced air, especially during the first hour, with the result that core temperature was 1.1 ± 0.7°C greater after 2.5 h (P < 0.001). Peripheral tissue heat content increased twice as much as core heat content with each device, but the core-to-peripheral tissue temperature gradient remained positive throughout the study. Conclusions: The circulating-water system transferred more heat than forced air, with the difference resulting largely from posterior heating. Circulating water rewarmed patients 0.4°C/h faster than forced air. A substantial peripheral

  16. Experimental Heat Transfer and Bulk Air Temperature Measurements for a Multipass Internal Cooling Model with Ribs and Bleed

    NASA Technical Reports Server (NTRS)

    Thurman, Douglas; Poinsatte, Philip

    2001-01-01

    An experimental study was made to obtain heat transfer and air temperature data for a simple three-leg serpentine test section that simulates a turbine blade internal cooling passage with trip strips and bleed holes. The objectives were to investigate the interaction of ribs and various bleed conditions on internal cooling and to gain a better understanding of bulk air temperature in an internal passage. Steady-state heat transfer measurements were obtained using a transient technique with thermochromic liquid crystals. Trip strips were attached to one wall of the test section and were located either between or near the bleed holes. The bleed holes, used for film cooling, were metered to simulate the effect of external pressure on the turbine blade. Heat transfer enhancement was found to be greater for ribs near bleed holes compared to ribs between holes, and both configurations were affected slightly by bleed rates upstream. Air temperature measurements were taken at discrete locations along one leg of the model. Average bulk air temperatures were found to remain fairly constant along one leg of the model.

  17. Experimental Heat Transfer and Bulk Air Temperature Measurements for a Multipass Internal Cooling Model with Ribs and Bleed

    NASA Technical Reports Server (NTRS)

    Thurman, Douglas; Poinsatte, Philip

    2000-01-01

    An experimental study was made to obtain heat transfer and air temperature data for a simple 3-leg serpentine test section that simulates a turbine blade internal cooling passage with trip strips and bleed holes. The objectives were to investigate the interaction of ribs and various bleed conditions on internal cooling and to gain a better understanding of bulk air temperature in an internal passage. Steady state heat transfer measurements were obtained using a transient technique with thermochromic liquid crystals. Trip strips were attached to one wall of the test section and were located either between or near the bleed holes. The bleed holes, used for film cooling, were metered to simulate the effect of external pressure on the turbine blade. Heat transfer enhancement was found to be greater for ribs near bleed holes compared to ribs between holes, and both configurations were affected slightly by bleed rates upstream. Air temperature measurements were taken at discreet locations along one leg of the model. Average bulk air temperatures were found to remain fairly constant along one leg of the model.

  18. Air heating system

    DOEpatents

    Primeau, John J.

    1983-03-01

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  19. Measurements of average heat-transfer and friction coefficients for subsonic flow of air in smooth tubes at high surface and fluid temperatures

    NASA Technical Reports Server (NTRS)

    Humble, Leroy V; Lowdermilk, Warren H; Desmon, Leland G

    1951-01-01

    An investigation of forced-convection heat transfer and associated pressure drops was conducted with air flowing through smooth tubes for an over-all range of surface temperature from 535 degrees to 3050 degrees r, inlet-air temperature from 535 degrees to 1500 degrees r, Reynolds number up to 500,000, exit Mach number up to 1, heat flux up to 150,000 btu per hour per square foot, length-diameter ratio from 30 to 120, and three entrance configurations. Most of the data are for heat addition to the air; a few results are included for cooling of the air. The over-all range of surface-to-air temperature ratio was from 0.46 to 3.5.

  20. Heat Transfer and Observation of Droplet-Surface Interactions During Air-Mist Cooling at CSP Secondary System Temperatures

    NASA Astrophysics Data System (ADS)

    Huerta L., Mario E.; Mejía G., M. Esther; Castillejos E., A. Humberto

    2016-04-01

    Air-mists are key elements in the secondary cooling of modern thin steel slab continuous casters. The selection of water, W, and air, A, flow rates, and pressures in pneumatic nozzles open up a wide spectrum of cooling possibilities by their influence on droplet diameter, d, droplet velocity, v, and water impact flux, w. Nonetheless, due to the harsh environment resulting from the high temperatures and dense mists involved, there is very little information about the correlation between heat flux extracted, - q, and mist characteristics, and none about the dynamics of drop-wall interactions. For obtaining both kinds of information, this work combines a steady-state heat flux measuring method with a visualization technique based on a high-speed camera and a laser illumination system. For wall temperatures, T w, between ~723 K and ~1453 K (~450 °C and ~1180 °C), which correspond to film boiling regime, it was confirmed that - q increases with increase in v, w, and T w and with decrease in d. It should be noticed, however, that the increase in w generally decreases the spray cooling effectiveness because striking drops do not evaporate efficiently due to the interference by liquid remains from previous drops. Visualization of the events happening close to the surface also reveals that the contact time of the liquid with the surface is very brief and that rebounding, splashing, sliding, and levitation of drops lead to ineffective contact with the surface. At the center of the mist footprint, where drops impinge nearly normal to the surface those with enough momentum establish intimate contact with it before forming a vapor layer that pushes away the remaining liquid. Also, some drops are observed sliding upon the surface or levitating close to it; these are drops with low momentum which are influenced by the deflecting air stream. At footprint positions where oblique impingement occurs, frequently drops are spotted sliding or levitating and liquid films flowing in

  1. Air circuit with heating pump

    NASA Astrophysics Data System (ADS)

    Holik, H.; Bauder, H. J.; Brugger, H.; Reinhart, A.; Spott, K. H.

    1980-12-01

    A pump which draws energy from exhaust air from a paper drying process to heat up the blow air was studied. The use of a heat pump instead of a steam heated exchanger can reduce primary energy consumption for blown air heating by more than half and the costs for air heating up to half. The amortization times for the heat pump extend from 5 to 10 years. Since in the pulp and paper industry, amortization times of less than two years are required for such relatively small investments, the heat pump so far is only used to heat blown air under highly favorable conditions. The rising energy prices shorten the heat pump amortization time. The 100% fuel price increase brought the heat pump with diesel engine drive already to very favorable amortization times of 2 to 5 years. A 20% increase will make the heat pump economically advantageous with an amortization time between 1 and 2 years.

  2. Correlation of Forced-convection Heat-transfer Data for Air Flowing in Smooth Platinum Tube with Long-approach Entrance at High Surface and Inlet-air Temperatures

    NASA Technical Reports Server (NTRS)

    Desmon, Leland G; Sams, Eldon W

    1950-01-01

    A heat-transfer investigation was conducted with air in an electrically heated platinum tube with long-approach entrance, inside diameter of 0.525 inch, and effective heat-transfer length of 24 inches over ranges of Reynolds number up to 320,000, average inside-tube-wall temperature up to 3053 degrees R, and inlet-air temperature up to 1165 degrees R. Correlation of data by the conventional Nusselt relation resulted in separation of data with tube-wall temperature. Good correlation was obtained, however, by use of a modified Reynolds number.

  3. High frequency-heated air turbojet

    NASA Technical Reports Server (NTRS)

    Miron, J. H. D.

    1986-01-01

    A description is given of a method to heat air coming from a turbojet compressor to a temperature necessary to produce required expansion without requiring fuel. This is done by high frequency heating, which heats the walls corresponding to the combustion chamber in existing jets, by mounting high frequency coils in them. The current transformer and high frequency generator to be used are discussed.

  4. Note: A heated-air curtain design using the Coanda effect to protect optical access windows in high-temperature, condensing, and corrosive stack environments.

    PubMed

    Williams, Gustavious Paul; Keenan, Thomas L; Herning, James; Kimblin, Clare; DiBenedetto, John; Anthony, Glen

    2011-01-01

    We present an air knife design for creating a heated air curtain to protect optical infrared access windows in high-temperature, condensing, and corrosive stack environments. The design uses the Coanda effect to turn the air curtain and to attach the air curtain to the window surface. The design was tested and verified on our 24 m stack and used extensively over a 6 yr period on several release stacks. During testing and subsequent use no detrimental changes to access window materials have been noted. This design allows stack monitoring without significantly affecting the stack flow profile or chemical concentration. PMID:21280868

  5. Note: A heated-air curtain design using the Coanda effect to protect optical access windows in high-temperature, condensing, and corrosive stack environments

    NASA Astrophysics Data System (ADS)

    Williams, Gustavious Paul; Keenan, Thomas L.; Herning, James; Kimblin, Clare; DiBenedetto, John; Anthony, Glen

    2011-01-01

    We present an air knife design for creating a heated air curtain to protect optical infrared access windows in high-temperature, condensing, and corrosive stack environments. The design uses the Coanda effect to turn the air curtain and to attach the air curtain to the window surface. The design was tested and verified on our 24 m stack and used extensively over a 6 yr period on several release stacks. During testing and subsequent use no detrimental changes to access window materials have been noted. This design allows stack monitoring without significantly affecting the stack flow profile or chemical concentration.

  6. Heat wave phenomenon in southern Slovakia: long-term changes and variability of daily maximum air temperature in Hurbanovo within the 1901-2009 period

    NASA Astrophysics Data System (ADS)

    Pecho, J.; Výberči, D.; Jarošová, M.; Å¥Astný, P. Å.

    2010-09-01

    Analysis of long-term changes and temporal variability of heat waves incidence in the region of southern Slovakia within the 1901-2009 periods is a goal of the presented contribution. It is expected that climate change in terms of global warming would amplify temporal frequency and spatial extension of extreme heat wave incidence in region of central Europe in the next few decades. The frequency of occurrence and amplitude of heat waves may be impacted by changes in the temperature regime. Heat waves can cause severe thermal environmental stress leading to higher hospital admission rates, health complications, and increased mortality. These effects arise because of one or more meteorology-related factors such as higher effective temperatures, sunshine, more consecutive hot days and nights, stagnation, increased humidity, increased pollutant emissions, and accelerated photochemical smog and particulate formation. Heat waves bring about higher temperatures, increased solar heating of buildings, inhibited ventilation, and a larger number of consecutive warm days and nights. All of these effects increase the thermal loads on buildings, reduce their ability to cool down, and increase indoor temperatures. The paper is focused to analysis of long-term and inter-decadal temporal variability of heat waves occurrence at meteorological station Hurbanovo (time-series of daily maximum air temperature available from at least 1901). We can characterize the heat waves by its magnitude and duration, hence both of these characteristics need to be investigated together using sophisticated statistical methods developed particularly for the analysis of extreme hydrological events. We investigated particular heat wave periods either from the severity point of view using HWI index. In the paper we also present the results of statistical analysis of daily maximum air temperature within 1901-2009 period. Apart from these investigation efforts we also focused on synoptic causes of heat wave

  7. The effectiveness of a heated air curtain

    NASA Astrophysics Data System (ADS)

    Frank, Daria

    2014-11-01

    Air curtains are high-velocity plane turbulent jets which are installed in the doorway in order to reduce the heat and the mass exchange between two environments. The air curtain effectiveness E is defined as the fraction of the exchange flow prevented by the air curtain compared to the open-door situation. In the present study, we investigate the effects of an opposing buoyancy force on the air curtain effectiveness. Such an opposing buoyancy force arises for example if a downwards blowing air curtain is heated. We conducted small-scale experiments using water as the working fluid with density differences created by salt and sugar. The effectiveness of a downwards blowing air curtain was measured for situations in which the initial density of the air curtain was less than both the indoor and the outdoor fluid density, which corresponds to the case of a heated air curtain. We compare the effectiveness of the heated air curtain to the case of the neutrally buoyant air curtain. It is found that the effectiveness starts to decrease if the air curtain is heated beyond a critical temperature. Furthermore, we propose a theoretical model to describe the dynamics of the buoyant air curtain. Numerical results obtained from solving this model corroborate our experimental findings.

  8. Additional double-wall roof in single-wall, closed, convective incubators: Impact on body heat loss from premature infants and optimal adjustment of the incubator air temperature.

    PubMed

    Delanaud, Stéphane; Decima, Pauline; Pelletier, Amandine; Libert, Jean-Pierre; Stephan-Blanchard, Erwan; Bach, Véronique; Tourneux, Pierre

    2016-09-01

    Radiant heat loss is high in low-birth-weight (LBW) neonates. Double-wall or single-wall incubators with an additional double-wall roof panel that can be removed during phototherapy are used to reduce Radiant heat loss. There are no data on how the incubators should be used when this second roof panel is removed. The aim of the study was to assess the heat exchanges in LBW neonates in a single-wall incubator with and without an additional roof panel. To determine the optimal thermoneutral incubator air temperature. Influence of the additional double-wall roof was assessed by using a thermal mannequin simulating a LBW neonate. Then, we calculated the optimal incubator air temperature from a cohort of human LBW neonate in the absence of the additional roof panel. Twenty-three LBW neonates (birth weight: 750-1800g; gestational age: 28-32 weeks) were included. With the additional roof panel, R was lower but convective and evaporative skin heat losses were greater. This difference can be overcome by increasing the incubator air temperature by 0.15-0.20°C. The benefit of an additional roof panel was cancelled out by greater body heat losses through other routes. Understanding the heat transfers between the neonate and the environment is essential for optimizing incubators. PMID:27387899

  9. Effects of radiational heating at low air temperature on water balance, cold tolerance, and visible injury of red spruce foliage.

    PubMed

    Hadley, J L; Amundson, R G

    1992-07-01

    Recent studies have shown that winter needle mortality in red spruce (Picea rubens Sarg.) is increased by exposure to direct solar radiation, possibly as a result of photo-oxidative damage, accelerated winter desiccation, or reduced cold tolerance due to heating of sun-exposed needles. In an experiment at controlled subfreezing air temperatures of -10 to -20 degrees C, visible radiation was less effective than infrared radiation in producing needle desiccation and visible injury during freeze-thaw cycles. However, visible radiation produced a red-brown color in injured needles, similar to natural winter injury, whereas injured needles exposed to infrared radiation were yellow and injured needles kept in darkness were dark brown. Thus, visible radiation was necessary to produce the red-brown color of damaged needles, but not the injury itself. Needle desiccation was not strongly correlated with visible injury, but the pattern of variation in visible injury among trees and the positive correlation between electrolyte leakage and visible injury suggested that freezing damage following freeze-thaw cycles might cause the visible injury. This was confirmed by a second experiment that showed loss of cold hardiness in needles thawed by radiational heating for six consecutive days. Even with a constant nighttime temperature of -10 degrees C, six days of radiational heating of needles to above freezing caused a small (2.8 degrees C) mean decrease in needle cold tolerance, as measured by electrolyte leakage. Continuous darkness at -10 degrees C for six days resulted in an estimated 5.6 degrees C mean increase in needle cold tolerance. Freezing injury stimulated desiccation: cooling at 4 degrees C h(-1) to -43 or -48 degrees C increased the dehydration rate of isolated shoots by a factor of two to three during the first day after thawing. Within three days at 15 to 22 degrees C and 50% relative humidity, the mean water content of these shoots fell to 60% or lower, compared to

  10. Experimental Investigation of the Change in Temperature at the Center of a Water Droplet in the Process of Evaporation in Heated Air

    NASA Astrophysics Data System (ADS)

    Zakharevich, A. V.; Kuznetsov, G. V.; Strizhak, P. A.

    2016-05-01

    The paper presents the results of an experimental investigation of the change in the temperature at the interface between water and a thermocouple junction (of diameter 1 mm) in a droplet (initial radius 1.5-3 mm) in the process of heating and evaporation of the latter in an air stream (of temperature 350-800 K at the velocity of motion 0.1-3.5 m/s). The lifetimes of droplets (of their complete evaporation) have been determined. It is shown that the temperature at the droplet center changes by no more than 10 K in the process of evaporation at gas temperatures of less than 500 K. At higher temperatures of the external gas medium the droplet is heated intensely (the temperature field is homogeneous).

  11. Low-cost multi-vehicle air temperature measurements for heat load assessment in local-scale climate applications

    NASA Astrophysics Data System (ADS)

    Zuvela-Aloise, Maja; Weyss, Gernot; Aloise, Giulliano; Mifka, Boris; Löffelmann, Philemon; Hollosi, Brigitta; Nemec, Johana; Vucetic, Visnja

    2014-05-01

    radiation protection. Duration of each measurement tour lasted approximately 2 hours covering the distances in radius of about 10-30 km, logging the air temperature and geographical positioning in intervals of 1-5 seconds. The collected data were aggregated on a 100 m horizontal resolution grid and compared with the local-scale climate modelling simulations with the urban climate model MUKLIMO3 initialized with the atmospheric conditions for a given day. Both measurement and modelling results show similar features for distinct local climate zones (built-up area, near water environment, forest, parks, agricultural area, etc). The spatial gradients in temperature can be assigned to different orographical and land use characteristics. Even if many ambiguities remain in both modelling and the measurement approach, the collected data provide useful information for local-scale heat assessment and can serve as a base to increase the model reliability, especially in areas with low data coverage.

  12. Two-dimensional model of the air flow and temperature distribution in a cavity-type heat receiver of a solar stirling engine

    SciTech Connect

    Makhkamov, K.K.; Ingham, D.B.

    1999-11-01

    A theoretical study on the air flow and temperature in the heat receiver, affected by free convection, of a Stirling Engine for a Dish/Stirling Engine Power System is presented. The standard {kappa}-{epsilon} turbulence model for the fluid flow has been used and the boundary conditions employed were obtained using a second level mathematical model of the Stirling Engine working cycle. Physical models for the distribution of the solar insolation from the Concentrator on the bottom and side walls of the cavity-type heat receiver have been taken into account. The numerical results show that most of the heat losses in the receiver are due to re-radiation from the cavity and conduction through the walls of the cavity. It is in the region of the boundary of the input window of the heat receiver where there is a sensible reduction in the temperature in the shell of the heat exchangers and this is due to the free convection of the air. Further, the numerical results show that convective heat losses increase with decreasing tilt angle.

  13. Impact of High Temperature Forced Air Heating of Navel Oranges on Quality Attributes, Sensory Parameters, and Flavor Volatiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Navel oranges were subjected to HTFA treatment in order to evaluate the effect on both quality and sensory attributes of a treatment protocol designed to disinfest citrus of Anastrepha spp. fruit flies. The treatment consisted of heating the fruit to a core temperature of 44°C and then holding it th...

  14. Spatio-temporal reconstruction of air temperature maps and their application to estimate rice growing season heat accumulation using multi-temporal MODIS data*

    PubMed Central

    Zhang, Li-wen; Huang, Jing-feng; Guo, Rui-fang; Li, Xin-xing; Sun, Wen-bo; Wang, Xiu-zhen

    2013-01-01

    The accumulation of thermal time usually represents the local heat resources to drive crop growth. Maps of temperature-based agro-meteorological indices are commonly generated by the spatial interpolation of data collected from meteorological stations with coarse geographic continuity. To solve the critical problems of estimating air temperature (T a) and filling in missing pixels due to cloudy and low-quality images in growing degree days (GDDs) calculation from remotely sensed data, a novel spatio-temporal algorithm for T a estimation from Terra and Aqua moderate resolution imaging spectroradiometer (MODIS) data was proposed. This is a preliminary study to calculate heat accumulation, expressed in accumulative growing degree days (AGDDs) above 10 °C, from reconstructed T a based on MODIS land surface temperature (LST) data. The verification results of maximum T a, minimum T a, GDD, and AGDD from MODIS-derived data to meteorological calculation were all satisfied with high correlations over 0.01 significant levels. Overall, MODIS-derived AGDD was slightly underestimated with almost 10% relative error. However, the feasibility of employing AGDD anomaly maps to characterize the 2001–2010 spatio-temporal variability of heat accumulation and estimating the 2011 heat accumulation distribution using only MODIS data was finally demonstrated in the current paper. Our study may supply a novel way to calculate AGDD in heat-related study concerning crop growth monitoring, agricultural climatic regionalization, and agro-meteorological disaster detection at the regional scale. PMID:23365013

  15. Spatio-temporal reconstruction of air temperature maps and their application to estimate rice growing season heat accumulation using multi-temporal MODIS data.

    PubMed

    Zhang, Li-wen; Huang, Jing-feng; Guo, Rui-fang; Li, Xin-xing; Sun, Wen-bo; Wang, Xiu-zhen

    2013-02-01

    The accumulation of thermal time usually represents the local heat resources to drive crop growth. Maps of temperature-based agro-meteorological indices are commonly generated by the spatial interpolation of data collected from meteorological stations with coarse geographic continuity. To solve the critical problems of estimating air temperature (T(a)) and filling in missing pixels due to cloudy and low-quality images in growing degree days (GDDs) calculation from remotely sensed data, a novel spatio-temporal algorithm for T(a) estimation from Terra and Aqua moderate resolution imaging spectroradiometer (MODIS) data was proposed. This is a preliminary study to calculate heat accumulation, expressed in accumulative growing degree days (AGDDs) above 10 °C, from reconstructed T(a) based on MODIS land surface temperature (LST) data. The verification results of maximum T(a), minimum T(a), GDD, and AGDD from MODIS-derived data to meteorological calculation were all satisfied with high correlations over 0.01 significant levels. Overall, MODIS-derived AGDD was slightly underestimated with almost 10% relative error. However, the feasibility of employing AGDD anomaly maps to characterize the 2001-2010 spatio-temporal variability of heat accumulation and estimating the 2011 heat accumulation distribution using only MODIS data was finally demonstrated in the current paper. Our study may supply a novel way to calculate AGDD in heat-related study concerning crop growth monitoring, agricultural climatic regionalization, and agro-meteorological disaster detection at the regional scale. PMID:23365013

  16. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, A.; Robinson, J. C. R.; Leijnse, H.; Steeneveld, G. J.; Horn, B. K. P.; Uijlenhoet, R.

    2013-08-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. A straightforward heat transfer model is employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas.

  17. Development of a Novel Home Cogeneration System using a Polymer Electrolyte Fuel Cell which Enabled Air Conditioning by Its Low-TemperatureWaste Heat

    NASA Astrophysics Data System (ADS)

    Nishimura, Nobuya; Honda, Kuniaki; Kawakami, Ryuichiro; Nishikawa, Toshimichi; Iyota, Hiroyuki; Nomura, Tomohiro

    Micro-scale distributed power generation system, which means a micro-cogeneration system in almost cases, has been paid a great attention from a standpoint of saving fossil fuels' consumption and preventing global warming. Especially, polymer electrolyte fuel cell (PEFC) is considered the most promising power generation system for small scale commercial use and residential use. In the PEFC cogeneration system, small amount of waste heat at low temperature from a cell stack is almost used to produce hot water. Therefore, in the paper, we proposed a new heat utilization method of the waste heat for air conditioning. In the proposed home cogeneration system, absorption refrigerator is introduced in order to produce chilled water. Thermal performances of the proposed system have been analyzed by a computer simulation which was developed for the prediction both of power generation characteristics of PEFC and absorption refrigerator's behavior.

  18. Separating the influence of projected changes in air temperature and wind on patterns of sea level change and ocean heat content

    NASA Astrophysics Data System (ADS)

    Saenko, Oleg A.; Yang, Duo; Gregory, Jonathan M.; Spence, Paul; Myers, Paul G.

    2015-08-01

    We present ocean model sensitivity experiments aimed at separating the influence of the projected changes in the "thermal" (near-surface air temperature) and "wind" (near-surface winds) forcing on the patterns of sea level and ocean heat content. In the North Atlantic, the distribution of sea level change is more due to the "thermal" forcing, whereas it is more due to the "wind" forcing in the North Pacific; in the Southern Ocean, the "thermal" and "wind" forcing have a comparable influence. In the ocean adjacent to Antarctica the "thermal" forcing leads to an inflow of warmer waters on the continental shelves, which is somewhat attenuated by the "wind" forcing. The structure of the vertically integrated heat uptake is set by different processes at low and high latitudes: at low latitudes it is dominated by the heat transport convergence, whereas at high latitudes it represents a small residual of changes in the surface flux and advection of heat. The structure of the horizontally integrated heat content tendency is set by the increase of downward heat flux by the mean circulation and comparable decrease of upward heat flux by the subgrid-scale processes; the upward eddy heat flux decreases and increases by almost the same magnitude in response to, respectively, the "thermal" and "wind" forcing. Regionally, the surface heat loss and deep convection weaken in the Labrador Sea, but intensify in the Greenland Sea in the region of sea ice retreat. The enhanced heat flux anomaly in the subpolar Atlantic is mainly caused by the "thermal" forcing.

  19. The heat transfer of cooling fins on moving air

    NASA Technical Reports Server (NTRS)

    Doetsch, Hans

    1935-01-01

    The present report is a comparison of the experimentally defined temperature and heat output of cooling fins in the air stream with theory. The agreement is close on the basis of a mean coefficient of heat transfer with respect to the total surface. A relationship is established between the mean coefficient of heat transfer, the dimensions of the fin arrangement, and the air velocity.

  20. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James C. R.; Leijnse, Hidde; Steeneveld, Gert-Jan; Horn, Berthold K. P.; Uijlenhoet, Remko

    2014-05-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. It has been shown that a straightforward heat transfer model can be employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. The methodology has been applied to Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree

  1. Modelling of heat and mass transfer in a granular medium during high-temperature air drying. Effect of the internal gas pressure

    NASA Astrophysics Data System (ADS)

    Othmani, Hammouda; Hassini, Lamine; Lamloumi, Raja; El Cafsi, Mohamed Afif

    2016-02-01

    A comprehensive internal heat and water transfer model including the gas pressure effect has been proposed in order to improve the industrial high-temperature air drying of inserts made of agglomerated sand. In this model, the internal gas phase pressure effect was made perfectly explicit, by considering the liquid and vapour transfer by filtration and the liquid expulsion at the surface. Wet sand enclosed in a tight cylindrical glass bottle dried convectively at a high temperature was chosen as an application case. The model was validated on the basis of the experimental average water content and core temperature curves for drying trials at different operating conditions. The simulations of the spatio-temporal distribution of internal gas pressure were performed and interpreted in terms of product potential damage. Based on a compromise between the drying time and the pressure increase, a simple drying cycle was implemented in order to optimize the drying process.

  2. Effects of mineral nutrition conditions on heat tolerance of chufa (Сyperus esculentus L.) plant communities to super optimal air temperatures in the BTLSS

    NASA Astrophysics Data System (ADS)

    Shklavtsova, E. S.; Ushakova, S. A.; Shikhov, V. N.; Anishchenko, O. V.

    2014-09-01

    The use of mineralized human wastes as a basis for nutrient solutions will increase the degree of material closure of bio-technical human life support systems. As stress tolerance of plants is determined, among other factors, by the conditions under which they have been grown before exposure to a stressor, the purpose of the study is to investigate the level of tolerance of chufa (Cyperus esculentus L.) plant communities grown in solutions based on mineralized human wastes to a damaging air temperature, 45 °C. Experiments were performed with 30-day-old chufa plant communities grown hydroponically, on expanded clay aggregate, under artificial light, at 690 μmol m-2 s-1 PAR and at a temperature of 25 °C. Plants were grown in Knop’s solution and solutions based on human wastes mineralized according to Yu.A. Kudenko’s method, which contained nitrogen either as ammonium and urea or as nitrates. The heat shock treatment lasted 20 h at 690 and 1150 μmol m-2 s-1 PAR. Chufa heat tolerance was evaluated based on parameters of CO2 gas exchange, the state of its photosynthetic apparatus (PSA), and intensity of peroxidation of leaf lipids. Chufa plants grown in the solutions based on mineralized human wastes that contained ammonium and urea had lower heat tolerance than plants grown in standard mineral solutions. Heat tolerance of the plants grown in the solutions based on mineralized human wastes that mainly contained nitrate nitrogen was insignificantly different from the heat tolerance of the plants grown in standard mineral solutions. A PAR intensity increase from 690 μmol m-2 s-1 to 1150 μmol m-2 s-1 enhanced heat tolerance of chufa plant communities, irrespective of the conditions of mineral nutrition under which they had been grown.

  3. Relationships Between the Bulk-Skin Sea Surface Temperature Difference, Wind, and Net Air-Sea Heat Flux

    NASA Technical Reports Server (NTRS)

    Emery, William J.; Castro, Sandra L.; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    The primary purpose of this project was to evaluate and improve models for the bulk-skin temperature difference to the point where they could accurately and reliably apply under a wide variety of environmental conditions. To accomplish this goal, work was conducted in three primary areas. These included production of an archive of available data sets containing measurements of the skin and bulk temperatures and associated environmental conditions, evaluation of existing skin layer models using the compiled data archive, and additional theoretical work on the development of an improved model using the data collected under diverse environmental conditions. In this work we set the basis for a new physical model of renewal type, and propose a parameterization for the temperature difference across the cool skin of the ocean in which the effects of thermal buoyancy, wind stress, and microscale breaking are all integrated by means of the appropriate renewal time scales. Ideally, we seek to obtain a model that will accurately apply under a wide variety of environmental conditions. A summary of the work in each of these areas is included in this report. A large amount of work was accomplished under the support of this grant. The grant supported the graduate studies of Sandra Castro and the preparation of her thesis which will be completed later this year. This work led to poster presentations at the 1999 American Geophysical Union Fall Meeting and 2000 IGARSS meeting. Additional work will be presented in a talk at this year's American Meteorological Society Air-Sea Interaction Meeting this May. The grant also supported Sandra Castro during a two week experiment aboard the R/P Flip (led by Dr. Andrew Jessup of the Applied Physics Laboratory) to help obtain additional shared data sets and to provide Sandra with a fundamental understanding of the physical processes needed in the models. In a related area, the funding also partially supported Dr. William Emery and Daniel

  4. Method for Calculation of Laminar Heat Transfer in Air Flow Around Cylinders of Arbitrary Cross Section (including Large Temperature Differences and Transpiration Cooling)

    NASA Technical Reports Server (NTRS)

    Eckert, E R; Livingood, John N B

    1953-01-01

    The solution of heat-transfer problems has become vital for many aeronautical applications. The shapes of objects to be cooled can often be approximated by cylinders of various cross sections with flow normal to the axis as, for instance heat transfer on gas-turbine blades and on air foils heated for deicing purposes. A laminar region always exists near the stagnation point of such objects. A method previously presented by E. R. G. Eckert permits the calculation of local heat transfer around the periphery of cylinders of arbitrary cross section in the laminar region for flow of a fluid with constant property values with an accuracy sufficient for engineering purposes. The method is based on exact solutions of the boundary-layer equations for incompressible wedge-type flow and on the postulate that at any point on the cylinder the boundary-layer growth is the same as that on a wedge with comparable flow conditions. This method is extended herein to take into account the influence of large temperature differences between the cylinder wall and the flow as well as the influence of transpiration cooling when the same medium as the outside flow is used as coolant.

  5. Mechanisms of Air Pollution Transport in Urban Valleys as a Result of the Interplay Between the Temperature Inversion and the Urban Heat Island Effect

    NASA Astrophysics Data System (ADS)

    Rendón, A.; Wirth, V.; Salazar, J. F.; Palacio, C. A.; Brötz, B.

    2014-12-01

    Urban valleys can experience serious air pollution problems of concern for public health. The venting of pollution out of an urban valley is limited by the topography and can be further restricted by low-level temperature inversions and/or local circulations such as those induced by the Urban Heat Island (UHI) effect. The combined effects of a temperature inversion and a UHI on the dynamics of the atmospheric boundary layer and the associated mechanisms of air pollution transport in urban valleys were studied through idealized simulations performed with the EULAG model. Three different aspects were considered: the expansion of the urban area, variations in surface heating owing to topographic shading, and variations of the topography. The results show that different mechanisms of air pollution transport may arise in urban valleys as a result of the interplay between the temperature inversion, the slope flows, and the UHI. Three types of interrelated mechanisms of air pollution transport were identified. Type A describes the transport of pollutants by the slope winds, which can reduce pollution in the lower levels or reinforce the trapping of pollutants below the inversion layer depending on the UHI effect on weakening or reversing the upslope winds. Type B describes closed slope-flow circulations that are likely to occur below an inversion layer near the base of the sidewalls of valleys where an urban area is concentrated on the valley floor. These circulations can develop when upslope winds are detrained toward the center due to the inversion layer, or when the UHI forces downslope winds linked to ascending flows that are also restricted by the inversion layer. Pollutants can remain trapped within these circulation cells that have been termed smog traps. Type C describes a low-level UHI-induced circulation that tends to concentrate pollutants in the valley center and may cause the development of elevated polluted layers below the inversion layer. The persistence

  6. Undulator Hall Air Temperature Fault Scenarios

    SciTech Connect

    Sevilla, J.; Welch, J.; /SLAC

    2010-11-17

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  7. Heating, ventilation and air conditioning systems

    SciTech Connect

    Kyle, D.M.; Sullivan, R.A.

    1993-02-01

    A study is made of several outstanding issues concerning the commercial development of environmental control systems for electric vehicles (EVs). Engineering design constraints such as federal regulations and consumer requirements are first identified. Next, heating and cooling loads in a sample automobile are calculated using a computer model available from the literature. The heating and cooling loads are then used as a basis for estimating the electrical consumption that is to be expected for heat pumps installed in EVs. The heat pump performance is evaluated using an automobile heat pump computer model which has been developed recently at Oak Ridge National Laboratory (ORNL). The heat pump design used as input to the model consists of typical finned-tube heat exchangers and a hermetic compressor driven by a variable-speed brushless dc motor. The simulations suggest that to attain reasonable system efficiencies, the interior heat exchangers that are currently installed as automobile air conditioning will need to be enlarged. Regarding the thermal envelope of the automobile itself, calculations are made which show that considerable energy savings will result if steps are taken to reduce {open_quote}hot soak{close_quote} temperatures and if the outdoor air ventilation rate is well controlled. When these changes are made, heating and cooling should consume less than 10% of the total stored electrical energy for steady driving in most U.S. climates. However, this result depends strongly upon the type of driving: The fraction of total power for heating and cooling ({open_quote}range penalty{close_quote}) increases sharply for driving scenarios having low average propulsion power, such as stop-and-go driving.

  8. Heat Recovery Ventilation for Housing: Air-to-Air Heat Exchangers.

    ERIC Educational Resources Information Center

    Corbett, Robert J.; Miller, Barbara

    The air-to-air heat exchanger (a fan powered ventilation device that recovers heat from stale outgoing air) is explained in this six-part publication. Topic areas addressed are: (1) the nature of air-to-air heat exchangers and how they work; (2) choosing and sizing the system; (3) installation, control, and maintenance of the system; (4) heat…

  9. Generalized Charts for Determination of Pressure Drop of a High-speed Compressible Fluid in Heat-exchanger Passages I : Air Heated in Smooth Passages of Constant Area with Constant Wall Temperature

    NASA Technical Reports Server (NTRS)

    Valerino, Michael F

    1948-01-01

    In the present paper an analysis is made of the compressible-flow variations occurring in heat-exchanger passages. The results of the analysis describe the flow and heating characteristics for which specific flow passages can be treated as segments of generalized flow systems. The graphical representation of the flow variations in the generalized flow systems can then be utilized as working charts to determine directly the pressure changes occurring in any specific flow passage. On the basis of these results, working charts are constructed to handle the case of air heated at constant wall temperature under turbulent-flow conditions. A method is given of incorporating the effect on the heat-exchanger flow process of high temperature differential between passage wall and fluid as based on recent NACA experimental data. Good agreement is obtained between the experimental and the chart pressure-drop values for passage-wall average temperatures as high as 1752 degrees R (experimental limit) and for flow Mach numbers ranging from 0.32 to 1.00 (choke) at the passage exit.

  10. Forced air heat sink apparatus

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E. (Inventor)

    1989-01-01

    A high efficiency forced air heat sink assembly employs a split feed transverse flow configuration to minimize the length of the air flow path through at least two separated fin structures. Different embodiments use different fin structure material configurations including honeycomb, corrugated and serpentine. Each such embodiment uses a thermally conductive plate having opposed exterior surfaces; one for receiving a component to be cooled and one for receiving the fin structures. The serpentine structured fin embodiment employs a plurality of fin supports extending from the plate and forming a plurality of channels for receiving the fin structures. A high thermal conductivity bondant, such as metal-filled epoxy, may be used to bond the fin structures to either the plate or the fin supports. Dip brazing and soldering may also be employed depending upon the materials selected.

  11. Simulation model air-to-air plate heat exchanger

    SciTech Connect

    Wetter, Michael

    1999-01-01

    A simple simulation model of an air-to-air plate heat exchanger is presented. The model belongs to a collection of simulation models that allows the eflcient computer simulation of heating, ventilation, and air-conditioning (HVAC) systems. The main emphasis of the models is to shorten computation time and to use only input data that are known in the design process of an HVAC system. The target of the models is to describe the behavior of HVAC components in the part-load operation mode, which is becoming increasingly important in energy eficient HVAC systems. The models are intended to be used for yearly energy calculations or load calculations with time steps of about 10 minutes or larger. Short- time dynamic effects, which are of interest for different aspects of control theory, are neglected. The part-load behavior is expressed in terms of the nominal condition and the dimensionless variation of the heat transfer with change of mass flow and temperature. The effectiveness- NTU relations are used to parametrize the convective heat transfer at nominal conditions and to compute the part-load condition. If the heat transfer coefficients on the two exchanger sides are not equal (i. e. due to partial bypassing of air), their ratio can be easily calculated and set as a parameter. The model is static and uses explicit equations only. The explicit model formulation ensures short computation time and numerical stability, which allows using the model with sophisticated engineering methods like automatic system optimization. This paper fully outlines the algorithm description and its simplifications. It is not tailored for any particular simulation program to ensure easy implementation in any simulation program.

  12. Cold Climate and Retrofit Applications for Air-to-Air Heat Pumps

    SciTech Connect

    Baxter, Van D

    2015-01-01

    Air source heat pumps (ASHP) including air-to-air ASHPs are easily applied to buildings almost anywhere for new construction as well as retrofits or renovations. They are widespread in milder climate regions but their use in cold regions is hampered due to low heating efficiency and capacity at cold outdoor temperatures. Retrofitting air-to-air ASHPs to existing buildings is relatively easy if the building already has an air distribution system. For buildings without such systems alternative approaches are necessary. Examples are ductless, minisplit heat pumps or central heat pumps coupled to small diameter, high velocity (SDHV) air distribution systems. This article presents two subjects: 1) a summary of R&D investigations aimed at improving the cold weather performance of ASHPs, and 2) a brief discussion of building retrofit options using air-to-air ASHP systems.

  13. Balloons and Bottles: Activities on Air-Sea Heat Exchange.

    ERIC Educational Resources Information Center

    Murphree, Tom

    1998-01-01

    Presents an activity designed to demonstrate how heating and cooling an air mass affects its temperature, volume, density, and pressure. Illustrates how thermal energy can cause atmospheric motion such as expansion, contraction, and winds. (Author/WRM)

  14. Air temperature variation across the seed cotton dryer mixpoint

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eighteen tests were conducted in six gins in the fall of 2008 to measure air temperature variation within various heated air seed cotton drying systems with the purpose of: checking validation of recommendations by a professional engineering society and measuring air temperature variation across the...

  15. Possible Economies in Air-Conditioning by Accepting Temperature Swings.

    ERIC Educational Resources Information Center

    Loudon, A. G.; Petherbridge, P.

    Public building air conditioning systems, which use constant and varying heat and cooling loads, are compared and investigated. Experiments indicated that constant temperature controls based on outside air temperature alone were inefficient. Ventilating a building with outside air and the methods of doing so are cited as being the most economical…

  16. AIR TEMPERATURE DISTRIBUTION IN SEED COTTON DRYING SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ten tests were conducted in the fall of 2007 to measure air temperature variation within various heated air seed cotton drying systems with the purpose of: checking validation of recommendations by a professional engineering society and measuring air temperature variation across the airflow ductwork...

  17. A method to determine true air temperature fluctuations in clouds with liquid water fraction and estimate water droplet effect on the calculations of the spectral structure of turbulent heat fluxes in cumulus clouds based on aircraft data

    NASA Astrophysics Data System (ADS)

    Strunin, Alexander M.; Zhivoglotov, Dmitriy N.

    2014-03-01

    Liquid water droplets could distort aircraft temperature measurements in clouds, leading to errors in calculated heat fluxes and incorrect flux distribution pattern. The estimation of cloud droplet effect on the readings of the high-frequency aircraft thermometer employed at the Central Aerological Observatory (CAO) was based on an experimental study of the sensor in a wind tunnel, using an air flow containing liquid water droplets. Simultaneously, calculations of the distribution of speed and temperature in a flow through the sensitive element of the sensor were fulfilled. This permitted estimating the coefficient of water content effect on temperature readings. Another way of estimating cloud droplet effect was based on the analysis of data obtained during aircraft observations of cumulus clouds in a tropical zone (Cuba Island). As a result, a method of correcting air temperature and recovering true air temperature fluctuations inside clouds was developed. This method has provided consistent patterns of heat flux distribution in a cumulus area. Analysis of the results of aircraft observations of cumulus clouds with temperature correction fulfilled has permitted investigation of the spectral structure of the fields of air temperature and heat fluxes to be performed in cumulus zones based on wavelet transformation. It is shown that mesoscale eddies (over 500 m in length) were the main factor of heat exchange between a cloud and the ambient space. The role of turbulence only consisted in mixing inside the cloud.

  18. Heat Pipe Precools and Reheats Dehumidified Air

    NASA Technical Reports Server (NTRS)

    Koning, R. C.; Boggs, W. H.; Barnett, U. R.; Dinh, K.

    1986-01-01

    Precooling and reheating by heat pipe reduces operating costs of air-conditioning. Warm air returned from air-conditioned space and cooled air supplied are precooled and reheated, respectively, by each other through a heat pipe. Heat-pipe technology brought to bear on problem of conserving airconditioning energy in hot, humid environments. Any increase in the cost of equipment due to installation of heat-pipe heat exchangers expected to be recovered in energy savings during service period of 2 years or less.

  19. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Virbulis, J.

    2016-04-01

    Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  20. Mapping Temperatures On Heat Pipes

    NASA Technical Reports Server (NTRS)

    Gunnerson, Fred S.; Thorncroft, Glen E.

    1993-01-01

    Paints containing thermochromic liquid crystals (TLC's) used to map temperatures on heat pipes and thermosyphons. Color of thermally sensitive TLC coat changes reversibly upon heating or cooling. Each distinct color indicates particular temperature. Transient and steady-state isotherms become visible as colored bands. Positions and movements of bands yield information about startup transients, steady-state operation, cooler regions containing noncondensible gas, and other phenomena relevant to performance of heat pipe.

  1. Infrared Heating for Temperature Free-Air Controlled Enhancement (T-FACE) of Open-Field Plots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global warming has been predicted as a consequence of the Earth’s rising atmospheric CO2 concentration. Both the higher concentrations of CO2 and higher temperatures are likely to affect the productivity of agricultural crops in the future. To study these phenomena under natural field conditions wit...

  2. Heat Content and Temperature of the Ocean

    NASA Astrophysics Data System (ADS)

    Ponte, Rui M.

    The global ocean is a vast body of water covering approximately two thirds of Earth's surface and having an average depth around 4,000 m. Temperatures in the ocean can range from a balmy 30°C in the surface layers of the tropics to an icy cold -2°C in polar regions and at abyssal depths. Apart from the strong spatial variability, water temperatures at a place also change on all time scales, from hours to decades. Variability in surface water temperatures affects air-sea heat exchange and is an important factor determining the nature and strength of ocean-atmosphere coupling. Changes in ocean temperatures imply expansion or contraction of the water column and can thus have a major impact on sea level. And given the large heat capacity of seawater compared to that of air and the large mass of the oceans compared to that of the atmosphere, relatively small fluctuations in oceanic temperatures imply substantial changes in heat content, which are essential for properly accounting for the planet's energy balance. As such, taking the temperature of the oceans and determining changes in its heat content is an essential diagnostic of the state of Earth's climate and the overall health of our planet.

  3. Teaching about Heat and Temperature.

    ERIC Educational Resources Information Center

    Carlton, Kevin

    2000-01-01

    Finds that students encountering thermal physics at the introductory level often have difficulty distinguishing between heat and temperature. Argues that challenging misconceptions through experiment and discussion can quickly enable students to develop an understanding of thermal physics. (Author/CCM)

  4. The contrast model method for the thermodynamical calculation of air-air wet heat exchanger

    NASA Astrophysics Data System (ADS)

    Yuan, Xiugan; Mei, Fang

    1989-02-01

    The 'contrast model' method thermodynamic calculation of air-air crossflow wet heat exchangers with initial air condensation is presented. Contrast-model equations are derived from the actual heat exchanger equations as well as imaginary ones; it is then possible to proceed to a proof that the enthalpy efficiency of the contrast model equations is similar to the temperature efficiency of the dry heat exchanger. Conditions are noted under which it becomes possible to unify thermodynamic calculations for wet and dry heat exchangers.

  5. HEATING AND AIR CONDITIONING EDUCATIONAL PROGRAM.

    ERIC Educational Resources Information Center

    Lennox Industries, Inc., Marshalltown, IA.

    INCREASED MOTIVATION, INCREASED INITIAL COMPREHENSION, AND INCREASED RETENTION ARE THE PRIME GOALS OF THE LENNOX HEATING AND AIR CONDITIONING EDUCATION PROGRAM. IT IS A COMPLETE PROGRAM WITH ALL THE TEACHING TOOLS REQUIRED TO PRODUCE A KNOWLEDGEABLE HEATING AND AIR-CONDITIONING INSTALLER OR SERVICE MAN. THIS INSTRUCTIONAL PROGRAM IS DESIGNED…

  6. Air Conditioning and Heating Technology--II.

    ERIC Educational Resources Information Center

    Gattone, Felix

    Twenty-eight chapters and numerous drawings provide information for instructors and students of air conditioning and heating technology. Chapter 1 lists the occupational opportunities in the field. Chapter 2 covers the background or development of the industry of air conditioning and heating technology. Chapter 3 includes some of the principle…

  7. Air leakage in residential solar heating systems

    NASA Astrophysics Data System (ADS)

    Shingleton, J. G.; Cassel, D. E.; Overton, R. L.

    1981-02-01

    A series of computer simulations was performed to evaluate the effects of component air leakage on system thermal performance for a typical residential solar heating system, located in Madison, Wisconsin. Auxiliary energy required to supplement solar energy for space heating was determined using the TRNSYS computer program, for a range of air leakage rates at the solar collector and pebble bed storage unit. The effects of heat transfer and mass transfer between the solar equipment room and the heated building were investigated. The effect of reduced air infiltration into the building due to pressurized by the solar air heating system were determined. A simple method of estimating the effect of collector array air leakage on system thermal performance was evaluated, using the f CHART method.

  8. Maintenance requirements in solar air heating systems

    SciTech Connect

    Lof, G.O.G.; Junk, J.P.

    1983-06-01

    The maintenance requirements of a well designed and constructed solar air-heating system are comparable to those of conventional, forced warm air heating systems. One of the major reasons for this low maintenance is the absence of problems associated with corrosion, freezing, boiling, and leakage often encountered in solar liquid systems. Experience shows that most problems are due to overly complex designs, control problems, faulty installation, and adjustment of the moving parts in the system. Operational histories show negligible requirements for maintenance of air collectors, pebble-bed heat-storage bins, and system ducts and connections. Good quality control in the manufacture and installation of airtight collectors, heat-storage bins, and interconnecting ductwork is essential, however. The paper includes a description of solar air-heating systems and their characteristics, an evaluation of the various maintenance requirements, and several case histories illustrating the handling of solar air system maintenance.

  9. High Temperature Heat Exchanger Project

    SciTech Connect

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  10. Heat Waves, Urban Vegetation, and Air Pollution

    NASA Astrophysics Data System (ADS)

    Churkina, G.; Grote, R.; Butler, T. M.

    2014-12-01

    Fast-track programs to plant millions of trees in cities around the world aim at the reduction of summer temperatures, increase carbon storage, storm water control, provision of space for recreation, as well as poverty alleviation. Although these multiple benefits speak positively for urban greening programs, the programs do not take into account how close human and natural systems are coupled in urban areas. Elevated temperatures together with anthropogenic emissions of air and water pollutants distinguish the urban system. Urban and sub-urban vegetation responds to ambient changes and reacts with pollutants. Neglecting the existence of this coupling may lead to unforeseen drawbacks of urban greening programs. The potential for emissions from urban vegetation combined with anthropogenic emissions to produce ozone has long been recognized. This potential increases under rising temperatures. Here we investigate how global change induced heat waves affect emissions of volatile organic compounds (VOC) from urban vegetation and corresponding ground-level ozone levels. We also quantify other ecosystem services provided by urban vegetation (e.g., cooling and carbon storage) and their sensitivity to climate change. In this study we use Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM) to quantify these feedbacks in Berlin, Germany during the heat waves in 2003 and 2006. We highlight the importance of the vegetation for urban areas under changing climate and discuss associated tradeoffs.

  11. Emission Controls Using Different Temperatures of Combustion Air

    PubMed Central

    Holubčík, Michal; Papučík, Štefan

    2014-01-01

    The effort of many manufacturers of heat sources is to achieve the maximum efficiency of energy transformation chemically bound in the fuel to heat. Therefore, it is necessary to streamline the combustion process and minimize the formation of emission during combustion. The paper presents an analysis of the combustion air temperature to the heat performance and emission parameters of burning biomass. In the second part of the paper the impact of different dendromass on formation of emissions in small heat source is evaluated. The measured results show that the regulation of the temperature of the combustion air has an effect on concentration of emissions from the combustion of biomass. PMID:24971376

  12. Operator manual: High temperature heat pump

    NASA Astrophysics Data System (ADS)

    Dyer, D. F.; Maples, G.; Burch, T. E.; Chancellor, P. D.

    1980-03-01

    Experimental data were obtained from operating a high temperature heat pump system. The use of methanol as a working fluid necessitated careful monitoring of refrigerant temperatures and pressures with chemical analysis performed on the working fluid during scheduled down time. Materials sent to vendors and quotes received concerning equipment (compressor, evaporator, condensor, air heater, dryer, two accumulator tanks, and three expansion valves) are discussed. The detailed design and pricing estimates are included. Additional information on layout and construction; start-up; testing; shut down; scheduled maintenance and inspection; safety precautions; control system; and trouble shooting is presented.

  13. High efficiency power generation from coal and wastes utilizing high temperature air combustion technology (Part 2: Thermal performance of compact high temperature air preheater and MEET boiler)

    SciTech Connect

    Iwahashi, Takashi; Kosaka, Hitoshi; Yoshida, Nobuhiro

    1998-07-01

    The compact high temperature air preheater and the MEET boiler, which are critical components of the MEET system, are the direct evolutions of the high temperature air combustion technology. Innovative hardware concept for a compact high temperature air preheater has been proposed, and preliminary experiment using the MEET-I high temperature air preheater based on this concept successfully demonstrated continuous high temperature air generation with almost no temperature fluctuation. A preliminary heat transfer calculation for the MEET boiler showed that regenerative combustion using high temperature air is quite effective for radiative heat transfer augmentation in a boiler, which will lead to significant downsizing of a boiler. The heat transfer characteristics in the MEET boiler were experimentally measured and the heat transfer promotion effect and the uniform heat transfer field were confirmed. Moreover, it was understood that excellent combustion with the low BTU gas of about 3,000 kcal/m{sup 3} was done.

  14. REGIONAL AIR POLLUTION STUDY: HEAT EMISSION INVENTORY

    EPA Science Inventory

    As part of the St. Louis Regional Air Pollution Study (RAPS), a heat emission inventory has been assembled. Heat emissions to the atmosphere originate, directly or indirectly, from the combustion of fossil fuels (there are no nuclear plants in the St. Louis AQCR). With the except...

  15. Acoustic focusing by an array of heat sources in air

    NASA Astrophysics Data System (ADS)

    Ge, Yong; Sun, Hong-xiang; Liu, Chen; Qian, Jiao; Yuan, Shou-qi; Xia, Jian-ping; Guan, Yi-jun; Zhang, Shu-yi

    2016-06-01

    We report on a broadband acoustic focusing lens comprising 20 heat sources of different temperatures, 10 on each side of the array, in air. This focusing phenomenon is attributed to temperature gradients inducing the desired refractive index in one medium (air) and to the continuously changing acoustic impedance, which avoids any acoustic impedance difference that would occur between a lens and air. The results indicate that this focusing lens has a broader bandwidth (>3.5 kHz), higher intensity amplification (about 5.0 times), and a simpler structure. This focusing lens has great potential for applications in ultrasonic devices.

  16. Surface Temperature variability from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Dang, V. T.; Aumann, H. H.

    2015-12-01

    To address the existence and possible causes of the climate hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014for the day and night conditions. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We compare the satellite data with the new surface data produced by Karl et al. (2015) who denies the reality of the climate hiatus. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The day-night difference is an indicator of the anthropogenic trend. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  17. Moving-Temperature-Gradient Heat-Pipe Furnace Element

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Lehoczky, Sandor L.; Gernert, Nelson J.

    1993-01-01

    In improved apparatus, ampoule of material directionally solidified mounted in central hole of annular heat pipe, at suitable axial position between heated and cooled ends. Heated end held in fixed position in single-element furnace; other end left in ambient air or else actively cooled. Gradient of temperature made to move along heat pipe by changing pressure of noncondensable gas. In comparison with prior crystal-growing apparatuses, this one simpler, smaller, and more efficient.

  18. Is Air Temperature Enough to Predict Lake Surface Temperature?

    NASA Astrophysics Data System (ADS)

    Piccolroaz, S.; Toffolon, M.; Majone, B.

    2014-12-01

    Lake surface water (LST) is a key factor that controls most of the physical and ecological processes occurring in lakes. Reliable estimates are especially important in the light of recent studies, which revealed that inland water bodies are highly sensitive to climate, and are rapidly warming throughout the world. However, an accurate estimation of LST usually requires a significant amount of information that is not always available. In this work, we present an application of air2water, a lumped model that simulates LST as a function of air temperature only. In addition, air2water allows for a qualitative evaluation of the depth of the epilimnion during the annual stratification cycle. The model consists in a simplification of the complete heat budget of the well-mixed surface layer, and has a few parameters (from 4 to 8 depending on the version) that summarize the role of the different heat flux components. Model calibration requires only air and water temperature data, possibly covering sufficiently long historical periods in order to capture inter-annual variability and long-term trends. During the calibration procedure, the information included in input data is retrieved to directly inform model parameters, which can be used to classify the thermal behavior of the lake. In order to investigate how thermal dynamics are related to morphological features, the model has been applied to 14 temperate lakes characterized by different morphological and hydrological conditions, by different sources of temperature data (buoys, satellite), and by variable frequency of acquisition. A good agreement between observed and simulated LST has been achieved, with a RMSE in the order of 1°C, which is fully comparable to the performances of more complex process-based models. This application allowed for a deeper understanding of the thermal response of lakes as a function of their morphology, as well as for specific analyses as for example the investigation of the exceptional

  19. Simulating canopy temperature for modelling heat stress in cereals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop models must be improved to account for the large effects of heat stress effects on crop yields. To date, most approaches in crop models use air temperature despite evidence that crop canopy temperature better explains yield reductions associated with high temperature events. This study presents...

  20. Air pollution control and heat recovery system for industrial ovens

    SciTech Connect

    Jamaluddin, A.A.

    1980-12-30

    A system of air pollution control and heat recovery is provided for an arrangement of industrial ovens, especially for drum manufacture. A plurality of paint bake ovens of various capacities, lengths and heat input are provided for multi-stage processing in the manufacture of drums and lids therefor. A supply of high temperature water is provided for multi-stage cleaning and rinsing in the manufacturing operation. The combined exhaust from the oven is preheated in a heat exchanger and then all of the combustible components are burnt off by passing through the flames of an incinerator grid burner. The effluent from the burner first passes through the heat exchanger to preheat said oven exhaust gases and then through hot water coils to provide all of the necessary hot water for the system. High pressure hot water (275/sup 0/) is provided in this heat exchange operation. The hot gasses from the last heat exchanger, completely free of combustible contaminates, are mixed with fresh air to supply hot air for the dryers used in the process. There is a substantially complete recovery of heat and the gasses discharged to atmosphere meet air quality standards.

  1. 5. PHOTOGRAPHIC COPY OF ORIGINAL DRAWINGS, ELECTRIC AIR AND HEATING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. PHOTOGRAPHIC COPY OF ORIGINAL DRAWINGS, ELECTRIC AIR AND HEATING UNIT, PLAN AND ELEVATION - Wyoming Air National Guard Base, Electric, Air & Heating Plant, Cheyenne Airport, Cheyenne, Laramie County, WY

  2. Mathematical modeling of heat exchange between mine air and rock mass during fire

    SciTech Connect

    A.E. Krasnoshtein; B.P. Kazakov; A.V. Shalimov

    2006-05-15

    Solution of problems on heat exchange between ventilating air and rock mass and on gas admixture propagation in mine workings serve as a base for considering changes in heat-gas-air state at a mine after inflammation. The presented mathematical relations allow calculation of a varied velocity and movement direction of air flows, their temperatures and smoking conditions during fire.

  3. Intermediate Temperature Water Heat Pipe Tests

    NASA Technical Reports Server (NTRS)

    Devarakonda, Angirasa; Xiong, Da-Xi; Beach, Duane E.

    2005-01-01

    Heat pipes are among the most promising technologies for space radiator systems. Water heat pipes are explored in the intermediate temperature range of 400 to above 500 K. The thermodynamic and thermo-physical properties of water are reviewed in this temperature range. Test data are reported for a copper-water heat pipe. The heat pipe was tested under different orientations. Water heat pipes show promise in this temperature range. Fabrication and testing issues are being addressed.

  4. Intermediate Temperature Water Heat Pipe Tests

    NASA Technical Reports Server (NTRS)

    Devarakonda, Angirasa; Xiong, Daxi; Beach, Duane E.

    2004-01-01

    Heat pipes are among the most promising technologies for space radiator systems. Water heat pipes are explored in the intermediate temperature range of 400 to above 500 K. The thermodynamic and thermo-physical properties of water are reviewed in this temperature range. Test Data are reported for a copper-water heat pipe. The heat pipe was tested under different orientations. Water heat pipes show promise in this temperature range.Fabrication and testing issues are being addressed.

  5. Low temperature specific heat of propylene glycol

    SciTech Connect

    Zhu, Da-Ming; Chen, Huiwei

    1997-01-01

    The specific heat of propylene glycol has been measured at temperatures from 0.1 K to 6 K. The magnitude and the temperature dependence of the specific heat are similar to that found in other fragile glasses.

  6. Standardized Curriculum for Heating and Air Conditioning.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized vocational education course titles and core contents for two courses in Mississippi are provided: heating and air conditioning I and II. The first course contains the following units: (1) orientation; (2) safety; (3) refrigeration gauges and charging cylinder; (4) vacuum pump service operations; (5) locating refrigerant leaks; (6)…

  7. Metrics for Air Conditioning & Refrigeration, Heating, Ventilating.

    ERIC Educational Resources Information Center

    Cooper, Gloria S., Ed.; Magisos, Joel H., Ed.

    Designed to meet the job-related metric measurement needs of the air conditioning and refrigeration, heating and ventilating student, this instructional package is one of three for the construction occupations cluster, part of a set of 55 packages for metric instruction in different occupations. The package is intended for students who already…

  8. Advanced high temperature heat flux sensors

    NASA Technical Reports Server (NTRS)

    Atkinson, W.; Hobart, H. F.; Strange, R. R.

    1983-01-01

    To fully characterize advanced high temperature heat flux sensors, calibration and testing is required at full engine temperature. This required the development of unique high temperature heat flux test facilities. These facilities were developed, are in place, and are being used for advanced heat flux sensor development.

  9. Modelling heat and mass transfer in a membrane-based air-to-air enthalpy exchanger

    NASA Astrophysics Data System (ADS)

    Dugaria, S.; Moro, L.; Del, D., Col

    2015-11-01

    The diffusion of total energy recovery systems could lead to a significant reduction in the energy demand for building air-conditioning. With these devices, sensible heat and humidity can be recovered in winter from the exhaust airstream, while, in summer, the incoming air stream can be cooled and dehumidified by transferring the excess heat and moisture to the exhaust air stream. Membrane based enthalpy exchangers are composed by different channels separated by semi-permeable membranes. The membrane allows moisture transfer under vapour pressure difference, or water concentration difference, between the two sides and, at the same time, it is ideally impermeable to air and other contaminants present in exhaust air. Heat transfer between the airstreams occurs through the membrane due to the temperature gradient. The aim of this work is to develop a detailed model of the coupled heat and mass transfer mechanisms through the membrane between the two airstreams. After a review of the most relevant models published in the scientific literature, the governing equations are presented and some simplifying assumptions are analysed and discussed. As a result, a steady-state, two-dimensional finite difference numerical model is setup. The developed model is able to predict temperature and humidity evolution inside the channels. Sensible and latent heat transfer rate, as well as moisture transfer rate, are determined. A sensitive analysis is conducted in order to determine the more influential parameters on the thermal and vapour transfer.

  10. Temperature Oscillations in Loop Heat Pipe Operation

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Kobel, Mark; Rogers, Paul; Kaya, Tarik; Paquin, Krista C. (Technical Monitor)

    2000-01-01

    Loop heat pipes (LHPs) are versatile two-phase heat transfer devices that have gained increasing acceptance for space and terrestrial applications. The operating temperature of an LHP is a function of its operating conditions. The LHP usually reaches a steady operating temperature for a given heat load and sink temperature. The operating temperature will change when the heat load and/or the sink temperature changes, but eventually reaches another steady state in most cases. Under certain conditions, however, the loop operating temperature never really reaches a true steady state, but instead becomes oscillatory. This paper discusses the temperature oscillation phenomenon using test data from a miniature LHP.

  11. Estimating ocean-air heat fluxes during cold air outbreaks by satellite

    NASA Technical Reports Server (NTRS)

    Chou, S. H.; Atlas, D.

    1981-01-01

    Nomograms of mean column heating due to surface sensible and latent heat fluxes were developed. Mean sensible heating of the cloud free region is related to the cloud free path (CFP, the distance from the shore to the first cloud formation) and the difference between land air and sea surface temperatures, theta sub 1 and theta sub 0, respectively. Mean latent heating is related to the CFP and the difference between land air and sea surface humidities q sub 1 and q sub 0 respectively. Results are also applicable to any path within the cloud free region. Corresponding heat fluxes may be obtained by multiplying the mean heating by the mean wind speed in the boundary layer. The sensible heating estimated by the present method is found to be in good agreement with that computed from the bulk transfer formula. The sensitivity of the solutions to the variations in the initial coastal soundings and large scale subsidence is also investigated. The results are not sensitive to divergence but are affected by the initial lapse rate of potential temperature; the greater the stability, the smaller the heating, other things being equal. Unless one knows the lapse rate at the shore, this requires another independent measurement. For this purpose the downwind slope of the square of the boundary layer height is used, the mean value of which is also directly proportional to the mean sensible heating. The height of the boundary layer should be measurable by future spaceborn lidar systems.

  12. Operator manual: high temperature heat pump

    SciTech Connect

    Dyer, D.F.; Maples, G.; Burch, T.E.; Chancellor, P.D.

    1980-03-04

    Experimental data is being obtained from operating a high temperature heat pump system. The use of methanol as a working fluid will necessitate careful monitoring of refrigerant temperatures and pressures with chemical analysis performed on the working fluid during scheduled down time. Materials sent to vendors by Auburn University and quotes received by Auburn concerning equipment (compressor, evaporator, condensor, air heater, dryer, two accumulator tanks, and three expansion valves) are discussed. The simulated dryer and two accumulator tanks were designed by Auburn. The detailed design and pricing estimates are included. Additional information is presented on layout and construction; start-up; testing; shut down; scheduled maintenance and inspection; safety precautions; control system; and trouble shooting.

  13. Temperature Assessment of Heating Stage for a Thermoforming Equipment

    NASA Astrophysics Data System (ADS)

    Mohd Ghazali, F. A.; Ahmad, M. N.; Rahim, M. F. Ab; Jaafar, A. A.

    2016-02-01

    Thermoforming is a well-known manufacturing process in the productions of various plastic household and industrial solutions. The heating of a plastic sheet allows the plastic to soften and within its forming window temperature the sheet can replicate a required shape when pressed against a mould. Hence, the heating process is an important thermoforming stage that determine uniformity of the material distribution. This article proposed an experimental approach to investigate the thermal characteristics of the heating section of a low cost thermoforming equipment designed for teaching and research purposes. The temperatures of air and a model of a stretched heated plastic sheet were measured and analysed. The experimental data indicates that the spatial temperatures distribution was not localised and the temperature history of the infrared heating agrees well with those given by fast response thermocouples. The findings suggest that the spatial uniformity of temperature can be reasonably evaluated by using the proposed method.

  14. Self-defrosting recuperative air-to-air heat exchanger

    DOEpatents

    Drake, Richard L.

    1993-01-01

    A heat exchanger includes a stationary spirally or concentrically wound heat exchanger core with rotating baffles on upper and lower ends thereof. The rotating baffles include rotating inlets and outlets which are in communication with respective fixed inlets and outlets via annuli. The rotation of the baffles causes a concurrent rotation of the temperature distribution within the stationary exchanger core, thereby preventing frost build-up in some applications and preventing the formation of hot spots in other applications.

  15. Startup of air-cooled condensers and dry cooling towers at low temperatures of the cooling air

    NASA Astrophysics Data System (ADS)

    Milman, O. O.; Ptakhin, A. V.; Kondratev, A. V.; Shifrin, B. A.; Yankov, G. G.

    2016-05-01

    The problems of startup and performance of air-cooled condensers (ACC) and dry cooling towers (DCT) at low cooling air temperatures are considered. Effects of the startup of the ACC at sub-zero temperatures are described. Different options of the ACC heating up are analyzed, and examples of existing technologies are presented (electric heating, heating up with hot air or steam, and internal and external heating). The use of additional heat exchanging sections, steam tracers, in the DCT design is described. The need for high power in cases of electric heating and heating up with hot air is noted. An experimental stand for research and testing of the ACC startup at low temperatures is described. The design of the three-pass ACC unit is given, and its advantages over classical single-pass design at low temperatures are listed. The formation of ice plugs inside the heat exchanging tubes during the start-up of ACC and DCT at low cooling air temperatures is analyzed. Experimental data on the effect of the steam flow rate, steam nozzle distance from the heat-exchange surface, and their orientation in space on the metal temperature were collected, and test results are analyzed. It is noted that the surface temperature at the end of the heat up is almost independent from its initial temperature. Recommendations for the safe start-up of ACCs and DCTs are given. The heating flow necessary to sufficiently heat up heat-exchange surfaces of ACCs and DCTs for the safe startup is estimated. The technology and the process of the heat up of the ACC with the heating steam external supply are described by the example of the startup of the full-scale section of the ACC at sub-zero temperatures of the cooling air, and the advantages of the proposed start-up technology are confirmed.

  16. Human local and total heat losses in different temperature.

    PubMed

    Wang, Lijuan; Yin, Hui; Di, Yuhui; Liu, Yanfeng; Liu, Jiaping

    2016-04-01

    This study investigates the effects of operative temperature on the local and total heat losses, and the relationship between the heat loss and thermal sensation. 10 local parts of head, neck, chest, abdomen, upper arm, forearm, hand, thigh, leg and foot are selected. In all these parts, convection, radiation, evaporation, respiration, conduction and diffusion heat losses are analyzed when operative temperature is 23, 28, 33 and 37 °C. The local heat losses show that the radiation and convection heat losses are mainly affected by the area of local body, and the heat loss of the thigh is the most in the ten parts. The evaporation heat loss is mainly affected by the distribution of sweat gland, and the heat loss of the chest is the most. The total heat loss of the local body shows that in low temperature, the thigh, leg and chest have much heat loss, while in high temperature, the chest, abdomen, thigh and head have great heat loss, which are useful for clothing design. The heat losses of the whole body show that as the operative temperature increases, the radiation and convection heat losses decrease, the heat losses of conduction, respiration, and diffusion are almost constant, and the evaporation heat loss increases. By comparison, the heat loss ratios of the radiation, convection and sweat evaporation, are in agreement with the previous researches. At last, the formula about the heat loss ratio of convection and radiation is derived. It's useful for thermal comfort evaluation and HVAC (heating, ventilation and air conditioning) design. PMID:26879106

  17. Influence of Building Envelope Thermal Mass on Heating Design Temperature

    NASA Astrophysics Data System (ADS)

    Gaujena, B.; Borodinecs, A.; Zemitis, J.; Prozuments, A.

    2015-11-01

    The stability of indoor air parameters is a very important factor, essential for such institutions as museums, schools and hospitals. Nowadays the use of renewable energy for space heating became one of the top priorities in modern building design. The active and passive solar energy as well as heat pumps are widely used nowadays. However, such technologies have a limitation in cold climates and often are not able to cover maximal heating loads. This paper is devoted to analysis of influence of building envelope's properties and outdoor air parameters on indoor air thermodynamic parameters stability in winter time. It presents analysis of thermal mass impact on building energy performance and indoor air parameter stability in cold climate. The results show that the thermal mass of building envelope is able to cover extreme winter temperatures as well as in case of emergency heat supply break.

  18. A physically based analytical spatial air temperature and humidity model

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Endreny, Theodore A.; Nowak, David J.

    2013-09-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat storage based on semiempirical functions and generates spatially distributed estimates based on inputs of topography, land cover, and the weather data measured at a reference site. The model assumes that for all grids under the same mesoscale climate, grid air temperature and humidity are modified by local variation in absorbed solar radiation and the partitioning of sensible and latent heat. The model uses a reference grid site for time series meteorological data and the air temperature and humidity of any other grid can be obtained by solving the heat flux network equations. PASATH was coupled with the USDA iTree-Hydro water balance model to obtain evapotranspiration terms and run from 20 to 29 August 2010 at a 360 m by 360 m grid scale and hourly time step across a 285 km2 watershed including the urban area of Syracuse, NY. PASATH predictions were tested at nine urban weather stations representing variability in urban topography and land cover. The PASATH model predictive efficiency R2 ranged from 0.81 to 0.99 for air temperature and 0.77 to 0.97 for dew point temperature. PASATH is expected to have broad applications on environmental and ecological models.

  19. Surface heat transfer coefficient, heat efficiency, and temperature of pulsed solid-state lasers

    SciTech Connect

    Mann, K.; Weber, H.

    1988-08-01

    The temperature of solid-state lasers is a critical parameter. Efficiency and output power are strongly influenced by it. The two parameters which determine the temperature are the heat generation efficiency (HGE) and the surface heat transfer coefficient (SHTC) of the laser rod. These parameters allow the scaling of the rod temperature up to high pumping powers. Moreover, from the temperature inside the rod, the temperature gradients and the mechanical stress can be evaluated. Using transient temperature measurements, the SHTC and the HGE were determined for air- and water-cooled Nd:YAG and alexandrite lasers. The SHTC can be confirmed by theoretical considerations.

  20. High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to

  1. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect

    Waye, S.; Musselman, M.; King, C.

    2014-09-01

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  2. Multichannel temperature control for solar heating

    NASA Technical Reports Server (NTRS)

    Currie, J. R.

    1978-01-01

    Multiplexer/amplifier circuit monitors temperatures and temperature differences. Although primarily designed for cycle control in solar-heating systems, it can also measure temperatures in motors, ovens, electronic hardware, and other equipment.

  3. Computing Temperatures And Pressures Along Heat Pipes

    NASA Technical Reports Server (NTRS)

    Faker, K. W.; Marks, T. S.; Tower, L. K.

    1994-01-01

    NASA Lewis Research Center Heat Pipe, LERCHP, computer code developed to predict performances of heat pipes in steady state. Used as design software tool on personal computer or, with suitable calling routine, as subroutine for mainframe-computer radiator code. For accurate mathematical modeling of heat pipes, LERCHP makes variety of wick structures available to user. User chooses among several working fluids, for which monomer/dimer equilibrium considered. Vapor-flow algorithm treats compressibility and axially varying heat input. Facilitates determination of heat-pipe operating temperatures and heat-pipe limits encountered at specified heat input and environmental temperature. Written in FORTRAN 77.

  4. Comparison of MODIS Land Surface Temperature and Air Temperature over the Continental USA Meteorological Stations

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Bounoua, Lahouari; Imhoff, Marc L.; Wolfe, Robert E.; Thome, Kurtis

    2014-01-01

    The National Land Cover Database (NLCD) Impervious Surface Area (ISA) and MODIS Land Surface Temperature (LST) are used in a spatial analysis to assess the surface-temperature-based urban heat island's (UHIS) signature on LST amplitude over the continental USA and to make comparisons to local air temperatures. Air-temperature-based UHIs (UHIA), calculated using the Global Historical Climatology Network (GHCN) daily air temperatures, are compared with UHIS for urban areas in different biomes during different seasons. NLCD ISA is used to define urban and rural temperatures and to stratify the sampling for LST and air temperatures. We find that the MODIS LST agrees well with observed air temperature during the nighttime, but tends to overestimate it during the daytime, especially during summer and in nonforested areas. The minimum air temperature analyses show that UHIs in forests have an average UHIA of 1 C during the summer. The UHIS, calculated from nighttime LST, has similar magnitude of 1-2 C. By contrast, the LSTs show a midday summer UHIS of 3-4 C for cities in forests, whereas the average summer UHIA calculated from maximum air temperature is close to 0 C. In addition, the LSTs and air temperatures difference between 2006 and 2011 are in agreement, albeit with different magnitude.

  5. Measuring important parameters for air-sea heat exchange

    NASA Astrophysics Data System (ADS)

    Garbe, Christoph; Schimpf, Uwe; Jaehne, Bernd

    2002-03-01

    The heat transfer between the ocean and the atmosphere is one of the most important parameters governing the global climate. Important parameters include the heat transfer velocity and the net heat flux as well as parameters of the underlying transport model. However, the net heat flux is hard to measure since processes take place in the thermal boundary layer, that is the topmost layer of the ocean less than 1 mm thick. Current techniques rely on three independent measurements of the constituent fluxes, the sensible heat flux, latent heat flux and radiative flux. They depend on indirect measurements of meteorological parameters and rely on a combination of data from different sensors using a number of heuristic assumptions. High relative errors and the need for long temporal averaging reduce the practicability of these techniques. In this paper a novel technique is presented that circumvents these drawbacks by directly measuring the net heat flux across the air-water interface with a single low-NETD infrared camera. A newly developed digital image processing technique allows to simultaneously estimating the surface velocity field and parameters of the temporal temperature change. In particular, this technique allows estimating the total derivative of the temperature with respect to time from a sequence of infrared images, together with error bounds on the estimates. This derivative can be used to compute the heat flux density and the heat transfer velocity, as well as the probability density function of the underlying surface renewal model. It is also possible to estimate the bulk-skin temperature difference given rise to by the net heat flux. Our technique has been successfully used in both laboratory measurements in the Heidelberg Aeolotron, as well as in field measurements in the equatorial pacific during the NOAA GasExII experiment this spring. The data show that heat flux measurements to an accuracy of better than 5% on a time scale of seconds are feasible.

  6. A heat exchanger computational procedure for temperature-dependent fouling

    NASA Technical Reports Server (NTRS)

    Chiappetta, L. M.; Szetela, E. J.

    1981-01-01

    A novel heat exchanger computational procedure is described which provides a means of rapidly calculating the distributions of fluid and wall temperatures, deposit formation, and pressure loss at various points in a heat exchanger. The procedure is unique in that it is capable of treating wide variations in heat exchanger geometry without recourse to restrictive assumptions concerning heat exchanger type (e.g., co-flow, counterflow, cross flow devices, etc.). The analysis has been used extensively to predict the performance of cross-counterflow heat exchangers in which one fluid behaves as a perfect gas (e.g., air) while the other fluid is assumed to be a distillate fuel. The model has been extended to include the effects on heat exchanger performance of time varying inflow conditions. Heat exchanger performance degradation due to deposit formation with time can be simulated, making this procedure useful in predicting the effects of temperature-dependent fouling.

  7. Heat-transfer processes in air-cooled engine cylinders

    NASA Technical Reports Server (NTRS)

    Pinkel, Benjamin

    1938-01-01

    From a consideration of heat-transfer theory, semi-empirical expressions are set up for the transfer of heat from the combustion gases to the cylinder of an air-cooled engine and from the cylinder to the cooling air. Simple equations for the average head and barrel temperatures as functions of the important engine and cooling variables are obtained from these expressions. The expressions involve a few empirical constants, which may be readily determined from engine tests. Numerical values for these constants were obtained from single-cylinder engine tests for cylinders of the Pratt & Whitney 1535 and 1340-h engines. The equations provide a means of calculating the effect of the various engine and cooling variables on the cylinder temperatures and also of correlating the results of engine cooling tests. An example is given of the application of the equations to the correlation of cooling-test data obtained in flight.

  8. Spatial Mathematical Model of Heat Transfer in Human Skin Influenced by Heated up to High Temperatures Particle

    NASA Astrophysics Data System (ADS)

    Baranovskiy, Nikolay V.; Solodkin, Andrey S.; Stuparenko, Alexandr A.

    2016-02-01

    Numerical research results of heat transfer in system "air-heated particle-skin layer" presented. Skin was influenced by heated up to high temperatures particle. The problem is solved in tree-dimensional statement in Cartesian system of coordinates. The typical range of influence parameters of heated particle considered. Temperature distributions in different moments of time obtained. Condition of burn occurrence by heated particle is under consideration in this research.

  9. Retrieval of air temperatures from crowd-sourced battery temperatures of cell phones

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James; Leijnse, Hidde; Uijlenhoet, Remko; Steeneveld, Gert-Jan; Horn, Berthold K. P.

    2013-04-01

    Accurate air temperature observations are important for urban meteorology, for example to study the urban heat island and adverse effects of high temperatures on human health. The number of available temperature observations is often relatively limited. A new development is presented to derive temperature information for the urban canopy from an alternative source: cell phones. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. Results are presented for Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree Celsius. This shows that monitoring air temperatures employing an Android application holds great promise. Since 75% of the world's population has a cell phone, 20% of the land surface of the earth has cellular telephone coverage, and 500 million devices use the Android operating system, there is a huge potential for measuring air temperatures employing cell phones. This could eventually lead to real-time world-wide temperature maps.

  10. Radiant heat test of Perforated Metal Air Transportable Package (PMATP).

    SciTech Connect

    Gronewald, Patrick James; Oneto, Robert; Mould, John; Pierce, Jim Dwight

    2003-08-01

    A conceptual design for a plutonium air transport package capable of surviving a 'worst case' airplane crash has been developed by Sandia National Laboratories (SNL) for the Japan Nuclear Cycle Development Institute (JNC). A full-scale prototype, designated as the Perforated Metal Air Transport Package (PMATP) was thermally tested in the SNL Radiant Heat Test Facility. This testing, conducted on an undamaged package, simulated a regulation one-hour aviation fuel pool fire test. Finite element thermal predictions compared well with the test results. The package performed as designed, with peak containment package temperatures less than 80 C after exposure to a one-hour test in a 1000 C environment.

  11. Development of solar driven absorption air conditioners and heat pumps

    NASA Astrophysics Data System (ADS)

    Dao, K.; Wahlig, M.; Wali, E.; Rasson, J.; Molishever, E.

    1980-03-01

    The development of absorption refrigeration systems for solar active heating and cooling applications is discussed. The approaches investigated are those using air-cooled condenser-absorber and those leading to coefficient of performances (COP) that increase continuously with heat source temperature. This is primarily an experimental project, with the emphasis on designing, fabricating and testing absorption chillers in operating regimes that are particularly suited for solar energy applications. Its demonstrated that the conventional single-effect ammonia-water absorption cycle can be used (with minor modifications) for solar cooling.

  12. Self-defrosting recuperative air-to-air heat exchanger

    DOEpatents

    Drake, R.L.

    1993-12-28

    A heat exchanger is described which includes a stationary spirally or concentrically wound heat exchanger core with rotating baffles on upper and lower ends thereof. The rotating baffles include rotating inlets and outlets which are in communication with respective fixed inlets and outlets via annuli. The rotation of the baffles causes a concurrent rotation of the temperature distribution within the stationary exchanger core, thereby preventing frost build-up in some applications and preventing the formation of hot spots in other applications. 3 figures.

  13. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms,...

  14. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms,...

  15. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms,...

  16. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms,...

  17. Requirements for high-temperature air-cooled central receivers

    SciTech Connect

    Wright, J.D.; Copeland, R.J.

    1983-12-01

    The design of solar thermal central receivers will be shaped by the end user's need for energy. This paper identifies the requirements for receivers supplying heat for industrial processes or electric power generation in the temperature range 540 to 1000/sup 0/C and evaluates the effects of the requirements on air-cooled central receivers. Potential IPH applications are identified as large baseload users that are located some distance from the receiver. In the electric power application, the receiver must supply heat to a pressurized gas power cycle. The difficulty in providing cost-effective thermal transport and thermal storage for air-cooled receivers is a critical problem.

  18. Controlled-Temperature Hot-Air Gun

    NASA Technical Reports Server (NTRS)

    Munoz, M. C.

    1986-01-01

    Materials that find applications in wind tunnels first tested in laboratory. Hot-Air Gun differs from commercial units in that flow rate and temperature monitored and controlled. With typical compressed-airsupply pressure of 25 to 38 psi (170 to 260 kPa), flow rate and maximum temperature are 34 stdft3/min (0.96 stdm3/min) and 1,090 degrees F (590 degrees C), respectively. Resembling elaborate but carefully regulated hot-air gun, setup used to apply blasts of air temperatures above 1,500 degrees F (815 degrees C) to test specimens.

  19. Low temperature latent heat thermal energy storage - Heat storage materials

    NASA Astrophysics Data System (ADS)

    Abhat, A.

    1983-01-01

    Heat-of-fusion storage materials for low temperature latent heat storage in the temperature range 0-120 C are reviewed. Organic and inorganic heat storage materials classified as paraffins, fatty acids, inorganic salt hydrates and eutectic compounds are considered. The melting and freezing behavior of the various substances is investigated using the techniques of Thermal Analysis and Differential Scanning Calorimetry. The importance of thermal cycling tests for establishing the long-term stability of the storage materials is discussed. Finally, some data pertaining to the corrosion compatibility of heat-of-fusion substances with conventional materials of construction is presented.

  20. Windage heating of air passing through labyrinth seals

    SciTech Connect

    Millward, J.A.; Edwards, M.F.

    1996-04-01

    The viscous drag on rotating components in gas turbine engines represents both a direct loss of power from the cycle and an input of heat into the secondary (cooling) air system. Hotter cooling air in turn means increased flow requirements. The effects of windage on performance are therefore compounded. To facilitate accurate temperature predictions of highly stressed components, information is needed on windage characteristics of all elements in the secondary cooling system. Much information is available in the literature for disks, cones, cylinders, bolts, etc., but little has been published on windage heating in high-speed seals. Results are presented for experiments carried out (at representative nondimensional conditions) on different designs of labyrinth seals. The results are compared with values calculated from the simple momentum balance theory suggested by McGreeham and Ko and with several values determined from CFD analysis.

  1. Air Circulation and Heat Exchange under Reduced Pressures

    NASA Astrophysics Data System (ADS)

    Rygalov, Vadim; Wheeler, Raymond; Dixon, Mike; Hillhouse, Len; Fowler, Philip

    Low pressure atmospheres were suggested for Space Greenhouses (SG) design to minimize sys-tem construction and re-supply materials, as well as system manufacturing and deployment costs. But rarified atmospheres modify heat exchange mechanisms what finally leads to alter-ations in thermal control for low pressure closed environments. Under low atmospheric pressures (e.g., lower than 25 kPa compare to 101.3 kPa for normal Earth atmosphere), convection is becoming replaced by diffusion and rate of heat exchange reduces significantly. During a period from 2001 to 2009, a series of hypobaric experiments were conducted at Space Life Sciences Lab (SLSLab) NASA's Kennedy Space Center and the Department of Space Studies, University of North Dakota. Findings from these experiments showed: -air circulation rate decreases non-linearly with lowering of total atmospheric pressure; -heat exchange slows down with pressure decrease creating risk of thermal stress (elevated leaf tem-peratures) for plants in closed environments; -low pressure-induced thermal stress could be reduced by either lowering system temperature set point or increasing forced convection rates (circulation fan power) within certain limits; Air circulation is an important constituent of controlled environments and plays crucial role in material and heat exchange. Theoretical schematics and mathematical models are developed from a series of observations. These models can be used to establish optimal control algorithms for low pressure environments, such as a space greenhouse, as well as assist in fundamental design concept developments for these or similar habitable structures.

  2. A heating season comparison test of two solar air heating systems

    SciTech Connect

    Thacher, E.F.; Wen, C.

    1987-06-01

    An outdoor, comparison performance test of two solar air-heating systems was performed between December 1, 1985 and May 17, 1986, near Potsdam, in northern New York. Each system was installed in a small test cell and operated in the direct heating mode. An identical third test cell served as a control. Infiltration air was blown into the cells at 0.5 air changes per hour (ACH). The solar fractions obtained were low, ranging from 0.116 to0.213, with the north cell's fraction somewhat lower than the south cell's. The average solar fraction of both cells in each control range increased as the temperature control range widened. Simulation of the experiment in Albany, Buffalo, Potsdam, and Syracusae using TRNSYS gave solar fractions of similar magnitudes and the same trend. An economic analysis comparing the solar systems to five different conventional energy sources showed no payback during the 20-year term of the analysis.

  3. Air separation with temperature and pressure swing

    DOEpatents

    Cassano, Anthony A.

    1986-01-01

    A chemical absorbent air separation process is set forth which uses a temperature swing absorption-desorption cycle in combination with a pressure swing wherein the pressure is elevated in the desorption stage of the process.

  4. Reduced heat stress in offices in the tropics using solar powered drying of the supply air.

    PubMed

    Gunnarsen, L; Santos, A M B

    2002-12-01

    Many solutions to indoor climate problems known from developed countries may have prohibitive installation and running costs in developing countries. The purpose was to develop a low-cost solution to heat stress in a hot and humid environment based on solar powered drying of supply air. Dry supply air may facilitate personal cooling by increased evaporation of sweat. Heat acclimatized people with efficient sweating may in particular benefit from this cooling. A prototype solar powered supply system for dried-only air was made. Air from the system was mixed with room air, heated to six different combinations of temperature and humidity and led to Personal Units for Ventilation and Cooling (PUVAC) in six cubicles simulating office workplaces. A total of 123 heat acclimatized subjects were exposed 45 min in each of the cubicles. A model for the combined effect of operative temperature of room, moisture content of room air, temperature of supply air and moisture content of supply air was developed based on the experiments. Reduction of moisture content in the supply air by 1.6 g/kg had the same effect as lowering the operative temperature by 1 degree C. The solar-powered system for supplying dry air is a low-cost alternative to traditional air conditioning in hot and humid regions. PMID:12532757

  5. Solar assisted heat pump on air collectors: A simulation tool

    SciTech Connect

    Karagiorgas, Michalis; Galatis, Kostas; Tsagouri, Manolis; Tsoutsos, Theocharis; Botzios-Valaskakis, Aristotelis

    2010-01-15

    The heating system of the bioclimatic building of the Greek National Centre for Renewable Energy Sources (CRES) comprises two heating plants: the first one includes an air source heat pump, Solar Air Collectors (SACs) and a heat distribution system (comprising a fan coil unit network); the second one is, mainly, a geothermal heat pump unit to cover the ground floor thermal needs. The SAC configuration as well as the fraction of the building heating load covered by the heating plant are assessed in two operation modes; the direct (hot air from the collectors is supplied directly to the heated space) and the indirect mode (warm air from the SAC or its mixture with ambient air is not supplied directly to the heated space but indirectly into the evaporator of the air source heat pump). The technique of the indirect mode of heating aims at maximizing the efficiency of the SAC, saving electrical power consumed by the compressor of the heat pump, and therefore, at optimizing the coefficient of performance (COP) of the heat pump due to the increased intake of ambient thermal energy by means of the SAC. Results are given for three research objectives: assessment of the heat pump efficiency whether in direct or indirect heating mode; Assessment of the overall heating plant efficiency on a daily or hourly basis; Assessment of the credibility of the suggested simulation model TSAGAIR by comparing its results with the TRNSYS ones. (author)

  6. Crowdsourcing urban air temperature measurements using smartphones

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-10-01

    Crowdsourced data from cell phone battery temperature sensors could be used to contribute to improved real-time, high-resolution air temperature estimates in urban areas, a new study shows. Temperature observations in cities are in some cases currently limited to a few weather stations, but there are millions of smartphone users in many cities. The batteries in cell phones have temperature sensors to avoid damage to the phone.

  7. CARS Temperature Measurements in a Combustion-Heated Supersonic Jet

    NASA Technical Reports Server (NTRS)

    Tedder, S. A.; Danehy, P. M.; Magnotti, G.; Cutler, A. D.

    2009-01-01

    Measurements were made in a combustion-heated supersonic axi-symmetric free jet from a nozzle with a diameter of 6.35 cm using dual-pump Coherent Anti-Stokes Raman Spectroscopy (CARS). The resulting mean and standard deviation temperature maps are presented. The temperature results show that the gas temperature on the centerline remains constant for approximately 5 nozzle diameters. As the heated gas mixes with the ambient air further downstream the mean temperature decreases. The standard deviation map shows evidence of the increase of turbulence in the shear layer as the jet proceeds downstream and mixes with the ambient air. The challenges of collecting data in a harsh environment are discussed along with influences to the data. The yield of the data collected is presented and possible improvements to the yield is presented are discussed.

  8. A high-temperature heat sensitive element

    NASA Technical Reports Server (NTRS)

    Oguro, M.

    1986-01-01

    This invention concerns the high-temperature heat sensitive element which is stable at high temperatures. A solid solution of the main component MgO-Al2O3-Cr2O3-Fe2O3 which contains spinel crystal structure is mixed with the secondary component ZrO2 at the mol ratio of 100 : 0.1 to 5.0 and sintered to prepare a high-temperature heat sensitive element.

  9. Silicon carbide for high-temperature heat exchangers

    NASA Astrophysics Data System (ADS)

    Penty, R. A.; Bjerklie, J. W.

    1982-02-01

    It is noted that ceramic heat exchangers are now being used industrially in low-pressure applications, such as recuperators and air preheaters, and that serious consideration is being given to using ceramic materials for high-pressure heat exchangers. The principal advantage of using ceramic heat exchangers in the candidate applications is the potential for higher temperature service or increased life over that obtainable with metallic exchangers. Silicon carbide-based materials are now in service in many areas. The use of low-pressure ceramic recuperators constructed of silicon carbide has demonstrated fuel savings exceeding 40% in high-temperature industrial furnaces. At a material temperature of 1375 C, the demonstrated lifetime of some silicon carbide tubes is 12 to 15 months. The availability of silicon carbide materials is discussed, together with properties required for designing reliable heat exchangers. Attention is also given to the usual failure mode encountered in the field.

  10. Design of Solar Heat Sheet for Air Heaters

    NASA Astrophysics Data System (ADS)

    Priya, S. Shanmuga; Premalatha, M.; Thirunavukkarasu, I.

    2011-12-01

    The technique of harnessing solar energy for drying offers significant potential to dry agricultural products such as food grains, fruits, vegetables and medicinal plants, thereby eliminating many of the problems experienced with open-sun drying and industrial drying, besides saving huge quantities of fossil fuels. A great deal of experimental work over the last few decades has already demonstrated that agricultural products can be satisfactorily dehydrated using solar energy. Various designs of small scale solar dryers have been developed in the recent past, mainly for drying agricultural products. Major problems experienced with solar dryers are their non-reliability as their operation largely depends on local weather conditions. While back-up heaters and hybrid dryers partly solved this issue, difficulties in controlling the drying air temperature and flow rate remains a problem, and affects the quality of the dried product. This study is aimed at eliminating the fluctuations in the quality of hot air supplied by simple solar air heaters used for drying fruits, vegetables and other applications. It is an attempt to analyse the applicability of the combination of an glazed transpired solar collector (tank), thermal storage and a intake fan(suction fan) to achieve a steady supply of air at a different atmospheric temperature and flow rate for drying fruits and vegetables. Development of an efficient, low-cost and reliable air heating system for drying applications is done.

  11. Refrigeration, Heating & Air Conditioning. Post Secondary Curriculum Guide.

    ERIC Educational Resources Information Center

    Garrison, Joe C.; And Others

    This curriculum guide was designed for use in postsecondary refrigeration, heating and air conditioning education programs in Georgia. Its purpose is to provide for the development of entry level skills in refrigeration, heating, and air conditioning in the areas of air conditioning knowledge, theoretical structure, tool usage, diagnostic ability,…

  12. Nowcasting daily minimum air and grass temperature

    NASA Astrophysics Data System (ADS)

    Savage, M. J.

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient ( b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  13. Nowcasting daily minimum air and grass temperature.

    PubMed

    Savage, M J

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient (b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  14. Drying oven with heat reclamation and air pollution control system

    SciTech Connect

    Jamaluddin, A.A.

    1980-12-23

    A system of drying ovens is disclosed with associated means for heat reclamation and air pollution control. The ovens are primarily for drying or baking paint or other coatings on pipes or the like where the emissions are primarily hydrocarbons. In this system of ovens, hydrocarbon fumes are concentrated at the ends of the oven. Solvent laden fumes are, therefore, collected where the concentration is the highest. The exhaust from the oven is located at the central portion and leads to a combustion/incineration chamber where it is exhausted to atmosphere after incineration and a major part of the heat is recovered and recirculated to the oven. In a sequence of ovens, the exhaust from one oven is circulated to the next at a high linear velocity, but low volume (At 25% lel) and heated to a high temperature (1400/sup 0/F.) by in-line incineration of the fumes. The low volume, high velocity, high temperature gasses are mixed with a high volume, low velocity, low temperature exhaust collected from the end of that oven. This incineration and mixing and recirculation of gasses is repeated in each succeeding oven and no gasses are exhausted to atmosphere until the last oven. In the last oven, in sequence, a burner is provided to incinerate fumes recirculated at one end of the oven and the exhaust goes to atmosphere through an incinerator/heat exchanger where the reclaimed heat is supplied to outside air being fed to support combustion in the incinerator at one end of the last oven.

  15. Phase Change Material Systems for High Temperature Heat Storage.

    PubMed

    Perraudin, David Y S; Binder, Selmar R; Rezaei, Ehsan; Ortonaa, Alberto; Haussener, Sophia

    2015-01-01

    Efficient, cost effective, and stable high-temperature heat storage material systems are important in applications such as high-temperature industrial processes (metal processing, cement and glass manufacturing, etc.), or electricity storage using advanced adiabatic compressed air energy storage. Incorporating phase change media into heat storage systems provides an advantage of storing and releasing heat at nearly constant temperature, allowing steady and optimized operation of the downstream processes. The choice of, and compatibility of materials and encapsulation for the phase change section is crucial, as these must guarantee good and stable performance and long lifetime at low cost. Detailed knowledge of the material properties and stability, and the coupled heat transfer, phase change, and fluid flow are required to allow for performance and lifetime predictions. We present coupled experimental-numerical techniques allowing prediction of the long-term performance of a phase change material-based high-temperature heat storage system. The experimental investigations focus on determination of material properties (melting temperature, heat of fusion, etc.) and phase change material and encapsulation interaction (stability, interface reactions, etc.). The computational investigations focus on an understanding of the multi-mode heat transfer, fluid flow, and phase change processes in order to design the material system for enhanced performance. The importance of both the experimental and numerical approaches is highlighted and we give an example of how both approaches can be complementarily used for the investigation of long-term performance. PMID:26842330

  16. Reusable high-temperature heat pipes and heat pipe panels

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J. (Inventor); Ransone, Philip O. (Inventor)

    1989-01-01

    A reusable, durable heat pipe which is capable of operating at temperatures up to about 3000 F in an oxidizing environment and at temperatures above 3000 F in an inert or vacuum environment is produced by embedding a refractory metal pipe within a carbon-carbon composite structure. A reusable, durable heat pipe panel is made from an array of refractory-metal pipes spaced from each other. The reusable, durable, heat-pipe is employed to fabricate a hypersonic vehicle leading edge and nose cap.

  17. Temperature Tunable Air-Gap Etalon Filter

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Stephen, Mark A.; Lunt, David L.

    1998-01-01

    We report on experimental measurements of a temperature tuned air-gap etalon filter. The filter exhibits temperature dependent wavelength tuning of 54 pm/C. It has a nominal center wavelength of 532 nm. The etalon filter has a 27 pm optical bandpass and 600 pm free spectral range (finesse approximately 22). The experimental results are in close agreement with etalon theory.

  18. Design manual. [High temperature heat pump for heat recovery system

    SciTech Connect

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  19. Optimum Allocation of Heat Exchanger Inventory of Irreversible Air Refrigeration Cycles

    NASA Astrophysics Data System (ADS)

    Luo, Jun; Chen, Lingen; Sun, Fengrui; Wu, Chih

    The theory of finite time thermodynamics is applied to analyze the performance of irreversible air refrigeration cycles in this paper. For the fixed total heat exchanger inventory, the ratio of heat conductance of the low-temperature side heat exchanger to that of the high-temperature side heat exchanger is optimized for maximizing the cooling load and the coefficient of performance (COP) of the cycles. The influences of various parameters on the characteristic of the cycle are analyzed. The results obtained may provide guidance for the design of practice air refrigeration plants.

  20. Impact of radioactive waste heat on soil temperatures

    SciTech Connect

    Robinson, B.A.; Gable, C.W.; Lowman, J.P.

    1999-01-04

    Consideration of the impact of radioactive waste heat is necessary for many aspects of potential repository design. Waste heat will alter the mineralogy of the host rock, and may change the character of the zeolitic units below the potential repository that are likely to be the primary natural barriers to radionuclide migration. The impact of waste heat on the near-surface temperature within the soil zone is the focus of the present study. Since 1990, the Nuclear Waste Technical Review Board (NWTRB) has raised the issue of potential impacts on the aboveground ecosystem from increases in soil temperatures. This study is a first step toward understanding the relevant heat transfer processes that controls the near-surface thermal regime and to place bounds on the expected timing and magnitude of the temperature rise. Two-dimensional, site scale thermohydrologic calculations will be used to simulate the large-scale thermohydrologic processes that will feed heat to the soil zone. The potential influence of this heat on soil-zone temperatures will then be examined in a series of simplified one-dimensional model calculations. In future efforts the measured soil-zone temperature variations in the air will be used to calibrate the model, which will tighten the bounds on the possible temperature rise. This study is a precursor to more detailed, three-dimensional simulations with a calibrated model. If it is determined that direct coupling of the site scale and soil zones would be beneficial, this will be done as well.

  1. Temperature and heat production patterns inside organism clusters

    NASA Astrophysics Data System (ADS)

    Kyaw Tha Paw, U.

    1988-06-01

    Clustering of organisms under cold air temperature conditions is modelled with a finite-difference method. Metabolic functions of temperature are used to simulate completely ectothermic, completely endothermic, and other organisms. To adequately match real conditions, the core temperature is kept constant at a high level, while the periphery of the organism cluster is assigned a lower temperature representing the cold conditions under which clustering is observed for organisms. The numerical model reasonably predicts the observed temperature distribution in honeybee clusters. The results do not support suggestions that organisms could overheat in the core of a cluster if they do not use thermoregulatory mechanisms to cool down. Endothermic organisms are not as efficient as ectothermic ones in heating a cluster core temperature to a given level. The general ectothermic metabolic rate function exhibited one of the highest efficiencies for heating the cluster.

  2. Mist Formation in Heat Exchanger of Air-Conditioners

    NASA Astrophysics Data System (ADS)

    Ishihara, Isao; Matsumoto, Ryosuke; Shibata, Yutaka

    The mist formation is found occasionally at the outlet of the air-conditioner, especially in the high temperature and high humidity environment. When the condensation takes place, a certain degree of the super-saturation is needed. Some researchers introduced the critical saturation model1-3) into the condensation process concerning with the super-saturation. However, under the ordinary environmental conditions where air-conditioners are installed, there are many nuclei for the phase change such as dusts in the humid air. They may offer the trigger to condense; that is to form the mist. In this research, with taking into account the super-saturation depending on the diameter of foreign nucleus, the mist formation is numerically predicted by solving boundary layer equations for the cold parallel plate channel simulating the heat exchanger of air-conditioner with the slit fins. The effects of the humidity and channel dimension on the mist formation rate and on heat and mass transfer are investigated. In addition, the numerical results are compared with those for the plate channel reported previously.

  3. Passive radiative cooling below ambient air temperature under direct sunlight.

    PubMed

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day. PMID:25428501

  4. The Effects of Air Pollution and Temperature on COPD.

    PubMed

    Hansel, Nadia N; McCormack, Meredith C; Kim, Victor

    2016-06-01

    Chronic Obstructive Pulmonary Disease (COPD) affects 12-16 million people in the United States and is the third-leading cause of death. In developed countries, smoking is the greatest risk factor for the development of COPD, but other exposures also contribute to the development and progression of the disease. Several studies suggest, though are not definitive, that outdoor air pollution exposure is linked to the prevalence and incidence of COPD. Among individuals with COPD, outdoor air pollutants are associated with loss of lung function and increased respiratory symptoms. In addition, outdoor air pollutants are also associated with COPD exacerbations and mortality. There is much less evidence for the impact of indoor air on COPD, especially in developed countries in residences without biomass exposure. The limited existing data suggests that indoor particulate matter and nitrogen dioxide concentrations are linked to increased respiratory symptoms among patients with COPD. In addition, with the projected increases in temperature and extreme weather events in the context of climate change there has been increased attention to the effects of heat exposure. Extremes of temperature-both heat and cold-have been associated with increased respiratory morbidity in COPD. Some studies also suggest that temperature may modify the effect of pollution exposure and though results are not conclusive, understanding factors that may modify susceptibility to air pollution in patients with COPD is of utmost importance. PMID:26683097

  5. Experimental and theoretical analysis results for high temperature air combustion

    SciTech Connect

    Tanigawa, Tadashi; Morita, Mitsunobu

    1998-07-01

    With Japan's preparation of its Action program to prevent global warming in 1990 and the holding of the United National Conference on Environment and Development (the Earth Summit) in 1992 as a backdrop, reflecting the global effort to protect the environment, a high performance industrial furnace development project was launched in 1993 by the New Energy and Industrial Technology Development Organization (NEDO). This project focuses on the development of a combustion technology which uses air that is preheated to extremely high temperatures (above 1,000 C), heretofore considered impossible. Not only can this technology reduce carbon dioxide emission, thought to cause the greenhouse effect, by over 30%, but it can also reduce nitrogen oxide emission by nearly half. This new technology makes use of the recently-developed high-cycle regenerative heat exchanger, for preheating the furnace air supply. This exchanger preheats air to above 1,000 C, much higher than for conventional furnaces, and then this air is injected with fuel. R and D data have shown that CO{sub 2} and NO{sub x} emissions can be reduced markedly. However, the theoretical analysis is yet to be made, thereby hampering efforts to have this advanced technology become widely adopted. This project accumulated new data related to uniform temperature distribution, high energy heat transfer and low NO{sub x} as common characteristics of high temperature air combustion.

  6. Modeling monthly mean air temperature for Brazil

    NASA Astrophysics Data System (ADS)

    Alvares, Clayton Alcarde; Stape, José Luiz; Sentelhas, Paulo Cesar; de Moraes Gonçalves, José Leonardo

    2013-08-01

    Air temperature is one of the main weather variables influencing agriculture around the world. Its availability, however, is a concern, mainly in Brazil where the weather stations are more concentrated on the coastal regions of the country. Therefore, the present study had as an objective to develop models for estimating monthly and annual mean air temperature for the Brazilian territory using multiple regression and geographic information system techniques. Temperature data from 2,400 stations distributed across the Brazilian territory were used, 1,800 to develop the equations and 600 for validating them, as well as their geographical coordinates and altitude as independent variables for the models. A total of 39 models were developed, relating the dependent variables maximum, mean, and minimum air temperatures (monthly and annual) to the independent variables latitude, longitude, altitude, and their combinations. All regression models were statistically significant ( α ≤ 0.01). The monthly and annual temperature models presented determination coefficients between 0.54 and 0.96. We obtained an overall spatial correlation higher than 0.9 between the models proposed and the 16 major models already published for some Brazilian regions, considering a total of 3.67 × 108 pixels evaluated. Our national temperature models are recommended to predict air temperature in all Brazilian territories.

  7. Medium Deep High Temperature Heat Storage

    NASA Astrophysics Data System (ADS)

    Bär, Kristian; Rühaak, Wolfram; Schulte, Daniel; Welsch, Bastian; Chauhan, Swarup; Homuth, Sebastian; Sass, Ingo

    2015-04-01

    Heating of buildings requires more than 25 % of the total end energy consumption in Germany. Shallow geothermal systems for indirect use as well as shallow geothermal heat storage systems like aquifer thermal energy storage (ATES) or borehole thermal energy storage (BTES) typically provide low exergy heat. The temperature levels and ranges typically require a coupling with heat pumps. By storing hot water from solar panels or thermal power stations with temperatures of up to 110 °C a medium deep high temperature heat storage (MDHTS) can be operated on relatively high temperature levels of more than 45 °C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use for drinking water or other purposes. Permeability is typically also decreasing with greater depth; especially in the crystalline basement therefore conduction becomes the dominant heat transport process. Solar-thermal charging of a MDHTS is a very beneficial option for supplying heat in urban and rural systems. Feasibility and design criteria of different system configurations (depth, distance and number of BHE) are discussed. One system is designed to store and supply heat (300 kW) for an office building. The required boreholes are located in granodioritic bedrock. Resulting from this setup several challenges have to be addressed. The drilling and completion has to be planned carefully under consideration of the geological and tectonical situation at the specific site.

  8. Selection of the air heat exchanger operating in a gas turbine air bottoming cycle

    NASA Astrophysics Data System (ADS)

    Chmielniak, Tadeusz; Czaja, Daniel; Lepszy, Sebastian

    2013-12-01

    A gas turbine air bottoming cycle consists of a gas turbine unit and the air turbine part. The air part includes a compressor, air expander and air heat exchanger. The air heat exchanger couples the gas turbine to the air cycle. Due to the low specific heat of air and of the gas turbine exhaust gases, the air heat exchanger features a considerable size. The bigger the air heat exchanger, the higher its effectiveness, which results in the improvement of the efficiency of the gas turbine air bottoming cycle. On the other hand, a device with large dimensions weighs more, which may limit its use in specific locations, such as oil platforms. The thermodynamic calculations of the air heat exchanger and a preliminary selection of the device are presented. The installation used in the calculation process is a plate heat exchanger, which is characterized by a smaller size and lower values of the pressure drop compared to the shell and tube heat exchanger. Structurally, this type of the heat exchanger is quite similar to the gas turbine regenerator. The method on which the calculation procedure may be based for real installations is also presented, which have to satisfy the economic criteria of financial profitability and cost-effectiveness apart from the thermodynamic criteria.

  9. The influence of air-conditioning on street temperatures in the city of Paris

    NASA Astrophysics Data System (ADS)

    de Munck, C. S.; Pigeon, G.; Masson, V.; Marchadier, C.; Meunier, F.; Tréméac, B.; Merchat, M.

    2010-12-01

    A consequence of urban heat islands in summer is the increased use of air-conditioning during extreme heat events : the use of air-conditioning systems, while cooling the inside of buildings releases waste heat (as latent and sensible heat) in the lower part of the urban atmosphere, hence potentially increasing air street temperatures where the heat is released. This may lead locally to a further increase in air street temperatures, therefore increasing the air cooling demand, while at the same time lowering the efficiency of air-conditioning units. A coupled model consisting of a meso-scale meteorological model (MESO-NH) and an urban energy balance model (TEB) has been implemented with an air-conditioning module and used in combination to real spatialised datasets to understand and quantify potential increases in temperature due to air-conditioning heat releases for the city of Paris . In a first instance, the current types of air-conditioning systems co-existing in the city were simulated (underground chilled water network, wet cooling towers and individual air-conditioning units) to study the effects of latent and sensible heat releases on street temperatures. In a third instance, 2 scenarios were tested to characterise the impacts of likely future trends in air-conditioning equipment in the city : a first scenario for which current heat releases were converted to sensible heat, and a second based on 2030s projections of air-conditioning equipment at the scale of the city. All the scenarios showed an increase in street temperature which, as expected, was greater at night time than day time. For the first two scenarios, this increase in street temperatures was localised at or near the sources of air-conditioner heat releases, while the 2030s air-conditioning scenario impacted wider zones in the city. The amplitude of the increase in temperature varied from 0,25°C to 1°C for the air-conditioning current state, between 0,25°C and 2°C for the sensible heat

  10. The Condensation Line of Air and the Heats of Vaporization of Oxygen and Nitrogen

    NASA Technical Reports Server (NTRS)

    Furukawa, George T; Mccoskey, Robert E

    1953-01-01

    The condensation pressure of air was determined over the range of temperature from 60 to 85 K. The experimental results were slightly higher than the calculated values based on the ideal solution law. Heat of vaporization of oxygen was determined at four temperatures ranging from about 68 to 91 K and of nitrogen similarly at four temperatures ranging from 62 to 78 K.

  11. Analysis of spanwise temperature distribution in three types of air-cooled turbine blade

    NASA Technical Reports Server (NTRS)

    Livingood, John N B; Brown, W Byron

    1950-01-01

    Methods for computing spanwise blade-temperature distributions are derived for air-cooled hollow blades, air-cooled hollow blades with inserts, and air-cooled blades containing internal cooling fins. Individual and combined effects on spanwise blade-temperature distributions of cooling-air and radial heat conduction are determined. In general, the effects of radiation and radial heat conduction were found to be small and the omission of these variations permitted the construction of nondimensional charts for use in determining spanwise temperature distribution through air-cooled turbine blades. An approximate method for determining the allowable stress-limited blade-temperature distribution is included, with brief accounts of a method for determining the maximum allowable effective gas temperatures and the cooling-air requirements. Numerical examples that illustrate the use of the various temperature-distribution equations and of the nondimensional charts are also included.

  12. TEACHING PHYSICS: Teaching about heat and temperature

    NASA Astrophysics Data System (ADS)

    Carlton, Kevin

    2000-03-01

    Students encountering thermal physics at introductory level often have difficulty distinguishing between heat and temperature. It has been found with teacher education students at Canterbury Christ Church University College that challenging misconceptions by experiment and through discussion can quickly enable them to acquire the necessary concepts to equip them to develop their understanding of thermal physics. The key concepts are those of thermal equilibrium, the notion of flow of heat energy and the ability to differentiate between heat and temperature. This paper outlines a possible combination of activities to illustrate how this may be accomplished.

  13. Effect of production microclimate on female thermal state with increased temperature and air humidity

    NASA Technical Reports Server (NTRS)

    Machablishvili, O. G.

    1980-01-01

    The thermal state of women during the effect of high air temperature and relative humidity with a varying degree of physical loads was studied. Parameters for air temperature, relative humidity, and air movement were established. It was established that in women the thermo-regulatory stress occurs at lower air temperatures and with lower physical loads than in men. The accumulation of heat in women was revealed with lower air temperature than in men. It is concluded that to preserve the normal physiological state of the female organism it is necessary to create more favorable microclimate conditions and decrease the physical loads.

  14. Effects of fin pattern on the air side heat transfer coefficient in plate finned tube heat exchangers

    SciTech Connect

    Beecher, D.T.; Fagan, T.J.

    1987-06-01

    The effects of air velocity, heat exchanger geometry and fin pattern on air side heat transfer in plate finned tube heat exchangers were investigated experimentally using a single fin passage model. The geometric parameters considered included tube diameter, transverse tube spacing, longitudinal tube spacing, number of tube rows and fin spacing. The effects of fin pattern depth and number of fin patterns per longitudinal tube row were investigated for a pattern consisting of corrugations of triangular cross section transverse to the direction of air flow. The heat transfer data were correlated in terms of the dimensionless heat transfer coefficient (Nussult number) based on the arithmetic mean temperature difference Nu/sub a/ and the Graetz number Gz, a dimensionless measure of the level of flow development.

  15. The Effects of Air Pollution and Temperature on COPD

    PubMed Central

    Hansel, Nadia N.; McCormack, Meredith C.; Kim, Victor

    2016-01-01

    Chronic Obstructive Pulmonary Disease (COPD) affects 12–16 million people in the United States and is the third-leading cause of death. In developed countries, smoking is the greatest risk factor for the development of COPD, but other exposures also contribute to the development and progression of the disease. Several studies suggest, though are not definitive, that outdoor air pollution exposure is linked to the prevalence and incidence of COPD. Among individuals with COPD, outdoor air pollutants are associated with loss of lung function and increased respiratory symptoms. In addition, outdoor air pollutants are also associated with COPD exacerbations and mortality. There is much less evidence for the impact of indoor air on COPD, especially in developed countries in residences without biomass exposure. The limited existing data suggests that indoor particulate matter and nitrogen dioxide concentrations are linked to increased respiratory symptoms among patients with COPD. In addition, with the projected increases in temperature and extreme weather events in the context of climate change there has been increased attention to the effects of heat exposure. Extremes of temperature—both heat and cold—have been associated with increased respiratory morbidity in COPD. Some studies also suggest that temperature may modify the effect of pollution exposure and though results are not conclusive, understanding factors that may modify susceptibility to air pollution in patients with COPD is of utmost importance. PMID:26683097

  16. Investigation of Effectiveness of Air-Heating a Hollow Steel Propeller for Protection Against Icing. 3: 25% Partitioned Blades

    NASA Technical Reports Server (NTRS)

    Mulholland, Donald R.; Perkins, Porter J.

    1948-01-01

    The icing protection obtained from an internally air-heated propeller blade partitioned to confine the heated air forward of 25-percent chord was investigated in the NACA Cleveland icing research tunnel. A production-model hollow steel propeller was modified with an Internal radial partition at 25-percent chord and with shank and tip openings to admit and exhaust the heated air. Temperatures were measured on the blade surfaces and in the heated-air system during tunnel icing conditions. Heat-exchanger effectiveness and photographs of Ice formations on the blades were obtained. Surface temperature measurements indicated that confining the heated air forward of the 25-percent chord gave.a more economical distribution of the applied heat as compared with unpartitioned and 50-percent partitioned blades, by dissipating a greater percentage of the available heat at the leading edge. At a propeller speed of 850 rpm, a heating rate of 7000 Btu per hour per blade at a shank air temperature of 400 F provided adequate Icing protection at ambient-air temperatures of 23 F but not at temperatures as low as 15 F. With the heating rate used, a heat-exchanger effectiveness of 77 percent was obtained as compared to 56 percent for 50-percent partitioned and 47 percent for unpartitioned blades.

  17. Enhanced temperature uniformity by tetrahedral laser heating

    SciTech Connect

    Schroers, Jan; Bossuyt, Sven; Rhim, Won-Kyu; Li Jianzhong; Zhou Zhenhua; Johnson, William L.

    2004-11-01

    Temperature profile on a spherical sample that is heated by laser beams in various geometries while processed in vacuum is analyzed. Sample heating by one or four laser beams was considered. An analytical expression was derived for directional sample heating cases. It suggests an enhanced temperature uniformity over the samples when heated with four diffuse laser beams arranged in a tetrahedral geometry. This was experimentally verified by heating a spherical stainless steel sample by laser beams. Both the calculated and experimentally determined temperature variations over the sample suggest that use of diffuse four beams arranged in tetrahedral geometry would be effective in reducing temperature variation to within 1 K. The enhancement in the temperature uniformity for four diffuse beams arranged in a tetrahedral geometry by a factor of 50 over a single focused beam is promising to accurately measure of thermophysical properties. This drastic improvement in temperature uniformity might even enable atomic diffusion measurements in the undercooled liquid states of the bulk glass forming alloys since Marangoni and gravity driven convection will be substantially reduced.

  18. Dynamic Performance of a Residential Air-to-Air Heat Pump.

    ERIC Educational Resources Information Center

    Kelly, George E.; Bean, John

    This publication is a study of the dynamic performance of a 5-ton air-to-air heat pump in a residence in Washington, D.C. The effect of part-load operation on the heat pump's cooling and heating coefficients of performance was determined. Discrepancies between measured performance and manufacturer-supplied performance data were found when the unit…

  19. Magnetic heat pumping near room temperature

    NASA Technical Reports Server (NTRS)

    Brown, G. V.

    1976-01-01

    It is shown that magnetic heat pumping can be made practical at room temperature by using a ferromagnetic material with a Curie point at or near operating temperature and an appropriate regenerative thermodynamic cycle. Measurements are performed which show that gadolinium is a resonable working material and it is found that the application of a 7-T magnetic field to gadolinium at the Curie point (293 K) causes a heat release of 4 kJ/kg under isothermal conditions or a temperature rise of 14 K under adiabatic conditions. A regeneration technique can be used to lift the load of the lattice and electronic heat capacities off the magnetic system in order to span a reasonable temperature difference and to pump as much entropy per cycle as possible

  20. Heat Transfer from Finned Metal Cylinders in an Air Stream

    NASA Technical Reports Server (NTRS)

    Biermann, Arnold, E; Pinkel, Benjamin

    1935-01-01

    This report presents the results of tests made to supply design information for the construction of metal fins for the cooling of heated cylindrical surfaces by an air stream. A method is given for determining fin dimensions for a maximum heat transfer with the expenditure of a given amount of material for a variety of conditions of air flow and metals.

  1. Mountain Plains Learning Experience Guide: Heating, Refrigeration, & Air Conditioning.

    ERIC Educational Resources Information Center

    Carey, John

    This Heating, Refrigeration, and Air Conditioning course is comprised of eleven individualized units: (1) Refrigeration Tools, Materials, and Refrigerant; (2) Basic Heating and Air Conditioning; (3) Sealed System Repairs; (4) Basic Refrigeration Systems; (5) Compression Systems and Compressors; (6) Refrigeration Controls; (7) Electric Circuit…

  2. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  3. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  4. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  5. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  6. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  7. Predicting seed cotton moisture content from changes in drying air temperature - second year

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A mathematical model was used to predict seed cotton moisture content in the overhead section of a cotton gin. The model took into account the temperature, mass flow, and specific heat of both the air and seed cotton. Air temperatures and mass flows were measured for a second year at a commercial g...

  8. Fiber optic distributed temperature sensing for the determination of air temperature

    NASA Astrophysics Data System (ADS)

    de Jong, S. A. P.; Slingerland, J. D.; van de Giesen, N. C.

    2015-01-01

    This paper describes a method to correct for the effect of solar radiation in atmospheric distributed temperature sensing (DTS) applications. By using two cables with different diameters, one can determine what temperature a zero diameter cable would have. Such a virtual cable would not be affected by solar heating and would take on the temperature of the surrounding air. With two unshielded cable pairs, one black pair and one white pair, good results were obtained given the general consensus that shielding is needed to avoid radiation errors (WMO, 2010). The correlations between standard air temperature measurements and air temperatures derived from both cables of colors had a high correlation coefficient (r2=0.99) and a RMSE of 0.38 °C, compared to a RMSE of 2.40 °C for a 3.0 mm uncorrected black cable. A thin white cable measured temperatures that were close to air temperature measured with a nearby shielded thermometer (RMSE of 0.61 °C). The temperatures were measured along horizontal cables with an eye to temperature measurements in urban areas, but the same method can be applied to any atmospheric DTS measurements, and for profile measurements along towers or with balloons and quadcopters.

  9. The Oak Ridge Heat Pump Models: I. A Steady-State Computer Design Model of Air-to-Air Heat Pumps

    SciTech Connect

    Fischer, S.K. Rice, C.K.

    1999-12-10

    The ORNL Heat Pump Design Model is a FORTRAN-IV computer program to predict the steady-state performance of conventional, vapor compression, electrically-driven, air-to-air heat pumps in both heating and cooling modes. This model is intended to serve as an analytical design tool for use by heat pump manufacturers, consulting engineers, research institutions, and universities in studies directed toward the improvement of heat pump performance. The Heat Pump Design Model allows the user to specify: system operating conditions, compressor characteristics, refrigerant flow control devices, fin-and-tube heat exchanger parameters, fan and indoor duct characteristics, and any of ten refrigerants. The model will compute: system capacity and COP (or EER), compressor and fan motor power consumptions, coil outlet air dry- and wet-bulb temperatures, air- and refrigerant-side pressure drops, a summary of the refrigerant-side states throughout the cycle, and overall compressor efficiencies and heat exchanger effectiveness. This report provides thorough documentation of how to use and/or modify the model. This is a revision of an earlier report containing miscellaneous corrections and information on availability and distribution of the model--including an interactive version.

  10. The Impact of Winter Heating on Air Pollution in China

    PubMed Central

    Xiao, Qingyang; Ma, Zongwei; Li, Shenshen; Liu, Yang

    2015-01-01

    Fossil-fuel combustion related winter heating has become a major air quality and public health concern in northern China recently. We analyzed the impact of winter heating on aerosol loadings over China using the MODIS-Aqua Collection 6 aerosol product from 2004–2012. Absolute humidity (AH) and planetary boundary layer height (PBL) -adjusted aerosol optical depth (AOD*) was constructed to reflect ground-level PM2.5 concentrations. GIS analysis, standard statistical tests, and statistical modeling indicate that winter heating is an important factor causing increased PM2.5 levels in more than three-quarters of central and eastern China. The heating season AOD* was more than five times higher as the non-heating season AOD*, and the increase in AOD* in the heating areas was greater than in the non-heating areas. Finally, central heating tend to contribute less to air pollution relative to other means of household heating. PMID:25629878

  11. Low GWP Refrigerants Modelling Study for a Room Air Conditioner Having Microchannel Heat Exchangers

    SciTech Connect

    Shen, Bo; Bhandari, Mahabir S

    2016-01-01

    Microchannel heat exchangers (MHX) have found great successes in residential and commercial air conditioning applications, being compact heat exchangers, to reduce refrigerant charge and material cost. This investigation aims to extend the application of MHXs in split, room air conditioners (RAC), per fundamental heat exchanger and system modelling. For this paper, microchannel condenser and evaporator models were developed, using a segment-to-segment modelling approach. The microchannel heat exchanger models were integrated to a system design model. The system model is able to predict the performance indices, such as cooling capacity, efficiency, sensible heat ratio, etc. Using the calibrated system and heat exchanger models, we evaluated numerous low GWP (global warming potential) refrigerants. The predicted system performance indices, e.g. cooling efficiency, compressor discharge temperature, and required compressor displacement volume etc., are compared. Suitable replacements for R22 and R-410A for the room air conditioner application are recommended.

  12. A new absorption chiller to establish combined cold, heat, and power generation utilizing low-temperature heat

    SciTech Connect

    Schweigler, C.J.; Riesch, P.; Demmel, S.; Alefeld, G.

    1996-11-01

    Presently available absorption machines for air conditioning are driven with heat of a minimum of 80 C (176 F). A combination of the standard single-effect and a double-lift process has been identified as a new cycle that can use driving heat down to return temperatures of about 55 C (131 F) and permits temperature glides in generation of more than 30 K (54 F). Thus a larger cooling capacity can be produced from the same heat source compared to a single-effect chiller run with the same heat carrier supply temperature and mass flow. According to the estimated heat exchanger area, competitive machine costs for this new chiller can be expected. This single-effect/double-lift absorption chiller can be operated with waste heat from industrial processes, as well as with low-temperature heat (e.g., heat from solar collectors) as driving heat for air conditioning. The large temperature glide and the low return temperature especially fit the operating conditions in district heating networks during the summer. The cycle will be presented, followed by a discussion of suitable operating conditions.

  13. Electron heat transport down steep temperature gradients

    SciTech Connect

    Matte, J.P.; Virmont, J.

    1982-12-27

    Electron heat transport is studied by numerically solving the Fokker-Planck equation, with a spherical harmonic representation of the distribution function. The first two terms (f/sub 0/, f/sub 1/) suffice, even in steep temperature gradients. Deviations from the Spitzer-Haerm law appear for lambda/L/sub T/ ((mean free path)/(temperature gradient length))> or approx. =0.01, as a result of non-Maxwellian f/sub 0/. For lambda/L/sub T/> or approx. =1, the heat flux is (1/3) of the free-streaming value. In intermediate cases, a harmonic law describes well the hottest part of the plasma.

  14. AIR EMISSIONS FROM RESIDENTIAL HEATING: THE WOOD HEATING OPTION PUT INTO ENVIRONMENTAL PERSPECTIVE

    EPA Science Inventory

    The paper compares the national scale (rather than local) air quality impacts of the various residential space heating options. Specifically, it compares the relative contribution of the space heating options to fine particulate emissions, greenhouse gas emissions, and acid preci...

  15. Can air temperature be used to project influences of climate change on stream temperature?

    USGS Publications Warehouse

    Arismendi, Ivan; Safeeq, Mohammad; Dunham, Jason B.; Johnson, Sherri L.

    2014-01-01

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To address this knowledge gap, we examined the performance of two widely used linear and nonlinear regression models that predict stream temperatures based on air temperatures. We evaluated model performance and temporal stability of model parameters in a suite of regulated and unregulated streams with 11–44 years of stream temperature data. Although such models may have validity when predicting stream temperatures within the span of time that corresponds to the data used to develop them, model predictions did not transfer well to other time periods. Validation of model predictions of most recent stream temperatures, based on air temperature–stream temperature relationships from previous time periods often showed poor performance when compared with observed stream temperatures. Overall, model predictions were less robust in regulated streams and they frequently failed in detecting the coldest and warmest temperatures within all sites. In many cases, the magnitude of errors in these predictions falls within a range that equals or exceeds the magnitude of future projections of climate-related changes in stream temperatures reported for the region we studied (between 0.5 and 3.0 °C by 2080). The limited ability of regression-based statistical models to accurately project stream temperatures over time likely stems from the fact that underlying processes at play, namely the heat budgets of air and water, are distinctive in each medium and vary among localities and through time.

  16. A solar air collector with integrated latent heat thermal storage

    NASA Astrophysics Data System (ADS)

    Charvat, Pavel; Ostry, Milan; Mauder, Tomas; Klimes, Lubomir

    2012-04-01

    Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM) was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data).

  17. Effects of fin pattern on the air-side heat transfer coefficient in plate finned-tube heat exchangers

    SciTech Connect

    Beecher, D.T.; Fagan, T.J.

    1987-06-01

    The effects of air velocity, heat exchanger geometry, and fin patternation on air-side heat transfer in plate finned tube heat exchangers were investigated experimentally using a single-fin passage model. The geometric parameters considered included tube diameter, transverse tube spacing, longitudinal tube spacing, number of tube rows, and fin spacing. The effects of fin pattern depth and number of fin patterns per longitudinal tube row were investigated for a pattern consisting of corrugations of triangular cross-section transverse to the direction of airflow. The heat transfer data were correlated in terms of the dimensionless heat transfer coefficient (Nusselt number) based on the arithmetic mean temperature difference, Nu/sub a/, and the Graetz number, Gz, a dimensionless measure of the level of flow development.

  18. Combustion and gasification characteristics of pulverized coal using high-temperature air

    SciTech Connect

    Hanaoka, R.; Nakamura, M.; Kiga, T.; Kosaka, H.; Iwahashi, T.; Yoshikawa, K.; Sakai, M.; Muramatsu, K.; Mochida, S.

    1998-07-01

    In order to confirm performance of high-temperature-air combusting of pulverized coal, laboratory-scale combustion and gasification tests of coal were conducted changing air temperature and oxygen concentration in the air. Theses were conducted in a drop tube furnace of 200mm in inside diameter and 2,000mm in length. The furnace was heated by ceramic heater up to 1,300 C. A high-temperature air preheater utilizing the HRS (High Cycle Regenerative Combustion System) was used to obtain high-temperature combustion air. As the results, NOx emission was reduced when pulverized coal was fired with high-temperature-air. On the other hand, by lower oxygen concentration in combustion air diluted by nitrogen, NOx emission slightly decreased while became higher under staging condition.

  19. Opportunities for Saving Energy and Improving Air Quality in Urban Heat Islands

    SciTech Connect

    Akbari, Hashem

    2007-07-01

    World energy use is the main contributor to atmospheric CO2. In 2002, about 7.0 giga metric tons of carbon (GtC) were emitted internationally by combustion of gas, liquid, and solid fuels (CDIAC, 2006), 2 to 5 times the amount contributed by deforestation (Brown et al., 1988). The share of atmospheric carbon emissions for the United States from fossil fuel combustion was 1.6 GtC. Increasing use of fossil fuel and deforestation together have raised atmospheric CO{sub 2} concentration some 25% over the last 150 years. According to global climate models and preliminary measurements, these changes in the composition of the atmosphere have already begun raising the Earth's average temperature. If current energy trends continue, these changes could drastically alter the Earth's temperature, with unknown but potentially catastrophic physical and political consequences. During the last three decades, increased energy awareness has led to conservation efforts and leveling of energy consumption in the industrialized countries. An important byproduct of this reduced energy use is the lowering of CO{sub 2} emissions. Of all electricity generated in the United States, about one-sixth is used to air-condition buildings. The air-conditioning use is about 400 tera-watt-hours (TWh), equivalent to about 80 million metric tons of carbon (MtC) emissions, and translating to about $40 billion (B) per year. Of this $40 B/year, about half is used in cities that have pronounced 'heat islands'. The contribution of the urban heat island to the air-conditioning demand has increased over the last 40 years and it is currently at about 10%. Metropolitan areas in the United States (e.g., Los Angeles, Phoenix, Houston, Atlanta, and New York City) have typically pronounced heat islands that warrant special attention by anyone concerned with broad-scale energy efficiency (HIG, 2006). The ambient air is primarily heated through three processes: direct absorption of solar radiation, convection of heat

  20. Advances in Fast Response Acoustically Derived Air Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Bogoev, Ivan; Jacobsen, Larry; Horst, Thomas; Conrad, Benjamin

    2016-04-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity. The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  1. Development of New Air-Cooled Heat Pump Chiller 'Compact Cube'

    NASA Astrophysics Data System (ADS)

    Ookoshi, Yasushi; Ito, Takuya; Yamaguchi, Hiroshi; Kato, Yohei; Ochiai, Yasutaka; Tanaka, Kosuke; Uji, Yoshihiro; Nakayama, Hiroshi

    Further improvement of the performance is requested to air-cooled heat pump chiller from the viewpoint of the global warming prevention. Smaller unit is needed to facilitate the renewal from absorption chiller to air-cooled heat pump chiller. To meet such needs, we developed compact new air-cooled heat pump chiller with high efficiency, 'Compact cube'. The developed machine is side-flow type with U-shaped fin and tube heat exchangers. With this structure, the uniform air velocity, high packed density of the heat exchangers, and the unit miniaturization have been implemented. The refrigeration cycle with two-evaporating temperature has also been implemented. The cooling COP of this cycle is 2% higher compared with conventional one-evaporating temperature cycle because of the rise of average evaporating temperature. In a new model, a new control system, which controls both capacity of compressors and air flow rate corresponding to heat load, has been implemented. As a result, the developed machine achieved IPLV(Integrated Part load Value) to 6.2(MCHV-P1800AE) which is 29% better than the conventional unit.

  2. On the different regimes of gas heating in air plasmas

    NASA Astrophysics Data System (ADS)

    Pintassilgo, Carlos D.; Guerra, Vasco

    2015-10-01

    Simulations of the gas temperature in air (N2-20%O2) plasma discharges are presented for different values of the reduced electric field, E/N g, electron density n e, pressure and tube radius. This study is based on the solutions to the time-dependent gas thermal balance in a cylindrical geometry coupled to the electron, vibrational and chemical kinetics, for E/{{N}\\text{g}}=50 and 100 Td (1 Td = 10-17 V cm2), 109  ⩽  n e  ⩽  1011 cm-3, pressure in the range 1-20 Torr, and also considering different tube radius, 0.5, 1 and 1.5 cm. The competing role of different gas heating mechanisms is discussed in detail within the time range 0.01-100 ms. For times below 1 ms, gas heating occurs from O2 dissociation by electron impact through pre-dissociative excited states, e + O2  →  e + \\text{O}2*   →  e + 2O(3P) and …  →  e + O(3P) + O(1D), as well as through the quenching of N2 electronically excited states by O2. For longer times, simulation results show that gas heating comes from processes N(4S) + NO(X)  →  N2(X, v ~ 3) + O, N2(A) + O  →  NO(X) + N(2D), V-T N2-O collisions and the recombination of oxygen atoms at the wall. Depending on the given E/N g and n e values, each one of these processes can be an important gas-heating channel. The contribution of V-T N2-O exchanges to gas heating is important in the analysis of the gas temperature for different pressures and values of the tube radius. A global picture of these effects is given by the study of the fraction of the discharge power spent on gas heating, which is always ~15%. The values for the fractional power transferred to gas heating from vibrational and electronic excitation are also presented and discussed.

  3. Cold Heat Release Characteristics of Solidified Oil Droplet-Water Solution Latent Heat Emulsion by Air Bubbles

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Morita, Shin-Ichi

    The present work investigates the cold heat-release characteristics of the solidified oil droplets (tetradecane, C14H30, freezing point 278.9 K)/water solution emulsion as a latent heat-storage material having a low melting point. An air bubbles-emulsion direct-contact heat exchange method is selected for the cold heat-results from the solidified oil droplet-emulsion layer. This type of direct-contact method results in the high thermal efficiency. The diameter of air bubbles in the emulsion increases as compared with that in the pure water. The air bubbles blown from a nozzle show a strong mixing behavior during rising in the emulsion. The temperature effectiveness, the sensible heat release time and the latent heat release time have been measured as experimental parameters. The useful nondimensional emulsion level equations for these parameters have been derived in terms of the nondimensional emalsion level expressed the emulsion layer dimensions, Reynolds number for air flow, Stefan number and heat capacity ratio.

  4. Environmentally sound thermal energy extraction from coal and wastes using high temperature air combustion technology

    SciTech Connect

    Yoshikawa, Kunio

    1999-07-01

    High temperature air combustion is one of promising ways of burning relatively low BTU gas obtained from gasification of low grade coal or wastes. In this report, the author proposes a new power generation system coupled with high temperature air gasification of coal/wastes and high temperature air combustion of the syngas from coal/wastes. This system is realized by employing Multi-staged Enthalpy Extraction Technology (MEET). The basic idea of the MEET system is that coal or wastes are gasified with high temperature air of about 1,000 C, then the generated syngas is cooled in a heat recovery boiler to be cleaned-up in a gas cleanup system (desulfurization, desalinization and dust removal). Part of thermal energy contained in this cleaned-up syngas is used for high temperature air preheating, and the complete combustion of the fuel gas is done using also high temperature air for driving gas turbines or steam generation in a boiler.

  5. Trends in Surface Temperature from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Aumann, H. H.

    2014-12-01

    To address possible causes of the current hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We find a monotonic positive trend for the land temperature but not for the ocean temperature. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The results are compared with the model studies. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  6. Dynamic models of heating and cooling coils with one-dimensional air distribution

    NASA Astrophysics Data System (ADS)

    Wang, Zijie; Krauss, G.

    1993-06-01

    This paper presents the simulation models of the plate-fin, air-to-water (or water vapour) heat exchangers used as air-heating or air-cooling and dehumidifying coils in the HVAC (Heating, Ventilation and Air-Conditioning) systems. The thermal models are used to calculate the heat exchange between distributing air and coil pipes and outlet temperatures of air and heat or chilled fluid. The aerodynamic models are used to account for the pressure drop of the air crossing the coil tubes. They can also be used to optimize the structures of such coils. The models are based on principal laws of heat and mass conservation and fluid mechanics. They are transparent and easy to use. In our work, a coil is considered as an assembly of numbers of basic elements in which all the state variables are unique. Therefore we can conveniently simulate the coils with different structures and different geometric parameters. Two modular programs TRNSYS (Transient System Simulation) and ESACAP are utilized as supporting softwares which make the programming and simulation greatly simplified. The coil elements and a real coil were simulated. The results were compared with the data offered by the manufacturer (company SOFICA) and also with those obtained using critical methods such as NTU method, etc. and good agreement is attained.

  7. Cyclic high temperature heat storage using borehole heat exchangers

    NASA Astrophysics Data System (ADS)

    Boockmeyer, Anke; Delfs, Jens-Olaf; Bauer, Sebastian

    2016-04-01

    The transition of the German energy supply towards mainly renewable energy sources like wind or solar power, termed "Energiewende", makes energy storage a requirement in order to compensate their fluctuating production and to ensure a reliable energy and power supply. One option is to store heat in the subsurface using borehole heat exchangers (BHEs). Efficiency of thermal storage is increasing with increasing temperatures, as heat at high temperatures is more easily injected and extracted than at temperatures at ambient levels. This work aims at quantifying achievable storage capacities, storage cycle times, injection and extraction rates as well as thermal and hydraulic effects induced in the subsurface for a BHE storage site in the shallow subsurface. To achieve these aims, simulation of these highly dynamic storage sites is performed. A detailed, high-resolution numerical simulation model was developed, that accounts for all BHE components in geometrical detail and incorporates the governing processes. This model was verified using high quality experimental data and is shown to achieve accurate simulation results with excellent fit to the available experimental data, but also leads to large computational times due to the large numerical meshes required for discretizing the highly transient effects. An approximate numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly was therefore developed for use in larger scale simulations. The approximate numerical model still includes all BHE components and represents the temporal and spatial temperature distribution with a deviation of less than 2% from the fully discretized model. Simulation times are reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. This model is then used to investigate achievable storage capacity, injection and extraction rates as well as induced effects for

  8. Analysis of overall heat balance in self-heated proton-exchange-membrane fuel cells for temperature predictions

    NASA Astrophysics Data System (ADS)

    Koh, Joon-Ho; Hsu, Andrew T.; Akay, Hasan U.; Liou, May-Fun

    The effect of self-heating and cooling by natural convection on a sustainable temperature of PEM fuel cell stacks was studied. Overall mass and heat balance equations are combined to predict self-heated temperatures at various operating conditions. Analyses show that the effect of a heat loss coefficient is more important than other variables such as air flow rate and surrounding temperature. The stack design variables such as active cell area and number of cells also have significant influence on self-controlled temperature. A lower Ohmic resistance of cells is expected to allow a wider range of current load applications. The proposed model can also be used to evaluate heat loss coefficient from measured stack performance and temperature data. Experiments performed on a seven-cell stack of 50 cm 2 active area were used to provide data for the validation of the model.

  9. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1986-01-01

    Heat transfer coefficients were measured using both dry air and air/water vapor mixtures in the same forced convection cooling test rig (jet array impingement configurations) with mass ratios of water vapor to air up to 0.23. The primary objective was to verify by direct experiment that selected existing methods for evaluation of viscosity and thermal conductivity of air/water vapor mixtures could be used with confidence to predict heat transfer coefficients for such mixtures using as a basis heat transfer data for dry air only. The property evaluation methods deemed most appropriate require as a basis a measured property value at one mixture composition in addition to the property values for the pure components.

  10. Heating tar sands formations to visbreaking temperatures

    DOEpatents

    Karanikas, John Michael; Colmenares, Tulio Rafael; Zhang, Etuan; Marino, Marian; Roes, Augustinus Wilhelmus Maria; Ryan, Robert Charles; Beer, Gary Lee; Dombrowski, Robert James; Jaiswal, Namit

    2009-12-22

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat may be controlled so that at least a majority of the section reaches an average temperature of between 200.degree. C. and 240.degree. C., which results in visbreaking of at least some hydrocarbons in the section. At least some visbroken hydrocarbon fluids may be produced from the formation.

  11. Improving Air-Conditioner and Heat Pump Modeling (Presentation)

    SciTech Connect

    Winkler, J.

    2012-03-01

    A new approach to modeling residential air conditioners and heat pumps allows users to model systems by specifying only the more readily-available SEER/EER/HSPF-type metrics. Manufacturer data was used to generate full sets of model inputs for over 450 heat pumps and air conditioners. A sensitivity analysis identified which inputs can be safely defaulted 'behind-the-scenes' without negatively impacting the reliability of energy simulations.

  12. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1984-01-01

    Heat transfer coefficients were measured using both dry and humid air in the same forced convection cooling scheme and were compared using appropriate nondimensional parameters (Nusselt, Prandtl and Reynolds numbers). A forced convection scheme with a complex flow field, two dimensional arrays of circular jets with crossflow, was utilized with humidity ratios (mass ratio of water vapor to air) up to 0.23. The dynamic viscosity, thermal conductivity and specific heat of air, steam and air/steam mixtures are examined. Methods for determining gaseous mixture properties from the properties of their pure components are reviewed as well as methods for determining these properties with good confidence. The need for more experimentally determined property data for humid air is discussed. It is concluded that dimensionless forms of forced convection heat transfer data and empirical correlations based on measurements with dry air may be applied to conditions involving humid air with the same confidence as for the dry air case itself, provided that the thermophysical properties of the humid air mixtures are known with the same confidence as their dry air counterparts.

  13. Some Effects of Air and Fuel Oil Temperatures on Spray Penetration and Dispersion

    NASA Technical Reports Server (NTRS)

    Gelalles, A G

    1930-01-01

    Presented here are experimental results obtained from a brief investigation of the appearance, penetration, and dispersion of oil sprays injected into a chamber of highly heated air at atmospheric pressure. The development of single sprays injected into a chamber containing air at room temperature and at high temperature was recorded by spray photography equipment. A comparison of spray records showed that with the air at the higher temperature, the spray assumed the appearance of thin, transparent cloud, the greatest part of which rapidly disappeared from view. With the chamber air at room temperature, a compact spray with an opaque core was obtained. Measurements of the records showed a decrease in penetration and an increase in the dispersion of the spray injected into the heated air. No ignition of the fuel injected was observed or recorded until the spray particles came in contact with the much hotter walls of the chamber about 0.3 second after the start of injection.

  14. Heating, Ventilation, and Air Conditioning Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This task list is intended for use in planning and/or evaluating a competency-based course in heating, ventilation, and air conditioning. The guide outlines the tasks entailed in eight different duties typically required of employees in the following occupations: residential installer, domestic refrigeration technician, air conditioning and…

  15. Residential Heat and Air Conditioning. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    The program guide for residential heat and air conditioning courses in Florida identifies primary considerations for the organization, operation, and evaluation of a vocational education program. Following an occupational description for the job title for air-conditioning installer-servicer, window unit, and its Dictionary of Occupational Titles…

  16. Climate Change and Health Risks from Extreme Heat and Air Pollution in the Eastern United States

    NASA Astrophysics Data System (ADS)

    Limaye, V.; Vargo, J.; Harkey, M.; Holloway, T.; Meier, P.; Patz, J.

    2013-12-01

    Climate change is expected to exacerbate health risks from exposure to extreme heat and air pollution through both direct and indirect mechanisms. Directly, warmer ambient temperatures promote biogenic emissions of ozone precursors and favor the formation of ground-level ozone, while an anticipated increase in the frequency of stagnant air masses will allow fine particulates to accumulate. Indirectly, warmer summertime temperatures stimulate energy demand and exacerbate polluting emissions from the electricity sector. Thus, while technological adaptations such as air conditioning can reduce risks from exposures to extreme heat, they can trigger downstream damage to air quality and public health. Through an interdisciplinary modeling effort, we quantify the impacts of climate change on ambient temperatures, summer energy demand, air quality, and public health. The first phase of this work explores how climate change will directly impact the burden of heat-related mortality. Climatic patterns, demographic trends, and epidemiologic risk models suggest that populations in the eastern United States are likely to experience an increasing heat stress mortality burden in response to rising summertime air temperatures. We use North American Regional Climate Change Assessment Program modeling data to estimate mid-century 2-meter air temperatures and humidity across the eastern US from June-August, and quantify how long-term changes in actual and apparent temperatures from present-day will affect the annual burden of heat-related mortality across this region. With the US Environmental Protection Agency's Environmental Benefits Mapping and Analysis Program, we estimate health risks using concentration-response functions, which relate temperature increases to changes in annual mortality rates. We compare mid-century summertime temperature data, downscaled using the Weather Research and Forecasting model, to 2007 baseline temperatures at a 12 km resolution in order to estimate

  17. Temporal variability of the Buenos Aires, Argentina, urban heat island

    NASA Astrophysics Data System (ADS)

    Camilloni, Inés; Barrucand, Mariana

    2012-01-01

    This paper describes the statistical characteristics and temporal variability of the urban heat island (UHI) intensity in Buenos Aires using 32-year surface meteorological data with 1-h time intervals. Seasonal analyses show that the UHI intensity is strongest during summer months and an "inverse" effect is found frequently during the afternoon hours of the same season. During winter, the UHI effect is in the minimal. The interannual trend and the seasonal variation of the UHI for the main synoptic hours for a longer record of 48 years are studied and associated to changes in meteorological factors as low-level circulation and cloud amount. Despite the population growth, it was found a negative trend in the nocturnal UHI intensity that could be explained by a decline of near clear-sky conditions, a negative trend in the calm frequencies and an increase in wind speed. Urban to rural temperature differences and rural temperatures are negatively correlated for diurnal and nocturnal hours both for annual and seasonal scales. This result is due to the lower interannual variability of urban temperatures in comparison to rural ones.

  18. Fabrication of High-Temperature Heat Exchangers by Plasma Spraying Exterior Skins on Nickel Foams

    NASA Astrophysics Data System (ADS)

    Hafeez, P.; Yugeswaran, S.; Chandra, S.; Mostaghimi, J.; Coyle, T. W.

    2016-05-01

    Thermal-sprayed heat exchangers were tested at high temperatures (750 °C), and their performances were compared to the foam heat exchangers made by brazing Inconel sheets to their surface. Nickel foil was brazed to the exterior surface of 10-mm-thick layers of 10 and 40 PPI nickel foam. A plasma torch was used to spray an Inconel coating on the surface of the foil. A burner test rig was built to produce hot combustion gases that flowed over exposed face of the heat exchanger. Cooling air flowed through the foam heat exchanger at rates of up to 200 SLPM. Surface temperature and air inlet/exit temperature were measured. Heat transfer to air flowing through the foam was significantly higher for the thermally sprayed heat exchangers than for the brazed heat exchangers. On an average, thermally sprayed heat exchangers show 36% higher heat transfer than conventionally brazed foam heat exchangers. At low flow rates, the convective resistance is large (~4 × 10-2 m2 K/W), and the effect of thermal contact resistance is negligible. At higher flow rates, the convective resistance decreases (~2 × 10-3 m2 K/W), and the lower contact resistance of the thermally sprayed heat exchanger provides better performance than the brazed heat exchangers.

  19. Fabrication of High-Temperature Heat Exchangers by Plasma Spraying Exterior Skins on Nickel Foams

    NASA Astrophysics Data System (ADS)

    Hafeez, P.; Yugeswaran, S.; Chandra, S.; Mostaghimi, J.; Coyle, T. W.

    2016-06-01

    Thermal-sprayed heat exchangers were tested at high temperatures (750 °C), and their performances were compared to the foam heat exchangers made by brazing Inconel sheets to their surface. Nickel foil was brazed to the exterior surface of 10-mm-thick layers of 10 and 40 PPI nickel foam. A plasma torch was used to spray an Inconel coating on the surface of the foil. A burner test rig was built to produce hot combustion gases that flowed over exposed face of the heat exchanger. Cooling air flowed through the foam heat exchanger at rates of up to 200 SLPM. Surface temperature and air inlet/exit temperature were measured. Heat transfer to air flowing through the foam was significantly higher for the thermally sprayed heat exchangers than for the brazed heat exchangers. On an average, thermally sprayed heat exchangers show 36% higher heat transfer than conventionally brazed foam heat exchangers. At low flow rates, the convective resistance is large (~4 × 10-2 m2 K/W), and the effect of thermal contact resistance is negligible. At higher flow rates, the convective resistance decreases (~2 × 10-3 m2 K/W), and the lower contact resistance of the thermally sprayed heat exchanger provides better performance than the brazed heat exchangers.

  20. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  1. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  2. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  3. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  4. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  5. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  6. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  7. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  8. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  9. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  10. Behaviour of irradiated PHWR fuel pins during high temperature heating

    NASA Astrophysics Data System (ADS)

    Viswanathan, U. K.; Unnikrishnan, K.; Mishra, Prerna; Banerjee, Suparna; Anantharaman, S.; Sah, D. N.

    2008-12-01

    Fuel pins removed from an irradiated pressurised heavy water reactor (PHWR) fuel bundle discharged after an extended burn up of 15,000 MWd/tU have been subjected to isothermal heating tests in temperature range 700-1300 °C inside hot-cells. The heating of the fuel pins was carried out using a specially designed remotely operable furnace, which allowed localized heating of about 100 mm length of the fuel pin at one end under flowing argon gas or in air atmosphere. Post-test examination performed in the hot-cells included visual examination, leak testing, dimension measurement and optical and scanning electron microscopy. Fuel pins having internal pressure of 2.1-2.7 MPa due to fission gas release underwent ballooning and micro cracking during heating for 10 min at 800 °C and 900 °C but not at 700 °C. Fuel pin heated at 1300 °C showed complete disruption of cladding in heating zone, due to the embrittlement of the cladding. The examination of fuel from the pin tested at 1300 °C showed presence of large number of bubbles; both intragranular as well as intergranular bubbles. Details of the experiments and the results are presented in this paper.

  11. A fundamentally new approach to air-cooled heat exchangers.

    SciTech Connect

    Koplow, Jeffrey P.

    2010-01-01

    We describe breakthrough results obtained in a feasibility study of a fundamentally new architecture for air-cooled heat exchangers. A longstanding but largely unrealized opportunity in energy efficiency concerns the performance of air-cooled heat exchangers used in air conditioners, heat pumps, and refrigeration equipment. In the case of residential air conditioners, for example, the typical performance of the air cooled heat exchangers used for condensers and evaporators is at best marginal from the standpoint the of achieving maximum the possible coefficient of performance (COP). If by some means it were possible to reduce the thermal resistance of these heat exchangers to a negligible level, a typical energy savings of order 30% could be immediately realized. It has long been known that a several-fold increase in heat exchanger size, in conjunction with the use of much higher volumetric flow rates, provides a straight-forward path to this goal but is not practical from the standpoint of real world applications. The tension in the market place between the need for energy efficiency and logistical considerations such as equipment size, cost and operating noise has resulted in a compromise that is far from ideal. This is the reason that a typical residential air conditioner exhibits significant sensitivity to reductions in fan speed and/or fouling of the heat exchanger surface. The prevailing wisdom is that little can be done to improve this situation; the 'fan-plus-finned-heat-sink' heat exchanger architecture used throughout the energy sector represents an extremely mature technology for which there is little opportunity for further optimization. But the fact remains that conventional fan-plus-finned-heat-sink technology simply doesn't work that well. Their primary physical limitation to performance (i.e. low thermal resistance) is the boundary layer of motionless air that adheres to and envelops all surfaces of the heat exchanger. Within this boundary layer

  12. Performance evaluation of a selected three-ton air-to-air heat pump in the heating mode

    SciTech Connect

    Domingorena, A.A.; Ball, S.J.

    1980-01-01

    An air-to-air split system residential heat pump of nominal three-ton capacity was instrumented and tested in the heating mode under laboratory conditions. This was the second of a planned series of experiments to obtain a data base of system and component performance for heat pumps. The system was evaluated under both steady-state and frosting-defrosting conditions; sensitivity of the system performance to variations in the refrigerant charge was measured. From the steady-state tests, the heating capacity and coefficient of performance were computed, and evaluations were made of the performance parameters of the fan and fan motor units, the heat exchangers and refrigerant metering device, and the compressor. System heat losses were analyzed. The frosting-defrosting tests allowed the observation of system and component performance under dynamic conditions, and measurement of performance degradation under frosting conditions.

  13. Heat transfer and pressure drop measurements in an air/molten salt direct-contact heat exchanger

    SciTech Connect

    Bohn, M.S.

    1988-11-01

    This paper presents a comparison of experimental data with a recently published model of heat exchange in irrigated packed beds. Heat transfer and pressure drop were measured in a 150 mm (ID) column with a 610-mm bed of metal Pall rings. Molten nitrate salt and preheated air were the working fluids with a salt inlet temperature of approximately 440{degree}C and air inlet temperatures of approximately 230{degree}C. A comparison between the experimental data and the heat transfer model is made on the basis of heat transfer from the salt. For the range of air and salt flow rates tested, 0.3 to 1.2 kg/m{sup 2} s air flow and 6 to 18 kg/m{sup 2} s salt flow, the data agree with the model within 22% standard deviation. In addition, a model for the column pressure drop was validated, agreeing with the experimental data within 18% standard deviation over the range of column pressure drop from 40 to 1250 Pa/m. 25 refs., 7 figs., 2 tabs.

  14. Performance enhancement of an experimental air conditioning system by using TiO2/methanol nanofluid in heat pipe heat exchangers

    NASA Astrophysics Data System (ADS)

    Monirimanesh, Negin; Nowee, S. Mostafa; Khayyami, Shideh; Abrishamchi, Iman

    2016-05-01

    The effect of using nanofluid in thermosyphon-type heat pipe heat exchangers on energy conservation of an air-conditioning system was sought in this study. Innovatively, two heat exchangers in-series were deployed using TiO2/methanol nanofluids with 0-4 wt% concentrations as working fluids. The impacts of temperature and relative humidity on the effectiveness of 2 and 4-row heat exchangers were analyzed experimentally and more that 40 % energy saving was obtained.

  15. Determination of needed parameters for measuring temperature fields in air by thermography

    NASA Astrophysics Data System (ADS)

    Pešek, Martin; Pavelek, Milan

    2012-04-01

    The aim of this article is the parameters determination of equipment for measuring temperature fields in air using an infrared camera. This method is based on the visualization of temperature fields in an auxiliary material, which is inserted into the non-isothermal air flow. The accuracy of air temperature measurement (or of surface temperature of supplies) by this method depends especially on (except for parameters of infrared camera) the determination of the static and the dynamic qualities of auxiliary material. The emissivity of support material is the static quality and the dynamic quality is time constant. Support materials with a high emissivity and a low time constant are suitable for the measurement. The high value of emissivity results in a higher measurement sensitivity and the radiation temperature independence. In this article the emissivity of examined kinds of auxiliary materials (papers and textiles) is determined by temperature measuring of heated samples by a calibrated thermocouple and by thermography, with the emissivity setting on the camera to 1 and with the homogeneous radiation temperature. Time constants are determined by a step change of air temperature in the surrounding of auxiliary material. The time constant depends mainly on heat transfer by the convection from the air into the auxiliary material. That is why the effect of air temperature is examined in this article (or a temperature difference towards the environmental temperature) and the flow velocity on the time constant with various types of auxiliary materials. The obtained results allow to define the conditions for using the method of measurement of temperature fields in air during various heating and air conditioning applications.

  16. Air-side flow and heat transfer in compact heat exchangers: A discussion of enhancement mechanisms

    SciTech Connect

    Jacobi, A.M.; Shah, R.K.

    1998-10-01

    The behavior of air flows in complex heat exchanger passages is reviewed with a focus on the heat transfer effects of boundary-layer development, turbulence, spanwise and streamwise vortices, and wake management. Each of these flow features is discussed for the plain, wavy, and interrupted passages found in contemporary compact heat exchanger designs. Results from the literature are used to help explain the role of these mechanisms in heat transfer enhancement strategies.

  17. Experimental investigation on performance of ice storage air-conditioning system with separate heat pipe

    SciTech Connect

    Fang, Guiyin; Liu, Xu; Wu, Shuangmao

    2009-11-15

    An experimental study on operation performance of ice storage air-conditioning system with separate helical heat pipe is conducted in this paper. The experimental system of ice storage air-conditioning system with separate heat pipe is set up. The performance parameters such as the evaporation pressure and the condensation pressure of refrigeration system, the refrigeration capacity and the COP (coefficient of performance) of the system, the IPF (ice packing factor) and the cool storage capacity in the cool storage tank during charging period, and the cool discharge rate and the cool discharge capacity in the cool storage tank, the outlet water temperature in the cool storage tank and the outlet air temperature in room unit during discharging period are investigated. The experimental results show that the ice storage air-conditioning system with separate helical heat pipe can stably work during charging and discharging period. This indicates that the ice storage air-conditioning system with separate helical heat pipe is well adapted to cool storage air-conditioning systems in building. (author)

  18. A Review of the Thermodynamic, Transport, and Chemical Reaction Rate Properties of High-temperature Air

    NASA Technical Reports Server (NTRS)

    Hansen, C Frederick; Heims, Steve P

    1958-01-01

    Thermodynamic and transport properties of high temperature air, and the reaction rates for the important chemical processes which occur in air, are reviewed. Semiempirical, analytic expressions are presented for thermodynamic and transport properties of air. Examples are given illustrating the use of these properties to evaluate (1) equilibrium conditions following shock waves, (2) stagnation region heat flux to a blunt high-speed body, and (3) some chemical relaxation lengths in stagnation region flow.

  19. CFD numerical simulation of air natural convection over a heated cylindrical surface

    NASA Astrophysics Data System (ADS)

    Flori, M.; Vîlceanu, L.

    2015-06-01

    In this study a CFD numerical simulation is used to describe the fluid flow and heat transfer in air surrounding a heated horizontal cylinder. The model is created in 2D space dimension involving a finite element solver of Navier-Stokes equations. As natural convection phenomenon is induced by a variable fluid density field with temperature rising, the Boussinesq approximation was coupled to the model.

  20. Effectiveness and humidification capacity investigation of liquid-to-air membrane energy exchanger under low heat capacity ratios at winter air conditions

    NASA Astrophysics Data System (ADS)

    Kassai, Miklos

    2015-06-01

    In this research, a novel small-scale single-panel liquid-to-air membrane energy exchanger has been used to numerically investigate the effect of given number of heat transfer units (4.5), different cold inlet air temperature (1.7, 5.0, 10.0 °C) and different low heat capacity ratio (0.4, 0.5, 0.6, 0.7, 0.8, 0.9) on the steady-state performance of the energy exchanger. This small-scale energy exchanger represents the full-scale prototypes well, saving manufacturing costs and time. Lithium chloride is used as a salt solution in the system and the steady-state total effectiveness of the exchanger is evaluated for winter inlet air conditions. The results show that total effectiveness of the energy exchanger decreases with heat capacity ratio in the mentioned range. Maximum numerical total effectiveness of 97% is achieved for the energy exchanger. Increasing the heat capacity ratio values on given inlet air temperature, the humidification capacity of energy exhanger is also investigated in this paper. The humidification performance increases with heat capacity ratio. The highest humidification performance (4.53 g/kg) can be reached when inlet air temperature is 1.7 °C, and heat capacity ratio is 1.0 in winter inlet air conditions in the range of low heat capacity ratio.

  1. The transference of heat from a hot plate to an air stream

    NASA Technical Reports Server (NTRS)

    Elias, Franz

    1931-01-01

    The object of the present study was to define experimentally the field of temperature and velocity in a heated flat plate when exposed to an air stream whose direction is parallel to it, then calculate therefrom the heat transference and the friction past the flat plate, and lastly, compare the test data with the mathematical theory. To ensure comparable results, we were to actually obtain or else approximate: a) two-dimensional flow; b) constant plate temperature in the direction of the stream. To approximate the flow in two dimensions, we chose a relatively wide plate and measured the velocity and temperature in the median plane.

  2. A simplified physically-based model to calculate surface water temperature of lakes from air temperature in climate change scenarios

    NASA Astrophysics Data System (ADS)

    Piccolroaz, S.; Toffolon, M.

    2012-12-01

    Modifications of water temperature are crucial for the ecology of lakes, but long-term analyses are not usually able to provide reliable estimations. This is particularly true for climate change studies based on Global Circulation Models, whose mesh size is normally too coarse for explicitly including even some of the biggest lakes on Earth. On the other hand, modeled predictions of air temperature changes are more reliable, and long-term, high-resolution air temperature observational datasets are more available than water temperature measurements. For these reasons, air temperature series are often used to obtain some information about the surface temperature of water bodies. In order to do that, it is common to exploit regression models, but they are questionable especially when it is necessary to extrapolate current trends beyond maximum (or minimum) measured temperatures. Moreover, water temperature is influenced by a variety of processes of heat exchange across the lake surface and by the thermal inertia of the water mass, which also causes an annual hysteresis cycle between air and water temperatures that is hard to consider in regressions. In this work we propose a simplified, physically-based model for the estimation of the epilimnetic temperature in lakes. Starting from the zero-dimensional heat budget, we derive a simplified first-order differential equation for water temperature, primarily forced by a seasonally varying external term (mainly related to solar radiation) and an exchange term explicitly depending on the difference between air and water temperatures. Assuming annual sinusoidal cycles of the main heat flux components at the atmosphere-lake interface, eight parameters (some of them can be disregarded, though) are identified, which can be calibrated if two temporal series of air and water temperature are available. We note that such a calibration is supported by the physical interpretation of the parameters, which provide good initial

  3. Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow

    PubMed Central

    2011-01-01

    This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration. PMID:21827644

  4. Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow.

    PubMed

    Teng, Tun-Ping; Hung, Yi-Hsuan; Teng, Tun-Chien; Chen, Jyun-Hong

    2011-01-01

    This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration. PMID:21827644

  5. Daily Cycle of Air Temperature and Surface Temperature in Stone Forest

    NASA Astrophysics Data System (ADS)

    Wang, K.; Li, Y.; Wang, X.; Yuan, M.

    2013-12-01

    Urbanization is one of the most profound human activities that impact on climate change. In cities, where are highly artificial areas, the conflict between human activity and natural climate is particularly prominent. Urban areas always have the larger area of impervious land, the higher consumption of greenhouse gases, more emissions of anthropogenic heat and air pollution, all contribute to the urban warming phenomena. Understanding the mechanisms causing a variety of phenomena involved in the urban warming is critical to distinguish the anthropogenic effect and natural variation in the climate change. However, the exact dynamics of urban warming were poorly understood, and effective control strategies are not available. Here we present a study of the daily cycle of air temperature and surface temperature in Stone Forest. The specific heat of the stones in the Stone Forest and concrete of the man-made structures within the cities are approximate. Besides, the height of the Stone Forest and the height of buildings within the city are also similar. As a scenic area, the Stone Forest is being preserved and only opened for sightseeing. There is no anthropogenic heat, as well air pollution within the Stone Forest. The thermal environment in Stone Forest can be considered to be a simulation of thermal environment in the city, which can reveal the effect of man-made structures on urban thermal environment. We conducted the field studies and numerical analysis in the Stone Forest for 4 typical urban morphology and environment scenarios, including high-rise compact cities, low-rise sparse cities, garden cities and isolated single stone. Air temperature and relative humidity were measured every half an hour in 15 different locations, which within different spatial distribution of stones and can represent the four urban scenarios respectively. At the same time, an infrared camera was used to take thermal images and get the hourly surface temperatures of stones and

  6. Structural and Resistivity Changes in YBa2Cu3Oy Ceramics by Heat-Treatment in Air

    NASA Astrophysics Data System (ADS)

    Leng, Song; Narita, Nobutaka; Higashida, Kenji; Mazaki, Hiromasa

    1987-08-01

    Effect of heat-tretment in YBa2Cu3Oy ceramics was investigated using the methods of electrical resistivity, TG, DTA and X-ray diffraction. In the heating process, a mass increase and a resistivity decrease are observed in the sample in the temperature range 630-780 K. Heat-treatment in air at temperatures above 780 K causes the marked increase of resistivity as well as the decrease of oxygen content. The YBa2Cu3Oy compound is decomposed gradually above 1200 K and completely at around 1290 K. The degradation and recovery of structural and transport properties by heat-treatment in air are also reported.

  7. Streambed Temperatures and Heat Budget Estimates in Groundwater-fed Streams

    NASA Astrophysics Data System (ADS)

    Middleton, M.; Allen, D. M.; Whitfield, P. H.

    2013-12-01

    A streambed temperature monitoring network was installed in a groundwater-fed stream in the Lower Fraser Valley of British Columbia. A network of fifteen temperature loggers was installed in a short reach (<40 m) of Fishtrap Creek to characterize the spatial and temporal variability in streambed temperatures and identify potential mechanisms for localized cooling based on heat exchanges during the summer low flow period. This reach has uniform channel form and water depth, and consistent bed material. Streambed temperature data were collected hourly for the period of July 2008 through October 2012, spanning five summer low flow periods. Nearby climate, stream discharge, and groundwater monitoring stations provided the data to estimate the heat budget components. Over the five summer low flow periods, the network of dataloggers recorded a mean streambed temperature of 13.8oC, with a range of 10.2oC to 20.0oC across the streambed. In order to assess controls on streambed temperature at individual datalogger locations, the incoming heat from sources acting across the entire reach had to be removed from the observed temperature signals. The incoming heat was calculated for the air-water interface to estimate the energy flux into the reach using a heat balance. Incoming solar radiation dominates the heat balance, and evaporative heat fluxes were noticeable as small amplitude variations at a daily scale. Precipitation occurrence, or absence, was not an important component of the heat balance during the summer low flow period. Since incoming solar radiation dominates both air and water temperatures, air temperature (Ta) can be used as a proxy for streambed temperature (Ts). The actual lag time between the air and streambed temperature for this site was 30 hours; however, for the calculation of stream temperature at a daily time step, a lag of 24 hours was used. The relationship between daily streambed temperature and daily air temperature, at a lag of one day, was

  8. Apparatus and method for generating large mass flow of high temperature air at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Sabol, A. P.; Stewart, R. B. (Inventor)

    1973-01-01

    High temperature, high mass air flow and a high Reynolds number test air flow in the Mach number 8-10 regime of adequate test flow duration is attained by pressurizing a ceramic-lined storage tank with air to a pressure of about 100 to 200 atmospheres. The air is heated to temperatures of 7,000 to 8,000 R prior to introduction into the tank by passing the air over an electric arc heater means. The air cools to 5,500 to 6,000 R while in the tank. A decomposable gas such as nitrous oxide or a combustible gas such as propane is injected into the tank after pressurization and the heated pressurized air in the tank is rapidly released through a Mach number 8-10 nozzle. The injected gas medium upon contact with the heated pressurized air effects an exothermic reaction which maintains the pressure and temperature of the pressurized air during the rapid release.

  9. Analyzing the possibility of constructing the air heating system for an integrated solid fuel gasification combined-cycle power plant

    NASA Astrophysics Data System (ADS)

    Mikula, V. A.; Ryzhkov, A. F.; Val'tsev, N. V.

    2015-11-01

    Combined-cycle power plants operating on solid fuel have presently been implemented only in demonstration projects. One of possible ways for improving such plants consists in making a shift to hybrid process circuits of integrated gasification combined-cycle plants with external firing of solid fuel. A high-temperature air heater serving to heat compressed air is a key element of the hybrid process circuit. The article describes application of a high-temperature recuperative metal air heater in the process circuit of an integrated gasification combined-cycle power plant (IGCC). The available experience with high-temperature air heating is considered, and possible air heater layout arrangements are analyzed along with domestically produced heat-resistant grades of steel suitable for manufacturing such air heater. An alternative (with respect to the traditional one) design is proposed, according to which solid fuel is fired in a noncooled furnace extension, followed by mixing the combustion products with recirculation gases, after which the mixture is fed to a convective air heater. The use of this design makes it possible to achieve considerably smaller capital outlays and operating costs. The data obtained from thermal and aerodynamic calculations of the high-temperature air heater with a thermal capacity of 258 MW for heating air to a temperature of up to 800°C for being used in the hybrid process circuit of a combined-cycle power plant are presented.

  10. The Maintenance of Heating, Ventilating and Air-Conditioning Systems and Indoor Air Quality in Schools: A Guide for School Facility Managers. Technical Bulletin.

    ERIC Educational Resources Information Center

    Wheeler, Arthur E.

    To help maintain good indoor air quality (IAQ) in schools, guidance for the development and implementation of an effective program for maintenance and operation of heating, ventilating, and air-conditioning (HVAC) systems are discussed. Frequently, a building's occupants will complain about IAQ when the temperature or humidity are at uncomfortable…

  11. The impact of heterogeneous surface temperatures on the 2-m air temperature over the Arctic Ocean in spring

    NASA Astrophysics Data System (ADS)

    Tetzlaff, A.; Kaleschke, L.; Lüpkes, C.; Ament, F.; Vihma, T.

    2012-07-01

    The influence of spatial surface temperature changes over the Arctic Ocean on the 2-m air temperature variability is estimated using backward trajectories based on ERA-Interim and the JRA25 wind fields. They are initiated at Alert, Barrow and at the Tara drifting station. Three different methods are used. The first one compares mean ice surface temperatures along the trajectories to the observed 2-m air temperatures at the stations. The second one correlates the observed temperatures to air temperatures obtained using a simple Lagrangian box model which only includes the effect of sensible heat fluxes. For the third method, mean sensible heat fluxes from the model are correlated with the difference of the air temperatures at the model starting point and the observed temperatures at the stations. The calculations are based on MODIS ice surface temperatures and four different sets of ice concentration derived from SSM/I and AMSR-E data. Under nearly cloud free conditions, up to 90% of the 2-m air temperature variance can be explained for Alert, and 60% for Barrow using these methods. The differences are attributed to the different ice conditions, which are characterized by high ice concentration around Alert and lower ice concentration near Barrow. These results are robust for the different sets of reanalyses and ice concentration data. Near-surface winds of both reanalyses show a large inconsistency in the Central Arctic, which leads to a large difference in the correlations between modeled and observed 2-m air temperatures at Tara. Explained variances amount to 70% using JRA and only 45% using ERA. The results also suggest that near-surface temperatures at a given site are influenced by the variability of surface temperatures in a domain of about 150 to 350 km radius around the site.

  12. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  13. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  14. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  15. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  16. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  17. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  18. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  19. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  20. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  1. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  2. Acoustic method for measuring air temperature and humidity in rooms

    NASA Astrophysics Data System (ADS)

    Kanev, N. G.

    2014-05-01

    A method is proposed to determine air temperature and humidity in rooms with a system of sound sources and receivers, making it possible to find the sound velocity and reverberation time. Nomograms for determining the air temperature and relative air humidity are constructed from the found sound velocity and time reverberation values. The required accuracy of measuring these parameters is estimated.

  3. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Ventilation, air filtration, air heating and cooling. 211.46 Section 211.46 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Buildings and Facilities § 211.46...

  4. Skin sites to predict deep-body temperature while wearing firefighters' personal protective equipment during periodical changes in air temperature.

    PubMed

    Kim, Siyeon; Lee, Joo-Young

    2016-04-01

    The aim of this study was to investigate stable and valid measurement sites of skin temperatures as a non-invasive variable to predict deep-body temperature while wearing firefighters' personal protective equipment (PPE) during air temperature changes. Eight male firefighters participated in an experiment which consisted of 60-min exercise and 10-min recovery while wearing PPE without self-contained breathing apparatus (7.75 kg in total PPE mass). Air temperature was periodically fluctuated from 29.5 to 35.5 °C with an amplitude of 6 °C. Rectal temperature was chosen as a deep-body temperature, and 12 skin temperatures were recorded. The results showed that the forehead and chest were identified as the most valid sites to predict rectal temperature (R(2) = 0.826 and 0.824, respectively) in an environment with periodically fluctuated air temperatures. This study suggests that particular skin temperatures are valid as a non-invasive variable when predicting rectal temperature of an individual wearing PPE in changing ambient temperatures. Practitioner Summary: This study should offer assistance for developing a more reliable indirect indicating system of individual heat strain for firefighters in real time, which can be used practically as a precaution of firefighters' heat-related illness and utilised along with physiological monitoring. PMID:26214379

  5. Thermal performance of a heat storage module using PCM's with different melting temperature; Experimental

    SciTech Connect

    Farid, M.M. ); Kim, Y.; Kansawa, A. )

    1990-05-01

    A latent heat storage module was constructed, consisting of 45 cylindrical capsules fixed vertically in 15 rows. The capsules, made of 0.335-m long copper tubes having external diameters of 31.8 mm, were fixed in an insulated rectangular duct. Three commercial waxes having melting temperatures of 44{degrees}C, 53{degrees}C, and 64{degrees}C were selected. Each of the three sets of 15 tubes was filled with different wax. For comparison purposes, experiments were also done with a single commercial wax, having a melting temperature of 53{degrees}C, in all the tubes. During heat charge, hot air flowed across the capsules such that the melting temperature of the waxes decreased in the flow direction. Air flow direction was reversed during heat discharge. This paper reports that experimental measurements showed some improvement in the heat transfer rates during both heat charge and discharge when three types of PCM's were used.

  6. Actual Performance Prediction of Split-type Room Air Conditioner which Considered Unsteady Operation Concerning Heat Island Problem

    NASA Astrophysics Data System (ADS)

    Shinomiya, Naruaki; Nishimura, Nobuya; Iyota, Hiroyuki; Nomura, Tomohiro

    Split type air conditioners are operated actually in the situation unlike the condition that was described in a product catalog. On the other hand, exhaust heat from air conditioner is considered as one of the causes of heat island problem in urban area, and the air conditioner performance and heat load affect exhaust heat amount. In this study, air conditioner performances in both standard summer day and severe hot day were examined by dynamic simulation which considered outdoor weather changes. As a result, actual performances of the air conditioner were demonstrated as a function of outdoor temperature, heat load and indoor temperature. The higher the outdoor temperature and heat load rise, the smaller influences of indoor temperature against COP became. In standard summer day, relative performance exceeded by 15 to 45% than that of JIS operating condition. Also, COP in severe hot day decreased about 6% at the peak time than that of standard day. As a result, the air conditioner exhaust heat during one day which was predicted by the proposed simulation model became about 16% smaller than the conventional prediction model.

  7. Heat Transfer in High Temperature Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Miller, Steve D.; Cunnington, George R.

    2007-01-01

    High temperature multilayer insulations have been investigated as an effective component of thermal-protection systems for atmospheric re-entry of reusable launch vehicles. Heat transfer in multilayer insulations consisting of thin, gold-coated, ceramic reflective foils and Saffil(TradeMark) fibrous insulation spacers was studied both numerically and experimentally. A finite volume numerical thermal model using combined conduction (gaseous and solid) and radiation in porous media was developed. A two-flux model with anisotropic scattering was used for radiation heat transfer in the fibrous insulation spacers between the reflective foils. The thermal model was validated by comparison with effective thermal conductivity measurements in an apparatus based on ASTM standard C201. Measurements were performed at environmental pressures in the range from 1x10(exp -4) to 760 torr over the temperature range from 300 to 1300 K. Four multilayer samples with nominal densities of 48 kg/cu m were tested. The first sample was 13.3 mm thick and had four evenly spaced reflective foils. The other three samples were 26.6 mm thick and utilized either one, two, or four reflective foils, located near the hot boundary with nominal foil spacing of 1.7 mm. The validated thermal model was then used to study relevant design parameters, such as reflective foil spacing and location in the stack-up and coating of one or both sides of foils.

  8. Heat-tolerant rice cultivars retain grain appearance quality under free-air CO2 enrichment

    PubMed Central

    2014-01-01

    Background Heat-tolerant rice cultivars have been developed as a countermeasure to poor grain appearance quality under high temperatures. Recent studies showed that elevated CO2 concentrations (E-[CO2]) also reduce grain quality. To determine whether heat-tolerant cultivars also tolerate E-[CO2], we conducted a free-air CO2 enrichment (FACE) experiment with 12 rice cultivars differing in heat tolerance. Results The percentage of undamaged grains of five standard cultivars (Akitakomachi, Kinuhikari, Koshihikari, Matsuribare, Nipponbare) averaged 61.7% in the ambient [CO2] (AMB) plot and 51.7% in the FACE plot, whereas that of heat-tolerant cultivars (Eminokizuna, Wa2398, Kanto 257, Toyama 80, Mineharuka, Kanto 259, Saikai 290) averaged 73.5% in AMB and 71.3% in FACE. This resulted in a significant [CO2] by cultivar interaction. The percentage of white-base or white-back grains increased from 8.4% in AMB to 17.1% in FACE in the sensitive cultivars, but from only 2.1% in AMB to only 4.4% in FACE in the heat-tolerant cultivars. Conclusion Heat-tolerant cultivars retained their grain appearance quality at E-[CO2] under present air temperatures. Further improvements in appearance quality under present conditions will be needed to achieve improvements under E-[CO2], because E-[CO2] will likely lower the threshold temperature for heat stress. PMID:24920972

  9. Geothermal as a heat sink application for raising air conditioning efficency

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hesham Safwat Osman Mohamed

    2016-04-01

    Objective: Geothermal applications in heating, ventilation, air-conditioning is a US technology for more than 30 years old ,which saves more than 30% average energy cost than the traditional air-conditioning systems systems. Applying this technology in Middle East and African countries would be very feasible specially in Egypt specially as it suffers Electric crisis --The temperature of the condensers and the heat rejecting equipment is much higher than the Egyptian land at different depth which is a great advantages, and must be measured, recorded, and studied accurately -The Far goal of the proposal is to construct from soil analysis a temperature gradient map for Egypt and , African countries on different depth till 100 m which is still unclear nowadays and must be measured and recorded in databases through researches - The main model of the research is to study the heat transfer gradient through the ground earth borehole,grout,high density polyethylene pipes , and water inlet temperature which affect the electric efficiency of the ground source heat pump air conditioning unit Impact on the Region: Such research result will contribute widely in Energy saving sector specially the air conditioning sector in Egypt and the African countries which consumes more than 30% of the electric consumption of the total consumption . and encouraging Green systems such Geothermal to be applied

  10. Wheat growth response to increased temperature from varied planting dates and supplemental infrared heating

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Future increases in atmospheric temperature may threaten wheat (Triticum aestivum L.) production and food security. The purpose of this research is to determine the response of wheat growth to supplemental heating and to seasonal air temperature from an unusually wide range of planting dates. A fiel...

  11. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  12. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  13. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  14. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  15. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  16. Evaluation of solar-air-heating central-receiver concepts

    SciTech Connect

    Bird, S.P.; Drost, M.K.; Williams, T.A.; Brown, D.R.; Fort, J.A.; Garrett-Price, B.A.; Hauser, S.G.; McLean, M.A.; Paluszek, A.M.; Young, J.K.

    1982-06-01

    The potential of seven proposed air-heating central receiver concepts are evaluated based on an independent, uniform of each one's performance and cost. The concepts include: metal tubes, ceramic tubes, sodium heat pipes, ceramic matrix, ceramic domes, small particles, and volumetric heat exchange. The selection of design points considered in the analysis, the method and ground rules used in formulating the conceptual designs are discussed, and each concept design is briefly described. The method, ground rules, and models used in the performance evaluation and cost analysis and the results are presented. (LEW)

  17. Loop Heat Pipe Operation Using Heat Source Temperature for Set Point Control

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Paiva, Kleber; Mantelli, Marcia

    2011-01-01

    Loop heat pipes (LHPs) have been used for thermal control of several NASA and commercial orbiting spacecraft. The LHP operating temperature is governed by the saturation temperature of its compensation chamber (CC). Most LHPs use the CC temperature for feedback control of its operating temperature. There exists a thermal resistance between the heat source to be cooled by the LHP and the LHP's CC. Even if the CC set point temperature is controlled precisely, the heat source temperature will still vary with its heat output. For most applications, controlling the heat source temperature is of most interest. A logical question to ask is: "Can the heat source temperature be used for feedback control of the LHP operation?" A test program has been implemented to answer the above question. Objective is to investigate the LHP performance using the CC temperature and the heat source temperature for feedback control

  18. Heat transfer and pressure drop for air flow through enhanced passages

    SciTech Connect

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  19. Heat transfer and pressure drop for air flow through enhanced passages. Final report

    SciTech Connect

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  20. Use of a commercial heat transfer code to predict horizontally oriented spent fuel rod surface temperatures

    SciTech Connect

    Wix, S.D.; Koski, J.A.

    1993-03-01

    Radioactive spent fuel assemblies are a source of hazardous waste that will have to be dealt with in the near future. It is anticipated that the spent fuel assemblies will be transported to disposal sites in spent fuel transportation casks. In order to design a reliable and safe transportation cask, the maximum cladding temperature of the spent fuel rod arrays must be calculated. A comparison between numerical calculations using commercial thermal analysis software packages and experimental data simulating a horizontally oriented spent fuel rod array was performed. Twelve cases were analyzed using air and helium for the fill gas, with three different heat dissipation levels. The numerically predicted temperatures are higher than the experimental data for all levels of heat dissipation with air as the fill gas. The temperature differences are 4{degree}C and 23{degree}C for the low heat dissipation and high heat dissipation, respectively. The temperature predictions using helium as a fill gas are lower for the low and medium heat dissipation levels, but higher at the high heat dissipation. The temperature differences are 1{degree}C and 6{degree}C for the low and medium heat dissipation, respectively. For the high heat dissipation level, the temperature predictions are 16{degree}C higher than the experimental data. Differences between the predicted and experimental temperatures can be attributed to several factors. These factors include experimental uncertainty in the temperature and heat dissipation measurements, actual convection effects not included in the model, and axial heat flow in the experimental data. This work demonstrates that horizontally oriented spent fuel rod surface temperature predictions can be made using existing commercial software packages. This work also shows that end effects will be increasingly important as the amount of dissipated heat increases.

  1. Dynamic effects on containment of air-curtain fume hood operated with heat source.

    PubMed

    Chen, Jia-Kun; Huang, Rong Fung; Hsin, Pei-Yi

    2012-01-01

    This study focused on the leakage characteristics of the air-curtain fume hood that are subject to the influences of sash movement and walk-by motion while a high temperature heat source was operated in the hood. The flow visualization and trace gas test method were used to investigate the performance of the air-curtain fume hood. An electric heater was placed in the hood to simulate the heat source. The temperature of the heat source installed inside the air-curtain fume hood varied between 180°C and 300°C. Trace gas tests following the dynamic test methods of EN-14175 protocol were employed to measure the spillages of sulfur hexafluoride gas that were released in the hood. When subject to the influence of sash movement at a heat source temperature lower than 260°C, the leakage level was high at the suction velocity V(s) < 8 m/sec but was negligibly small at V(s) > 10 m/sec. When subject to the influence of people walk-by, the leakage level was relatively low at the suction velocity larger than 8 m/sec at sash height H = 50 cm. The height of the sash opening was a crucial parameter for the containment of the air-curtain fume hood. At the sash opening lower than about 25 cm, suction velocity less than or equal to 6 m/sec was enough to make the sulfur hexafluoride leakage less than the threshold value, 0.65 ppm, suggested by the BG Chemie. The air-curtain fume hood presented a great performance to resist the effect of drafts even though there was a high temperature heat source working in the hood. PMID:23009207

  2. Shortening the Defrost Time on a Heat Pump Air Conditioner

    NASA Astrophysics Data System (ADS)

    Kuwahara, Eiji; Yamazaki, Masaya; Kawamura, Toshiaki

    Methods to shorten the defrost time have been studied on a heat pump air conditioner. The experiment has been carried out using a 0.75kW heat pump and the energy balance during defrosting has been analyzed. We have found that the following methods are effective to shorten the defrost time; (1) Increase in power inqut to the compressor during defrosting, (2) Utilization of the compressor for thermal energy storage, (3) Reduction of the water left on the outdoor heat exchanger fins. The heat pump with the new defrosting system has been made on an experimental basis. lts defrost time is 1 minute and 55 seconds under the defrost condition of the Japanese Industrial Standard. The defrost time of a conventional heat pump is about 4 or 5 minutes.

  3. Heat transfer to air from a yawed cylinder

    NASA Astrophysics Data System (ADS)

    Kraabel, J. S.; McKillop, A. A.; Baughn, J. W.

    1982-03-01

    An experimental study designed to investigate heat transfer to air from a yawed cylinder is described. Measurements were made at Reynolds numbers of 34,000 and 106,000, and yaws varied from cross flow (beta = 0 deg) to 60 deg. The independence principle is found to be valid for heat transfer at the stagnation line and in the laminar boundary layer. Although this principle would not be expected to extend to the wake, the local heat transfer to the wake is not greatly affected by yaw for beta not greater than 40 deg. The heat transfer results can be explained in terms of a secondary vortex located downstream of an initial separation point and followed by a primary eddy. For high yaws and high normal Reynolds numbers, the heat transfer is similar to that which occurs in cross flow approaching critical flow.

  4. Cyclic Oxidation of High-Temperature Alloy Wires in Air

    NASA Technical Reports Server (NTRS)

    Reigel, Marissa M.

    2004-01-01

    High-temperature alloy wires are proposed for use in seal applications for future re-useable space vehicles. These alloys offer the potential for improved wear resistance of the seals. The wires must withstand the high temperature environments the seals are subjected to as well as maintain their oxidation resistance during the heating and cooling cycles of vehicle re-entry. To model this, the wires were subjected to cyclic oxidation in stagnant air. of this layer formation is dependent on temperature. Slow growing oxides such as chromia and alumina are desirable. Once the oxide is formed it can prevent the metal from further reacting with its environment. Cyclic oxidation models the changes in temperature these wires will undergo in application. Cycling the temperature introduces thermal stresses which can cause the oxide layer to break off. Re-growth of the oxide layer consumes more metal and therefore reduces the properties and durability of the material. were used for cyclic oxidation testing. The baseline material, Haynes 188, has a Co base and is a chromia former while the other two alloys, Kanthal A1 and PM2000, both have a Fe base and are alumina formers. Haynes 188 and Kanthal A1 wires are 250 pm in diameter and PM2000 wires are 150 pm in diameter. The coiled wire has a total surface area of 3 to 5 sq cm. The wires were oxidized for 11 cycles at 1204 C, each cycle containing a 1 hour heating time and a minimum 20 minute cooling time. Weights were taken between cycles. After 11 cycles, one wire of each composition was removed for analysis. The other wire continued testing for 70 cycles. Post-test analysis includes X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) for phase identification and morphology.

  5. State Skill Standards: Heating, Ventilation, Air Conditioning, and Refrigeration

    ERIC Educational Resources Information Center

    Ball, Larry; Soukup, Dennis

    2006-01-01

    The Department of Education has undertaken an ambitious effort to develop statewide career and technical education skill standards. The standards in this document are for Heating, Ventilation, Air Conditioning and Refrigeration (HVAC&R) programs and are designed to clearly state what the student should know and be able to do upon completion of an…

  6. Advanced Print Reading. Heating, Ventilation and Air Conditioning.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    This is a workbook for students learning advanced blueprint reading for heating, ventilation, and air conditioning applications. The workbook contains eight units covering the following material: architectural working drawings; architectural symbols and dimensions; basic architectural electrical symbols; wiring symbols; basic piping symbols;…

  7. Air Conditioning, Heating, and Refrigeration. Competency-Based Curriculum Manual.

    ERIC Educational Resources Information Center

    Gourley, Frank A., Jr.

    This manual was developed to serve as an aid to administrators and instructors involved with postsecondary air conditioning, heating, and refrigeration programs. The first of six chapters contains general information on program implementation, the curriculum design, facilities and equipment requirements, and textbooks and references. Chapter 2…

  8. Heating, Air-Conditioning, and Refrigeration Technician. National Skill Standards.

    ERIC Educational Resources Information Center

    Vocational Technical Education Consortium of States, Decatur, GA.

    This guide contains information on the knowledge and skills identified by industry as essential to the job performance of heating, air-conditioning, and refrigeration technicians. It is intended to assist training providers in public and private institutions, as well as in industry, to develop and implement training that will provide workers with…

  9. An Analysis of the Air Conditioning, Refrigerating and Heating Occupation.

    ERIC Educational Resources Information Center

    Frass, Melvin R.; Krause, Marvin

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the air conditioning, refrigerating, and heating occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Six duties are…

  10. Air Conditioning, Heating, and Refrigeration: Scope and Sequence.

    ERIC Educational Resources Information Center

    Nashville - Davidson County Metropolitan Public Schools, TN.

    This scope and sequence guide, developed for an air conditioning, heating, and refrigeration vocational education program, represents an initial step in the development of a systemwide articulated curriculum sequence for all vocational programs within the Metropolitan Nashville Public School System. It was developed as a result of needs expressed…

  11. Heating and Air Conditioning Specialist. Teacher Edition. Automotive Service Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains materials for teaching the heating and air conditioning specialist component of a competency-based instructional program for students preparing for employment in the automotive service trade. It is based on the National Institute of Automotive Service Excellence task lists. The six instructional units presented…

  12. Heating, Ventilating, and Air Conditioning. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in heating, ventilating, and air conditioning is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  13. Careers for the 70's in Heating and Air Conditioning

    ERIC Educational Resources Information Center

    Toner, James P.

    1974-01-01

    In a trade encompassing all others in construction, installation foremen for heating/air conditioning firms spend a varied day (repairing a water heater, overseeing installation crews). Decision-makers who must think while using their hands, they rely heavily on preparation in math, mechanical drawing, blueprint reading, physics, and electicity.…

  14. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    PubMed Central

    Lee, Jing-Nang; Lin, Tsung-Min

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system. PMID:25250390

  15. Energy Saving Potentials and Air Quality Benefits of Urban Heat Island Mitigation

    SciTech Connect

    Akbari, Hashem

    2005-08-23

    Urban areas tend to have higher air temperatures than their rural surroundings as a result of gradual surface modifications that include replacing the natural vegetation with buildings and roads. The term ''Urban Heat Island'' describes this phenomenon. The surfaces of buildings and pavements absorb solar radiation and become extremely hot, which in turn warm the surrounding air. Cities that have been ''paved over'' do not receive the benefit of the natural cooling effect of vegetation. As the air temperature rises, so does the demand for air-conditioning (a/c). This leads to higher emissions from power plants, as well as increased smog formation as a result of warmer temperatures. In the United States, we have found that this increase in air temperature is responsible for 5-10% of urban peak electric demand for a/c use, and as much as 20% of population-weighted smog concentrations in urban areas. Simple ways to cool the cities are the use of reflective surfaces (rooftops and pavements) and planting of urban vegetation. On a large scale, the evapotranspiration from vegetation and increased reflection of incoming solar radiation by reflective surfaces will cool a community a few degrees in the summer. As an example, computer simulations for Los Angeles, CA show that resurfacing about two-third of the pavements and rooftops with reflective surfaces and planting three trees per house can cool down LA by an average of 2-3K. This reduction in air temperature will reduce urban smog exposure in the LA basin by roughly the same amount as removing the basin entire onroad vehicle exhaust. Heat island mitigation is an effective air pollution control strategy, more than paying for itself in cooling energy cost savings. We estimate that the cooling energy savings in U.S. from cool surfaces and shade trees, when fully implemented, is about $5 billion per year (about $100 per air-conditioned house).

  16. Rate constants for chemical reactions in high-temperature nonequilibrium air

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.

    1986-01-01

    In the nonequilibrium atmospheric chemistry regime that will be encountered by the proposed Aeroassisted Orbital Transfer Vehicle in the upper atmosphere, where air density is too low for thermal and chemical equilibrium to be maintained, the detailed high temperature air chemistry plays a critical role in defining radiative and convective heating loads. Although vibrational and electronic temperatures remain low (less than 15,000 K), rotational and translational temperatures may reach 50,000 K. Attention is presently given to the effects of multiple temperatures on the magnitudes of various chemical reaction rate constants, for the cases of both bimolecular exchange reactions and collisional excitation and dissociation reactions.

  17. Differences between near-surface equivalent temperature and temperature trends for the Eastern United States. Equivalent temperature as an alternative measure of heat content

    USGS Publications Warehouse

    Davey, C.A.; Pielke, R.A., Sr.; Gallo, K.P.

    2006-01-01

    There is currently much attention being given to the observed increase in near-surface air temperatures during the last century. The proper investigation of heating trends, however, requires that we include surface heat content to monitor this aspect of the climate system. Changes in heat content of the Earth's climate are not fully described by temperature alone. Moist enthalpy or, alternatively, equivalent temperature, is more sensitive to surface vegetation properties than is air temperature and therefore more accurately depicts surface heating trends. The microclimates evident at many surface observation sites highlight the influence of land surface characteristics on local surface heating trends. Temperature and equivalent temperature trend differences from 1982-1997 are examined for surface sites in the Eastern U.S. Overall trend differences at the surface indicate equivalent temperature trends are relatively warmer than temperature trends in the Eastern U.S. Seasonally, equivalent temperature trends are relatively warmer than temperature trends in winter and are relatively cooler in the fall. These patterns, however, vary widely from site to site, so local microclimate is very important. ?? 2006 Elsevier B.V. All rights reserved.

  18. Performance Analysis of Air-to-Water Heat Pump in Latvian Climate Conditions

    NASA Astrophysics Data System (ADS)

    Kazjonovs, Janis; Sipkevics, Andrejs; Jakovics, Andris; Dancigs, Andris; Bajare, Diana; Dancigs, Leonards

    2014-12-01

    Strategy of the European Union in efficient energy usage demands to have a higher proportion of renewable energy in the energy market. Since heat pumps are considered to be one of the most efficient heating and cooling systems, they will play an important role in the energy consumption reduction in buildings aimed to meet the target of nearly zero energy buildings set out in the EU Directive 2010/31/EU. Unfortunately, the declared heat pump Coefficient of Performance (COP) corresponds to a certain outdoor temperature (+7 °C), therefore different climate conditions, building characteristics and settings result in different COP values during the year. The aim of this research is to investigate the Seasonal Performance factor (SPF) values of air-to-water heat pump which better characterize the effectiveness of heat pump in a longer selected period of time, especially during the winter season, in different types of residential buildings in Latvian climate conditions. Latvia has four pronounced seasons of near-equal length. Winter starts in mid-December and lasts until mid-March. Latvia is characterized by cold, maritime climate (duration of the average heating period being 203 days, the average outdoor air temperature during the heating period being 0.0 °C, the coldest five-day average temperature being -20.7 °C, the average annual air temperature being +6.2 °C, the daily average relative humidity being 79 %). The first part of this research consists of operational air-towater heat pump energy performance monitoring in different residential buildings during the winter season. The second part of the research takes place under natural conditions in an experimental construction stand which is located in an urban environment in Riga, Latvia. The inner area of this test stand, where air-to-water heat pump performance is analyzed, is 9 m2. The ceiling height is 3 m, all external wall constructions (U = 0.16 W/(m2K)) have ventilated facades. To calculate SPF, the

  19. Zoning of the territory of Russia by the effectiveness of low-potential heat of the ground and atmospheric air for heating buildings

    NASA Astrophysics Data System (ADS)

    Vasilyev, G. P.; Kolesova, M. V.; Gornov, V. F.; Yurchenko, I. A.

    2016-06-01

    The article represents the results of researches to zone the territory of Russia and Europe division into districts of by efficiency of using for the heat supply of buildings of low-potential thermal energy of ground and free air and their combination. While modeling the heat regime of geothermal HPS in climatic conditions of different regions of the territory of Russia, the influence of the long-term extraction of geothermal heat energy on the ground heat regime has been taken into account as well as the influence of phase transitions of pore moisture in ground on the efficiency of operation of geothermal heat-pump heat-supply systems. Also considered were the sinking of temperatures of ground massif by long-term extraction of the heat energy from the ground as calculation parameters of the heat energy from the ground, and as calculation parameters of ground massif temperatures.

  20. Diffusion welding in air. [solid state welding of butt joint by fusion welding, surface cleaning, and heating

    NASA Technical Reports Server (NTRS)

    Moore, T. J.; Holko, K. H. (Inventor)

    1974-01-01

    Solid state welding a butt joint by fusion welding the peripheral surfaces to form a seal is described along with, autogenetically cleaning the faying or mating surfaces of the joint by heating the abutting surfaces to 1,200 C and heating to the diffusion welding temperature in air.

  1. Air Source Heat Pumps for Cold Climate Applications: Recent U. S. R&D Results from IEA HPP Annex 41

    SciTech Connect

    Baxter, Van D; Groll, Dr. Eckhard A.; Shen, Bo

    2014-01-01

    Air source heat pumps are easily applied to buildings almost anywhere. They are widespread in milder climate regions but their use in cold regions is hampered due to low efficiency and heating capacity at cold outdoor temperatures. This article describes selected R&D activities aimed at improving their cold weather performance.

  2. Operability test procedure for 241-U compressed air system and heat pump

    SciTech Connect

    Freeman, R.D.

    1994-08-31

    The 241-U-701 compressed air system supplies instrument quality compressed air to Tank Farm 241-U. The supply piping to the 241-U Tank Farm is not included in the modification. Modifications to the 241-U-701 compressed air system include installation of a 15 HP Reciprocating Air Compressor, Ingersoll-Rand Model 10T3NLM-E15; an air dryer, Hankinson, Model DH-45; and miscellaneous system equipment and piping (valves, filters, etc.) to meet the design. A newly installed heat pump allows the compressor to operate within an enclosed relatively dust free atmosphere and keeps the compressor room within a standard acceptable temperature range, which makes possible efficient compressor operation, reduces maintenance, and maximizes compressor operating life. This document is an Operability Test Procedure (OTP) which will further verify (in addition to the Acceptance Test Procedure) that the 241-U-701 compressed air system and heat pump operate within their intended design parameters. The activities defined in this OTP will be performed to ensure the performance of the new compressed air system will be adequate, reliable and efficient. Completion of this OTP and sign off of the OTP Acceptance of Test Results is necessary for turnover of the compressed air system from Engineering to Operations.

  3. Simulating Tree and Topography Effects on Urban Air temperature and Humidity

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Endreny, T. A.; Nowak, D. J.; Kroll, C.; Heisler, G. M.

    2012-12-01

    Microclimate, especially air temperature and humidity, significantly affect human thermal comfort, ecosystem services, and building energy use. Air temperature and humidity measurements are generally recorded at fixed-location meteorology stations, which do not represent the spatial variations encountered in these parameters across the landscape. We developed a spatial air temperature and humidity model to simulate local air temperature and humidity over a region where the mesoscale climate is presumed homogeneous. The model assumes that under the same mesoscale climate, microclimate is modified by local topography and land cover, which are two critical factors determining the absorbed solar radiation and the partitioning of sensible and latent heat. Therefore, the difference in microclimates among local clusters can be determined by the differences in local topography and land cover. Given a reference site where the meteorological data are collected, the microclimate of any other local cluster can be obtained by comparing the topography and land cover of the reference site and the local cluster. The model was tested at 11 locations in Syracuse, NY, where the hourly air temperature and humidity were measured from July 15, 2010 through September 15, 2010. The simulation results showed the model has high efficiency in estimating local cluster air temperature and humidity. The model can be applied on strategic urban reforestation designs, urban heat island mitigation, climate change mitigation and adaptation, and ecosystem interaction research.

  4. Mortality Related to Air Pollution with the Moscow Heat Wave and Wildfire of 2010

    PubMed Central

    Shaposhnikov, Dmitry; Revich, Boris; Bellander, Tom; Bedada, Getahun Bero; Bottai, Matteo; Kharkova, Tatyana; Kvasha, Ekaterina; Lezina, Elena; Lind, Tomas; Semutnikova, Eugenia

    2014-01-01

    Background: Prolonged high temperatures and air pollution from wildfires often occur together, and the two may interact in their effects on mortality. However, there are few data on such possible interactions. Methods: We analyzed day-to-day variations in the number of deaths in Moscow, Russia, in relation to air pollution levels and temperature during the disastrous heat wave and wildfire of 2010. Corresponding data for the period 2006–2009 were used for comparison. Daily average levels of PM10 and ozone were obtained from several continuous measurement stations. The daily number of nonaccidental deaths from specific causes was extracted from official records. Analyses of interactions considered the main effect of temperature as well as the added effect of prolonged high temperatures and the interaction with PM10. Results: The major heat wave lasted for 44 days, with 24-hour average temperatures ranging from 24°C to 31°C and PM10 levels exceeding 300 μg/m3 on several days. There were close to 11,000 excess deaths from nonaccidental causes during this period, mainly among those older than 65 years. Increased risks also occurred in younger age groups. The most pronounced effects were for deaths from cardiovascular, respiratory, genitourinary, and nervous system diseases. Continuously increasing risks following prolonged high temperatures were apparent during the first 2 weeks of the heat wave. Interactions between high temperatures and air pollution from wildfires in excess of an additive effect contributed to more than 2000 deaths. Conclusions: Interactions between high temperatures and wildfire air pollution should be considered in risk assessments regarding health consequences of climate change. PMID:24598414

  5. Heat transfer in thermal barrier coated rods with circumferential and radial temperature gradients

    NASA Astrophysics Data System (ADS)

    Chung, B. T. F.; Kermani, M. M.; Braun, M. J.; Padovan, J.; Hendricks, R.

    1984-06-01

    To study the heat transfer in ceramic coatings applied to the heated side of internally cooled hot section components of the gas turbine engine, a mathematical model is developed for the thermal response of plasma-sprayed ZrO2-Y2O3 ceramic materials with a Ni-Cr-AL-Y bond coat on a Rene 41 rod substrate subject to thermal cycling. This multilayered cylinder with temperature dependent thermal properties is heated in a cross-flow by a high velocity flame and then cooled by ambient air. Due to high temperature and high velocity of the flame, both gas radiation and forced convection are taken into consideration. Furthermore, the local turbulent heat transfer coefficient is employed which varies with angular position as well as the surface temperature. The transient two-dimensional (heat transfer along axial direction is neglected) temperature distribution of the composite cylinder is determined numerically.

  6. Heat Dissipation from a Finned Cylinder at Different Fin-Plane/Air-stream Angles

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Biermann, Arnold E

    1932-01-01

    This report gives the results of an experimental determination of the temperature distribution in and the heat dissipation from a cylindrical finned surface for various fin-plane/air-stream angles. A steel cylinder 4.5 inches in diameter having slightly tapered fins of 0.30-inch pitch and 0.6 -inch width was equipped with an electrical heating unit furnishing 13 to 248 B.T.U. per hour per square inch of inside wall area. Air at speeds form 30 to 150 miles per hour was directed at seven different angles from 0 degrees to 90 degrees with respect to the fin planes. The tests show the best angle for cooling at all air speeds to be about 45 degrees. With the same temperature for the two conditions and with an air speed of 76 miles per hour, the heat input to the cylinder can be increased 50 percent at 45 degrees fin-plane/air-stream angle over that at 0 degrees.

  7. Heat transfer and pressure distributions on hemisphere-cylinders in methane-air combustion products at Mach 7

    NASA Technical Reports Server (NTRS)

    Weinstein, I.

    1973-01-01

    Heat-transfer and pressure distributions were measured over the surfaces of three hemisphere-cylinder models tested at a nominal Mach number of 7 in the Langley 8-foot high-temperature structures tunnel which uses methane-air products of combustion as a test medium. The results showed that the heat-transfer and pressure distributions over the surface of the models were in good agreement with experimental data obtained in air and also with theoretical predictions.

  8. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  9. Effect of green roofs on air temperature; measurement study of well-watered and dry conditions

    NASA Astrophysics Data System (ADS)

    Solcerova, Anna; van de Ven, Frans; Wang, Mengyu; van de Giesen, Nick

    2016-04-01

    Rapid urbanization and increasing number and duration of heat waves poses a need for understanding urban climate and ways to mitigate extremely high temperatures. One of repeatedly suggested and often investigated methods to moderate the so called urban heat island are green roofs. This study investigates several extensive green roofs in Utrecht (NL) and their effect on air temperature right above the roof surface. Air temperature was measured 15 and 30 cm above the roof surface and also in the substrate. We show that under normal condition is air above green roof, compared to white gravel roof, colder at night and warmer during day. This suggest that green roofs might help decrease air temperatures at night, when the urban heat island is strongest, but possibly contribute to high temperatures during daytime. We also measured situation when the green roofs wilted and dried out. Under such conditions green roof exhibits more similar behavior to conventional white gravel roof. Interestingly, pattern of soil temperature remains almost the same for both dry and well-prospering green roof, colder during day and warmer at night. As such, green roof works as a buffer of diurnal temperature changes.

  10. High-efficiency gas heat pump air-conditioner equipped with absorption refrigerator

    NASA Astrophysics Data System (ADS)

    Imai, Yosuke; Ohashi, Toshinori; Okamoto, Hiroaki; Hihara, Eiji; Kawakami, Ryuichiro

    On conventional gas heat pump(GHP), waste heat from gas engine that uses as driving source is emitted into outside. So from the standpoint of efficient use of waste heat, it is assumed that waste heat from gas engine is used as driving source of absorption chiller, and high temperature condensate refrigerant in GHP is subcooled to middle temperature by cold source from absorption cycle, and as a result, GHP makes more efficiency. However, in equipping GHP with absorption cycle, downsizing and high-efficiency of absorption cycle is required. In this study, air-cooled subcooled adiabatic absorber is focused and physical phenomenon in it is analyzed, and finally one perception of the optimized designing is shown.

  11. Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling.

    PubMed

    Shaw, Kirsty J; Docker, Peter T; Yelland, John V; Dyer, Charlotte E; Greenman, John; Greenway, Gillian M; Haswell, Stephen J

    2010-07-01

    A microwave heating system is described for performing polymerase chain reaction (PCR) in a microfluidic device. The heating system, in combination with air impingement cooling, provided rapid thermal cycling with heating and cooling rates of up to 65 degrees C s(-1) and minimal over- or under-shoot (+/-0.1 degrees C) when reaching target temperatures. In addition, once the required temperature was reached it could be maintained with an accuracy of +/-0.1 degrees C. To demonstrate the functionality of the system, PCR was successfully performed for the amplification of the Amelogenin locus using heating rates and quantities an order of magnitude faster and smaller than current commercial instruments. PMID:20414500

  12. Estimation of heat load in waste tanks using average vapor space temperatures

    SciTech Connect

    Crowe, R.D.; Kummerer, M.; Postma, A.K.

    1993-12-01

    This report describes a method for estimating the total heat load in a high-level waste tank with passive ventilation. This method relates the total heat load in the tank to the vapor space temperature and the depth of waste in the tank. Q{sub total} = C{sub f} (T{sub vapor space {minus}} T{sub air}) where: C{sub f} = Conversion factor = (R{sub o}k{sub soil}{sup *}area)/(z{sub tank} {minus} z{sub surface}); R{sub o} = Ratio of total heat load to heat out the top of the tank (function of waste height); Area = cross sectional area of the tank; k{sub soil} = thermal conductivity of soil; (z{sub tank} {minus} z{sub surface}) = effective depth of soil covering the top of tank; and (T{sub vapor space} {minus} T{sub air}) = mean temperature difference between vapor space and the ambient air at the surface. Three terms -- depth, area and ratio -- can be developed from geometrical considerations. The temperature difference is measured for each individual tank. The remaining term, the thermal conductivity, is estimated from the time-dependent component of the temperature signals coming from the periodic oscillations in the vapor space temperatures. Finally, using this equation, the total heat load for each of the ferrocyanide Watch List tanks is estimated. This provides a consistent way to rank ferrocyanide tanks according to heat load.

  13. Combined facial heating and inhalation of hot air do not alter thermoeffector responses in humans

    PubMed Central

    Wingo, Jonathan E.; Low, David A.; Keller, David M.; Kimura, Kenichi

    2015-01-01

    The influence of thermoreceptors in human facial skin on thermoeffector responses is equivocal; furthermore, the presence of thermoreceptors in the respiratory tract and their involvement in thermal homeostasis has not been elucidated. This study tested the hypothesis that hot air directed on the face and inhaled during whole body passive heat stress elicits an earlier onset and greater sensitivity of cutaneous vasodilation and sweating than that directed on an equal skin surface area away from the face. Six men and two women completed two trials separated by ∼1 wk. Participants were passively heated (water-perfused suit; core temperature increase ∼0.9°C) while hot air was directed on either the face or on the lower leg (counterbalanced). Skin blood flux (laser-Doppler flowmetry) and local sweat rate (capacitance hygrometry) were measured at the chest and one forearm. During hot-air heating, local temperatures of the cheek and leg were 38.4 ± 0.8°C and 38.8 ± 0.6°C, respectively (P = 0.18). Breathing hot air combined with facial heating did not affect mean body temperature onsets (P = 0.97 and 0.27 for arm and chest sites, respectively) or slopes of cutaneous vasodilation (P = 0.49 and 0.43 for arm and chest sites, respectively), or the onsets (P = 0.89 and 0.94 for arm and chest sites, respectively), or slopes of sweating (P = 0.48 and 0.65 for arm and chest sites, respectively). Based on these findings, respiratory tract thermoreceptors, if present in humans, and selective facial skin heating do not modulate thermoeffector responses during passive heat stress. PMID:26157054

  14. Solid oxide fuel cell power plant having a fixed contact oxidation catalyzed section of a multi-section cathode air heat exchanger

    DOEpatents

    Saito, Kazuo; Lin, Yao

    2015-02-17

    The multi-section cathode air heat exchanger (102) includes at least a first heat exchanger section (104), and a fixed contact oxidation catalyzed section (126) secured adjacent each other in a stack association. Cool cathode inlet air flows through cool air channels (110) of the at least first (104) and oxidation catalyzed sections (126). Hot anode exhaust flows through hot air channels (124) of the oxidation catalyzed section (126) and is combusted therein. The combusted anode exhaust then flows through hot air channels (112) of the first section (104) of the cathode air heat exchanger (102). The cool and hot air channels (110, 112) are secured in direct heat exchange relationship with each other so that temperatures of the heat exchanger (102) do not exceed 800.degree. C. to minimize requirements for using expensive, high-temperature alloys.

  15. Recent Research in Compression Refrigeration Cycle Air Source Heat Pumps.

    NASA Astrophysics Data System (ADS)

    Arai, Akira; Senshu, Takao

    The most important theme for heat pump air conditioners is the improvement of energy saving and comfort. Recently, cycle components, especially compressores and heat exchangers have been improved greatly in their performance and efficiency. As for compressors, large progress in their efficiencies have been made by detailed analysises such as mechanical losses and by the development of a new type compression mechanism. As for heat exchangers, various high heat transfer surfaces have been developed together with the improvement of the production technologies for them. Further, the effect of the capacity-modulated cycle is evaluated quantitatively through the improvements of static and transient cycle simulation technologies. And in order to realize this cffect, the electrically driven expansion valves heve been marketed. This review introduces the trends of these energy-saving technologies as well as comfort improvement studies.

  16. The characteristics of high temperature air combustion and its practical application to high performance industrial furnace

    SciTech Connect

    Sugiyama, Shunichi; Suzukawa, Yutaka; Hino, Yoshimichi

    1999-07-01

    An experimental regenerative continuous slab reheat furnace was used for the data acquisition of high temperature air combustion. Obtainable preheated air temperature, gas temperature distribution of combustion field, NOx concentration in waste gas, heating pattern, furnace height etc were studied for this purpose. Main results were (1) preheated air temperature close to furnace temperature can be obtained, (2) gas temperature distribution is relatively uniform in main combustion field, (3) NOx concentration in waste gas is significantly reduced, (4) there exists the appropriate combustion capacity of a burner for every furnace width, (5) the optimum furnace height for regenerative continuous slab reheat furnace from the thermal efficiency point of view is lower than the convention one by about 0.5m.

  17. Performance of High Temperature Air Combustion Boiler with Low NOx Emission

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiromichi; Ito, Yoshihito; Tsuruta, Naoki; Yoshikawa, Kunio

    Thermal performance in the experiments and three-dimensional numerical simulations for a high temperature air combustion boiler where fuel can be efficiently combusted by high temperature preheated air (800°C-1000°C) is examined. The boiler can burn not only natural gas but also low calorific gas (e. g. full gasification gas obtained from coal or wastes). In the boiler, four regenerative burners are installed. This boiler has new features that not only air but also gasification gas is heated up to 900°C, and combination of burners is switched every 15 seconds where two burners are used as inlets of fuel and air and the other two burners are used as outlets of exhaust gas. Natural gas and syngas obtained from coal are burned. The NOx emission for each fuel is less than 50ppm. The heat transfer of three-dimensional calculation is predicted higher than that of experiment.

  18. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... electricity. Packaged terminal heat pump means a packaged terminal air conditioner that utilizes reverse cycle... indoor grilles, outdoor louvers, various ventilation options, indoor free air discharges, ductwork,...

  19. Loop Heat Pipe Operation Using Heat Source Temperature for Set Point Control

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Paiva, Kleber; Mantelli, Marcia

    2011-01-01

    The LHP operating temperature is governed by the saturation temperature of its reservoir. Controlling the reservoir saturation temperature is commonly accomplished by cold biasing the reservoir and using electrical heaters to provide the required control power. Using this method, the loop operating temperature can be controlled within +/- 0.5K. However, because of the thermal resistance that exists between the heat source and the LHP evaporator, the heat source temperature will vary with its heat output even if LHP operating temperature is kept constant. Since maintaining a constant heat source temperature is of most interest, a question often raised is whether the heat source temperature can be used for LHP set point temperature control. A test program with a miniature LHP has been carried out to investigate the effects on the LHP operation when the control temperature sensor is placed on the heat source instead of the reservoir. In these tests, the LHP reservoir is cold-biased and is heated by a control heater. Tests results show that it is feasible to use the heat source temperature for feedback control of the LHP operation. Using this method, the heat source temperature can be maintained within a tight range for moderate and high powers. At low powers, however, temperature oscillations may occur due to interactions among the reservoir control heater power, the heat source mass, and the heat output from the heat source. In addition, the heat source temperature could temporarily deviate from its set point during fast thermal transients. The implication is that more sophisticated feedback control algorithms need to be implemented for LHP transient operation when the heat source temperature is used for feedback control.

  20. Heat Death Associations with the built environment, social vulnerability and their interactions with rising temperature.

    PubMed

    Eisenman, David P; Wilhalme, Holly; Tseng, Chi-Hong; Chester, Mikhail; English, Paul; Pincetl, Stephanie; Fraser, Andrew; Vangala, Sitaram; Dhaliwal, Satvinder K

    2016-09-01

    In an extreme heat event, people can go to air-conditioned public facilities if residential air-conditioning is not available. Residences that heat slowly may also mitigate health effects, particularly in neighborhoods with social vulnerability. We explored the contributions of social vulnerability and these infrastructures to heat mortality in Maricopa County and whether these relationships are sensitive to temperature. Using Poisson regression modeling with heat-related mortality as the outcome, we assessed the interaction of increasing temperature with social vulnerability, access to publicly available air conditioned space, home air conditioning and the thermal properties of residences. As temperatures increase, mortality from heat-related illness increases less in census tracts with more publicly accessible cooled spaces. Mortality from all internal causes of death did not have this association. Building thermal protection was not associated with mortality. Social vulnerability was still associated with mortality after adjusting for the infrastructure variables. To reduce heat-related mortality, the use of public cooled spaces might be expanded to target the most vulnerable. PMID:27583525

  1. Air oxidation behavior of fuel for the High Temperature Engineering Test Reactor (HTTR)

    NASA Astrophysics Data System (ADS)

    Kikuchi, Hironobu; Hayashi, Kimio; Fukuda, Kousaku

    1992-08-01

    The oxidation behavior of the HTTR fuel was studied with respect to the scenario of an air ingress accident which had been assessed in the HTTR safety analysis. The coated fuel particles were heated under a sufficient air flow in the temperature range of 900-1400 C for maximum duration of 600 h (at 1300 C). Failure fractions of the SiC coating layer after the heat treatments remained within the fraction at the fuel production. And the failure behavior of the SiC layer did not depend on such heating conditions as the temperature and the duration in the present experiment. It was confirmed by scanning electron microscopy (SEM), X-ray diffraction, and laser Raman spectroscopy that a thin oxide film was formed on the SiC layer by the heat treatments.

  2. Investigation of Effectiveness of Air-Heating a Hollow Steel Propeller for Protection Against Icing. 2: 50% Impartitioned Blades

    NASA Technical Reports Server (NTRS)

    Perkins, Porter J.; Mulholland, Donald R.

    1948-01-01

    The icing protection afforded an internal air-heated propeller blade by radial partitioning at 50-percent chord to confine the heated air to the forward half of the blade was determined in the NACA Cleveland icing research tunnel. A modified production-model hollow steel propeller, was used for the investigation. Temperatures of the blade surfaces for several heating rates were measured under various tunnel Icing' conditions. Photographic observations of ice formations on blade surfaces and blade heat-exchanger effectiveness were obtained. With 50-percent partitioning of the blades, adequate icing protection at 1050 rpm was obtained with a heating rate of 26,000 Btu per hour per blade at the blade shank using an air temperature of 400 F with a flow rate of 280 pounds per hour per blade, which is one-third less heat than was found necessary for similar Ice protection with unpartitioned blades. The chordwise distribution of the applied heat, as determined by surface temperature measurements, was considered unsatisfactory with much of the heat dissipated well back of the leading edge. Heat-exchanger effectiveness of approximately 56 percent also Indicated poor utilization of available heat. This effectiveness was, however, 9 percent greater than that obtained from unpartitioned blades.

  3. High-temperature self-circulating thermoacoustic heat exchanger

    NASA Astrophysics Data System (ADS)

    Backhaus, S.; Swift, G. W.; Reid, R. S.

    2005-07-01

    Thermoacoustic and Stirling engines and refrigerators use heat exchangers to transfer heat between the oscillating flow of their thermodynamic working fluids and external heat sources and sinks. An acoustically driven heat-exchange loop uses an engine's own pressure oscillations to steadily circulate its own thermodynamic working fluid through a physically remote high-temperature heat source without using moving parts, allowing for a significant reduction in the cost and complexity of thermoacoustic and Stirling heat exchangers. The simplicity and flexibility of such heat-exchanger loops will allow thermoacoustic and Stirling machines to access diverse heat sources and sinks. Measurements of the temperatures at the interface between such a heat-exchange loop and the hot end of a thermoacoustic-Stirling engine are presented. When the steady flow is too small to flush out the mixing chamber in one acoustic cycle, the heat transfer to the regenerator is excellent, with important implications for practical use.

  4. Thermodynamic modeling and performance analysis of the variable-temperature heat reservoir absorption heat pump cycle

    NASA Astrophysics Data System (ADS)

    Qin, Xiaoyong; Chen, Lingen; Ge, Yanlin; Sun, Fengrui

    2015-10-01

    For practical absorption heat pump (AHP) plants, not all external heat reservoir heat capacities are infinite. External heat reservoir heat capacity should be an effect factor in modeling and performance analysis of AHP cycles. A variable-temperature heat reservoir AHP cycle is modeled, in which internal working substance is working in four temperature levels and all irreversibility factors are considered. The irreversibility includes heat transfer irreversibility, internal dissipation irreversibility and heat leakage irreversibility. The general equations among coefficient of performance (COP), heating load and some key characteristic parameters are obtained. The general and optimal characteristics are obtained by using numerical calculations. Besides, the influences of heat capacities of heat reservoirs, internal dissipation irreversibility, and heat leakage irreversibility on cycle performance are analyzed. The conclusions can offer some guidelines for design and operation of AHP plants.

  5. Use of waste heat for automotive air conditioning

    SciTech Connect

    Hamner, R.M.

    1981-01-01

    The ejector-compression refrigeration system, a heat powered system which can be operated as a heat pump, is described. The operation of the system is discussed in general and the ejector itself is described in more detail. The central thrust of the paper is the application of the system to comfort air conditioning of automobiles. The advantages, limitations, and recommendations for future research and development are given. Several analyses of the theoretical cycle are made and equations describing the operation of the ejector are derived. A brief bibliography is listed.

  6. Analysis of stream temperature and heat budget in an urban river under strong anthropogenic influences

    NASA Astrophysics Data System (ADS)

    Xin, Zhuohang; Kinouchi, Tsuyoshi

    2013-05-01

    Stream temperature variations of the Tama River, which runs through highly urbanized areas of Tokyo, were studied in relation to anthropogenic impacts, including wastewater effluents, dam release and water withdrawal. Both long-term and longitudinal changes in stream temperature were identified and the influences of stream flow rate, temperature and volume of wastewater effluents and air temperature were investigated. Water and heat budget analyses were also conducted for several segments of the mainstream to clarify the relative impacts from natural and anthropogenic factors. Stream temperatures in the winter season significantly increased over the past 20 years at sites affected by intensive and warm effluents from wastewater treatment plants (WWTPs) located along the mainstream. In the summer season, a larger stream temperature increase was identified in the upstream reaches, which was attributable to the decreased flow rate due to water withdrawal. The relationship between air and stream temperatures indicated that stream temperatures at the upstream site were likely to be affected by a dam release, while temperatures in the downstream reaches have deviated more from air temperatures in recent years, probably due to the increased impacts of effluents from WWTPs. Results of the water and heat budget analyses indicated that the largest contributions to water and heat gains were attributable to wastewater effluents, while other factors such as groundwater recharge and water withdrawal were found to behave as energy sinks, especially in summer. The inflow from tributaries worked to reduce the impacts of dam release and the heat exchanges at the air-water interface contributed less to heat budgets in both winter and summer seasons for all river segments.

  7. Heat resistant alloys as interconnect materials of reduced temperature SOFCs

    NASA Astrophysics Data System (ADS)

    Jian, Li; Jian, Pu; Guangyuan, Xie; Shunxu, Wang; Jianzhong, Xiao

    Heat-resistant alloys, Haynes 230 and SS310, were exposed to air and humidified H 2 at 750 °C for up to 1000 h, respectively, simulating the environments in reduced temperature solid oxide fuel cells (SOFCs). The oxidized samples were characterized by using SEM, EDS and X-ray diffraction to obtain the morphology, thickness, composition and crystal structure of the oxide scales. A mechanism for the formation of metallic Ni-rich nodules on top of the oxide scale in Haynes 230 sample oxidized in humidified H 2 was established. Thermodynamic analysis confirmed that MnCr 2O 4 is the favored spinel phase, together with Cr 2O 3, in the oxide scales.

  8. Preliminary concepts for high-temperature mold heating and cooling

    SciTech Connect

    Larson, J.P.

    1990-12-01

    The feasibility and limitations of various methods for mold heating and cooling were investigated. Two methods were chosen for evaluation: electrical heating and water cooling, and electrical heating and heat pipe conduction cooling. A model mold of each method was built. Test results indicated that the electrical heating and circulated water cooling was the better method. An injection mold utilizing this method was fabricated and temperature-cycled between 300 and 770{degree}F. 1 ref., 2 figs., 7 tabs.

  9. Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater

    PubMed Central

    Chabane, Foued; Moummi, Noureddine; Benramache, Said

    2013-01-01

    The thermal performance of a single pass solar air heater with five fins attached was investigated experimentally. Longitudinal fins were used inferior the absorber plate to increase the heat exchange and render the flow fluid in the channel uniform. The effect of mass flow rate of air on the outlet temperature, the heat transfer in the thickness of the solar collector, and the thermal efficiency were studied. Experiments were performed for two air mass flow rates of 0.012 and 0.016 kg s−1. Moreover, the maximum efficiency values obtained for the 0.012 and 0.016 kg s−1 with and without fins were 40.02%, 51.50% and 34.92%, 43.94%, respectively. A comparison of the results of the mass flow rates by solar collector with and without fins shows a substantial enhancement in the thermal efficiency. PMID:25685486

  10. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOEpatents

    Berry, G.F.; Minkov, V.; Petrick, M.

    1981-11-02

    A magnetohydrodynamic (MHD) power generating system is described in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  11. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOEpatents

    Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael

    1988-01-01

    A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  12. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOEpatents

    Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael

    1988-01-05

    A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  13. How the Plant Temperature Links to the Air Temperature in the Desert Plant Artemisia ordosica

    PubMed Central

    Yu, Ming-Han; Ding, Guo-Dong; Gao, Guang-Lei; Sun, Bao-Ping; Zhao, Yuan-Yuan; Wan, Li; Wang, De-Ying; Gui, Zi-Yang

    2015-01-01

    Plant temperature (Tp) is an important indicator of plant health. To determine the dynamics of plant temperature and self-cooling ability of the plant, we measured Tp in Artemisia ordosica in July, in the Mu Us Desert of Northwest China. Related factors were also monitored to investigate their effects on Tp, including environmental factors, such as air temperature (Ta), relative humidity, wind speed; and physiological factors, such as leaf water potential, sap flow, and water content. The results indicate that: 1) Tp generally changes in conjunction with Ta mainly, and varies with height and among the plant organs. Tp in the young branches is most constant, while it is the most sensitive in the leaves. 2) Correlations between Tp and environmental factors show that Tp is affected mainly by Ta. 3) The self-cooling ability of the plant was effective by midday, with Tp being lower than Ta. 4) Increasing sap flow and leaf water potential showed that transpiration formed part of the mechanism that supported self-cooling. Increased in water conductance and specific heat at midday may be additional factors that contribute to plant cooling ability. Therefore, our results confirmed plant self-cooling ability. The response to high temperatures is regulated by both transpiration speed and an increase in stem water conductance. This study provides quantitative data for plant management in terms of temperature control. Moreover, our findings will assist species selection with taking plant temperature as an index. PMID:26280557

  14. Heat pipes for spacecraft temperature control: Their usefulness and limitations

    NASA Technical Reports Server (NTRS)

    Ollendorf, S.; Stipandic, E.

    1972-01-01

    Heat pipes are used in spacecraft to equalize the temperature of structures and maintain temperature control of electronic components. Information is provided for a designer on: (1) a typical mounting technique, (2) choices available in wick geometries and fluids, (3) tests involved in flight-qualifying the design, and (4) heat pipe limitations. An evaluation of several heat pipe designs showed that the behavior of heat pipes at room temperature does not necessarily correlate with the classic equations used to predict their performance. They are sensitive to such parameters as temperature, fluid inventory, orientation, and noncondensable gases.

  15. Comparison of MODIS Satellite Land Surface Temperature with Air Temperature along a 5000-metre Elevation Transect on Kilimanjaro, Tanzania.

    NASA Astrophysics Data System (ADS)

    Pepin, N. C.; Williams, R.; Maeda, E. E.

    2015-12-01

    There is concern that high elevations may be warming more rapidly than lower elevations, but there is a lack of observational data from weather stations in the high mountains. One alternative data source is satellite LST (Land Surface Temperature) which has extensive spatial coverage. This study compares instantaneous values of LST (1030 and 2230 local solar time) as measured by the MODIS MOD11A2 product at 1 km resolution with equivalent screen level air temperatures (in the same pixel) measured from a transect of 22 in situ weather stations across Kilimanjaro ranging in elevation from 990 to 5803 m. Data consists of 11 years on the SW slope and 3 years on the NE slope, equating to >500 and ~140 octtads (8-day periods) respectively. Results show substantial differences between LST and local air temperature, sometimes up to 20C. During the day the LST tends to be higher than air temperature and the reverse is true at night. The differences show large variance, particularly during the daytime, and tend to increase with elevation, particularly on the NE slope of the mountain which faces the sun when the daytime observations are taken (1030 LST). Differences between LST and air temperature are larger in the dry seasons (JF and JJAS), and reduce when conditions are more cloudy. Systematic relationships with cloud cover and vegetation characteristics (as measured by NDVI and MAIAC for the same pixel) are displayed. More vegetation reduces daytime surface heating above the air temperature, but this relationship weakens with elevation. Nighttime differences are more stable and show no relationship with vegetation indices. Therefore the predictability of the LST/air temperature differences reduces at high elevations and it is therefore much more challenging to use satellite data at high elevations to complement in situ air temperature measurements for climate change assessments, especially for daytime maximum temperatures.

  16. Evolution of steel surface composition with heating in vacuum and in air

    NASA Astrophysics Data System (ADS)

    Doyle, Colin S.; Seal, Christopher K.; James, Bryony J.

    2011-09-01

    X-ray photoelectron spectroscopy (XPS) has been used to investigate the changes in surface composition of three steels as they have undergone heating. The steels were mild steel, and two austenitic stainless steels, commonly designated 304 and 316 stainless steels. XPS measurements were made on the untreated samples, and then following heating for 30 min in vacuo and in a 1 × 10-6 Torr partial pressure of air, at temperatures between 100 °C and 600 °C. Mild steel behaves differently to the two stainless steels under the heating conditions. In mild steel the iron content of the surface increased, with oxygen and carbon decreasing, as a function of increasing temperature. The chemical state of the iron also changed from oxide at low temperatures, to metallic at temperatures above 450 °C. In both stainless steels the amount of iron present in the surface decreased with increasing temperature. The decrease in iron at the surface was accompanied by an increase in the amount of chromium at the steel surface. At temperatures above 450 °C the iron in both 304 and 316 stainless steels showed significant contributions from metallic iron, whilst the chromium present was in an oxide state. In 316 stainless steel heated to 600 °C there was some metallic chromium present in the surface layer. The surfaces heated in air showed the least variation in composition, with the major change being the loss of carbon from the surfaces following heating above 300 °C. There was also a minor increase in the concentration of chromium present on both the stainless steels heated under these conditions. There was also little change in the oxidation state of the iron and chromium present on the surface of these steels. There was some evidence of the thickening of the surface oxides as seen by the loss of the lower binding energy signal in the iron or chromium core level scans. The surfaces heated in vacuum showed a similar trend in the concentration of carbon on the surfaces, however the

  17. Register Closing Effects on Forced Air Heating System Performance

    SciTech Connect

    Walker, Iain S.

    2003-11-01

    Closing registers in forced air heating systems and leaving some rooms in a house unconditioned has been suggested as a method of quickly saving energy for California consumers. This study combined laboratory measurements of the changes in duct leakage as registers are closed together with modeling techniques to estimate the changes in energy use attributed to closing registers. The results of this study showed that register closing led to increased energy use for a typical California house over a wide combination of climate, duct leakage and number of closed registers. The reduction in building thermal loads due to conditioning only a part of the house was offset by increased duct system losses; mostly due to increased duct leakage. Therefore, the register closing technique is not recommended as a viable energy saving strategy for California houses with ducts located outside conditioned space. The energy penalty associated with the register closing technique was found to be minimized if registers furthest from the air handler are closed first because this tends to only affect the pressures and air leakage for the closed off branch. Closing registers nearer the air handler tends to increase the pressures and air leakage for the whole system. Closing too many registers (more than 60%) is not recommended because the added flow resistance severely restricts the air flow though the system leading to safety concerns. For example, furnaces may operate on the high-limit switch and cooling systems may suffer from frozen coils.

  18. Air temperature field distribution estimations over a Chinese mega-city using MODIS land surface temperature data: the case of Shanghai

    NASA Astrophysics Data System (ADS)

    Ma, Weichun; Zhou, Liguo; Zhang, Hao; Zhang, Yan; Dai, Xiaoyan

    2016-03-01

    The capability of obtaining spatially distributed air temperature data from remote sensing measurements is an improvement for many environmental applications focused on urban heat island, carbon emissions, climate change, etc. This paper is based on the MODIS/Terra and Aqua data utilized to study the effect of the urban atmospheric heat island in Shanghai, China. The correlation between retrieved MODIS land surface temperature (LST) and air temperature measured at local weather stations was initially studied at different temporal and spatial scales. Secondly, the air temperature data with spatial resolutions of 250 m and 1 km were estimated from MODIS LST data and in-situ measured air temperature. The results showed that there is a slightly higher correlation between air temperature and MODIS LST at a 250m resolution in spring and autumn on an annual scale than observed at a 1 km resolution. Although the distribution pattern of the air temperature thermal field varies in different seasons, the urban heat island (UHI) in Shanghai is characterized by a distribution pattern of multiple centers, with the central urban area as the primary center and the built-up regions in each district as the subcenters. This study demonstrates the potential not only for estimating the distribution of the air temperature thermal field from MODIS LST with 250 m resolution in spring and autumn in Shanghai, but also for providing scientific and effective methods for monitoring and studying UHI effect in a Chinese mega-city such as Shanghai.

  19. Dry/wet performance of a plate-fin air-cooled heat exchanger with continuous corrugated fins

    SciTech Connect

    Hauser, S.G.; Kreid, D.K.; Johnson, B.M.

    1981-01-01

    The performance and operating characteristics of a plate-fin heat exchanger in dry/wet or deluge operations was experimentally determined. Development of the deluge heat/mass transfer model continued. The experiments were conducted in a specially-designed wind tunnel at the PNL. Air that was first heated and humidified to specified conditions was circulated at a controlled rate through a 2 ft x 6 ft heat exchanger module. The heat exchanger used in the tests was a wavy surface, plate fin on tube configuration. Hot water was circulated through the tubes at high flow rates to maintain an essentially isothermal condition on the tube side. Deionized water sprayed on the top of the vertically oriented plate fins was collected at the bottom of the core and recirculated. Instrumentation was provided for measurement of flow rates and thermodynamic conditions in the air, in the core circulation water, and in the deluge water. Measurements of the air side pressure drop and heat rejection rate were made as a function of air flow rate, air inlet temperature and humidity, deluge water flow rate, and the core inclination from the vertical. An overall heat transfer coefficient and an effective deluge film convective coefficient was determined. The deluge model, for predicting heat transfer from a wet finned heat exchanger was further developed and refined, and a major extension of the model was formulated that permits simultaneous calculation of both the heat transfer and evaporation rates from the wetted surface. The experiments showed an increase in the heat rejection rate due to wetting, accompanied by a proportional increase in the air side pressure drop. For operation at the same air side pressure drop, the enhancement ratio Q/sub w//Q/sub d/ varied between 2 and 5 for the conditions tested. Thus, the potential enhancement of heat transfer due to wetting can be substantial.

  20. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

  1. Development of a High Performance Air Source Heat Pump for the US Market

    SciTech Connect

    Abdelaziz, Omar; Shen, Bo; Gao, Zhiming; Baxter, Van D; Iu, Ipseng

    2011-01-01

    Heat pumps present a significant advantage over conventional residential heating technologies due to higher energy efficiencies and less dependence on imported oil. The US development of heat pumps dates back to the 1930 s with pilot units being commercially available in the 1950 s. Reliable and cost competitive units were available in the US market by the 1960 s. The 1973 oil embargo led to increased interest in heat pumps prompting significant research to improve performance, particularly for cold climate locations. Recent increasing concerns on building energy efficiency and environmental emissions have prompted a new wave of research in heat pump technology with special emphasis on reducing performance degradation at colder outdoor air temperatures. A summary of the advantages and limitations of several performance improvement options sought for the development of high performance air source heat pump systems for cold climate applications is the primary focus of this paper. Some recommendations for a high performance cold climate heat pump system design most suitable for the US market are presented.

  2. Thermal Performance of High Temperature Titanium -- Water Heat Pipes by Multiple Heat Pipe Manufacturers

    NASA Technical Reports Server (NTRS)

    Sanzi, James L.

    2007-01-01

    Titanium - water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity-aided, in the horizontal position and at elevations against gravity at 450 K and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.

  3. Thermal Performance of High Temperature Titanium-Water Heat Pipes by Multiple Heat Pipe Manufacturers

    NASA Technical Reports Server (NTRS)

    Sanzi, James L.

    2007-01-01

    Titanium-water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity-aided, in the horizontal position and at elevations against gravity at 450 and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.

  4. Airshuffler implementation at freezer air outlets for heat transfer enhancement

    NASA Astrophysics Data System (ADS)

    Ćerezci, Gökhan; Darka, Murat; Şenman, Ozan

    2016-06-01

    A study which is composed of computational simulation and experimental validation has been conducted for implementation of small, vane type geometries at freezer air outlets, similar to microvortex generators used in aircraft wings, in order to improve the heat transfer efficiency inside the freezer compartment by decreasing airside thermal resistance and improving the air distribution. Both simulation and experimental validation were performed in a loaded condition which was prepared according to `Household refrigerating appliances - characteristics and test methods - IEC 62552 [1]. Solutions for the incompressible K-epsilon (k-ɛ) turbulence model obtained for Bosch KDN 49 refrigerator freezer both with and without airshufflers at air outlets, which are similar to vane type microvortex generators with different geometric dimensions. The airshuffler dimensions were chosen with design of experiment (DOE) principles for finding the optimum geometry. The best combinations were tested according to cooling rate inside freezer compartment. Results were evaluated for feasibility of implementing of vortex generating surfaces (airshufflers) for cooling appliances.

  5. Emperor penguin body surfaces cool below air temperature.

    PubMed

    McCafferty, D J; Gilbert, C; Thierry, A-M; Currie, J; Le Maho, Y; Ancel, A

    2013-06-23

    Emperor penguins Aptenodytes forsteri are able to survive the harsh Antarctic climate because of specialized anatomical, physiological and behavioural adaptations for minimizing heat loss. Heat transfer theory predicts that metabolic heat loss in this species will mostly depend on radiative and convective cooling. To examine this, thermal imaging of emperor penguins was undertaken at the breeding colony of Pointe Géologie in Terre Adélie (66°40' S 140° 01' E), Antarctica in June 2008. During clear sky conditions, most outer surfaces of the body were colder than surrounding sub-zero air owing to radiative cooling. In these conditions, the feather surface will paradoxically gain heat by convection from surrounding air. However, owing to the low thermal conductivity of plumage any heat transfer to the skin surface will be negligible. Future thermal imaging studies are likely to yield further insights into the adaptations of this species to the Antarctic climate. PMID:23466479

  6. Emperor penguin body surfaces cool below air temperature

    PubMed Central

    McCafferty, D. J.; Gilbert, C.; Thierry, A.-M.; Currie, J.; Le Maho, Y.; Ancel, A.

    2013-01-01

    Emperor penguins Aptenodytes forsteri are able to survive the harsh Antarctic climate because of specialized anatomical, physiological and behavioural adaptations for minimizing heat loss. Heat transfer theory predicts that metabolic heat loss in this species will mostly depend on radiative and convective cooling. To examine this, thermal imaging of emperor penguins was undertaken at the breeding colony of Pointe Géologie in Terre Adélie (66°40′ S 140° 01′ E), Antarctica in June 2008. During clear sky conditions, most outer surfaces of the body were colder than surrounding sub-zero air owing to radiative cooling. In these conditions, the feather surface will paradoxically gain heat by convection from surrounding air. However, owing to the low thermal conductivity of plumage any heat transfer to the skin surface will be negligible. Future thermal imaging studies are likely to yield further insights into the adaptations of this species to the Antarctic climate. PMID:23466479

  7. An Analytical Solution for Mechanical Responses Induced by Temperature and Air Pressure in a Lined Rock Cavern for Underground Compressed Air Energy Storage

    NASA Astrophysics Data System (ADS)

    Zhou, Shu-Wei; Xia, Cai-Chu; Du, Shi-Gui; Zhang, Ping-Yang; Zhou, Yu

    2015-03-01

    Mechanical responses induced by temperature and air pressure significantly affect the stability and durability of underground compressed air energy storage (CAES) in a lined rock cavern. An analytical solution for evaluating such responses is, thus, proposed in this paper. The lined cavern of interest consists of three layers, namely, a sealing layer, a concrete lining and the host rock. Governing equations for cavern temperature and air pressure, which involve heat transfer between the air and surrounding layers, are established first. Then, Laplace transform and superposition principle are applied to obtain the temperature around the lined cavern and the air pressure during the operational period. Afterwards, a thermo-elastic axisymmetrical model is used to analytically determine the stress and displacement variations induced by temperature and air pressure. The developments of temperature, displacement and stress during a typical operational cycle are discussed on the basis of the proposed approach. The approach is subsequently verified with a coupled compressed air and thermo-mechanical numerical simulation and by a previous study on temperature. Finally, the influence of temperature on total stress and displacement and the impact of the heat transfer coefficient are discussed. This paper shows that the temperature sharply fluctuates only on the sealing layer and the concrete lining. The resulting tensile hoop stresses on the sealing layer and concrete lining are considerably large in comparison with the initial air pressure. Moreover, temperature has a non-negligible effect on the lined cavern for underground compressed air storage. Meanwhile, temperature has a greater effect on hoop and longitudinal stress than on radial stress and displacement. In addition, the heat transfer coefficient affects the cavern stress to a higher degree than the displacement.

  8. Robustness analysis of an air heating plant and control law by using polynomial chaos

    SciTech Connect

    Colón, Diego; Ferreira, Murillo A. S.; Bueno, Átila M.; Balthazar, José M.; Rosa, Suélia S. R. F. de

    2014-12-10

    This paper presents a robustness analysis of an air heating plant with a multivariable closed-loop control law by using the polynomial chaos methodology (MPC). The plant consists of a PVC tube with a fan in the air input (that forces the air through the tube) and a mass flux sensor in the output. A heating resistance warms the air as it flows inside the tube, and a thermo-couple sensor measures the air temperature. The plant has thus two inputs (the fan's rotation intensity and heat generated by the resistance, both measured in percent of the maximum value) and two outputs (air temperature and air mass flux, also in percent of the maximal value). The mathematical model is obtained by System Identification techniques. The mass flux sensor, which is nonlinear, is linearized and the delays in the transfer functions are properly approximated by non-minimum phase transfer functions. The resulting model is transformed to a state-space model, which is used for control design purposes. The multivariable robust control design techniques used is the LQG/LTR, and the controllers are validated in simulation software and in the real plant. Finally, the MPC is applied by considering some of the system's parameters as random variables (one at a time, and the system's stochastic differential equations are solved by expanding the solution (a stochastic process) in an orthogonal basis of polynomial functions of the basic random variables. This method transforms the stochastic equations in a set of deterministic differential equations, which can be solved by traditional numerical methods (That is the MPC). Statistical data for the system (like expected values and variances) are then calculated. The effects of randomness in the parameters are evaluated in the open-loop and closed-loop pole's positions.

  9. Robustness analysis of an air heating plant and control law by using polynomial chaos

    NASA Astrophysics Data System (ADS)

    Colón, Diego; Ferreira, Murillo A. S.; Balthazar, José M.; Bueno, Átila M.; de S. R. F. Rosa, Suélia

    2014-12-01

    This paper presents a robustness analysis of an air heating plant with a multivariable closed-loop control law by using the polynomial chaos methodology (MPC). The plant consists of a PVC tube with a fan in the air input (that forces the air through the tube) and a mass flux sensor in the output. A heating resistance warms the air as it flows inside the tube, and a thermo-couple sensor measures the air temperature. The plant has thus two inputs (the fan's rotation intensity and heat generated by the resistance, both measured in percent of the maximum value) and two outputs (air temperature and air mass flux, also in percent of the maximal value). The mathematical model is obtained by System Identification techniques. The mass flux sensor, which is nonlinear, is linearized and the delays in the transfer functions are properly approximated by non-minimum phase transfer functions. The resulting model is transformed to a state-space model, which is used for control design purposes. The multivariable robust control design techniques used is the LQG/LTR, and the controllers are validated in simulation software and in the real plant. Finally, the MPC is applied by considering some of the system's parameters as random variables (one at a time, and the system's stochastic differential equations are solved by expanding the solution (a stochastic process) in an orthogonal basis of polynomial functions of the basic random variables. This method transforms the stochastic equations in a set of deterministic differential equations, which can be solved by traditional numerical methods (That is the MPC). Statistical data for the system (like expected values and variances) are then calculated. The effects of randomness in the parameters are evaluated in the open-loop and closed-loop pole's positions.

  10. Optically heated fiber Bragg grating in active fibers for low temperature sensing application

    NASA Astrophysics Data System (ADS)

    Qi, Lin; Jin, Long; Guan, Bai-Ou

    2013-09-01

    Optically heated fiber Bragg gratings due to the absorption over the fiber core in rare-earth doped fibers are experimentally demonstrated. Bragg wavelength variations with pump power are measured for different fibers. We found that the Er/Yb-codoped fiber presents the strongest thermal effect, due to the high absorption. A maximum wavelength shift of 1.34 nm can be obtained when the 980 nm pump power is 358 mW under room temperature, suggesting the fiber is heated up to over 100 °C. Furthermore, the thermal effect is enhanced by pumping the surrounding air to close to vacuum. A wavelength shift of 1.69 nm is attained, due to the weakened ability of heat transfer at the silica-air interface. The optical heating presents a very short response time and can found applications in low temperature circumstances.

  11. Air jet levitation furnace system for observing glass microspheres during heating and melting

    NASA Technical Reports Server (NTRS)

    Ethridge, E. C.; Dunn, S. L.

    1982-01-01

    A collimated hole structure air jet levitation system has been developed which can be used to levitate hollow glass microspheres used in inertial confinement fusion studies. An ellipsoidal furnace has been added to the system to provide a heating source. A video camera and a 16 mm movie camera connected to a microsphere system provide real time observation as well as permanent documentation of the experiments. Microspheres have been levitated at temperatures over 1400 C for over 10 minutes at a time.

  12. Air-sea heat exchange, an element of the water cycle

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.

    1984-01-01

    The distribution and variation of water vapor, clouds and precipitation are examined. Principal driving forces for these distributions are energy exchange and evaporation at the air-sea interface, which are also important elements of air-sea interaction studies. The overall aim of air-sea interaction studies is to quantitatively determine mass, momentum and energy fluxes, with the goal of understanding the mechanisms controlling them. The results of general circulation simulations indicate that the atmosphere in mid-latitudes responds to changes in the oceanic surface conditions in the tropics. This correlation reflects the strong interaction between tropical and mid-latitude conditions caused by the transport of heat and momentum from the tropics. Studies of air-sea exchanges involve a large number of physica, chemical and dynamical processes including heat flux, radiation, sea-surface temperature, precipitation, winds and ocean currents. The fluxes of latent heat are studied and the potential use of satellite data in determining them evaluated. Alternative ways of inferring heat fluxes will be considered.

  13. Characteristics of turbulent velocity and temperature in a wall channel of a heated rod bundle

    SciTech Connect

    Krauss, T.; Meyer, L.

    1995-09-01

    Turbulent air flow in a wall sub-channel of a heated 37-rod bundle (P/D = 1.12, W/D = 1.06) was investigated. measurements were performed with hot-wire probe with X-wires and a temperature wire. The mean velocity, the mean fluid temperature, the wall shear stress and wall temperature, the turbulent quantities such as the turbulent kinetic energy, the Reynolds-stresses and the turbulent heat fluxes were measured and are discussed with respect to data from isothermal flow in a wall channel and heated flow in a central channel of the same rod bundle. Also, data on the power spectral densities of the velocity and temperature fluctuations are presented. These data show the existence of large scale periodic fluctuations are responsible for the high intersubchannel heat and momentum exchange.

  14. DESIGN OF A COMPACT HEAT EXCHANGER FOR HEAT RECUPERATION FROM A HIGH TEMPERATURE ELECTROLYSIS SYSTEM

    SciTech Connect

    G. K. Housley; J.E. O'Brien; G.L. Hawkes

    2008-11-01

    Design details of a compact heat exchanger and supporting hardware for heat recuperation in a high-temperature electrolysis application are presented. The recuperative heat exchanger uses a vacuum-brazed plate-fin design and operates between 300 and 800°C. It includes corrugated inserts for enhancement of heat transfer coefficients and extended heat transfer surface area. Two recuperative heat exchangers are required per each four-stack electrolysis module. The heat exchangers are mated to a base manifold unit that distributes the inlet and outlet flows to and from the four electrolysis stacks. Results of heat exchanger design calculations and assembly details are also presented.

  15. Modelling near subsurface temperature with mixed type boundary condition for transient air temperature and vertical groundwater flow

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev Ranjan; Ramana, D. V.; Singh, R. N.

    2012-10-01

    Near-subsurface temperatures have signatures of climate change. Thermal models of subsurface have been constructed by prescribing time dependent Dirichlet type boundary condition wherein the temperature at the soil surface is prescribed and depth distribution of temperature is obtained. In this formulation it is not possible to include the relationship between air temperatures and the temperature of soil surface. However, if one uses a Robin type boundary condition, a transfer coefficient relates the air and soil surface temperatures which helps to determine both the temperature at the surface and at depth given near surface air temperatures. This coefficient is a function of meteorological conditions and is readily available. We have developed such a thermal model of near subsurface region which includes both heat conduction and advection due to groundwater flows and have presented numerical results for changes in the temperature-depth profiles for different values of transfer coefficient and groundwater flux. There are significant changes in temperature and depth profiles due to changes in the transfer coefficient and groundwater flux. The analytical model will find applications in the interpretation of the borehole geothermal data to extract both climate and groundwater flow signals.

  16. Heat loss in air of an Antarctic marine mammal, the Weddell seal.

    PubMed

    Mellish, Jo-Ann; Hindle, Allyson; Skinner, John; Horning, Markus

    2015-01-01

    The conflicting needs of homeostasis in air versus water complicate our understanding of thermoregulation in marine mammals. Large-scale modeling efforts directed at predicting the energetic impact of changing sea ice conditions on polar ecosystems require a better understanding of thermoregulation in air of free-ranging animals. We utilized infrared imaging as an indirect approach to determine surface temperatures of dry, hauled-out Weddell seals (Leptonychotes weddellii, n = 35) of varying age and body condition during the Antarctic summer. The study groups provided a fivefold range in body mass and a threefold range in blubber depth. Surface temperature (T s) did not vary by body region (head, shoulder, axilla, torso, hip, flippers). Average seal T s (mean 13.9 ± 11.2 °C) was best described through a combination of the physical traits of body mass and environmental variables of ambient temperature T air, and wind speed. Additional factors of ice temperature (T ice), relative humidity and cloud cover did not improve the model. Heat transfer model estimates suggested that radiation contributed 56.6 ± 7.7 % of total heat loss. Convection and conduction accounted for the remaining 15.7 ± 12.3 and 27.7 ± 9.3 %, respectively. Heat loss by radiation was primarily influenced by body mass and wind speed, whereas convective heat loss was influenced primarily by blubber depth and wind speed. Conductive heat loss was modeled largely as a function of physical traits of mass and blubber depth rather than any environmental covariates, and therefore was substantially higher in animals in leaner condition. PMID:25378218

  17. High temperature heat exchanger studies for applications to gas turbines

    NASA Astrophysics Data System (ADS)

    Min, June Kee; Jeong, Ji Hwan; Ha, Man Yeong; Kim, Kui Soon

    2009-12-01

    Growing demand for environmentally friendly aero gas-turbine engines with lower emissions and improved specific fuel consumption can be met by incorporating heat exchangers into gas turbines. Relevant researches in such areas as the design of a heat exchanger matrix, materials selection, manufacturing technology, and optimization by a variety of researchers have been reviewed in this paper. Based on results reported in previous studies, potential heat exchanger designs for an aero gas turbine recuperator, intercooler, and cooling-air cooler are suggested.

  18. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Labeling for central air conditioners, heat... (âAPPLIANCE LABELING RULEâ) Required Disclosures § 305.12 Labeling for central air conditioners, heat pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps,...

  19. 10 CFR 429.16 - Central air conditioners and heat pumps.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... air conditioning heat pumps: The seasonal energy efficiency ratio (SEER in British thermal units per... 10 Energy 3 2013-01-01 2013-01-01 false Central air conditioners and heat pumps. 429.16 Section..., energy consumption or other measure of energy consumption of the central air conditioner or heat pump...

  20. 10 CFR 429.16 - Central air conditioners and heat pumps.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... air conditioning heat pumps: The seasonal energy efficiency ratio (SEER in British thermal units per... 10 Energy 3 2014-01-01 2014-01-01 false Central air conditioners and heat pumps. 429.16 Section..., energy consumption or other measure of energy consumption of the central air conditioner or heat pump...

  1. 10 CFR 429.16 - Central air conditioners and heat pumps.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... air conditioning heat pumps: The seasonal energy efficiency ratio (SEER in British thermal units per... 10 Energy 3 2012-01-01 2012-01-01 false Central air conditioners and heat pumps. 429.16 Section..., energy consumption or other measure of energy consumption of the central air conditioner or heat pump...

  2. Thermal performance of a heat storage module using PCM's with different melting temperatures

    SciTech Connect

    Farid, M.M.; Kanzawa, A.

    1989-05-01

    The performance of a heat storage unit consisting of number of vertical cylindrical capsules filled with phase change materials, with air flowing across them for heat exchange has been analyzed. Earlier theoretical models did not consider temperature distribution in the radial direction within the capsules, an assumption that limits their applications for small diameter capsules. The mathematical model developed in this work is based on solving the heat conduction equation in both melt and solid phases in cylindrical coordinates, taking into account the radial temperature distribution in both phases. Heat flux was then evaluated at the surface of the first row of the capsules to determine the temperature of the air leaving that row by a simple heat balance. It was found that such computation may be carried out for every few rows rather than for a single row to minimize computer time. The simulation study showed a significant improvement in the rate of heat transfer during heat charge and discharge when phase change materials with different melting temperatures were used.

  3. Solar Eclipse Effect on Shelter Air Temperature

    NASA Technical Reports Server (NTRS)

    Segal, M.; Turner, R. W.; Prusa, J.; Bitzer, R. J.; Finley, S. V.

    1996-01-01

    Decreases in shelter temperature during eclipse events were quantified on the basis of observations, numerical model simulations, and complementary conceptual evaluations. Observations for the annular eclipse on 10 May 1994 over the United States are presented, and these provide insights into the temporal and spatial changes in the shelter temperature. The observations indicated near-surface temperature drops of as much as 6 C. Numerical model simulations for this eclipse event, which provide a complementary evaluation of the spatial and temporal patterns of the temperature drops, predict similar decreases. Interrelationships between the temperature drop, degree of solar irradiance reduction, and timing of the peak eclipse are also evaluated for late spring, summer, and winter sun conditions. These simulations suggest that for total eclipses the drops in shelter temperature in midlatitudes can be as high as 7 C for a spring morning eclipse.

  4. Satellite estimates of ocean-air heat fluxes during cold air outbreaks

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Atlas, D.

    1982-01-01

    A method for estimating the heat and moisture fluxes of coastal waters using the cloud free path, the sea surface temperature, and the saturation water vapor mixing ratio is presented. Generalized nomograms for the surface sensible and latent heat fluxes are developed using the Stage and Businger (1981) mixed-layer model. The fluxes are found to be slightly dependent on wind speed. The results are found to be applicable to any path within the cloud-free region, with heat fluxes obtainable by multiplication of the mean heating by the mean wind speed in the boundary layer. Higher stability causes lowered heating. It is shown that the latent heat flux is linear. Applications of the method to lake-effect snowstorms and for verification of boundary-layer models are indicated.

  5. Low exhaust temperature electrically heated particulate matter filter system

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2012-02-14

    A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.

  6. High-temperature heat capacity of YVO4

    NASA Astrophysics Data System (ADS)

    Denisova, L. T.; Chumilina, L. G.; Denisov, V. M.

    2014-12-01

    The molar heat capacity of YVO4 has been measured as a function of temperature (363-1000 K). The thermodynamic properties of the oxide compound have been calculated from the experimental data. The generalized equation describing the temperature effect on the heat capacity of yttrium orthovanadate in the range of 25-1000 K has been derived.

  7. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... effect of an air conditioner or heat pump (or its produced heating effect, depending on the mode of... heat pumps. 431.92 Section 431.92 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps §...

  8. Specific heat of vanadium dioxide at helium temperatures

    NASA Astrophysics Data System (ADS)

    Surikov, Vad. I.; Kuznetsova, Yu. V.; Lyakh, O. V.; Surikov, Val. I.; Kondratova, Yu. E.

    2013-08-01

    Results are reported of measurements of the specific heat СР of a series of samples of vanadium dioxide in the temperature range from 4.2 to 25 K. Analysis of the results shows that at these temperatures an appreciable contribution to the specific heat comes from the specific heat of the crystalline lattice and defects of the crystalline lattice, the presence of which is a consequence of the method of synthesis of the materials.

  9. Investigation of heat flux processes governing the increase of groundwater temperatures beneath cities

    NASA Astrophysics Data System (ADS)

    Bayer, P.; Menberg, K.; Zhu, K.; Blum, P.

    2012-12-01

    In the subsurface of many cities there are widespread and persistent thermal anomalies. These so-called subsurface urban heat islands (UHIs), which also stimulate warming of urban aquifers, are triggered by various processes. Possible heat sources are basements of buildings, leakage of sewage systems, buried district heating networks, re-injection of cooling water and solar irradiation on paved surfaces. In the current study, the reported groundwater temperatures in several Central European cities, such as Berlin, Cologne (Germany) and Zurich (Switzerland) are compared. Available data sets are supplemented by temperature measurements and depth profiles in observation wells. Trend analyses are conducted with time series of groundwater temperatures, and three-dimensional groundwater temperature maps are provided. In all investigated cities, pronounced positive temperature anomalies are present. The distribution of groundwater temperatures appears to be spatially and temporally highly variable. Apparently, the increased heat input into the urban subsurface is controlled by very local and site-specific parameters. In the long-run, the combination of various heat sources results in an extensive temperature increase. In many cases, the maximum temperature elevation is found close to the city center. Regional groundwater temperature differences between the city center and the rural background are up to 5 °C, with local hot spots of even more pronounced anomalies. Particular heat sources, like cooling water injections or case-specific underground constructions, can cause local temperatures > 20 °C in the subsurface. Examination of the long-term variations in isotherm maps shows that temperatures have increased by about 1 °C in the city, as well as in the rural background areas over the last decades. This increase could be reproduced with trend analysis of temperature data gathered from several groundwater wells. Comparison between groundwater and air temperatures in the

  10. Inferring temperature uniformity from gas composition measurements in a hydrogen combustion-heated hypersonic flow stream

    SciTech Connect

    Olstad, S.J.

    1995-08-01

    The application of a method for determining the temperature of an oxygen-replenished air stream heated to 2600 K by a hydrogen burner is reviewed and discussed. The purpose of the measurements is to determine the spatial uniformity of the temperature in the core flow of a ramjet test facility. The technique involves sampling the product gases at the exit of the test section nozzle to infer the makeup of the reactant gases entering the burner. Knowing also the temperature of the inlet gases and assuming the flow is at chemical equilibrium, the adiabatic flame temperature is determined using an industry accepted chemical equilibrium computer code. Local temperature depressions are estimated from heat loss calculations. A description of the method, hardware and procedures is presented, along with local heat loss estimates and uncertainty assessments. The uncertainty of the method is estimated at {+-}31 K, and the spatial uniformity was measured within {+-}35 K.

  11. Low temperature heat capacity of water clusters

    NASA Astrophysics Data System (ADS)

    Chen, Hongshan; Hansen, Klavs

    2014-08-01

    Geometry optimization and vibrational frequency calculation are carried out at the MP2/6-31G(d,p) level for 35 low-energy isomers of (H2O)n clusters in the size range n = 6-21. The heat capacities of the clusters are calculated using quantum statistical theories based on the harmonic approximation. The specific heat capacity increases with the cluster size but the difference diminishes gradually with increasing size. The heat capacities divided by the number of intermolecular vibrational modes are very close for all the clusters. The overall picture of the heat capacity of the clusters is bulk-like and it agrees well with the experimental results of size-selected clusters.

  12. Associations of endothelial function and air temperature in diabetic subjects

    EPA Science Inventory

    Background and Objective: Epidemiological studies consistently show that air temperature is associated with changes in cardiovascular morbidity and mortality. However, the biological mechanisms underlying the association remain largely unknown. As one index of endothelial functio...

  13. High thermal power density heat transfer apparatus providing electrical isolation at high temperature using heat pipes

    NASA Technical Reports Server (NTRS)

    Morris, J. F. (Inventor)

    1985-01-01

    This invention is directed to transferring heat from an extremely high temperature source to an electrically isolated lower temperature receiver. The invention is particularly concerned with supplying thermal power to a thermionic converter from a nuclear reactor with electric isolation. Heat from a high temperature heat pipe is transferred through a vacuum or a gap filled with electrically nonconducting gas to a cooler heat pipe. If the receiver requires gratr thermal power density, geometries are used with larger heat pipe areas for transmitting and receiving energy than the area for conducting the heat to the thermionic converter. In this way the heat pipe capability for increasing thermal power densities compensates for the comparative low thermal power densities through the electrically nonconducting gap between the two heat pipes.

  14. Age of air and heating rates: comparison of ERA-40 with ERA-Interim

    NASA Astrophysics Data System (ADS)

    Legras, B.; Fueglistaler, S.

    2009-04-01

    The age of air in the stratosphere is often used as a test for the good representation of the Brewer-Dobson circulation by atmospheric models. This is a critical requirement to modelize the distribution of long-lived species in chemical models. It is often advocated that using heating rates for vertical transport in the stratosphere performs better that standard analysed velocities from weather centers. This work is based on an extensive comparison of the age of air using 5 years of heating rates from the ERA-40 reanalysis and from the new ERA-interim reanalysis built with 4D-Var assimilation. The ERA-40 exhibits both too young ages with analyzed velocities and too old ages with heating rates. The reason for too young ages is spurious transport associated with too noisy wind, as a result of 3D-Var assimilation. Heating rates provide a much less noisy meridional circulation and preserve transport barriers and polar vortex confinement. However, excessive cooling near 30 hPa in the tropics blocks the ascending motion within the tropical pipe over extended periods of time inducing very old ages. This effect is usually corrected by an empirical correction which can exceed in some regions the calculated heating rate in magnitude, with opposite sign. We relate this correction to the assimilation temperature increment that is required to compensate the bias of the model, notably the excessive negative heat transport due to the noisy vertical velocities and the lack of mass conservation in the isentropic frame. The new ERA-interim exhibits much reduced noise in the vertical velocity and is ten times less diffusive than the ERA-40 in the tropics. Age of air is then found to be slightly older than given by the observations. The biases in the heating rate have also been considerably reduced with respect to ERA-40 and the assimilation increment is now only a fraction of the heating rate. The age of air is in fairly good aggreement with the observations at 20 km and higher

  15. Air Ingress Accident in a High Temperature Reactor with Prismatic Fuel

    SciTech Connect

    Haque, H.; Brinkmann, G.

    2006-07-01

    In this paper, the safety behavior of the new generation high temperature reactors (HTRs) with prismatic fuels during air ingress accident conditions has been investigated. These reactors conceived primarily for the production of hydrogen, are characterized by their inherent safety features with respect to passive decay heat removal through conduction, radiation and natural convection. Air ingress is an HTR specific event. The potential threat posed by air ingress lies in the chemical reaction of oxygen with hot graphite at a temperature above 500 deg. C leading to reaction heat and graphite corrosion. A substantial amount of graphite burn-off can take place only if sufficient amount of air enters into the core. In order to better assess the phenomena of air ingress into the reactor, it is postulated that breaks are present above and below the reactor core and that unobstructed ingress of air through them is possible. It is obvious that the air ingress incident has to be preceded by a depressurization accident. For this hypothetical scenario the maximum possible air flow rate through the core resulting solely from the pressure losses in the core is determined as a function of the break cross sections exposed above and below the core. This paper demonstrates the thermal behavior of the ANTARES reactor (operating inlet/outlet temperatures 450/850 deg. C) for various air flow rates with respect to graphite burn-off and maximum temperatures of fuel and bottom reflector region. It indicates the limiting time at which the graphite layer of fuel will be completely burnt-off and the pellets exposed. (authors)

  16. Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California

    SciTech Connect

    Ganji, A. . Div. of Engineering)

    1992-07-01

    Residential space and water heating accounts for approximately 12% of California's and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

  17. Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California. Final report

    SciTech Connect

    Ganji, A.

    1992-07-01

    Residential space and water heating accounts for approximately 12% of California`s and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

  18. Impact of heat stress on crop yield—on the importance of considering canopy temperature

    NASA Astrophysics Data System (ADS)

    Siebert, Stefan; Ewert, Frank; Eyshi Rezaei, Ehsan; Kage, Henning; Graß, Rikard

    2014-04-01

    Increasing crop productivity while simultaneously reducing the environmental footprint of crop production is considered a major challenge for the coming decades. Even short episodes of heat stress can reduce crop yield considerably causing low resource use efficiency. Studies on the impact of heat stress on crop yields over larger regions generally rely on temperatures measured by standard weather stations at 2 m height. Canopy temperatures measured in this study in field plots of rye were up to 7 °C higher than air temperature measured at typical weather station height with the differences in temperatures controlled by soil moisture contents. Relationships between heat stress and grain number derived from controlled environment studies were only confirmed under field conditions when canopy temperature was used to calculate stress thermal time. By using hourly mean temperatures measured by 78 weather stations located across Germany for the period 1994-2009 it is estimated, that mean yield declines in wheat due to heat stress during flowering were 0.7% when temperatures are measured at 2 m height, but yield declines increase to 22% for temperatures measured at the ground. These results suggest that canopy temperature should be simulated or estimated to reduce uncertainty in assessing heat stress impacts on crop yield.

  19. A dual-temperature-difference approach to estimate daytime sensible and latent heat fluxes under advective conditions during BEAREX08

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Dual-Temperature-Difference (DTD) approach uses continuous radiometric surface temperature measurements in a two-source (soil + vegetation) energy balance model to solve for the daytime evolution of the sensible and latent heat fluxes. By using the surface-air temperature difference at two time...

  20. Chronic air pollution and social deprivation as modifiers of the association between high temperature and daily mortality

    PubMed Central

    2014-01-01

    Background Heat and air pollution are both associated with increases in mortality. However, the interactive effect of temperature and air pollution on mortality remains unsettled. Similarly, the relationship between air pollution, air temperature, and social deprivation has never been explored. Methods We used daily mortality data from 2004 to 2009, daily mean temperature variables and relative humidity, for Paris, France. Estimates of chronic exposure to air pollution and social deprivation at a small spatial scale were calculated and split into three strata. We developed a stratified Poisson regression models to assess daily temperature and mortality associations, and tested the heterogeneity of the regression coefficients of the different strata. Deaths due to ambient temperature were calculated from attributable fractions and mortality rates were estimated. Results We found that chronic air pollution exposure and social deprivation are effect modifiers of the association between daily temperature and mortality. We found a potential interactive effect between social deprivation and chronic exposure with regards to air pollution in the mortality-temperature relationship. Conclusion Our results may have implications in considering chronically polluted areas as vulnerable in heat action plans and in the long-term measures to reduce the burden of heat stress especially in the context of climate change. PMID:24941876

  1. Numerical Modelling of Airflow and Temperature Distribution in a Living Room with Different Heat Exchange Conditions

    NASA Astrophysics Data System (ADS)

    Gendelis, S.; Jakovičs, A.

    2010-01-01

    Numerical mathematical modelling of the indoor thermal conditions and of the energy losses for separate rooms is an important part of the analysis of the heat-exchange balance and energy efficiency in buildings. The measurements of heat transfer coefficients for bounding structures, the air-tightness tests and thermographic diagnostics done for a building allow the influence of those factors to be predicted more correctly in developed numerical models. The temperature distribution and airflows in a typical room (along with the heat losses) were calculated for different heater locations and solar radiation (modelled as a heat source) through the window, as well as various pressure differences between the openings in opposite walls. The airflow velocities and indoor temperature, including its gradient, were also analysed as parameters of thermal comfort conditions. The results obtained show that all of the listed factors have an important influence on the formation of thermal comfort conditions and on the heat balance in a room.

  2. Desiccant outdoor air preconditioners maximize heat recovery ventilation potentials

    SciTech Connect

    Meckler, M.

    1995-12-31

    Microorganisms are well protected indoors by the moisture surrounding them if the relative humidity is above 70%. They can cause many acute diseases, infections, and allergies. Humidity also has an effect on air cleanliness and causes the building structure and its contents to deteriorate. Therefore, controlling humidity is a very important factor to human health and comfort and the structural longevity of a building. To date, a great deal of research has been done, and is continuing, in the use of both solid and liquid desiccants. This paper introduces a desiccant-assisted system that combines dehumidification and mechanical refrigeration by means of a desiccant preconditioning module that can serve two or more conventional air-conditioning units. It will be demonstrated that the proposed system, also having indirect evaporative cooling within the preconditioning module, can reduce energy consumption and provide significant cost savings, independent humidity and temperature control, and, therefore, improved indoor air quality and enhanced occupant comfort.

  3. Effect of air preheat temperature and oxygen concentration on flame structure and emission

    SciTech Connect

    Bolz, S.; Gupta, A.K.

    1998-07-01

    The structure of turbulent diffusion flames with highly preheated combustion air (air preheat temperature in excess of 1,150 C) has been obtained using a specially designed regenerative combustion furnace. Propane gas was used as the fuel. Data have been obtained on the global flame features, spectral emission characteristics, spatial distribution of OH, CH and C{sub 2} species, and pollutants emission from the flames. The results have been obtained for various degrees of air preheat temperatures and O{sub 2} concentration in the air. The color of the flame was found to change from yellow to blue to bluish-green to green over the range of conditions examined. In some cases a hybrid color flame was also observed. The recorded images of the flame photographs were analyzed using color-analyzing software. The results show that thermal and chemical flame behavior strongly depends on the air preheat temperature and oxygen content in the air. The flame color was found to be bluish-green or green at very high air preheat temperatures and low-oxygen concentration. However, at high oxygen concentration the flame color was yellow. The flame volume was found to increase with increase in air-preheat temperature and decrease in oxygen concentration. The flame length showed a similar behavior. The concentrations of OH, CH and C{sub 2} increased with an increase in air preheat temperatures. These species exhibited a two-stage combustion behavior at low oxygen concentration and single stage combustion behavior at high oxygen concentration in the air. Stable flames were obtained for remarkably low equivalence ratios, which would not be possible with normal combustion air. Pollutants emission, including CO{sub 2} and NO{sub x} , was much lower with highly preheated combustion air at low O{sub 2} concentration than the normal air. The results also suggest uniform flow and flame thermal characteristics with conditioned highly preheated air. Highly preheated air combustion provides much

  4. Automotive absorption air conditioner utilizing solar and motor waste heat

    NASA Technical Reports Server (NTRS)

    Popinski, Z. (Inventor)

    1981-01-01

    In combination with the ground vehicles powered by a waste heat generating electric motor, a cooling system including a generator for driving off refrigerant vapor from a strong refrigerant absorbant solution is described. A solar collector, an air-cooled condenser connected with the generator for converting the refrigerant vapor to its liquid state, an air cooled evaporator connected with the condenser for returning the liquid refrigerant to its vapor state, and an absorber is connected to the generator and to the evaporator for dissolving the refrigerant vapor in the weak refrigerant absorbant solution, for providing a strong refrigerant solution. A pump is used to establish a pressurized flow of strong refrigerant absorbant solution from the absorber through the electric motor, and to the collector.

  5. Mathematical equations for heat conduction in the fins of air-cooled engines

    NASA Technical Reports Server (NTRS)

    Harper, R R; Brown, W B

    1923-01-01

    The problem considered in this report is that of reducing actual geometrical area of fin-cooling surface, which is, of course, not uniform in temperature, to equivalent cooling area at one definite temperature, namely, that prevailing on the cylinder wall at the point of attachment of the fin. This makes it possible to treat all the cooling surface as if it were part of the cylinder wall and 100 per cent effective. The quantities involved in the equations are the geometrical dimensions of the fin, thermal conductivity of the material composing it, and the coefficient of surface heat dissipation between the fin and the air streams.

  6. Heat transport in the marine atmospheric boundary layer during an intense cold air outbreak

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Zimmerman, Jeffrey

    1988-01-01

    The generation of the virtual heat flux in the convective MABL associated with the January 28, 1986 intense cold air airbreak offshore of the Carolinas is studied. A technique based on the joint frequency distribution of the virtual potential temperature and vertical motion (Mahrt and Paumier, 1984) is used. The results suggest that, if buoyancy is mainly driven by the temperature flux, the physical processes for generating buoyancy flux are about the same for boundary layers over land and ocean, even with different convective regimes.

  7. Heat transfer characteristics of a high temperature sensible heat storage water heater using cast iron as a storage material

    SciTech Connect

    Jotshi, C.K.; Goswami, D.Y.; Klausner, J.F.; Hsieh, C.K.; Leung, M.; Li, H.; Malakar, S.; Colacino, F.

    1996-12-31

    This paper describes the heat transfer characteristics of high temperature sensible heat storage in cast iron for water heating applications. An experimental setup consisting of a cast iron cylinder and a tube running through its center was fabricated and tested. The experimental data were compared with the theoretical model. It was observed that the contact resistance between the cast iron and the tube plays a dominant role in extracting the heat. An approximate contact resistance prediction was obtained by assuming the resistance due to the air gap modulated by a correction factor, which accounts for the contacting surface area. Based on the results from the experimental setup and theoretical modeling a prototype storage water heater using cast iron blocks as the storage material was designed, fabricated and tested.

  8. Seasonal mean temperature changes control future heat waves

    NASA Astrophysics Data System (ADS)

    Argüeso, Daniel; Di Luca, Alejandro; Perkins-Kirkpatrick, Sarah E.; Evans, Jason P.

    2016-07-01

    Increased temperature will result in longer, more frequent, and more intense heat waves. Changes in temperature variability have been deemed necessary to account for future heat wave characteristics. However, this has been quantified only in Europe and North America, while the rest of the globe remains unexplored. Using late century global climate projections, we show that annual mean temperature increases is the key factor defining heat wave changes in most regions. We find that commonly studied areas are an exception rather than the standard and the mean climate change signal generally outweighs any influence from variability changes. More importantly, differences in warming across seasons are responsible for most of the heat wave changes and their consideration relegates the contribution of variability to a marginal role. This reveals that accurately capturing mean seasonal changes is crucial to estimate future heat waves and reframes our interpretation of future temperature extremes.

  9. Near-surface air temperature and snow skin temperature comparison from CREST-SAFE station data with MODIS land surface temperature data

    NASA Astrophysics Data System (ADS)

    Pérez Díaz, C. L.; Lakhankar, T.; Romanov, P.; Muñoz, J.; Khanbilvardi, R.; Yu, Y.

    2015-08-01

    Land Surface Temperature (LST) is a key variable (commonly studied to understand the hydrological cycle) that helps drive the energy balance and water exchange between the Earth's surface and its atmosphere. One observable constituent of much importance in the land surface water balance model is snow. Snow cover plays a critical role in the regional to global scale hydrological cycle because rain-on-snow with warm air temperatures accelerates rapid snow-melt, which is responsible for the majority of the spring floods. Accurate information on near-surface air temperature (T-air) and snow skin temperature (T-skin) helps us comprehend the energy and water balances in the Earth's hydrological cycle. T-skin is critical in estimating latent and sensible heat fluxes over snow covered areas because incoming and outgoing radiation fluxes from the snow mass and the air temperature above make it different from the average snowpack temperature. This study investigates the correlation between MODerate resolution Imaging Spectroradiometer (MODIS) LST data and observed T-air and T-skin data from NOAA-CREST-Snow Analysis and Field Experiment (CREST-SAFE) for the winters of 2013 and 2014. LST satellite validation is imperative because high-latitude regions are significantly affected by climate warming and there is a need to aid existing meteorological station networks with the spatially continuous measurements provided by satellites. Results indicate that near-surface air temperature correlates better than snow skin temperature with MODIS LST data. Additional findings show that there is a negative trend demonstrating that the air minus snow skin temperature difference is inversely proportional to cloud cover. To a lesser extent, it will be examined whether the surface properties at the site are representative for the LST properties within the instrument field of view.

  10. Lessons Learned from AIRS: Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2011-01-01

    This slide presentation reviews the use of shortwave channels available to the Atmospheric Infrared Sounder (AIRS) to improve the determination of surface and atmospheric temperatures. The AIRS instrument is compared with the Infrared Atmospheric Sounding Interferometer (IASI) on-board the MetOp-A satellite. The objectives of the AIRS/AMSU were to (1) provide real time observations to improve numerical weather prediction via data assimilation, (2) Provide observations to measure and explain interannual variability and trends and (3) Use of AIRS product error estimates allows for QC optimized for each application. Successive versions in the AIRS retrieval methodology have shown significant improvement.

  11. Leakage effects in car underhood aerothermal management: temperature and heat flux analysis

    NASA Astrophysics Data System (ADS)

    Khaled, Mahmoud; Habchi, Charbel; Harambat, Fabien; Elmarakbi, Ahmed; Peerhossaini, Hassan

    2014-10-01

    Air leakage from the engine compartment of a vehicle comes mainly from the junctions of the vehicle hood and the front end grill, the vehicle wings, the optical and the windshield. The present paper studies the thermal impact of these air leakage zones on the components of the vehicle engine compartment through temperature and heat-flux measurements. The front wheels of the test vehicle are positioned on a dynamometer and driven by the vehicle engine. The engine compartment is instrumented with almost 100 surface and air thermocouples and 20 fluxmeters of normal gradients. Measurements were made for three different thermal operating points. Five leak-sealing configurations are studied.

  12. High-temperature waste-heat-stream selection and characterization

    SciTech Connect

    Wikoff, P.M.; Wiggins, D.J.; Tallman, R.L.; Forkel, C.E.

    1983-08-01

    Four types of industrial high-temperature, corrosive waste heat streams are selected that could yield significant energy savings if improved heat recovery systems were available. These waste heat streams are the flue gases from steel soaking pits, steel reheat furnaces, aluminum remelt furnaces, and glass melting furnaces. Available information on the temperature, pressure, flow, and composition of these flue gases is given. Also reviewed are analyses of corrosion products and fouling deposits resulting from the interaction of these flue gases with materials in flues and heat recovery systems.

  13. Effect of Initial Mixture Temperature on Flame Speed of Methane-Air, Propane-Air, and Ethylene-Air Mixtures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L

    1952-01-01

    Flame speeds based on the outer edge of the shadow cast by the laminar Bunsen cone were determined as functions of composition for methane-air mixtures at initial mixture temperatures ranging from -132 degrees to 342 degrees c and for propane-air and ethylene-air mixtures at initial mixture temperatures ranging from -73 degrees to 344 degrees c. The data showed that maximum flame speed increased with temperature at an increasing rate. The percentage change in flame speed with change in initial temperature for the three fuels followed the decreasing order, methane, propane, and ethylene. Empirical equations were determined for maximum flame speed as a function of initial temperature over the temperature range covered for each fuel. The observed effect of temperature on flame speed for each of the fuels was reasonably well predicted by either the thermal theory as presented by Semenov or the square-root law of Tanford and Pease.

  14. Investigating Methods of Heat Recovery from Low-Temperature PEM Fuel Cells in CHP Applications

    SciTech Connect

    Jalalzadeh-Azar, A. A.

    2004-01-01

    Heat recovery from low-temperature proton exchange membrane (PEM) fuel cells poses a number of challenges. In response to these challenges, thermodynamic assessments of proposed heat recovery methods are studied in the context of combined heat and power (CHP) for building applications. Preheating combustion air in conjunction with desiccant dehumidification and absorption cooling technologies is one of the two strategies examined in this study. The other approach integrates the PEM fuel cell with a water-loop heat pump (WLHP) for direct heat recovery. As the primary objective, energy-saving potentials of the adopted heat recovery strategies are estimated with respect to various benchmarks. The quantified energy-saving potentials are translated into effective CHP performance indices and compared with those typically specified by the manufacturers for service hot water applications. The need for developing CHP performance protocols is also discussed in light of the proposed energy recovery techniques - thereby, accomplishing the secondary objective.

  15. Low-temperature specific heat of uranium monopnictides and monochalcogenides

    SciTech Connect

    Rudigier, H.; Ott, H.R.; Vogt, O.

    1985-10-01

    We present a systematic investigation of the low-temperature specific heat of single-crystalline NaCl-type UX compounds (X = N, P, As, Sb, S, Se, Te) at temperatures between 0.12 and 12 K. It is primarily intended to determine the low-temperature electronic specific heats C/sub e/ = ..gamma..T of these materials. From our experiments, ..gamma.. increases from UN (25.8 mJ/mole K/sup 2/) to UAs by a factor of about 2, but is an order of magnitude smaller in USb. For the chalcogenides, a decreasing electronic specific heat with increasing anion size is observed. The measurements at the lowest temperatures reveal the onset of a nuclear Schottky anomaly, from which we derive magnetic hyperfine fields and obtain good agreement with published values from Moessbauer experiments for UP and USb. Except for USb, the nuclear heat capacity is negligible at temperatures above 1.5 K.

  16. Air pollution prevention through urban heat island mitigation: An update on the urban heat island pilot project

    SciTech Connect

    Gorsevski, V.; Taha, H.; Quattrochi, D.; Luvall, J.

    1998-07-01

    Urban heat islands increase the demand for cooling energy and accelerate the formation of smog. They are created when natural vegetation is replaced by heat-absorbing surfaces such as building roofs and walls, parking lots, and streets. Through the implementation of measures designed to mitigate the urban heat island, communities can decrease their demand for energy and effectively cool the metropolitan landscape. In addition to the economic benefits, using less energy leads to reductions in emission of CO{sub 2}--a greenhouse gas--as well as ozone (smog) precursors such as NOx and VOCs. Because ozone is created when NOx and VOCs photochemically combine with heat and solar radiation, actions taken to lower ambient air temperature can significantly reduce ozone concentrations in certain areas. Measures to reverse the urban heat island include afforestation and the widespread use of highly reflective surfaces. To demonstrate the potential benefits of implementing these measures, EPA has teamed up with NASA and LBNL to initiate a pilot project with three US cities. As part of the pilot, NASA will use remotely-sensed data to quantify surface temperature, albedo, the thermal response number and NDVI vegetation of each city. This information will be used by scientists at Lawrence Berkeley National Laboratory (LBNL) along with other data as inputs to model various scenarios that will help quantify the potential benefits of urban heat island mitigation measures in terms of reduced energy use and pollution. This paper will briefly describe this pilot project and provide an update on the progress to date.

  17. Transient temperature responses of hydronic radiant floor heating system by different pipe embedding depth and water supply condition.

    PubMed

    Chung, K S; Sohn, J Y; Baik, Y K; Kang, J S

    1993-07-01

    "Ondol" is a Korean unique heating system. It is a specific radiant floor heating system using combustion heat of briquette or timber in Korea. Such traditional "Ondol" is changed to radiant heating system with pipe-coil embedded in the floor or slab. This study has contributed to the understandings of the transient behaviours of Ondol-heated floor panels and enclosure exposed to this type of heating system. The result is that the water supply temperature had a large effect on the rate of increase in floor surface and room air temperature. But, in spite of a higher water supply temperature, the heat flow rate was not increased considerably. The shallow pipe embedding depths, of course, result in a low heat flow rate. PMID:8373479

  18. High temperature heat pipe experiments aboard the space shuttle

    SciTech Connect

    Woloshun, K.A.; Merrigan, M.A.; Sena, J.T. ); Secary, C.J. )

    1993-01-10

    Although high temperature, liquid metal heat pipe radiators have become a standard component on most space nuclear power systems, there is no experimental data on the operation of these heat pipes in a zero gravity or micro gravity environment. Experiments to benchmark the transient and steady state performance of prototypical heat pipe space radiator elements are in preparation. Three SST/potassium heat pipes are being designed, fabricated, and ground tested. It is anticipated that these heat pipes will fly aboard the space shuttle in 1995. Three wick structures will be tested: homogeneous, arterial, and annular gap. Ground tests are described that simulate the space shuttle environment in every way except gravity field.

  19. On the Potential Impact of Daytime Surface Sensible Heat Flux on the Dissipation of Martian Cold Air Outbreaks

    NASA Technical Reports Server (NTRS)

    Segal, M.; Arritt, R. W.; Tillman, J. E.

    1997-01-01

    The Martian daytime soil surface temperature is governed primarily by the net irradiance balance and surface soil heat flux. Thus the outbreak of a cold air mass generates increased sensible heat flux that is conducive to daytime dissipation of the cold air mass thermal characteristics. Conceptual and scaling evaluations of this dissipation are provided while comparison is made with similar situations on Earth. It is estimated that sensible heat flux contribution to the dissipation of the original thermal structure of the cold air could be three times larger than the corresponding situation on Earth. Illustrative numerical model simulations provide scaling of the potential impact on the dissipation of cold air masses for various combinations of background wind speed and latitudes.

  20. Vapor-modulated heat pipe for improved temperature control

    NASA Technical Reports Server (NTRS)

    Edwards, D. K.; Eninger, J. E.; Ludeke, E. E.

    1978-01-01

    Dryout induced by vapor throttling makes control of equipment temperature less dependent on variations in sink environment. Mechanism controls flow of vapor in heat pipe by using valve in return path to build difference in pressure and also difference in saturation temperature of the vapor. In steady state, valve closes just enough to produce partial dryout that achieves required temperature drop.

  1. Influence of HX size and augmentation on performance potential of mixtures in air-to-air heat pumps

    SciTech Connect

    Rice, C.K.

    1993-05-01

    A modified Carnot analysis with finite heat exchanger (HX) sizes, counterflow HX configurations, and ideal glide matching was conducted for an air-to-air heat pump application. The purpose of the analysis was to determine the envelope of potential HX size and refrigerant-side augmentation benefits for ideal mixtures relative to pure refrigerant alternatives. The mixture COP benefits examined are those due to exact external fluid glide-matching of idealized mixtures in more effective heat exchangers. Maximum possible mixture COP gains are evaluated for four steady-state air-to-air heat pump conditions. Performance improvement opportunities are found to be primarily in the cooling mode. The effects of deviation from counterflow by use of crossflow and countercrossflow HX configurations are addressed. Refrigerant-side augmentation with pure and mixed refrigerants is examined for air-side dominant and air-to-refrigerant balanced HXs.

  2. Urban Heat Island Versus Air Quality - a Numerical Modelling Study for a European City

    NASA Astrophysics Data System (ADS)

    Fallmann, J.; Forkel, R.; Emeis, S.

    2014-12-01

    In 2050 70% of the global population is expected to live in urban areas. Climate change will render these areas more vulnerable to heat waves, which often are accompanied by severe air pollution problems. The Urban Heat Island (UHI) is a feature that adds to the general temperature increase that is expected. Decreasing the UHI can impact air quality as well, because heat influences atmospheric dynamics and accelerates air chemical processes and often also increases the emission of primary pollutants due to increased demand of energy. The goal of this study is to investigate the effect of, e.g., high reflective surfaces and urban greening on mitigating the UHI and the related impact on air quality. A multi-layer urban canopy model is coupled to the mesoscale model WRF-Chem and the urban area of Stuttgart (South-West Germany) is taken as one example. Different scenario runs are executed for short time periods and are compared to a control run. The results show that the UHI effect can be substantially reduced when changing the albedo of roof surfaces, whereas the effect of urban greening is minor. Both scenarios have in common, that they evoke changes in secondary circulation patterns. The effects of these mitigation strategies on chemical composition of the urban atmosphere are complex, attributed to both chemical and dynamical features. Increasing the reflectivity of roof surfaces in the model results in a net decrease of the surface ozone concentration, because ozone formation is highly correlated to temperature. With regard to primary pollutants, e.g. NO, CO and PM10 concentrations are increased when increasing reflectivity. This effect primarily can be ascribed to a reduction of turbulent motion, convection and a decrease of the boundary layer height, coming along with lower temperatures in the urban canopy layer due to increased reflectivity. The table below shows the effect on grid cell mean concentrations for different chemical species and scenarios.

  3. Development of a Variable-Speed Residential Air-Source Integrated Heat Pump

    SciTech Connect

    Rice, C Keith; Shen, Bo; Munk, Jeffrey D; Ally, Moonis Raza; Baxter, Van D

    2014-01-01

    A residential air-source integrated heat pump (AS-IHP) is under development in partnership with a U.S. manufacturer. A nominal 10.6 kW (3-ton) cooling capacity variable-speed unit, the system provides both space conditioning and water heating. This multi-functional unit can provide domestic water heating (DWH) in either full condensing (FC) (dedicated water heating or simultaneous space cooling and water heating) or desuperheating (DS) operation modes. Laboratory test data were used to calibrate a vapor-compression simulation model for each mode of operation. The model was used to optimize the internal control options for efficiency while maintaining acceptable comfort conditions and refrigerant-side pressures and temperatures within allowable operating envelopes. Annual simulations were performed with the AS-IHP installed in a well-insulated house in five U.S. climate zones. The AS-IHP is predicted to use 45 to 60% less energy than a DOE minimum efficiency baseline system while meeting total annual space conditioning and water heating loads. Water heating energy use is lowered by 60 to 75% in cold to warmer climates, respectively. Plans are to field test the unit in Knoxville, TN.

  4. Air moisture control on ocean surface temperature, hidden key to the warm bias enigma

    NASA Astrophysics Data System (ADS)

    Hourdin, Frédéric; Gǎinusǎ-Bogdan, Alina; Braconnot, Pascale; Dufresne, Jean-Louis; Traore, Aboul-Khadre; Rio, Catherine

    2015-12-01

    The systematic overestimation by climate models of the surface temperature over the eastern tropical oceans is generally attributed to an insufficient oceanic cooling or to an underestimation of stratocumulus clouds. We show that surface evaporation contributes as much as clouds to the dispersion of the warm bias intensity in a multimodel simulations ensemble. The models with the largest warm biases are those with the highest surface heating by radiation and lowest evaporative cooling in atmospheric simulations with prescribed sea surface temperatures. Surface evaporation also controls the amplitude of the surface temperature response to this overestimated heating, when the atmosphere is coupled to an ocean. Evaporation increases with temperature both because of increasing saturation humidity and of an unexpected drying of the near-surface air. Both the origin of the bias and this temperature adjustment point to the key role of near-surface relative humidity and its control by the atmospheric model.

  5. Estimation Accuracy of air Temperature and Water Vapor Amount Above Vegetation Canopy Using MODIS Satellite Data

    NASA Astrophysics Data System (ADS)

    Tomosada, M.

    2005-12-01

    Estimation accuracy of the air temperature and water vapor amount above vegetation canopy using MODIS satellite data is indicated at AGU fall meeting. The air temperature and water vapor amount which are satisfied the multilayer energy budget model from the ground surface to the atmosphere are estimated. Energy budget models are described the fluxes of sensible heat and latent heat exchange for the ground surface and the vegetated surface. Used MODIS satellite data is the vegetated surface albedo which is calculated from visible and near infrared band data, the vegetated surface temperature, NDVI (Normalized Difference Vegetation Index), LAI (Leaf Area Index). Estimation accuracy of air temperature and water vapor amount above vegetation canopy is evaluated comparing with the value which is measured on a flux research tower in Tomakomai northern forest of Japan. Meteorological parameters such as temperature, wind speed, water vapor amount, global solar radiation are measured on a flux tower from the ground to atmosphere. Well, MODIS satellite observes at day and night, and it snows in Tomakomai in winter. Therefore, estimation accuracy is evaluated dividing on at daytime, night, snowfall day, and not snowfall day. There is the investigation of the undeveloped region such as dense forest and sea in one of feature of satellite observation. Since there is almost no meteorological observatory at the undeveloped region so far, it is hard to get the meteorological parameters. Besides, it is the one of the subject of satellite observation to get the amount of physical parameter. Although the amount of physical parameter such as surface temperature and concentration of chlorophyll-a are estimated by satellite, air temperature and amount of water vapor above vegetation canopy have not been estimated by satellite. Therefore, the estimation of air temperature and water vapor amount above vegetation canopy using satellite data is significant. Further, a highly accurate

  6. Energy savings in one-pipe steam heating systems fitted with high-capacity air vents. Final report

    SciTech Connect

    Not Available

    1994-09-01

    Multifamily buildings heated by one-pipe steam systems experience significant temperature gradients from apartment to apartment, often reaching 15{degrees}F. As a result, many tenants are to cold, or if the heating system output is increased so as to heat the coldest apartment adequately, too hot. While both are undesirable, the second is particularly so because it wastes energy. It was thought that insufficient air venting of the steam pipes contributed to the gradient. Theoretically, if steam mains and risers are quickly vented, steam will reach each radiator at approximately the same time and balance apartment temperatures. The project`s objective was to determine if the installation of large-capacity air vents at the ends of steam mains and risers would economically reduce the temperature gradient between apartments and reduce the amount of space heating energy required. The test was conducted by enabling and disabling air vents biweekly in 10 multifamily buildings in New York City between December 1992 to May 1993. The temperatures of selected apartments and total space heating energy were compared during each venting regime. There was no difference in energy consumption between ``vents on`` and ``vents off`` periods (see Tables 2 and 5); however, there was a reduction in the maximum spread of apartment temperatures.

  7. Simultaneous Temperature and Velocity Measurements in a Large-Scale, Supersonic, Heated Jet

    NASA Technical Reports Server (NTRS)

    Danehy, P. M.; Magnotti, G.; Bivolaru, D.; Tedder, S.; Cutler, A. D.

    2008-01-01

    Two laser-based measurement techniques have been used to characterize an axisymmetric, combustion-heated supersonic jet issuing into static room air. The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) measurement technique measured temperature and concentration while the interferometric Rayleigh scattering (IRS) method simultaneously measured two components of velocity. This paper reports a preliminary analysis of CARS-IRS temperature and velocity measurements from selected measurement locations. The temperature measurements show that the temperature along the jet axis remains constant while dropping off radially. The velocity measurements show that the nozzle exit velocity fluctuations are about 3% of the maximum velocity in the flow.

  8. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  9. Thermoelectric harvesting of low temperature natural/waste heat

    NASA Astrophysics Data System (ADS)

    Rowe, David Michael

    2012-06-01

    Apart from specialized space requirements current development in applications of thermoelectric generation mainly relate to reducing harmful carbon emissions and decreasing costly fuel consumption through the recovery of exhaust heat from fossil fuel powered engines and emissions from industrial utilities. Focus on these applications is to the detriment of the wider exploitations of thermoelectrics with other sources of heat energy, and in particular natural occurring and waste low temperature heat, receiving little, if any, attention. In this presentation thermoelectric generation applications, both potential and real in harvesting low temperature waste/natural heat are reviewed. The use of thermoelectrics to harvest solar energy, ocean thermal energy, geothermal heat and waste heat are discussed and their credibility as future large-scale sources of electrical power assessed.

  10. Airborne Asbestos Exposures from Warm Air Heating Systems in Schools.

    PubMed

    Burdett, Garry J; Dewberry, Kirsty; Staff, James

    2016-01-01

    The aim of this study was to investigate the concentrations of airborne asbestos that can be released into classrooms of schools that have amosite-containing asbestos insulation board (AIB) in the ceiling plenum or other spaces, particularly where there is forced recirculation of air as part of a warm air heating system. Air samples were collected in three or more classrooms at each of three schools, two of which were of CLASP (Consortium of Local Authorities Special Programme) system-built design, during periods when the schools were unoccupied. Two conditions were sampled: (i) the start-up and running of the heating systems with no disturbance (the background) and (ii) running of the heating systems during simulated disturbance. The simulated disturbance was designed to exceed the level of disturbance to the AIB that would routinely take place in an occupied classroom. A total of 60 or more direct impacts that vibrated and/or flexed the encapsulated or enclosed AIB materials were applied over the sampling period. The impacts were carried out at the start of the sampling and repeated at hourly intervals but did not break or damage the AIB. The target air volume for background samples was ~3000 l of air using a static sampler sited either below or ~1 m from the heater outlet. This would allow an analytical sensitivity (AS) of 0.0001 fibres per millilitre (f ml(-1)) to be achieved, which is 1000 times lower than the EU and UK workplace control limit of 0.1 f ml(-1). Samples with lower volumes of air were also collected in case of overloading and for the shorter disturbance sampling times used at one site. The sampler filters were analysed by phase contrast microscopy (PCM) to give a rapid determination of the overall concentration of visible fibres (all types) released and/or by analytical transmission electron microscopy (TEM) to determine the concentration of asbestos fibres. Due to the low number of fibres, results were reported in terms of both the calculated

  11. Airborne Asbestos Exposures from Warm Air Heating Systems in Schools

    PubMed Central

    Burdett, Garry J.; Dewberry, Kirsty; Staff, James

    2016-01-01

    The aim of this study was to investigate the concentrations of airborne asbestos that can be released into classrooms of schools that have amosite-containing asbestos insulation board (AIB) in the ceiling plenum or other spaces, particularly where there is forced recirculation of air as part of a warm air heating system. Air samples were collected in three or more classrooms at each of three schools, two of which were of CLASP (Consortium of Local Authorities Special Programme) system-built design, during periods when the schools were unoccupied. Two conditions were sampled: (i) the start-up and running of the heating systems with no disturbance (the background) and (ii) running of the heating systems during simulated disturbance. The simulated disturbance was designed to exceed the level of disturbance to the AIB that would routinely take place in an occupied classroom. A total of 60 or more direct impacts that vibrated and/or flexed the encapsulated or enclosed AIB materials were applied over the sampling period. The impacts were carried out at the start of the sampling and repeated at hourly intervals but did not break or damage the AIB. The target air volume for background samples was ~3000 l of air using a static sampler sited either below or ~1 m from the heater outlet. This would allow an analytical sensitivity (AS) of 0.0001 fibres per millilitre (f ml−1) to be achieved, which is 1000 times lower than the EU and UK workplace control limit of 0.1 f ml−1. Samples with lower volumes of air were also collected in case of overloading and for the shorter disturbance sampling times used at one site. The sampler filters were analysed by phase contrast microscopy (PCM) to give a rapid determination of the overall concentration of visible fibres (all types) released and/or by analytical transmission electron microscopy (TEM) to determine the concentration of asbestos fibres. Due to the low number of fibres, results were reported in terms of both the calculated

  12. Effects of air and water temperatures on resting metabolism of auklets and other diving birds.

    PubMed

    Richman, Samantha E; Lovvorn, James R

    2011-01-01

    For small aquatic endotherms, heat loss while floating on water can be a dominant energy cost, and requires accurate estimation in energetics models for different species. We measured resting metabolic rate (RMR) in air and on water for a small diving bird, the Cassin's auklet (Ptychoramphus aleuticus), and compared these results to published data for other diving birds of diverse taxa and sizes. For 8 Cassin's auklets (~165 g), the lower critical temperature was higher on water (21 °C) than in air (16 °C). Lowest values of RMR (W kg⁻¹) averaged 19% higher on water (12.14 ± 3.14 SD) than in air (10.22 ± 1.43). At lower temperatures, RMR averaged 25% higher on water than in air, increasing with similar slope. RMR was higher on water than in air for alcids, cormorants, and small penguins but not for diving ducks, which appear exceptionally resistant to heat loss in water. Changes in RMR (W) with body mass either in air or on water were mostly linear over the 5- to 20-fold body mass ranges of alcids, diving ducks, and penguins, while cormorants showed no relationship of RMR with mass. The often large energetic effects of time spent floating on water can differ substantially among major taxa of diving birds, so that relevant estimates are critical to understanding their patterns of daily energy use. PMID:21527823

  13. Improving Forecast Skill by Assimilation of AIRS Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The AIRS Version 5 retrieval algorithm, is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates delta T(p) for retrieved quantities and the use of these error estimates for Quality Control. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 deg. latitude X 0.67 deg longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates delta (p) were used as the uncertainty for each measurement in the data assimilation process. We compared forecasts analyses generated from the analyses done by assimilation of AIRS temperature profiles with three different sets of thresholds; Standard, Medium, and Tight. Assimilation of Quality Controlled AIRS temperature profiles significantly improve 5-7 day forecast skill compared to that obtained without the benefit of AIRS data in all of the cases studied. In addition, assimilation of Quality Controlled AIRS temperature soundings performs better than assimilation of AIRS observed radiances. Based on the experiments shown, Tight Quality Control of AIRS temperature profile performs best

  14. Optimization and simulation of low-temperature combustion and heat transfer in an Uhde carbonization furnace

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Zhang, Yongfa; Wang, Ying; Chen, Lei; Liu, Gaihuan

    2015-12-01

    The temperature distribution inside a low-temperature combustion chamber with circuited flame path during the low temperature pyrolysis of lignite was simulated using the computational fluid dynamics software FLUENT. The temperature distribution in the Uhde combustion chamber showed that the temperature is very non-uniform and could therefore not meet the requirements for industrial heat transfer. After optimizing the furnace, by adding a self-made gas-guide structure to the heat transfer section as well as adjusting the gas flow size in the flame path, the temperature distribution became uniform, and the average temperature (550-650 °C) became suitable for industrial low-temperature pyrolysis. The Realizable k-epsilon model, P-1 model, and the Non-premixed model were used to calculate the temperature distribution for the combustion of coke-oven gas and air inside the combustion chamber. Our simulation is consistent with our experimental results within an error range of 40-80 °C. The one-dimensional unsteady state heat conduction differential equation ρ nolimits_{coal} Cnolimits_{coal} partial T/partial t = partial /partial x(λ partial T/partial x) can be used to calculate the heat transfer process. Our results can serve as a first theoretical base and may enable technological advances with regard to lignite pyrolysis.

  15. Fault diagnosis and temperature sensor recovery for an air-handling unit

    SciTech Connect

    Lee, W.Y.; Shin, D.R.; House, J.M.

    1997-12-31

    The presence of faults and the influence they have on system operation is a real concern in the heating, ventilating, and air-conditioning (HVAC) community. A fault can be defined as an inadmissible or unacceptable property of a system or a component. Unless corrected, faults can lead to increased energy use, shorter equipment life, and uncomfortable and/or unhealthy conditions for building occupants. This paper describes the use of a two-stage artificial neural network for fault diagnosis in a simulated air-handling unit. The stage one neural network is trained to identify the subsystem in which a fault occurs. The stage two neural network is trained to diagnose the specific cause of a fault at the subsystem level. Regression equations for the supply and mixed-air temperatures are obtained from simulation data and are used to compute input parameters to the neutral networks. Simulation results are presented that demonstrate that, after a successful diagnosis of a supply air temperature sensor fault, the recovered estimate of the supply air temperature obtained from the regression equation can be used in a feedback control loop to bring the supply air temperature back to the setpoint value. Results are also presented that illustrate the evolution of the diagnosis of the two-stage artificial neural network from normal operation to various fault modes of operation.

  16. Temperature and heating rate of ion crystals in Penning traps

    SciTech Connect

    Jensen, Marie J.; Hasegawa, Taro; Bollinger, John J.

    2004-09-01

    We have determined the temperature and heating rate of laser-cooled ions in a Penning trap using Doppler laser spectroscopy. Between 10{sup 4} and 10{sup 6} {sup 9}Be{sup +} ions are trapped in a Penning trap and Doppler laser cooled to temperatures of a few millikelvin, where they form ion crystals. This system is an example of a strongly coupled one-component plasma. The ion temperature was measured as a function of time after turning off the laser-cooling. In the solid phase, we measured a heating rate of {approx}65 mK/s. Information about possible heating mechanisms was obtained directly from temperature measurements, and also from measurements of the rate of radial expansion of the ion plasma. We determined that the observed heating is due to collisions with the {approx}4x10{sup -9} Pa residual gas of our vacuum system.

  17. Models of Ballistic Propagation of Heat at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Kovács, R.; Ván, P.

    2016-09-01

    Heat conduction at low temperatures shows several effects that cannot be described by the Fourier law. In this paper, the performance of various theories is compared in case of wave-like and ballistic propagation of heat pulses in NaF.

  18. Self-contained constant-temperature heat absorber

    NASA Technical Reports Server (NTRS)

    Lopez, R. W.; Vaniman, J. L.; Fisher, R. R.

    1976-01-01

    System maintains precise thermal control of heat producing component, is not affected by changes in external pressure, ambient thermal environment, or gravity, and operates in both static and spinning attitudes. Size of device's spin axis-oriented orifice determines container pressure which establishes boiling temperature of heat absorption medium.

  19. Measuring centimeter-resolution air temperature profiles above land and water using fiber-optic Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Sigmund, Armin; Pfister, Lena; Olesch, Johannes; Thomas, Christoph K.

    2016-04-01

    The precise determination of near-surface air temperature profiles is of special importance for the characterization of airflows (e.g. cold air) and the quantification of sensible heat fluxes according to the flux-gradient similarity approach. In contrast to conventional multi-sensor techniques, measuring temperature profiles using fiber-optic Distributed Temperature Sensing (DTS) provides thousands of measurements referenced to a single calibration standard at much reduced costs. The aim of this work was to enhance the vertical resolution of Raman scatter DTS measurements up to the centimeter-scale using a novel approach for atmospheric applications: the optical fiber was helically coiled around a meshed fabric. In addition to testing the new fiber geometry, we quantified the measurement uncertainty and demonstrated the benefits of the enhanced-resolution profiles. The fiber-optic cable was coiled around a hollow column consisting of white reinforcing fabric supported by plexiglass rings every meter. Data from two columns of this type were collected for 47 days to measure air temperature vertically over 3.0 and 5.1 m over a gently inclined meadow and over and in a small lake, respectively. Both profiles had a vertical resolution of 1 cm in the lower section near the surface and 5 cm in the upper section with an along-fiber instrument-specific averaging of 1.0 m and a temporal resolution of 30 s. Measurement uncertainties, especially from conduction between reinforcing fabric and fiber-optic cable, were estimated by modeling the fiber temperature via a detailed energy balance approach. Air temperature, wind velocity and radiation components were needed as input data and measured separately. The temperature profiles revealed valuable details, especially in the lowest 1 m above surface. This was best demonstrated for nighttime observations when artefacts due to solar heating did not occur. For example, the dynamics of a cold air layer was detected in a clear night

  20. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... heat pumps. 431.92 Section 431.92 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps § 431.92 Definitions concerning commercial air conditioners and heat pumps. The following definitions...

  1. 16 CFR Appendix I to Part 305 - Heating Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Heating Performance and Cost for Central Air... CONSERVATION ACT (âENERGY LABELING RULEâ) Pt. 305, App. I Appendix I to Part 305—Heating Performance and Cost for Central Air Conditioners Manufacturer's rated heating capacity (Btu's/hr.) Range of HSPF's...

  2. The impact of humidity on evaporative cooling in small desert birds exposed to high air temperatures.

    PubMed

    Gerson, Alexander R; Smith, Eric Krabbe; Smit, Ben; McKechnie, Andrew E; Wolf, Blair O

    2014-01-01

    Environmental temperatures that exceed body temperature (Tb) force endothermic animals to rely solely on evaporative cooling to dissipate heat. However, evaporative heat dissipation can be drastically reduced by environmental humidity, imposing a thermoregulatory challenge. The goal of this study was to investigate the effects of humidity on the thermoregulation of desert birds and to compare the sensitivity of cutaneous and respiratory evaporation to reduced vapor density gradients. Rates of evaporative water loss, metabolic rate, and Tb were measured in birds exposed to humidities ranging from ∼2 to 30 g H2O m(-3) (0%-100% relative humidity at 30°C) at air temperatures between 44° and 56°C. In sociable weavers, a species that dissipates heat primarily through panting, rates of evaporative water loss were inhibited by as much as 36% by high humidity at 48°C, and these birds showed a high degree of hyperthermia. At lower temperatures (40°-44°C), evaporative water loss was largely unaffected by humidity in this species. In Namaqua doves, which primarily use cutaneous evaporation, increasing humidity reduced rates of evaporative water loss, but overall rates of water loss were lower than those observed in sociable weavers. Our data suggest that cutaneous evaporation is more efficient than panting, requiring less water to maintain Tb at a given temperature, but panting appears less sensitive to humidity over the air temperature range investigated here. PMID:25461643

  3. Climatology of upper air temperature in the Eastern Mediterranean region

    NASA Astrophysics Data System (ADS)

    Philandras, C. M.; Nastos, P. T.; Kapsomenakis, I. N.; Repapis, C. C.

    2015-01-01

    The goal of this study is to contribute to the climatology of upper air temperature in the Mediterranean region, during the period 1965-2011. For this purpose, both radiosonde recordings and gridded reanalysis datasets of upper air temperature from National Center for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) were used for seven barometric levels at 850 hPa, 700 hPa, 500 hPa, 300 hPa, 200 hPa, 150 hPa and 100 hPa. Trends and variability of upper air temperature were analyzed on annual and seasonal basis. Further, the impact of atmospheric circulation, by means of correlation between upper air temperature at different barometric levels and specific climatic indices such as Mediterranean Oscillation Index (MOI), North Sea Caspian Pattern Index (NCPI) and North Atlantic Oscillation Index (NAOI), was also quantified. Our findings have given evidence that air temperature is increasing at a higher rate in lower/middle troposphere against upper, and this is very likely due to increasing greenhouse gas concentrations.

  4. Extended temperature range studies for dry heat microbial reduction

    NASA Technical Reports Server (NTRS)

    Kempf, Michael; Kirschner, Larry; Beaudet, Robert A.

    2005-01-01

    This paper will present the lethality data that has been collected at this time and the planned future studies. The results show that rapid ramp-up heating times are critical to obtaining valid lethality data at high temperatures because an extensive number of spores are killed before reaching the target temperature. Exploratory experiments have also been performed using a laser to rapidly heat coupons.

  5. High temperature thermographic measurements of laser heated silica

    SciTech Connect

    Elhadj, S; Yang, S T; Matthews, M J; Cooke, D J; Bude, J D; Johnson, M; Feit, M; Draggoo, V; Bisson, S E

    2009-11-02

    In situ spatial and temporal surface temperature profiles of CO{sub 2} laser-heated silica were obtained using a long wave infrared (LWIR) HgCdTe camera. Solutions to the linear diffusion equation with volumetric and surface heating are shown to describe the temperature evolution for a range of beam powers, over which the peak surface temperature scales linearly with power. These solutions were used with on-axis steady state and transient experimental temperatures to extract thermal diffusivity and conductivity for a variety of materials, including silica, spinel, sapphire, and lithium fluoride. Experimentally-derived thermal properties agreed well with reported values and, for silica, thermal conductivity and diffusivity are shown to be approximately independent of temperature between 300 and 2800K. While for silica our analysis based on a temperature independent thermal conductivity is shown to be accurate, for other materials studied this treatment yields effective thermal properties that represent reasonable approximations for laser heating. Implementation of a single-wavelength radiation measurement in the semi-transparent regime is generally discussed, and estimates of the apparent temperature deviation from the actual outer surface temperature are also presented. The experimental approach and the simple analysis presented yield surface temperature measurements that can be used to validate more complex physical models, help discriminate dominant heat transport mechanisms, and to predict temperature distribution and evolution during laser-based material processing.

  6. Linking Surface Urban Heat Islands with Groundwater Temperatures.

    PubMed

    Benz, Susanne A; Bayer, Peter; Goettsche, Frank M; Olesen, Folke S; Blum, Philipp

    2016-01-01

    Urban temperatures are typically, but not necessarily, elevated compared to their rural surroundings. This phenomenon of urban heat islands (UHI) exists both above and below the ground. These zones are coupled through conductive heat transport. However, the precise process is not sufficiently understood. Using satellite-derived land surface temperature and interpolated groundwater temperature measurements, we compare the spatial properties of both kinds of heat islands in four German cities and find correlations of up to 80%. The best correlation is found in older, mature cities such as Cologne and Berlin. However, in 95% of the analyzed areas, groundwater temperatures are higher than land surface temperatures due to additional subsurface heat sources such as buildings and their basements. Local groundwater hot spots under city centers and under industrial areas are not revealed by satellite-derived land surface temperatures. Hence, we propose an estimation method that relates groundwater temperatures to mean annual land-surface temperatures, building density, and elevated basement temperatures. Using this method, we are able to accurately estimate regional groundwater temperatures with a mean absolute error of 0.9 K. PMID:26595444

  7. Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature.

    PubMed

    Wu, Chih-Da; Lung, Shih-Chun Candice

    2016-01-01

    The lack of appropriate methodologies and indicators to quantify three-dimensional (3-D) building constructions poses challenges to authorities and urban planners when formulating polices to reduce health risks due to heat stress. This study evaluated the applicability of an innovative three-dimensional Urbanization Index (3DUI), based on remote sensing database, with a 5 m spatial resolution of 3-D man-made constructions to representing intra-urban variability of air temperature by assessing correlation of 3DUI with air temperature from a 3-D perspective. The results showed robust high correlation coefficients, ranging from 0.83 to 0.85, obtained within the 1,000 m circular buffer around weather stations regardless of season, year, or spatial location. Our findings demonstrated not only the strength of 3DUI in representing intra-urban air-temperature variability, but also its great potential for heat stress assessment within cities. In view of the maximum correlation between building volumes within the 1,000 m circular buffer and ambient air temperature, urban planning should consider setting ceilings for man-made construction volume in each 2 × 2 km(2) residential community for thermal environment regulation, especially in Asian metropolis with high population density in city centers. PMID:27079537

  8. Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature

    PubMed Central

    Wu, Chih-Da; Lung, Shih-Chun Candice

    2016-01-01

    The lack of appropriate methodologies and indicators to quantify three-dimensional (3-D) building constructions poses challenges to authorities and urban planners when formulating polices to reduce health risks due to heat stress. This study evaluated the applicability of an innovative three-dimensional Urbanization Index (3DUI), based on remote sensing database, with a 5 m spatial resolution of 3-D man-made constructions to representing intra-urban variability of air temperature by assessing correlation of 3DUI with air temperature from a 3-D perspective. The results showed robust high correlation coefficients, ranging from 0.83 to 0.85, obtained within the 1,000 m circular buffer around weather stations regardless of season, year, or spatial location. Our findings demonstrated not only the strength of 3DUI in representing intra-urban air-temperature variability, but also its great potential for heat stress assessment within cities. In view of the maximum correlation between building volumes within the 1,000 m circular buffer and ambient air temperature, urban planning should consider setting ceilings for man-made construction volume in each 2 × 2 km2 residential community for thermal environment regulation, especially in Asian metropolis with high population density in city centers. PMID:27079537

  9. Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature

    NASA Astrophysics Data System (ADS)

    Wu, Chih-Da; Lung, Shih-Chun Candice

    2016-04-01

    The lack of appropriate methodologies and indicators to quantify three-dimensional (3-D) building constructions poses challenges to authorities and urban planners when formulating polices to reduce health risks due to heat stress. This study evaluated the applicability of an innovative three-dimensional Urbanization Index (3DUI), based on remote sensing database, with a 5 m spatial resolution of 3-D man-made constructions to representing intra-urban variability of air temperature by assessing correlation of 3DUI with air temperature from a 3-D perspective. The results showed robust high correlation coefficients, ranging from 0.83 to 0.85, obtained within the 1,000 m circular buffer around weather stations regardless of season, year, or spatial location. Our findings demonstrated not only the strength of 3DUI in representing intra-urban air-temperature variability, but also its great potential for heat stress assessment within cities. In view of the maximum correlation between building volumes within the 1,000 m circular buffer and ambient air temperature, urban planning should consider setting ceilings for man-made construction volume in each 2 × 2 km2 residential community for thermal environment regulation, especially in Asian metropolis with high population density in city centers.

  10. Estimation of Surface Temperature and Heat Flux by Inverse Heat Transfer Methods Using Internal Temperatures Measured While Radiantly Heating a Carbon/Carbon Specimen up to 1920 F

    NASA Technical Reports Server (NTRS)

    Pizzo, Michelle; Daryabeigi, Kamran; Glass, David

    2015-01-01

    The ability to solve the heat conduction equation is needed when designing materials to be used on vehicles exposed to extremely high temperatures; e.g. vehicles used for atmospheric entry or hypersonic flight. When using test and flight data, computational methods such as finite difference schemes may be used to solve for both the direct heat conduction problem, i.e., solving between internal temperature measurements, and the inverse heat conduction problem, i.e., using the direct solution to march forward in space to the surface of the material to estimate both surface temperature and heat flux. The completed research first discusses the methods used in developing a computational code to solve both the direct and inverse heat transfer problems using one dimensional, centered, implicit finite volume schemes and one dimensional, centered, explicit space marching techniques. The developed code assumed the boundary conditions to be specified time varying temperatures and also considered temperature dependent thermal properties. The completed research then discusses the results of analyzing temperature data measured while radiantly heating a carbon/carbon specimen up to 1920 F. The temperature was measured using thermocouple (TC) plugs (small carbon/carbon material specimens) with four embedded TC plugs inserted into the larger carbon/carbon specimen. The purpose of analyzing the test data was to estimate the surface heat flux and temperature values from the internal temperature measurements using direct and inverse heat transfer methods, thus aiding in the thermal and structural design and analysis of high temperature vehicles.

  11. Mechanisms controlling the SST air-sea heat flux feedback and its dependence on spatial scale

    NASA Astrophysics Data System (ADS)

    Hausmann, Ute; Czaja, Arnaud; Marshall, John

    2016-05-01

    The turbulent air-sea heat flux feedback (α , in {W m}^{-2}{ K}^{-1} ) is a major contributor to setting the damping timescale of sea surface temperature (SST) anomalies. In this study we compare the spatial distribution and magnitude of α in the North Atlantic and the Southern Ocean, as estimated from the ERA-Interim reanalysis dataset. The comparison is rationalized in terms of an upper bound on the heat flux feedback, associated with "fast" atmospheric export of temperature and moisture anomalies away from the marine boundary layer, and a lower bound associated with "slow" export. It is found that regions of cold surface waters (≤ 10° C) are best described as approaching the slow export limit. This conclusion is not only valid at the synoptic scale resolved by the reanalysis data, but also on basin scales. In particular, it applies to the heat flux feedback acting as circumpolar SST anomaly scales are approached in the Southern Ocean, with feedbacks of ≤ 10 {W m}^{-2}{ K}^{-1} . In contrast, the magnitude of the heat flux feedback is close to that expected from the fast export limit over the Gulf Stream and its recirculation with values on the order of ≈40 {W m}^{-2}{ K}^{-1} . Further analysis suggests that this high value reflects a compensation between a moderate thermodynamic adjustment of the boundary layer, which tends to weaken the heat flux feedback, and an enhancement of the surface winds over warm SST anomalies, which tend to enhance the feedback.

  12. Saturn's atmospheric temperature structure and heat budget

    NASA Astrophysics Data System (ADS)

    Orton, G. S.; Ingersoll, A. P.

    1980-11-01

    The effective temperature of Saturn from 30 deg S to 10 deg N is 96.5 + or - 2.5 K. This value is 1.9 K higher than a preliminary estimate (Ingersoll et al., 1980). The atmospheric mole fraction of H2 + He is 90 + or - 3%. This value is derived by comparing infrared and radio occultation data (Kliore et al., 1980) for the same latitude. The high value of the effective temperature suggests that Saturn has an additional energy source besides cooling and contraction. The high mole fraction of H2 suggests that separation of heavier He toward the core may be supplying the additional energy. Atmospheric temperatures in the 60- to 600-mbar range are 2.5 K lower within 7 deg of the equator than at higher latitudes. An almost isothermal layer exists between 60 and 160 mbar at all latitudes.

  13. Welding of dissimilar alloys for high temperature heat exchangers for SOFC

    SciTech Connect

    Wilson, R.D.; Hatem, J.; Dogan, O.N.; King, P.E.

    2006-10-01

    Reduction in the cost of balance of plant applications is one of the top priority focus areas for the successful implementation of solid oxide fuel cell technology. High temperature heat exchangers are employed to heat cathode air utilizing either hot gases coming from the anode side of the stack or other hot gases generated by external processes. In order to reduce the cost of heat exchangers, it may be necessary to apply several different materials, each in a different temperature zone, for the construction of the heat exchanger. This technique would require the joining of dissimilar materials in the construction. In this work, welding of commercial candidate dissimilar materials is explored. Filler materials were identified using equilibrium phase diagrams and thermodynamic simulation software. Autogenous welding was performed and the welding defects were characterized. Finally, experimental weld microstructures were compared to phases predicted by the simulations.

  14. Experimental investigation of a reticulated porous alumina heat exchanger for high temperature gas heat recovery

    SciTech Connect

    Banerjee, A; Chandran, RB; Davidson, JH

    2015-01-22

    The present study presents an experimental study of a prototype counter-flow heat exchanger designed to recover sensible heat from inert and reactive gases flowing through a high temperature solar reactor for splitting CO2. The tube-in-tube heat exchanger is comprised of two concentric alumina tubes, each filled with reticulated porous alumina with a nominal porosity of 80% and pore density of 5 pores per inch (ppi). The RPC provides high heat transfer surface area per unit volume (917 m(-1)) with low pressure drop. Measurements include the permeability, inertial coefficient, overall heat transfer coefficient, effectiveness and pressure drop. For laminar flow and an inlet gas temperature of 1240 K, the overall heat transfer coefficients are 36-41 W m(-2) K-1. The measured performance is in good agreement with a prior CFD model of the heat exchanger. (C) 2014 Elsevier Ltd. All rights reserved.

  15. Metabolic response to air temperature and wind in day-old mallards and a standard operative temperature scale

    USGS Publications Warehouse

    Bakken, G.S.; Reynolds, P.S.; Kenow, K.P.; Korschgen, C.E.; Boysen, A.F.

    1999-01-01

    Most duckling mortality occurs during the week following hatching and is often associated with cold, windy, wet weather and scattering of the brood. We estimated the thermoregulatory demands imposed by cold, windy weather on isolated 1-d-old mallard (Anas platyrhynchos) ducklings resting in cover. We measured O-2 consumption and evaporative water loss at air temperatures from 5 degrees to 25 degrees C and wind speeds of 0.1, 0.2, 0.5, and 1.0 mis. Metabolic heat production increased as wind increased or temperature decreased but was less sensitive to wind than that of either adult passerines or small mammals. Evaporative heat loss ranged from 5% to 17% of heat production. Evaporative heal loss and the ratio of evaporative heat loss to metabolic heat production was significantly lower in rest phase. These data were used to define a standard operative temperature (T-es) scale for night or heavy overcast conditions. An increase of wind speed from 0.1 to 1 mis decreased T-es by 3 degrees-5 degrees C.

  16. Inverse heat transfer problem in digital temperature control in plate fin and tube heat exchangers

    NASA Astrophysics Data System (ADS)

    Taler, Dawid; Sury, Adam

    2011-12-01

    The aim of the paper is a steady-state inverse heat transfer problem for plate-fin and tube heat exchangers. The objective of the process control is to adjust the number of fan revolutions per minute so that the water temperature at the heat exchanger outlet is equal to a preset value. Two control techniques were developed. The first is based on the presented mathematical model of the heat exchanger while the second is a digital proportional-integral-derivative (PID) control. The first procedure is very stable. The digital PID controller becomes unstable if the water volumetric flow rate changes significantly. The developed techniques were implemented in digital control system of the water exit temperature in a plate fin and tube heat exchanger. The measured exit temperature of the water was very close to the set value of the temperature if the first method was used. The experiments showed that the PID controller works also well but becomes frequently unstable.

  17. The rotating heat pipe - Implementation as a uniform-temperature heat source

    NASA Astrophysics Data System (ADS)

    Limoges, R. F.

    1981-11-01

    A wickless rotating heat pipe, if properly controlled, is a uniform heat source. The data presented are based on work done with 12.7 cm diameter x 76 cm long rotating heat pipes operating between 120 and 140 C. The major areas reviewed are: materials of fabrication, working fluids, sealing, temperature control, heaters, and safety. The optimum rotating heat pipe defined by these studies is fabricated of type 304 stainless steel, uses water as the working fluid, is sealed with welded joints, and utilizes a pressure switch and a fast-response quartz lamp for temperature control. Surface-temperature control of + or - 0.15 C and temperature uniformity within 0.8 C are obtained. Results of experiments designed to study the effects of hydrogen in the enclosed volume of the heat pipe are presented.

  18. Estimation of Surface Heat Flux and Surface Temperature during Inverse Heat Conduction under Varying Spray Parameters and Sample Initial Temperature

    PubMed Central

    Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong

    2014-01-01

    An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa. PMID:24977219

  19. Estimation of surface heat flux and surface temperature during inverse heat conduction under varying spray parameters and sample initial temperature.

    PubMed

    Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong; Zubair, Muhammad

    2014-01-01

    An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m(2) was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa. PMID:24977219

  20. Effects of a ceramic coating on metal temperatures of an air-cooled turbine vane

    NASA Astrophysics Data System (ADS)

    Gladden, H. J.; Liebert, C. H.

    1980-02-01

    The metal temperatures of air cooled turbine vanes both uncoated and coated with the NASA thermal barrier system were studied experimentally. Current and advanced gas turbine engine conditions were simulated at reduced temperatures and pressures. Airfoil metal temperatures were significantly reduced, both locally and on the average, by use of the the coating. However, at low gas Reynolds number, the ceramic coating tripped a laminar boundary layer on the suction surface, and the resulting higher heat flux increased the metal temperatures. Simulated coating loss was also investigated and shown to increase local metal temperatures. However, the metal temperatures in the leading edge region remained below those of the uncoated vane tested at similar conditions. Metal temperatures in the trailing edge region exceeded those of the uncoated vane.

  1. Effects of a ceramic coating on metal temperatures of an air-cooled turbine vane

    NASA Technical Reports Server (NTRS)

    Gladden, H. J.; Liebert, C. H.

    1980-01-01

    The metal temperatures of air cooled turbine vanes both uncoated and coated with the NASA thermal barrier system were studied experimentally. Current and advanced gas turbine engine conditions were simulated at reduced temperatures and pressures. Airfoil metal temperatures were significantly reduced, both locally and on the average, by use of the the coating. However, at low gas Reynolds number, the ceramic coating tripped a laminar boundary layer on the suction surface, and the resulting higher heat flux increased the metal temperatures. Simulated coating loss was also investigated and shown to increase local metal temperatures. However, the metal temperatures in the leading edge region remained below those of the uncoated vane tested at similar conditions. Metal temperatures in the trailing edge region exceeded those of the uncoated vane.

  2. Air Circulation and Heat Exchange Under Reduced Pressures

    NASA Technical Reports Server (NTRS)

    Rygalov, V.; Wheeler, R.; Dixon, M.; Fowler, P.; Hillhouse, L.

    2010-01-01

    Heat exchange rates decrease non-linearly with reductions in atmospheric pressure. This decrease creates risk of thermal stress (elevated leaf temperatures) for plants under reduced pressures. Forced convection (fans) significantly increases heat exchange rate under almost all pressures except below 10 kPa. Plant cultivation techniques under reduced pressures will require forced convection. The cooling curve technique is a reliable means of assessing the influence of environmental variables like pressure and gravity on gas exchange of plant. These results represent the extremes of gas exchange conditions for simple systems under variable pressures. In reality, dense plant canopies will exhibit responses in between these extremes. More research is needed to understand the dependence of forced convection on atmospheric pressure. The overall thermal balance model should include latent and radiative exchange components.

  3. Innovative coal gasification system with high temperature air

    SciTech Connect

    Yoshikawa, K.; Katsushima, H.; Kasahara, M.; Hasegawa, T.; Tanaka, R.; Ootsuka, T.

    1997-12-31

    This paper proposes innovative coal gasification power generation systems where coal is gasified with high temperature air of about 1300K produced by gasified coal fuel gas. The main features of these systems are high thermal efficiency, low NO{sub x} emission, compact desulfurization and dust removal equipment and high efficiency molten slag removal with a very compact gasifier. Recent experimental results on the pebble bed coal gasifier appropriate for high temperature air coal gasification are reported, where 97.7% of coal ash is successfully caught in the pebble bed and extracted without clogging. A new concept of high temperature air preheating system is proposed which is characterized by its high reliability and low cost.

  4. Mean surface temperature prediction models for broiler chickens—a study of sensible heat flow

    NASA Astrophysics Data System (ADS)

    Nascimento, Sheila Tavares; da Silva, Iran José Oliveira; Maia, Alex Sandro Campos; de Castro, Ariane Cristina; Vieira, Frederico Marcio Corrêa

    2014-03-01

    Body surface temperature can be used to evaluate thermal equilibrium in animals. The bodies of broiler chickens, like those of all birds, are partially covered by feathers. Thus, the heat flow at the boundary layer between broilers' bodies and the environment differs between feathered and featherless areas. The aim of this investigation was to use linear regression models incorporating environmental parameters and age to predict the surface temperatures of the feathered and featherless areas of broiler chickens. The trial was conducted in a climate chamber, and 576 broilers were distributed in two groups. In the first trial, 288 broilers were monitored after exposure to comfortable or stressful conditions during a 6-week rearing period. Another 288 broilers were measured under the same conditions to test the predictive power of the models. Sensible heat flow was calculated, and for the regions covered by feathers, sensible heat flow was predicted based on the estimated surface temperatures. The surface temperatures of the feathered and featherless areas can be predicted based on air, black globe or operative temperatures. According to the sensible heat flow model, the broilers' ability to maintain thermal equilibrium by convection and radiation decreased during the rearing period. Sensible heat flow estimated based on estimated surface temperatures can be used to predict animal responses to comfortable and stressful conditions.

  5. The role of subsurface soil temperature feedbacks in summer surface air temperature variability over East Asia

    NASA Astrophysics Data System (ADS)

    Zhang, J.

    2012-12-01

    Soil temperature, an important component of land surface, can influence the climate through its effects on surface energy and water budgets and resulted changes in regional atmospheric circulation. However, the effects of soil temperature on climate variations have been less discussed. This study investigates the role of subsurface soil temperature feedbacks in influencing summer surface air temperature variability over East Asia by means of regional climate model (RCM) simulations. For this aim, two long-term simulations with and without subsurface soil temperature feedbacks are performed with the Weather Research and Forecasting (WRF) model. From our investigation, it is evident that subsurface soil temperature feedbacks make a dominant contribution to amplifying summer surface air temperature variability over the arid/semi-arid regions. Further analysis reveals that subsurface soil temperature exhibits an asymmetric effect on summer daytime and nighttime surface air temperature variability, with a stronger effect on daily minimum temperature variability than that of daily maximum temperature variability. This study provides the first RCM-based demonstration that subsurface soil temperature feedbacks play an important role in influencing climate variability over East Asia, such as summer surface air temperature. In the meanwhile, the model bias should be recognized. The results achieved by this study thus need to be further confirmed in a multi-model framework to eliminate the model dependence.

  6. Temperature trends and Urban Heat Island intensity mapping of the Las Vegas valley area

    NASA Astrophysics Data System (ADS)

    Black, Adam Leland

    Modified urban climate regions that are warmer than rural areas at night are referred to as Urban Heat Islands or UHI. Islands of warmer air over a city can be 12 degrees Celsius greater than the surrounding cooler air. The exponential growth in Las Vegas for the last two decades provides an opportunity to detect gradual temperature changes influenced by an increasing presence of urban materials. This thesis compares ground based thermometric observations and satellite based remote sensing temperature observations to identify temperature trends and UHI areas caused by urban development. Analysis of temperature trends between 2000 and 2010 at ground weather stations has revealed a general cooling trend in the Las Vegas region. Results show that urban development accompanied by increased vegetation has a cooling effect in arid climates. Analysis of long term temperature trends at McCarran and Nellis weather stations show 2.4 K and 1.2 K rise in temperature over the last 60 years. The ground weather station temperature data is related to the land surface temperature images from the Landsat Thematic Mapper to estimate and evaluate urban heat island intensity for Las Vegas. Results show that spatial and temporal trends of temperature are related to the gradual change in urban landcover. UHI are mainly observed at the airport and in the industrial areas. This research provides useful insight into the temporal behavior of the Las Vegas area.

  7. Air temperature evolution during dry spells and its relation to prevailing soil moisture regimes

    NASA Astrophysics Data System (ADS)

    Schwingshackl, Clemens; Hirschi, Martin; Seneviratne, Sonia I.

    2015-04-01

    The complex interplay between land and atmosphere makes accurate climate predictions very challenging, in particular with respect to extreme events. More detailed investigations of the underlying dynamics, such as the identification of the drivers regulating the energy exchange at the land surface and the quantification of fluxes between soil and atmosphere over different land types, are thus necessary. The recently started DROUGHT-HEAT project (funded by the European Research Council) aims to provide better understanding of the processes governing the land-atmosphere exchange. In the first phase of the project, different datasets and methods are used to investigate major drivers of land-atmosphere dynamics leading to droughts and heatwaves. In the second phase, these findings will be used for reducing uncertainties and biases in earth system models. Finally, the third part of the project will focus on the application of the previous findings and use them for the attribution of extreme events to land processes and possible mitigation through land geoengineering. One of the major questions in land-atmosphere exchange is the relationship between air temperature and soil moisture. Different studies show that especially during dry spells soil moisture has a strong impact on air temperature and the amplification of hot extremes. Whereas in dry and wet soil moisture regimes variations in latent heat flux during rain-free periods are expected to be small, this is not the case in transitional soil moisture regimes: Due to decreasing soil moisture content latent heat flux reduces with time, which causes in turn an increase in sensible heat flux and, subsequently, higher air temperatures. The investigation of air temperature evolution during dry spells can thus help to detect different soil moisture regimes and to provide insights on the effect of different soil moisture levels on air temperature. Here we assess the underlying relationships using different observational and

  8. Southern Ocean air-sea heat flux, SST spatial anomalies, and implications for multi-decadal upper ocean heat content trends.

    NASA Astrophysics Data System (ADS)

    Tamsitt, V. M.; Talley, L. D.; Mazloff, M. R.

    2014-12-01

    The Southern Ocean displays a zonal dipole (wavenumber one) pattern in sea surface temperature (SST), with a cool zonal anomaly in the Atlantic and Indian sectors and a warm zonal anomaly in the Pacific sector, associated with the large northward excursion of the Malvinas and southeastward flow of the Antarctic Circumpolar Current (ACC). To the north of the cool Indian sector is the warm, narrow Agulhas Return Current (ARC). Air-sea heat flux is largely the inverse of this SST pattern, with ocean heat gain in the Atlantic/Indian, cooling in the southeastward-flowing ARC, and cooling in the Pacific, based on adjusted fluxes from the Southern Ocean State Estimate (SOSE), a ⅙° eddy permitting model constrained to all available in situ data. This heat flux pattern is dominated by turbulent heat loss from the ocean (latent and sensible), proportional to perturbations in the difference between SST and surface air temperature, which are maintained by ocean advection. Locally in the Indian sector, intense heat loss along the ARC is contrasted by ocean heat gain of 0.11 PW south of the ARC. The IPCC AR5 50 year depth-averaged 0-700 m temperature trend shows surprising similarities in its spatial pattern, with upper ocean warming in the ARC contrasted by cooling to the south. Using diagnosed heat budget terms from the most recent (June 2014) 6-year run of the SOSE we find that surface cooling in the ARC is balanced by heating from south-eastward advection by the current whereas heat gain in the ACC is balanced by cooling due to northward Ekman transport driven by strong westerly winds. These results suggest that spatial patterns in multi-decadal upper ocean temperature trends depend on regional variations in upper ocean dynamics.

  9. Plant Canopy Temperature and Heat Flux Profiles: What Difference Does an Isothermal Skin Make?

    NASA Astrophysics Data System (ADS)

    Crago, R. D.; Qualls, R. J.

    2015-12-01

    Land surface temperature Ts plays a vital role in the determination of sensible (H) and latent heat flux, upwelling long-wave radiation, and ground heat flux. While it is widely recognized that there is a range of skin temperatures represented in even a homogeneous canopy, it is often necessary or convenient to treat the surface as isothermal. This study investigates, at the sub-canopy scale, the implications of assuming that a canopy is isothermal. The focus is on profiles within the canopy of air, foliage, and soil surface temperature, and of sensible and latent heat flux source strength. Data from a dense grassland at the Southern Great Plains experiment in 1997 (SGP97) were used to assess the ability of a multi-layer canopy model to match measured sensible and latent heat fluxes along with radiometric surface temperatures. In its standard mode, the model solves the energy balance for each canopy layer and uses Localized Near Field (LNF) theory to model the turbulent transport. The results suggest the model captures the most important features of canopy flux generation and transport, and support its use to investigate scalar profiles within canopies. For 112 data points at SGP97, the model produced realistic temperature and sensible heat flux source profiles. In addition, it was run in a mode that seeks the isothermal (soil and foliage) skin temperature (Ti) that provides the same Hproduced by the model in its standard mode. This produces profiles of air and foliage temperature and of sensible heat source strength that differ significantly from profiles from the standard mode. Based on these simulations, realistic canopies may have a mixture of positive and negative sensible heat flux sources at various heights, typically with large contributions from the soil surface. There is frequently a discontinuity between foliage temperatures near the soil and the actual soil surface temperature. For isothermal canopies, heat sources at all levels had the same sign and

  10. Heat resistance of Yersinia enterocolitica grown at different temperatures and heated in different media.

    PubMed

    Pagán, R; Mañas, P; Raso, J; Trepat, F J

    1999-03-01

    In the range of 4-20 degrees C, growth temperature did not influence the heat resistance at 54-66 degrees C for Yersinia enterocolitica at pH 7 in citrate phosphate buffer. However, when cells were grown at 37 degrees C. the D62 increased from 0.044 to 0.17 min. This increase was constant at all heating temperatures tested (z = 5.7-5.8). Growth temperature did not influence the proportion of heat-damaged cells after a heat treatment, as measured by their response to a 2% of sodium chloride added to the recovery medium. The sensitivity of heat treated cells to nisin or lysozyme depended on growth temperature: Whereas the number of cells grown at 4 degrees C surviving heat treatment was the same regardless of the presence of 100 IU/ml of nisin or 100 microg/ml of lysozyme in the recovery medium, that of cells grown at 37 degrees C was, in these media, lower. The pH of maximum heat resistance in citrate phosphate buffer was pH 7 for cells grown at 37 degrees C, but pH 5 for those grown at 4 degrees C. In both suspensions the magnitude of the effect of pH on heat resistance was constant at all heating temperatures. For cells grown at 4 degrees C the heat resistance at 54-66 degrees C, in skimmed milk or pH 7 buffer, was the same. For cells grown at 37 degrees C this also applied for heat treatment at 66 degrees C but at 56 degrees C the heat resistance in skimmed milk was higher. PMID:10357274

  11. Mathematical modelling of thin layer hot air drying of apricot with combined heat and power dryer.

    PubMed

    Faal, Saeed; Tavakoli, Teymor; Ghobadian, Barat

    2015-05-01

    In this study thermal energy of an engine was used to dry apricot. For this purpose, experiments were conducted on thin layer drying apricot with combined heat and power dryer, in a laboratory dryer. The drying experiments were carried out for four levels of engine output power (25 %, 50 %, 75 % and full load), producing temperatures of 50, 60, 70, and 80 ° C in drying chamber respectively. The air velocity in drying chamber was about 0.5 ± 0.05 m/s. Different mathematical models were evaluated to predict the behavior of apricot drying in a combined heat and power dryer. Conventional statistical equations namely modeling efficiency (EF), Root mean square error (RMSE) and chi-square (χ2) were also used to determine the most suitable model. Assessments indicated that the Logarithmic model considering the values of EF = 0.998746, χ 2 = 0.000120 and RMSE = 0.004772, shows the best treatment of drying apricot with combined heat and power dryer among eleven models were used in this study. The average values of effective diffusivity ranged 1.6260 × 10(-9) to 4.3612 × 10(-9) m2/s for drying apricot at air temperatures between 50 and 80 °C and at the air flow rate of 0.5 ± 0.05 m/s; the values of Deff increased with the increase of drying temperature the effective diffusivities in the second falling rate period were about eight times greater than that in the first falling rate period. PMID:25892795

  12. Application of inverse heat conduction problem on temperature measurement

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhou, G.; Dong, B.; Li, Q.; Liu, L. Q.

    2013-09-01

    For regenerative cooling devices, such as G-M refrigerator, pulse tube cooler or thermoacoustic cooler, the gas oscillating bring about temperature fluctuations inevitably, which is harmful in many applications requiring high stable temperatures. To find out the oscillating mechanism of the cooling temperature and improve the temperature stability of cooler, the inner temperature of the cold head has to be measured. However, it is difficult to measure the inner oscillating temperature of the cold head directly because the invasive temperature detectors may disturb the oscillating flow. Fortunately, the outer surface temperature of the cold head can be measured accurately by invasive temperature measurement techniques. In this paper, a mathematical model of inverse heat conduction problem is presented to identify the inner surface oscillating temperature of cold head according to the measured temperature of the outer surface in a GM cryocooler. Inverse heat conduction problem will be solved using control volume approach. Outer surface oscillating temperature could be used as input conditions of inverse problem and the inner surface oscillating temperature of cold head can be inversely obtained. A simple uncertainty analysis of the oscillating temperature measurement also will be provided.

  13. R&D on Micro-pyrolyzer for Solid Wastes Using High Temperature Steam and Air

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Yoshikawa, Kunio

    An innovative micro-gasification system for solid wastes is proposed in this paper, whose technical feasibility is demonstrated by using rubber chips as a fuel. In this system, a batch-type fixed-bed pyrolyzer combined with a high temperature steam/air reformer is employed. In the present investigation, it is shown that supply of high temperature air into the pyrolyzer significantly increases the heating value of the pyrolysis gas. With the use of high temperature steam/air mixture as an oxidant for reforming, almost complete reforming of the tar components can be done and they are decomposed into CO, H2 and other hydrocarbon gases with reasonable decrease of the heating value of the reformed gas compared with that of the pyrolysis gas. With packing ceramic balls in the reformer, reforming reactions can be accelerated. The experimental results demonstrate that almost soot and tar free clean reformed gas with the heating value of above 1000kcal/Nm3 can be generated from rubber chips.

  14. Heating, ventilating, and air conditioning deactivation thermal analysis of PUREX Plant

    SciTech Connect

    Chen, W.W.; Gregonis, R.A.

    1997-08-01

    Thermal analysis was performed for the proposed Plutonium Uranium Extraction Plant exhaust system after deactivation. The purpose of the analysis was to determine if enough condensation will occur to plug or damage the filtration components. A heat transfer and fluid flow analysis was performed to evaluate the thermal characteristics of the underground duct system, the deep-bed glass fiber filter No. 2, and the high-efficiency particulate air filters in the fourth filter building. The analysis is based on extreme variations of air temperature, relative humidity, and dew point temperature using 15 years of Hanford Site weather data as a basis. The results will be used to evaluate the need for the electric heaters proposed for the canyon exhaust to prevent condensation. Results of the analysis indicate that a condition may exist in the underground ductwork where the duct temperature can lead or lag changes in the ambient air temperature. This condition may contribute to condensation on the inside surfaces of the underground exhaust duct. A worst case conservative analysis was performed assuming that all of the water is removed from the moist air over the inside surface of the concrete duct area in the fully developed turbulent boundary layer while the moist air in the free stream will not condense. The total moisture accumulated in 24 hours is negligible. Water puddling would not be expected. The results of the analyses agree with plant operating experiences. The filters were designed to resist high humidity and direct wetting, filter plugging caused by slight condensation in the upstream duct is not a concern. 19 refs., 2 figs.

  15. International Space Station Common Cabin Air Assembly Condensing Heat Exchanger Hydrophilic Coating Failures and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Balistreri, Steven F.; Shaw, Laura A.; Laliberte, Yvon

    2010-01-01

    The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin air is controlled by the Common Cabin Air Assembly (CCAA). The CCAA consists of a fan, a condensing heat exchanger (CHX), an air/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The CHX is the primary component responsible for control of temperature and humidity. The CCAA CHX contains a chemical coating that was developed to be hydrophilic and thus attract water from the humid influent air. This attraction forms the basis for water removal and therefore cabin humidity control. However, there have been several instances of CHX coatings becoming hydrophobic and repelling water. When this behavior is observed in an operational CHX, the unit s ability to remove moisture from the air is compromised and the result is liquid water carryover into downstream ducting and systems. This water carryover can have detrimental effects on the cabin atmosphere quality and on the health of downstream hardware. If the water carryover is severe and widespread, this behavior can result in an inability to maintain humidity levels in the USOS. This paper will describe the operation of the five CCAAs within in the USOS, the potential causes of the hydrophobic condition, and the impacts of the resulting water carryover to downstream systems. It will describe the history of this behavior and the actual observed impacts to the ISS USOS. Information on mitigation steps to protect the health of future CHX hydrophilic coatings and potential remediation techniques will also be discussed.

  16. Variability of Winter Air Temperature in Mid-Latitude Europe

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Ardizzone, J.; Atlas, R.; Bungato, D.; Cierniewski, J.; Jusem, J. C.; Przybylak, R.; Schubert, S.; Starr, D.; Walczewski, J.

    2002-01-01

    The aim of this paper is to report extreme winter/early-spring air temperature (hereinafter temperature) anomalies in mid-latitude Europe, and to discuss the underlying forcing to these interannual fluctuations. Warm advection from the North Atlantic in late winter controls the surface-air temperature, as indicated by the substantial correlation between the speed of the surface southwesterlies over the eastern North Atlantic (quantified by a specific Index Ina) and the 2-meter level air temperatures (hereinafter Ts) over Europe, 45-60 deg N, in winter. In mid-March and subsequently, the correlation drops drastically (quite often it is negative). This change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature: absorption of insolation replaces the warm advection as the dominant control. This forcing by maritime-air advection in winter was demonstrated in a previous publication, and is re-examined here in conjunction with extreme fluctuations of temperatures in Europe. We analyze here the interannual variability at its extreme by comparing warm-winter/early-spring of 1989/90 with the opposite scenario in 1995/96. For these two December-to-March periods the differences in the monthly mean temperature in Warsaw and Torun, Poland, range above 10 C. Short-term (shorter than a month) fluctuations of the temperature are likewise very strong. We conduct pentad-by-pentad analysis of the surface-maximum air temperature (hereinafter Tmax), in a selected location, examining the dependence on Ina. The increased cloudiness and higher amounts of total precipitable water, corollary effects to the warm low-level advection. in the 1989/90 winter, enhance the positive temperature anomalies. The analysis of the ocean surface winds is based on the Special Sensor Microwave/Imager (SSM/I) dataset; ascent rates, and over land wind data are from the European Centre for Medium-Range Weather Forecasts (ECMWF); maps of 2-m temperature, cloud

  17. Modeling 3D conjugate heat and mass transfer for turbulent air drying of Chilean papaya in a direct contact dryer

    NASA Astrophysics Data System (ADS)

    Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.

    2016-03-01

    A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.

  18. Investigation of Effectiveness of Air-Heating a Hollow Steel Propeller for Protection Against Icing. 1: Unpartitioned Blades

    NASA Technical Reports Server (NTRS)

    Mulholland, Donald R.; Perkins, Porter J.

    1948-01-01

    An investigation to determine the effectiveness of icing protection afforded by air-heating hollow steel unpartitioned propeller blades has been conducted In the NACA Cleveland icing research tunnel. The propeller used was a production model modified with blade shank and tip openings to permit internal passage of heated air. Blade-surface and heated-air temperatures were obtained and photographic observations of Ice formations were made with variations In icing intensity and heating rate to the blades. For the conditions of Icing to which the propeller was subjected, it was found that adequate ice protection was afforded with a heating rate of 40 1 000 Btu per hour per blade. With less than 40,000 Btu per hour per blade, ice protection failed because of significant ice accretions on the leading edge. The chordwise distribution of heat was unsatisfactory with most of the available heat dissipated well back of the leading edge on both the thrust and camber face's instead of at the leading edge where it was most needed. A low utilization of available heat for icing protection is indicated by a beat-exchanger effectiveness of approximately 47 percent.

  19. Pulsed positive streamer discharges in air at high temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Kamakura, Taku

    2016-08-01

    Atmospheric-pressure air pulsed positive streamer discharges are generated in a 13 mm point-plane gap in the temperature range of 293 K–1136 K, and the effect of temperature on the streamer discharges is studied. When the temperature is increased, the product of applied voltage and temperature VT proportional to the reduced electric field can be used as a primary parameter that determines some discharge parameters regardless of temperature. For a given VT, the transferred charge per pulse, streamer diameter, product of discharge energy and temperature, and length of secondary streamer are almost constant regardless of T, whereas the streamer velocity decreases with increasing T and the decay rate of the discharge current is proportional to 1/T. The N2(C) emission intensity is approximately determined by the discharge energy independent of T. These results are useful to predict the streamer discharge and its reactive species production when the ambient temperature is increased.

  20. Mesoscopic near-field radiative heat transfer at low temperatures

    NASA Astrophysics Data System (ADS)

    Maasilta, Ilari; Geng, Zhuoran; Chaudhuri, Saumyadip; Koppinen, Panu

    2015-03-01

    Near-field radiative heat transfer has mostly been discussed at room temperatures and/or macroscopic scale geometries. Here, we discuss our recent theoretical and experimental advances in understanding near-field transfer at ultra-low temperatures below 1K. As the thermal wavelengths increase with lowering temperature, we show that with sensitive tunnel junction bolometers it is possible to study near-field transfer up to distances ~ 10 μm currently, even though the power levels are low. In addition, these type of experiments correspond to the extreme near-field limit, as the near-field region starts at ~ mm distances at 0.1 K, and could have theoretical power enhancement factors of the order of 1010. Preliminary results on heat transfer between two parallel metallic wires are presented. We also comment on possible areas were such heat transfer might be relevant, such as densely packed arrays of low-temperature detectors.

  1. Measured performance of the heat exchanger in the NASA icing research tunnel under severe icing and dry-air conditions

    NASA Technical Reports Server (NTRS)

    Olsen, W.; Vanfossen, J.; Nussle, R.

    1987-01-01

    Measurements were made of the pressure drop and thermal perfomance of the unique refrigeration heat exchanger in the NASA Lewis Icing Research Tunnel (IRT) under severe icing and frosting conditions and also with dry air. This data will be useful to those planning to use or extend the capability of the IRT and other icing facilities (e.g., the Altitude Wind Tunnel-AWT). The IRT heat exchanger and refrigeration system is able to cool air passing through the test section down to at least a total temperature of -30 C (well below icing requirements), and usually up to -2 C. The system maintains a uniform temperature across the test section at all airspeeds, which is more difficult and time consuming at low airspeeds, at high temperatures, and on hot, humid days when the cooling towers are less efficient. The very small surfaces of the heat exchanger prevent any icing cloud droplets from passing through it and going through the tests section again. The IRT heat exchanger was originally designed not to be adversely affected by severe icing. During a worst-case icing test the heat exchanger iced up enough so that the temperature uniformaity was no worse than about +/- 1 deg C. The conclusion is that the heat exchanger design performs well.

  2. Investigation of Instabilities and Heat Transfer Phenomena in Supercritical Fuels at High Heat Flux and Temperatures

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.; Meyer, Michael L.; Braun, Donald C.; Keller, Dennis J.

    2000-01-01

    A series of heated tube experiments was performed to investigate fluid instabilities that occur during heating of supercritical fluids. In these tests, JP-7 flowed vertically through small diameter tubes at supercritical pressures. Test section heated length, diameter, mass flow rate, inlet temperature, and heat flux were varied in an effort to determine the range of conditions that trigger the instabilities. Heat flux was varied up to 4 BTU/sq in./s, and test section wall temperatures reached as high as 1950 F. A statistical model was generated to explain the trends and effects of the control variables. The model included no direct linear effect of heat flux on the occurrence of the instabilities. All terms involving inlet temperature were negative, and all terms involving mass flow rate were positive. Multiple tests at conditions that produced instabilities provided inconsistent results. These inconsistencies limit the use of the model as a predictive tool. Physical variables that had been previously postulated to control the onset of the instabilities, such as film temperature, velocity, buoyancy, and wall-to-bulk temperature ratio, were evaluated here. Film temperatures at or near critical occurred during both stable and unstable tests. All tests at the highest velocity were stable, but there was no functional relationship found between the instabilities and velocity, or a combination of velocity and temperature ratio. Finally, all of the unstable tests had significant buoyancy at the inlet of the test section, but many stable tests also had significant buoyancy forces.

  3. Effects of air flow directions on composting process temperature profile

    SciTech Connect

    Kulcu, Recep; Yaldiz, Osman

    2008-07-01

    In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO{sub 2} and O{sub 2} ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperature distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2.

  4. Temperature gradients and clear-air turbulence probabilities

    NASA Technical Reports Server (NTRS)

    Bender, M. A.; Panofsky, H. A.; Peslen, C. A.

    1976-01-01

    In order to forecast clear-air turbulence (CAT) in jet aircraft flights, a study was conducted in which the data from a special-purpose instrument aboard a Boeing 747 jet airliner were compared with satellite-derived radiance gradients, conventional temperature gradients from analyzed maps, and temperature gradients obtained from a total air temperature sensor on the plane. The advantage of making use of satellite-derived data is that they are available worldwide without the need for radiosonde observations, which are scarce in many parts of the world. Major conclusions are that CAT probabilities are significantly higher over mountains than flat terrain, and that satellite radiance gradients appear to discriminate between CAT and no CAT better than conventional temperature gradients over flat lands, whereas the reverse is true over mountains, the differences between the two techniques being not large over mountains.

  5. User's manual for steady-state computer simulation for air-to-air heat pumps with selected examples

    SciTech Connect

    Not Available

    1982-06-30

    A steady-state computer simulation model has been developed for conventional, vapor compression cycle, electrically driven air-to-air heat pumps. Comparison between the heat pump simulation model predictions and available data from three heat pump experiments indicate that the predictions generally are within accepted tolerances. A sensitivity analysis was made to assess the effect of possible variations in some of the input parameters on the system's thermal performance. The computer simulation model is briefly described for heating and cooling modes, and simulation model input data and output are given. (LEW)

  6. Flame Speeds of Methane-Air, Propane-Air, and Ethylene-Air Mixtures at Low Initial Temperatures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L; Heimel, Sheldon

    1952-01-01

    Flame speeds were determined for methane-air, propane-air, and ethylene-air mixtures at -73 C and for methane-air mixtures at -132 C. The data extend the curves of maximum flame speed against initial mixture temperature previously established for the range from room temperature to 344 C. Empirical equations for maximum flame speed u(cm/ sec) as a function of initial mixture temperature T(sub O) were determined to be as follows: for methane, for T(sub O) from 141 to 615 K, u = 8 + 0.000160 T(sub O)(exp 2.11); for propane, for T(sub O) from 200 to 616 K, u = 10 + 0.000342 T(sub O)(exp 2.00); for ethylene, for T(sub O) from 200 to 617 K, u = 10 + 0.00259 T(sub O)(exp 1.74). Relative flame speeds at low initial temperatures were predicted within approximately 20 percent by either the thermal theory as presented by Semenov or by the diffusion theory of Tanford and Pease. The same order was found previously for high initial temperatures. The low-temperature data were also found to extend the linear correlations between maximum flame speed and calculated equilibrium active-radical concentrations, which were established by the previously reported high-temperature data.

  7. Plasma heating power dissipation in low temperature hydrogen plasmas

    SciTech Connect

    Komppula, J. Tarvainen, O.

    2015-10-15

    A theoretical framework for power dissipation in low temperature plasmas in corona equilibrium is developed. The framework is based on fundamental conservation laws and reaction cross sections and is only weakly sensitive to plasma parameters, e.g., electron temperature and density. The theory is applied to low temperature atomic and molecular hydrogen laboratory plasmas for which the plasma heating power dissipation to photon emission, ionization, and chemical potential is calculated. The calculated photon emission is compared to recent experimental results.

  8. The impact of heterogeneous surface temperatures on the 2-m air temperature over the Arctic Ocean under clear skies in spring

    NASA Astrophysics Data System (ADS)

    Tetzlaff, A.; Kaleschke, L.; Lüpkes, C.; Ament, F.; Vihma, T.

    2013-01-01

    The influence of spatial surface temperature changes over the Arctic Ocean on the 2-m air temperature variability is estimated using backward trajectories based on ERA-Interim and JRA25 wind fields. They are initiated at Alert, Barrow and at the Tara drifting station. Three different methods are used. The first one compares mean ice surface temperatures along the trajectories to the observed 2-m air temperatures at the stations. The second one correlates the observed temperatures to air temperatures obtained using a simple Lagrangian box model that only includes the effect of sensible heat fluxes. For the third method, mean sensible heat fluxes from the model are correlated with the difference of the air temperatures at the model starting point and the observed temperatures at the stations. The calculations are based on MODIS ice surface temperatures and four different sets of ice concentration derived from SSM/I (Special Sensor Microwave Imager) and AMSR-E (Advanced Microwave Scanning Radiometer for EOS) data. Under nearly cloud-free conditions, up to 90% of the 2-m air temperature variance can be explained for Alert, and 70% for Barrow, using these methods. The differences are attributed to the different ice conditions, which are characterized by high ice concentration around Alert and lower ice concentration near Barrow. These results are robust for the different sets of reanalyses and ice concentration data. Trajectories based on 10-m wind fields from both reanalyses show large spatial differences in the Central Arctic, leading to differences in the correlations between modeled and observed 2-m air temperatures. They are most pronounced at Tara, where explained variances amount to 70% using JRA and 80% using ERA. The results also suggest that near-surface temperatures at a given site are influenced by the variability of surface temperatures in a domain of about 200 km radius around the site.

  9. The Heat Is On! Using Particle Models to Change Students' Conceptions of Heat and Temperature

    ERIC Educational Resources Information Center

    Hitt, Austin Manning; Townsend, J. Scott

    2015-01-01

    Elementary, middle-level, and high school science teachers commonly find their students have misconceptions about heat and temperature. Unfortunately, student misconceptions are difficult to modify or change and can prevent students from learning the accurate scientific explanation. In order to improve our students' understanding of heat and…

  10. Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.

  11. Geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppälä, A.; Randall, C. E.; Clilverd, M. A.; Rozanov, E.; Rodger, C. J.

    2009-10-01

    Here we use the ERA-40 and ECMWF operational surface level air temperature data sets from 1957 to 2006 to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the A p index. Previous modeling work has suggested that NO x produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in surface air temperatures (SATs). We find that during winter months, polar SATs in years with high A p index are different than in years with low A p index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, depending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings (SSWs) are excluded. We take into account solar irradiance variations, unlike previous analyses of geomagnetic effects in ERA-40 and operational data. Although we cannot conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating wintertime surface air temperatures. We tested our SAT results against variation in the Quasi Biennial Oscillation, the El Niño Southern Oscillation and the Southern Annular Mode. The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode, and we cannot robustly exclude a chance linkage between sea surface temperature variability and geomagnetic activity.

  12. Drier Air, Lower Temperatures, and Triggering of Paroxysmal Atrial Fibrillation

    PubMed Central

    Nguyen, Jennifer L.; Link, Mark S.; Luttmann-Gibson, Heike; Laden, Francine; Schwartz, Joel; Wessler, Benjamin S.; Mittleman, Murray A.; Gold, Diane R.; Dockery, Douglas W.

    2015-01-01

    Background The few previous studies on the onset of paroxysmal atrial fibrillation and meteorologic conditions have focused on outdoor temperature and hospital admissions, but hospital admissions are a crude indicator of atrial fibrillation incidence, and studies have found other weather measures in addition to temperature to be associated with cardiovascular outcomes. Methods Two hundred patients with dual chamber implantable cardioverter-defibrillators were enrolled and followed prospectively from 2006 to 2010 for new onset episodes of atrial fibrillation. The date and time of arrhythmia episodes documented by the implanted cardioverter-defibrillators were linked to meteorologic data and examined using a case-crossover analysis. We evaluated associations with outdoor temperature, apparent temperature, air pressure, and three measures of humidity (relative humidity, dew point, and absolute humidity). Results Of the 200 enrolled patients, 49 patients experienced 328 atrial fibrillation episodes lasting ≥30 seconds. Lower temperatures in the prior 48 hours were positively associated with atrial fibrillation. Lower absolute humidity (ie, drier air) had the strongest and most consistent association: each 0.5 g/m3 decrease in the prior 24 hours increased the odds of atrial fibrillation by 4% (95% confidence interval [CI]: 0%, 7%) and by 5% (95% CI: 2%, 8%) for exposure in the prior 2 hours. Results were similar for dew point but slightly weaker. Conclusions Recent exposure to drier air and lower temperatures were associated with the onset of atrial fibrillation among patients with known cardiac disease, supporting the hypothesis that meteorologic conditions trigger acute cardiovascular episodes. PMID:25756220

  13. Surface heat flux parameterizations and tropical Pacific sea surface temperature simulations

    SciTech Connect

    Giese, B.S. University Corp. for Atmospheric Research, Boulder, CO ); Cayan, D.R. )

    1993-04-15

    The authors report on a study of the problem of getting good model results for the sea surface temperature in the tropical Pacific ocean. The tropical Pacific is particularly important because of its size, the large areas of warm surface temperature, its impact on global atmospheric circulation, and the fact that it serves as an indicator of climatic variations. To simulate sea surface temperature it is necessary to have an energy budget which fits into a general ocean circulation model. The main input, from solar flux, is not well known in the tropical Pacific. The authors use two different models to describe the latent flux and the radiative flux at the sea surface. Parameters of concern include the relative humidity, air-sea temperature difference, latent heat formulae, and radiative heat flux. They use these parameters in their models in different ways, and compare results with measurement sets from the Tropical Pacific.

  14. Analysis of auto-ignition of heated hydrogen-air mixtures with different detailed reaction mechanisms

    NASA Astrophysics Data System (ADS)

    Stanković, I.; Merci, B.

    2011-06-01

    Auto-ignition processes of hydrogen, diluted with nitrogen, in heated air are numerically investigated by means of an unsteady laminar flamelet approach in mixture fraction space. The focus is on the auto-ignition delay time and the most reactive mixture fraction as obtained with five chemical mechanisms. Two strongly different levels of dilution, corresponding to experiments in the open literature, are considered. This concerns low-temperature chemistry at atmospheric pressure. The temperature of the air stream is much higher than the temperature of the fuel stream in the cases under study. We extensively investigate the effect of the co-flow temperature, the conditional scalar dissipation rate and the resolution in mixture fraction space for one case. With respect to the conditional scalar dissipation rate, we discuss the Amplitude Mapping Closure (AMC) model with imposed maximum scalar dissipation rate at mixture fraction equal to 0.5, as well as a constant conditional scalar dissipation rate value over the entire mixture fraction value range. We also illustrate that an auto-ignition criterion, based on a temperature rise, leads to similar results as an auto-ignition criterion, based on OH mass fraction, provided that the hydrogen is not too strongly diluted.

  15. Methods of Controlling the Loop Heat Pipe Operating Temperature

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2008-01-01

    The operating temperature of a loop heat pipe (LHP) is governed by the saturation temperature of its compensation chamber (CC); the latter is in turn determined by the balance among the heat leak from the evaporator to the CC, the amount of subcooling carried by the liquid returning to the CC, and the amount of heat exchanged between the CC and ambient. The LHP operating temperature can be controlled at a desired set point by actively controlling the CC temperature. The most common method is to cold bias the CC and use electric heater power to maintain the CC set point temperature. The required electric heater power can be large when the condenser sink is very cold. Several methods have been developed to reduce the control heater power, including coupling block, heat exchanger and separate subcooler, variable conductance heat pipe, by-pass valve with pressure regulator, secondary evaporator, and thermoelectric converter. The paper discusses the operating principles, advantages and disadvantages of each method.

  16. Modeling daily average stream temperature from air temperature and watershed area

    NASA Astrophysics Data System (ADS)

    Butler, N. L.; Hunt, J. R.

    2012-12-01

    Habitat restoration efforts within watersheds require spatial and temporal estimates of water temperature for aquatic species especially species that migrate within watersheds at different life stages. Monitoring programs are not able to fully sample all aquatic environments within watersheds under the extreme conditions that determine long-term habitat viability. Under these circumstances a combination of selective monitoring and modeling are required for predicting future geospatial and temporal conditions. This study describes a model that is broadly applicable to different watersheds while using readily available regional air temperature data. Daily water temperature data from thirty-eight gauges with drainage areas from 2 km2 to 2000 km2 in the Sonoma Valley, Napa Valley, and Russian River Valley in California were used to develop, calibrate, and test a stream temperature model. Air temperature data from seven NOAA gauges provided the daily maximum and minimum air temperatures. The model was developed and calibrated using five years of data from the Sonoma Valley at ten water temperature gauges and a NOAA air temperature gauge. The daily average stream temperatures within this watershed were bounded by the preceding maximum and minimum air temperatures with smaller upstream watersheds being more dependent on the minimum air temperature than maximum air temperature. The model assumed a linear dependence on maximum and minimum air temperature with a weighting factor dependent on upstream area determined by error minimization using observed data. Fitted minimum air temperature weighting factors were consistent over all five years of data for each gauge, and they ranged from 0.75 for upstream drainage areas less than 2 km2 to 0.45 for upstream drainage areas greater than 100 km2. For the calibration data sets within the Sonoma Valley, the average error between the model estimated daily water temperature and the observed water temperature data ranged from 0.7

  17. Laminar natural convection heat transfer and air flow in three-dimensional cubic enclosures with a partially heated wall

    NASA Astrophysics Data System (ADS)

    Mellah, S.; Ben-Cheikh, N.; Ben-Beya, B.; Lili, T.

    2015-03-01

    In the present study, a finite volume computational procedure and a full multigrid technique are used to investigate laminar natural convection in partially heated cubic enclosures. Effects of heated strip disposition in the enclosure on the heat transfer rate are studied. Results are presented in the form of flow lines, isotherms plots, average Nusselt numbers, and average temperature on the heat source surface. Statistical distributions of temperature and average velocity fields and their root-mean-square values are presented and discussed.

  18. The effect of air flow on the temperature distribution and the harmonic conversion efficiency of the ADP crystal with large aperture in the temperature control scheme

    NASA Astrophysics Data System (ADS)

    Sun, Fuzhong; Zhang, Peng; Lu, Lihua; Xiang, Yong; Bai, Qingshun

    2016-03-01

    This paper presented a temperature control scheme for ammonium dihydrogen phosphate (ADP) crystal of Ф80 mm in diameter, and the influence of the air flow was also studied. This research aims to obtain the high energy, high frequency laser with large aperture under the non-critical phase matching (NCPM). Firstly, thermal analysis was carried out to investigate the air flow property in the cavity, as well as the effect of ambient temperature was analyzed. Secondly, the temperature distributions of air flow were achieved using the Finite Volume Method (FVM), and this prediction was validated by the experiment results. Finally, the effect of air flow in the cavity was obtained from the heating method, and the variation of harmonic conversion efficiency caused by the ambient temperature was also highlighted.

  19. A novel trapezoid fin pattern applicable for air-cooled heat sink

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Hung; Wang, Chi-Chuan

    2015-11-01

    The present study proposed a novel step or trapezoid surface design applicable to air-cooled heat sink under cross flow condition. A total of five heat sinks were made and tested, and the corresponding fin patterns are (a) plate fin; (b) step fin (step 1/3, 3 steps); (c) 2-step fin (step 1/2, 2 steps); (d) trapezoid fin (trap 1/3, cutting 1/3 length from the rear end) and (e) trapezoid fin (trap 1/2, cutting 1/2 length from the rear end). The design is based on the heat transfer augmentation via (1) longer perimeter of entrance region and (2) larger effective temperature difference at the rear part of the heat sink. From the test results, it is found that either step or trapezoid design can provide a higher heat transfer conductance and a lower pressure drop at a specified frontal velocity. The effective conductance of trap 1/3 design exceeds that of plate surface by approximately 38 % at a frontal velocity of 5 m s-1 while retains a lower pressure drop of 20 % with its surface area being reduced by 20.6 %. For comparisons exploiting the overall thermal resistance versus pumping power, the resultant thermal resistance of the proposed trapezoid design 1/3, still reveals a 10 % lower thermal resistance than the plate fin surface at a specified pumping power.

  20. Composite wall concept for high temperature turbine shrouds: Heat transfer analysis

    NASA Technical Reports Server (NTRS)

    Stepka, F. S.; Ludwig, L. P.

    1980-01-01

    A heat transfer analysis was made of a composite wall shroud consisting of a ceramic thermal barrier layer bonded to a porous metal layer which, in turn, is bonded to a metal base. The porous metal layer serves to mitigate the strain differences between the ceramic and the metal base. Various combinations of ceramic and porous metal layer thicknesses and of porous metal densities and thermal conductivities were investigated to determine the layer thicknesses required to maintain a limiting temperature in the porous metal layer. Analysis showed that the composite wall offered significant air cooling flow reductions compared to an all impingement air cooled, all metal shroud.

  1. Technique for determination of accurate heat capacities of volatile, powdered, or air-sensitive samples using relaxation calorimetry

    NASA Astrophysics Data System (ADS)

    Marriott, Robert A.; Stancescu, Maria; Kennedy, Catherine A.; White, Mary Anne

    2006-09-01

    We introduce a four-step technique for the accurate determination of the heat capacity of volatile or air-sensitive samples using relaxation calorimetry. The samples are encapsulated in a hermetically sealed differential scanning calorimetry pan, in which there is an internal layer of Apiezon N grease to assist thermal relaxation. Using the Quantum Design physical property measurement system to investigate benzoic acid and copper standards, we find that this method can lead to heat capacity determinations accurate to ±2% over the temperature range of 1-300K, even for very small samples (e.g., <10mg and contributing ca. 20% to the total heat capacity).

  2. Effect of heat waves on VOC emissions from vegetation and urban air quality

    NASA Astrophysics Data System (ADS)

    Churkina, G.; Kuik, F.; Lauer, A.; Bonn, B.; Butler, T. M.

    2015-12-01

    Programs to plant millions of trees in cities around the world aim at the reduction of summer temperatures, increase carbon storage, storm water control, provision of space for recreation, as well as poverty alleviation. Although these multiple benefits speak positively for urban greening programs, the programs do not take into account how close human and natural systems are coupled in urban areas. Elevated temperatures together with anthropogenic emissions of air and water pollutants distinguish the urban system. Urban and sub-urban vegetation responds to ambient changes and reacts with pollutants. Neglecting this coupling may lead to unforeseen drawbacks of urban greening programs. The potential for emissions of volatile organic compounds (VOC) from vegetation combined with anthropogenic emissions to produce ozone has long been recognized. This potential increases under rising temperatures. Here we investigate how heat waves affect emissions of VOC from urban vegetation and corresponding ground-level ozone. In this study we use Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM) to quantify these feedbacks in Berlin, Germany during the 2006 heat wave. VOC emissions from vegetation are simulated with MEGAN 2.0 coupled with WRF-CHEM. Our preliminary results indicate that contribution of VOCs from vegetation to ozone formation may increase by more than twofold during the heat wave period. We highlight the importance of the vegetation for urban areas under changing climate and discuss associated tradeoffs.

  3. Optimum outlet temperature of solar collector for maximum work output for an Otto air-standard cycle with ideal regeneration

    SciTech Connect

    Eldighidy, S.M. )

    1993-09-01

    The optimum solar collector outlet temperature for maximizing the work output for an Otto air-standard cycle with ideal regeneration is investigated. A mathematical model for the energy balance on the solar collector along with the useful work output and the thermal efficiency of the Otto air-standard cycle with ideal regeneration is developed. The optimum solar collector outlet temperature for maximum work output is determined. The effect of radiative and convective heat losses from the solar collector, on the optimum outlet temperature is presented. The results reveal that the highest solar collector outlet temperature and, therefore, greatest Otto cycle efficiency and work output can be attained with the lowest values of radiative and convective heat losses. Moreover, high cycle work output (as a fraction of absorbed solar energy) and high efficiency of an Otto heat engine with ideal regeneration, driven by a solar collector system, can be attained with low compression ratio.

  4. NGNP/HTE full-power operation at reduced high-temperature heat exchanger temperatures.

    SciTech Connect

    VIlim, R.; Nuclear Engineering Division

    2009-03-12

    Operation of the Next Generation Nuclear Plant (NGNP) with reduced reactor outlet temperature at full power was investigated for the High Temperature Electrolysis (HTE) hydrogen-production application. The foremost challenge for operation at design temperature is achieving an acceptably long service life for heat exchangers. In both the Intermediate Heat Exchanger (IHX) and the Process Heat Exchanger (PHX) (referred to collectively as high temperature heat exchangers) a pressure differential of several MPa exists with temperatures at or above 850 C. Thermal creep of the heat exchanger channel wall may severely limit heat exchanger life depending on the alloy selected. This report investigates plant performance with IHX temperatures reduced by lowering reactor outlet temperature. The objective is to lower the temperature in heat transfer channels to the point where existing materials can meet the 40 year lifetime needed for this component. A conservative estimate for this temperature is believed to be about 700 C. The reactor outlet temperature was reduced from 850 C to 700 C while maintaining reactor power at 600 MWt and high pressure compressor outlet at 7 MPa. We included a previously reported design option for reducing temperature at the PHX. Heat exchanger lengths were adjusted to reflect the change in performance resulting from coolant property changes and from resizing related to operating-point change. Turbomachine parameters were also optimized for the new operating condition. An integrated optimization of the complete system including heat transfer equipment was not performed. It is estimated, however, that by performing a pinch analysis the combined plant efficiency can be increased from 35.5 percent obtained in this report to a value between 38.5 and 40.1 percent. Then after normalizing for a more than three percent decrease in commodities inventory compared to the reference plant, the commodities-normalized efficiency lies between 40.0 and 41.3. This

  5. The Atlanta Urban Heat Island Mitigation and Air Quality Modeling Project: How High-Resoution Remote Sensing Data Can Improve Air Quality Models

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William L.; Khan, Maudood N.

    2006-01-01

    The Atlanta Urban Heat Island and Air Quality Project had its genesis in Project ATLANTA (ATlanta Land use Analysis: Temperature and Air quality) that began in 1996. Project ATLANTA examined how high-spatial resolution thermal remote sensing data could be used to derive better measurements of the Urban Heat Island effect over Atlanta. We have explored how these thermal remote sensing, as well as other imaged datasets, can be used to better characterize the urban landscape for improved air quality modeling over the Atlanta area. For the air quality modeling project, the National Land Cover Dataset and the local scale Landpro99 dataset at 30m spatial resolutions have been used to derive land use/land cover characteristics for input into the MM5 mesoscale meteorological model that is one of the foundations for the Community Multiscale Air Quality (CMAQ) model to assess how these data can improve output from CMAQ. Additionally, land use changes to 2030 have been predicted using a Spatial Growth Model (SGM). SGM simulates growth around a region using population, employment and travel demand forecasts. Air quality modeling simulations were conducted using both current and future land cover. Meteorological modeling simulations indicate a 0.5 C increase in daily maximum air temperatures by 2030. Air quality modeling simulations show substantial differences in relative contributions of individual atmospheric pollutant constituents as a result of land cover change. Enhanced boundary layer mixing over the city tends to offset the increase in ozone concentration expected due to higher surface temperatures as a result of urbanization.

  6. Numerical simulation of heat transfer performance of an air-cooled steam condenser in a thermal power plant

    NASA Astrophysics Data System (ADS)

    Gao, Xiufeng; Zhang, Chengwei; Wei, Jinjia; Yu, Bo

    2009-09-01

    Numerical simulation of the thermal-flow characteristics and heat transfer performance is made of an air-cooled steam condenser (ACSC) in a thermal power plant by considering the effects of ambient wind speed and direction, air-cooled platform height, location of the main factory building and terrain condition. A simplified physical model of the ACSC combined with the measured data as input parameters is used in the simulation. The wind speed effects on the heat transfer performance and the corresponding steam turbine back pressure for different heights of the air-cooled platform are obtained. It is found that the turbine back pressure (absolute pressure) increases with the increase of wind speed and the decrease of platform height. This is because wind can not only reduce the flowrate in the axial fans, especially at the periphery of the air-cooled platform, due to cross-flow effects, but also cause an air temperature increase at the fan inlet due to hot air recirculation, resulting in the deterioration of the heat transfer performance. The hot air recirculation is found to be the dominant factor because the main factory building is situated on the windward side of the ACSC.

  7. The Influence of a Dispersion Cone on the Temperature Distribution in the Heat Exchanger of a Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    MusiaŁ, M.; Borcuch, M.; Wojciechowski, K.

    2016-03-01

    This paper presents the results of a numerical simulation of heat distribution in the heat exchanger of a prototype thermoelectric generator constructed and examined in the Thermoelectric Research Laboratory in AGH University, Cracow, Poland. The area of interest was to prepare a numerical model and determine the influence of a dispersion cone on the temperature distribution along the heat exchanger. The role of a dispersion element is to mix the air stream to improve the flow between the internal heat exchanger's fins in order to enhance heat exchange. The estimation of power output parameters and exchanger efficiency has been performed in order to assess the cone impact for three selected air inlet temperatures. The results show that the presence of the cone increases the efficiency of the thermoelectric generator by at least 25%.

  8. Analysis of Kuwait Temperature Records: Test of Heat Island Existence in Kuwait City Arid Environment.

    NASA Astrophysics Data System (ADS)

    Nasrallah, Hasan Ali

    Very few arid land cities have been studied to determine local climate effects developing from rapid urban growth in the twentieth century. Kuwait City in the State of Kuwait is examined to determine the significance of urban growth on heating in the region. The study examines recent changes in temperature for the State of Kuwait for the period 1958-1980. During this time period, Kuwait has experienced explosive urban growth from 0.2 million to 1.7 million population. Simple parametric inferential statistics are employed to monthly temperature records from seven locations in and adjacent to Kuwait City. These tests are conducted to determine the connection between urbanization and the development of urban heating effects. The statistical tests employ a national "benchmark" desert site; a rural, agricultural benchmark site in the State of Kuwait; and stations in Bahrain, Eilat, Riyadh, Abadan, and Baghdad. The analysis illustrates that there is only a modest level of urban heating detectable in temperature records from the region of Kuwait. This finding runs counter to prevailing literature on urban climatology, which generally states that urban heating depends strongly on urban extent and population growth. Upon inspection of geographic location and surficial characteristics of Kuwait City, two hypotheses are suggested for the low order urban heating detected: (1) cooling effects of advected Arabian Gulf air across the city, and, (2) the lack of substantive spatial differences of surface albedo, thermal inertia, surface moisture, and aerosol heating. However, Kuwait's morphological (i.e., building geometry) characteristics, according to urban canyon-heat island theory, should have promoted a 7 ^circC heat island in Kuwait City. A test of this theory revealed no such heat island of that magnitude. One major reason relates to station network inadequacy to portray the extent of Kuwait City's heat island development through time. More research, including modeling and

  9. Effects of Temperature Gradients and Heat Fluxes on High-Temperature Oxidation

    SciTech Connect

    Holcomb, G.R.

    2008-04-01

    The effects of a temperature gradient and heat flux on point defect diffusion in protective oxide scales were examined. Irreversible thermodynamics were used to expand Fick’s first law of diffusion to include a heat-flux term—a Soret effect. Oxidation kinetics were developed for the oxidation of cobalt and of nickel doped with chromium. Research is described to verify the effects of a heat flux by oxidizing pure cobalt in a temperature gradient at 900 °C, and comparing the kinetics to isothermal oxidation. No evidence of a heat flux effect was found.

  10. Evidence of increased levels of space heat consumption and air leakage associated with forced air heating systems in houses in the Pacific Northwest

    SciTech Connect

    Parker, D.S. )

    1989-01-01

    This paper examines energy consumption and air-tightness data from 820 electrically heated houses built since 1980 in the Pacific Northwest. Half of the buildings were energy-efficient structures built to the model conservation standards (MCS) developed in the region. The rest of the sample were conventional new houses intended to be representative of current building practices. The houses were monitored for a period of one year with the structures audited to determine insulation levels and occupancy characteristics. In the analysis of the monitored data we found that heating system type plays a large role in determining the relative efficiency of electrically heated houses. Residences with electric forced-air heating systems used an average of 1.40 kWh/ft{sup 2} (15.1 kWh/m{sup 2}) more space heating energy than those without them. We also discovered through the use of fan pressurization and perfluorocarbon tracer gas tests (PFT) that houses with forced-air systems exhibited substantially higher level of air leakage. The tracer gas tests indicated an average of 70% higher levels of air change rate in the control houses with forced-air space heat as opposed to baseboard systems.

  11. Fluidized bed heat exchanger with water cooled air distributor and dust hopper

    DOEpatents

    Jukkola, Walfred W.; Leon, Albert M.; Van Dyk, Jr., Garritt C.; McCoy, Daniel E.; Fisher, Barry L.; Saiers, Timothy L.; Karstetter, Marlin E.

    1981-11-24

    A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.

  12. Performance Characteristics of Cross-Fin-Tube-Type Heat Exchanger for Air Conditioner

    NASA Astrophysics Data System (ADS)

    Sasaki, Naoe; Kakiyama, Shiro; Sanuki, Noriyoshi

    The effects of enhanced heat transfer tube with ability to control the heat transfer disturbance by mechanical tube expanding were experimentally investigated on the performance characteristics of air-cooled cross-fin-tube-type heat exchanger for air conditioner. Three kinds of the enhanced heat transfer tube were developed and used in the experiment. The enhanced heat transfer tube was a kind of spirally grooved tube and composed with the fins smaller than those of the conventional spirally grooved tube excepting four fins located in orthogonal position on the tube circumference. The optimum groove number to enhance the performance of heat exchanger was also shown.

  13. Characterization of polyparaphenylene subjected to different heat treatment temperatures

    SciTech Connect

    Brown, S.D.M.; Matthews, M.J.; Marucci, A.; Pimenta, M.A.; Dresselhaus, M.S.; Endo, M.; Hiraoka, T.

    1998-07-01

    The authors investigated the structural and electronic properties of samples of polyparaphenylene (PPP), derived from two synthesis methods (the Kovacic and Yamamoto methods). These samples have been subjected to different heat-treatment temperatures (650 C {le} T{sub HT} {le} 2,000 C) and their properties are compared to the polymer prior to heat-treatment (T{sub HT} = 0 C). The photoluminescence (PL) spectra of heat-treated PPP based on the two synthesis methods reflects the differences in electronic structure of the starting polymers. The PL emission from the heat-treated Yamamoto polymer is quenched at much lower T{sub HT} than from the Kovacic material. However, Raman spectra taken of the material resulting from heat-treatment of the polymer (using both preparation methods) indicate the presence of phonon modes for PPP in samples at T{sub HT} up to 650 C.

  14. Thermo-Physical Properties of Intermediate Temperature Heat Pipe Fluids

    NASA Technical Reports Server (NTRS)

    Beach, Duane E. (Technical Monitor); Devarakonda, Angirasa; Anderson, William G.

    2005-01-01

    Heat pipes are among the most promising technologies for space radiator systems. The paper reports further evaluation of potential heat pipe fluids in the intermediate temperature range of 400 to 700 K in continuation of two recent reports. More thermo-physical property data are examined. Organic, inorganic, and elemental substances are considered. The evaluation of surface tension and other fluid properties are examined. Halides are evaluated as potential heat pipe fluids. Reliable data are not available for all fluids and further database development is necessary. Many of the fluids considered are promising candidates as heat pipe fluids. Water is promising as a heat pipe fluid up to 500 to 550 K. Life test data for thermo-chemical compatibility are almost non-existent.

  15. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  16. Optical fiber temperature sensors: applications in heat treatments for foods

    NASA Astrophysics Data System (ADS)

    Sosa-Morales, María Elena; Rojas-Laguna, Roberto; López-Malo, Aurelio

    2010-10-01

    Heat treatments are important methods to provide safe foods. Conventional heat treatments involve the application of steam and recently microwave treatments have been studied and applied as they are considered as fast, clean and efficient. Optical fiber sensing is an excellent tool to measure the temperature during microwave treatments. This paper shows the application of optical fiber temperature sensing during the heat treatment of different foods such as vegetables (jalapeño pepper and cilantro), cheese and ostrich meat. Reaching the target temperature, important bacteria were inactivated: Salmonella, Listeria and Escherichia coli. Thus, the use of optical fiber sensors has resulted be a useful way to develop protocols to inactivate microorganisms and to propose new methods for food processing.

  17. Effect of heat treatment temperature on nitinol wire

    NASA Astrophysics Data System (ADS)

    Cai, S.; Schaffer, J. E.; Daymond, M. R.; Yu, C.; Ren, Y.

    2014-08-01

    In-situ synchrotron X-ray diffraction has been used to study the influence of the heat treatment temperature on the subsequent micromechanical behavior of nitinol wire. It was found that increase in the heat treatment temperature rotated the austenite texture from the {332}B2 fiber towards the {111}B2 fiber, and the texture of the Stress-Induced Martensite phase changed from the ( 1 ¯ 40)B19' to the ( 1 ¯ 20)B19' fiber accordingly. Heat treatment at a low temperature reduces the internal residual strains in the austenite during super-elastic deformation and therefore improves the materials fatigue performance. The development of internal residual strains in austenite is controlled by transformation induced plasticity and the reversal martensite to austenite transformation.

  18. Effect of heat treatment temperature on nitinol wire

    SciTech Connect

    Cai, S.; Schaffer, J. E.; Daymond, M. R.; Yu, C.; Ren, Y.

    2014-08-18

    In-situ synchrotron X-ray diffraction has been used to study the influence of the heat treatment temperature on the subsequent micromechanical behavior of nitinol wire. It was found that increase in the heat treatment temperature rotated the austenite texture from the (332){sub B2} fiber towards the (111){sub B2} fiber, and the texture of the Stress-Induced Martensite phase changed from the (1{sup ¯}40){sub B19'} to the (1{sup ¯}20){sub B19'} fiber accordingly. Heat treatment at a low temperature reduces the internal residual strains in the austenite during super-elastic deformation and therefore improves the materials fatigue performance. The development of internal residual strains in austenite is controlled by transformation induced plasticity and the reversal martensite to austenite transformation.

  19. Surface temperature transients from pulsed laser heating of UO 2

    NASA Astrophysics Data System (ADS)

    Yagnik, S. K.; Olander, D. R.

    1988-07-01

    Surface heating of UO 2 by a pulsed laser was investigated theoretically and experimentally. Targets of solid uranium dioxide in vacuum were rapidly heated to peak temperatures of 3700 K, as measured by a fast-response automatic optical pyrometer. The measured target surface temperatures were compared with a one-dimensional heat transport model that accounts for conduction and melting in the solid and ablation and radiation from the surface. Congruent vaporization of UO 2 was assumed. The measured temporal and spatial characteristics of the laser beam as well as temperature-dependent physical and thermodynamic properties of UO 2 are used as input to the calculations. Agreement of the theory with the measurements was further validated by post-irradiation microscopic examination of the target surface. Additional tests were performed to assess qualitatively the attenuation of laser light and thermal radiation from the surface by the vapor blow-off from the target. This effect was found to be insignificant.

  20. Testing Method for Heat Resistance Under Temperature Gradient

    NASA Astrophysics Data System (ADS)

    Takagi, K.; Kawasaki, A.; Itoh, Y.; Harada, Y.; Ono, F.

    2007-12-01

    “Testing Method for Heat Resistance under Temperature Gradient” is a Japanese Industrial Standard (JIS) newly established by the Minister of Economy, Trade and Industry, after deliberations by the Japanese Industrial Standards Committee, in accordance with the Industrial Standardization Law. This standard specified the testing method for heat resistance under temperature gradient of materials and coated members of equipment exposed to high temperature, such as aircraft engines, gas turbines, and so on. This paper introduces the principle and overview of the established standard. In addition, taking the heat cycle test using the burner rig for instance, we specifically illustrate the acquirable data and their analysis in the standard. Monitoring of the effective thermal conductivity and acoustic emission particularly enables to the non-destructive evaluation of failure cycle.

  1. CARS Temperature and Species Measurements For Air Vehicle Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Gord, James R.; Grisch, Frederic; Klimenko, Dmitry; Clauss, Walter

    2005-01-01

    The coherent anti-Stokes Raman spectroscopy (CARS) method has recently been used in the United States and Europe to probe several different types of propulsion systems for air vehicles. At NASA Langley Research Center in the United States, CARS has been used to simultaneously measure temperature and the mole fractions of N2, O2 and H2 in a supersonic combustor, representative of a scramjet engine. At Wright- Patterson Air Force Base in the United States, CARS has been used to simultaneously measure temperature and mole fractions of N2, O2 and CO2, in the exhaust stream of a liquid-fueled, gas-turbine combustor. At ONERA in France and the DLR in Germany researchers have used CARS to measure temperature and species concentrations in cryogenic LOX-H2 rocket combustion chambers. The primary aim of these measurements has been to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.

  2. Microwave temperature profiler for clear air turbulence prediction

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    1992-01-01

    A method is disclosed for determining Richardson Number, Ri, or its reciprocal, RRi, for clear air prediction using measured potential temperature and determining the vertical gradient of potential temperature, d(theta)/dz. Wind vector from the aircraft instrumentation versus potential temperature, dW/D(theta), is determined and multiplies by d(theta)/dz to obtain dW/dz. Richardson number or its reciprocal is then determined from the relationship Ri = K(d theta)/dz divided by (dW/dz squared) for use in detecting a trend toward a threshold value for the purpose of predicting clear air turbulence. Other equations for this basic relationship are disclosed together with the combination of other atmospheric observables using multiple regression techniques.

  3. Symmetric scaling properties in global surface air temperature anomalies

    NASA Astrophysics Data System (ADS)

    Varotsos, Costas A.; Efstathiou, Maria N.

    2015-08-01

    We have recently suggested "long-term memory" or internal long-range correlation within the time-series of land-surface air temperature (LSAT) anomalies in both hemispheres. For example, an increasing trend in the LSAT anomalies is followed by another one at a different time in a power-law fashion. However, our previous research was mainly focused on the overall long-term persistence, while in the present study, the upward and downward scaling dynamics of the LSAT anomalies are analysed, separately. Our results show that no significant fluctuation differences were found between the increments and decrements in LSAT anomalies, over the whole Earth and over each hemisphere, individually. On the contrary, the combination of land-surface air and sea-surface water temperature anomalies seemed to cause a departure from symmetry and the increments in the land and sea surface temperature anomalies appear to be more persistent than the decrements.

  4. Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Cunnington, George R.; Knutson, Jeffrey R.

    2012-01-01

    Combined radiation and conduction heat transfer through a high-temperature, high-porosity, rigid multiple-fiber fibrous insulation was modeled using a thermal model previously used to model heat transfer in flexible single-fiber fibrous insulation. The rigid insulation studied was alumina enhanced thermal barrier (AETB) at densities between 130 and 260 kilograms per cubic meter. The model consists of using the diffusion approximation for radiation heat transfer, a semi-empirical solid conduction model, and a standard gas conduction model. The relevant parameters needed for the heat transfer model were estimated from steady-state thermal measurements in nitrogen gas at various temperatures and environmental pressures. The heat transfer modeling methodology was evaluated by comparison with standard thermal conductivity measurements, and steady-state thermal measurements in helium and carbon dioxide gases. The heat transfer model is applicable over the temperature range of 300 to 1360 K, pressure range of 0.133 to 101.3 x 10(exp 3) Pa, and over the insulation density range of 130 to 260 kilograms per cubic meter in various gaseous environments.

  5. Temperature-gated thermal rectifier for active heat flow control.

    PubMed

    Zhu, Jia; Hippalgaonkar, Kedar; Shen, Sheng; Wang, Kevin; Abate, Yohannes; Lee, Sangwook; Wu, Junqiao; Yin, Xiaobo; Majumdar, Arun; Zhang, Xiang

    2014-08-13

    Active heat flow control is essential for broad applications of heating, cooling, and energy conversion. Like electronic devices developed for the control of electric power, it is very desirable to develop advanced all-thermal solid-state devices that actively control heat flow without consuming other forms of energy. Here we demonstrate temperature-gated thermal rectification using vanadium dioxide beams in which the environmental temperature actively modulates asymmetric heat flow. In this three terminal device, there are two switchable states, which can be regulated by global heating. In the "Rectifier" state, we observe up to 28% thermal rectification. In the "Resistor" state, the thermal rectification is significantly suppressed (<1%). To the best of our knowledge, this is the first demonstration of solid-state active-thermal devices with a large rectification in the Rectifier state. This temperature-gated rectifier can have substantial implications ranging from autonomous thermal management of heating and cooling systems to efficient thermal energy conversion and storage. PMID:25010206

  6. Dependence of the isobaric specific heat capacity of water vapor on the pressure and temperature

    NASA Astrophysics Data System (ADS)

    Vestfálová, Magda; Šafařík, Pavel

    2016-03-01

    The fundamental base for the calculation of the thermodynamic properties of substances is the thermal equation of state and the dependence of some of the basic specific heat capacities on temperature. Dependence of isobaric specific heat capacity on the pressure can already be deduced from these relations. International standards of the properties of water and steam are based on the new scientific formulation IAPWS-95. The equation is in the form of Helmholtz dimensionless function with very much parameters. The aim of this paper is to design the simple dependence of the isobaric specific heat capacity of water vapor on the pressure and temperature in the range in which the steam occurs in the atmospheric moist air.

  7. High temperature heat pipe research at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Tower, L. K.; Kaufman, W. B.

    1978-01-01

    In the course of studies of thermionic power plants for space applications, high-temperature refractory metal heat pipes have been designed and built for alkali metal working fluids. Fabrication of tungsten wire-reinforced tantalum pipes by chemical vapor deposition is discussed; the development of reinforced pipes with integral arteries produced by chemical vapor deposition is also mentioned. The feasibility of using lithium, sodium, potassium, cesium or mercury as the working fluid in the heat pipes is also reviewed. Operation of a lithium-filled heat pipe of about 3-kW capacity for several thousand hours is reported.

  8. High-temperature ceramic heat exchanger element for a solar thermal receiver

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.

    1982-01-01

    A study has been completed on the development of a high-temperature ceramic heat exchanger element to be integrated into a solar reciver producing heated air. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The ceramic shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is fabricated by an innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. Fabrication of a one-half scale demonstrator ceramic receiver has been completed.

  9. Spatial interpolation of monthly mean air temperature data for Latvia

    NASA Astrophysics Data System (ADS)

    Aniskevich, Svetlana

    2016-04-01

    Temperature data with high spatial resolution are essential for appropriate and qualitative local characteristics analysis. Nowadays the surface observation station network in Latvia consists of 22 stations recording daily air temperature, thus in order to analyze very specific and local features in the spatial distribution of temperature values in the whole Latvia, a high quality spatial interpolation method is required. Until now inverse distance weighted interpolation was used for the interpolation of air temperature data at the meteorological and climatological service of the Latvian Environment, Geology and Meteorology Centre, and no additional topographical information was taken into account. This method made it almost impossible to reasonably assess the actual temperature gradient and distribution between the observation points. During this project a new interpolation method was applied and tested, considering auxiliary explanatory parameters. In order to spatially interpolate monthly mean temperature values, kriging with external drift was used over a grid of 1 km resolution, which contains parameters such as 5 km mean elevation, continentality, distance from the Gulf of Riga and the Baltic Sea, biggest lakes and rivers, population density. As the most appropriate of these parameters, based on a complex situation analysis, mean elevation and continentality was chosen. In order to validate interpolation results, several statistical indicators of the differences between predicted values and the values actually observed were used. Overall, the introduced model visually and statistically outperforms the previous interpolation method and provides a meteorologically reasonable result, taking into account factors that influence the spatial distribution of the monthly mean temperature.

  10. Air pollution, temperature and pediatric influenza in Brisbane, Australia.

    PubMed

    Xu, Zhiwei; Hu, Wenbiao; Williams, Gail; Clements, Archie C A; Kan, Haidong; Tong, Shilu

    2013-09-01

    Previous studies have demonstrated the importance of weather variables in influencing the incidence of influenza. However, the role of air pollution is often ignored in identifying the environmental drivers of influenza. This research aims to examine the impacts of air pollutants and temperature on the incidence of pediatric influenza in Brisbane, Australia. Lab-confirmed daily data on influenza counts among children aged 0-14years in Brisbane from 2001 January 1st to 2008 December 31st were retrieved from Queensland Health. Daily data on maximum and minimum temperatures for the same period were supplied by the Australian Bureau of Meteorology. Winter was chosen as the main study season due to it having the highest pediatric influenza incidence. Four Poisson log-linear regression models, with daily pediatric seasonal influenza counts as the outcome, were used to examine the impacts of air pollutants (i.e., ozone (O3), particulate matter≤10μm (PM10) and nitrogen dioxide (NO2)) and temperature (using a moving average of ten days for these variables) on pediatric influenza. The results show that mean temperature (Relative risk (RR): 0.86; 95% Confidence Interval (CI): 0.82-0.89) was negatively associated with pediatric seasonal influenza in Brisbane, and high concentrations of O3 (RR: 1.28; 95% CI: 1.25-1.31) and PM10 (RR: 1.11; 95% CI: 1.10-1.13) were associated with more pediatric influenza cases. There was a significant interaction effect (RR: 0.94; 95% CI: 0.93-0.95) between PM10 and mean temperature on pediatric influenza. Adding the interaction term between mean temperature and PM10 substantially improved the model fit. This study provides evidence that PM10 needs to be taken into account when evaluating the temperature-influenza relationship. O3 was also an important predictor, independent of temperature. PMID:23911338

  11. Temperature distribution in a layer of an active thermal insulation system heated by a gas burner

    SciTech Connect

    Maruyama, Shigenao . Inst. of Fluid Science); Shimizu, Naotaka . Dept. of Mechanical Engineering)

    1993-12-01

    The temperature distribution in a layer of an active thermal insulation system was measured. A semitransparent porous layer was heated by a gas burner, and air was injected from the back face of the layer. The temperature in the layer was measured by thermocouples. The temperature distributions were compared with numerical solutions. The thermal penetration depth of the active thermal insulation layer with gas injection can be reduced to 3 mm. When the surface temperature of a conventional insulation layer without gas injection reached 1,500 K, the temperature at the back surface of a 10-mm-thick layer reached 600 K. The transient temperature of the active thermal insulation reached a steady state very quickly compared with that of the conventional insulation. These characteristics agreed qualitatively with the numerical solutions.

  12. An anatomically realistic temperature phantom for radiofrequency heating measurements

    PubMed Central

    Graedel, Nadine N.; Polimeni, Jonathan R.; Guerin, Bastien; Gagoski, Borjan; Wald, Lawrence L.

    2014-01-01

    Purpose An anthropomorphic phantom with realistic electrical properties allows for a more accurate reproduction of tissue current patterns during excitation. A temperature map can then probe the worst-case heating expected in the un-perfused case. We describe an anatomically realistic human head phantom that allows rapid 3D temperature mapping at 7 T. Methods The phantom was based on hand-labeled anatomical imaging data and consists of four compartments matching the corresponding human tissues in geometry and electrical properties. The increases in temperature resulting from radiofrequency excitation were measured with MR thermometry using a temperature sensitive contrast agent (TmDOTMA−) validated by direct fiber optic temperature measurements. Results Acquisition of 3D temperature maps of the full phantom with a temperature accuracy better than 0.1°C was achieved with an isotropic resolution of 5 mm and acquisition times of 2–4 minutes. Conclusion Our results demonstrate the feasibility of constructing anatomically realistic phantoms with complex geometries incorporating the ability to measure accurate temperature maps in the phantom. The anthropomorphic temperature phantom is expected to provide a useful tool for the evaluation of the heating effects of both conventional and parallel transmit pulses and help validate electromagnetic and temperature simulations. PMID:24549755

  13. Minimizing Thermal Deformation of Aerostatic Spindle System by Temperature Control of Supply Air

    NASA Astrophysics Data System (ADS)

    Yoshioka, Hayato; Matsumura, Shimpei; Hashizume, Hitoshi; Shinno, Hidenori

    Aerostatic spindle systems have been widely used in many machine tools due to their low heat generation and high-speed capability. To meet industrial demands for higher accuracy and higher productivity, such spindle systems have recently become important as the kernel component in an ultraprecision machine tool. In this study, therefore, thermal deformation control for aerostatic spindle systems has been proposed considering heat balance in an objective spindle bearing system. In the proposed method, the temperature of supply air is controlled by monitoring that of exhaust air to minimize the thermal deformation of the spindle. The performance of the thermal deformation control system developed has been evaluated through a series of actual experiments.

  14. Numerical Investigation of Radiative Heat Transfer in Laser Induced Air Plasmas

    NASA Technical Reports Server (NTRS)

    Liu, J.; Chen, Y. S.; Wang, T. S.; Turner, James E. (Technical Monitor)

    2001-01-01

    Radiative heat transfer is one of the most important phenomena in the laser induced plasmas. This study is intended to develop accurate and efficient methods for predicting laser radiation absorption and plasma radiative heat transfer, and investigate the plasma radiation effects in laser propelled vehicles. To model laser radiation absorption, a ray tracing method along with the Beer's law is adopted. To solve the radiative transfer equation in the air plasmas, the discrete transfer method (DTM) is selected and explained. The air plasma radiative properties are predicted by the LORAN code. To validate the present nonequilibrium radiation model, several benchmark problems are examined and the present results are found to match the available solutions. To investigate the effects of plasma radiation in laser propelled vehicles, the present radiation code is coupled into a plasma aerodynamics code and a selected problem is considered. Comparisons of results at different cases show that plasma radiation plays a role of cooling plasma and it lowers the plasma temperature by about 10%. This change in temperature also results in a reduction of the coupling coefficient by about 10-20%. The present study indicates that plasma radiation modeling is very important for accurate modeling of aerodynamics in a laser propelled vehicle.

  15. Automotive Air Conditioning and Heating; Automotive Mechanics (Advanced): 9047.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to provide the student with all the foundations necessary to become employable in the automotive air conditioning and heating trade. The course of study includes an orientation to the world of work, the elementary physics of air conditioning and heating, and laboratory experiments…

  16. Criterion-Referenced Test (CRT) Items for Air Conditioning, Heating and Refrigeration.

    ERIC Educational Resources Information Center

    Davis, Diane, Ed.

    These criterion-referenced test (CRT) items for air conditioning, heating, and refrigeration are keyed to the Missouri Air Conditioning, Heating, and Refrigeration Competency Profile. The items are designed to work with both the Vocational Instructional Management System and Vocational Administrative Management System. For word processing and…

  17. Air Conditioning, Heating, and Ventilating: Construction, Supervision, and Inspection. Course of Study.

    ERIC Educational Resources Information Center

    Messer, John D.

    This course of study on air conditioning, heating, and ventilating is part of a construction, supervision, and inspection series, which provides instructional materials for community or junior college technical courses in the inspection program. Material covered pertains to: piping and piping systems; air movers; boilers; heat exchangers; cooling…

  18. A prospective observational study of the association between cabin and outside air temperature, and patient temperature gradient during helicopter transport in New South Wales.

    PubMed

    Miller, M; Richmond, C; Ware, S; Habig, K; Burns, B

    2016-05-01

    The prevalence of hypothermia in patients following helicopter transport varies widely. Low outside air temperature has been identified as a risk factor. Modern helicopters are insulated and have heating; therefore outside temperature may be unimportant if cabin heat is maintained. We sought to describe the association between outside air, cabin and patient temperature, and having the cabin temperature in the thermoneutral zone (18-36°C) in our helicopter-transported patients. We conducted a prospective observational study over one year. Patient temperature was measured on loading and engines off. Cabin and outside air temperature were recorded for the same time periods for each patient, as well as in-flight. Previously identified risk factors were recorded. Complete data was obtained for 133 patients. Patients' temperature increased by a median of 0.15°C (P=0.013). There was no association between outside air temperature or cabin temperature and patient temperature gradient. The best predictor of patient temperature on landing was patient temperature on loading (R2=0.86) and was not improved significantly when other risk factors were added (P=0.63). Thirty-five percent of patients were hypothermic on loading, including those transferred from district hospitals. No patient loaded normothermic became hypothermic when the cabin temperature was in the thermoneutral zone (P=0.04). A large proportion of patients in our sample were hypothermic at the referring hospital. The best predictor of patient temperature on landing is patient temperature on loading. This has implications for studies that fail to account for pre-flight temperature. PMID:27246941

  19. Comparative evaluation of air cell and eggshell temperature measurement methodologies used in broiler hatching eggs during late incubation.

    PubMed

    Peebles, E D; Zhai, W; Gerard, P D

    2012-07-01

    The current study was conducted to compare and contrast the uses of 2 devices (temperature transponder or infrared thermometer) and their locations (inner air cell membrane or outer eggshell surface) in Ross × Ross 708 broiler hatching eggs. The air cells of 14 embryonated and 10 nonembryonated eggs were implanted with temperature transponders on d 13.5 of incubation. Likewise, for these same eggs, eggshell surface temperature was detected with the use of transponders and an infrared thermometer. Temperatures were recorded every 12 h between 14.5 and 18 d of incubation, and graphs and corresponding regression values were used to track the temperatures over these time periods. The temperature readings using all methods in embryonated and nonembryonated eggs were positively correlated. In nonembryonated eggs, temperatures in the air cell and on the eggshell surface using transponders were higher than those on the eggshell surface using an infrared thermometer. Mean air cell temperature readings of embryonated eggs using transponders were higher than those of the eggshell, as determined with the use of transponders or an infrared thermometer. Furthermore, the differences in air cell temperature using transponders and eggshell temperature using an infrared thermometer in embryonated eggs increased with embryonic age. These readings confirmed increased embryo heat production during the incubational period examined. It was further concluded that when compared with actual embryo body temperatures determined in previous studies, the use of transponders in the air cells of broiler hatching eggs detected a higher and closer temperature than eggshell surface temperature. It is suggested that the air cell transponders in embryonated eggs circumvented the confounding effects of the thermal barrier properties of the eggshell and the flow of air across its surface. PMID:22700496

  20. Experimental evaluation of dry/wet air-cooled heat exchangers. Progress report

    SciTech Connect

    Hauser, S.G.; Gruel, R.L.; Huenefeld, J.C.; Eschbach, E.J.; Johnson, B.M.; Kreid, D.K.

    1982-08-01

    The ultimate goal of this project was to contribute to the development of improved cooling facilities for power plants. Specifically, the objective during FY-81 was to experimentally determine the thermal performance and operating characteristics of an air-cooled heat exchanger surface manufactured by the Unifin Company. The performance of the spiral-wound finned tube surface (Unifin) was compared with two inherently different platefin surfaces (one developed by the Trane Co. and the other developed by the HOETERV Institute) which were previously tested as a part of the same continuing program. Under dry operation the heat transfer per unit frontal area per unit inlet temperature difference (ITD) of the Unifin surface was 10% to 20% below that of the other two surfaces at low fan power levels. At high fan power levels, the performances of the Unifin and Trane surfaces were essentially the same, and 25% higher than the HOETERV surface. The design of the Unifin surface caused a significantly larger air-side pressure drop through the heat exchanger both in dry and deluge operation. Generally higher overall heat transfer coefficients were calculated for the Unifin surface under deluged operation. They ranged from 2.0 to 3.5 Btu/hr-ft/sup 2/-/sup 0/F as compared to less than 2.0 Btu hr-ft/sup 2/-/sup 0/F for the Trane and HOETERV surfaces under similar conditions. The heat transfer enhancement due to the evaporative cooling effect was also measureably higher with the Unifin surface as compared to the Trane surface. This can be primarily attributed to the better wetting characteristics of the Unifin surface. If the thermal performance of the surfaces are compared at equal face velocities, the Unifin surface is as much as 35% better. This method of comparison accounts for the wetting characteristics while neglecting the effect of pressure drop. Alternatively the surfaces when compared at equal pressure drop essentially the same thermal performance.