Science.gov

Sample records for air temperature humidity

  1. Simultaneous Measurement of Air Temperature and Humidity Based on Sound Velocity and Attenuation Using Ultrasonic Probe

    NASA Astrophysics Data System (ADS)

    Motegi, Takahiro; Mizutani, Koichi; Wakatsuki, Naoto

    2013-07-01

    In this paper, an acoustic technique for air temperature and humidity measurement in moist air is described. The previous ultrasonic probe can enable the estimation of temperature from sound velocity in dry air by making use of the relationship between sound velocity and temperature. However, temperature measurement using the previous ultrasonic probe is not suitable in moist air because sound velocity also depends on humidity, and the temperature estimated from the sound velocity measured in moist air must be adjusted. Moreover, a method of humidity measurement by using only an ultrasonic probe has not been established. Thus, we focus on sound attenuation, which depends on temperature and humidity. Our proposed technique utilizes two parameters, sound velocity and attenuation, and can measure both temperature and humidity simultaneously. The acoustic technique for temperature and humidity measurement has the advantages that instantaneous temperature and humidity can be measured, and the measurement is not affected by thermal radiation because air itself is used as a sensing element. As an experiment, temperature and humidity are measured in a chamber, and compared with the reference values. The experimental results indicate the achievement of a practical temperature measurement accuracy of within +/-0.5 K in moist air, of which the temperature is 293-308 K and relative humidity (RH) is 50-90% RH, and the simultaneous measurement of temperature and humidity.

  2. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  3. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 34 2013-07-01 2013-07-01 false NOX intake-air humidity...

  4. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 32 2010-07-01 2010-07-01 false NOX intake-air humidity...

  5. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 33 2014-07-01 2014-07-01 false NOX intake-air humidity...

  6. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 33 2011-07-01 2011-07-01 false NOX intake-air humidity...

  7. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 34 2012-07-01 2012-07-01 false NOX intake-air humidity...

  8. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    PubMed Central

    Lee, Jing-Nang; Lin, Tsung-Min

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system. PMID:25250390

  9. Modeling validation and control analysis for controlled temperature and humidity of air conditioning system.

    PubMed

    Lee, Jing-Nang; Lin, Tsung-Min; Chen, Chien-Chih

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14 °C, 0006 kg(w)/kg(da) in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  10. Effect of production microclimate on female thermal state with increased temperature and air humidity

    NASA Technical Reports Server (NTRS)

    Machablishvili, O. G.

    1980-01-01

    The thermal state of women during the effect of high air temperature and relative humidity with a varying degree of physical loads was studied. Parameters for air temperature, relative humidity, and air movement were established. It was established that in women the thermo-regulatory stress occurs at lower air temperatures and with lower physical loads than in men. The accumulation of heat in women was revealed with lower air temperature than in men. It is concluded that to preserve the normal physiological state of the female organism it is necessary to create more favorable microclimate conditions and decrease the physical loads.

  11. Evaluating CMIP5 models using AIRS tropospheric air temperature and specific humidity climatology

    NASA Astrophysics Data System (ADS)

    Tian, Baijun; Fetzer, Eric J.; Kahn, Brian H.; Teixeira, Joao; Manning, Evan; Hearty, Thomas

    2013-01-01

    This paper documents the climatological mean features of the Atmospheric Infrared Sounder (AIRS) monthly mean tropospheric air temperature (ta, K) and specific humidity (hus, kg/kg) products as part of the Obs4MIPs project and compares them to those from NASA's Modern Era Retrospective analysis for Research and Applications (MERRA) for validation and 16 models from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) for CMIP5 model evaluation. MERRA is warmer than AIRS in the free troposphere but colder in the boundary layer with differences typically less than 1 K. MERRA is also drier (~10%) than AIRS in the tropical boundary layer but wetter (~30%) in the tropical free troposphere and the extratropical troposphere. In particular, the large MERRA-AIRS specific humidity differences are mainly located in the deep convective cloudy regions indicating that the low sampling of AIRS in the cloudy regions may be the main reason for these differences. In comparison to AIRS and MERRA, the sixteen CMIP5 models can generally reproduce the climatological features of tropospheric air temperature and specific humidity well, but several noticeable biases exist. The models have a tropospheric cold bias (around 2 K), especially in the extratropical upper troposphere, and a double-ITCZ problem in the troposphere from 1000 hPa to 300 hPa, especially in the tropical Pacific. The upper-tropospheric cold bias exists in the most (13 of 16) models, and the double-ITCZ bias is found in all 16 CMIP5 models. Both biases are independent of the reference dataset used (AIRS or MERRA).

  12. An ultrasonic air temperature measurement system with self-correction function for humidity

    NASA Astrophysics Data System (ADS)

    Tsai, Wen-Yuan; Chen, Hsin-Chieh; Liao, Teh-Lu

    2005-02-01

    This paper proposes an ultrasonic measurement system for air temperature with high accuracy and instant response. It can measure the average temperature of the environmental air by detecting the changes of the speed of the ultrasound in the air. The changes of speed of sound are computed from combining variations of time-of-flight (TOF) from a binary frequency shift-keyed (BFSK) ultrasonic signal and phase shift from continuous waves [11]. In addition, another proposed technique for the ultrasonic air temperature measurement is the self-correction functionality within a highly humid environment. It utilizes a relative humidity/water vapour sensor and applies the theory of how sound speed changes in a humid environment. The proposed new ultrasonic air temperature measurement has the capability of self-correction for the environment variable of humidity. Especially under the operational environment with high fluctuations of various humidity levels, the proposed system can accurately self-correct the errors on the conventional ultrasonic thermometer caused by the changing density of the vapours in the air. Including the high humidity effect, a proof-of-concept experiment demonstrates that in dry air (relative humidity, RH = 10%) without humidity correction, it is accurate to ±0.4 °C from 0 °C to 80 °C, while in highly humid air (relative humidity, RH = 90%) with self-correction functionality, it is accurate to ±0.3 °C from 0 °C to 80 °C with 0.05% resolution and temperature changes are instantly reflected within 100 ms.

  13. The impact of humidity on evaporative cooling in small desert birds exposed to high air temperatures.

    PubMed

    Gerson, Alexander R; Smith, Eric Krabbe; Smit, Ben; McKechnie, Andrew E; Wolf, Blair O

    2014-01-01

    Environmental temperatures that exceed body temperature (Tb) force endothermic animals to rely solely on evaporative cooling to dissipate heat. However, evaporative heat dissipation can be drastically reduced by environmental humidity, imposing a thermoregulatory challenge. The goal of this study was to investigate the effects of humidity on the thermoregulation of desert birds and to compare the sensitivity of cutaneous and respiratory evaporation to reduced vapor density gradients. Rates of evaporative water loss, metabolic rate, and Tb were measured in birds exposed to humidities ranging from ∼2 to 30 g H2O m(-3) (0%-100% relative humidity at 30°C) at air temperatures between 44° and 56°C. In sociable weavers, a species that dissipates heat primarily through panting, rates of evaporative water loss were inhibited by as much as 36% by high humidity at 48°C, and these birds showed a high degree of hyperthermia. At lower temperatures (40°-44°C), evaporative water loss was largely unaffected by humidity in this species. In Namaqua doves, which primarily use cutaneous evaporation, increasing humidity reduced rates of evaporative water loss, but overall rates of water loss were lower than those observed in sociable weavers. Our data suggest that cutaneous evaporation is more efficient than panting, requiring less water to maintain Tb at a given temperature, but panting appears less sensitive to humidity over the air temperature range investigated here.

  14. Temperature and Humidity Independent Control Research on Ground Source Heat Pump Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Chen, G.; Wang, L. L.

    Taking green demonstration center building air conditioning system as an example, this paper presents the temperature and humidity independent control system combined with ground source heat pump system, emphasis on the design of dry terminal device system, fresh air system and ground source heat pump system.

  15. Storage corrosion of materials and equipment: Temperature-humidity and aerochemical regimes indoors and in the open air

    SciTech Connect

    Strekalov, P.V.

    1994-07-01

    The following storage factors are considered: (1) the temperature-humidity complex (THC) in the open air at representative sites with cold, moderate, and subtropical humid climate; (2) the temperature and humidity differences between the open air and an atmospheric of semiclosed spaces; (3) the THC inside storage-spaces in a humid tropical climate; (4) the concentration of SO{sub 2} and Cl{sup -} in the open air and in different storage-spaces; (5) the categories of corrosivity of the atmosphere and methods for its evaluation indoors and outdoors.

  16. Instructions for observing air temperature, humidity, and direction and force of wind

    USGS Publications Warehouse

    ,

    1892-01-01

    Description of instruments.-The temperature and humidity of the air are obtained from the simultaneous observation of a pair of mercurial thermometers termed the dry and the wet bulb. The air temperature is given by the dry-bulb thermometer, and the humidity is obtained from the combined readings of both. The wet-bulb thermometer differs from the dry-bulb thermometer only in having its bulb covered with thin muslin, which is wetted in pure water at each observation.The two thermometers are fastened in a light metal 'or wooden frame. To this frame is to be attached a stout cord for the whirling of the thermometers, which is an essential part of every observation.

  17. Seasonality of viral respiratory infections in southeast of Brazil: the influence of temperature and air humidity

    PubMed Central

    Gardinassi, Luiz Gustavo; Marques Simas, Paulo Vitor; Salomão, João Batista; Durigon, Edison Luiz; Zanetta Trevisan, Dirce Maria; Cordeiro, José Antonio; Lacerda, Mauricio Nogueira; Rahal, Paula; de Souz, Fátima Pereira

    2012-01-01

    Viruses are the major cause of lower respiratory tract infections in childhood and the main viruses involved are Human Respiratory Syncytial Virus (HRSV), Human Metapneumovirus (HMPV), Influenzavirus A and B (FLUA and FLUB), Human Parainfluenza Virus 1, 2 and 3 (HPIV1, 2 and 3) and Human Rhinovirus (HRV). The purposes of this study were to detect respiratory viruses in hospitalized children younger than six years and identify the influence of temperature and relative air humidity on the detected viruses. Samples of nasopharyngeal washes were collected from hospitalized children between May/2004 and September/2005. Methods of viral detection were RT-PCR, PCR and HRV amplicons were confirmed by hybridization. Results showed 54% (148/272) of viral positivity. HRSV was detected in 29% (79/272) of the samples; HRV in 23.1% (63/272); HPIV3 in 5.1% (14/272); HMPV in 3.3% (9/272); HPIV1 in 2.9% (8/272); FLUB in 1.4% (4/272), FLUA in 1.1% (3/272), and HPIV2 in 0.3% (1/272). The highest detection rates occurred mainly in the spring 2004 and in the autumn 2005. It was observed that viral respiratory infections tend to increase as the relative air humidity decreases, showing significant association with monthly averages of minimal temperature and minimal relative air humidity. In conclusion, viral respiratory infections vary according to temperature and relative air humidity and viral respiratory infections present major incidences it coldest and driest periods. PMID:24031808

  18. Screening in humid air plasmas

    NASA Astrophysics Data System (ADS)

    Filippov, Anatoly; Derbenev, Ivan; Dyatko, Nikolay; Kurkin, Sergey

    2016-09-01

    Low temperature air plasmas containing H2O molecules are of high importance for atmospheric phenomena, climate control, biomedical applications, surface processing, and purification of air and water. Humid air plasma created by an external ionization source is a good model of the troposphere where ions are produced by the galactic cosmic rays and decay products of air and soil radioactive elements such as Rn222. The present paper is devoted to study the ionic composition and the screening in an ionized humid air at atmospheric pressure and room temperature. The ionization rate is varied in the range of 101 -1018 cm-3s-1. The humid air with 0 - 1 . 5 % water admixture that corresponds to the relative humidity of 0 - 67 % at the air temperature equal to 20°C is considered. The ionic composition is determined on the analysis of more than a hundred processes. The system of 41 non-steady state particle number balance equations is solved using the 4th order Runge-Kutta method. The screening of dust particle charge in the ionized humid air are studied within the diffusion-drift approach. The screening constants are well approximated by the inverse Debye length and characteristic lengths of recombination and attachment processes. This work was supported by the Russian Science Foundation, Project No. 16-12-10424.

  19. Development rates of two Xenopsylla flea species in relation to air temperature and humidity.

    PubMed

    Krasnov, B R; Khokhlova, I S; Fielden, L J; Burdelova, N V

    2001-09-01

    The rate of development of immature fleas, Xenopsylla conformis Wagner and Xenopsylla ramesis Rothschild (Siphonaptera: Xenopsyllidae) was studied in the laboratory at 25 degrees C and 28 degrees C with 40, 55, 75 and 92% relative humidity (RH). These fleas are separately associated with the host jird Meriones crassus Sundevall in different microhabitats of the Ramon erosion cirque, Negev Highlands, Israel. This study of basic climatic factors in relation to flea bionomics provides the basis for ecological investigations to interpret reasons for paratopic local distributions of these two species of congeneric fleas on the same host. Both air temperature and RH were positively correlated with duration of egg and larval stages in both species. Change of humidity between egg and larval environments did not affect duration of larval development at any temperature. At each temperature and RH, the eggs and larvae of X. ramesis did not differ between males and females in the duration of their development, whereas female eggs and larvae of X. conformis usually developed significantly faster than those of males. For both species, male pupae developed slower than female pupae at the same air temperature and RH. Air temperature, but not RH, affected the duration of pupal development. At each humidity, duration of the pupal stage was significantly longer at 25 degrees C than at 28 degrees C: 15.3+/-1.7 vs. 11.7+/-1.2 days in X. conformis; 14.1+/-2.0 vs. 11.5+/-1.7 days in X. ramesis, with a significantly shorter pupal period of the latter species at 25 degrees C. These limited interspecific bionomic contrasts in relation to basic climatic factors appear insufficient to explain the differential habitat distributions of X. conformis and X. ramesis.

  20. Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay; Zavodsky, Brad; Blackwell, William

    2014-01-01

    Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. This paper will describe the bias correction technique and results from forecasts evaluated by validation against a Total Precipitable Water (TPW) product from CIRA and against Global Forecast System (GFS) analyses.

  1. Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity

    NASA Technical Reports Server (NTRS)

    Blakenship, Clay; Zavodsky, Bradley; Blackwell, William

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. Forecasts are against ERA reanalyses.

  2. Recent Improvements in Retrieving Near-Surface Air Temperature and Humidity Using Microwave Remote Sensing

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent

    2010-01-01

    Detailed studies of the energy and water cycles require accurate estimation of the turbulent fluxes of moisture and heat across the atmosphere-ocean interface at regional to basin scale. Providing estimates of these latent and sensible heat fluxes over the global ocean necessitates the use of satellite or reanalysis-based estimates of near surface variables. Recent studies have shown that errors in the surface (10 meter)estimates of humidity and temperature are currently the largest sources of uncertainty in the production of turbulent fluxes from satellite observations. Therefore, emphasis has been placed on reducing the systematic errors in the retrieval of these parameters from microwave radiometers. This study discusses recent improvements in the retrieval of air temperature and humidity through improvements in the choice of algorithms (linear vs. nonlinear) and the choice of microwave sensors. Particular focus is placed on improvements using a neural network approach with a single sensor (Special Sensor Microwave/Imager) and the use of combined sensors from the NASA AQUA satellite platform. The latter algorithm utilizes the unique sampling available on AQUA from the Advanced Microwave Scanning Radiometer (AMSR-E) and the Advanced Microwave Sounding Unit (AMSU-A). Current estimates of uncertainty in the near-surface humidity and temperature from single and multi-sensor approaches are discussed and used to estimate errors in the turbulent fluxes.

  3. Effects of Temperature, Humidity and Air Flow on Fungal Growth Rate on Loaded Ventilation Filters.

    PubMed

    Tang, W; Kuehn, T H; Simcik, Matt F

    2015-01-01

    This study compares the fungal growth ratio on loaded ventilation filters under various temperature, relative humidity (RH), and air flow conditions in a controlled laboratory setting. A new full-size commercial building ventilation filter was loaded with malt extract nutrients and conidia of Cladosporium sphaerospermum in an ASHRAE Standard 52.2 filter test facility. Small sections cut from this filter were incubated under the following conditions: constant room temperature and a high RH of 97%; sinusoidal temperature (with an amplitude of 10°C, an average of 23°C, and a period of 24 hr) and a mean RH of 97%; room temperature and step changes between 97% and 75% RH, 97% and 43% RH, and 97% and 11% RH every 12 hr. The biomass on the filter sections was measured using both an elution-culture method and by ergosterol assay immediately after loading and every 2 days up to 10 days after loading. Fungal growth was detected earlier using ergosterol content than with the elution-culture method. A student's t-test indicated that Cladosporium sphaerospermum grew better at the constant room temperature condition than at the sinusoidal temperature condition. By part-time exposure to dry environments, the fungal growth was reduced (75% and 43% RH) or even inhibited (11% RH). Additional loaded filters were installed in the wind tunnel at room temperature and an RH greater than 95% under one of two air flow test conditions: continuous air flow or air flow only 9 hr/day with a flow rate of 0.7 m(3)/s (filter media velocity 0.15 m/s). Swab tests and a tease mount method were used to detect fungal growth on the filters at day 0, 5, and 10. Fungal growth was detected for both test conditions, which indicates that when temperature and relative humidity are optimum, controlling the air flow alone cannot prevent fungal growth. In real applications where nutrients are less sufficient than in this laboratory study, fungal growth rate may be reduced under the same operating conditions.

  4. Temperature-modulated graphene oxide resistive humidity sensor for indoor air quality monitoring

    NASA Astrophysics Data System (ADS)

    de Luca, A.; Santra, S.; Ghosh, R.; Ali, S. Z.; Gardner, J. W.; Guha, P. K.; Udrea, F.

    2016-02-01

    In this paper we present a temperature-modulated graphene oxide (GO) resistive humidity sensor that employs complementary-metal-oxide-semiconductor (CMOS) micro-electro-mechanical-system (MEMS) micro-hotplate technology for the monitoring and control of indoor air quality (IAQ). GO powder is obtained by chemical exfoliation, dispersed in water and deposited via ink-jet printing onto a low power micro-hotplate. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) show the typical layered and wrinkled morphology of the GO. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier transform infra-red (FTIR) spectroscopy indicate that the GO flakes possess a significant number of oxygen containing functional groups (epoxy, carbonyl, hydroxyl) extremely attractive for humidity detection. Electro-thermal characterisation of the micro-hotplates shows a thermal efficiency of 0.11 mW per °C, resulting in a sensor DC power consumption of only 2.75 mW at 50 °C. When operated in an isothermal mode, the sensor response is detrimentally affected by significant drift, hysteretic behaviour, slow response/recovery times and hence poor RH level discrimination. Conversely, a temperature modulation technique coupled with a differential readout methodology results in a significant reduction of the sensor drift, improved linear response with a sensitivity of 0.14 mV per %, resolution below 5%, and a maximum hysteresis of +/-5% response and recovery times equal to 189 +/- 49 s and 89 +/- 5 s, respectively. These performance parameters satisfy current IAQ monitoring requirements. We have thus demonstrated the effectiveness of integrating GO on a micro-hotplate CMOS-compatible platform enabling temperature modulation schemes to be easily applied in order to achieve compact, low power, low cost humidity IAQ monitoring.In this paper we present a temperature-modulated graphene oxide (GO) resistive humidity sensor that employs complementary

  5. Temperature-modulated graphene oxide resistive humidity sensor for indoor air quality monitoring.

    PubMed

    De Luca, A; Santra, S; Ghosh, R; Ali, S Z; Gardner, J W; Guha, P K; Udrea, F

    2016-02-28

    In this paper we present a temperature-modulated graphene oxide (GO) resistive humidity sensor that employs complementary-metal-oxide-semiconductor (CMOS) micro-electro-mechanical-system (MEMS) micro-hotplate technology for the monitoring and control of indoor air quality (IAQ). GO powder is obtained by chemical exfoliation, dispersed in water and deposited via ink-jet printing onto a low power micro-hotplate. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) show the typical layered and wrinkled morphology of the GO. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier transform infra-red (FTIR) spectroscopy indicate that the GO flakes possess a significant number of oxygen containing functional groups (epoxy, carbonyl, hydroxyl) extremely attractive for humidity detection. Electro-thermal characterisation of the micro-hotplates shows a thermal efficiency of 0.11 mW per °C, resulting in a sensor DC power consumption of only 2.75 mW at 50 °C. When operated in an isothermal mode, the sensor response is detrimentally affected by significant drift, hysteretic behaviour, slow response/recovery times and hence poor RH level discrimination. Conversely, a temperature modulation technique coupled with a differential readout methodology results in a significant reduction of the sensor drift, improved linear response with a sensitivity of 0.14 mV per %, resolution below 5%, and a maximum hysteresis of ±5%; response and recovery times equal to 189 ± 49 s and 89 ± 5 s, respectively. These performance parameters satisfy current IAQ monitoring requirements. We have thus demonstrated the effectiveness of integrating GO on a micro-hotplate CMOS-compatible platform enabling temperature modulation schemes to be easily applied in order to achieve compact, low power, low cost humidity IAQ monitoring.

  6. Cloud-induced uncertainties in AIRS and ECMWF temperature and specific humidity

    NASA Astrophysics Data System (ADS)

    Wong, Sun; Fetzer, Eric J.; Schreier, Mathias; Manipon, Gerald; Fishbein, Evan F.; Kahn, Brian H.; Yue, Qing; Irion, Fredrick W.

    2015-03-01

    The uncertainties of the Atmospheric Infrared Sounder (AIRS) Level 2 version 6 specific humidity (q) and temperature (T) retrievals are quantified as functions of cloud types by comparison against Integrated Global Radiosonde Archive radiosonde measurements. The cloud types contained in an AIRS/Advanced Microwave Sounding Unit footprint are identified by collocated Moderate Resolution Imaging Spectroradiometer retrieved cloud optical depth (COD) and cloud top pressure. We also report results of similar validation of q and T from European Centre for Medium-Range Weather Forecasts (ECMWF) forecasts (EC) and retrievals from the AIRS Neural Network (NNW), which are used as the initial state for AIRS V6 physical retrievals. Differences caused by the variation in the measurement locations and times are estimated using EC, and all the comparisons of data sets against radiosonde measurements are corrected by these estimated differences. We report in detail the validation results for AIRS GOOD quality control, which is used for the AIRS Level 3 climate products. AIRS GOOD quality q reduces the dry biases inherited from the NNW in the middle troposphere under thin clouds but enhances dry biases in thick clouds throughout the troposphere (reaching -30% at 850 hPa near deep convective clouds), likely because the information contained in AIRS retrievals is obtained in cloud-cleared areas or above clouds within the field of regard. EC has small moist biases (~5-10%), which are within the uncertainty of radiosonde measurements, in thin and high clouds. Temperature biases of all data are within ±1 K at altitudes above the 700 hPa level but increase with decreasing altitude. Cloud-cleared retrievals lead to large AIRS cold biases (reaching about -2 K) in the lower troposphere for large COD, enhancing the cold biases inherited from the NNW. Consequently, AIRS GOOD quality T root-mean-squared errors (RMSEs) are slightly smaller than the NNW errors in thin clouds (1.5-2.5 K) but

  7. Indoor air quality assessment of daycare facilities with carbon dioxide, temperature, and humidity as indicators.

    PubMed

    Ferng, Shiaw-Fen; Lee, Li-Wen

    2002-11-01

    Poor indoor air quality (IAQ) in daycare facilities affects both attending children and care providers. Incident rates of upper-respiratory-tract infections have been reported to be higher in children who attend daycare. Excessive carbon dioxide (CO2) exposure can cause several health effects and even sudden infant death. For this study, 26 facilities were randomly selected in a Midwestern county of the United States. CO2, room temperature, and relative humidity were used as indicators for IAQ and comfort levels. These IAQ parameters were continuously monitored for eight hours at each facility by a direct-reading instrument that was calibrated before each measurement. More than 50 percent of the facilities had an average CO2 level over the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) standard of 1,000 parts per million (ppm). For temperature and relative humidity, respectively, 42.3 percent and 15.4 percent of facilities were outside of the ASHRAE-recommended comfort zones. The nap-time average CO2 level was about 117 ppm higher than the non-nap-time level. The increment of the nap-time CO2 level in the sleeping-only room over the level in multipurpose rooms was statistically significant (p < .05). According to stepwise multiple regression analysis, nap-time CO2 level was predicted by CO2 level before occupancy, nap-time average temperature, carbon monoxide, and child density (R2 = .83). It is recommended that an appropriate IAQ standard for daycare facilities be established and that children should not be placed in a completely isolated room during nap time.

  8. Effectiveness of an air-cooled vest using selected air temperature and humidity combinations.

    PubMed

    Pimental, N A; Cosimini, H M; Sawka, M N; Wenger, C B

    1987-02-01

    We evaluated the effectiveness of an air-cooled vest in reducing thermal strain of subjects exercising in the heat (49 degrees C dry bulb (db), 20 degrees C dew point (dp] in chemical protective clothing. Four male subjects attempted 300-min heat exposures at two metabolic rates (175 and 315 W) with six cooling combinations--control (no vest) and five different db and dp combinations. Air supplied to the vest at 15 scfm ranged from 20-27 degrees C db, 7-18 degrees C dp; theoretical cooling capacities were 498-687 W. Without the vest, endurance times were 118 min (175 W) and 73 min (315 W). Endurance times with the vest were 300 min (175 W) and 242-300 min (315 W). The five cooling combinations were similarly effective in reducing thermal strain and extending endurance time, although there was a trend for the vest to be more effective when supplied with air at the lower dry bulb temperature. At 175 W, subjects maintained a constant body temperature; at 315 W, the vest's ability to extend endurance is limited to about 5 hours.

  9. Influence of low air humidity and low root temperature on water uptake, growth and aquaporin expression in rice plants.

    PubMed

    Kuwagata, Tsuneo; Ishikawa-Sakurai, Junko; Hayashi, Hidehiro; Nagasuga, Kiyoshi; Fukushi, Keiko; Ahamed, Arifa; Takasugi, Katsuko; Katsuhara, Maki; Murai-Hatano, Mari

    2012-08-01

    The effects of low air humidity and low root temperature (LRT) on water uptake, growth and aquaporin gene expression were investigated in rice plants. The daily transpiration of the plants grown at low humidity was 1.5- to 2-fold higher than that at high humidity. LRT at 13°C reduced transpiration, and the extent was larger at lower humidity. LRT also reduced total dry matter production and leaf area expansion, and the extent was again larger at lower humidity. These observations suggest that the suppression of plant growth by LRT is associated with water stress due to decreased water uptake ability of the root. On the other hand, the net assimilation rate was not affected by low humidity and LRT, and water use efficiency was larger for LRT. We found that low humidity induced coordinated up-regulation of many PIP and TIP aquaporin genes in both the leaves and the roots. Expression levels of two root-specific aquaporin genes, OsPIP2;4 and OsPIP2;5, were increased significantly after 6 and 13 d of LRT exposure. Taken together, we discuss the possibility that aquaporins are part of an integrated response of this crop to low air humidity and LRT.

  10. Effects of Environmental Humidity and Temperature on Sterilization Efficiency of Dielectric Barrier Discharge Plasmas in Atmospheric Pressure Air

    NASA Astrophysics Data System (ADS)

    Kikuchi, Yusuke; Miyamae, Masanori; Nagata, Masayoshi; Fukumoto, Naoyuki

    2011-01-01

    The inactivation of Bacillus atrophaeus spores by a dielectric barrier discharge (DBD) plasma in atmospheric humid air was investigated in order to develop a low-temperature, low-cost, and high-speed plasma sterilization technique. The biological indicators covered with a Tyvek sheet were set just outside the DBD plasma region, where air temperature and humidity as a discharge gas were precisely controlled by an environmental test chamber. The results show that the inactivation of B. atrophaeus spores was found to be dependent strongly on humidity, and was completed within 15 min at a relative humidity of 90% and a temperature of 30 °C. The treatment time for sterilization is shorter than those of conventional sterilization methods using ethylene oxide gas and dry heat treatment. The inactivation rates depend on not only relative humidity but also temperature, so that water content in air could determine the generation of reactive species such as hydroxyl radicals that are effective for the inactivation of B. atrophaeus spores.

  11. Damp housing and childhood asthma; respiratory effects of indoor air temperature and relative humidity.

    PubMed Central

    Strachan, D P; Sanders, C H

    1989-01-01

    In a questionnaire survey of a random sample of 1000 children aged 7 years, a significantly greater proportion of those living in homes reported as damp were affected by wheeze (22% v 11%), day cough, night cough, and chesty colds. Simultaneous estimation of relative humidity in the bedrooms of 778 children and continuous 7 day recordings of ambient temperature and humidity in a stratified sample of 317 bedrooms showed no association with the same respiratory symptoms. No correlation was found between bedroom conditions and baseline ventilatory function or exercise induced reduction in FEV1. These results run counter to the widely held belief that indoor temperature and humidity are important determinants of respiratory ill health, although they do not directly exclude effects due to mites or moulds, whose survival is determined by the humidity of their respective microenvironments. PMID:2592894

  12. Physical activity profile of 2014 FIFA World Cup players, with regard to different ranges of air temperature and relative humidity

    NASA Astrophysics Data System (ADS)

    Chmura, Paweł; Konefał, Marek; Andrzejewski, Marcin; Kosowski, Jakub; Rokita, Andrzej; Chmura, Jan

    2016-09-01

    The present study attempts to assess changes in soccer players' physical activity profiles under the simultaneous influence of the different combinations of ambient temperature and relative humidity characterising matches of the 2014 FIFA World Cup hosted by Brazil. The study material consisted of observations of 340 players representing 32 national teams taking part in the tournament. The measured indices included total distances covered; distances covered with low, moderate, or high intensity; numbers of sprints performed, and peak running speeds achieved. The analysis was carried out using FIFA official match data from the Castrol Performance Index system. Ultimately, consideration was given to a combination of three air temperature ranges, i.e. below 22 °C, 22-28 °C, and above 28 °C; and two relative humidity ranges below 60 % and above 60 %. The greatest average distance recorded (10.54 ± 0.91 km) covered by players at an air temperature below 22 °C and a relative humidity below 60 %, while the shortest (9.83 ± 1.08 km) characterised the same air temperature range, but conditions of relative humidity above 60 % (p ≤ 0.001). Two-way ANOVA revealed significant differences (p ≤ 0.001) in numbers of sprints performed by players, depending on whether the air temperature range was below 22 °C (40.48 ± 11.17) or above 28 °C (30.72 ± 9.40), but only where the relative humidity was at the same time below 60 %. Results presented indicate that the conditions most comfortable for physical activity on the part of players occur at 22 °C, and with relative humidity under 60 %.

  13. Physical activity profile of 2014 FIFA World Cup players, with regard to different ranges of air temperature and relative humidity.

    PubMed

    Chmura, Paweł; Konefał, Marek; Andrzejewski, Marcin; Kosowski, Jakub; Rokita, Andrzej; Chmura, Jan

    2017-04-01

    The present study attempts to assess changes in soccer players' physical activity profiles under the simultaneous influence of the different combinations of ambient temperature and relative humidity characterising matches of the 2014 FIFA World Cup hosted by Brazil. The study material consisted of observations of 340 players representing 32 national teams taking part in the tournament. The measured indices included total distances covered; distances covered with low, moderate, or high intensity; numbers of sprints performed, and peak running speeds achieved. The analysis was carried out using FIFA official match data from the Castrol Performance Index system. Ultimately, consideration was given to a combination of three air temperature ranges, i.e. below 22 °C, 22-28 °C, and above 28 °C; and two relative humidity ranges below 60 % and above 60 %. The greatest average distance recorded (10.54 ± 0.91 km) covered by players at an air temperature below 22 °C and a relative humidity below 60 %, while the shortest (9.83 ± 1.08 km) characterised the same air temperature range, but conditions of relative humidity above 60 % (p ≤ 0.001). Two-way ANOVA revealed significant differences (p ≤ 0.001) in numbers of sprints performed by players, depending on whether the air temperature range was below 22 °C (40.48 ± 11.17) or above 28 °C (30.72 ± 9.40), but only where the relative humidity was at the same time below 60 %. Results presented indicate that the conditions most comfortable for physical activity on the part of players occur at 22 °C, and with relative humidity under 60 %.

  14. Design of evaporative-cooling roof for decreasing air temperatures in buildings in the humid tropics

    NASA Astrophysics Data System (ADS)

    Kindangen, Jefrey I.; Umboh, Markus K.

    2017-03-01

    This subject points to assess the benefits of the evaporative-cooling roof, particularly for buildings with corrugated zinc roofs. In Manado, many buildings have roofed with corrugated zinc sheets; because this material is truly practical, easy and economical application. In general, to achieve thermal comfort in buildings in a humid tropical climate, people applying cross ventilation to cool the air in the room and avoid overheating. Cross ventilation is a very popular path to achieve thermal comfort; yet, at that place are other techniques that allow reducing the problem of excessive high temperature in the room in the constructions. This study emphasizes applications of the evaporative-cooling roof. Spraying water on the surface of the ceiling has been executed on the test cell and the reuse of water after being sprayed and cooled once more by applying a heat exchanger. Initial results indicate a reliable design and successfully meet the target as an effective evaporative-cooling roof technique. Application of water spraying automatic and cooling water installations can work optimally and can be an optimal model for the cooling roof as one of the green technologies. The role of heat exchangers can lower the temperature of the water from spraying the surface of the ceiling, which has become a hot, down an average of 0.77° C. The mass flow rate of the cooling water is approximately 1.106 kg/h and the rate of heat flow is around 515 Watt, depend on the site.

  15. Impact of air velocity, temperature, humidity, and air on long-term voc emissions from building products

    NASA Astrophysics Data System (ADS)

    Wolkoff, Peder

    The emissions of two volatile organic compounds (VOCs) of concern from five building products (BPs) were measured in the field and laboratory emission cell (FLEC) up to 250 d. The BPs (VOCs selected on the basis of abundance and low human odor thresholds) were: nylon carpet with latex backing (2-ethylhexanol, 4-phenylcyclohexene), PVC flooring (2-ethylhexanol, phenol), floor varnish on pretreated beechwood parquet (butyl acetate, N-methylpyrrolidone), sealant (hexane, dimethyloctanols), and waterborne wall paint on gypsum board (1,2-propandiol, Texanol). Ten different climate conditions were tested: four different air velocities from ca. 1 cm s -1 to ca. 9 cm s -1, three different temperatures (23, 35, and 60°C), two different relative humidities (0% and 50% RH), and pure nitrogen instead of clean air supply. Additionally, two sample specimen and two different batches were compared for repeatability and homogeneity. The VOCs were sampled on Tenax TA and determined by thermal desorption and gas chromatography (FID). Quantification was carried out by individual calibration of each VOC of concern. Concentration/time profiles of the selected VOCs (i.e. their concentration decay curves over time) in a standard room were used for comparison. Primary source emissions were not affected by the air velocity after a few days to any great extent. Both the temperature and relative humidity affected the emission rates, but depended strongly on the type of BP and type of VOC. Secondary (oxidative) source emissions were only observed for the PVC and for dimethyloctanols from the sealant. The time to reach a given concentration (emission rate) appears to be a good approach for future interlaboratory comparisons of BP's VOC emissions.

  16. NFLUX PRE: Validation of New Specific Humidity, Surface Air Temperature, and Wind Speed Algorithms for Ascending/Descending Directions and Clear or Cloudy Conditions

    DTIC Science & Technology

    2015-06-18

    Validation of New Specific Humidity, Surface Air Temperature , and Wind Speed Algorithms for Ascending/ Descending Directions and Clear or Cloudy...LIMITATION OF ABSTRACT NFLUX PRE: Validation of New Specific Humidity, Surface Air Temperature , and Wind Speed Algorithms for Ascending/Descending...satellite retrieval algorithms. In addition to data from the Special Sensor Microwave Imager/Sounder (SSMIS) and the Advanced Microwave Sounding

  17. Effect of low air velocities on thermal homeostasis and comfort during exercise at space station operational temperature and humidity

    NASA Technical Reports Server (NTRS)

    Beumer, Ronald J.

    1989-01-01

    The effectiveness of different low air velocities in maintaining thermal comfort and homeostasis during exercise at space station operational temperature and humidity was investigated. Five male subjects exercised on a treadmill for successive ten minute periods at 60, 71, and 83 percent of maximum oxygen consumption at each of four air velocities, 30, 50, 80, and 120 ft/min, at 22 C and 62 percent relative humidity. No consistent trends or statistically significant differences between air velocities were found in body weight loss, sweat accumulation, or changes in rectal, skin, and body temperatures. Occurrence of the smallest body weight loss at 120 ft/min, the largest sweat accumulation at 30 ft/min, and the smallest rise in rectal temperature and the greatest drop in skin temperature at 120 ft/min all suggested more efficient evaporative cooling at the highest velocity. Heat storage at all velocities was evidenced by increased rectal and body temperatures; skin temperatures declined or increased only slightly. Body and rectal temperature increases corresponded with increased perception of warmth and slight thermal discomfort as exercise progressed. At all air velocities, mean thermal perception never exceeded warm and mean discomfort, greatest at 30 ft/min, was categorized at worst as uncomfortable; sensation of thermal neutrality and comfort returned rapidly after cessation of exercise. Suggestions for further elucidation of the effects of low air velocities on thermal comfort and homeostasis include larger numbers of subjects, more extensive skin temperature measurements and more rigorous analysis of the data from this study.

  18. Seasonal Variations of Indoor Microbial Exposures and Their Relation to Temperature, Relative Humidity, and Air Exchange Rate

    PubMed Central

    Bekö, Gabriel; Timm, Michael; Gustavsen, Sine; Hansen, Erik Wind

    2012-01-01

    Indoor microbial exposure has been related to adverse pulmonary health effects. Exposure assessment is not standardized, and various factors may affect the measured exposure. The aim of this study was to investigate the seasonal variation of selected microbial exposures and their associations with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m3) and were lowest in winter (median, 26 CFU/m3). Indoor bacteria peaked in spring (median, 2,165 CFU/m3) and were lowest in summer (median, 240 CFU/m3). Concentrations of fungi were predominately higher outdoors than indoors, whereas bacteria, endotoxin, and inhalable dust concentrations were highest indoors. Bacteria and endotoxin correlated with the mass of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly associated with several indoor microbial exposures, they could not fully explain the observed seasonal variations when tested in a mixed statistical model. In conclusion, the season significantly affects indoor microbial exposures, which are influenced by temperature, relative humidity, and air exchange rates. PMID:23001651

  19. Seasonal variations of indoor microbial exposures and their relation to temperature, relative humidity, and air exchange rate.

    PubMed

    Frankel, Mika; Bekö, Gabriel; Timm, Michael; Gustavsen, Sine; Hansen, Erik Wind; Madsen, Anne Mette

    2012-12-01

    Indoor microbial exposure has been related to adverse pulmonary health effects. Exposure assessment is not standardized, and various factors may affect the measured exposure. The aim of this study was to investigate the seasonal variation of selected microbial exposures and their associations with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m(3)) and were lowest in winter (median, 26 CFU/m(3)). Indoor bacteria peaked in spring (median, 2,165 CFU/m(3)) and were lowest in summer (median, 240 CFU/m(3)). Concentrations of fungi were predominately higher outdoors than indoors, whereas bacteria, endotoxin, and inhalable dust concentrations were highest indoors. Bacteria and endotoxin correlated with the mass of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly associated with several indoor microbial exposures, they could not fully explain the observed seasonal variations when tested in a mixed statistical model. In conclusion, the season significantly affects indoor microbial exposures, which are influenced by temperature, relative humidity, and air exchange rates.

  20. Emissions of an AVCO Lycoming 0-320-DIAD air cooled light aircraft engine as a function of fuel-air ratio, timing, and air temperature and humidity

    NASA Technical Reports Server (NTRS)

    Meng, P. R.; Skorobatckyi, M.; Cosgrove, D. V.; Kempke, E. E., Jr.

    1976-01-01

    A carbureted aircraft engine was operated over a range of test conditions to establish the exhaust levels over the EPA seven-mode emissions cycle. Baseline (full rich production limit) exhaust emissions at an induction air temperature of 59 F and near zero relative humidity were 90 percent of the EPA standard for HC, 35 percent for NOx, and 161 percent for CO. Changes in ignition timing around the standard 25 deg BTDC from 30 deg BTDC to 20 deg BTDC had little effect on the exhaust emissions. Retarding the timing to 15 deg BTDC increased both the HC and CO emissions and decreased NOx emissions. HC and CO emissions decreased as the carburetor was leaned out, while NOx emissions increased. The EPA emission standards were marginally achieved at two leanout conditions. Variations in the quantity of cooling air flow over the engine had no effect on exhaust emissions. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased.

  1. Near Decade Long Tropospheric Air Temperature and Specific Humidity Records from AIRS for CMIP5 Model Evaluation

    NASA Astrophysics Data System (ADS)

    Tian, B.; Fetzer, E.; Kahn, B. H.; Teixeira, J.; Manning, E.; Hearty, T. J.

    2012-12-01

    The peer-reviewed analyses of multi-model outputs from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) experiments will be the most important basis for the next Intergovernmental Panel on Climate Change (IPCC) Assessment Report (AR5). To increase the fidelity of the IPCC AR5, an Obs4MIPs project has been initiated to collect some well-established and well-documented datasets, to organize them according to the CMIP5 model output requirements, and makes them available to the science community for CMIP5 model evaluation. The NASA Atmospheric Infrared Sounder (AIRS) project has produced monthly mean tropospheric air temperature (ta, K) and specific humidity (hus, kg/kg) products as part of the Obs4MIPS project. In this paper, we first describe these two AIRS datasets in terms of data description, origin, validation and caveats for model-observation comparison. We then document the climatological mean features of these two AIRS datasets and compare them to those from NASA's Modern Era Retrospective analysis for Research and Applications (MERRA) for AIRS data validation and CMIP5 model simulations for CMIP5 model evaluation. As expected, the 9-year AIRS data show several well-known climatological features of tropospheric ta and hus, such as the strong meridional and vertical gradients of tropospheric ta and hus and strong zonal gradient of tropospheric hus. AIRS data also show the strong connections between the tropospheric hus, atmospheric circulation and deep convection. In comparison to MERRA, AIRS seems to be colder in the free troposphere but warmer in the boundary layer with differences typically less than 1 K. AIRS is wetter (~10%) in the tropical boundary layer but drier (around 30%) in the tropical free troposphere and the extratropical troposphere. In particular, the large AIRS-MERRA hus differences are mainly located in the cloudy regions, such as the Intertropical Convergence Zone (ITCZ), the South Pacific Convergence Zone (SPCZ) and the

  2. Predicting Indian Summer Monsoon onset through variations of surface air temperature and relative humidity

    NASA Astrophysics Data System (ADS)

    Stolbova, Veronika; Surovyatkina, Elena; Kurths, Jurgen

    2015-04-01

    Indian Summer Monsoon (ISM) rainfall has an enormous effect on Indian agriculture, economy, and, as a consequence, life and prosperity of more than one billion people. Variability of the monsoonal rainfall and its onset have a huge influence on food production, agricultural planning and GDP of the country, which on 22% is determined by agriculture. Consequently, successful forecasting of the ISM onset is a big challenge and large efforts are being put into it. Here, we propose a novel approach for predictability of the ISM onset, based on critical transition theory. The ISM onset is defined as an abrupt transition from sporadious rainfall to spatially organized and temporally sustained rainfall. Taking this into account, we consider the ISM onset as is a critical transition from pre-monsoon to monsoon, which take place in time and also in space. It allows us to suggest that before the onset of ISM on the Indian subcontinent should be areas of critical behavior where indicators of the critical transitions can be detected through an analysis of observational data. First, we identify areas with such critical behavior. Second, we use detected areas as reference points for observation locations for the ISM onset prediction. Third, we derive a precursor for the ISM onset based on the analysis of surface air temperature and relative humidity variations in these reference points. Finally, we demonstrate the performance of this precursor on two observational data sets. The proposed approach allows to determine ISM onset in advance in 67% of all considered years. Our proposed approach is less effective during the anomalous years, which are associated with weak/strong monsoons, e.g. El-Nino, La-Nina or positive Indian Ocean Dipole events. The ISM onset is predicted for 23 out of 27 normal monsoon years (85%) during the past 6 decades. In the anomalous years, we show that time series analysis in both areas during the pre-monsoon period reveals indicators whether the

  3. Temperature and Transpiration Resistances of Xanthium Leaves as Affected by Air Temperature, Humidity, and Wind Speed 1

    PubMed Central

    Drake, B. G.; Raschke, K.; Salisbury, F. B.

    1970-01-01

    Transpiration and temperatures of single, attached leaves of Xanthium strumarium L. were measured in high intensity white light (1.2 calories per square centimeter per minute on a surface normal to the radiation), with abundant water supply, at wind speeds of 90, 225, and 450 centimeters per second, and during exposure to moist and dry air. Partitioning of absorbed radiation between transpiration and convection was determined, and transpiration resistances were computed. Leaf resistances decreased with increasing temperature (down to a minimum of 0.36 seconds per centimeter). Silicone rubber replicas of leaf surfaces proved that the decrease was due to increased stomatal apertures. At constant air temperature, leaf resistances were higher in dry than in moist air with the result that transpiration varied less than would have been predicted on the basis of the water-vapor pressure difference between leaf and air. The dependence of stomatal conductance on temperature and moisture content of the air caused the following effects. At air temperatures below 35 C, average leaf temperatures were above air temperature by an amount dependent on wind velocity; increasing wind diminished transpiration. At air temperatures above 35 C, leaf temperatures were below air temperatures, and increasing wind markedly increased transpiration. Leaf temperatures equaled air temperature near 35 C at all wind speeds and in moist as well as in dry air. PMID:16657458

  4. Air temperature and humidity diversity in the Hornsund fjord area (Spitsbergen) in the period 1 July 2014 - 30 June 2015

    NASA Astrophysics Data System (ADS)

    Przybylak, Rajmund; Araźny, Andrzej; Wyszyński, Przemysław; Budzik, Tomasz; Wawrzyniak, Tomasz

    2016-04-01

    The article presents preliminary results of studies into the spatial diversity of air temperature and relative humidity (overground layer, 2 m a.g.l.) in the area of the Hornsund fjord (S Spitsbergen, approx. 77°N), based on data collected between 1 July 2014 and 30 June 2015. The Hornsund fjord runs latitudinal along approx. 40 km and its average width is about 10 km. Numerous glaciers flow into the fjord and the mountain ridges around it often exceed 700 m a.s.l. Data series obtained from 11 sites equipped with automatic weather stations (Vaisala, Campbell, Davis) or HOBO temperature and humidity sensors were used. Two sites (Hornsund HOR and the Hans Glacier HG4) have been operating for years, whereas 9 new ones (Bogstranda BOG, Fugleberget FUG, Gnålodden GNA, Gåshamnoyra GAS, Hyttevika HYT, Lisbetdalen LIS, Ostrogradskijfjella OST, Treskelodden TRE and Wilczekodden WIL) were established within the Polish-Norwegian AWAKE-2 project. Three of the sites (BOG, GAS and OST) were damaged by polar bears, hence their measurement series are shorter. A substantial spatial diversity was found in the air temperature and relative humidity in the area, mostly influenced by elevation, type of surface and distance from the Greenland Sea's open water. During the year (July 2014 - June 2015), the areas of HYT (-1.1°C) and WIL (-1.9°C) were the warmest. Both sites are located on the west coast of the fjord. The HYT demonstrates the most favourable temperature conditions, being orographically sheltered from the east and its cold and dry air masses. The coldest sites were the mountain-top site of FUG (-5.9°C) and the glacier-located HG4 (-4.3°C). The low temperature at FUG resulted from its elevation (568 m a.s.l.), whereas at HG4 (184 m a.s.l) the glaciated surface also added up to the result. In the analysed period, the annual course of air temperature in the area had a clear minimum in February, when the lowest mean monthly values ranged from -9.4°C at HYT to -15.1°C at

  5. Polydimethylsiloxane-based permeation passive air sampler. Part II: Effect of temperature and humidity on the calibration constants.

    PubMed

    Seethapathy, Suresh; Górecki, Tadeusz

    2010-12-10

    Polydimethylsiloxane (PDMS) has low permeability towards water vapour and low energy of activation of permeation towards volatile organic compounds (VOCs) when compared to many other polymers. Suitability of the material for use in permeation-type passive air samplers was tested as it theoretically should reduce uptake rate variations due to temperature changes and eliminate or reduce complications arising from sorbent saturation by water vapour. The calibration constants of a simple autosampler vial-based permeation passive sampler equipped with a PDMS membrane (Waterloo Membrane Sampler(®)) were determined for various analytes at different temperatures. From the data, the activation energy of permeation for PDMS towards the analytes was determined. The analytes studied belonged to various classes of compounds with wide ranging polarities, including n-alkanes, aromatic hydrocarbons, esters and alcohols. The results confirmed Arrhenius-type relationship between temperature and calibration constant and the energy of activation of permeation for PDMS ranged from -5kJ/mole for butylbenzene to -17kJ/mole for sec-butylacetate. Calibration constants of the samplers towards n-alkanes and aromatic hydrocarbons determined at humidities between 30% and 91% indicated no statistically significant variations in the uptake rate with changes in humidity for 9 of the 11 analytes studied. The results confirmed the suitability of the sampler for deployment in high humidity areas and under varying temperature conditions.

  6. Effect of air temperature and relative humidity at various fuel-air ratios on exhaust emissions on a per-mode basis of an Avco Lycoming 0-320 DIAD light aircraft engine. Volume 2: Individual data points

    NASA Technical Reports Server (NTRS)

    Skorobatckyi, M.; Cosgrove, D. V.; Meng, P. R.; Kempke, E. R.

    1976-01-01

    A carbureted four cylinder air cooled 0-320 DIAD Lycoming aircraft engine was tested to establish the effects of air temperature and humidity at various fuel-air ratios on the exhaust emissions on a per-mode basis. The test conditions included carburetor lean-out at air temperatures of 50, 59, 80, and 100 F at relative humidities of 0, 30, 60, and 80 percent. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased. Even at a fixed fuel-air ratio, the HC emissions increase and the NOx emissions decrease at the higher values of air temperature and humidity. Volume II contains the data taken at each of the individual test points.

  7. Effects of ambient air temperature, humidity and rainfall on annual survival of adult little penguins Eudyptula minor in southeastern Australia

    NASA Astrophysics Data System (ADS)

    Ganendran, L. B.; Sidhu, L. A.; Catchpole, E. A.; Chambers, L. E.; Dann, P.

    2016-08-01

    Seabirds are subject to the influences of local climate variables during periods of land-based activities such as breeding and, for some species, moult; particularly if they undergo a catastrophic moult (complete simultaneous moult) as do penguins. We investigated potential relationships between adult penguin survival and land-based climate variables (ambient air temperature, humidity and rainfall) using 46 years of mark-recapture data of little penguins Eudyptula minor gathered at a breeding colony on Phillip Island in southeastern Australia. Our results showed that adult penguin survival had a stronger association with land-based climate variables during the moult period, when birds were unable to go to sea for up to 3 weeks, than during the breeding period, when birds could sacrifice breeding success in favour of survival. Annual adult survival probability was positively associated with humidity during moult and negatively associated with rainfall during moult. Prolonged heat during breeding and moult had a negative association with annual adult survival. Local climate projections suggest increasing days of high temperatures, fewer days of rainfall which will result in more droughts (and by implication, lower humidity) and more extreme rainfall events. All of these predicted climate changes are expected to have a negative impact on adult penguin survival.

  8. Effect of inlet-air humidity, temperature, pressure, and reference Mach number on the formation of oxides of nitrogen in a gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    Tests were conducted to determine the effect of inlet air humidity on the formation of oxides of nitrogen (NOx) from a gas turbine combustor. Combustor inlet air temperature ranged from 506 K (450 F) to 838 K (1050 F). The tests were primarily run at a constant pressure of 6 atmospheres and reference Mach number of 0.065. The NOx emission index was found to decrease with increasing inlet air humidity at a constant exponential rate: NOx = NOx0e-19H (where H is the humidity and the subscript 0 denotes the value at zero humidity). the emission index increased exponentially with increasing normalized inlet air temperature to the 1.14 power. Additional tests made to determine the effect of pressure and reference Mach number on NOx showed that the NOx emission index varies directly with pressure to the 0.5 power and inversely with reference Mach number.

  9. VAB Temperature and Humidity Study

    NASA Technical Reports Server (NTRS)

    Lane, John E.; Youngquist, Robert C.; Muktarian, Edward; Nurge, Mark A.

    2014-01-01

    In 2012, 17 data loggers were placed in the VAB to measure temperature and humidity at 10-minute intervals over a one-year period. In 2013, the data loggers were replaced with an upgraded model and slight adjustments to their locations were made to reduce direct solar heating effects. The data acquired by the data loggers was compared to temperature data provided by three wind towers located around the building. It was found that the VAB acts as a large thermal filter, delaying and reducing the thermal oscillations occurring outside of the building. This filtering is typically more pronounced at higher locations in the building, probably because these locations have less thermal connection with the outside. We surmise that the lower elevations respond more to outside temperature variations because of air flow through the doors. Temperatures inside the VAB rarely exceed outdoor temperatures, only doing so when measurements are made directly on a surface with connection to the outside (such as a door or wall) or when solar radiation falls directly on the sensor. A thermal model is presented to yield approximate filter response times for various locations in the building. Appendix A contains historical thermal and humidity data from 1994 to 2009.

  10. Validation Test Report for NFLUX PRE: Validation of Specific Humidity, Surface Air Temperature, and Wind Speed Precision and Accuracy for Assimilation into Global and Regional Models

    DTIC Science & Technology

    2014-04-02

    Test Report for NFLUX PRE: Validation of Specific Humidity, Surface Air Temperature, and Wind Speed Precision and Accuracy for Assimilation into...THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Validation Test Report for NFLUX PRE: Validation of Specific Humidity, Surface Air...The regional algorithm products overlay the existing global product estimate. The location of the observations is tested to see if it falls within one

  11. [Impact of canopy structural characteristics on inner air temperature and relative humidity of Koelreuteria paniculata community in summer].

    PubMed

    Qin, Zhong; Li, Zhan-dong; Cheng, Fang-yun; Sha, Hai-feng

    2015-06-01

    To investigate the diurnal variation of the correlations between the cooling and humidifying effects and canopy structural characteristics of the Koelreuteria paniculata community, the measurements of air temperature, relative humidity, canopy density, leaf area index (LAI) and mean leaf angle (MLA) were performed on calm sunny summer days in the community in Beijing Olympic Forest Park, China. There were significant correlations between the canopy density, LAI and MLA, which affected the cooling and humidifying effects together. The cooling effect reached its maximum by 12:00, whereas the humidifying effect reached its peak at 10:00. Compared with the control open space site, the community appeared to lower the air temperature by 0.43 to 7.53 °C and to increase the relative humidity by 1%-22% during the daytime. However, the cooling and humidifying effects seem to be not effective during the night. The canopy density and LAI were better for determining the cooling and humidifying effects from 9:00 to 12:00. However, these effects were largely controlled only by the canopy density from 12:00 to 14:00 and were significantly correlated with the canopy density and LAI afterwards until 18:00.

  12. Determining the long-term effects of H₂S concentration, relative humidity and air temperature on concrete sewer corrosion.

    PubMed

    Jiang, Guangming; Keller, Jurg; Bond, Philip L

    2014-11-15

    Many studies of sewer corrosion are performed in accelerated conditions that are not representing the actual corrosion processes. This study investigated the effects of various factors over 3.5 years under controlled conditions simulating the sewer environment. Concrete coupons prepared from precorroded sewers were exposed, both in the gas phase and partially submerged in wastewater, in laboratory controlled corrosion chambers. Over the 45 month exposure period, three environmental factors of H2S concentration, relative humidity and air temperature were controlled at different levels in the corrosion chambers. A total of 36 exposure conditions were investigated to determine the long term effects of these factors by regular retrieval of concrete coupons for detailed analysis of surface pH, corrosion layer sulfate levels and concrete loss. Corrosion rates were also determined for different exposure periods. It was found that the corrosion rate of both gas-phase and partially-submerged coupons was positively correlated with the H2S concentration in the gas phase. Relative humidity played also a role for the corrosion activity of the gas-phase coupons. However, the partially-submerged coupons were not affected by humidity as the surfaces of these coupons were saturated due to capillary suction of sewage on the coupon surface. The effect of temperature on corrosion activity varied and possibly the acclimation of corrosion-inducing microbes to temperature mitigated effects of that factor. It was apparent that biological sulfide oxidation was not the limiting step of the overall corrosion process. These findings provide real insights into the long-term effects of these key environmental factors on the sewer corrosion processes.

  13. Data set: 31 years of spatially distributed air temperature, humidity, precipitation amount and precipitation phase from a mountain catchment in the rain-snow transition zone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty one years of spatially distributed air temperature, relative humidity, dew point temperature, precipitation amount, and precipitation phase data are presented for the Reynolds Creek Experimental Watershed. The data are spatially distributed over a 10m Lidar-derived digital elevation model at ...

  14. A complexity measure based method for studying the dependance of 222Rn concentration time series on indoor air temperature and humidity.

    PubMed

    Mihailovic, D T; Udovičić, V; Krmar, M; Arsenić, I

    2014-02-01

    We have suggested a complexity measure based method for studying the dependence of measured (222)Rn concentration time series on indoor air temperature and humidity. This method is based on the Kolmogorov complexity (KL). We have introduced (i) the sequence of the KL, (ii) the Kolmogorov complexity highest value in the sequence (KLM) and (iii) the KL of the product of time series. The noticed loss of the KLM complexity of (222)Rn concentration time series can be attributed to the indoor air humidity that keeps the radon daughters in air.

  15. Influence of Temperature, Relative Humidity, and Soil Properties on the Soil-Air Partitioning of Semivolatile Pesticides: Laboratory Measurements and Predictive Models.

    PubMed

    Davie-Martin, Cleo L; Hageman, Kimberly J; Chin, Yu-Ping; Rougé, Valentin; Fujita, Yuki

    2015-09-01

    Soil-air partition coefficient (Ksoil-air) values are often employed to investigate the fate of organic contaminants in soils; however, these values have not been measured for many compounds of interest, including semivolatile current-use pesticides. Moreover, predictive equations for estimating Ksoil-air values for pesticides (other than the organochlorine pesticides) have not been robustly developed, due to a lack of measured data. In this work, a solid-phase fugacity meter was used to measure the Ksoil-air values of 22 semivolatile current- and historic-use pesticides and their degradation products. Ksoil-air values were determined for two soils (semiarid and volcanic) under a range of environmentally relevant temperature (10-30 °C) and relative humidity (30-100%) conditions, such that 943 Ksoil-air measurements were made. Measured values were used to derive a predictive equation for pesticide Ksoil-air values based on temperature, relative humidity, soil organic carbon content, and pesticide-specific octanol-air partition coefficients. Pesticide volatilization losses from soil, calculated with the newly derived Ksoil-air predictive equation and a previously described pesticide volatilization model, were compared to previous results and showed that the choice of Ksoil-air predictive equation mainly affected the more-volatile pesticides and that the way in which relative humidity was accounted for was the most critical difference.

  16. Dropwise condensation dynamics in humid air

    NASA Astrophysics Data System (ADS)

    Castillo Chacon, Julian Eduardo

    effects on the growth of single and distributed droplets offered in this thesis can improve the prediction of heat and mass transfer during dropwise condensation of humid air under differing environmental conditions. This knowledge can be used to engineer condenser systems and surfaces that are adapted for local ambient relative humidity and temperature conditions.

  17. Temperature and Humidity Profiles in the TqJoint Data Group of AIRS Version 6 Product for the Climate Model Evaluation

    NASA Technical Reports Server (NTRS)

    Ding, Feng; Fang, Fan; Hearty, Thomas J.; Theobald, Michael; Vollmer, Bruce; Lynnes, Christopher

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) mission is entering its 13th year of global observations of the atmospheric state, including temperature and humidity profiles, outgoing long-wave radiation, cloud properties, and trace gases. Thus AIRS data have been widely used, among other things, for short-term climate research and observational component for model evaluation. One instance is the fifth phase of the Coupled Model Intercomparison Project (CMIP5) which uses AIRS version 5 data in the climate model evaluation. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the home of processing, archiving, and distribution services for data from the AIRS mission. The GES DISC, in collaboration with the AIRS Project, released data from the version 6 algorithm in early 2013. The new algorithm represents a significant improvement over previous versions in terms of greater stability, yield, and quality of products. The ongoing Earth System Grid for next generation climate model research project, a collaborative effort of GES DISC and NASA JPL, will bring temperature and humidity profiles from AIRS version 6. The AIRS version 6 product adds a new "TqJoint" data group, which contains data for a common set of observations across water vapor and temperature at all atmospheric levels and is suitable for climate process studies. How different may the monthly temperature and humidity profiles in "TqJoint" group be from the "Standard" group where temperature and water vapor are not always valid at the same time? This study aims to answer the question by comprehensively comparing the temperature and humidity profiles from the "TqJoint" group and the "Standard" group. The comparison includes mean differences at different levels globally and over land and ocean. We are also working on examining the sampling differences between the "TqJoint" and "Standard" group using MERRA data.

  18. Direct condensation by humid air

    NASA Astrophysics Data System (ADS)

    Schwab, S.; Schiebelsberger, B.

    1980-12-01

    The practicability of direct condensation with humid air (DKFL) for waste heat removal from thermal power plants was investigated with regard to technical, economical and environmental aspects. The adjustment of a uniform trickling-water film was examined. A vertical test tube was erected to study the phenomenon of a trickling-water film. A pilot plant with a vertical tube-bundle was installed to evaluate the main process parameters. The applicability of the cooling system is judged. A theoretical model was derived for the design of a DKFL apparatus. A vertical geometry for the test tube has essential operational and economical advantages in comparison with a horizontal one.

  19. Validation Test Report for NFLUX PRE: Validation of Specific Humidity, Surface Air Temperature, and Wind Speed Precision and Accuracy for Assimilation into Global and Regional Models

    DTIC Science & Technology

    2013-12-17

    NRL/MR/7320--14-9523 Validation Test Report for NFLUX PRE: Validation of Specific Humidity, Surface Air Temperature, and Wind Speed...REPORT DATE 17 DEC 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Validation Test Report for NFLUX PRE...products overlay the existing global product estimate. The location of the observations is tested to see if it falls within one of the regional areas

  20. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air supply. Air that has had its absolute humidity altered is considered humidity- conditioned air. For...

  1. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air supply. Air that has had its absolute humidity altered is considered humidity- conditioned air. For...

  2. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air supply. Air that has had its absolute humidity altered is considered humidity- conditioned air. For...

  3. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air supply. Air that has had its absolute humidity altered is considered humidity- conditioned air. For...

  4. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air supply. Air that has had its absolute humidity altered is considered humidity- conditioned air. For...

  5. Changes in Meteorological Parameters (i.e. UV and Solar Radiation, Air Temperature, Humidity and Wind Condition) during the Partial Solar Eclipse of 9 March 2016

    NASA Astrophysics Data System (ADS)

    Paramitha, B.; Zaen, R.; Nandiyanto, A. B. D.

    2017-03-01

    Solar eclipse is a spectacular phenomenon, which occurs when the position of the moon is between the sun and the earth. This phenomenon affects to the meteorological parameters, such as solar radiation, temperature, and humidity. The purpose of this study was to evaluate the impact of partial solar eclipse of 9 March 2016 to the change of several meteorological parameters. In the experimental procedure, we used automatic weather station (AWS) in one of building in Universitas Pendidikan Indonesia in Bandung. Bandung was selected because this place experienced partial (88.89%) solar eclipse on 9 March 2016. The result showed that compared to normal day, meteorological parameters changed during the solar eclipse, such as decreases in the UV and solar radiation, increases in relative humidity, and changes in air temperature and wind condition.

  6. Effect of High Temperature Storage in Vacuum, Air, and Humid Conditions on Degradation of Gold/Aluminum Wire Bonds in PEMs

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2006-01-01

    Microcircuits encapsulated in three plastic package styles were stored in different environments at temperatures varying from 130 C to 225 C for up to 4,000 hours in some cases. To assess the effect of oxygen, the parts were aged at high temperatures in air and in vacuum chambers. The effect of humidity was evaluated during long-term highly accelerated temperature and humidity stress testing (HAST) at temperatures of 130 C and 150 C. High temperature storage testing of decapsulated microcircuits in air, vacuum, and HAST chambers was carried out to evaluate the role of molding compounds in the environmentally-induced degradation and failure of wire bonds (WB). This paper reports on accelerating factors of environment and molding compound on WB failures. It has been shown that all environments, including oxygen, moisture, and the presence of molding compounds reduce time-to-failures compared to unencapsulated devices in vacuum conditions. The mechanism of the environmental effect on KB degradation is discussed.

  7. Microresonator interference fiber-optic sensor of relative air humidity

    NASA Astrophysics Data System (ADS)

    Churenkov, A. V.

    2013-08-01

    A novel type of fiber-optic sensor of relative air humidity is developed on the basis of the micromechanical silicon microresonator and silica gel. The output signal of such a sensor in the frequency form has low sensitivity to variations in the laser-source power and to random attenuations in the fiber. In the case of purely optical excitation of oscillations of the resonator, the sensitive element of such a sensor is completely passive because it does not contain any electronic circuits and components. The sensor showed high sensitivity at a relative humidity less than 75%, possibility to operate at temperatures below freezing, and low dependence of readings on air temperature. The dependence of the humidity mass adsorbed by silica gel on the relative air humidity was found to be linear, which simplifies sensor calibration.

  8. Application of Artificial Neural Networks to the Development of Improved Multi-Sensor Retrievals of Near-Surface Air Temperature and Humidity Over Ocean

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, Franklin R.; Clayson, Carol Anne

    2012-01-01

    Improved estimates of near-surface air temperature and air humidity are critical to the development of more accurate turbulent surface heat fluxes over the ocean. Recent progress in retrieving these parameters has been made through the application of artificial neural networks (ANN) and the use of multi-sensor passive microwave observations. Details are provided on the development of an improved retrieval algorithm that applies the nonlinear statistical ANN methodology to a set of observations from the Advanced Microwave Scanning Radiometer (AMSR-E) and the Advanced Microwave Sounding Unit (AMSU-A) that are currently available from the NASA AQUA satellite platform. Statistical inversion techniques require an adequate training dataset to properly capture embedded physical relationships. The development of multiple training datasets containing only in-situ observations, only synthetic observations produced using the Community Radiative Transfer Model (CRTM), or a mixture of each is discussed. An intercomparison of results using each training dataset is provided to highlight the relative advantages and disadvantages of each methodology. Particular emphasis will be placed on the development of retrievals in cloudy versus clear-sky conditions. Near-surface air temperature and humidity retrievals using the multi-sensor ANN algorithms are compared to previous linear and non-linear retrieval schemes.

  9. Monitoring of cave air temperature and humidity in the Niedźwiedzia Cave system (Sudetes, Poland) - a key to understanding tourists activity impact to cave environment

    NASA Astrophysics Data System (ADS)

    Gasiorowski, M.; Hercman, H.

    2012-04-01

    The Niedźwiedzia Cave is located in Śnieżnik Massif (the Easter Sudetes, SW Poland) at 800 m a.s.l. The length of known passages is ~3000 m and denivelation is 69 m. The system is composed of 3 levels of passages and chambers. It is a show cave with ~80,000 visitors every year. In 2010 we started monitoring program of cave air temperature and humidity, drip rate, stable isotopes and Uranium and Polonium content in water in selected sites inside the cave and in its vicinity. Changes in dropping rate in upper level are well correlated with precipitation. However, a response of dripping to rainfall depends on former precipitation frequency and intensity - during the humid period the dripping reacts immediately and after long dry period dripping responses with two-weeks delay. There is not so direct correlation between precipitation and dripping in lower level of the system. Air temperature inside the cave is almost stable in lower level (mean annual ~5.3 °C, and annual variation up to 0.7 °C) and more dynamic in the middle level (mean annual ~6.4 °C, and mean annual amplitude up to 4 °C). Daily and weekly measured changes of cave air temperature demonstrate extremely well correlation with number of visitors. In show cave passages (the middle level of the system) temperature increase 0.1-0.2 °C during every day when the cave is open for tourists and such changes is not observed during days without visitors and in lower level of the system closed for tourists. But even short visits of 3-4 cavers are recorded by temperature sensors exposed in the lower level (~0.02 °C increase). It proves very high sensitivity of cave environment to human activity. This study is funded by the National Science Centre and Higher Education grant no. N N306 131038.

  10. Indoor air quality in two urban elementary schools--measurements of airborne fungi, carpet allergens, CO2, temperature, and relative humidity.

    PubMed

    Ramachandran, Gurumurthy; Adgate, John L; Banerjee, Sudipto; Church, Timothy R; Jones, David; Fredrickson, Ann; Sexton, Ken

    2005-11-01

    This article presents measurements of biological contaminants in two elementary schools that serve inner city minority populations. One of the schools is an older building; the other is newer and was designed to minimize indoor air quality problems. Measurements were obtained for airborne fungi, carpet loadings of dust mite allergens, cockroach allergens, cat allergens, and carpet fungi. Carbon dioxide concentrations, temperature, and relative humidity were also measured. Each of these measurements was made in five classrooms in each school over three seasons--fall, winter, and spring. We compared the indoor environments at the two schools and examined the variability in measured parameters between and within schools and across seasons. A fixed-effects, nested analysis was performed to determine the effect of school, season, and room-within-school, as well as CO2, temperature and relative humidity. The levels of all measured parameters were comparable for the two schools. Carpet culturable fungal concentrations and cat allergen levels in the newer school started and remained higher than in the older school over the study period. Cockroach allergen levels in some areas were very high in the newer school and declined over the study period to levels lower than the older school. Dust mite allergen and culturable fungal concentrations in both schools were relatively low compared with benchmark values. The daily averages for temperature and relative humidity frequently did not meet ASHRAE guidelines in either school, which suggests that proper HVAC and general building operation and maintenance procedures are at least as important as proper design and construction for adequate indoor air quality. The results show that for fungi and cat allergens, the school environment can be an important exposure source for children.

  11. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply....

  12. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply....

  13. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply....

  14. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply....

  15. In situ air temperature and humidity measurements over diverse land covers in Greenbelt, Maryland, November 2013-November 2015

    NASA Astrophysics Data System (ADS)

    Carroll, Mark L.; Brown, Molly E.; Wooten, Margaret R.; Donham, Joel E.; Hubbard, Alfred B.; Ridenhour, William B.

    2016-09-01

    As our climate changes through time there is an ever-increasing need to quantify how and where it is changing so that mitigation strategies can be implemented. Urban areas have a disproportionate amount of warming due, in part, to the conductive properties of concrete and asphalt surfaces, surface albedo, heat capacity, lack of water, etc. that make up an urban environment. The NASA Climate Adaptation Science Investigation working group at Goddard Space Flight Center in Greenbelt, MD, conducted a study to collect temperature and humidity data at 15 min intervals from 12 sites at the center. These sites represent the major surface types at the center: asphalt, building roof, grass field, forest, and rain garden. The data show a strong distinction in the thermal properties of these surfaces at the center and the difference between the average values for the center compared to a local meteorological station. The data have been submitted to Oak Ridge National Laboratory Distributed Active Archive Center (ORNL-DAAC) for archival in comma separated value (csv) file format (Carroll et al., 2016) and can be found by following this link: http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1319.

  16. Interconversion of chromium species during air sampling: effects of O3, NO2, SO2, particle matrices, temperature, and humidity.

    PubMed

    Huang, Lihui; Fan, Zhihua Tina; Yu, Chang Ho; Hopke, Philip K; Lioy, Paul J; Buckley, Brian T; Lin, Lin; Ma, Yingjun

    2013-05-07

    The interconversion between Cr(VI), a pulmonary carcinogen, and Cr(III), an essential human nutrient, poses challenges to the measurement of Cr(VI) in airborne particles. Chamber and field tests were conducted to identify the factors affecting Cr(VI)-Cr(III) interconversion in the basic filter medium under typical sampling conditions. In the chamber tests, isotopically enriched (53)Cr(VI) and (50)Cr(III) were spiked on diesel particulate matter (DPM) and secondary organic aerosol (SOA) that were precollected on a basic MCE filter. The filter samples were then exposed to clean air or the air containing SO2 (50 and 160 ppb), 100 ppb O3, or 150 ppb NO2 for 24 h at 16.7 LPM flow rate at designated temperature (20 and 31 °C) and RH (40% and 70%) conditions. Exposure to 160 ppb SO2 had the greatest effect on (53)Cr(VI) reduction, with (53)Cr(VI) recovery of 31.7 ± 15.8% (DPM) and 42.0 ± 7.9% (SOA). DPM and SOA matrix induced (53)Cr(VI) reduction when exposed to clean air while reactive oxygen species in SOA could promote (50)Cr(III) oxidation. Deliquescence when RH increased from 40% to 70% led to conversion of Cr(III) in SOA, whereas oxidized organics in DPM and SOA enhanced hygroscopicity and thus facilitated Cr(VI) reduction. Field tests showed seasonal variation of Cr(VI)-Cr(III) interconversion during sampling. Correction of the interconversion using USEPA method 6800 is recommended to improve accuracy of ambient Cr(VI) measurements.

  17. Dropwise Condensation Experiments with Humid Air at a Polymer Surface

    NASA Astrophysics Data System (ADS)

    Götze, P.; Philipp, Ch; Gross, U.

    2012-11-01

    A new test facility has been developed to investigate dropwise condensation heat transfer in a humid air environment. It is designed as a closed loop system in which air is circulated by a fan, enabling investigations in the following parameter ranges: velocity up to 20 m/s; Reynolds number up to 20,000; temperature 20 to 100 °C relative humidity up to 100 %. Heat transfer measurements are done with a specifically designed micro sensor which is flush mounted at one of the vertical surfaces of a horizontal flow channel 12 mm × 32 mm (inner width and height, respectively) and covered at its air-side surface by a newly developed polymer layer containing 20 % of carbon nanotubes for improvement of the thermal conductivity. A total of 8 thermocouples is embedded inside the sensor. Their readings serve as input data to a numerical model which enables consideration of heat losses and evaluation of surface temperature and heat flux. The measuring system allows to analyse the effects of heat flux, air-to-wall temperature difference, absolute and relative humidity, and Reynolds number on the heat transfer coefficient. Single phase heat transfer results show excellent agreement with well established correlations for turbulent air flow. The onset of dropwise condensation was detected with very good repeatability. This paper covers details of the experimental device, measuring system and data evaluation including accuracy considerations. Single phase and preliminary dropwise condensation results with humid air are reported.

  18. Effects of Thermal Mass, Window Size, and Night-Time Ventilation on Peak Indoor Air Temperature in the Warm-Humid Climate of Ghana

    PubMed Central

    Amos-Abanyie, S.; Akuffo, F. O.; Kutin-Sanwu, V.

    2013-01-01

    Most office buildings in the warm-humid sub-Saharan countries experience high cooling load because of the predominant use of sandcrete blocks which are of low thermal mass in construction and extensive use of glazing. Relatively, low night-time temperatures are not harnessed in cooling buildings because office openings remain closed after work hours. An optimization was performed through a sensitivity analysis-based simulation, using the Energy Plus (E+) simulation software to assess the effects of thermal mass, window size, and night ventilation on peak indoor air temperature (PIAT). An experimental system was designed based on the features of the most promising simulation model, constructed and monitored, and the experimental data used to validate the simulation model. The results show that an optimization of thermal mass and window size coupled with activation of night-time ventilation provides a synergistic effect to obtain reduced peak indoor air temperature. An expression that predicts, indoor maximum temperature has been derived for models of various thermal masses. PMID:23878528

  19. A Simple Drought Product and Indicator Derived from Temperature and Relative Humidity Observed by the Atmospheric InfraRed Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Granger, S. L.; Behrangi, A.

    2015-12-01

    In the United States, drought results in agricultural losses, impacts to industry, power and energy production, natural resources, municipal water supplies and human health making it one of the costliest natural hazards in the nation. Monitoring drought is therefore critical to help local governments, resource managers, and other groups make effective decisions, yet there is no single definition of drought, and because of the complex nature of drought there is no universal best drought indicator. Remote sensing applications in drought monitoring are advantageous due to the large spatial and temporal frequency of observations, leading to a better understanding of the spatial extent of drought and its duration, and in detecting the onset of drought and its intensity. NASA Earth Observing System (EOS)-era data have potential for monitoring and assessing drought and many are already used either directly or indirectly for drought monitoring. Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) observations from the Moderate Resolution Imaging Spectro-radiometer (MODIS) sensor are widely used for agricultural and environmental plant-stress monitoring via the USDM, the VegDRI project and FEWSNet. However there remain underutilized sources of information from NASA satellite observations that may have promise for characterizing and understanding meteorological drought. Once such sensor is NASA's Advanced Infra-Red Sounder (AIRS) aboard the Aqua satellite. AIRS and it's sister sensor the Advanced Microwave Sounding Unit (AMSU) that together provide meteorological information of high relevance to meteorological drought, e.g., profiles of water vapor, surface air temperature, and precipitation. Recent work undertaken to develop simple indicators of drought based on temperature and relative humidity from the AIRS suite of instruments is promising. Although there are more sophisticated indicators developed through the application of a variety of

  20. 40 CFR 1066.615 - NOX intake-air humidity correction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... vapor pressure at the ambient dry bulb temperature. RH = relative humidity of ambient air M air = molar mass of air. p atmos = atmospheric pressure. ER28AP14.106 Where: x NOXdexh = measured dilute...

  1. Evolution of arched roofs in salt caves: Role of gravity-induced stress and relative air humidity and temperature changes (Zagros Mts., Iran)

    NASA Astrophysics Data System (ADS)

    Bruthans, Jiri; Filippi, Michal; Zare, Mohammad

    2016-04-01

    In salt caves in the halite karst in SE Iran the disintegration of rock salt into individual grains can be observed. Highly disintegrated blocks and individual grains form a major volume of debris in many caves on islands in the Persian Gulf. Larger cave rooms have often perfectly arched roof. The perfect geometry of rooms and interlocking of salt grains indicate that evolution of room cross-sections in these caves is controlled by feedback between gravity-induced stress and rock salt disintegration in similar way as in evolution of sandstone landforms (Bruthans et al. 2014). Those portions of rock salt, which are under compressional stress, disintegrate much slower than portions under tensile stress. Important question is the kind of weathering mechanism responsible for intergranular disintegration of rock salt. The relationship between disintegration, its rate and cave climate was studied. Clearly the fastest disintegration rate was found in caves with strong air circulation (i.e, short caves with large cross-sections, open on both ends). Temperature and air humidity changes are considerable in these caves. On the other hand the disintegration is very slow in the inner parts of long caves with slow air circulation or caves with one entrance. The best example of such caves is the inner part of 3N Cave on Namakdan salt diapir with nearly no air circulation and stable temperature and humidity, where disintegration of rock salt into grains is missing. Strong effect of cave climate on disintegration rate can be explained by deliquescence properties of halite. Halite is absorbing air moisture forming NaCl solution if relative humidity (RH) exceeds 75 % (at 20-30 oC). In the Persian Gulf region the RH of the air is passing the 75 % threshold in case of 91% days (Qeshm Island, years 2002-2005), while in mountainous areas in mainland this threshold is less commonly reached. In most of nights (91 %) in Persian Gulf the air with RH >75 % is entering the salt caves and air

  2. Noncontact Measurement of Humidity and Temperature Using Airborne Ultrasound

    NASA Astrophysics Data System (ADS)

    Akihiko Kon,; Koichi Mizutani,; Naoto Wakatsuki,

    2010-04-01

    We describe a noncontact method for measuring humidity and dry-bulb temperature. Conventional humidity sensors are single-point measurement devices, so that a noncontact method for measuring the relative humidity is required. Ultrasonic temperature sensors are noncontact measurement sensors. Because water vapor in the air increases sound velocity, conventional ultrasonic temperature sensors measure virtual temperature, which is higher than dry-bulb temperature. We performed experiments using an ultrasonic delay line, an atmospheric pressure sensor, and either a thermometer or a relative humidity sensor to confirm the validity of our measurement method at relative humidities of 30, 50, 75, and 100% and at temperatures of 283.15, 293.15, 308.15, and 323.15 K. The results show that the proposed method measures relative humidity with an error rate of less than 16.4% and dry-bulb temperature with an error of less than 0.7 K. Adaptations of the measurement method for use in air-conditioning control systems are discussed.

  3. Effects of ambient air temperature, humidity, and wind speed on seminal traits in Braford and Nellore bulls at the Brazilian Pantanal

    NASA Astrophysics Data System (ADS)

    Menegassi, Silvio Renato Oliveira; Pereira, Gabriel Ribas; Bremm, Carolina; Koetz, Celso; Lopes, Flávio Guiselli; Fiorentini, Eduardo Custódio; McManus, Concepta; Dias, Eduardo Antunes; da Rocha, Marcela Kuczynski; Lopes, Rubia Branco; Barcellos, Júlio Otávio Jardim

    2016-11-01

    The aim of this study was to evaluate the bioclimatic thermal stress assessed by Equivalent Temperature Index (ETI) and Temperature Humidity Index (THI) on Braford and Nellore bulls sperm quality during the reproductive seasons at the tropical region in the Brazilian Pantanal. We used 20 bulls aged approximately 24 months at the beginning of the study. Five ejaculates per animal were collected using an electroejaculator. Temperature, air humidity, and wind speed data were collected every hour from the automatic weather station at the National Institute of Meteorology. Infrared thermography images data were collected to assess the testicular temperature gradient in each animal. Data were analyzed with ANOVA using MIXED procedure of SAS and means were compared using Tukey's HSD test. The THI and ETI at 12 days (epididymal transit) were higher in January (89.7 and 28.5, respectively) and February (90.0 and 29.0, respectively) compared to other months ( P < 0.01). Total seminal defects differ only in Bradford bulls between the months of November and February. Nellore bulls had lower major defects (MaD) and total defects (TD) compared to Braford. Nellore bulls showed correlation between minor defects (MiD) and THI for 30 days (0.90) and 18 days (0.88; P < 0.05). Braford bulls showed correlation for MaD (0.89) in ETI for 12 days ( P < 0.05). Infrared thermography showed no difference between animals. Reproductive response to environmental changes is a consequence of Nellore and Braford adaptation to climate stress conditions. Both THI and ETI environmental indexes can be used to evaluate the morphological changes in the seminal parameters in Nellore or Braford bulls; however, more experiments should be performed focusing on larger sample numbers and also in reproductive assessment during the consecutive years to assess fertility potential.

  4. Application for temperature and humidity monitoring of data center environment

    NASA Astrophysics Data System (ADS)

    Albert, Ş.; Truşcǎ, M. R. C.; Soran, M. L.

    2015-12-01

    The technology and computer science registered a large development in the last years. Most systems that use high technologies require special working conditions. The monitoring and the controlling are very important. The temperature and the humidity are important parameters in the operation of computer systems, industrial and research, maintaining it between certain values to ensure their proper functioning being important. Usually, the temperature is maintained in the established range using an air conditioning system, but the humidity is affected. In the present work we developed an application based on a board with own firmware called "AVR_NET_IO" using a microcontroller ATmega32 type for temperature and humidity monitoring in Data Center of INCDTIM. On this board, temperature sensors were connected to measure the temperature in different points of the Data Center and outside of this. Humidity monitoring is performed using data from integrated sensors of the air conditioning system, thus achieving a correlation between humidity and temperature variation. It was developed a software application (CM-1) together with the hardware, which allows temperature monitoring and register inside Data Center and trigger an alarm when variations are greater with 3°C than established limits of the temperature.

  5. Air motion determination by tracking humidity patterns in isentropic layers

    NASA Technical Reports Server (NTRS)

    Mancuso, R. L.; Hall, D. J.

    1975-01-01

    Determining air motions by tracking humidity patterns in isentropic layers was investigated. Upper-air rawinsonde data from the NSSL network and from the AVE-II pilot experiment were used to simulate temperature and humidity profile data that will eventually be available from geosynchronous satellites. Polynomial surfaces that move with time were fitted to the mixing-ratio values of the different isentropic layers. The velocity components of the polynomial surfaces are part of the coefficients that are determined in order to give an optimum fitting of the data. In the mid-troposphere, the derived humidity motions were in good agreement with the winds measured by rawinsondes so long as there were few or no clouds and the lapse rate was relatively stable. In the lower troposphere, the humidity motions were unreliable primarily because of nonadiabatic processes and unstable lapse rates. In the upper troposphere, the humidity amounts were too low to be measured with sufficient accuracy to give reliable results. However, it appears that humidity motions could be used to provide mid-tropospheric wind data over large regions of the globe.

  6. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  7. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  8. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  9. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  10. Influence of air pressure, humidity, solar radiation, temperature, and wind speed on ambulatory visits due to chronic obstructive pulmonary disease in Bavaria, Germany

    NASA Astrophysics Data System (ADS)

    Ferrari, Uta; Exner, Teresa; Wanka, Eva R.; Bergemann, Christoph; Meyer-Arnek, Julian; Hildenbrand, Beate; Tufman, Amanda; Heumann, Christian; Huber, Rudolf M.; Bittner, Michael; Fischer, Rainald

    2012-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the most important causes of morbidity and mortality in the world. The disease is often aggravated by periods of increased symptoms requiring medical attention. Among the possible triggers for these exacerbations, meteorological factors are under consideration. The objective of this study was to assess the influence of various meteorological factors on the health status of patients with COPD. For this purpose, the daily number of ambulatory care visits due to COPD was analysed in Bavaria, Germany, for the years 2006 and 2007. The meteorological factors were provided by the model at the European Centre for Medium Range Weather Forecast (ECMWF). For the multivariate analysis, a generalised linear model was used. In Bavaria, an increase of 1% of daily consultations (about 103 visits per day) was found to be associated with a change of 0.72 K temperature, 209.55 of log air surface pressure in Pa, and a decrease of 1% of daily consultations with 1,453,763 Ws m2 of solar radiation. There also seem to be regional differences between north and south Bavaria; for instance, the effect of wind speed and specific humidity with a lag of 1 day were only significant in the north. This study could contribute to a tool for the prevention of exacerbations. It also serves as a model for the further evaluation of the impact of meteorological factors on health, and could easily be applied to other diseases or other regions.

  11. Influence of air pressure, humidity, solar radiation, temperature, and wind speed on ambulatory visits due to chronic obstructive pulmonary disease in Bavaria, Germany.

    PubMed

    Ferrari, Uta; Exner, Teresa; Wanka, Eva R; Bergemann, Christoph; Meyer-Arnek, Julian; Hildenbrand, Beate; Tufman, Amanda; Heumann, Christian; Huber, Rudolf M; Bittner, Michael; Fischer, Rainald

    2012-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the most important causes of morbidity and mortality in the world. The disease is often aggravated by periods of increased symptoms requiring medical attention. Among the possible triggers for these exacerbations, meteorological factors are under consideration. The objective of this study was to assess the influence of various meteorological factors on the health status of patients with COPD. For this purpose, the daily number of ambulatory care visits due to COPD was analysed in Bavaria, Germany, for the years 2006 and 2007. The meteorological factors were provided by the model at the European Centre for Medium Range Weather Forecast (ECMWF). For the multivariate analysis, a generalised linear model was used. In Bavaria, an increase of 1% of daily consultations (about 103 visits per day) was found to be associated with a change of 0.72 K temperature, 209.55 of log air surface pressure in Pa, and a decrease of 1% of daily consultations with 1,453,763 Ws m(2) of solar radiation. There also seem to be regional differences between north and south Bavaria; for instance, the effect of wind speed and specific humidity with a lag of 1 day were only significant in the north. This study could contribute to a tool for the prevention of exacerbations. It also serves as a model for the further evaluation of the impact of meteorological factors on health, and could easily be applied to other diseases or other regions.

  12. HUMID AIR TURBINE CYCLE TECHNOLOGY DEVELOPMENT PROGRAM

    SciTech Connect

    Richard Tuthill

    2002-07-18

    The Humid Air Turbine (HAT) Cycle Technology Development Program focused on obtaining HAT cycle combustor technology that will be the foundation of future products. The work carried out under the auspices of the HAT Program built on the extensive low emissions stationary gas turbine work performed in the past by Pratt & Whitney (P&W). This Program is an integral part of technology base development within the Advanced Turbine Systems Program at the Department of Energy (DOE) and its experiments stretched over 5 years. The goal of the project was to fill in technological data gaps in the development of the HAT cycle and identify a combustor configuration that would efficiently burn high moisture, high-pressure gaseous fuels with low emissions. The major emphasis will be on the development of kinetic data, computer modeling, and evaluations of combustor configurations. The Program commenced during the 4th Quarter of 1996 and closed in the 4th Quarter of 2001. It teamed the National Energy Technology Laboratory (NETL) with P&W, the United Technologies Research Center (UTRC), and a subcontractor on-site at UTRC, kraftWork Systems Inc. The execution of the program started with bench-top experiments that were conducted at UTRC for extending kinetic mechanisms to HAT cycle temperature, pressure, and moisture conditions. The fundamental data generated in the bench-top experiments was incorporated into the analytical tools available at P&W to design the fuel injectors and combustors. The NETL then used the hardware to conduct combustion rig experiments to evaluate the performance of the combustion systems at elevated pressure and temperature conditions representative of the HAT cycle. The results were integrated into systems analysis done by kraftWork to verify that sufficient understanding of the technology had been achieved and that large-scale technological application and demonstration could be undertaken as follow-on activity. An optional program extended the

  13. Temperature trends in regions affected by increasing aridity/humidity

    NASA Astrophysics Data System (ADS)

    Jones, Philip D.; Reid, Phillip A.

    A paper in 1991 claimed that regions affected by desertification experience warming trends relative to neighbouring areas. To assess this, an index of aridity/humidity based on the ratio of annual precipitation to annual potential evapotranspiration totals (P/PET) is developed. This index is used to define regions experiencing increases (and those where the increase is statistically significant) in aridity and humidity. We also consider regions always arid (average values of P/PET <0.5) and always humid (P/PET >2.0). Trends of average annual and summer surface air temperature are then calculated for regions in the various aridity/humidity categories and compared to most of the rest of the world's land areas equatorward of 60°. The results indicate that most of the differences in trends between categories are not statistically significant.

  14. Group 3: Humidity, Temperature and Voltage (Presentation)

    SciTech Connect

    Wohlgemuth, J.

    2013-09-01

    This is a summary of the work of Group 3 of the International PV QA Task Force. Group 3 is chartered to develop accelerated stress tests that can be used as comparative predictors of module lifetime versus stresses associated with humidity, temperature and voltage.

  15. Influence of fine water droplets to temperature and humidity

    NASA Astrophysics Data System (ADS)

    Hafidzal, M. H. M.; Hamzah, A.; Manaf, M. Z. A.; Saadun, M. N. A.; Zakaria, M. S.; Roslizar, A.; Jumaidin, R.

    2015-05-01

    Excessively dry air can cause dry skin, dry eyes and exacerbation of medical conditions. Therefore, many researches have been done in order to increase humidity in our environment. One of the ways is by using water droplets. Nowadays, it is well known in market stand fan equipped with water mister in order to increase the humidity of certain area. In this study, the same concept is applied to the ceiling fan. This study uses a model that combines a humidifier which functions as cooler, ceiling fan and scaled down model of house. The objective of this study is to analyze the influence of ceiling fan humidifier to the temperature and humidity in a house. The mechanism of this small model uses batteries as the power source, connected to the fan and the humidifier. The small water tank's function is to store and supply water to the humidifier. The humidifier is used to cool the room by changing water phase to fine water droplets. Fine water droplets are created from mechanism of the humidifier, which is by increasing the kinetic energy of water molecule using high frequency vibration that overcome the holding force between water molecules. Thus, the molecule of water will change to state of gas or mist. The fan is used to spread out the mist of water to surrounding of the room in order to enhance the humidity. Thermocouple and humidity meter are used to measure temperature and humidity in some period of times. The result shows that humidity increases and temperature decreases with time. This application of water droplet can be applied in the vehicles and engine in order to decrease the temperature.

  16. Wireless sensor for temperature and humidity measurement

    NASA Astrophysics Data System (ADS)

    Drumea, Andrei; Svasta, Paul

    2010-11-01

    Temperature and humidity sensors have a broad range of applications, from heating and ventilation of houses to controlled drying of fruits, vegetables or meat in food industry. Modern sensors are integrated devices, usually MEMS, factory-calibrated and with digital output of measured parameters. They can have power down modes for reduced energy consumption. Such an integrated device allows the implementation of a battery powered wireless sensor when coupled with a low power microcontroller and a radio subsystem. A radio sensor can work independently or together with others in a radio network. Presented paper focuses mainly on measurement and construction aspects of sensors for temperature and humidity designed and implemented by authors; network aspects (communication between two or more sensors) are not analyzed.

  17. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers...

  18. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are...

  19. 7 CFR 28.301 - Measurement: humidity; temperature.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70 °F....

  20. 7 CFR 28.301 - Measurement: humidity; temperature.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70 °F....

  1. 7 CFR 28.301 - Measurement: humidity; temperature.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70° F....

  2. 7 CFR 28.301 - Measurement: humidity; temperature.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70 °F....

  3. 7 CFR 28.301 - Measurement: humidity; temperature.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70 °F....

  4. Air humidity and carotid rete function in thermoregulation of the goat.

    PubMed

    Jessen, C; Pongratz, H

    1979-07-01

    1. The effects of air humidity on respiratory rate have been studied in conscious goats exposed to an air temperature of + 33 degrees C. Before the experiments the animals had been chronically implanted with hypothalamic thermodes and intravascular heat exchangers to manipulate hypothalamic and general body core temperatures.2. Raising air humidity from 37 to 96% at constant air temperature resulted in a rise of respiratory rate, an immediate increase in hypothalamic temperature and a delayed smaller increase in general body core temperature.3. The rise of respiratory rate was smaller when general body core temperature was clamped at its control level and was absent when hypothalamic and general body core temperatures were clamped at their control levels during the humid air phase.4. It is concluded that the effect of high air humidity on respiratory rate in goats is predominantly the result of a rise in hypothalamic temperature acting on local thermosensitive structures. The carotid rete heat exchanger is thought to provide the thermal link between the evaporating surfaces of the upper respiratory tract and the hypothalamus.5. This function of the carotid rete heat exchanger is restricted to heat stressed animals. In animals subject to central cooling no local effects on hypothalamic temperature could be observed when the temperature of the inspired air was altered from + 33 to - 17 degrees C.

  5. Air humidity and carotid rete function in thermo-regulation of the goat

    PubMed Central

    Jessen, Claus; Pongratz, Hans

    1979-01-01

    1. The effects of air humidity on respiratory rate have been studied in conscious goats exposed to an air temperature of + 33 °C. Before the experiments the animals had been chronically implanted with hypothalamic thermodes and intravascular heat exchangers to manipulate hypothalamic and general body core temperatures. 2. Raising air humidity from 37 to 96% at constant air temperature resulted in a rise of respiratory rate, an immediate increase in hypothalamic temperature and a delayed smaller increase in general body core temperature. 3. The rise of respiratory rate was smaller when general body core temperature was clamped at its control level and was absent when hypothalamic and general body core temperatures were clamped at their control levels during the humid air phase. 4. It is concluded that the effect of high air humidity on respiratory rate in goats is predominantly the result of a rise in hypothalamic temperature acting on local thermosensitive structures. The carotid rete heat exchanger is thought to provide the thermal link between the evaporating surfaces of the upper respiratory tract and the hypothalamus. 5. This function of the carotid rete heat exchanger is restricted to heat stressed animals. In animals subject to central cooling no local effects on hypothalamic temperature could be observed when the temperature of the inspired air was altered from + 33 to - 17 °C. PMID:490377

  6. The relationship between indoor and outdoor temperature, apparent temperature, relative humidity, and absolute humidity.

    PubMed

    Nguyen, J L; Schwartz, J; Dockery, D W

    2014-02-01

    Many studies report an association between outdoor ambient weather and health. Outdoor conditions may be a poor indicator of personal exposure because people spend most of their time indoors. Few studies have examined how indoor conditions relate to outdoor ambient weather. The average indoor temperature, apparent temperature, relative humidity (RH), and absolute humidity (AH) measured in 16 homes in Greater Boston, Massachusetts, from May 2011 to April 2012 was compared to measurements taken at Boston Logan airport. The relationship between indoor and outdoor temperatures is nonlinear. At warmer outdoor temperatures, there is a strong correlation between indoor and outdoor temperature (Pearson correlation coefficient, r = 0.91, slope, β = 0.41), but at cooler temperatures, the association is weak (r = 0.40, β = 0.04). Results were similar for outdoor apparent temperature. The relationships were linear for RH and AH. The correlation for RH was modest (r = 0.55, β = 0.39). Absolute humidity exhibited the strongest indoor-to-outdoor correlation (r = 0.96, β = 0.69). Indoor and outdoor temperatures correlate well only at warmer outdoor temperatures. Outdoor RH is a poor indicator of indoor RH, while indoor AH has a strong correlation with outdoor AH year-round.

  7. High Accuracy Acoustic Relative Humidity Measurement in Duct Flow with Air

    PubMed Central

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temperature 0–100 °C with an error of ±0.07 °C and relative humidity 0–100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments. PMID:22163610

  8. High accuracy acoustic relative humidity measurement in duct flow with air.

    PubMed

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  9. Estimation of potential evapotranspiration from extraterrestrial radiation, air temperature and humidity to assess future climate change effects on the vegetation of the Northern Great Plains, USA

    USGS Publications Warehouse

    King, David A.; Bachelet, Dominique M.; Symstad, Amy J.; Ferschweiler, Ken; Hobbins, Michael

    2014-01-01

    The potential evapotranspiration (PET) that would occur with unlimited plant access to water is a central driver of simulated plant growth in many ecological models. PET is influenced by solar and longwave radiation, temperature, wind speed, and humidity, but it is often modeled as a function of temperature alone. This approach can cause biases in projections of future climate impacts in part because it confounds the effects of warming due to increased greenhouse gases with that which would be caused by increased radiation from the sun. We developed an algorithm for linking PET to extraterrestrial solar radiation (incoming top-of atmosphere solar radiation), as well as temperature and atmospheric water vapor pressure, and incorporated this algorithm into the dynamic global vegetation model MC1. We tested the new algorithm for the Northern Great Plains, USA, whose remaining grasslands are threatened by continuing woody encroachment. Both the new and the standard temperature-dependent MC1 algorithm adequately simulated current PET, as compared to the more rigorous PenPan model of Rotstayn et al. (2006). However, compared to the standard algorithm, the new algorithm projected a much more gradual increase in PET over the 21st century for three contrasting future climates. This difference led to lower simulated drought effects and hence greater woody encroachment with the new algorithm, illustrating the importance of more rigorous calculations of PET in ecological models dealing with climate change.

  10. Effects of Temperature and Humidity on Major League Baseballs

    NASA Astrophysics Data System (ADS)

    Gerstman, Victoria; Raue, Brian

    2003-11-01

    In a study inspired by the famous humidor of the Colorado Rockies of Major League Baseball, we have measured the effects of temperature and humidity on the elasticity of official Major League baseballs. The elasticity, e, also referred to as the coefficient of restitution (COR), of the baseballs was determined by dropping the balls from a fixed height onto a concrete floor and determining the speed of the ball after the initial impact. Corrections for air drag were made to the measured COR. Measurements were done for baseballs stored under a wide variety of conditions that included storage in the freezer compartment of a household refrigerator, storage in an 80^rcC oven with varying humidity conditions, and storage in a crude humidor. The balls were tested over a period of several hours after removal to nominal conditions. Our results show a linear increase of the COR with increasing temperature, as well as a nearly linear decrease in the COR as water mass is increased. Using the results of our measurements, we have determined the effects of temperature and humidity on batted-ball speeds and flight distances at the Rockies' home field.

  11. The effect of wind velocity, air temperature and humidity on NH 3 and SO 2 transfer into bean leaves ( phaseolus vulgaris L.)

    NASA Astrophysics Data System (ADS)

    van Hove, L. W. A.; Vredenberg, W. J.; Adema, E. H.

    The influence of wind velocity, air temperature and vapour pressure deficit of the air (VPD) on NH 3 and SO 2 transfer into bean leaves ( Phaseolus vulgaris L.) was examined using a leaf chamber. The measurements suggested a transition in the properties of the leaf boundary layer at a wind velocity of 0.3-0.4 ms -1 which corresponds to a Recrit value of about 2000. At higher wind velocities the leaf boundary layer resistance ( rb) was 1.5-2 times lower than can be calculated from the theory. Nevertheless, the assessed relationships between rb and wind velocity appeared to be similar to the theoretical derived relationship for rb. The NH 3 flux and in particular the SO 2 flux into the leaf strongly increased at a VPD decline. The increase of the NH 3 flux could be attributed to an increase of the stomatal conductance ( gs). However, the increase of the SO 2 flux could only partly be explained by an increase of gs. An apparent additional uptake was also observed for the NH 3 uptake at a low temperature and VPD. The SO 2 flux was also influenced by air temperature which could be explained by a temperature effect on gs. The results suggest that calculation of the NH 3 and SO 2 flux using data of gs gives a serious understimation of the real flux of these gases into leaves at a low temperature and VPD.

  12. The course, stratification and possibility of simulating relative air humidity in winter wheat stand

    NASA Astrophysics Data System (ADS)

    Krčmářová, Jana; Pokorný, Radovan; Středa, Tomáš

    2016-06-01

    The aim of this study was: (i) long-term (2010, 2011 and 2013) evaluation of the relative air humidity in the winter wheat canopy, (ii) finding of relationships between relative air humidity in canopy and computed or measured meteorological values (precipitation totals, evapotranspiration, moisture balance, specific air humidity, volume soil moisture, % of available soil water content, value of soil water potential), (iii) testing of simulation of daily relative air humidity, based on selected meteorological values and potential evapotranspiration (FAO Penman-Monteith method) and actual evapotranspiration, (iv) testing of simulation of relative air humidity hourly values in the wheat canopy, (v) evaluation of dependence between relative air humidity and leaf wetness. The measurement was performed at the experimental field station of Mendel University in Žabčice (South Moravia, the Czech Republic). Data recording for wheat canopy was conducted by means of a meteostation equipped with digital air humidity and air temperature sensors positioned in the ground, effective height of the stand and in 2 m above the ground. The main vegetation period of wheat was divided into three stages to evaluate differences in various growing phases of wheat. The data from nearby standard climatological stations and from agrometeorological station in Žabčice were used for establishment of relationships between relative air humidity in winter wheat canopy and surrounding environment by correlation and regression analysis. Relative air humidity above 90% occurred substantially longer on the ground and at the effective height of the stand in comparison with the height of 2 m. By means of regression analysis we determined that the limit of 90% was reached in the canopy when at the climatological station it was just 60 to 90% for ground level and 70 to 90% for effective height, especially during the night. Slight dependence between measured or computed meteorological variables and

  13. The relationship between indoor and outdoor temperature, apparent temperature, relative humidity, and absolute humidity

    PubMed Central

    Nguyen, Jennifer L.; Schwartz, Joel; Dockery, Douglas W.

    2013-01-01

    Introduction Many studies report an association between outdoor ambient weather and health. Outdoor conditions may be a poor indicator of personal exposure because people spend most of their time indoors. Few studies have examined how indoor conditions relate to outdoor ambient weather. Methods and Results The average indoor temperature, apparent temperature, relative humidity (RH), and absolute humidity (AH) measured in 16 homes in Greater Boston, Massachusetts, from May 2011 - April 2012 was compared to measurements taken at Boston Logan airport. The relationship between indoor and outdoor temperatures is non-linear. At warmer outdoor temperatures, there is a strong correlation between indoor and outdoor temperature (Pearson correlation coefficient, r = 0.91, slope, β = 0.41), but at cooler temperatures, the association is weak (r = 0.40, β = 0.04). Results were similar for outdoor apparent temperature. The relationships were linear for RH and AH. The correlation for RH was modest (r = 0.55, β = 0.39). AH exhibited the strongest indoor-to-outdoor correlation (r = 0.96, β = 0.69). Conclusions Indoor and outdoor temperatures correlate well only at warmer outdoor temperatures. Outdoor RH is a poor indicator of indoor RH, while indoor AH has a strong correlation with outdoor AH year-round. PMID:23710826

  14. Thermal environment assessment reliability using temperature--humidity indices.

    PubMed

    d'Ambrosio Alfano, Francesca Romana; Palella, Boris Igor; Riccio, Giuseppe

    2011-01-01

    A reliable assessment of the thermal environment should take into account the whole of the six parameters affecting the thermal sensation (air temperature, air velocity, humidity, mean radiant temperature, metabolic rate and thermo-physical properties of clothing). Anyway, the need of a quick evaluation based on few measurements and calculations has leaded to like best temperature-humidity indices instead of rational methods based on the heat balance on the human body. Among these, Canadian Humidex, preliminarily used only for weather forecasts, is becoming more and more widespread for a generalized assessment of both outdoor and indoor thermal environments. This custom arouses great controversies since using an index validated in outdoor conditions does not assure its indoor reliability. Moreover is it really possible to carry out the thermal environment assessment ignoring some of variables involved in the physiological response of the human body? Aiming to give a clear answer to these questions, this paper deals with a comparison between the assessment carried out according to the rational methods suggested by International Standards in force and the Humidex index. This combined analysis under hot stress situations (indoor and outdoor) has been preliminarily carried out; in a second phase the study deals with the indoor comfort prediction. Obtained results show that Humidex index very often leads to the underestimation of the workplace dangerousness and a poor reliability of comfort prediction when it is used in indoor situations.

  15. The design of an embedded system for controlling humidity and temperature room

    NASA Astrophysics Data System (ADS)

    Dwi Teguh, R.; Didik Eko, S.; Laksono, Pringgo D.; Jamaluddin, Anif

    2016-11-01

    The aim of the system is to design an embedded system for maintenance confortable room. The confortable room was design by controlling temperature (on range 18 - 34 °C) and humidity (on range 40% - 70%.) of room condition. Temperature and humidity of room were maintained using four variable such as lamp for warm, water pump for distributing water vapour, a fan for air circullation and an exhaust-fan for air cleaner. The system was constucted both hardware (humidity sensor, microcontroller, pump, lamp, fan) and software (arduino IDE). The result shows that the system was perfectly performed to control room condition.

  16. Effect of inlet-air humidity on the formation of oxides of nitrogen in a gas-turbine combustor

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.

    1973-01-01

    Tests were conducted to determine the effect of inlet-air humidity on the formation of oxides of nitrogen from a gas-turbine combustor. Combustor inlet-air temperature ranged from 450 F to 1050 F. The tests were run at a constant pressure of 6 atmospheres and reference Mach number of 0.065. The NO sub x emission index was found to decrease with increasing inlet-air humidity at a constant exponential rate of 19 percent per mass percent water vapor in the air. This decrease of NO sub x emission index with increasing humidity was found to be independent of inlet-air temperature.

  17. Analysis of building envelope insulation performance utilizing integrated temperature and humidity sensors.

    PubMed

    Hung, San-Shan; Chang, Chih-Yuan; Hsu, Cheng-Jui; Chen, Shih-Wei

    2012-01-01

    A major cause of high energy consumption for air conditioning in indoor spaces is the thermal storage characteristics of a building's envelope concrete material; therefore, the physiological signals (temperature and humidity) within concrete structures are an important reference for building energy management. The current approach to measuring temperature and humidity within concrete structures (i.e., thermocouples and fiber optics) is limited by problems of wiring requirements, discontinuous monitoring, and high costs. This study uses radio frequency integrated circuits (RFIC) combined with temperature and humidity sensors (T/H sensors) for the design of a smart temperature and humidity information material (STHIM) that automatically, regularly, and continuously converts temperature and humidity signals within concrete and transmits them by radio frequency (RF) to the Building Physiology Information System (BPIS). This provides a new approach to measurement that incorporates direct measurement, wireless communication, and real-time continuous monitoring to assist building designers and users in making energy management decisions and judgments.

  18. Analysis of Building Envelope Insulation Performance Utilizing Integrated Temperature and Humidity Sensors

    PubMed Central

    Hung, San-Shan; Chang, Chih-Yuan; Hsu, Cheng-Jui; Chen, Shih-Wei

    2012-01-01

    A major cause of high energy consumption for air conditioning in indoor spaces is the thermal storage characteristics of a building's envelope concrete material; therefore, the physiological signals (temperature and humidity) within concrete structures are an important reference for building energy management. The current approach to measuring temperature and humidity within concrete structures (i.e., thermocouples and fiber optics) is limited by problems of wiring requirements, discontinuous monitoring, and high costs. This study uses radio frequency integrated circuits (RFIC) combined with temperature and humidity sensors (T/H sensors) for the design of a smart temperature and humidity information material (STHIM) that automatically, regularly, and continuously converts temperature and humidity signals within concrete and transmits them by radio frequency (RF) to the Building Physiology Information System (BPIS). This provides a new approach to measurement that incorporates direct measurement, wireless communication, and real-time continuous monitoring to assist building designers and users in making energy management decisions and judgments. PMID:23012529

  19. High-speed sterilization technique using dielectric barrier discharge plasmas in atmospheric humid air

    NASA Astrophysics Data System (ADS)

    Miyamae, M.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2010-11-01

    The inactivation of Bacillus atrophaeus spores by a dielectric barrier discharge (DBD) plasma produced by an ac voltage application of 1 kHz in atmospheric humid air was investigated in order to develop low-temperature, low-cost and high-speed plasma sterilization technique. The biological indicators covered with a Tyvek sheet were set just outside the DBD plasma region, where the air temperature and humidity as a discharge gas were precisely controlled by an environmental test chamber. The results show that the inactivation of Bacillus atrophaeus spores was found to be dependent strongly on the humidity, and was completed within 15 min at a relative humidity of 90 % and a temperature of 30 C. The treatment time for sterilization is shorter than those of conventional sterilization methods using ethylene oxide gas and dry heat treatment. It is considered that reactive species such as hydroxyl radicals that are effective for the inactivation of Bacillus atrophaeus spores could be produced by the DBD plasma in the humid air. Repetitive micro-pulsed discharge plasmas in the humid air will be applied for the sterilization experiment to enhance the sterilization efficiency.

  20. Simultaneous temperature and humidity measurements in a mechanical ventilator using an optical fibre sensor

    NASA Astrophysics Data System (ADS)

    Hernandez, F. U.; Correia, R.; Morgan, S. P.; Hayes-Gill, B.; Evans, D.; Sinha, R.; Norris, A.; Harvey, D.; Hardman, J. G.; Korposh, S.

    2016-05-01

    An optical fibre sensor for simultaneous temperature and humidity measurements consisting of one fibre Bragg grating (FBG) to measure temperature and a mesoporous film of bilayers of Poly(allylamine hydrochloride)(PAH) and silica (SiO2) nanoparticles deposited onto the tip of the same fibre to measure humidity is reported. The hygroscopic film was created using the layer-by-layer (LbL) method and the optical reflection spectra were measured up to a maximum of 23 bilayers. The temperature sensitivity of the FBG was 10 pm/°C while the sensitivity to humidity was (-1.4x10-12 W / %RH) using 23 bilayers. The developed sensor was tested in the mechanical ventilator and temperature and humidity of the delivered artificial air was simultaneously measured. Once calibrated, the optical fibre sensor has the potential to control the absolute humidity as an essential part of critical respiratory care.

  1. Influence of different rubber dam application on intraoral temperature and relative humidity.

    PubMed

    Haruyama, Akiko; Kameyama, Atsushi; Tatsuta, Chihiro; Ishii, Kurumi; Sugiyama, Toshiko; Sugiyama, Setsuko; Takahashi, Toshiyuki

    2014-01-01

    The purpose of this study was to investigate the effect of type of rubber dam and application method on the moisture exclusion effect. The intraoral temperature and relative humidity were compared among various moisture exclusion appliances. Various dry field techniques were applied to 5 subjects and intraoral temperature and relative humidity measured 5 min after placing a digital hygro-thermometer in the mouth. The relative humidity was 100% in all subjects when moisture was excluded by means of cotton rolls alone. When only tooth 36 was exposed, relative humidity was significantly lower with latex, urethane, or 3-dimensional sheets than with cotton rolls alone, and was similar to the level of humidity in the room. When a local rubber dam was used, the relative humidity was significantly higher than the indoor humidity (p<0.05). No significant differences were noted in the intraoral temperature or relative humidity between exposure of 4 teeth and 1 tooth, but variation in the relative humidity was more marked in 4- than in 1-tooth exposure. The creation of an air vent did not influence the moisture exclusion effect. These results suggest that the rubber dam isolation technique excludes moisture to a level equivalent to the humidity in the room when only a single tooth is exposed, but the moisture exclusion effect may be inconsistent when several teeth are exposed.

  2. Received Pulse from an Aerial Ultrasonic Sensor Affected by Temperature and Relative Humidity

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Tsuchiya, Takenobu; Endoh, Nobuyuki

    2003-05-01

    In order to develop an aerial back sonar for a car, we predicted the waveforms of the received pulse calculated by the finite-difference time-domain (FDTD) method. The echo pulses reflected from the obstacle were calculated as a function of the object’s height, the changing temperature and relative humidity in air. The maximum amplitudes of received pulses were changed by about 25% by the variation of relative humidity. The increase of temperature enlarged the variation of amplitudes on received pulses. The result shows that we need to consider the effect of the variation of temperature and relative humidity on an aerial back sonar.

  3. Inter-conversion of Chromium Species During Air Sampling: Effects of O3, NO2, SO2, Particle Matrices, Temperature and Humidity

    PubMed Central

    Huang, Lihui; Fan, Zhihua (Tina); Yu, Chang Ho; Hopke, Philip K.; Lioy, Paul J.; Buckley, Brian T.; Lin, Lin; Ma, Yingjun

    2013-01-01

    The inter-conversion between Cr(VI), a pulmonary carcinogen, and Cr(III), an essential human nutrient, poses challenges to the measurement of Cr(VI) in airborne particles. Chamber and field tests were conducted to identify the factors affecting Cr(VI)-Cr(III) inter-conversion in the basic filter medium under typical sampling conditions. In the chamber tests, isotopically enriched 53Cr(VI) and 50Cr(III) were spiked on diesel particulate matter (DPM) and secondary organic aerosol (SOA) that were pre-collected on a basic MCE filter. The filter samples were then exposed to clean air or the air containing SO2 (50 and 160 ppb), 100 ppb O3, or 150 ppb NO2 for 24 hours at 16.7 LPM flow rate at designated temperature (20 and 31°C) and RH (40% and 70%) conditions. Exposure to 160 ppb SO2 had the greatest effect on 53Cr(VI) reduction, with 53Cr(VI) recovery of 31.7 ± 15.8% (DPM) and 42.0 ± 7.9% (SOA). DPM and SOA matrix induced 53Cr(VI) reduction when exposed to clean air while reactive oxygen species in SOA could promote 50Cr(III) oxidation. Deliquescence when RH increased from 40% to 70% led to conversion of Cr(III) in SOA, whereas oxidized organics in DPM and SOA enhanced hygroscopicity and thus facilitated Cr(VI) reduction. Field tests showed seasonal variation of Cr(VI)-Cr(III) inter-conversion during sampling. Correction of the inter-conversion using USEPA method 6800 is recommended to improve accuracy of ambient Cr(VI) measurements. PMID:23550818

  4. Comparison of single-point and continuous sampling methods for estimating residential indoor temperature and humidity

    PubMed Central

    Johnston, James D.; Magnusson, Brianna M.; Eggett, Dennis; Collingwood, Scott C.; Bernhardt, Scott A.

    2016-01-01

    Residential temperature and humidity are associated with multiple health effects. Studies commonly use single-point measures to estimate indoor temperature and humidity exposures, but there is little evidence to support this sampling strategy. This study evaluated the relationship between single-point and continuous monitoring of air temperature, apparent temperature, relative humidity, and absolute humidity over four exposure intervals (5-min, 30-min, 24-hrs, and 12-days) in 9 northern Utah homes, from March – June 2012. Three homes were sampled twice, for a total of 12 observation periods. Continuous data-logged sampling was conducted in homes for 2-3 wks, and simultaneous single-point measures (n = 114) were collected using handheld thermo-hygrometers. Time-centered single-point measures were moderately correlated with short-term (30-min) data logger mean air temperature (r = 0.76, β = 0.74), apparent temperature (r = 0.79, β = 0.79), relative humidity (r = 0.70, β = 0.63), and absolute humidity (r = 0.80, β = 0.80). Data logger 12-day means were also moderately correlated with single-point air temperature (r = 0.64, β = 0.43) and apparent temperature (r = 0.64, β = 0.44), but were weakly correlated with single-point relative humidity (r = 0.53, β = 0.35) and absolute humidity (r = 0.52, β = 0.39). Of the single-point RH measures, 59 (51.8%) deviated more than ±5%, 21 (18.4%) deviated more than ±10%, and 6 (5.3%) deviated more than ±15% from data logger 12-day means. Where continuous indoor monitoring is not feasible, single-point sampling strategies should include multiple measures collected at prescribed time points based on local conditions. PMID:26030088

  5. Comparison of Single-Point and Continuous Sampling Methods for Estimating Residential Indoor Temperature and Humidity.

    PubMed

    Johnston, James D; Magnusson, Brianna M; Eggett, Dennis; Collingwood, Scott C; Bernhardt, Scott A

    2015-01-01

    Residential temperature and humidity are associated with multiple health effects. Studies commonly use single-point measures to estimate indoor temperature and humidity exposures, but there is little evidence to support this sampling strategy. This study evaluated the relationship between single-point and continuous monitoring of air temperature, apparent temperature, relative humidity, and absolute humidity over four exposure intervals (5-min, 30-min, 24-hr, and 12-days) in 9 northern Utah homes, from March-June 2012. Three homes were sampled twice, for a total of 12 observation periods. Continuous data-logged sampling was conducted in homes for 2-3 wks, and simultaneous single-point measures (n = 114) were collected using handheld thermo-hygrometers. Time-centered single-point measures were moderately correlated with short-term (30-min) data logger mean air temperature (r = 0.76, β = 0.74), apparent temperature (r = 0.79, β = 0.79), relative humidity (r = 0.70, β = 0.63), and absolute humidity (r = 0.80, β = 0.80). Data logger 12-day means were also moderately correlated with single-point air temperature (r = 0.64, β = 0.43) and apparent temperature (r = 0.64, β = 0.44), but were weakly correlated with single-point relative humidity (r = 0.53, β = 0.35) and absolute humidity (r = 0.52, β = 0.39). Of the single-point RH measures, 59 (51.8%) deviated more than ±5%, 21 (18.4%) deviated more than ±10%, and 6 (5.3%) deviated more than ±15% from data logger 12-day means. Where continuous indoor monitoring is not feasible, single-point sampling strategies should include multiple measures collected at prescribed time points based on local conditions.

  6. Case study of airborne fungi according to air temperature and relative humidity in houses with semi-basements adjacent to a forested hillside.

    PubMed

    Bamba, Ikuko; Azuma, Michiyo; Hamada, Nobuo; Kubo, Hiroko; Isoda, Norio

    2014-01-01

    We studied airborne concentrations of fungal spores and the thermal environment in houses with semi-basements surrounded by a natural forest. We examined the relationship between airborne fungi and the thermal environment, surrounding natural environment, structures of houses and use of a dehumidifier. The subject residential area was located in the northern part of Nara city, Nara prefecture, Japan. Six detached houses were included in this study. In residential areas, outdoor airborne concentrations were high during summer and autumn, correlated with humidity. The presence of Basidiomycetes was particularly notable, although the indoor concentration was lower than the outdoor level. In the semi-basement rooms, relative humidity was nearly always >80% when the residence was built; however, both the indoor humidity and fungal concentrations decreased greatly when a dehumidifier was used in this study. High levels of Aspergillus and Basidiomycetes were detected in semi-basements. Basidiomycetes are likely of outdoor origin, whereas Aspergillus might grow indoors. Moreover, the composition of fungal species differed according to room-structure and usage. Due to the health risks associated with high indoor concentrations of fungi, the utilization of the semi-basement or basement space requires adequate ventilation and dehumidification, beginning immediately after construction.

  7. Multifractal Structures in the temperature and the humidity

    NASA Astrophysics Data System (ADS)

    Kim, Kyungsik; You, Cheol-Hwan; Lee, Dong-In

    2010-03-01

    The multifractal structure of the temperature and the humidity is investigated in eight cities of Korea. For our cases, we estimate the generalized Hurst exponent, the Renyi exponent, and the singularity spectrum for tick data of the temperature and the humidity. In particular, we discuss the recent findings that suggest the scaling exponents characterizing the multifractality. After analyzing the multifractality, we compare the multifractal property of eight different cities and discuss the different behavior of each city.

  8. A CMOS Smart Temperature and Humidity Sensor with Combined Readout

    PubMed Central

    Eder, Clemens; Valente, Virgilio; Donaldson, Nick; Demosthenous, Andreas

    2014-01-01

    A fully-integrated complementary metal-oxide semiconductor (CMOS) sensor for combined temperature and humidity measurements is presented. The main purpose of the device is to monitor the hermeticity of micro-packages for implanted integrated circuits and to ensure their safe operation by monitoring the operating temperature and humidity on-chip. The smart sensor has two modes of operation, in which either the temperature or humidity is converted into a digital code representing a frequency ratio between two oscillators. This ratio is determined by the ratios of the timing capacitances and bias currents in both oscillators. The reference oscillator is biased by a current whose temperature dependency is complementary to the proportional to absolute temperature (PTAT) current. For the temperature measurement, this results in an exceptional normalized sensitivity of about 0.77%/°C at the accepted expense of reduced linearity. The humidity sensor is a capacitor, whose value varies linearly with relative humidity (RH) with a normalized sensitivity of 0.055%/% RH. For comparison, two versions of the humidity sensor with an area of either 0.2 mm2 or 1.2 mm2 were fabricated in a commercial 0.18 μm CMOS process. The on-chip readout electronics operate from a 5 V power supply and consume a current of approximately 85 μA. PMID:25230305

  9. A CMOS smart temperature and humidity sensor with combined readout.

    PubMed

    Eder, Clemens; Valente, Virgilio; Donaldson, Nick; Demosthenous, Andreas

    2014-09-16

    A fully-integrated complementary metal-oxide semiconductor (CMOS) sensor for combined temperature and humidity measurements is presented. The main purpose of the device is to monitor the hermeticity of micro-packages for implanted integrated circuits and to ensure their safe operation by monitoring the operating temperature and humidity on-chip. The smart sensor has two modes of operation, in which either the temperature or humidity is converted into a digital code representing a frequency ratio between two oscillators. This ratio is determined by the ratios of the timing capacitances and bias currents in both oscillators. The reference oscillator is biased by a current whose temperature dependency is complementary to the proportional to absolute temperature (PTAT) current. For the temperature measurement, this results in an exceptional normalized sensitivity of about 0.77%/°C at the accepted expense of reduced linearity. The humidity sensor is a capacitor, whose value varies linearly with relative humidity (RH) with a normalized sensitivity of 0.055%/% RH. For comparison, two versions of the humidity sensor with an area of either 0.2 mm2 or 1.2 mm2 were fabricated in a commercial 0.18 μm CMOS process. The on-chip readout electronics operate from a 5 V power supply and consume a current of approximately 85 µA.

  10. The sensitivity of latent heat flux to the air humidity approximations used in ocean circulation models

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Niiler, Pearn P.

    1990-01-01

    In deriving the surface latent heat flux with the bulk formula for the thermal forcing of some ocean circulation models, two approximations are commonly made to bypass the use of atmospheric humidity in the formula. The first assumes a constant relative humidity, and the second supposes that the sea-air humidity difference varies linearly with the saturation humidity at sea surface temperature. Using climatological fields derived from the Marine Deck and long time series from ocean weather stations, the errors introduced by these two assumptions are examined. It is shown that the errors reach above 100 W/sq m over western boundary currents and 50 W/sq m over the tropical ocean. The two approximations also introduce erroneous seasonal and spatial variabilities with magnitudes over 50 percent of the observed variabilities.

  11. Evaluation of Nimbus 7 THIR/CLE and Air Force three-dimensional Nephanalysis estimates of cloud amount. [Temperature-Humidity Infrared Radiometer/Clouds Earth Radiation Budget Experiment

    NASA Technical Reports Server (NTRS)

    Stowe, L. L.

    1984-01-01

    Three different estimates of the percent of fixed geographical regions (160 x 160 km) either free of cloud (clear) or covered by low, middle, and high (opaque) cloud have been intercompared. The estimates were derived by analysts interpreting geosynchronous satellite images, with concurrent meteorological observations; from Nimbus 7 temperature humidity infrared radiometer (THIR) CLOUD ERB (CLE) data; and from Air Force three dimensional nephanalysis (3DN) data. Air Force 3DN agrees better with the analyst than THIR/CLE, except for high cloud amount; the CLE and 3DN results tend to overestimate clear amount when clear amount is large and underestimate it when clear amount is small, by 10-20 percent for CLE and by 5-10 percent for 3DN, and both agree well with the analyst in the mean. Systematic and random errors for 3DN and CLE are specified. CLE estimates of cloud amount over land at night should not be used for scientific purposes unless restricted to high cloud amount. It is believed that the CLR and 3DN are the only two digitized, global cloud type and amount data sets in existence.

  12. Thermistors Used in Climatic Chamber at High Temperature and Humidity

    NASA Astrophysics Data System (ADS)

    van Geel, J. L. W. A.; Bosma, R.; van Wensveen, J.; Peruzzi, A.

    2015-03-01

    In 2011, VSL initiated the development of a facility for a relative humidity between and for calibrating high-temperature relative humidity sensors at pressures other than atmospheric. The setup for calculating the relative humidity uses the dew-point temperature, measured by a chilled mirror hygrometer, and the temperature distribution in the chamber, measured by a series of thermistors. This paper describes the results of thermal tests performed on the thermistors to ensure that they meet the requirements of the humidity calibration facility. Different types of thermistors were evaluated up to , and the selected type showed a short-term drift of less than 2 mK. Exposure of these thermistors to temperatures up to gave an initial hysteresis of 40 mK, but after this initial hysteresis, the hysteresis, over the range from up to , was less than 10 mK. Use of a digital multimeter, with a low-power option, limited the self-heating of the thermistors, over the range from up to , to less than 5 mK. During use in the new setup, the thermistors were exposed to changing humidities between 1 %Rh and 90 %Rh and temperatures up to , showing drifts of less than 10 mK.

  13. Determination of equilibrium humidities using temperature and humidity controlled X-ray diffraction (RH-XRD).

    PubMed

    Linnow, Kirsten; Steiger, Michael

    2007-01-30

    Confined growth of crystals in porous building materials is generally considered to be a major cause of damage. We report on the use of X-ray diffraction under controlled conditions of temperature and relative humidity (RH-XRD) for the investigation of potentially deleterious phase transition reactions. An improved procedure based on rate measurements is used for the accurate and reproducible determination of equilibrium humidities of deliquescence and hydration reactions. The deliquescence humidities of NaCl (75.4+/-0.5% RH) and Ca(NO3)2 x 4 H2O (50.8+/-0.7% RH) at 25 degrees C determined with this improved RH-XRD technique are in excellent agreement with available literature data. Measurement of the hydration of anhydrous Ca(NO3)2 to form Ca(NO3)2 x 2 H2O revealed an equilibrium humidity of 10.2+/-0.3%, which is also in reasonable agreement with available data. In conclusion, dynamic X-ray diffraction measurements are an appropriate method for the accurate and precise determination of equilibrium humidities with a number of interesting future applications.

  14. Temperature and humidity control system in a lunar base.

    PubMed

    Izutani, N; Kobayashi, N; Ogura, T; Nomura, I; Kawazoe, M; Yamamoto, H

    1992-01-01

    An increasing number of lunar base construction programs are in the process of developing lunar resources such as helium 3. The objective of the present work is to evaluate the temperature and humidity control system, which will allow man to live and work on the moon while developing lunar resources. The results of thermal load calculation show that the load of electric lighting is a 80 to 90% of the cooling load in the habitat module and that only the cooling function is required for temperature control. Due to this, a fluorocarbon refrigerant heat pump system was selected to satisfy reliability, energy consumption, size and weight requirements for the lunar base equipment. According to the load calculation, occupants will feel discomfort due to radiant heat from lighting fixtures. To resolve this problem, an air conditioning system, used in combination with forced convective cooling and panel cooling on the ceiling, was adopted in the living space. Moreover, the experiment on the ground was carried out to evaluate the effects of panel cooling.

  15. The Effect of Humidity and Temperature Variations on the Behavior of Wire-to-Plane Coronas.

    PubMed

    Gallo, C F; Germanos, J E; Courtney, J E

    1969-01-01

    The effect of temperature and humidity on the current-voltage relationship and uniformity of positive and negative air coronas has been studied. Variations in temperature and absolute humidity seem to have a comparatively small effect on the behavior of coronas. By contrast, variations in the relative humidity have readily noticeable effects on the current-voltage relationship. At high voltages (positive or negative) the corona current decreases as the relative humidity increases due to ion and electron hydration effects. By contrast, both positive and negative coronas are initiated at lower voltages at high relative humidities, presumably due to the formation of miniscule water droplets with low ionization potential. The relative humidity also affects the uniformity of negative corona but not positive corona. Presumably the electron emitting properties of a negative wire are altered by moisture adsorbed on the wire surface at high relative humidities. By contrast, positive corona is not grossly affected because it is primarily a gas phase phenomena while negative corona is also sensitive to the electron emitting properties of the wire.

  16. Sterilization of soybean powder with plasma treatment in atmospheric humid air

    NASA Astrophysics Data System (ADS)

    Iwami, R.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.; Nakayama, A.; Nakagawa, K.

    2013-10-01

    Sterilization of foods has been performed by conventional methods such as heat, steam and chemical solutions. However, these sterilization techniques could cause damages to the food material. It is considered that plasma sterilization at atmospheric pressure is one of the promising alternative methods because of the low temperature process. In our previous study, the inactivation of Bacillus atrophaeusspores by a dielectric barrier discharge (DBD) plasma produced in atmospheric humid air was investigated in order to develop low-temperature, low-cost and high-speed plasma sterilization technique. The results showed that the inactivation of Bacillus atrophaeusspores was found to be dependent strongly on the humidity. In the present study, the plasma treatment technique in humid air is applied to sterilization of soybean powder. Effects of plasma sterilization were successfully confirmed by a colony counting method. It was found that the sterilization efficiency was increased by using the humid air as the discharge gas. In the conference, an improvement of the plasma treatment system to enhance the sterilization efficiency will be shown.

  17. The effect of structures on indoor humidity--possibility to improve comfort and perceived air quality.

    PubMed

    Simonson, C J; Salonvaara, M; Ojanen, T

    2002-12-01

    The research presented in this paper shows that moisture transfer between indoor air and hygroscopic building structures can generally improve indoor humidity conditions. This is important because the literature shows that indoor humidity has a significant effect on occupant comfort, perceived air quality (PAQ), occupant health, building durability, material emissions, and energy consumption. Therefore, it appears possible to improve the quality of life of occupants when appropriately applying hygroscopic wood-based materials. The paper concentrates on the numerical investigation of a bedroom in a wooden building located in four European countries (Finland, Belgium, Germany, and Italy). The results show that moisture transfer between indoor air and the hygroscopic structure significantly reduces the peak indoor humidity. Based on correlations from the literature, which quantify the effect of temperature and humidity on comfort and PAQ for sedentary adults, hygroscopic structures can improve indoor comfort and air quality. In all the investigated climates, it is possible to improve the indoor conditions such that, as many as 10 more people of 100 are satisfied with the thermal comfort conditions (warm respiratory comfort) at the end of occupation. Similarly, the percent dissatisfied with PAQ can be 25% lower in the morning when permeable and hygroscopic structures are applied.

  18. Measuring Relative Humidity.

    ERIC Educational Resources Information Center

    Pinkham, Chester A.; Barrett, Kristin Burrows

    1992-01-01

    Describes four experiments that enable students to explore the phenomena of evaporation and condensation and determine the relative humidity by measuring air temperature and dew point on warm September days. Provides tables to calculate saturation points and relative humidity. (MDH)

  19. Encapsulation for smart textile electronics - humidity and temperature sensor.

    PubMed

    Larsson, Andreas; Tran, Thanh-Nam; Aasmundtveit, Knut E; Seeberg, Trine M

    2015-01-01

    A combined humidity and temperature sensor was packaged by vacuum casting onto three different types of textiles; cotton, nylon and a waterproof fabric. This was done in order to integrate the sensor in a jacket in a soft and reliable way without changing the sensor performance. A membrane was custom made and integrated into the device to protect the sensor from the environment. The packaged sensors performance was characterized in a climate chamber were the relative humidity and temperature ranged from 25 % to 95 % and -10 °C to 75 °C respectively. The packaged sensors showed insignificant to limited performance degradation.

  20. Temperature, Humidity, Wind and Pressure Sensors (THWAPS) Handbook

    SciTech Connect

    Ritsche, MT

    2011-01-17

    The temperature, humidity, wind, and pressure system (THWAPS) provide surface reference values of these measurements for balloon-borne sounding system (SONDE) launches. The THWAPS is located adjacent to the SONDE launch site at the Southern Great Plains (SGP) Central Facility. The THWAPS system is a combination of calibration-quality instruments intended to provide accurate measurements of meteorological conditions near the surface. Although the primary use of the system is to provide accurate surface reference values of temperature, pressure, relative humidity (RH), and wind velocity for comparison with radiosonde readings, the system includes a data logger to record time series of the measured variables.

  1. Influence of relative humidity on VOC concentrations in indoor air.

    PubMed

    Markowicz, Pawel; Larsson, Lennart

    2015-04-01

    Volatile organic compounds (VOCs) may be emitted from surfaces indoors leading to compromised air quality. This study scrutinized the influence of relative humidity (RH) on VOC concentrations in a building that had been subjected to water damage. While air samplings in a damp room at low RH (21-22%) only revealed minor amounts of 2-ethylhexanol (3 μg/m(3)) and 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB, 8 μg/m(3)), measurements performed after a rapid increase of RH (to 58-75%) revealed an increase in VOC concentrations which was 3-fold for 2-ethylhexanol and 2-fold for TXIB. Similar VOC emission patterns were found in laboratory analyses of moisture-affected and laboratory-contaminated building materials. This study demonstrates the importance of monitoring RH when sampling indoor air for VOCs in order to avoid misleading conclusions from the analytical results.

  2. Association of Temperature and Humidity with Trauma Deaths

    PubMed Central

    Ranandeh Kalankesh, Laleh; Mansouri, Fatemeh; Khanjani, Narges

    2015-01-01

    Background: Few studies worldwide have shown that climate factors such as temperature and humidity may contribute to injuries and sudden death. However, to the best of our knowledge no studies have been conducted on climate and traumatic deaths in Iran. Objectives: The aim of this study was to investigate the relationship between temperature and humidity and trauma deaths in Kerman, Iran. Materials and Materials: In this study, data of all trauma deaths from March 2006 to February 2011 were collected from the Kerman Health Ministry and categorized by causes. Trauma deaths were extracted and matched with data regarding temperature and humidity obtained from the Kerman Meteorology Office during the same time period. Negative binomial regression and Spearman correlation analysis were used to analyze the data using STATA10 and MiniTab16. Results: The findings of this study showed that the overall mortality caused by trauma is higher in the warm season. The highest correlation between mortality and temperature was seen in ages over 60 years (r = 0.301, P = 0.020) in trauma deaths and was statistically significant. An inverse significant correlation was observed between the incidence of trauma deaths and humidity and was highest in the over 60-year age group (r = -0.336, P = 0.009). The regression results also revealed an inverse significant relationship between humidity and trauma deaths in the over 60-year age group. Conclusions: High temperatures and low humidity increased the risk of trauma deaths in our study. However, more studies are needed to document this. PMID:26839859

  3. Humidity and temperature response of photopolymer-based holographic gratings

    NASA Astrophysics Data System (ADS)

    Mikulchyk, Tatsiana; Walshe, James; Cody, Dervil; Martin, Suzanne; Naydenova, Izabela

    2015-05-01

    Holographic sensors have significant potential in various applications ranging from in vitro diagnostics to optical security. They are capable of providing fast, real-time, reversible or irreversible, visual colorimetric or optical readouts. The main challenge in the development of holographic sensors is to improve their selectivity by functionalizing the holographic recording material and achieve a response to a specific analyte. This material should be permeable to the analyte and its properties should change under exposure to the analyte. This work explores the humidity and temperature response of volume phase gratings recorded in photopolymers containing acrylamide and diacetone acrylamide as monomers, and triethanolamine and N-phenylglycine as photoinitiators. Characterization of the humidity response of photopolymer-based gratings in the relative humidity (RH) range of 20-90 % was carried out by measuring the diffraction efficiency of slanted transmission gratings and the position of the maximum intensity in the spectral response of reflection gratings. A strong humidity dependence of the diffraction efficiency of diacetone acrylamide-based transmission gratings was observed at RH=20-90%. The humidity dependence of the spectral response of the reflection gratings showed that photopolymers containing triethanolamine are more hydrophilic than photopolymers containing N-phenylglycine. The temperature response of slanted transmission gratings was investigated in the temperature (T) range of 20-60 °C. Exposure of the photopolymer layers containing triethanolamine to elevated temperature showed that the observed Bragg angle shift was caused by layer shrinkage due to water evaporation. The application of a sealing technique allowed for the observation of the photopolymer layer swelling due to the layer's thermal expansion. The results demonstrate an effective approach to obtaining photopolymer-based gratings with tuneable temperature and humidity sensitivity.

  4. Biphilic Surfaces for Enhanced Water Collection from Humid Air

    NASA Astrophysics Data System (ADS)

    Benkoski, Jason; Gerasopoulos, Konstantinos; Luedeman, William

    Surface wettability plays an important role in water recovery, distillation, dehumidification, and heat transfer. The efficiency of each process depends on the rate of droplet nucleation, droplet growth, and mass transfer. Unfortunately, hydrophilic surfaces are good at nucleation but poor at shedding. Hydrophobic surfaces are the reverse. Many plants and animals overcome this tradeoff through biphilic surfaces with patterned wettability. For example, the Stenocara beetle uses hydrophilic patches on a superhydrophobic background to collect fog from air. Cribellate spiders similarly collect fog on their webs through periodic spindle-knot structures. In this study, we investigate the effects of wettability patterns on the rate of water collection from humid air. The steady state rate of water collection per unit area is measured as a function of undercooling, angle of inclination, water contact angle, hydrophilic patch size, patch spacing, area fraction, and patch height relative to the hydrophobic background. We then model each pattern by comparing the potential and kinetic energy of a droplet as it rolls downwards at a fixed angle. The results indicate that the design rules for collecting fog differ from those for condensation from humid air. The authors gratefully acknowledge the Office of Naval Research for financial support through Grant Number N00014-15-1-2107.

  5. Whey protein concentrate storage at elevated temperature and humidity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy processors are finding new export markets for whey protein concentrate (WPC), a byproduct of cheesemaking, but they need to know if full-sized bags of this powder will withstand high temperature and relative humidity (RH) levels during unrefrigerated storage under tropical conditions. To answ...

  6. Irrigation scheduling based on crop canopy temperature for humid environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of infrared thermometers (IR) to measure canopy temperatures for irrigation scheduling has been successfully applied in arid environments. Functionality of this technique in humid areas has been limited due to the presence of low vapor pressure deficits (VPD) and intermittent cloud cover. T...

  7. D-Zero Instrument Air System Humidity Transmitter Evaluation

    SciTech Connect

    Serges, T.J.; /Fermilab

    1988-07-15

    This report shows the findings that resulted in the purchase of the optimum dew point hygrometer for use in the D-Zero instrument air system (see diagram 2 on page 9). The hygrometer will monitor the air syste m to insure that the dew point level does not go above the normal operating output of the driers (this precise value will be determined during initial system start-up). The following criteria was used in the evaluation: (1) Long term durability; (2) Minimum calibration; (3) Indicate a dew point level down to -40 C accurately; (4) Designed to work in a low humidity region; (5) Minimum maintenance; (6) Fast response time; and (7) Lowest cost provided all other criteria is met.

  8. A New Empirical Model of the Temperature Humidity Index.

    NASA Astrophysics Data System (ADS)

    Schoen, Carl

    2005-09-01

    A simplified scale of apparent temperature, considering only dry-bulb temperature and humidity, has become known as the temperature humidity index (THI). The index was empirically constructed and was presented in the form of a table. It is often useful to have a formula instead for use in interpolation or for programming calculators or computers. The National Weather Service uses a polynomial multiple regression formula, but it is in some ways unsatisfactory. A new model of the THI is presented that is much simpler—having only 3 parameters as compared with 16 for the NWS model. The new model also more closely fits the tabulated values and has the advantage that it allows extrapolation outside of the temperature range of the table. Temperature humidity pairs above the effective range of the NWS model are occasionally encountered, and the ability to extrapolate into colder temperature ranges allows the new model to be more effectively contained as part of a more general apparent temperature index.

  9. Miniature environmental chambers for temperature humidity bias testing of microelectronics.

    PubMed

    Hook, Michael David; Mayer, Michael

    2017-03-01

    Environmental chambers are commonly used for reliability testing of microelectronics and other products and materials. These chambers are large, expensive, and limit electrical connectivity to devices under test. In this paper, we present a collection of ten small, low-cost environmental chambers, with humidity control based on mixtures of water and glycerol placed inside the chambers. We demonstrate relative humidities from 44% to 90%, at temperatures from 30 to 85 °C, enabling industry-standard testing at 85% humidity and 85 °C. The division of samples between ten separate chambers allows different conditions to be applied to each sample, in order to quickly characterize the effects of the environment on device reliability, enabling extrapolation to estimate lifetimes in working conditions.

  10. Validation of temperature and humidity thermal model of 23-person tent-type refuge alternative.

    PubMed

    Yan, L; Yantek, D; Klein, M; Bissert, P; Matetic, R

    2016-09-01

    U.S. Mine Safety and Health Administration (MSHA) regulations require underground coal mines to use refuge alternatives (RAs) to provide a breathable air environment for 96 hours. One of the main concerns with the use of mobile RAs is heat and humidity buildup inside the RA. The accumulation of heat and humidity can result in miners suffering heat stress or even death. MSHA regulations require that the apparent temperature in an occupied RA not exceed 95 °F. To investigate this, the U.S. National Institute for Occupational Safety and Health (NIOSH) conducted testing on a 23-person tent-type RA in its Experimental Mine in a test area that was isolated from the mine ventilation system. The test results showed that the average measured air temperature within the RA increased by 9.4 °C (17 °F) and the relative humidity approached 94 percent at the end of a 96-hour test. The test results were used to benchmark a thermal simulation model of the tested RA. The validated thermal simulation model predicted the volume-weighted average air temperature inside the RA tent at the end of 96 hours to within 0.06 °C (0.1 °F) of the average measured air temperature.

  11. Validation of temperature and humidity thermal model of 23-person tent-type refuge alternative

    PubMed Central

    Yan, L.; Yantek, D.; Klein, M.; Bissert, P.; Matetic, R.

    2016-01-01

    U.S. Mine Safety and Health Administration (MSHA) regulations require underground coal mines to use refuge alternatives (RAs) to provide a breathable air environment for 96 hours. One of the main concerns with the use of mobile RAs is heat and humidity buildup inside the RA. The accumulation of heat and humidity can result in miners suffering heat stress or even death. MSHA regulations require that the apparent temperature in an occupied RA not exceed 95 °F. To investigate this, the U.S. National Institute for Occupational Safety and Health (NIOSH) conducted testing on a 23-person tent-type RA in its Experimental Mine in a test area that was isolated from the mine ventilation system. The test results showed that the average measured air temperature within the RA increased by 9.4 °C (17 °F) and the relative humidity approached 94 percent at the end of a 96-hour test. The test results were used to benchmark a thermal simulation model of the tested RA. The validated thermal simulation model predicted the volume-weighted average air temperature inside the RA tent at the end of 96 hours to within 0.06 °C (0.1 °F) of the average measured air temperature. PMID:27942076

  12. Kinetic modelling for an atmospheric pressure argon plasma jet in humid air

    NASA Astrophysics Data System (ADS)

    Van Gaens, W.; Bogaerts, A.

    2013-07-01

    A zero-dimensional, semi-empirical model is used to describe the plasma chemistry in an argon plasma jet flowing into humid air, mimicking the experimental conditions of a setup from the Eindhoven University of Technology. The model provides species density profiles as a function of the position in the plasma jet device and effluent. A reaction chemistry set for an argon/humid air mixture is developed, which considers 84 different species and 1880 reactions. Additionally, we present a reduced chemistry set, useful for higher level computational models. Calculated species density profiles along the plasma jet are shown and the chemical pathways are explained in detail. It is demonstrated that chemically reactive H, N, O and OH radicals are formed in large quantities after the nozzle exit and H2, O2(1Δg), O3, H2O2, NO2, N2O, HNO2 and HNO3 are predominantly formed as ‘long living’ species. The simulations show that water clustering of positive ions is very important under these conditions. The influence of vibrational excitation on the calculated electron temperature is studied. Finally, the effect of varying gas temperature, flow speed, power density and air humidity on the chemistry is investigated.

  13. Average Tropical Relative Humidity from AIRS, Dec-Feb 2002-2005

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The average tropospheric relative humidity from AIRS for the four December-February periods during 2002 through 2005.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  14. The aging correlation (RH + t): Relative humidity (%) + temperature (deg C)

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.

    1986-01-01

    An aging correlation between corrosion lifetime, and relative humidity RH (%) and temperature t (C) has been reported in the literature. This aging correlation is a semi-log plot of corrosion lifetime on the log scale versus the interesting summation term RH(%) + t(C) on the linear scale. This empirical correlation was derived from observation of experimental data trends and has been referred to as an experimental law. Using electrical resistivity data of polyvinyl butyral (PVB) measured as a function of relative humidity and temperature, it was found that the electrical resistivity could be expressed as a function of the term RH(%) t(C). Thus, if corrosion is related to leakage current through an organic insulator, which, in turn, is a function of RH and t, then some partial theoretical validity for the correlation is indicated. This article describes the derivation of the term RH(%) t(C) from PVB electrical resistivity data.

  15. Temperature humidity index scenarios in the Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Segnalini, M.; Bernabucci, U.; Vitali, A.; Nardone, A.; Lacetera, N.

    2013-05-01

    The study was undertaken to describe the temperature humidity index (THI) dynamics over the Mediterranean basin for the period 1971-2050. The THI combines temperature and humidity into a single value, and has been widely used to predict the effects of environmental warmth in farm animals. The analysis was based on daily outputs of the temperature and relative humidity from the Max Planck Institute data using the Intergovernmental Panel on Climate Change Special Report Emission Scenario A1B. Data revealed a gradual increase of both annual and seasonal THI during the period under investigation and a strong heterogeneity of the Mediterranean area. In particular, the analysis indicated that Spain, southern France and Italy should be expected to undergo the highest THI increase, which in the last decade under study (2041-2050) will range between 3 and 4 units. However, only during summer months the area presents characteristics indicating risk of thermal (heat) stress for farm animals. In this regard, scenario maps relative to the summer season suggested an enlargement of the areas in the basin where summer THI values will likely cause thermal discomfort in farm animals. In conclusion, the study indicated that the Mediterranean basin is likely to undergo THI changes, which may aggravate the consequences of hot weather on animal welfare, performances, health and survival and may help farmers, nutritionists, veterinarians, and policy-makers to develop appropriate adaptation strategies to limit consequences of climate change for the livestock sector in the Mediterranean countries.

  16. Proton conductivity of perfluorosulfonate ionomers at high temperature and high relative humidity

    SciTech Connect

    Matos, Bruno R.; Goulart, Cleverson A.; Santiago, Elisabete I.; Muccillo, R.; Fonseca, Fabio C.

    2014-03-03

    The proton transport properties of Nafion membranes were studied in a wide range of temperature by using an air-tight sample holder able to maintain the sample hydrated at high relative humidity. The proton conductivity of hydrated Nafion membranes continuously increased in the temperature range of 40–180 °C with relative humidity kept at RH = 100%. In the temperature range of 40–90 °C, the proton conductivity followed the Arrhenius-like thermal dependence. The calculated apparent activation energy E{sub a} values are in good agreement with proton transport via the structural diffusion in absorbed water. However, at higher measuring temperatures an upturn of the electrical conductivity was observed to be dependent on the thermal history of the sample.

  17. Effects of Temperature, Relative Humidity, Absolute Humidity, and Evaporation Potential on Survival of Airborne Gumboro Vaccine Virus

    PubMed Central

    Zhao, Yang; Dijkman, Remco; Fabri, Teun; de Jong, Mart C. M.; Groot Koerkamp, Peter W. G.

    2012-01-01

    Survival of airborne virus influences the extent of disease transmission via air. How environmental factors affect viral survival is not fully understood. We investigated the survival of a vaccine strain of Gumboro virus which was aerosolized at three temperatures (10°C, 20°C, and 30°C) and two relative humidities (RHs) (40% and 70%). The response of viral survival to four metrics (temperature, RH, absolute humidity [AH], and evaporation potential [EP]) was examined. The results show a biphasic viral survival at 10°C and 20°C, i.e., a rapid initial inactivation in a short period (2.3 min) during and after aerosolization, followed by a slow secondary inactivation during a 20-min period after aerosolization. The initial decays of aerosolized virus at 10°C (1.68 to 3.03 ln % min−1) and 20°C (3.05 to 3.62 ln % min−1) were significantly lower than those at 30°C (5.67 to 5.96 ln % min−1). The secondary decays at 10°C (0.03 to 0.09 ln % min−1) tended to be higher than those at 20°C (−0.01 to 0.01 ln % min−1). The initial viral survival responded to temperature and RH and potentially to EP; the secondary viral survival responded to temperature and potentially to RH. In both phases, survival of the virus was not significantly affected by AH. These findings suggest that long-distance transmission of airborne virus is more likely to occur at 20°C than at 10°C or 30°C and that current Gumboro vaccination by wet aerosolization in poultry industry is not very effective due to the fast initial decay. PMID:22156417

  18. Influence of humidity on the characteristics of negative corona discharge in air

    SciTech Connect

    Xu, Pengfei Zhang, Bo He, Jinliang Chen, Shuiming

    2015-09-15

    Detailed negative corona discharge characteristics, such as the pulse amplitude, repetition frequency, average corona current, rise time, and half-wave time, are systematically studied under various air humidities with a single artificial defect electrode. The experimental result reveals that the pulse amplitude increases with the increase of air humidity; meanwhile, the repetition frequency deceases as the air humidity increases. Empirical formulae are first established for the pulse amplitude and repetition frequency with the humidity factor taken into consideration. The effective ionization integral is calculated and a positive correlation is found between the integral and the pulse amplitude. Furthermore, a simplified negative-ion cloud model is built up to investigate the mechanism of the humidity's influence on negative corona discharge. Based on the theoretical analyses, the correlation between pulse amplitude, repetition frequency, and air humidity is well explained.

  19. Influence of Air Humidity and Water Particles on Dust Control Using Ultrasonic Atomization

    NASA Astrophysics Data System (ADS)

    Okawa, Hirokazu; Nishi, Kentaro; Shindo, Dai; Kawamura, Youhei

    2012-07-01

    The influence of air humidity and water particles on dust control was examined using ultrasonic atomization at 2.4 MHz, an acrylic box (61 L), and four types of ore dust samples: green tuff (4 µm), green tuff (6 µm), kaolin, and silica. It was clearly demonstrated that ultrasonic atomization was effective in raising humidity rapidly. However, at high relative air humidity, the water particles remained stable in the box without changing to water vapor. Ultrasonic atomization was applied to suppress dust dispersion and 40-95% dust reduction was achieved at 83% relative air humidity. Dust dispersion was more effective with ultrasonic atomization than without.

  20. Daily indoor-to-outdoor temperature and humidity relationships: a sample across seasons and diverse climatic regions

    PubMed Central

    Nguyen, Jennifer L.; Dockery, Douglas W.

    2015-01-01

    The health consequences of heat and cold are usually evaluated based on associations with outdoor measurements at the nearest weather reporting station. However, people in the developed world spend little time outdoors, especially during extreme temperature events. We examined the association between indoor and outdoor temperature and humidity in a range of climates. We measured indoor temperature, apparent temperature, relative humidity, dew point, and specific humidity (a measure of moisture content in air) for one calendar year (2012) in a convenience sample of eight diverse locations ranging from the equatorial region (10°N) to the Arctic (64°N). We then compared the indoor conditions to outdoor values recorded at the nearest airport weather station. We found that the shape of the indoor-to-outdoor temperature and humidity relationships varied across seasons and locations. Indoor temperatures showed little variation across season and location. There was large variation in indoor relative humidity between seasons and between locations which was independent of outdoor, airport measurements. On the other hand, indoor specific humidity, and to a lesser extent dew point, tracked with outdoor, airport measurements both seasonally and between climates, across a wide range of outdoor temperatures. Our results suggest that, depending on the measure, season, and location, outdoor weather measurements can be reliably used to represent indoor exposures and that, in general, outdoor measures of actual moisture content in air better capture indoor exposure than temperature and relative humidity. Therefore, absolute measures of water vapor should be examined in conjunction with other measures (e.g. temperature, relative humidity) in studies of the effect of weather and climate on human health. PMID:26054827

  1. Daily indoor-to-outdoor temperature and humidity relationships: a sample across seasons and diverse climatic regions.

    PubMed

    Nguyen, Jennifer L; Dockery, Douglas W

    2016-02-01

    The health consequences of heat and cold are usually evaluated based on associations with outdoor measurements collected at a nearby weather reporting station. However, people in the developed world spend little time outdoors, especially during extreme temperature events. We examined the association between indoor and outdoor temperature and humidity in a range of climates. We measured indoor temperature, apparent temperature, relative humidity, dew point, and specific humidity (a measure of moisture content in air) for one calendar year (2012) in a convenience sample of eight diverse locations ranging from the equatorial region (10 °N) to the Arctic (64 °N). We then compared the indoor conditions to outdoor values recorded at the nearest airport weather station. We found that the shape of the indoor-to-outdoor temperature and humidity relationships varied across seasons and locations. Indoor temperatures showed little variation across season and location. There was large variation in indoor relative humidity between seasons and between locations which was independent of outdoor airport measurements. On the other hand, indoor specific humidity, and to a lesser extent dew point, tracked with outdoor, airport measurements both seasonally and between climates, across a wide range of outdoor temperatures. These results suggest that, in general, outdoor measures of actual moisture content in air better capture indoor conditions than outdoor temperature and relative humidity. Therefore, in studies where water vapor is among the parameters of interest for examining weather-related health effects, outdoor measurements of actual moisture content can be more reliably used as a proxy for indoor exposure than the more commonly examined variables of temperature and relative humidity.

  2. Humid air corrosion of YMP waste package candidate material

    SciTech Connect

    Gdowski, G.E.

    1998-01-01

    The Yucca Mountain Site Characterization Project is evaluating candidate materials for high level nuclear waste containers (Waste Packages) for a potential deep geologic repository at Yucca Mountain, Nevada. The potential repository is located above the water table in the unsaturated zone. The rock contains nominally 10% by volume water and gas pressure in the emplacement drifts of the repository is expected to remain near the ambient atmospheric pressure. The heat generated by the radioactive decay of the waste will raise the temperature of the waste packages and the surrounding rock. Waste Package temperatures above the ambient boiling point of water are anticipated for the waste emplacement scenarios. Because the repository emplacement drifts are expected to remain at the ambient atmospheric pressure, the maximum relative humidity obtainable decreases above the boiling point of water. Temperatures of the Waste Packages and the surrounding rock are expected to reach maximum temperature within 100`s of years and then gradually decrease with time. Episodic liquid water contact with the WPs is also expected; this will result in the deposition of salts and mineral scale.

  3. Effect of temperature and relative humidity on variola virus in crusts*

    PubMed Central

    Huq, Farida

    1976-01-01

    The viability of variola virus in crusts under different conditions of temperature and relative humidity was studied for 16 weeks. At the ambient temperature of 25.8-26.4°C and 85-90% relative humidity, the virus survived only 8 weeks but at lower temperatures and relative humidities the survival time was considerably prolonged. PMID:196779

  4. Temperature and humidity modify airway response to inhaled histamine in normal subjects.

    PubMed

    Amirav, I; Plit, M

    1989-11-01

    The airway response to inhaled histamine is known to be influenced by various stimuli (e.g., infection, ozone). Temperature (T) has been shown to affect it in vitro. We studied whether T and humidity (H) modify airway response to inhaled histamine in normal subjects. Twelve normal subjects 21 to 46 yr of age (mean age, 29 yr) performed two similar histamine inhalation tests, the only difference being the conditions of the inspired air. One test was done while breathing cold dry air (mean T +/- SEM, -17.3 +/- 1.8 degrees C; relative H, 0%), and the other while breathing warm humid air (mean T +/- SEM, 33.9 +/- 0.5 degrees C; relative H, 100%). Whereas the geometric mean histamine concentration required to produce a 15% fall in FEV1 in the warm humid tests was 22.7 mg/ml, it was 11.9 mg/ml in the cold dry test (p less than 0.01). It is concluded that the T and H of inspired air modify the airway response to inhaled histamine in normal subjects.

  5. Low-temperature oxidation of magnetite - a humidity sensitive process?

    NASA Astrophysics Data System (ADS)

    Appel, Erwin; Fang, Xiaomin; Herb, Christian; Hu, Shouyun

    2015-04-01

    Extensive multi-parameter palaeoclimate records were obtained from two long-term lacustrine archives at the Tibetan Plateau: the Qaidam basin (2.69-0.08 Ma) and Heqing basin (0.90-0.03 Ma). At present the region of the Qaidam site has an arid climate (<100 mm mean annual precipitation) while the Heqing site is located in the sub-tropical region with monsoonal rainfall. Magnetic properties play a prominent role for palaeoclimate interpretation in both records. Several parameters show a 100 kyr eccentricity cyclicity; in the Qaidam record also the Mid-Pleistocene Transition is seen. Both magnetic records are controlled by different absolute and relative contributions of magnetite and its altered (maghemitized) phases as well as hematite. Weathering conditions likely cause a systematic variation of magnetic mineralogy due to low-temperature oxidation (LTO). Maghemitization is well recognized as an alteration process in submarine basalts but about its relevance for climate-induced weathering in continental environments little is known. Various factors i.e., humidity, temperature, seasonality, duration of specific weathering conditions, and bacterial activity could be responsible for maghemitization (LTO) and transformation to hematite (or goethite) when a critical degree of LTO is reached. These factors may lead to a complex interplay, but one has to note that water acts as an electrolyte for Fe(II) to Fe(III) oxidation at the crystal surface and due to maghemitization-induced lattice shrinking a larger internal particle surface area becomes exposed to oxidation. We suggest that humidity is the most crucial driver for the two studied archives - for the following reasons: (1) The overall parameter variations and catchment conditions are well in agreement with an LTO scenario. (2) In the Qaidam record we observe a direct relationship of a humidity sensitive pollen Ratio with magnetic susceptibility (reflecting the degree of alteration by LTO). (3) In the Heqing record

  6. Analyses of Inhomogeneities in Radiosonde Temperature and Humidity Time Series.

    NASA Astrophysics Data System (ADS)

    Zhai, Panmao; Eskridge, Robert E.

    1996-04-01

    Twice daily radiosonde data from selected stations in the United States (period 1948 to 1990) and China (period 1958 to 1990) were sorted into time series. These stations have one sounding taken in darkness and the other in sunlight. The analysis shows that the 0000 and 1200 UTC time series are highly correlated. Therefore, the Easterling and Peterson technique was tested on the 0000 and 1200 time series to detect inhomogeneities and to estimate the size of the biases. Discontinuities were detected using the difference series created from the 0000 and 1200 UTC time series. To establish that the detected bias was significant, a t test was performed to confirm that the change occurs in the daytime series but not in the nighttime series.Both U.S. and Chinese radiosonde temperature and humidity data include inhomogeneities caused by changes in radiosonde sensors and observation times. The U.S. humidity data have inhomogeneities that were caused by instrument changes and the censoring of data. The practice of reporting relative humidity as 19% when it is lower than 20% or the temperature is below 40°C is called censoring. This combination of procedural and instrument changes makes the detection of biases and adjustment of the data very difficult. In the Chinese temperatures, them are inhomogeneities related to a change in the radiation correction procedure.Test results demonstrate that a modified Easterling and Peterson method is suitable for use in detecting and adjusting time series radiosonde data.Accurate stations histories are very desirable. Stations histories can confirm that detected inhomogeneities are related to instrument or procedural changes. Adjustments can then he made to the data with some confidence.

  7. The variation of the relative humidity of air released from canisters after ambient sampling

    SciTech Connect

    McClenny, W.A.; Schmidt, S.M.; Kronmiller, K.G.

    1997-12-31

    Dalton`s Law of partial pressures and the hypothesis that water vapor equilibrium above a canister surface is identical to that established above liquid water are used to predict the variation of the percent relative humidity (%RH) of air released from canisters used in ambient air sampling, typically 6L canisters pressurized with 18L of air. During sampling, some water vapor is adsorbed on the canister wall. When (and if) the water vapor partial pressure exceeds its saturation vapor pressure, water vapor condensation begins and the condensation rate equals the sampling rate of water vapor into the canister. Under constant temperature conditions, the air subsequently released from the canister is less humid than the original sample, following the relationship, %RH = 100% (6L/V{sub s}) for V{sub s} > V{sub r} where V{sub s} is the residual air volume and V{sub r} is the residual air volume at which water is completely removed (except for adsorbed water vapor) from the canister wall. For V{sub s} < V{sub r} the %RH is constant and equal to its value at V{sub r}, V{sub r} is shown to depend on the %RH of the ambient air sample. Experimental values to agree reasonably well with predictions; however, experimental values were systematically lower than predicted especially when ambient air with mid-range %RH was sampled. This difference is related to the mass of water vapor remaining adsorbed on the canister surface as water evaporates. This paper has been reviewed in accordance with the U.S. Environmental Protection Agency`s peer and administrative review policies and approved for presentation and publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

  8. Growth and densification of frost around a circular cylinder under humid air on cross flow

    NASA Astrophysics Data System (ADS)

    Madrid, Victor; Sanchez, Fausto; Martinez, Simon; Morales, Arturo

    2015-03-01

    Formation, growth and densification of frost around a circular cylinder under humid air on cross flow at different Reynolds numbers has been numerically studied using the finite volume method. The frost formation phenomenon takes place when humidity goes through a desublimation phase change at a temperature lower than its solidification point. Continuity, momentum, energy and mass transport equations have been solved for a whole domain including both phases, gas and solid, and the two components in the gas phase, i.e. dry air and humidity. The mass of water that goes from the gas to the solid phase is used as a source term in the mass conservation equation for solid phase and as a sink for the gas phase, affecting source terms in all the other conservation equations (energy and momentum) also. A volume of fraction conservation equation for solid phase is used to obtain local fractions of ice droplets, considering formally as frost those fraction values greater than a critical value. Once those local fractions are known, local frost properties such as density and thermal conductivity can be calculated as functions of the phase fraction allowing to compute the evolution of growth and local properties of frost. Authors aknowledge financial support from CONACYT through Project 221993.

  9. Environmental dust effects on aluminum surfaces in humid air ambient

    PubMed Central

    Yilbas, Bekir Sami; Hassan, Ghassan; Ali, Haider; Al-Aqeeli, Nasser

    2017-01-01

    Environmental dusts settle on surfaces and influence the performance of concentrated solar energy harvesting devices, such as aluminum troughs. The characteristics of environmental dust and the effects of mud formed from the dust particles as a result of water condensing in humid air conditions on an aluminum wafer surface are examined. The dissolution of alkaline and alkaline earth compounds in water condensate form a chemically active mud liquid with pH 8.2. Due to gravity, the mud liquid settles at the interface of the mud and the aluminum surface while forming locally scattered patches of liquid films. Once the mud liquid dries, adhesion work to remove the dry mud increases significantly. The mud liquid gives rise to the formation of pinholes and local pit sites on the aluminum surface. Morphological changes due to pit sites and residues of the dry mud on the aluminum surface lower the surface reflection after the removal of the dry mud from the surface. The characteristics of the aluminum surface can address the dust/mud-related limitations of reflective surfaces and may have implications for the reductions in the efficiencies of solar concentrated power systems. PMID:28378798

  10. Environmental dust effects on aluminum surfaces in humid air ambient.

    PubMed

    Yilbas, Bekir Sami; Hassan, Ghassan; Ali, Haider; Al-Aqeeli, Nasser

    2017-04-05

    Environmental dusts settle on surfaces and influence the performance of concentrated solar energy harvesting devices, such as aluminum troughs. The characteristics of environmental dust and the effects of mud formed from the dust particles as a result of water condensing in humid air conditions on an aluminum wafer surface are examined. The dissolution of alkaline and alkaline earth compounds in water condensate form a chemically active mud liquid with pH 8.2. Due to gravity, the mud liquid settles at the interface of the mud and the aluminum surface while forming locally scattered patches of liquid films. Once the mud liquid dries, adhesion work to remove the dry mud increases significantly. The mud liquid gives rise to the formation of pinholes and local pit sites on the aluminum surface. Morphological changes due to pit sites and residues of the dry mud on the aluminum surface lower the surface reflection after the removal of the dry mud from the surface. The characteristics of the aluminum surface can address the dust/mud-related limitations of reflective surfaces and may have implications for the reductions in the efficiencies of solar concentrated power systems.

  11. Temperature-dependent deliquescence relative humidities and water activities using humidity controlled thermogravimetric analysis with application to malonic acid.

    PubMed

    Beyer, Keith D; Schroeder, Jason R; Kissinger, Jared A

    2014-04-03

    We utilize a new experimental technique, humidity-controlled thermogravimetric analysis (HTGA), to determine temperature-dependent deliquescence relative humidities (DRH) and to determine the equilibrium concentration of a solution at a given temperature and relative humidity. To that end, we have investigated the malonic acid/water system determining the DRH and concentration/RH relationship in the temperature range 303-278 K. Excellent agreement is found with literature values for the DRH of malonic acid as a function of temperature and for the concentration/RH relationship at several temperatures. Thus, we extend the DRH and concentration/RH relationship to a broader temperature range and are using the HTGA experiments to investigate other organic acids.

  12. Sensor fabrication method for in situ temperature and humidity monitoring of light emitting diodes.

    PubMed

    Lee, Chi-Yuan; Su, Ay; Liu, Yin-Chieh; Chan, Pin-Cheng; Lin, Chia-Hung

    2010-01-01

    In this work micro temperature and humidity sensors are fabricated to measure the junction temperature and humidity of light emitting diodes (LED). The junction temperature is frequently measured using thermal resistance measurement technology. The weakness of this method is that the timing of data capture is not regulated by any standard. This investigation develops a device that can stably and continually measure temperature and humidity. The device is light-weight and can monitor junction temperature and humidity in real time. Using micro-electro-mechanical systems (MEMS), this study minimizes the size of the micro temperature and humidity sensors, which are constructed on a stainless steel foil substrate (40 μm-thick SS-304). The micro temperature and humidity sensors can be fixed between the LED chip and frame. The sensitivities of the micro temperature and humidity sensors are 0.06±0.005 (Ω/°C) and 0.033 pF/%RH, respectively.

  13. Effects of humid heat exposure in later sleep segments on sleep stages and body temperature in humans

    NASA Astrophysics Data System (ADS)

    Okamoto-Mizuno, Kazue; Tsuzuki, Kazuyo; Mizuno, Koh

    2005-03-01

    This study sought to investigate the effects of humid heat exposure in later sleep segments on sleep stages and body temperature in humans. The subjects were eight healthy males, from whom informed consent had been obtained. The experiments were carried out under three different sets of conditions: a control climate [air temperature (Ta)=26°C, relative humidity (RH)=50%] (C); a humid heat climate (Ta=32°C, RH=80%) (H); and a humid heat exposure in later sleep segments (C for the first 3 h 45 min, followed by a 30-min transition to H, which was then maintained for the last 3 h 45 min) (C H). Electroencephalogram, EOG, and mental electromyogram, rectal temperature (Tre), and skin temperature (Tsk) were continuously measured. The total amount of wakefulness was significantly increased in H compared to C H or C. Compared to C, wakefulness in C H and H was significantly increased during later sleep segments. Tre and mean Tsk were significantly higher in H than in C H or C. In C H, Tsk and Tre increased to levels equal to those observed in H after Ta and RH increase. Whole body sweat loss was significantly lower in C H and C than in H. These results suggest that humid heat exposure in the later sleep segment reduces thermal load as compared to full-night humid heat exposure. In daily life, the use of air conditioning in the initial sleep hours can protect sleep and thermoregulation.

  14. Effects of Temperature and Humidity on Wilethane 44 Cure

    SciTech Connect

    John C. Weigle

    2006-10-01

    Wilethane 44 is a polyurethane adhesive developed by the Materials Team within ESA-MEE at Los Alamos National Laboratory as a replacement for Hexcel Corporation Urethane 7200. Urethane 7200 is used in numerous weapon systems, but it was withdrawn from the market in 1989. The weapons complex requires a replacement material for use in the W76-1 LEP and the W88, as well as for assembly of JTAs for other warheads. All polyurethane systems are susceptible to moisture reacting with unreacted isocyanate groups. This side reaction competes with the curing reaction and results in CO{sub 2} formation. Therefore, a polyurethane adhesive can exhibit foaming if appropriate environmental controls are not in place while it cures. A designed experiment has been conducted at TA-16-304 to determine the effects of ambient conditions on the properties of cured Wilethane 44. Temperature was varied from 15 C to 30 C and relative humidity from 15% to 40%. The density, hardness at 24 hours, and butt tensile strength on aluminum substrates were measured and fitted to quadratic equations over the experimental space. Additionally, the loss and storage moduli during cure were monitored as a function of cure temperature. These experiments provide a stronger basis for establishing appropriate environmental conditions and cure times when using Wilethane 44. The current guidelines are a working time of 90 minutes, a cure time of 18 hours, and a relative humidity of less than 25%, regardless of ambient temperature. Viscosity measurements revealed that the working time is a strong function of temperature and can be as long as 130 minutes at 15 C or as short as 90 minutes at 30 C. The experiments also showed that the gel time is much longer than originally thought, as long as 13 hours at 15 C. Consequently, it may be necessary to extend the required cure time at temperatures below 20 C. Allowable humidity varies as a function of temperature from 34% at 15 C to 15% at 30 C.

  15. Reconstructing the vertical profile of humidity on the basis of the vertical profile of temperature

    NASA Technical Reports Server (NTRS)

    Bazlova, T. I.

    1974-01-01

    The vertical profile of humidity in the atmosphere is developed on the basis of the vertical profile of temperature using an empirical formula linking changes in humidity with changes in temperature and altitude. The atmosphere is divided into three layers by altitude, since the condition for the formation of humidity varies with altitude.

  16. Core-shell microstructured nanocomposites for synergistic adjustment of environmental temperature and humidity

    NASA Astrophysics Data System (ADS)

    Zhang, Haiquan; Yuan, Yanping; Zhang, Nan; Sun, Qingrong; Cao, Xiaoling

    2016-11-01

    The adjustment of temperature and humidity is of great importance in a variety of fields. Composites that can perform both functions are prepared by mixing phase change materials (PCMs) with hygroscopic materials. However, the contact area between the adsorbent and humid air is inevitably decreased in such structures, which reduces the number of mass transfer channels for water vapor. An approach entailing the increase in the mass ratio of the adsorbent is presented here to improve the adsorption capacity. A core-shell CuSO4/polyethylene glycol (PEG) nanomaterial was developed to satisfy the conflicting requirements of temperature control and dehumidification. The results show that the equilibrium adsorption capacity of the PEG coating layer was enhanced by a factor of 188 compared with that of the pure PEG powder. The coating layer easily concentrates vapor, providing better adsorption properties for the composite. Furthermore, the volume modification of the CuSO4 matrix was reduced by 80% by the PEG coated layer, a factor that increases the stability of the composite. For the phase change process, the crystallization temperature of the coating layer was adjusted between 37.2 and 46.3 °C by interfacial tension. The core-shell CuSO4/PEG composite reported here provides a new general approach for the simultaneous control of temperature and humidity.

  17. Core-shell microstructured nanocomposites for synergistic adjustment of environmental temperature and humidity

    PubMed Central

    Zhang, Haiquan; Yuan, Yanping; Zhang, Nan; Sun, Qingrong; Cao, Xiaoling

    2016-01-01

    The adjustment of temperature and humidity is of great importance in a variety of fields. Composites that can perform both functions are prepared by mixing phase change materials (PCMs) with hygroscopic materials. However, the contact area between the adsorbent and humid air is inevitably decreased in such structures, which reduces the number of mass transfer channels for water vapor. An approach entailing the increase in the mass ratio of the adsorbent is presented here to improve the adsorption capacity. A core-shell CuSO4/polyethylene glycol (PEG) nanomaterial was developed to satisfy the conflicting requirements of temperature control and dehumidification. The results show that the equilibrium adsorption capacity of the PEG coating layer was enhanced by a factor of 188 compared with that of the pure PEG powder. The coating layer easily concentrates vapor, providing better adsorption properties for the composite. Furthermore, the volume modification of the CuSO4 matrix was reduced by 80% by the PEG coated layer, a factor that increases the stability of the composite. For the phase change process, the crystallization temperature of the coating layer was adjusted between 37.2 and 46.3 °C by interfacial tension. The core-shell CuSO4/PEG composite reported here provides a new general approach for the simultaneous control of temperature and humidity. PMID:27845371

  18. The effect of cushion properties on skin temperature and humidity at the body-support interface.

    PubMed

    Hsu, Tzu-Wen; Yang, Shu-Yu; Liu, Jung-Tai; Pan, Cheng-Tang; Yang, Yu-Sheng

    2016-09-29

    The purpose of this study is to explore the effects of various cushions on skin temperature and moisture at the body-seat interface during a 2-hour period of continuous sitting. Seventy-eight participants were randomly assigned to sit on one of the three types of wheelchair cushions for unrelieved sitting for over 2 hours. Skin temperature and relative humidity (RH) were measured under the subjects' ischial tuberosities and thighs bilaterally with digital temperature and humidity sensors. Data were collected before sitting and at 15-minute intervals thereafter. Participants sitting on foam-fluid hybrid cushions showed significantly lower skin temperatures than those sitting on air-filled and foam cushions (p < 0.05), but RH did not differ significantly among the cushions (p = 0.97). The three cushions produced a similar increasing trend in RH over time and RH reached a plateau during the 2-hour sitting period. To select the appropriate wheelchair cushion, the microclimate (heat and moisture control) between the body-seat interface should be considered as well as pressure distribution. In comparison with foam-fluid hybrid cushions, the air-filled rubber and foam cushions tended to increase skin temperature by several degrees after prolonged sitting. However, cushion materials did not have significant differences in moisture accumulations.

  19. Resistance of Aerosolized Bacterial Viruses to Relative Humidity and Temperature.

    PubMed

    Verreault, Daniel; Marcoux-Voiselle, Mélissa; Turgeon, Nathalie; Moineau, Sylvain; Duchaine, Caroline

    2015-10-01

    The use of aerosolized bacteriophages as surrogates for hazardous viruses might simplify and accelerate the discovery of links between viral components and their persistence in the airborne state under diverse environmental conditions. In this study, four structurally distinct lytic phages, MS2 (single-stranded RNA [ssRNA]), ϕ6 (double-stranded RNA [dsRNA]), ϕX174 (single-stranded DNA [ssDNA]), and PR772 (double-stranded DNA [dsDNA]), were nebulized into a rotating chamber and exposed to various levels of relative humidity (RH) and temperature as well as to germicidal UV radiation. The aerosolized viral particles were allowed to remain airborne for up to 14 h before being sampled for analysis by plaque assays and quantitative PCRs. Phages ϕ6 and MS2 were the most resistant at low levels of relative humidity, while ϕX174 was more resistant at 80% RH. Phage ϕ6 lost its infectivity immediately after exposure to 30°C and 80% RH. The infectivity of all tested phages rapidly declined as a function of the exposure time to UVC radiation, phage MS2 being the most resistant. Taken altogether, our data indicate that these aerosolized phages behave differently under various environmental conditions and highlight the necessity of carefully selecting viral simulants in bioaerosol studies.

  20. Resistance of Aerosolized Bacterial Viruses to Relative Humidity and Temperature

    PubMed Central

    Verreault, Daniel; Marcoux-Voiselle, Mélissa; Turgeon, Nathalie; Moineau, Sylvain

    2015-01-01

    The use of aerosolized bacteriophages as surrogates for hazardous viruses might simplify and accelerate the discovery of links between viral components and their persistence in the airborne state under diverse environmental conditions. In this study, four structurally distinct lytic phages, MS2 (single-stranded RNA [ssRNA]), ϕ6 (double-stranded RNA [dsRNA]), ϕX174 (single-stranded DNA [ssDNA]), and PR772 (double-stranded DNA [dsDNA]), were nebulized into a rotating chamber and exposed to various levels of relative humidity (RH) and temperature as well as to germicidal UV radiation. The aerosolized viral particles were allowed to remain airborne for up to 14 h before being sampled for analysis by plaque assays and quantitative PCRs. Phages ϕ6 and MS2 were the most resistant at low levels of relative humidity, while ϕX174 was more resistant at 80% RH. Phage ϕ6 lost its infectivity immediately after exposure to 30°C and 80% RH. The infectivity of all tested phages rapidly declined as a function of the exposure time to UVC radiation, phage MS2 being the most resistant. Taken altogether, our data indicate that these aerosolized phages behave differently under various environmental conditions and highlight the necessity of carefully selecting viral simulants in bioaerosol studies. PMID:26253683

  1. Effect of humidity and temperature on the survival of Listeria monocytogenes on surfaces.

    PubMed

    Redfern, J; Verran, J

    2017-04-01

    Listeria monocytogenes is a pathogenic bacterium, with human disease and infection linked to dairy products, seafood, ready-to-eat meat and raw & undercooked meats. Stainless steel is the most common food preparation surface and therefore, it is important to understand how food storage conditions such as surface materials, temperature and relative humidity can affect survival of L. monocytogenes. In this study, survival of L. monocytogenes on stainless steel was investigated at three temperatures (4, 10 and 21°C), each approx. 11, 50 and 85% humidity. Results indicate that the lower the temperature, the more cells were recovered in all three humidity environments, while medium humidity enhances survival, irrespective of temperature. Lower humidity decreases recovery at all temperatures. These data support the guidance noted above that humidity control is important, and that lower humidity environments are less likely to support retention of viable L. monocytogenes on a stainless steel surface.

  2. High-resolution measurements of humidity and temperature with lidar

    NASA Astrophysics Data System (ADS)

    Behrendt, Andreas; Wulfmeyer, Volker; Spaeth, Florian; Hammann, Eva; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea

    2015-04-01

    3-dimensional thermodynamic fields of temperature and moisture including their turbulent fluctuations have been observed with the two scanning lidar systems of University of Hohenheim in three field campaigns in 2013 and 2014. In this contribution, we will introduce these two self-developed instruments and illustrate their performance with measurement examples. Finally, an outlook to envisioned future research activities with the new data sets of the instruments is given. Our temperature lidar is based on the rotational Raman technique. The scanning rotational Raman lidar (RRL) uses a seeded frequency-doubled Nd:YAG laser at a wavelength of 355 nm. A two-mirror scanner with a 40-cm telescope collects the atmospheric backscatter signals. Humidity measurements are made with a scanning water vapor differential absorption lidar (DIAL) which uses a titanium sapphire laser at 820 nm as transmitter. This laser is pumped with a frequency-doubled Nd:YAG laser and injection-seeded for switching between the online and offline wavelengths. The DIAL receiver consists of a scanning 80-cm telescope. The measured temperature and humidity profiles of both instruments have typical resolutions of only a few seconds and 100 m in the atmospheric boundary layer both in day- and night-time. Recent field experiments with the RRL and the DIAL of University of Hohenheim were (1) the HD(CP)2 Prototype Experiment (HOPE) in spring 2013 in western Germany - this activity is embedded in the project HD(CP)2 (High-definition clouds and precipitation for advancing climate prediction); (2) a measurement campaign in Hohenheim in autumn 2013; (3) the campaign SABLE (Surface Atmospheric Boundary Layer Exchange) in south-western Germany in summer 2014. The collected moisture and temperature data will serve as initial thermodynamic fields for forecast experiments related to the formation of clouds and precipitation. Due to their high resolution and high precision, the systems are capable of resolving

  3. Single-Antenna Temperature- and Humidity-Sounding Microwave Receiver

    NASA Technical Reports Server (NTRS)

    Hoppe, Daniel J.; Pukala, David M.; Lambrigtsen, Bjorn H.; Soria, Mary M.; Owen, Heather R.; Tanner, Alan B.; Bruneau, Peter J.; Johnson, Alan K.; Kagaslahti, Pekka P.; Gaier, Todd C.

    2011-01-01

    For humidity and temperature sounding of Earth s atmosphere, a single-antenna/LNA (low-noise amplifier) is needed in place of two separate antennas for the two frequency bands. This results in significant mass and power savings for GeoSTAR that is comprised of hundreds of antennas per frequency channel. Furthermore, spatial anti-aliasing would reduce the number of horns. An anti-aliasing horn antenna will enable focusing the instrument field of view to the hurricane corridor by reducing spatial aliasing, and thus reduce the number of required horns by up to 50 percent. The single antenna/receiver assembly was designed and fabricated by a commercial vendor. The 118 183-GHz horn is based upon a profiled, smooth-wall design, and the OMT (orthomode transducer) on a quad-ridge design. At the input end, the OMT presents four ver y closely spaced ridges [0.0007 in. (18 m)]. The fabricated assembly contains a single horn antenna and low-noise broadband receiver front-end assembly for passive remote sensing of both temperature and humidity profiles in the Earth s atmosphere at 118 and 183 GHz. The wideband feed with dual polarization capability is the first broadband low noise MMIC receiver with the 118 to 183 GHz bandwidth. This technology will significantly reduce PATH/GeoSTAR mass and power while maintaining 90 percent of the measurement capabilities. This is required for a Mission-of-Opportunity on NOAA s GOES-R satellite now being developed, which in turn will make it possible to implement a Decadal-Survey mission for a fraction of the cost and much sooner than would otherwise be possible.

  4. Wheelchair cushion effect on skin temperature, heat flux, and relative humidity.

    PubMed

    Stewart, S F; Palmieri, V; Cochran, G V

    1980-05-01

    For patients subject to decubitus ulcers, wheelchair cushions should be prescribed with knowledge of the cushion's effect on the thermal as well as mechanical environment of the skin. To define thermal effects that may be encountered during routine use, tests werr made on 24 commercially available cushions. Skin temperature, heat flux and relative humidity were measured under the ischial tuberosities of a normal 24-year-old man during a 1-hour period of sitting on each cushion. After 1 hour, skin temperatures increased by means of 3.4 C and 2.8 C on foams and viscoelastic foams and there were slight decreases in heat flux as compared with control values in air. On gels, skin temperatures remained constant and heat flux increased, while water "floatation" pads caused a mean skin temperature decreased of 2.7 C along with a marked increase in heat flux. Relative humidity at the skin cushion interface increased by 10.4%, 22.8% and 19.8% on foams, gels and water floatation pads, as compared with room air values. Representative cushions from each of the general types (foam, viscoelastic foam, gel and water floatation) also were subjected to 2-hour tests which indicated the measured parameters continued to change asymptotically.

  5. Air humidity as key determinant of morphogenesis and productivity of the rare temperate woodland fern Polystichum braunii.

    PubMed

    Schwerbrock, R; Leuschner, C

    2016-07-01

    (1) Most ferns are restricted to moist and shady habitats, but it is not known whether soil moisture or atmospheric water status are decisive limiting factors, or if both are equally important. (2) Using the rare temperate woodland fern Polystichum braunii, we conducted a three-factorial climate chamber experiment (soil moisture (SM) × air humidity (RH) × air temperature (T)) to test the hypotheses that: (i) atmospheric water status (RH) exerts a similarly large influence on the fern's biology as soil moisture, and (ii) both a reduction in RH and an increase in air temperature reduce vigour and growth. (3) Nine of 11 morphological, physiological and growth-related traits were significantly influenced by an increase in RH from 65% to 95%, leading to higher leaf conductance, increased above- and belowground productivity, higher fertility, more epidermal trichomes and fewer leaf deformities under high air humidity. In contrast, soil moisture variation (from 66% to 70% in the moist to ca. 42% in the dry treatment) influenced only one trait (specific leaf area), and temperature variation (15 °C versus 19 °C during daytime) only three traits (leaf conductance, root/shoot ratio, specific leaf area); RH was the only factor affecting productivity. (4) This study is the first experimental proof for a soil moisture-independent air humidity effect on the growth of terrestrial woodland ferns. P. braunii appears to be an air humidity hygrophyte that, whithin the range of realistic environmental conditions set in this study, suffers more from a reduction in RH than in soil moisture. A climate warming-related increase in summer temperatures, however, seems not to directly threaten this endangered species.

  6. Season and humidity dependence of the effects of air pollution on COPD hospitalizations in Hong Kong

    NASA Astrophysics Data System (ADS)

    Qiu, Hong; Yu, Ignatius Tak Sun; Wang, Xiaorong; Tian, Linwei; Tse, Lap Ah; Wong, Tze Wai

    2013-09-01

    Associations between ambient pollution and respiratory morbidity including chronic obstructive pulmonary disease (COPD) have been confirmed. Weather factors, such as temperature, season and relative humidity (RH), may modify the effects of air pollution. This time series study was conducted to examine whether the effects of air pollution on emergency COPD hospital admissions in Hong Kong varied across seasons and RH levels, and explore the possible joint modification of season and RH on the effects of pollution. Data of daily air pollution concentrations mean temperature and RH, and COPD hospital admissions from 1998 to 2007 were collected. Generalized additive Poisson models with interaction terms were used to estimate the effects of pollution across seasons and RH levels. We observed an increase in the detrimental effects of air pollution in the cool season and on low humidity days. On the cool and dry days, a 10 μg m-3 increment of lag03 exposure was associated with an increase in emergency COPD admissions by 1.76% (95%CI: 1.19-2.34%), 3.43% (95%CI: 2.80-4.07%), and 1.99% (95%CI: 0.90-3.09%) for nitrogen dioxide (NO2), ozone (O3), and sulfur dioxide (SO2), respectively, all of which were statistically significantly higher than those on the other days. No consistent modification of weather factors was found for the effects of particles with an aerodynamic diameter less than 10 μm (PM10). The results suggested that season and RH jointly modified the effects of gaseous pollutants, resulting in increased emergency COPD hospitalizations on the cool and dry days.

  7. Insect hygroreceptor responses to continuous changes in humidity and air pressure

    PubMed Central

    Tichy, H.; Kallina, W.

    2011-01-01

    The most favored model of humidity transduction views the cuticular wall of insect hygroreceptive sensilla as a hygromechanical transducer. Hygroscopic swelling or shrinking alters the geometry of the wall, deforming the dendritic membranes of the moist and dry cells. The small size the sensilla and their position surrounded by elevated structures creates technical difficulties to mechanically stimulate them by direct contact. The present study investigated hygroreceptors on the antennae of the cockroach and the stick insect. Accurately controlled, homogeneous mechanical input was delivered by modulating air pressure. Both the moist and dry cells responded not only to changes in air pressure, but also in the opposite direction, as observed during changes in air humidity. The moist-cell’s excitatory response to increasing humidity and increasing air pressure implies that swelling of the hygroscopic cuticle compresses the dendrites, and the dry-cell’s excitatory response to decreasing humidity and decreasing air pressure implies that shrinking of the hygroscopic cuticle expands the dendrites. The moist and dry cells of the stick insect are more sensitive to pressure changes than those of the cockroach, but the responses to air pressure are generally weaker than to humidity. Therefore, the hygroreceptive sensilla differ in their physical properties and constitutions. Furthermore, the mechanical parameters associated with homogeneous changes in air pressure on the sensillum surface can only partially account for the responses of the moist and dry cells of both species to humidity stimulation. PMID:20375249

  8. AIRS Retrieved Temperature Isotherms over Southern Europe

    NASA Technical Reports Server (NTRS)

    2002-01-01

    AIRS Retrieved Temperature Isotherms over Southern Europe viewed from the west, September 8, 2002. The isotherms in this map made from AIRS data show regions of the same temperature in the atmosphere.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  9. Building Environment Analysis based on Temperature and Humidity for Smart Energy Systems

    PubMed Central

    Yun, Jaeseok; Won, Kwang-Ho

    2012-01-01

    In this paper, we propose a new HVAC (heating, ventilation, and air conditioning) control strategy as part of the smart energy system that can balance occupant comfort against building energy consumption using ubiquitous sensing and machine learning technology. We have developed ZigBee-based wireless sensor nodes and collected realistic temperature and humidity data during one month from a laboratory environment. With the collected data, we have established a building environment model using machine learning algorithms, which can be used to assess occupant comfort level. We expect the proposed HVAC control strategy will be able to provide occupants with a consistently comfortable working or home environment. PMID:23202004

  10. Effects of airflow on body temperatures and sleep stages in a warm humid climate

    NASA Astrophysics Data System (ADS)

    Tsuzuki, Kazuyo; Okamoto-Mizuno, Kazue; Mizuno, Koh; Iwaki, Tatsuya

    2008-03-01

    Airflow is an effective way to increase heat loss—an ongoing process during sleep and wakefulness in daily life. However, it is unclear whether airflow stimulates cutaneous sensation and disturbs sleep or reduces the heat load and facilitates sleep. In this study, 17 male subjects wearing short pyjamas slept on a bed with a cotton blanket under two of the following conditions: (1) air temperature (Ta) 26°C, relative humidity (RH) 50%, and air velocity (V) 0.2 m s-1; (2) Ta 32°C, RH 80%, V 1.7 m s-1; (3) Ta 32°C; RH 80%, V 0.2 m s-1 (hereafter referred to as 26/50, 32/80 with airflow, and 32/80 with still air, respectively). Electroencephalograms, electrooculograms, and mental electromyograms were obtained for all subjects. Rectal (Tre) and skin (Ts) temperatures were recorded continuously during the sleep session, and body-mass was measured before and after the sleep session. No significant differences were observed in the duration of sleep stages between subjects under the 26/50 and 32/80 with airflow conditions; however, the total duration of wakefulness decreased significantly in subjects under the 32/80 with airflow condition compared to that in subjects under the 32/80 with still air condition ( P < 0.05). Tre, Tsk, Ts, and body-mass loss under the 32/80 with airflow condition were significantly higher compared to those under the 26/50 condition, and significantly lower than those under the 32/80 with still air condition ( P < 0.05). An alleviated heat load due to increased airflow was considered to exist between the 32/80 with still air and the 26/50 conditions. Airflow reduces the duration of wakefulness by decreasing Tre, Tsk, Ts, and body-mass loss in a warm humid condition.

  11. A novel civilian granary temperature and humidity monitoring device based on C8051F020

    NASA Astrophysics Data System (ADS)

    Meng, Li; Li, Yuelong; Meng, Xiangjie

    The control to temperature and humidity of small civilian granary is great important to grain storage. In this paper, we propose a smart surveillance device to monitor temperature and humidity in real-time to ensure high quality food storage. This simple and small size device could achieve good anti-jamming at extremely low power consumption. It could automatically trigger the sound-light alarm when either temperature or humidity is higher than a preset threshold value.

  12. Effect of ambient temperature and relative humidity on interfacial temperature during early stages of drop evaporation.

    PubMed

    Fukatani, Yuki; Orejon, Daniel; Kita, Yutaku; Takata, Yasuyuki; Kim, Jungho; Sefiane, Khellil

    2016-04-01

    Understanding drop evaporation mechanisms is important for many industrial, biological, and other applications. Drops of organic solvents undergoing evaporation have been found to display distinct thermal patterns, which in turn depend on the physical properties of the liquid, the substrate, and ambient conditions. These patterns have been reported previously to be bulk patterns from the solid-liquid to the liquid-gas drop interface. In the present work the effect of ambient temperature and humidity during the first stage of evaporation, i.e., pinned contact line, is studied paying special attention to the thermal information retrieved at the liquid-gas interface through IR thermography. This is coupled with drop profile monitoring to experimentally investigate the effect of ambient temperature and relative humidity on the drop interfacial thermal patterns and the evaporation rate. Results indicate that self-generated thermal patterns are enhanced by an increase in ambient temperature and/or a decrease in humidity. The more active thermal patterns observed at high ambient temperatures are explained in light of a greater temperature difference generated between the apex and the edge of the drop due to greater evaporative cooling. On the other hand, the presence of water humidity in the atmosphere is found to decrease the temperature difference along the drop interface due to the heat of adsorption, absorption and/or that of condensation of water onto the ethanol drops. The control, i.e., enhancement or suppression, of these thermal patterns at the drop interface by means of ambient temperature and relative humidity is quantified and reported.

  13. Effect of ambient temperature and relative humidity on interfacial temperature during early stages of drop evaporation

    NASA Astrophysics Data System (ADS)

    Fukatani, Yuki; Orejon, Daniel; Kita, Yutaku; Takata, Yasuyuki; Kim, Jungho; Sefiane, Khellil

    2016-04-01

    Understanding drop evaporation mechanisms is important for many industrial, biological, and other applications. Drops of organic solvents undergoing evaporation have been found to display distinct thermal patterns, which in turn depend on the physical properties of the liquid, the substrate, and ambient conditions. These patterns have been reported previously to be bulk patterns from the solid-liquid to the liquid-gas drop interface. In the present work the effect of ambient temperature and humidity during the first stage of evaporation, i.e., pinned contact line, is studied paying special attention to the thermal information retrieved at the liquid-gas interface through IR thermography. This is coupled with drop profile monitoring to experimentally investigate the effect of ambient temperature and relative humidity on the drop interfacial thermal patterns and the evaporation rate. Results indicate that self-generated thermal patterns are enhanced by an increase in ambient temperature and/or a decrease in humidity. The more active thermal patterns observed at high ambient temperatures are explained in light of a greater temperature difference generated between the apex and the edge of the drop due to greater evaporative cooling. On the other hand, the presence of water humidity in the atmosphere is found to decrease the temperature difference along the drop interface due to the heat of adsorption, absorption and/or that of condensation of water onto the ethanol drops. The control, i.e., enhancement or suppression, of these thermal patterns at the drop interface by means of ambient temperature and relative humidity is quantified and reported.

  14. [An early warning method of cucumber downy mildew in solar greenhouse based on canopy temperature and humidity modeling].

    PubMed

    Wang, Hui; Li, Mei-lan; Xu, Jian-ping; Chen, Mei-xiang; Li, Wen-yong; Li, Ming

    2015-10-01

    The greenhouse environmental parameters can be used to establish greenhouse nirco-climate model, which can combine with disease model for early warning, with aim of ecological controlling diseases to reduce pesticide usage, and protecting greenhouse ecological environment to ensure the agricultural product quality safety. Greenhouse canopy leaf temperature and air relative humidity, models were established using energy balance and moisture balance principle inside the greenhouse. The leaf temperature model considered radiation heat transfer between the greenhouse crops, wall, soil and cover, plus the heat exchange caused by indoor net radiation and crop transpiration. Furthermore, the water dynamic balance in the greenhouse including leaf transpiration, soil evaporation, cover and leaf water vapor condensation, was considered to develop a relative humidity model. The primary infection and latent period warning models for cucumber downy mildew (Pseudoperonospora cubensis) were validated using the results of the leaf temperature and relative humidity model, and then the estimated disease occurrence date of cucumber downy mildew was compared with actual disease occurrence date of field observation. Finally, the results were verified by the measured temperature and humidity data of September and October, 2014. The results showed that the root mean square deviations (RMSDs) of the measured and estimated leaf temperature were 0.016 and 0.024 °C, and the RMSDs of the measured and estimated air relative humidity were 0.15% and 0.13%, respectively. Combining the result of estimated temperature and humidity models, a cucumber disease early warning system was established to forecast the date of disease occurrence, which met with the real date. Thus, this work could provide the micro-environment data for the early warning system of cucumber diseases in solar greenhouses.

  15. Vibration-to-translation energy transfer in atmospheric-pressure streamer discharge in dry and humid air

    NASA Astrophysics Data System (ADS)

    Komuro, Atsushi; Takahashi, Kazunori; Ando, Akira

    2015-10-01

    Vibration-to-translation (V-T) energy transfer in atmospheric-pressure streamer discharge is numerically simulated using a two-dimensional electro-hydrodynamic model. The model includes state-to-state vibrational kinetics in humid air and is coupled with the compressible flow equation of the gas fluid. The vibrational distribution of {{\\text{O}}2}(v) reaches equilibrium more quickly than that of {{\\text{N}}2}(v) , whereas the energy released from {{\\text{O}}2}(v) does not increase the gas temperature. In humid air, the decay rate of the vibrational energy of {{\\text{N}}2}(v) is accelerated by the V-T energy transfer through water molecules and the energy heats the gas. However, the increase in gas temperature due to V-T energy transfer is not always seen because it competes with thermal diffusion.

  16. Regulation of Stomatal Defense by Air Relative Humidity1[OPEN

    PubMed Central

    Chitrakar, Reejana; Thompson, Blaine K.; Obulareddy, Nisita; Hambright, W. Sealy

    2016-01-01

    It has long been observed that environmental conditions play crucial roles in modulating immunity and disease in plants and animals. For instance, many bacterial plant disease outbreaks occur after periods of high humidity and rain. A critical step in bacterial infection is entry into the plant interior through wounds and natural openings, such as stomata, which are adjustable microscopic pores in the epidermal tissue. Several studies have shown that stomatal closure is an integral part of the plant immune response to reduce pathogen invasion. In this study, we found that high humidity can effectively compromise Pseudomonas syringae-triggered stomatal closure in both Phaseolus vulgaris and Arabidopsis (Arabidopsis thaliana), which is accompanied by early up-regulation of the jasmonic acid (JA) pathway and simultaneous down-regulation of salicylic acid (SA) pathway in guard cells. Furthermore, SA-dependent response, but not JA-dependent response, is faster in guard cells than in whole leaves, suggesting that the SA signaling in guard cells may be independent from other cell types. Thus, we conclude that high humidity, a well-known disease-promoting environmental condition, acts in part by suppressing stomatal defense and is linked to hormone signaling in guard cells. PMID:27702841

  17. Building America Indoor Temperature and Humidity Measurement Protocol

    SciTech Connect

    Engebrecht-Metzger, C.; Norton, P.

    2014-02-01

    When modeling homes using simulation tools, the heating and cooling set points can have a significant impact on home energy use. Every 4 years the Energy Information Administration (EIA) Residential Energy Consumption Survey (RECS) asks homeowners about their heating and cooling set points. Unfortunately, no temperature data is measured, and most of the time, the homeowner may be guessing at this number. Even one degree Fahrenheit difference in heating set point can make a 5% difference in heating energy use! So, the survey-based RECS data cannot be used as the definitive reference for the set point for the 'average occupant' in simulations. The purpose of this document is to develop a protocol for collecting consistent data for heating/cooling set points and relative humidity so that an average set point can be determined for asset energy models in residential buildings. This document covers the decision making process for researchers to determine how many sensors should be placed in each home, where to put those sensors, and what kind of asset data should be taken while they are in the home. The authors attempted to design the protocols to maximize the value of this study and minimize the resources required to achieve that value.

  18. The Building America Indoor Temperature and Humidity Measurement Protocol

    SciTech Connect

    Metzger, C.; Norton, Paul

    2014-02-01

    When modeling homes using simulation tools, the heating and cooling set points can have a significant impact on home energy use. Every four years, the Energy Information Administration (EIA) Residential Energy Consumption Survey (RECS) asks homeowners about their heating and cooling set points. Unfortunately, no temperature data is measured, and most of the time, the homeowner may be guessing at this number. Even one degree Fahrenheit difference in heating set point can make a 5% difference in heating energy use! So, the survey-based RECS data cannot be used as the definitive reference for the set point for the "average occupant" in simulations. The purpose of this document is to develop a protocol for collecting consistent data for heating/cooling set points and relative humidity so that an average set point can be determined for asset energy models in residential buildings. This document covers the decision making process for researchers to determine how many sensors should be placed in each home, where to put those sensors, and what kind of asset data should be taken while they are in the home. The authors attempted to design the protocols to maximize the value of this study and minimize the resources required to achieve that value.

  19. Surface temperatures in the polar regions from Nimbus 7 temperature humidity infrared radiometer

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    1994-01-01

    Monthly surface temperatures in the Arctic and Antarctic regions have been derived from the 11.5 micrometer thermal infrared channel of the Nimbus 7 temperature humidity infrared radiometer (THIR) for a whole year in 1979 and for a winter and a summer month from 1980 through 1985. The data set shows interannual variability and provides spatial details that allow identification of temperature patterns over sea ice and ice sheet surfaces. For example, the coldest spot in the southern hemisphere is observed to be consistently in the Antarctic plateau in the southern hemisphere, while that in the northern hemisphere is usually located in Greenland, or one of three other general areas: Siberia, the central Arctic, or the Canadian Archipelago. Also, in the southern hemisphere, the amplitude of the seasonal fluctuation of ice sheet temperatures is about 3 times that of sea ice, while in the northern hemisphere, the corresponding fluctuations for the two surfaces are about the same. The main sources of error in the retrieval are cloud and other atmospheric effects. These were minimized by first choosing the highest radiance value from the set of measurements during the day taken within a 30 km by 30 km grid of each daily map. Then the difference of daily maps was taken and where the difference is greater than a certain threshold (which in this case is 12 C), the data element is deleted. Overall, the monthly maps derived from the resulting daily maps are spatially and temporally consistent, are coherent with the topograph y of the Antarctic continent and the location of the sea ice edge, and are in qualitative agreement with climatological data. Quantitatively, THIR data are in good agreement with Antarctic ice sheet surface air temperature station data with a correlation coefficient of 0.997 and a standard deviation of 2.0 C. The absolute values are not as good over the sea ice edges, but a comparison with Russian 2-m drift station temperatures shows very high correlation

  20. Effects of Humidity Swings on Adsorption Columns for Air Revitalization: Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    LeVan, M. Douglas; Finn, John E.

    1997-01-01

    Air purification systems are necessary to provide clean air in the closed environments aboard spacecraft. Trace contaminants are removed using adsorption. One major factor concerning the removal of trace contaminants is relative humidity. Water can reduce adsorption capacity and, due to constant fluctuations, its presence is difficult to incorporate into adsorption column designs. The purpose of the research was to allow for better design techniques in trace contaminant adsorption systems, especially for feeds with water present. Experiments and mathematical modeling research on effects of humidity swings on adsorption columns for air revitalization were carried out.

  1. EDITORIAL: Humidity sensors Humidity sensors

    NASA Astrophysics Data System (ADS)

    Regtien, Paul P. L.

    2012-01-01

    All matter is more or less hygroscopic. The moisture content varies with vapour concentration of the surrounding air and, as a consequence, most material properties change with humidity. Mechanical and thermal properties of many materials, such as the tensile strength of adhesives, stiffness of plastics, stoutness of building and packaging materials or the thermal resistivity of isolation materials, all decrease with increasing environmental humidity or cyclic humidity changes. The presence of water vapour may have a detrimental influence on many electrical constructions and systems exposed to humid air, from high-power systems to microcircuits. Water vapour penetrates through coatings, cable insulations and integrated-circuit packages, exerting a fatal influence on the performance of the enclosed systems. For these and many other applications, knowledge of the relationship between moisture content or humidity and material properties or system behaviour is indispensable. This requires hygrometers for process control or test and calibration chambers with high accuracy in the appropriate temperature and humidity range. Humidity measurement methods can roughly be categorized into four groups: water vapour removal (the mass before and after removal is measured); saturation (the air is brought to saturation and the `effort' to reach that state is measured); humidity-dependent parameters (measurement of properties of humid air with a known relation between a specific property and the vapour content, for instance the refractive index, electromagnetic spectrum and acoustic velocity); and absorption (based on the known relation between characteristic properties of non-hydrophobic materials and the amount of absorbed water from the gas to which these materials are exposed). The many basic principles to measure air humidity are described in, for instance, the extensive compilations by Wexler [1] and Sonntag [2]. Absorption-type hygrometers have small dimensions and can be

  2. Numerical Simulations of Daytime Temperature and Humidity Crossover Effects in London

    NASA Astrophysics Data System (ADS)

    Sparks, N.; Toumi, R.

    2015-01-01

    The effect of the London urban area on vertical profiles of temperature and humidity was analyzed using a mesoscale model. It was found that the near-surface warming and drying effects usually associated with the urban heat island in London in the summer daytime are reversed at heights near the top of the boundary layer. This effect has previously been observed for nighttime temperatures above cities and termed a `crossover'. The mechanism proposed here to explain this new phenomenon, the daytime crossover, is similar to the previously suggested cause of the nighttime effect, that is, increased entrainment of warm dry air into the top of a cooler, more humid, boundary layer. The median summer daytime temperature crossover was found to be 1.1 K. The cooling was shown to be of a similar magnitude to the warming near the surface and extends up to 100 km downwind with a maximum magnitude at about 1500 UTC in summer. The moistening occurred over a similar spatial scale and peak values were typically two times greater than the near-surface drying effect.

  3. Effect of humidity on gas temperature in the afterglow of pulsed positive corona discharge

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Teramoto, Yoshiyuki; Oda, Tetsuji

    2010-01-01

    The effects of humidity on gas temperature in the afterglow of a pulsed positive corona discharge are studied. The gas temperature is measured using the laser-induced fluorescence (LIF) of NO molecules. The discharge occurs in a 13 mm point-to-plane gap under atmospheric pressure. When the water vapor concentration in air is increased from 0.5% to 2.4%, the temperature increases from 550 to 850 K near the anode tip, and from 350 to 650 K at a position 2.5 mm from the anode tip. The gas heating in the humid environment is due to the fast vibration-to-vibration processes of the O2-H2O and N2-H2O systems and the extremely rapid vibration-to-translation process of the H2O-H2O system. These processes accelerate the transfer of energy from O2(v) and N2(v) to translational energy. Measurements of the LIF of O2(v = 6) show that the decay rate of O2(v) density is increased by humidification.

  4. Hydrochloric acid aerosol formation by the interaction of hydrogen chloride with humid air

    NASA Technical Reports Server (NTRS)

    Rhein, R. A.

    1973-01-01

    The conditions in which hydrochloric acid aerosol is predicted by the interaction of hydrogen chloride gas with the water vapor in humid air are analyzed. The liquid gas phase equilibrium for the HCL-H2O system is expressed in terms of relative humidity and hydrogen chloride concentration as parts per million, units commonly used in pollution studies. Presented are the concentration (wt %) of HC1 in the aerosol and the concentration of aerosol (ppm) predicted.

  5. Humidity-resistant ambient-temperature solid-electrolyte amperometric sensing apparatus

    DOEpatents

    Zaromb, S.

    1994-06-21

    Apparatus and methods for detecting selected chemical compounds in air or other gas streams at room or ambient temperature includes a liquid-free humidity-resistant amperometric sensor comprising a sensing electrode and a counter and reference electrode separated by a solid electrolyte. The sensing electrode preferably contains a noble metal, such as Pt black. The electrolyte is water-free, non-hygroscopic, and substantially water-insoluble, and has a room temperature ionic conductivity [>=]10[sup [minus]4] (ohm-cm)[sup [minus]1], and preferably [>=]0.01 (ohm-cm)[sup [minus]1]. The conductivity may be due predominantly to Ag[sup +] ions, as in Ag[sub 2]WO[sub 4], or to F[sup [minus

  6. Measurement of the radon diffusion through a nylon foil for different air humidities

    SciTech Connect

    Mamedov, Fadahat; Štekl, Ivan; Smolek, Karel

    2015-08-17

    The dependency of the radon penetration through a nylon foil on air humidity was measured. Such information is needed for the tracking part of the SuperNEMO detector, which is planned to be shielded against radon by nylon foil and in which the air humidity is not negligible. The long term measurements of radon penetration through nylon foils for different air humidities were performed with the radon diffusion setup constructed at the IEAP, CTU in Prague. The setup consists of two stainless steel hemispheres with Si detector in each of them. Both hemispheres are separated by the tested foil. While the left hemisphere contains high Rn activity, the right part contains only activity caused by the radon penetration through the tested foil. Obtained results of this study with a nylon foil with the thickness of 50 µm are presented.

  7. Measurement of the radon diffusion through a nylon foil for different air humidities

    NASA Astrophysics Data System (ADS)

    Mamedov, Fadahat; Štekl, Ivan; Smolek, Karel

    2015-08-01

    The dependency of the radon penetration through a nylon foil on air humidity was measured. Such information is needed for the tracking part of the SuperNEMO detector, which is planned to be shielded against radon by nylon foil and in which the air humidity is not negligible. The long term measurements of radon penetration through nylon foils for different air humidities were performed with the radon diffusion setup constructed at the IEAP, CTU in Prague. The setup consists of two stainless steel hemispheres with Si detector in each of them. Both hemispheres are separated by the tested foil. While the left hemisphere contains high Rn activity, the right part contains only activity caused by the radon penetration through the tested foil. Obtained results of this study with a nylon foil with the thickness of 50 µm are presented.

  8. Elevated air humidity affects hydraulic traits and tree size but not biomass allocation in young silver birches (Betula pendula).

    PubMed

    Sellin, Arne; Rosenvald, Katrin; Õunapuu-Pikas, Eele; Tullus, Arvo; Ostonen, Ivika; Lõhmus, Krista

    2015-01-01

    As changes in air temperature, precipitation, and air humidity are expected in the coming decades, studies on the impact of these environmental shifts on plant growth and functioning are of major importance. Greatly understudied aspects of climate change include consequences of increasing air humidity on forest ecosystems, predicted for high latitudes. The main objective of this study was to find a link between hydraulic acclimation and shifts in trees' resource allocation in silver birch (Betula pendula Roth) in response to elevated air relative humidity (RH). A second question was whether the changes in hydraulic architecture depend on tree size. Two years of application of increased RH decreased the biomass accumulation in birch saplings, but the biomass partitioning among aboveground parts (leaves, branches, and stems) remained unaffected. Increased stem Huber values (xylem cross-sectional area to leaf area ratio) observed in trees under elevated RH did not entail changes in the ratio of non-photosynthetic to photosynthetic tissues. The reduction of stem-wood density is attributable to diminished mechanical load imposed on the stem, since humidified trees had relatively shorter crowns. Growing under higher RH caused hydraulic conductance of the root system (K R) to increase, while K R (expressed per unit leaf area) decreased and leaf hydraulic conductance increased with tree size. Saplings of silver birch acclimate to increasing air humidity by adjusting plant morphology (live crown length, slenderness, specific leaf area, and fine-root traits) and wood density rather than biomass distribution among aboveground organs. The treatment had a significant effect on several hydraulic properties of the trees, while the shifts were largely associated with changes in tree size but not in biomass allocation.

  9. Elevated air humidity affects hydraulic traits and tree size but not biomass allocation in young silver birches (Betula pendula)

    PubMed Central

    Sellin, Arne; Rosenvald, Katrin; Õunapuu-Pikas, Eele; Tullus, Arvo; Ostonen, Ivika; Lõhmus, Krista

    2015-01-01

    As changes in air temperature, precipitation, and air humidity are expected in the coming decades, studies on the impact of these environmental shifts on plant growth and functioning are of major importance. Greatly understudied aspects of climate change include consequences of increasing air humidity on forest ecosystems, predicted for high latitudes. The main objective of this study was to find a link between hydraulic acclimation and shifts in trees’ resource allocation in silver birch (Betula pendula Roth) in response to elevated air relative humidity (RH). A second question was whether the changes in hydraulic architecture depend on tree size. Two years of application of increased RH decreased the biomass accumulation in birch saplings, but the biomass partitioning among aboveground parts (leaves, branches, and stems) remained unaffected. Increased stem Huber values (xylem cross-sectional area to leaf area ratio) observed in trees under elevated RH did not entail changes in the ratio of non-photosynthetic to photosynthetic tissues. The reduction of stem–wood density is attributable to diminished mechanical load imposed on the stem, since humidified trees had relatively shorter crowns. Growing under higher RH caused hydraulic conductance of the root system (KR) to increase, while KR (expressed per unit leaf area) decreased and leaf hydraulic conductance increased with tree size. Saplings of silver birch acclimate to increasing air humidity by adjusting plant morphology (live crown length, slenderness, specific leaf area, and fine-root traits) and wood density rather than biomass distribution among aboveground organs. The treatment had a significant effect on several hydraulic properties of the trees, while the shifts were largely associated with changes in tree size but not in biomass allocation. PMID:26528318

  10. Survival of Phytophthora ramorum hyphae following exposure to temperature extremes and various humidities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined the impact of short-term exposure to high and low temperatures and a range of relative humidities on survival of Phytophthora ramorum hyphae. Spore-free hyphal colonies were grown on dialysis squares atop V8 medium. Relative humidity ranged from 41 – 93% at 20 C and 43 – 86% at 28 C. ...

  11. Relative humidity preference and survival of starved Formosan subterranean termites (Isoptera: Rhinotermitidae) at various temperature and relative humidity conditions.

    PubMed

    Gautam, Bal K; Henderson, Gregg

    2011-10-01

    Foraging groups of Formosan subterranean termites, Coptotermes formosanus Shiraki were tested for their relative humidity (RH) preference in a humidity gradient arena in the laboratory at a constant temperature of 26°C. Five RH levels (9%, 33%, 53%, 75%, and 98%) were maintained in the test arena comprising of a series of closed containers by using dry silica gel, saturated salt solutions, or distilled water alone. Termites gradually aggregated to the highest RH chamber in the arena. After 1 h, a significantly greater percentage of termites (≈46%) aggregated to the highest RH chamber (98%) than to the lower RH chambers (≤75%). After 12 h, > 97% of the termites aggregated to the 98% RH chamber. In survival tests, where termites were exposed to 15 combinatorial treatments of five RH levels (9%, 33%, 53%, 75%, and 98%) and three temperatures (20°C, 28°C, and 36°C) for a week, the survival was significantly influenced by RH, temperature, and their interaction. A significantly higher mortality was observed on termites exposed to ≤75% RH chambers than to 98% RH chamber at the three temperatures and significantly lower survival was found at 36°C than at 28°C or 20°C. The combination of temperature and RH plays an important role in the survival of C. formosanus.

  12. How to Use the DHT22 Sensor for Measuring Temperature and Humidity with the Arduino Board

    NASA Astrophysics Data System (ADS)

    Bogdan, Mihai

    2016-12-01

    The objective of this paper is to achieve a functional system in terms of hardware and software, to measure temperature and humidity. Also, this system will allow to monitoring the time. In this, we use an Arduino board with interfacing a sensor placed in local environment to measure temperature and humidity. The paper aims to achieve the following goals: achieving a functional system in terms of hardware and software that allows measuring and monitoring temperature, humidity and the time; using a development board for the communication with the sensor and clock; implementation a program that allows requirements.

  13. EFFECT OF TEMPERATURE AND HUMIDITY ON FORMALDEHYDE EMISSIONS IN TEMPORARY HOUSING UNITS

    SciTech Connect

    Parthasarathy, Srinandini; Maddalena, Randy L.; Russell, Marion L.; Apte, Michael G.

    2010-04-01

    The effect of temperature and humidity on formaldehyde emissions from samples collected from temporary housing units (THUs) was studied. The THUs were supplied by the U.S Federal Emergency Management Administration (FEMA) to families that lost their homes in Louisiana and Mississippi during the Hurricane Katrina and Rita disasters. Based on a previous study 1, 2, four of the composite wood surface materials that dominated contributions to indoor formaldehyde were selected to analyze the effects of temperature and humidity on the emission factors. Humidity equilibration experiments were carried out on two of the samples to determine how long the samples take to equilibrate with the surrounding environmental conditions. Small chamber experiments were then conducted to measure emission factors for the four surface materials at various temperature and humidity conditions. The samples were analyzed for formaldehyde via high performance liquid chromatography. The experiments showed that increases in temperature or humidity contributed to an increase in emission factors. A linear regression model was built using natural log of percentage relative humidity (RH) and inverse of temperature (in K) as predictor variables, and natural log of emission factors as the target variable. The coefficients of both inverse temperature and log relative humidity with log emission factor were found to be statistically significant for all the samples at the 95percent confidence level. This study should assist to retrospectively estimate indoor formaldehyde exposures of occupants of temporary housing units (THUs).

  14. Role of Temperature, Humidity and Rainfall on Influenza Transmission in Guatemala, El Salvador and Panama

    NASA Technical Reports Server (NTRS)

    Soebiyanto, Radina P.; Bonilla, Luis; Jara, Jorge; McCracken, John; Azziz?-Baumgartner, Eduardo; Widdowson, Marc-Alain; Kiang, Richard

    2012-01-01

    Worldwide, seasonal influenza causes about 500,000 deaths and 5 million severe illnesses per year. The environmental drivers of influenza transmission are poorly understood especially in the tropics. We aimed to identify meteorological factors for influenza transmission in tropical Central America. We gathered laboratory-confirmed influenza case-counts by week from Guatemala City, San Salvador Department (El Salvador) and Panama Province from 2006 to 2010. The average total cases per year were: 390 (Guatemala), 99 (San Salvador) and 129 (Panama). Meteorological factors including daily air temperature, rainfall, relative and absolute humidity (RH, AH) were obtained from ground stations, NASA satellites and land models. For these factors, we computed weekly averages and their deviation from the 5-yr means. We assessed the relationship between the number of influenza case-counts and the meteorological factors, including effects lagged by 1 to 4 weeks, using Poisson regression for each site. Our results showed influenza in San Salvador would increase by 1 case within a week of every 1 day with RH>75% (Relative Risk (RR)= 1.32, p=.001) and every 1C increase in minimum temperature (RR=1.29, p=.007) but it would decrease by 1 case for every 1mm-above mean weekly rainfall (RR=0.93,p<.001) (model pseudo-R2=0.55). Within 2 weeks, influenza in Panama was increased by 1 case for every 1% increase in RH (RR=1.04, p=.003), and it was increased by 2 cases for every 1C increase of minimum temperature (RR=2.01, p<.001) (model pseudo-R2=0.4). Influenza counts in Guatemala had 1 case increase for every 1C increase in minimum temperature in the previous week (RR=1.21, p<.001), and for every 1mm/day-above normal increase of rainfall rate (RR=1.03, p=.03) (model pseudo-R2=0.54). Our findings that cases increase with temperature and humidity differ from some temperate-zone studies. But they indicate that climate parameters such as humidity and temperature could be predictive of influenza

  15. Relation of temperature and humidity to the risk of recurrent gout attacks.

    PubMed

    Neogi, Tuhina; Chen, Clara; Niu, Jingbo; Chaisson, Christine; Hunter, David J; Choi, Hyon; Zhang, Yuqing

    2014-08-15

    Gout attack risk may be affected by weather (e.g., because of volume depletion). We therefore examined the association of temperature and humidity with the risk of recurrent gout attacks by conducting an internet-based case-crossover study in the United States (in 2003-2010) among subjects with a diagnosis of gout who had 1 or more attacks during 1 year of follow-up. We examined the association of temperature and humidity over the prior 48 hours with the risk of gout attacks using a time-stratified approach and conditional logistic regression. Among 632 subjects with gout, there was a significant dose-response relationship between mean temperature in the prior 48 hours and the risk of subsequent gout attack (P = 0.01 for linear trend). Higher temperatures were associated with approximately 40% higher risk of gout attack compared with moderate temperatures. There was a reverse J-shaped relationship between mean relative humidity and the risk of gout attacks (P = 0.03 for quadratic trend). The combination of high temperature and low humidity had the greatest association (odds ratio = 2.04, 95% confidence interval: 1.26, 3.30) compared with moderate temperature and relative humidity. Thus, high ambient temperature and possibly extremes of humidity were associated with an increased risk of gout attack, despite the likelihood that individuals are often in climate-controlled indoor environments.

  16. STS-32 OV-102 air revitalization system (ARS) humidity separator problem

    NASA Technical Reports Server (NTRS)

    1990-01-01

    During STS-32, onboard Columbia, Orbiter Vehicle (OV) 102, a leakage problem at environmental control and life support system (ECLSS) air revitalization system (ARS) humidity separator A below the middeck is solved with a plastic bag and a towel. The towel inserted inside a plastic bag absorbed the water that had collected at the separator inlet.

  17. Preventing Indoor Air Quality Problems in Educational Facilities: Guidelines for Hot, Humid Climates. Revised.

    ERIC Educational Resources Information Center

    Odom, J. David; DuBose, George

    This manual addresses the errors that occur during new construction that subsequently contribute to indoor air quality (IAQ) problems in newly constructed buildings in hot and humid climates, and offers guidelines for preventing them during the design and construction phases. It defines the roles and responsibilities of the design team, the…

  18. Remote humidity and temperature real time monitoring system for studying seed biology

    NASA Astrophysics Data System (ADS)

    Balachandran, Thiruparan

    This thesis discusses the design, prototyping, and testing of a remote monitoring system that is used to study the biology of seeds under various controlled conditions. Seed scientists use air-tight boxes to maintain relative humidity, which influences seed longevity and seed dormancy break. The common practice is the use of super-saturated solutions either with different chemicals or different concentrations of LiCl to create various relative humidity. Theretofore, no known system has been developed to remotely monitor the environmental conditions inside these boxes in real time. This thesis discusses the development of a remote monitoring system that can be used to accurately monitor and measure the relative humidity and temperature inside sealed boxes for the study of seed biology. The system allows the remote and real-time monitoring of these two parameters in five boxes with different conditions. It functions as a client that is connected to the internet using Wireless Fidelity (Wi-Fi) technology while Google spreadsheet is used as the server for uploading and plotting the data. This system directly gets connected to the Google sever through Wi-Fi and uploads the sensors' values in a Google spread sheet. Application-specific software is created and the user can monitor the data in real time and/or download the data into Excel for further analyses. Using Google drive app the data can be viewed using a smart phone or a tablet. Furthermore, an electronic mail (e-mail) alert is also integrated into the system. Whenever measured values go beyond the threshold values, the user will receive an e-mail alert.

  19. Increased Air Velocity Reduces Thermal and Cardiovascular Strain in Young and Older Males during Humid Exertional Heat Stress.

    PubMed

    Wright Beatty, Heather E; Hardcastle, Stephen G; Boulay, Pierre; Flouris, Andreas D; Kenny, Glen P

    2015-01-01

    Older adults have been reported to have a lower evaporative heat loss capacity than younger adults during exercise when full sweat evaporation is permitted. However, it is unclear how conditions of restricted evaporative and convective heat loss (i.e., high humidity, clothing insulation) alter heat stress. to the purpose of this study was to examine the heat stress responses of young and older males during and following exercise in a warm/humid environment under two different levels of air velocity. Ten young (YOUNG: 24±2 yr) and 10 older (OLDER: 59±3 yr) males, matched for body surface area performed 4×15-min cycling bouts (15-min rest) at a fixed rate of heat production (400 W) in warm/humid conditions (35°C, 60% relative humidity) under 0.5 (Low) and 3.0 (High) m·s(-1) air velocity while wearing work coveralls. Rectal (Tre) and mean skin (MTsk) temperatures, heart rate (HR), local sweat rate, % max skin blood flow (SkBF) (recovery only), and blood pressure (recovery only) were measured. High air velocity reduced core and skin temperatures (p < 0.05) equally in YOUNG and OLDER males (p > 0.05) but was more effective in reducing cardiovascular strain (absolute and % max HR; p < 0.05) in YOUNG males (p < 0.05). Greater increases in local dry heat loss responses (% max SkBF and cutaneous vascular conductance) were detected across time in OLDER than YOUNG males in both conditions (p < 0.05). Local dry heat loss responses and cardiovascular strain were attenuated during the High condition in YOUNG compared to OLDER (p < 0.05). High air velocity reduced the number of males surpassing the 38.0°C Tre threshold from 90% (Low) to 50% (High). Despite age-related local heat loss differences, YOUNG and OLDER males had similar levels of heat stress during intermittent exercise in warm and humid conditions while wearing work coveralls. Increased air velocity was effective in reducing heat stress equally, and cardiovascular strain to a greater extent, in YOUNG and OLDER

  20. Testing the effects of temperature and humidity on printed passive UHF RFID tags on paper substrate

    NASA Astrophysics Data System (ADS)

    Linnea Merilampi, Sari; Virkki, Johanna; Ukkonen, Leena; Sydänheimo, Lauri

    2014-05-01

    This article is an interesting substrate material for environmental-friendly printable electronics. In this study, screen-printed RFID tags on paper substrate are examined. Their reliability was tested with low temperature, high temperature, slow temperature cycling, high temperature and high humidity and water dipping test. Environmental stresses affect the tag antenna impedance, losses and radiation characteristics due to their impact on the ink film and paper substrate. Low temperature, temperature cycling and high humidity did not have a radical effect on the measured parameters: threshold power, backscattered signal power or read range of the tags. However, the frequency response and the losses of the tags were slightly affected. Exposure to high temperature was found to even improve the tag performance due to the positive effect of high temperature on the ink film. The combined high humidity and high temperature had the most severe effect on the tag performance. The threshold power increased, backscattered power decreased and the read range was shortened. On the whole, the results showed that field use of these tags in high, low and changing temperature conditions and high humidity conditions is possible. Use of these tags in combined high-humidity and high-temperature conditions should be carefully considered.

  1. Temperature- and humidity-dependent longevity of unfed adult Hyalomma truncatum (Acari: Ixodidae).

    PubMed

    Wilson, M L; Dykstra, E A; Schmidt, B A

    1993-03-01

    The survival of unfed adult Hyalomma truncatum Koch held under different regimes of constant temperature (5, 17, 24, and 30 degrees C) and relative humidity (10, 50, and 80%) was monitored during > 1 yr. Longevity of this medically important African tick was shortest at the highest temperature and lowest relative humidity (100% dead at week 25). Conversely, H. truncatum lived longest at lower temperatures and higher relative humidity (< 100% dead at week 64). The combined effects of temperature and humidity, measured as vapor pressure deficit, were strongly related to survival of these ticks. The survival of males and females was similar and was independent of the weight of ticks. These findings have implications for the maintenance and study of laboratory colonies of H. truncatum and for the development of tick control strategies to reduce vectorial capacity.

  2. Weather Measurements around Your School. Mapping Variations in Temperature and Humidity.

    ERIC Educational Resources Information Center

    Smith, David R.; And Others

    1991-01-01

    Presented is an activity where students conduct a micrometeorological study in their neighborhood using temperature, humidity measurements, and mapping skills. Included are a discussion of surface weather observations, the experiment, and directions. (KR)

  3. Relative humidity and temperature dependence of mechanical degradation of natural fiber composites

    NASA Astrophysics Data System (ADS)

    Pan, YiHui; Zhong, Zheng

    2016-06-01

    In this paper, the mechanical degradation of natural fiber composites is studied with the consideration of the relative humidity and the temperature. A nonlinear constitutive model is established, which employs an internal variable to describe the mechanical degradation related to the energy dissipation during moisture absorption. The existing experimental researches demonstrated that the mechanical degradation is an irreversible thermodynamic process induced by the degradation of fibers and the damages of interfaces between fiber and matrix, both of which depend on the variation of the relative humidity or the temperature. The evolution of the mechanical degradation is obtained through the determination of dissipation rates as a function of the relative humidity and the temperature. The theoretically predicted mechanical degradations are compared with experimental results of sisal fiber reinforced composites subject to different relative humidity and temperatures, and a good agreement is found.

  4. The design of multi temperature and humidity monitoring system for incubator

    NASA Astrophysics Data System (ADS)

    Yu, Junyu; Xu, Peng; Peng, Zitao; Qiang, Haonan; Shen, Xiaoyan

    2017-01-01

    Currently, there is only one monitor of the temperature and humidity in an incubator, which may cause inaccurate or unreliable data, and even endanger the life safety of the baby. In order to solve this problem,we designed a multi-point temperature and humidity monitoring system for incubators. The system uses the STC12C5A60S2 microcontrollers as the sender core chip which is connected to four AM2321 temperature and humidity sensors. We select STM32F103ZET6 core development board as the receiving end,cooperating with Zigbee wireless transmitting and receiving module to realize data acquisition and transmission. This design can realize remote real-time observation data on the computer by communicating with PC via Ethernet. Prototype tests show that the system can effectively collect and display the information of temperature and humidity of multiple incubators at the same time and there are four monitors in each incubator.

  5. Crystallization speed of salbutamol as a function of relative humidity and temperature.

    PubMed

    Zellnitz, Sarah; Narygina, Olga; Resch, Christian; Schroettner, Hartmuth; Urbanetz, Nora Anne

    2015-07-15

    Spray dried salbutamol sulphate and salbutamol base particles are amorphous as a result of spray drying. As there is always the risk of recrystallization of amorphous material, the aim of this work is the evaluation of the temperature and humidity dependent recrystallization of spray dried salbutamol sulphate and base. Therefore in-situ Powder X-ray Diffraction (PXRD) studies of the crystallization process at various temperature (25 and 35 °C) and humidity (60%, 70%, 80%, 90% relative humidity) conditions were performed. It was shown that the crystallization speed of salbutamol sulphate and base is a non-linear function of both temperature and relative humidity. The higher the relative humidity the higher is the crystallization speed. At 60% relative humidity salbutamol base as well as salbutamol sulphate were found to be amorphous even after 12 h, however samples changed optically. At 70% and 90% RH recrystallization of salbutamol base is completed after 3 h and 30 min and recrystallization of salbutamol sulphate after 4h and 1h, respectively. Higher temperature (35 °C) also leads to increased crystallization speeds at all tested values of relative humidity.

  6. [Temperature and humidity monitoring system of imaging equipment room based on wireless network].

    PubMed

    Zhou, Xuejun; Yu, Kaijun

    2011-05-01

    This paper presents a wireless temperature and humidity control system for hospital's video room. The system realizes one to multiple communication using wireless communication module CC1020 and SHT11 as sensors, and then sets up the communication between system and the central station with serial communication controller MSCOMM. The system uses VISUAL C++ programming to realize the video room temperature and humidity alarm control. It is wireless, efficacious and manpower-efficient.

  7. Thermal comfort in naturally ventilated and air-conditioned buildings in humid subtropical climate zone in China.

    PubMed

    Yang, Wei; Zhang, Guoqiang

    2008-05-01

    A thermal comfort field study has been carried out in five cities in the humid subtropical climate zone in China. The survey was performed in naturally ventilated and air-conditioned buildings during the summer season in 2006. There were 229 occupants from 111 buildings who participated in this study and 229 questionnaire responses were collected. Thermal acceptability assessment reveals that the indoor environment in naturally ventilated buildings could not meet the 80% acceptability criteria prescribed by ASHRAE Standard 55, and people tended to feel more comfortable in air-conditioned buildings with the air-conditioned occupants voting with higher acceptability (89%) than the naturally ventilated occupants (58%). The neutral temperatures in naturally ventilated and air-conditioned buildings were 28.3 degrees C and 27.7 degrees C, respectively. The range of accepted temperature in naturally ventilated buildings (25.0-31.6 degrees C) was wider than that in air-conditioned buildings (25.1-30.3 degrees C), which suggests that occupants in naturally ventilated buildings seemed to be more tolerant of higher temperatures. Preferred temperatures were 27.9 degrees C and 27.3 degrees C in naturally ventilated and air-conditioned buildings, respectively, both of which were 0.4 degrees C cooler than neutral temperatures. This result suggests that people of hot climates may use words like "slightly cool" to describe their preferred thermal state. The relationship between draught sensation and indoor air velocity at different temperature ranges indicates that indoor air velocity had a significant influence over the occupants' comfort sensation, and air velocities required by occupants increased with the increasing of operative temperatures. Thus, an effective way of natural ventilation which can create the preferred higher air movement is called for. Finally, the indoor set-point temperature of 26 degrees C or even higher in air-conditioned buildings was confirmed as making

  8. Thermal comfort in naturally ventilated and air-conditioned buildings in humid subtropical climate zone in China

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Zhang, Guoqiang

    2008-05-01

    A thermal comfort field study has been carried out in five cities in the humid subtropical climate zone in China. The survey was performed in naturally ventilated and air-conditioned buildings during the summer season in 2006. There were 229 occupants from 111 buildings who participated in this study and 229 questionnaire responses were collected. Thermal acceptability assessment reveals that the indoor environment in naturally ventilated buildings could not meet the 80% acceptability criteria prescribed by ASHRAE Standard 55, and people tended to feel more comfortable in air-conditioned buildings with the air-conditioned occupants voting with higher acceptability (89%) than the naturally ventilated occupants (58%). The neutral temperatures in naturally ventilated and air-conditioned buildings were 28.3°C and 27.7°C, respectively. The range of accepted temperature in naturally ventilated buildings (25.0˜31.6°C) was wider than that in air-conditioned buildings (25.1˜30.3°C), which suggests that occupants in naturally ventilated buildings seemed to be more tolerant of higher temperatures. Preferred temperatures were 27.9°C and 27.3°C in naturally ventilated and air-conditioned buildings, respectively, both of which were 0.4°C cooler than neutral temperatures. This result suggests that people of hot climates may use words like “slightly cool” to describe their preferred thermal state. The relationship between draught sensation and indoor air velocity at different temperature ranges indicates that indoor air velocity had a significant influence over the occupants’ comfort sensation, and air velocities required by occupants increased with the increasing of operative temperatures. Thus, an effective way of natural ventilation which can create the preferred higher air movement is called for. Finally, the indoor set-point temperature of 26°C or even higher in air-conditioned buildings was confirmed as making people comfortable, which supports the regulation

  9. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Ahn, Yongtae; Zhang, Fang; Logan, Bruce E.

    2014-02-01

    To better understand how air cathode performance is affected by air humidification, microbial fuel cells were operated under different humidity conditions or water pressure conditions. Maximum power density decreased from 1130 ± 30 mW m-2 with dry air to 980 ± 80 mW m-2 with water-saturated air. When the cathode was exposed to higher water pressures by placing the cathode in a horizontal position, with the cathode oriented so it was on the reactor bottom, power was reduced for both with dry (1030 ± 130 mW m-2) and water-saturated (390 ± 190 mW m-2) air. Decreased performance was partly due to water flooding of the catalyst, which would hinder oxygen diffusion to the catalyst. However, drying used cathodes did not improve performance in electrochemical tests. Soaking the cathode in a weak acid solution, but not deionized water, mostly restored performance (960 ± 60 mW m-2), suggesting that there was salt precipitation in the cathode that was enhanced by higher relative humidity or water pressure. These results showed that cathode performance could be adversely affected by both flooding and the subsequent salt precipitation, and therefore control of air humidity and water pressure may need to be considered for long-term MFC operation.

  10. Effect of temperature and humidity on formaldehyde emissions in temporary housing units.

    PubMed

    Parthasarathy, Srinandini; Maddalena, Randy L; Russell, Marion L; Apte, Michael G

    2011-06-01

    The effect of temperature and humidity on formaldehyde emissions from samples collected from temporary housing units (THUs) was studied. The THUs were supplied by the U.S. Federal Emergency Management Administration (FEMA) to families that lost their homes in Louisiana and Mississippi during the Hurricane Katrina and Rita disasters. On the basis of a previous study, four of the composite wood surface materials that dominated contributions to indoor formaldehyde were selected to analyze the effects of temperature and humidity on the emission factors. Humidity equilibration experiments were carried out on two of the samples to determine how long the samples take to equilibrate with the surrounding environmental conditions. Small chamber experiments were then conducted to measure emission factors for the four surface materials at various temperature and humidity conditions. The samples were analyzed for formaldehyde via high-performance liquid chromatography. The experiments showed that increases in temperature or humidity contributed to an increase in emission factors. A linear regression model was built using the natural log of the percent relative humidity (RH) and inverse of temperature (in K) as independent variables and the natural log of emission factors as the dependent variable. The coefficients for the inverse of temperature and log RH with log emission factor were found to be statistically significant for all of the samples at the 95% confidence level. This study should assist in retrospectively estimating indoor formaldehyde exposure of occupants of THUs.

  11. Humid-air and aqueous corrosion models for corrosion-allowance barrier material

    SciTech Connect

    Lee, J.H.; Atkins, J.E.; Andrews, R.W.

    1995-12-31

    Humid-air and aqueous general and pitting corrosion models (including their uncertainties) for the carbon steel outer containment barrier were developed using the corrosion data from literature for a suite of cast irons and carbon steels which have similar corrosion behaviors to the outer barrier material. The corrosion data include the potential effects of various chemical species present in the testing environments. The atmospheric corrosion data also embed any effects of cyclic wetting and drying and salts that may form on the corroding specimen surface. The humid-air and aqueous general corrosion models are consistent in that the predicted humid-air general corrosion rates at relative humidities between 85 and 100% RH are close to the predicted aqueous general corrosion rates. Using the expected values of the model parameters, the model predicts that aqueous pitting corrosion is the most likely failure mode for the carbon steel outer barrier, and an earliest failure (or initial pit penetration) of the 100-mm thick barrier may occur as early as about 500 years if it is exposed continuously to an aqueous condition at between 60 and 70{degrees}C.

  12. Electro-Hydrodynamics and Kinetic Modeling of Dry and Humid Air Flows Activated by Corona Discharges

    NASA Astrophysics Data System (ADS)

    P. Sarrette, J.; Eichwald, O.; Marchal, F.; Ducasse, O.; Yousfi, M.

    2016-05-01

    The present work is devoted to the 2D simulation of a point-to-plane Atmospheric Corona Discharge Reactor (ACDR) powered by a DC high voltage supply. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The study compares the results obtained in dry air and in air mixed with a small amount of water vapour (humid air). The simulation involves the electro-dynamics, chemical kinetics and neutral gas hydrodynamics phenomena that influence the kinetics of the chemical species transformation. Each discharge lasts about one hundred of a nanosecond while the post-discharge occurring between two successive discharges lasts one hundred of a microsecond. The ACDR is crossed by a lateral dry or humid air flow initially polluted with 400 ppm of NO. After 5 ms, the time corresponding to the occurrence of 50 successive discharge/post-discharge phases, a higher NO removal rate and a lower ozone production rate are found in humid air. This change is due to the presence of the HO2 species formed from the H primary radical in the discharge zone.

  13. [Influence of temperature and humidity on physico-pharmaceutical characteristics of Rasilez(®) tablets].

    PubMed

    Nakamura, Yuki; Nakajima, Takanori; Iwata, Masanori; Hayashi, Yoshihiro; Takayama, Kozo; Saito, Hiroshi; Sako, Ken-ichi; Matsuda, Yoshikazu; Kimura, Masayuki

    2014-01-01

    Rasilez(®) tablets (RTs) contain the active ingredient aliskiren, which is a direct renin inhibitor of the renin-angiotensin system and used for the treatment of hypertension. We examined the influence of temperature and humidity on the physico-pharmaceutical characteristics (mass, volume, hardness, elution) of RTs. The RTs were preserved under conditions in which the temperature and humidity were altered using the second-order spherical composite experimental design for multi-objective problems. The characteristics of RTs were influenced more by the humidity than temperature, and differed markedly with over 55% relative humidity (RH). The mass and volume were increased with increasing humidity, and the tablets swelled. The hardness after vacuum-drying of the tablets, which preserved moisture conditions, was increased. Semitransparent particles were observed in the cross-section of the drying tablets in which aliskiren crystal forms were changed to amorphous forms. The mean dissolution time (MDT) of tablets was reduced with increasing humidity. The critical relative humidity (CRH) of the tablets was 36.1%RH at 30°C. These results suggest that RTs, on moisture absorption, showed changes in not their appearance and hardness, but also in crystal forms and the elution characteristics of aliskiren.

  14. Thermoregulation responses of broiler chickens to humidity at different ambient temperatures. I. One week of age.

    PubMed

    Lin, H; Zhang, H F; Jiao, H C; Zhao, T; Sui, S J; Gu, X H; Zhang, Z Y; Buyse, J; Decuypere, E

    2005-08-01

    Three trials were conducted to investigate the effect of RH (35, 60, and 85%) on thermoregulation of 1-wk-old broiler chickens at different temperatures (35, 30, and 25 degrees C). The response to humidity in rectal temperature and plumage temperature at the back and breast within 24 h after exposure were recorded at 5 time points (1,4,8,16, and 24 h). Humidity affected the thermoregulation of 1-wk-old broiler chickens by redistributing heat within the body at high, low, and thermoneutral temperatures. The redistribution of heat resulted in decreased rectal temperature and increased peripheral temperature, which were, respectively, beneficial and unfavorable at high and low temperatures. These results suggested that feedback effects of surface temperature on core temperature also exist in poultry, as already observed in mammals, and could be induced not only by changed ambient temperature but also by the changes in humidity at high temperature. The disturbance of thermal equilibrium could not be established solely by changes in RT, but rather core and surface temperatures had to be considered. The daily rhythms in rectal and surface temperatures were affected by humidity.

  15. Thermal comfort in air-conditioned buildings in hot and humid climates--why are we not getting it right?

    PubMed

    Sekhar, S C

    2016-02-01

    While there are plenty of anecdotal experiences of overcooled buildings in summer, evidence from field studies suggests that there is indeed an issue of overcooling in tropical buildings. The findings suggest that overcooled buildings are not a consequence of occupant preference but more like an outcome of the HVAC system design and operation. Occupants' adaptation in overcooled indoor environments through additional clothing cannot be regarded as an effective mitigating strategy for cold thermal discomfort. In the last two decades or so, several field studies and field environmental chamber studies in the tropics provided evidence for occupants' preference for a warmer temperature with adaptation methods such as elevated air speeds. It is important to bear in mind that indoor humidity levels are not compromised as they could have an impact on the inhaled air condition that could eventually affect perceived air quality. This review article has attempted to track significant developments in our understanding of the thermal comfort issues in air-conditioned office and educational buildings in hot and humid climates in the last 25 years, primarily on occupant preference for thermal comfort in such climates. The issue of overcooled buildings, by design intent or otherwise, is discussed in some detail. Finally, the article has explored some viable adaptive thermal comfort options that show considerable promise for not only improving thermal comfort in tropical buildings but are also energy efficient and could be seen as sustainable solutions.

  16. Ground surface temperature and humidity, ground temperature cycles and the ice table depths in University Valley, McMurdo Dry Valleys of Antarctica

    NASA Astrophysics Data System (ADS)

    Fisher, David A.; Lacelle, Denis; Pollard, Wayne; Davila, Alfonso; McKay, Christopher P.

    2016-11-01

    In the upper McMurdo Dry Valleys, 90% of the measured ice table depths range from 0 to 80 cm; however, numerical models predict that the ice table is not in equilibrium with current climate conditions and should be deeper than measured. This study explored the effects of boundary conditions (air versus ground surface temperature and humidity), ground temperature cycles, and their diminishing amplitude with depth and advective flows (Darcy flow and wind pumping) on water vapor fluxes in soils and ice table depths using the REGO vapor diffusion model. We conducted a series of numerical experiments that illustrated different hypothetical scenarios and estimated the water vapor flux and ice table depth using the conditions in University Valley, a small high elevation valley. In situ measurements showed that while the mean annual ground surface temperature approximates that in the air, the mean annual ground surface relative humidity (>85%ice) was significantly higher than in the atmosphere ( 50%ice). When ground surface temperature and humidity were used as boundary conditions, along with damping diurnal and annual temperature cycles within the sandy soil, REGO predicted that measured ice table depths in the valley were in equilibrium with contemporary conditions. Based on model results, a dry soil column can become saturated with ice within centuries. Overall, the results from the new soil data and modeling have implications regarding the factors and boundary conditions that affect the stability of ground ice in cold and hyperarid regions where liquid water is rare.

  17. Ozone reaction with interior building materials: Influence of diurnal ozone variation, temperature and humidity

    NASA Astrophysics Data System (ADS)

    Rim, Donghyun; Gall, Elliott T.; Maddalena, Randy L.; Nazaroff, William W.

    2016-01-01

    Elevated tropospheric ozone concentrations are associated with increased morbidity and mortality. Indoor ozone chemistry affects human exposure to ozone and reaction products that also may adversely affect health and comfort. Reactive uptake of ozone has been characterized for many building materials; however, scant information is available on how diurnal variation of ambient ozone influences ozone reaction with indoor surfaces. The primary objective of this study is to investigate ozone-surface reactions in response to a diurnally varying ozone exposure for three common building materials: ceiling tile, painted drywall, and carpet tile. A secondary objective is to examine the effects of air temperature and humidity. A third goal is to explore how conditioning of materials in an occupied office building might influence subsequent ozone-surface reactions. Experiments were performed at bench-scale with inlet ozone concentrations varied to simulate daytime (ozone elevated) and nighttime (ozone-free in these experiments) periods. To simulate office conditions, experiments were conducted at two temperatures (22 °C and 28 °C) and three relative humidity values (25%, 50%, 75%). Effects of indoor surface exposures were examined by placing material samples in an occupied office and repeating bench-scale characterization after exposure periods of 1 and 2 months. Deposition velocities were observed to be highest during the initial hour of ozone exposure with slow decrease in the subsequent hours of simulated daytime conditions. Daily-average ozone reaction probabilities for fresh materials are in the respective ranges of (1.7-2.7) × 10-5, (2.8-4.7) × 10-5, and (3.0-4.5) × 10-5 for ceiling tile, painted drywall, and carpet tile. The reaction probability decreases by 7%-47% across the three test materials after two 8-h periods of ozone exposure. Measurements with the samples from an occupied office reveal that deposition velocity can decrease or increase with time

  18. Searching for the best modeling specification for assessing the effects of temperature and humidity on health: a time series analysis in three European cities.

    PubMed

    Rodopoulou, Sophia; Samoli, Evangelia; Analitis, Antonis; Atkinson, Richard W; de'Donato, Francesca K; Katsouyanni, Klea

    2015-11-01

    Epidemiological time series studies suggest daily temperature and humidity are associated with adverse health effects including increased mortality and hospital admissions. However, there is no consensus over which metric or lag best describes the relationships. We investigated which temperature and humidity model specification most adequately predicted mortality in three large European cities. Daily counts of all-cause mortality, minimum, maximum and mean temperature and relative humidity and apparent temperature (a composite measure of ambient and dew point temperature) were assembled for Athens, London, and Rome for 6 years between 1999 and 2005. City-specific Poisson regression models were fitted separately for warm (April-September) and cold (October-March) periods adjusting for seasonality, air pollution, and public holidays. We investigated goodness of model fit for each metric for delayed effects up to 13 days using three model fit criteria: sum of the partial autocorrelation function, AIC, and GCV. No uniformly best index for all cities and seasonal periods was observed. The effects of temperature were uniformly shown to be more prolonged during cold periods and the majority of models suggested separate temperature and humidity variables performed better than apparent temperature in predicting mortality. Our study suggests that the nature of the effects of temperature and humidity on mortality vary between cities for unknown reasons which require further investigation but may relate to city-specific population, socioeconomic, and environmental characteristics. This may have consequences on epidemiological studies and local temperature-related warning systems.

  19. Searching for the best modeling specification for assessing the effects of temperature and humidity on health: a time series analysis in three European cities

    NASA Astrophysics Data System (ADS)

    Rodopoulou, Sophia; Samoli, Evangelia; Analitis, Antonis; Atkinson, Richard W.; de'Donato, Francesca K.; Katsouyanni, Klea

    2015-11-01

    Epidemiological time series studies suggest daily temperature and humidity are associated with adverse health effects including increased mortality and hospital admissions. However, there is no consensus over which metric or lag best describes the relationships. We investigated which temperature and humidity model specification most adequately predicted mortality in three large European cities. Daily counts of all-cause mortality, minimum, maximum and mean temperature and relative humidity and apparent temperature (a composite measure of ambient and dew point temperature) were assembled for Athens, London, and Rome for 6 years between 1999 and 2005. City-specific Poisson regression models were fitted separately for warm (April-September) and cold (October-March) periods adjusting for seasonality, air pollution, and public holidays. We investigated goodness of model fit for each metric for delayed effects up to 13 days using three model fit criteria: sum of the partial autocorrelation function, AIC, and GCV. No uniformly best index for all cities and seasonal periods was observed. The effects of temperature were uniformly shown to be more prolonged during cold periods and the majority of models suggested separate temperature and humidity variables performed better than apparent temperature in predicting mortality. Our study suggests that the nature of the effects of temperature and humidity on mortality vary between cities for unknown reasons which require further investigation but may relate to city-specific population, socioeconomic, and environmental characteristics. This may have consequences on epidemiological studies and local temperature-related warning systems.

  20. A newly developed tool for intra-tracheal temperature and humidity assessment in laryngectomized individuals: the Airway Climate Explorer (ACE).

    PubMed

    Zuur, J K; Muller, S H; de Jongh, F H C; van der Horst, M J; Shehata, M; van Leeuwen, J; Sinaasappel, M; Hilgers, F J M

    2007-08-01

    The aim of this study is to develop a postlaryngectomy airway climate explorer (ACE) for assessment of intratracheal temperature and humidity and of influence of heat and moisture exchangers (HMEs). Engineering goals were within-device condensation prevention and fast response time characteristics. The ACE consists of a small diameter, heated air-sampling catheter connected to a heated sensor house, containing a humidity sensor. Air is sucked through the catheter by a controlled-flow pump. Validation was performed in a climate chamber using a calibrated reference sensor and in a two-flow system. Additionally, the analyser was tested in vivo. Over the clinically relevant range of humidity values (5-42 mg H2O/l air) the sensor output highly correlates with the reference sensor readings (R2 > 0.99). The 1-1/e response times are all <0.5 s. A first in vivo pilot measurement was successful. The newly developed, verified, fast-responding ACE is suitable for postlaryngectomy airway climate assessment.

  1. A newly developed tool for intra-tracheal temperature and humidity assessment in laryngectomized individuals: the Airway Climate Explorer (ACE)

    PubMed Central

    Zuur, J. K.; Muller, S. H.; de Jongh, F. H. C.; van der Horst, M. J.; Shehata, M.; van Leeuwen, J.; Sinaasappel, M.

    2007-01-01

    The aim of this study is to develop a postlaryngectomy airway climate explorer (ACE) for assessment of intratracheal temperature and humidity and of influence of heat and moisture exchangers (HMEs). Engineering goals were within-device condensation prevention and fast response time characteristics. The ACE consists of a small diameter, heated air-sampling catheter connected to a heated sensor house, containing a humidity sensor. Air is sucked through the catheter by a controlled-flow pump. Validation was performed in a climate chamber using a calibrated reference sensor and in a two-flow system. Additionally, the analyser was tested in vivo. Over the clinically relevant range of humidity values (5–42 mg H2O/l air) the sensor output highly correlates with the reference sensor readings (R2 > 0.99). The 1–1/e response times are all <0.5 s. A first in vivo pilot measurement was successful. The newly developed, verified, fast-responding ACE is suitable for postlaryngectomy airway climate assessment. PMID:17629761

  2. Windowless ultrasound photoacoustic cell for in vivo mid-IR spectroscopy of human epidermis: low interference by changes of air pressure, temperature, and humidity caused by skin contact opens the possibility for a non-invasive monitoring of glucose in the interstitial fluid.

    PubMed

    Pleitez, Miguel A; Lieblein, Tobias; Bauer, Alexander; Hertzberg, Otto; von Lilienfeld-Toal, Hermann; Mäntele, Werner

    2013-08-01

    The application of a novel open, windowless cell for the photoacoustic infrared spectroscopy of human skin is described. This windowless cavity is tuned for optimum performance in the ultrasound range between 50 and 60 kHz. In combination with an external cavity tunable quantum cascade laser emitting in the range from ~1000 cm(-1) to 1245 cm(-1), this approach leads to high signal-to-noise-ratio (SNR) for mid-infrared spectra of human skin. This opens the possibility to measure in situ the absorption spectrum of human epidermis in the mid-infrared region at high SNR in a few (~5) seconds. Rapid measurement of skin spectra greatly reduces artifacts arising from movements. As compared to closed resonance cells, the windowless cell exhibits the advantage that the influence of air pressure variations, temperature changes, and air humidity buildup that are caused by the contact of the cell to the skin surface can be minimized. We demonstrate here that this approach can be used for continuous and non-invasive monitoring of the glucose level in human epidermis, and thus may form the basis for a non-invasive monitoring of the glucose level for diabetes patients.

  3. Windowless ultrasound photoacoustic cell for in vivo mid-IR spectroscopy of human epidermis: Low interference by changes of air pressure, temperature, and humidity caused by skin contact opens the possibility for a non-invasive monitoring of glucose in the interstitial fluid

    NASA Astrophysics Data System (ADS)

    Pleitez, Miguel A.; Lieblein, Tobias; Bauer, Alexander; Hertzberg, Otto; von Lilienfeld-Toal, Hermann; Mäntele, Werner

    2013-08-01

    The application of a novel open, windowless cell for the photoacoustic infrared spectroscopy of human skin is described. This windowless cavity is tuned for optimum performance in the ultrasound range between 50 and 60 kHz. In combination with an external cavity tunable quantum cascade laser emitting in the range from ˜1000 cm-1 to 1245 cm-1, this approach leads to high signal-to-noise-ratio (SNR) for mid-infrared spectra of human skin. This opens the possibility to measure in situ the absorption spectrum of human epidermis in the mid-infrared region at high SNR in a few (˜5) seconds. Rapid measurement of skin spectra greatly reduces artifacts arising from movements. As compared to closed resonance cells, the windowless cell exhibits the advantage that the influence of air pressure variations, temperature changes, and air humidity buildup that are caused by the contact of the cell to the skin surface can be minimized. We demonstrate here that this approach can be used for continuous and non-invasive monitoring of the glucose level in human epidermis, and thus may form the basis for a non-invasive monitoring of the glucose level for diabetes patients.

  4. Use of temperature and humidity sensors to determine moisture content of oolong tea.

    PubMed

    Chen, Andrew; Chen, Hsuan-Yu; Chen, Chiachung

    2014-08-22

    The measurement of tea moisture content is important for processing and storing tea. The moisture content of tea affects the quality and durability of the product. Some electrical devices have been proposed to measure the moisture content of tea leaves but are not practical. Their performance is influenced by material density and packing. The official oven method is time-consuming. In this study, the moisture content of Oolong tea was measured by the equilibrium relative humidity technique. The equilibrium relative humidity, and temperature, of tea materials were measured by using temperature and relative humidity sensors. Sensors were calibrated, and calibration equations were established to improve accuracy. The moisture content was calculated by using an equilibrium moisture content model. The error of the moisture content determined with this method was within 0.5% w.b. at moisture <15% w.b. Uncertainty analysis revealed that the performance of the humidity sensor had a significant effect on the accuracy of moisture determination.

  5. Megha-Tropiques/SAPHIR measurements of humidity profiles: validation with AIRS and global radiosonde network

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, K. V.; Kumar, K. K.

    2013-12-01

    The vertical profiles of humidity measured by SAPHIR (Sondeur Atmospherique du Profil d' Humidité Intropicale par Radiométrie) on-board Megha-Tropiques satellite are validated using Atmosphere Infrared Sounder (AIRS) and ground based radiosonde observations during July-September 2012. SAPHIR provides humidity profiles at six pressure layers viz., 1000-850 (level 1), 850-700 (level 2), 700-550 (level 3), 550-400 (level 4) 400-250 (level 5) and 250-100(level 6) hPa. Segregated AIRS observations over land and oceanic regions are used to assess the performance of SAPHIR quantitatively. The regression analysis over oceanic region (125° W-180° W; 30° S-30° N) reveal that the SAPHIR measurements agrees very well with the AIRS measurements at levels 3, 4, 5 and 6 with correlation coefficients 0.79, 0.88, 0.87 and 0.78 respectively. However, at level 6 SAPHIR seems to be systematically underestimating the AIRS measurements. At level 2, the agreement is reasonably good with correlation coefficient of 0.52 and at level 1 the agreement is very poor with correlation coefficient 0.17. The regression analysis over land region (10° W-30° E; 8° N-30° N) revealed an excellent correlation between AIRS and SAPHIR at all the six levels with 0.80, 0.78, 0.84, 0.84, 0.86 and 0.65 respectively. However, again at levels 5 and 6, SAPHIR seems to be underestimating the AIRS measurements. After carrying out the quantitative comparison between SAPHIR and AIRS separately over land and ocean, the ground based global radiosonde network observations of humidity profiles over three distinct geographical locations (East Asia, tropical belt of South and North America and South Pacific) are then used to further validate the SAPHIR observations as AIRS has its own limitations. The SAPHIR observations within a radius of 50 km around the radiosonde stations are averaged and then the regression analysis is carried out at the first five levels of SAPHIR. The comparison is not carried out at sixth

  6. Strain rate, temperature, and humidity on strength and moduli of a graphite/epoxy composite

    NASA Technical Reports Server (NTRS)

    Lifshitz, J. M.

    1981-01-01

    Results of an experimental study of the influence of strain rate, temperature and humidity on the mechanical behavior of a graphite/epoxy fiber composite are presented. Three principal strengths (longitudinal, transverse and shear) and four basic moduli (E1, E2, G12 and U12) of a unidirectional graphite/epoxy composite were followed as a function of strain rate, temperature and humidity. Each test was performed at a constant tensile strain rate in an environmental chamber providing simultaneous temperature and humidity control. Prior to testing, specimens were given a moisture preconditioning treatment at 60 C. Values for the matrix dominated moduli and strength were significantly influenced by both environmental and rate parameters, whereas the fiber dominated moduli were not. However, the longitudinal strength was significantly influenced by temperature and moisture content. A qualitative explanation for these observations is presented.

  7. Air-Stable Humidity Sensor Using Few-Layer Black Phosphorus.

    PubMed

    Miao, Jinshui; Cai, Le; Zhang, Suoming; Nah, Junghyo; Yeom, Junghoon; Wang, Chuan

    2017-03-22

    As a new family member of two-dimensional layered materials, black phosphorus (BP) has attracted significant attention for chemical sensing applications due to its exceptional electrical, mechanical, and surface properties. However, producing air-stable BP sensors is extremely challenging because BP atomic layers degrade rapidly in ambient conditions. In this study, we explored the humidity sensing properties of BP field-effect transistors fully encapsulated by a 6 nm-thick Al2O3 encapsulation layer deposited by atomic layer deposition. The encapsulated BP sensors exhibited superior ambient stability with no noticeable degradation in sensing response after being stored in air for more than a week. Compared with the bare BP devices, the encapsulated ones offered long-term stability with a trade-off in slightly reduced sensitivity. Capacitance-voltage measurement results further reveal that instead of direct charge transfer, the electrostatic gating effect on BP flakes arising from the dipole moment of adsorbed water molecules is the basic mechanism governing the humidity sensing behavior of both bare and encapsulated BP sensors. This work demonstrates a viable approach for achieving air-stable BP-based humidity or chemical sensors for practical applications.

  8. Calculating osmotic pressure of glucose solutions according to ASOG model and measuring it with air humidity osmometry.

    PubMed

    Wei, Guocui; Zhan, Tingting; Zhan, Xiancheng; Yu, Lan; Wang, Xiaolan; Tan, Xiaoying; Li, Chengrong

    2016-09-01

    The osmotic pressure of glucose solution at a wide concentration range was calculated using ASOG model and experimentally determined by our newly reported air humidity osmometry. The measurements from air humidity osmometry were compared with the well-established freezing point osmometry and ASOG model calculations at low concentrations and with only ASOG model calculations at high concentrations where no standard experimental method could serve as a reference for comparison. Results indicate that air humidity osmometry measurements are comparable to ASOG model calculations at a wide concentration range, while at low concentrations freezing point osmometry measurements provide better comparability with ASOG model calculations.

  9. Humidity-resistant ambient-temperature solid-electrolyte amperometric sensing apparatus

    DOEpatents

    Zaromb, Solomon

    1994-01-01

    Apparatus and methods for detecting selected chemical compounds in air or other gas streams at room or ambient temperature includes a liquid-free humidity-resistant amperometric sensor comprising a sensing electrode and a counter and reference electrode separated by a solid electrolyte. The sensing electrode preferably contains a noble metal, such as Pt black. The electrolyte is water-free, non-hygroscopic, and substantially water-insoluble, and has a room temperature ionic conductivity .gtoreq.10.sup.-4 (ohm-cm).sup.-1, and preferably .gtoreq.0.01 (ohm-cm).sup.-1. The conductivity may be due predominantly to Ag+ ions, as in Ag.sub.2 WO.sub.4.4AgI, or to F- ions, as in Ce.sub.0.95 Ca.sub.0.05 F.sub.2.95. Electrical contacts serve to connect the electrodes to potentiostating and detecting circuitry which controls the potential of the sensing electrode relative to the reference electrode, detects the signal generated by the sensor, and indicates the detected signal.

  10. Humidity-resistant ambient-temperature solid-electrolyte amperometric sensing apparatus and methods

    DOEpatents

    Zaromb, Solomon

    2001-01-01

    Apparatus and methods for detecting selected chemical compounds in air or other gas streams at room or ambient temperature includes a liquid-free humidity-resistant amperometric sensor comprising a sensing electrode and a counter and reference electrode separated by a solid electrolyte. The sensing electrode preferably contains a noble metal, such as Pt black. The electrolyte is water-free, non-hygroscopic, and substantially water-insoluble, and has a room temperature ionic conductivity .gtoreq.10.sup.-4 (ohm-cm).sup.-1, and preferably .gtoreq.0.01 (ohm-cm).sup.-1. The conductivity may be due predominantly to Ag+ ions, as in Ag.sub.2 WO.sub.4.4AgI, or to F- ions, as in Ce.sub.0.95 Ca.sub.0.05 F.sub.2.95. Electrical contacts serve to connect the electrodes to potentiostating and detecting circuitry which controls the potential of the sensing electrode relative to the reference electrode, detects the signal generated by the sensor, and indicates the detected signal.

  11. Temperature and humidity dependence of secondary organic aerosol yield from the ozonolysis of β-pinene

    NASA Astrophysics Data System (ADS)

    Stenby, C.; Pöschl, U.; von Hessberg, P.; Bilde, M.; Nielsen, O. J.; Moortgat, G. K.

    2007-02-01

    The temperature dependence of secondary organic aerosol (SOA) formation from ozonolysis of β-pinene was studied in a flow reactor at 263 K-303 K and 1007 hPa under dry and humid conditions (0% and 26%-68% relative humidity, respectively). The observed SOA yields were of similar magnitude as predicted by a two-product model based on detailed gas phase chemistry (Jenkin, 2004), reaching maximum values of 0.18-0.39 at high particle mass concentrations (Mo). Under dry conditions, however, the measurement data exhibited significant oscillatory deviations from the predicted linear increase with inverse temperature (up to 50% at high Mo). Under humid conditions the SOA yield exhibited a linear decrease with inverse temperature, which is opposite to modelled temperature dependence and implies that the model substantially overestimates the yield at low temperatures and underestimates it at high temperatures (deviations up to 80% at high Mo). For the atmospherically relevant concentration level of Mo=10 μg m-3 and temperature range 263 K-293 K, the results from humid experiments in this study indicate that the SOA yield of β-pinene ozonolysis may be well represented by an average value of 0.15 with an uncertainty estimate of ±0.05. When fitting the measurement data with a two-product model, both the partitioning coefficients (Kom,i) and the stoichiometric yields (αi) of the low-volatile and semi-volatile model species were found to vary with temperature. The results indicate that not only the reaction product vapour pressures but also the relative contributions of different gas-phase or multiphase reaction channels are strongly dependent on temperature and the presence of water vapour. In fact, the oscillatory positive temperature dependence observed under dry conditions and the negative temperature dependence observed under humid conditions indicate that the SOA yield is governed much more by the temperature and humidity dependence of the involved chemical reactions

  12. Trends of surface humidity and temperature during 1951-2012 in Beijing, China

    NASA Astrophysics Data System (ADS)

    Chu, Q.; Xu, Z.; Peng, D.; Yang, X.; Yang, G.

    2015-05-01

    In this paper, two datasets, a long time series (1951-2012) of daily surface observations at one meteorological station and a shorter time series (1979-2012) of three-hourly data with 0.1°×0.1° spatial resolution were analysed by using non-parametric methods to identify annual and seasonal variations in surface humidity and temperature. The results reveal that: (1) saturation water vapour pressure increased exponentially with temperature. Actual daily values at Beijing Meteorological Station are very close to the theoretical values estimated by using the simplified Clausius-Clapeyron equation, but with seasonal variations. (2) For both long- and short-term data, clear increasing tendencies of annual saturation specific humidity and temperature are found. Decreasing and drying trends were detected for winter. (3) The annual relative humidity showed a decreasing trend except for some suburban areas, somehow related to the lower temperature and increased specific humidity in those areas. (4) Regional changes in topography and elevation likely influenced trends in surface humidity, while local land use showed little effect on it.

  13. Design and implementation of temperature and humidity monitoring system for poultry farm

    NASA Astrophysics Data System (ADS)

    Purnomo, Hindriyanto Dwi; Somya, Ramos; Fibriani, Charitas; Purwoko, Angga; Sadiyah, Ulfa

    2016-10-01

    Automatic monitoring system gains significant interest in poultry industry due to the need of consistent environment condition. Appropriate environment increase the feed conversion ratio as well as birds productivity. This will increase the competitiveness of the poultry industry. In this research, a temperature and humidity monitoring system is proposed to observer the temperature and relative humidity of a poultry house. The system is intended to be applied in the poultry industry with partnership schema. The proposed system is equipped with CCTV for visual monitoring. The measured temperature and humidity implement wireless sensor network technology. The experiment results reveals that proposed system have the potential to increase the effectiveness of monitoring of poultry house in poultry industry with partnership schema.

  14. Temperature and humidity control in indirect calorimeter chambers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A three-chamber, indirect calorimeter has been a part of the Environmental Laboratory at the U.S. Meat Animal Research Center (MARC) for over 25 yr. Corrosion of the animal chambers and unreliable temperature control forced either major repairs or complete replacement. There is a strong demand for...

  15. Temperature and humidity dependence of secondary organic aerosol yield from the ozonolysis of β-pinene

    NASA Astrophysics Data System (ADS)

    von Hessberg, C.; von Hessberg, P.; Pöschl, U.; Bilde, M.; Nielsen, O. J.; Moortgat, G. K.

    2009-06-01

    The temperature dependence of secondary organic aerosol (SOA) formation from ozonolysis of β-pinene was studied in a flow reactor at 263 K-303 K and 1007 hPa under dry and humid conditions (0% and 26%-68% relative humidity, respectively). The observed SOA yields reached maximum values of 0.18-0.39 at high particle mass concentrations (Mo). Under dry conditions, the measurement data showed an overall increase in SOA yield with inverse temperature, but significant oscillatory deviations from the predicted linear increase with inverse temperature (up to 50% at high Mo) was observed. Under humid conditions the SOA yield exhibited a linear decrease with inverse temperature. For the atmospherically relevant concentration level of Mo=10 μg m-3 and temperature range 263 K-293 K, the results from humid experiments in this study indicate that the SOA yield of β-pinene ozonolysis may be well represented by an average value of 0.15 with an uncertainty estimate of ±0.05. When fitting the measurement data with a two-product model, both the partitioning coefficients (Kom,i) and the stoichiometric yields (αi) of the low-volatile and semi-volatile model species were found to vary with temperature. The results indicate that not only the reaction product vapour pressures but also the relative contributions of different gas-phase or multiphase reaction channels are strongly dependent on temperature and the presence of water vapour. In fact, the oscillatory positive temperature dependence observed under dry conditions and the negative temperature dependence observed under humid conditions indicate that the SOA yield is governed much more by the temperature and humidity dependence of the involved chemical reactions than by vapour pressure temperature dependencies. We suggest that the elucidation and modelling of SOA formation need to take into account the effects of temperature and humidity on the pathways and kinetics of the involved chemical reactions as well as on the gas

  16. Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity

    PubMed Central

    Tai, Qidong; You, Peng; Sang, Hongqian; Liu, Zhike; Hu, Chenglong; Chan, Helen L. W.; Yan, Feng

    2016-01-01

    Poor stability of organic–inorganic halide perovskite materials in humid condition has hindered the success of perovskite solar cells in real applications since controlled atmosphere is required for device fabrication and operation, and there is a lack of effective solutions to this problem until now. Here we report the use of lead (II) thiocyanate (Pb(SCN)2) precursor in preparing perovskite solar cells in ambient air. High-quality CH3NH3PbI3−x(SCN)x perovskite films can be readily prepared even when the relative humidity exceeds 70%. Under optimized processing conditions, we obtain devices with an average power conversion efficiency of 13.49% and the maximum efficiency over 15%. In comparison with typical CH3NH3PbI3-based devices, these solar cells without encapsulation show greatly improved stability in humid air, which is attributed to the incorporation of thiocyanate ions in the crystal lattice. The findings pave a way for realizing efficient and stable perovskite solar cells in ambient atmosphere. PMID:27033249

  17. [Effects of high temperature and humidity on leaf Bt protein expression of transgenic Bt cotton].

    PubMed

    Zhang, Xiang; Wang, Gui-Xia; Gu, Chao; Han, Yong; Xu, Ying-Fei; Chen, Yuan; Chen, De-Hua

    2012-11-01

    Different origins Bt cotton cultivars, including DP410B (conventional cultivar) and Daiza No. 1 (hybridized cultivar) from US and Sikang No. 1 (conventional cultivar) and Sikang No. 3 (hybridized cultivar) from China, were taken as the test materials to investigate the effects of high temperature (37 degrees C) and different humidity (50%, 70%, and 90%) on the leaf Bt protein expression of Bt cotton. At high temperature, temperature and humidity had no significant effects on the leaf Bt protein expression of the cultivars at peak squaring stage. At peak flowering stage, as compared with the control (25-30 degrees C and 60%-70% humidity), 37 degrees C and 50% humidity decreased the leaf Bt protein content of conventional cultivars significantly by 2.6%-3.0%. At peak bolling stage, compared with the control, 37 degrees C and 50% humidity decreased the leaf Bt protein content of DP410B, Sikang No. 1, and Sikang No. 3 significantly by 3.3%-5.8%. Among the four cultivars, DP410B and Daiza No. 1 had the highest leaf Bt protein content, while Sikang No. 1 had the lowest one.

  18. The effect of procedure room temperature and humidity on LASIK outcomes

    PubMed Central

    Seider, Michael I.; McLeod, Stephen D.; Porco, Travis C.; Schallhorn, Steven C.

    2013-01-01

    Objective To determine if procedure room temperature and humidity during LASIK affects refractive outcomes in a very large patient sample. Design Retrospective cohort study. Participants 202,394 eyes of 105,712 patients aged 18 to 75 years old who underwent LASIK at an Optical Express, Inc. location in their United Kingdom and Ireland centers from January 1, 2008 to June 30, 2011 who met inclusion criteria. Methods Patient age, gender, pre- and one month post-LASIK manifest refraction and flap creation technique were recorded as well as the ambient temperature and humidity during LASIK. Effect size determination, in addition to univariate and multivariate analysis was performed to characterize the relationships between LASIK procedure room temperature and humidity and post-operative refractive outcome. Main Outcome Measures One month post-LASIK manifest refraction. Results No clinically significant effect of procedure room temperature or humidity was found on LASIK refractive outcomes. When considering all eyes in our population, an increase of one degree Celsius during LASIK was associated with a 0.003 diopter more hyperopic refraction one month post-operatively and an increase in one percent humidity was associated with a 0.0004 more myopic refraction. These effect sizes were the same or similar when considering only myopic eyes, only hyperopic eyes and subgroups of eyes stratified by age and pre-operative refractive error. Conclusions Procedure room temperature or humidity during LASIK was found to have no clinically significant relationship with post-operative manifest refraction in our population. PMID:23769199

  19. Unforeseen high temperature and humidity stability of FeCl3 intercalated few layer graphene

    PubMed Central

    Wehenkel, Dominique Joseph; Bointon, Thomas Hardisty; Booth, Tim; Bøggild, Peter; Craciun, Monica Felicia; Russo, Saverio

    2015-01-01

    We present the first systematic study of the stability of the structure and electrical properties of FeCl3 intercalated few-layer graphene to high levels of humidity and high temperature. Complementary experimental techniques such as electrical transport, high resolution transmission electron microscopy and Raman spectroscopy conclusively demonstrate the unforseen stability of this transparent conductor to a relative humidity up to 100% at room temperature for 25 days, to a temperature up to 150°C in atmosphere and to a temperature as high as 620°C in vacuum, that is more than twice higher than the temperature at which the intercalation is conducted. The stability of FeCl3 intercalated few-layer graphene together with its unique values of low square resistance and high optical transparency, makes this material an attractive transparent conductor in future flexible electronic applications. PMID:25567796

  20. Changes in volatile compounds in whey protein concentrate stored at elevated temperature and humidity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whey protein concentrate (WPC) has been recommended for use in emergency aid programs, but it is often stored overseas without temperature and relative humidity (RH) control, which may cause it to be rejected because of yellowing, off-flavors, or clumping. Therefore, the volatile compounds present ...

  1. Physical and chemical changes in whey protein concentrate stored at elevated temperature and humidity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemistry of whey protein concentrate (WPC) under adverse storage conditions was monitored to provide information on shelf life in hot, humid areas. WPC34 (34.9 g protein/100 g) and WPC80 (76.8 g protein/100 g) were stored for up to 18 mo under ambient conditions and at elevated temperature and...

  2. Effects of Temperature and Humidity on Laser Diffraction Measurements to Jet Nebulizer and Comparison with NGI.

    PubMed

    Song, Xinghan; Hu, Junhua; Zhan, Shuyao; Zhang, Rui; Tan, Wen

    2016-04-01

    Laser diffraction (LD) and next generation impactor (NGI) are commonly used for the evaluation of inhaled drug formulations. In this study, the effect of temperature and humidity on the assessment of the nebulizer particle size distribution (PSD) by LD was investigated, and the consistency between NGI and LD measurements was evaluated. There was an increase in particle size with higher temperature or lower humidity. The particle population with a diameter less than 1 μm was significant at a temperature of 5°C or at relative humidity >90%; however, the same particle population became undetectable when temperature increased to 39°C or at relative humidity of 30-45%. The results of the NGI and LD measurements of aerosol generated from three types of jet nebulizers were compared. A poor correlation between the NGI and LD measurements was observed for PARI LC (2.2 μm) (R (2) = 0.893) and PARI LC (2.9 μm) (R (2) = 0.878), while a relatively good correlation (R (2) = 0.977) was observed for the largest particle size nebulizer (PARI TIA (8.6 μm)). We conclude that the ambient environment and the nebulizer have significant impacts on the performance and consistency between these instruments. These factors should be controlled in the evaluation of inhaled aerosol drug formulations when these instruments are used individually or in combination.

  3. Population growth and development of the psocid Lepinotus reticulatus at constant temperatures and relative humidities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the effects of temperature and relative humidity on population growth and development of the psocid Lepinotus reticulatus Enderlein. Part of this study assessed the effects of marking psocids using methylene blue, chalk powder, and fluorescent powder to differentiate nymphal stages d...

  4. 3. DETAIL OF RACKS AND TEMPERATURE/HUMIDITY CONTROL SYSTEM IN CURING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DETAIL OF RACKS AND TEMPERATURE/HUMIDITY CONTROL SYSTEM IN CURING ROOM ON LEVEL 6; LOOKING SOUTHEAST; ENVIRONMENT INSIDE THE CURING ROOM WAS CONTROLLED BY NIAGARA MODEL 87007 SPRAY COOLER AND BUFFALO FORGE CENTRIFUGAL FAN IN BACKGROUND - Rath Packing Company, Cooler Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  5. The effect of temperature and humidity on dengue virus propagation in Aedes aegypti mosquitos.

    PubMed

    Thu, H M; Aye, K M; Thein, S

    1998-06-01

    The effect of temperature and relative humidity on dengue virus propagation in the mosquito as one of the possible contributing factors to dengue hemorrhagic fever (DHF) outbreaks was studied. Ae. aegypti mosquitos were reared under standard conditions and inoculated intrathoracically with dengue virus. Virus propagation in the mosquitos was determined at the temperature and relative humidity of all 3 seasons of Yangon and for the simulated temperature and relative humidity of Singapore. The virus propagation was detected by direct fluorescent antibody technique (DFAT) with mosquito head squash and the virus titer was determined by plaque forming unit test (PFUT) in baby hamster kidney-21 cells. The results show that the infected mosquitos kept under the conditions of the rainy season and under the simulated conditions of Singapore had a significantly higher virus titer (p=<0.05) when compared with the other 2 seasons of Yangon. So it is thought that the temperature and relative humidity of the rainy season of Yangon and that of Singapore favors dengue virus propagation in the mosquito and is one of the contributing factors to the occurence of DHF outbreaks.

  6. Tensile testing of nylon and Kevlar parachute materials under Federal specified temperature and relative humidity conditions

    SciTech Connect

    Botner, W.T.

    1980-01-01

    A small 10-ft x 12-ft temperature and relative humidity controlled room for tensile testing of parachute materials is presented. Tensile tests of nylon and Kevlar parachute materials indicate there is a negligible change in break strength of test samples soaked in the controlled environment vs samples soaked in ambient conditions.

  7. Afterglow chemistry of atmospheric-pressure helium-oxygen plasmas with humid air impurity

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Niemi, Kari; Gans, Timo; O'Connell, Deborah; Graham, William G.

    2014-04-01

    The formation of reactive species in the afterglow of a radio-frequency-driven atmospheric-pressure plasma in a fixed helium-oxygen feed gas mixture (He+0.5%O2) with humid air impurity (a few hundred ppm) is investigated by means of an extensive global plasma chemical kinetics model. As an original objective, we explore the effects of humid air impurity on the biologically relevant reactive species in an oxygen-dependent system. After a few milliseconds in the afterglow environment, the densities of atomic oxygen (O) decreases from 1015 to 1013 cm-3 and singlet delta molecular oxygen (O2(1D)) of the order of 1015 cm-3 decreases by a factor of two, while the ozone (O3) density increases from 1014 to 1015 cm-3. Electrons and oxygen ionic species, initially of the order of 1011 cm-3, recombine much faster on the time scale of some microseconds. The formation of atomic hydrogen (H), hydroxyl radical (OH), hydroperoxyl (HO2), hydrogen peroxide (H2O2), nitric oxide (NO) and nitric acid (HNO3) resulting from the humid air impurity as well as the influence on the afterglow chemistry is clarified with particular emphasis on the formation of dominant reactive oxygen species (ROS). The model suggests that the reactive species predominantly formed in the afterglow are major ROS O2(1D) and O3 (of the order of 1015 cm-3) and rather minor hydrogen- and nitrogen-based reactive species OH, H2O2, HNO3 and NO2/NO3, of which densities are comparable to the O-atom density (of the order of 1013 cm-3). Furthermore, the model quantitatively reproduces the experimental results of independent O and O3 density measurements.

  8. Effect of drink temperature on core temperature and endurance cycling performance in warm, humid conditions.

    PubMed

    Burdon, Catriona; O'Connor, Helen; Gifford, Janelle; Shirreffs, Susan; Chapman, Phillip; Johnson, Nathan

    2010-09-01

    The aims of this study were to determine the effect of cold (4 °C) and thermoneutral (37 °C) beverages on thermoregulation and performance in the heat and to explore sensory factors associated with ingesting a cold stimulus. Seven males (age 32.8 ± 6.1 years, [V(.)]O(2peak) 59.4 ± 6.6 ml x kg(-1) x min(-1)) completed cold, thermoneutral, and thermoneutral + ice trials in randomized order. Participants cycled for 90 min at 65%[V(.)]O(2peak) followed by a 15-min performance test at 28 °C and 70% relative humidity. They ingested 2.3 ml x kg(-1) of a 7.4% carbohydrate-electrolyte solution every 10 min during the 90-min steady-state exercise including 30 ml ice puree every 5 min in the ice trial. Absolute changes in skin temperature (0.22 ± 1.1 °C vs. 1.14 ± 0.9 °C; P = 0.02), mean body temperature (1.2 ± 0.3 vs. 1.6 ± 0.3 °C; P = 0.03), and heat storage were lower across the 90-min exercise bout for the cold compared with the thermoneutral trial. Significant improvements (4.9 ± 2.4%, P < 0.01) in performance were observed with cold but no significant differences were detected with ice. Consumption of cold beverages during prolonged exercise in the heat improves body temperature measures and performance. Consumption of ice did not reveal a sensory response, but requires further study. Beverages consumed by athletes exercising in the heat should perhaps be cold for performance and safety reasons.

  9. Effects of Temperature and Humidity on the Characterization of C-4 Explosive Threats

    NASA Astrophysics Data System (ADS)

    Miller, C. J.; Yoder, T. S.

    2012-06-01

    Both the quantity and the amount of time that an explosive is present on the surface of a material is dependent upon the amount of explosive originally deposited on the surface, the adhesive forces, temperature and humidity, as well as other environmental factors. This laboratory study focused on evaluating RDX crystal morphology changes resulting from variations in temperature and humidity conditions of the sample. The temperature and humidity conditions were controlled using a Tenney THRJ environmental chamber and a Tenney T11RC-1.5 environmental chamber. These chambers allow the temperature and humidity to be held within ±3 °C and ±5 % RH. The temperature and humidity conditions used for this test series were: 4 °C/40 %RH, 21 °C/20 %RH (samples left on benchtop), 21 °C/70 %RH, 21 °C/95 %RH, 35 °C/40 %RH, 35 °C/70 %RH, and 35 °C/95 %RH. These temperature and humidity set points were chosen to represent a wide range of conditions that may be found in real world scenarios. C-4 (RDX crystals and binder material) was deposited on the surface of one of six substrates by placing a fingerprint from the explosive block onto the matrix surface. The substrates were chosen to provide a range of items that are commonly used. Six substrate types were used during these tests: 50 % cotton/50 % polyester as found in T-shirts, 100 % cotton with a smooth surface such as that found in a cotton dress shirt, 100 % cotton on a rough surface such as that found on canvas or denim, suede leather such as might be found on jackets, purses, or shoes, painted metal obtained from a car hood, and a computer diskette. The samples were not pre-cleaned prior to testing and contained sizing agents, and in the case of the metal: oil, dirt, scratches, and rust spots. The substrates were photographed at various stages of testing, using a Zeiss Discover V12 stereoscope with Axiocam ICc1 3 megapixel digital camera, to determine any changes in the crystalline morphology. Some of the samples

  10. Plasma treatment of aqueous solutes: Some chemical properties of a gliding arc in humid air

    NASA Astrophysics Data System (ADS)

    Benstaali, B.; Moussa, D.; Addou, A.; Brisset, J.-L.

    1998-11-01

    The chemical properties of the gaseous species generated in a humid air gliding arc discharge are investigated. Aqueous solutions are used as the targets exposed to the plasma, and this allows to evidence strong acid and oxidizing effects on various solutes by means of spectrometric or potentiometric methods. The influence of some working parameters such as the input gas flow, the distance from the electrodes to the target or the electrode gap is examined on the chemical transform and simple experimental laws are derived. A general feature is observed for oxidation and suggests the occurrence of an auto-catalytic step in the relevant kinetic mechanism.

  11. Physicochemical bases of autonomous maintenance of humidity and temperature in closed spaces

    NASA Astrophysics Data System (ADS)

    Aristov, Yu. I.; Vasiliev, L. L.; Glaznev, I. S.; Gordeeva, L. G.; Zhuravlev, A. S.; Kovaleva, M. N.

    2012-09-01

    An inexpensive adsorption humidistat working in the static and dynamic regimes is proposed. This humidistat is designed for maintenance of the relative humidity and temperature in a closed space at levels (15-18%, 20-25°C) necessary for reliable storage of rare books, manuscripts, pictures, and museum valuables and for their safe transportation in the process of visiting exhibitions. Principles of maintenance of the relative humidity in a closed space with the use of chemical substances and autonomous thermostatting of this space are considered. Results of testing of some new moisture buffers under laboratory and real conditions are presented.

  12. Effect of temperature and humidity on pathogenicity of native Beauveria bassiana isolate against Musca domestica L.

    PubMed

    Mishra, Sapna; Kumar, Peeyush; Malik, Anushree

    2015-12-01

    Beauveria bassiana HQ917687 virulence to housefly larvae and adult was assessed at different relative humidity, RH (50, 75, 90, and 100 %) and temperature (15, 20, 25, 30, 35, 40, 45 °C) conditions at the fungal dose of 10(8) conidia/ml. Depending on the temperature and RH regime tested, difference in mortality rates of housefly adult and larvae were detected. During assay on adult housefly, 100 % mortality was achieved at RH, 90 and 100 % while the temperature of 30 °C showed maximum mortality at all the tested humidity conditions. Lethal time, LT50 was 2.9 days at 100 % RH. Larval mortality at different humidity conditions varied between 30 and 74 %, with maximum mortality at 100 % RH and 30 °C. Optimum temperature for B. bassiana virulence to housefly larvae was also found to be 30 °C. The interaction between temperature and RH revealed significant effect of RH at moderate temperature range (20-35 °C), while such an interaction was not observed at extreme temperatures. The results obtained in this study have useful implications in understanding the pathogen behavior under actual field conditions. This in turn may help devising suitable entomopathogen release schedules for maximum fungal infection.

  13. Fluctuation of Arabidopsis seed dormancy with relative humidity and temperature during dry storage

    PubMed Central

    Basbouss-Serhal, Isabelle; Leymarie, Juliette; Bailly, Christophe

    2016-01-01

    The changes in germination potential of freshly harvested seeds of Arabidopsis thaliana stored in various combinations of temperature and relative humidity were investigated over 63 weeks of storage. Seeds of the wild type Col-0 and of two mutants displaying low and high levels of dormancy, cat2-1 and mtr4-1, respectively, were stored at harvest in 24 different environments including a combination of eight relative humidities, from 1 to 85%, and four temperatures (10, 15, 20, and 25 °C). These mutations did not influence behaviour of seeds during storage. Primary dormant seeds did not germinate in darkness at 25 °C but acquired the potential to germinate at this temperature within 7 weeks when stored in relative humidities close to 50% across all temperatures. Sorption isotherms and Arrhenius plots demonstrated that the seed moisture content of 0.06g H2O/g dry weight was a critical value below which dormancy release was associated with reactions of negative activation energy and above which dormancy release increased with temperature. Longer storage times when relative humidity did not exceed 75–85% led to decreased germination at 25 °C, corresponding to the induction of secondary dormancy. Dormancy release and induction of secondary dormancy in the dry state were associated with induction or repression of key genes related to abscisic acid and gibberellins biosynthesis and signalling pathways. In high relative humidity, prolonged storage of seeds induced ageing and progressive loss of viability, but this was not related to the initial level of dormancy. PMID:26428064

  14. Fluctuation of Arabidopsis seed dormancy with relative humidity and temperature during dry storage.

    PubMed

    Basbouss-Serhal, Isabelle; Leymarie, Juliette; Bailly, Christophe

    2016-01-01

    The changes in germination potential of freshly harvested seeds of Arabidopsis thaliana stored in various combinations of temperature and relative humidity were investigated over 63 weeks of storage. Seeds of the wild type Col-0 and of two mutants displaying low and high levels of dormancy, cat2-1 and mtr4-1, respectively, were stored at harvest in 24 different environments including a combination of eight relative humidities, from 1 to 85%, and four temperatures (10, 15, 20, and 25 °C). These mutations did not influence behaviour of seeds during storage. Primary dormant seeds did not germinate in darkness at 25 °C but acquired the potential to germinate at this temperature within 7 weeks when stored in relative humidities close to 50% across all temperatures. Sorption isotherms and Arrhenius plots demonstrated that the seed moisture content of 0.06 g H2O/g dry weight was a critical value below which dormancy release was associated with reactions of negative activation energy and above which dormancy release increased with temperature. Longer storage times when relative humidity did not exceed 75-85% led to decreased germination at 25 °C, corresponding to the induction of secondary dormancy. Dormancy release and induction of secondary dormancy in the dry state were associated with induction or repression of key genes related to abscisic acid and gibberellins biosynthesis and signalling pathways. In high relative humidity, prolonged storage of seeds induced ageing and progressive loss of viability, but this was not related to the initial level of dormancy.

  15. Analysis of Temperature and Humidity Field in a New Bulk Tobacco Curing Barn Based on CFD

    PubMed Central

    Bai, Zhipeng; Guo, Duoduo; Li, Shoucang; Hu, Yaohua

    2017-01-01

    A new structure bulk tobacco curing barn was presented. To study the temperature and humidity field in the new structure tobacco curing barn, a 3D transient computational fluid dynamics (CFD) model was developed using porous medium, species transport, κ-ε turbulence and discrete phase models. The CFD results demonstrated that (1) the temperature and relative humidity predictions were validated by the experimental results, and comparison of simulation results with experimental data showed a fairly close agreement; (2) the temperature of the bottom and inlet area was higher than the top and outlet area, and water vapor concentrated on the top and outlet area in the barn; (3) tobacco loading density and thickness of tobacco leaves had an explicit effect on the temperature distributions in the barn. PMID:28146128

  16. Perceiving nasal patency through mucosal cooling rather than air temperature or nasal resistance.

    PubMed

    Zhao, Kai; Blacker, Kara; Luo, Yuehao; Bryant, Bruce; Jiang, Jianbo

    2011-01-01

    Adequate perception of nasal airflow (i.e., nasal patency) is an important consideration for patients with nasal sinus diseases. The perception of a lack of nasal patency becomes the primary symptom that drives these patients to seek medical treatment. However, clinical assessment of nasal patency remains a challenge because we lack objective measurements that correlate well with what patients perceive. The current study examined factors that may influence perceived patency, including air temperature, humidity, mucosal cooling, nasal resistance, and trigeminal sensitivity. Forty-four healthy subjects rated nasal patency while sampling air from three facial exposure boxes that were ventilated with untreated room air, cold air, and dry air, respectively. In all conditions, air temperature and relative humidity inside each box were recorded with sensors connected to a computer. Nasal resistance and minimum airway cross-sectional area (MCA) were measured using rhinomanometry and acoustic rhinometry, respectively. General trigeminal sensitivity was assessed through lateralization thresholds to butanol. No significant correlation was found between perceived patency and nasal resistance or MCA. In contrast, air temperature, humidity, and butanol threshold combined significantly contributed to the ratings of patency, with mucosal cooling (heat loss) being the most heavily weighted predictor. Air humidity significantly influences perceived patency, suggesting that mucosal cooling rather than air temperature alone provides the trigeminal sensation that results in perception of patency. The dynamic cooling between the airstream and the mucosal wall may be quantified experimentally or computationally and could potentially lead to a new clinical evaluation tool.

  17. Influence of relative humidity and ambient temperature on hydrothermal waves (HTWs) of organic solvent volatile droplets

    NASA Astrophysics Data System (ADS)

    Orejon, Daniel; Kita, Yutaku; Okauchi, Yuya; Fukatani, Yuki; Kohno, Masamichi; Takata, Yasuyuki; Sefiane, Khellil; Kim, Jungho

    2016-11-01

    Droplets of organic solvents undergoing evaporation have been found to display distinctive hydrothermal patterns or HTWs at the liquid-vapor interface. Since the evaporation of mentioned organic solvents in ambient conditions is ubiquitous, in this work we investigate the effect of ambient temperature and relative humidity on the self-generated HTWs by means of infrared thermography. The intensity of the HTWs was found to decrease when lowering the ambient temperature due to a reduction in droplet evaporative cooling. On other hand, the enhancement or suppression of the HTWs was also possible by controlling the relative humidity of the system. Absorption and/or condensation of water vapor onto the evaporating droplet was found to be the main cause for the differences observed on the HTWs retrieved at the liquid-vapor interface. To account for the water adsorbed or condensed we perform in-situ gas chromatography analysis at different droplet lifetimes. Experimental results showed an increase in the amount of water condensed when increasing the relative humidity of the system as expected. In addition, for the same ambient temperature ethanol evaporation was enhanced by high relative humidity. The authors acknowledge the support of WPI-I2CNER.

  18. A Decrease in Temperature and Humidity Precedes Human Rhinovirus Infections in a Cold Climate.

    PubMed

    Ikäheimo, Tiina M; Jaakkola, Kari; Jokelainen, Jari; Saukkoriipi, Annika; Roivainen, Merja; Juvonen, Raija; Vainio, Olli; Jaakkola, Jouni J K

    2016-09-02

    Both temperature and humidity may independently or jointly contribute to the risk of human rhinovirus (HRV) infections, either through altered survival and spread of viruses in the environment or due to changes in host susceptibility. This study examined the relationship between short-term variations in temperature and humidity and the risk of HRV infections in a subarctic climate. We conducted a case-crossover study among conscripts (n = 892) seeking medical attention due to respiratory symptoms during their military training and identified 147 HRV cases by real-time PCR. An average temperature, a decline in daily ambient temperature and absolute humidity (AH) during the three preceding days of the onset (hazard period) and two reference periods (a week prior and after the onset) were obtained. The average daily temperature preceding HRV infections was -9.9 ± 4.9 °C and the average AH was 2.2 ± 0.9 g/m³. An average (odds ratios (OR) 1.07 (95% confidence interval (CI) 1.00-1.15)) and maximal (OR 1.08 (1.01-1.17)) change in temperature increased the risk of HRV infections by 8% per 1 °C decrease. An average (OR 1.20 (CI 1.03-1.40)) and maximal decrease (OR 1.13 (CI 0.96-1.34)) in AH increased the risk of HRV infection by 13% and 20% per 0.5 g/m³ decrease. A higher average temperature during the three preceding days was positively associated with HRV infections (OR 1.07 (CI 1.00-1.15)). A decrease rather than low temperature and humidity per se during the preceding few days increases the risk of HRV infections in a cold climate. The information is applicable to populations residing in cold climates for appropriate personal protection and prevention of adverse health effects.

  19. Air Pressure, Humidity and Stroke Occurrence: A Systematic Review and Meta-Analysis

    PubMed Central

    Cao, Yongjun; Wang, Xia; Zheng, Danni; Robinson, Thompson; Hong, Daqing; Richtering, Sarah; Leong, Tzen Hugh; Salam, Abdul; Anderson, Craig; Hackett, Maree L.

    2016-01-01

    Background/Aims: An influence of climate upon stroke risk is biologically plausible and supported by epidemiological evidence. We aimed to determine whether air pressure (AP) and humidity are associated with hospital stroke admission. Methods: We searched MEDLINE, Embase, PsycINFO, CINAHL, Web of Science, and GEOBASE, from inception to 16 October 2015 to identify relevant population-based observational studies. Where possible, data were pooled for meta-analysis with odds ratios (OR) and corresponding 95% confidence intervals (CI) by means of the random-effect method. Results: We included 11 studies with a total of 314,385 patients. The effect of AP was varied across studies for ischemic stroke (IS) and subarachnoid haemorrhage (SAH). Pooled ORs (95%CI) associated with 1 hPa increase in AP for the risk of IS, intracerebral hemorrhage (ICH) and SAH were 1.00 (0.99–1.01), 1.01 (0.99–1.02) and 1.02 (0.97–1.07) respectively. The pooled ORs (95%CI) associated with 1 percent increase in humidity for the risk of IS and ICH were 1.00 (1.00–1.01) and 1.00 (0.99–1.01) respectively. Conclusion: This review shows that there is no evidence of a relationship between AP or humidity and the occurrence of hospital admission for stroke. Further research is needed to clarify the extent and nature of any relationship between AP, humidity and stroke in different geographical areas. PMID:27399733

  20. Incorporating residual temperature and specific humidity in predicting weather-dependent warm-season electricity consumption

    NASA Astrophysics Data System (ADS)

    Guan, Huade; Beecham, Simon; Xu, Hanqiu; Ingleton, Greg

    2017-02-01

    Climate warming and increasing variability challenges the electricity supply in warm seasons. A good quantitative representation of the relationship between warm-season electricity consumption and weather condition provides necessary information for long-term electricity planning and short-term electricity management. In this study, an extended version of cooling degree days (ECDD) is proposed for better characterisation of this relationship. The ECDD includes temperature, residual temperature and specific humidity effects. The residual temperature is introduced for the first time to reflect the building thermal inertia effect on electricity consumption. The study is based on the electricity consumption data of four multiple-street city blocks and three office buildings. It is found that the residual temperature effect is about 20% of the current-day temperature effect at the block scale, and increases with a large variation at the building scale. Investigation of this residual temperature effect provides insight to the influence of building designs and structures on electricity consumption. The specific humidity effect appears to be more important at the building scale than at the block scale. A building with high energy performance does not necessarily have low specific humidity dependence. The new ECDD better reflects the weather dependence of electricity consumption than the conventional CDD method.

  1. The effect of humidity on ionic wind velocity in ambient air

    NASA Astrophysics Data System (ADS)

    Chen, She; Nobelen, J. C. P. Y.; Nijdam, S.

    2016-09-01

    Due to the evolution of portable electronics and LED lightning system, advances in air cooling technologies must also keep pace. Active cooling by ionic wind, which is usually generated by corona discharge, can greatly reduce the noise and lifetime issues compared to the mechanical fans. The wind is induced when a gas discharge is formed, and neutral molecules gain their energy by the momentum transfer of ion-neutral collisions. However, there is few discussion about the effect of gas composition such as humidity on the wind generation and the physical mechanism is not clear. In the experiment, a positive 5-20 kV DC voltage is applied to the needle-cylinder electrodes with separation of 20 mm. The ionic wind velocity is measured by hot wire anemometry. As the relative humidity (RH) in the ambient air increases, the velocity is found to be severely inhibited. The current is also measured between the cylinder electrode and earth. The results show that the DC component of corona current decreases when RH increases. Since both the discharge current and the ion mobility are reduced when RH increases, their combined effects determine the ionic wind velocity. This work is supported by STW project 13651.

  2. Chlorinated hydrocarbons and PAH decomposition in dry and humid air by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Nichipor, H.; Dashouk, E.; Yacko, S.; Chmielewski, A. G.; Zimek, Z.; Sun, Y.

    2002-11-01

    The mechanism and kinetics of CCl 4; CH 2Cl 2; C 2HCl 3; C 2H 2Cl 2; C 2H 5Cl and polycyclic aromatic hydrocarbons (PAH), e.g. naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene and benzo(a)pyrene, decomposition have been investigated in dry and humid air under the influence of electron beam irradiation, by computer simulation based on established theoretical models. The experimental data published in the literature and the results of calculations confirmed an assumption that thermalized electron dissociative attachment reactions are an important part of the chlorinated VOCs decomposition process. The exception is CH 2Cl 2 where the decomposition process is initiated by nitrogen atoms and N 2+ ions. A chain reaction was observed in the case of C 2HCl 3 and C 2H 2Cl 2 decomposition, where the dose necessary for 90% reduction is below 10 kGy. In contrast to the chlorinated VOC's, PAHs in humid air were primarily decomposed by OH radical's interactions. When initial PAH concentration was ⩽100 ppm the dose necessary for 90% reduction was below 10 kGy.

  3. Effects of rectal and ambient temperatures and humidity on conception rates.

    PubMed

    Zakari, A Y; Molokwu, E C; Osori, D I

    1981-09-01

    One hundred and thirteen inseminations were performed for which rectal temperatures were taken at the time of inseminations. Climatological factors were also recorded daily. Pregnancy diagnosis by rectal palpation was carried out 3 months post-insemination. Pregnancy rates for all services were related to selected climatological measurements and rectal temperatures. The results obtained indicate that elevated rectal temperature, mean maximum and mean minimum temperatures and relative humidity were detrimental to conception. The effect of the climatological factor on conception is compounded by feed scarcity during the dry periods of the year.

  4. Probabilistic models for assessment of extreme temperatures and relative humidity in Lithuania

    NASA Astrophysics Data System (ADS)

    Alzbutas, Robertas; Šeputytė, Ilona

    2015-04-01

    Extreme temperatures are fairly common natural phenomenon in Lithuania. They have mainly negative effects both on the environment and humans. Thus there are important to perform probabilistic and statistical analyzes of possibly extreme temperature values and their time-dependant changes. This is especially important in areas where technical objects (sensitive to the extreme temperatures) are foreseen to be constructed. In order to estimate the frequencies and consequences of possible extreme temperatures, the probabilistic analysis of the event occurrence and its uncertainty has been performed: statistical data have been collected and analyzed. The probabilistic analysis of extreme temperatures in Lithuanian territory is based on historical data taken from Lithuanian Hydrometeorology Service, Dūkštas Meteorological Station, Lithuanian Energy Institute and Ignalina NNP Environmental Protection Department of Environmental Monitoring Service. The main objective of performed work was the probabilistic assessment of occurrence and impact of extreme temperature and relative humidity occurring in whole Lithuania and specifically in Dūkštas region where Ignalina Nuclear Power Plant is closed for decommissioning. In addition, the other purpose of this work was to analyze the changes of extreme temperatures. The probabilistic analysis of extreme temperatures increase in Lithuanian territory was based on more than 50 years historical data. The probabilistic assessment was focused on the application and comparison of Gumbel, Weibull and Generalized Value (GEV) distributions, enabling to select a distribution, which has the best fit for data of extreme temperatures. In order to assess the likelihood of extreme temperatures different probabilistic models were applied to evaluate the probability of exeedance of different extreme temperatures. According to the statistics and the relationship between return period and probabilities of temperatures the return period for 30

  5. Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control: Report and Summary Report

    SciTech Connect

    Dean, J.; Kozubal, E.; Herrmann, L.; Miller, J.; Lowenstein, A.; Barker, G.; Slayzak, S.

    2012-11-01

    The primary objective of this project was to demonstrate the capabilities of a new high-performance, liquid-desiccant dedicated outdoor air system (DOAS) to enhance cooling efficiency and comfort in humid climates while substantially reducing electric peak demand at Tyndall Air Force Base (AFB), which is 12 miles east of Panama City, Florida.

  6. Temperature and relative humidity estimation and prediction in the tobacco drying process using Artificial Neural Networks.

    PubMed

    Martínez-Martínez, Víctor; Baladrón, Carlos; Gomez-Gil, Jaime; Ruiz-Ruiz, Gonzalo; Navas-Gracia, Luis M; Aguiar, Javier M; Carro, Belén

    2012-10-17

    This paper presents a system based on an Artificial Neural Network (ANN) for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN). A fitting ANN was used to estimate temperature and relative humidity in different locations inside the tobacco dryer and to predict them with different time horizons. An error under 2% can be achieved when estimating temperature as a function of temperature and relative humidity in other locations. Moreover, an error around 1.5 times lower than that obtained with an interpolation method can be achieved when predicting the temperature inside the tobacco mass as a function of its present and past values with time horizons over 150 minutes. These results show that the tobacco drying process can be improved taking into account the predicted future value of the monitored variables and the estimated actual value of other variables using a fitting ANN as proposed.

  7. Temperature and Relative Humidity Estimation and Prediction in the Tobacco Drying Process Using Artificial Neural Networks

    PubMed Central

    Martínez-Martínez, Víctor; Baladrón, Carlos; Gomez-Gil, Jaime; Ruiz-Ruiz, Gonzalo; Navas-Gracia, Luis M.; Aguiar, Javier M.; Carro, Belén

    2012-01-01

    This paper presents a system based on an Artificial Neural Network (ANN) for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN). A fitting ANN was used to estimate temperature and relative humidity in different locations inside the tobacco dryer and to predict them with different time horizons. An error under 2% can be achieved when estimating temperature as a function of temperature and relative humidity in other locations. Moreover, an error around 1.5 times lower than that obtained with an interpolation method can be achieved when predicting the temperature inside the tobacco mass as a function of its present and past values with time horizons over 150 minutes. These results show that the tobacco drying process can be improved taking into account the predicted future value of the monitored variables and the estimated actual value of other variables using a fitting ANN as proposed. PMID:23202032

  8. The effect of environmental humidity and temperature on skin barrier function and dermatitis.

    PubMed

    Engebretsen, K A; Johansen, J D; Kezic, S; Linneberg, A; Thyssen, J P

    2016-02-01

    Physicians are aware that climatic conditions negatively affect the skin. In particular, people living in equator far countries such as the Northern parts of Europe and North America are exposed to harsh weather during the winter and may experience dry and itchy skin, or deterioration of already existing dermatoses. We searched the literature for studies that evaluated the mechanisms behind this phenomenon. Commonly used meteorological terms such as absolute humidity, relative humidity and dew point are explained. Furthermore, we review the negative effect of low humidity, low temperatures and different seasons on the skin barrier and on the risk of dermatitis. We conclude that low humidity and low temperatures lead to a general decrease in skin barrier function and increased susceptible towards mechanical stress. Since pro-inflammatory cytokines and cortisol are released by keratinocytes, and the number of dermal mast cells increases, the skin also becomes more reactive towards skin irritants and allergens. Collectively, published data show that cold and dry weather increase the prevalence and risk of flares in patients with atopic dermatitis.

  9. Population growth and development of Liposcelis pearmani (Psocoptera: Liposcelididae) at constant temperatures and relative humidities.

    PubMed

    Aminatou, B A; Gautam, S G; Opit, G P; Talley, J; Shakya, K

    2011-08-01

    Psocids of genus Liposcelis are now considered serious pests of stored products. We investigated the effects of eight temperatures (22.5, 25.0, 27.5, 30.0, 32.5, 35.0, 37.5, and 40.0°C) and four relative humidities (43, 55, 63, and 75%) on population growth and development of the psocid Liposcelis pearmani Lienhard. L. pearmani did not survive at 37.5 and 40.0°C, at all relative humidities tested; at 43% RH, at all temperatures tested; and at 55% RH, at 32.5 and 35°C. The greatest population growth was recorded at 32.5°C and 75% RH (32-fold growth). L. pearmani males have two to four nymphal instars, and the percentages of males with two, three, and four instars were 17, 63, and 20%, respectively. Female L. pearmani have two to five instars, and the percentages of females with two, three, four, and five instars were 5, 39, 55, and 1%, respectively. We developed temperature-dependent development equations for male and female eggs, individual nymphal, combined nymphal, and combined immature stages. Based on 30-d population growth, L. pearmani cannot survive at temperatures >35.0°C; does not thrive at low relative humidities (55%), at temperatures above 25°C; and has a high optimum relative humidity for population growth (75%). Therefore, we expect it to have a more limited distribution compared with other Liposcelis species. These data provide a better understanding of how temperature and RH may influence L. pearmani population dynamics and can be used in population growth models to help develop effective management strategies for this psocid, and to predict its occurrence.

  10. Effects of ambient temperature and relative humidity on the dynamics of salt distribution in porous media

    NASA Astrophysics Data System (ADS)

    Norouzi Rad, M.; Shokri, N.

    2011-12-01

    Understanding the physics of salt distribution in drying porous media is of relevance to various environmental and hydrological applications such as the soil salinization, terrestrial ecosystem functioning, microbiological activities in the vadose zone and structural damage to buildings, and historical monuments. Early stage of the evaporation process from saturated porous media is supplied by the capillary-induced liquid flow hydraulically connecting a receding drying front to surface (the so-called stage 1 evaporation). During stage 1, dissolved salt is transported by the capillary flow toward the evaporating surface where it accumulates, whereas diffusion (Brownian motion) tends to spread the salt and homogenize the concentrations in space. Relative humidity and ambient temperature limit the stage-1 evaporation and consequently influence the dynamics of salt distribution in porous media. The resulting interplay between convective and diffusive transport during evaporation is commonly quantified by the dimensionless Peclet number which is proportional to the evaporation rate. We have applied the convection-diffusion equation to describe the dynamics of salt distribution in drying porous media under different Peclet numbers. The predicted salt profiles were evaluated by a complete series of laboratory evaporation experiments using an environmental chamber where the relative humidity and temperature were accurately controlled. We have used sand with average particle size of 0.48 mm saturated with NaCl solution (1.25 Molal). The sand column was mounted on a digital balance connected to a computer to record the evaporation rate automatically. We studied dynamics of salt concentration at 30°C under relative humidity of 30%, 45% and 60% and also under the constant relative humidity of 45% at 30°C and 35°C . The experimentally-determined salt profiles were in a good agreement with the analytical and numerical predictions. Results revealed the preferential salt

  11. Effects of Temperature and Humidity on the Characterization of C-4 Explosive Threats

    SciTech Connect

    C. J. Miller

    2012-06-01

    The amount of time that an explosive is present on the surface of a material is dependent upon the original amount of explosive on the surface, adhesive forces, temperature and humidity, as well as other environmental factors. This laboratory study focused on evaluating RDX crystal morphology changes resulting from variations in temperature and humidity conditions of the sample. The temperature and humidity conditions were controlled using a Tenney THRJ environmental chamber and a Tenney T11RC-1.5 environmental chamber. These chambers allow the temperature and humidity to be held within ±3°C and ±5% RH. The temperature and humidity conditions used for this test series were: 40°F/40%RH, ~70°F/20%RH (samples left on benchtop), 70°F/70%RH, 70°F/95%RH, 95°F/40%RH, 95°F/70%RH, and 95°F/95%RH. These temperature and humidity set points were chosen to represent a wide range of conditions that may be found in real world scenarios. C-4 (RDX crystals and binder material) was deposited on the surface of one of six substrates by placing a fingerprint from the explosive block onto the matrix surface. The substrates were chosen to provide a range of items that are commonly used. Six substrate types were used during these tests: 50% cotton/50% polyester as found in T-shirts, 100% cotton with a smooth surface such as that found in a cotton dress shirt, 100% cotton on a rough surface such as that found on canvas or denim, suede leather such as might be found on jackets, purses, or shoes, painted metal obtained from a junked car hood, and a computer diskette. The samples were not pre-cleaned prior to testing and contained sizing agents, and in the case of the metal: oil, dirt, scratches, and rust spots. The substrates were photographed at various stages of testing, using a Zeiss Discover V12 stereoscope with Axiocam ICc1 3 megapixel digital camera, to determine any changes in the crystalline morphology. Some of the samples were examined using scanning electron microscopy

  12. Surface Temperature variability from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Dang, V. T.; Aumann, H. H.

    2015-12-01

    To address the existence and possible causes of the climate hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014for the day and night conditions. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We compare the satellite data with the new surface data produced by Karl et al. (2015) who denies the reality of the climate hiatus. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The day-night difference is an indicator of the anthropogenic trend. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  13. The interaction effects of temperature and humidity on emergency room visits for respiratory diseases in Beijing, China.

    PubMed

    Su, Qin; Liu, Hongsheng; Yuan, Xiaoling; Xiao, Yan; Zhang, Xian; Sun, Rongju; Dang, Wei; Zhang, Jianbo; Qin, Yuhong; Men, Baozhong; Zhao, Xiaodong

    2014-11-01

    Few epidemiological studies have been reported as to whether there was any interactive effect between temperature and humidity on respiratory morbidity, especially in Asian countries. The present study used time-series analysis to explore the modification effects of humidity on the association between temperature and emergency room (ER) visits for respiratory, upper respiratory tract infection (URI), pneumonia, and bronchitis in Beijing between 2009 and 2011. Results showed that an obvious joint effect of temperature and humidity was revealed on ER visits for respiratory, URI, pneumonia, and bronchitis. Below temperature threshold, the temperature effect was stronger in low humidity level and presented a trend fall with humidity level increase. The effect estimates per 1 °C increase in temperature in low humidity level were -2.88 % (95 % confidence interval (CI) -3.08, -2.67) for all respiratory, -3.24 % (-3.59, -2.88) for URI, -1.48 % (-1.93, -1.03) for pneumonia, and -3.79 % (-4.37, -3.21) for bronchitis ER visits, respectively. However, above temperature threshold, temperature effect was greater in high humidity level and trending upward with humidity level increasing. In high humidity level, a 1 °C increase in temperature, the effect estimates were 1.84 % (1.55, 2.13) for all respiratory, 1.76 % (1.41, 2.11) for URI, and 7.48 % (4.41, 10.65) for bronchitis ER visits. But, there was no statistically significant for pneumonia. This suggests that the modifying effects of the humidity should be considered when analyzing health impacts of temperature.

  14. Effects of temperature and humidity during irradiation on the response of a film dosimeter

    NASA Astrophysics Data System (ADS)

    Khan, Hasan M.; Wahid, Mian S.

    1995-09-01

    A commercially available leuco dye containing polyvinyl butyral based film (FWT-63-02) has been investigated ctrophotometrically for its dosimetric characteristic and for its use as routine dosimeter in radiation processing for the absorbed dose range 0.1 to 10 kGy. The present study was carried out to evaluate the performance of dosimeter under different environmental conditions (i.e. effects of temperature and relative humidity during irradiation). The response was measured at peak wavelength of 600 nm as well as at a number of other wavelengths (550, 625, 640 and 650 nm). The dosimeter was found to show quite stable response up to a radiation chamber temperature of 40°C. The dosimeter also showed stable behavior at low or moderate relative humidity conditions (<76%) in the radiation chamber. The characteristics of the dosimeter are suitable for its possible application in radiation processing, food irradiation and sterilization applications.

  15. Effects of temperature and humidity on electrospun conductive nanofibers based on polyaniline blends

    NASA Astrophysics Data System (ADS)

    Zampetti, E.; Muzyczuk, A.; Macagnano, A.; Pantalei, S.; Scalese, S.; Spinella, C.; Bearzotti, A.

    2011-11-01

    This study focuses and discusses the effects of temperature and humidity on electrospun conductive nanofibers, made with different polymer blends, deposited directly on interdigitated electrodes. The selected conductive polymers were based on blends of polyaniline emeraldine salt form and three different carrier hosting polymers: polyvinilpyrrolidone, polystyrene, and polyethylene oxide respectively. The obtained fibrous layers were investigated by the electrical measurements and morphological analysis (scanning electron microscopy). The study was made on the correlation between the electrical changes and morphological discrepancies due to temperature treatment. Moreover, this article reports the effects of relative humidity variations on electrical parameters. Since polyaniline is a well-known sensing material for different gases and volatile organic compounds, this study could be considered a supportive study for employing of the mentioned polymer blends as chemical interactive materials in gas sensor applications.

  16. Change in thermoluminescence of irradiated paprika powder during storage under various temperature and humidity conditions

    NASA Astrophysics Data System (ADS)

    Kitai, Satoshi; Furuta, Masakazu

    2009-07-01

    The change in the thermoluminescence (TL) of mineral grains extracted from irradiated paprika powder was monitored for 6 months after irradiation. The samples were irradiated with 60Co gamma rays at doses of 1, 5, and 10 kGy and stored under various temperature and humidity conditions. It was found that 10-kGy irradiation was sufficient to achieve the decontamination level required by the Japanese Food Sanitation Law. A significant decrease in thermoluminescence was observed in the irradiated samples stored at high-temperatures and humidity conditions, conditions similar to real shipping conditions at countries where they are produced. The thermoluminescence method was found to be effective for the identification of samples irradiated with a dose of 10 kGy after 6 months of storage. However, samples irradiated with a dose of 1 kGy and stored under the same conditions could not be identified by this method.

  17. Estimation of offshore humidity fluxes from sonic and mean temperature profile data

    NASA Astrophysics Data System (ADS)

    Foreman, R. J.; Emeis, S. M.

    2009-09-01

    A new simple method is employed to estimate the virtual potential temperature flux in marine conditions in the absence of any reliable hygrometry measurements. The estimate is made from a combination of sonic and cup anemometer measurements. Since the measurement of temperature by a sonic is humidity dependent, it overestimates the heat flux by a magnitude of 0.51?w?q?, where ? is the potential temperature in Kelvin and w?q? is the humidity flux. However, the quantity of interest for many applications is the virtual potential temperature flux w???v, which itself overestimates the heat flux by a magnitude of 0.61?w?q?. The virtual potential temperature flux is thus estimated by w-???v = w???s + 0.1?w?q?, (1) where w???s is the measured sonic anemometer heat flux. To properly estimate w?q?, fast response hygrometers are required, but in their absence, mean measurements can be used. While we have access to standard hygrometers, there are reasons to question the validity of results from these. Therefore, we propose that w???v be estimated by equating the stability parameter z?L, where z is the height and L the Obukhov length (which contains w???v and hence eq. (1)) with the bulk Richardson number and solving for w?q?, giving ( 3 --?? ) w-?q? = - 10 u*Rb-+ w-?-s . kzg ?v (2) Upon substituting eq. (2) into (1), and comparing terms on the right hand side of eq. (1), it is found that the contribution of the moisture term is an order of magnitude greater than that of the sonic measurement. This result is broadly consistent with previously published measurements, for example by Sempreviva and Gryning (1996) and Edson et al. (2004), of humidity fluxes using fast-response hygrometers in marine environments. We conclude that moisture effects are the chief determinant of instability in the marine surface layer. Consequently, the not unusual neglect of humidity effects in analytical and modelling efforts will result in a poor estimation of such quantities as the Obukhov length

  18. Lightning Activity Analyses with Respect to the SPCZ Location and to Surface Air Humidity Around Tahiti

    NASA Astrophysics Data System (ADS)

    Ortega, P.; Guignes, T.

    2006-12-01

    The South Pacific Convergence Zone (SPCZ) is located from the West Pacific warm pool and trends Southeast towards French Polynesia. The Island Climate Update monthly publishes the mean location deduced from the outgoing long-wave radiation anomalies or higher rainfall. On the other hand, the Wide World Lightning Location Network monthly provides data from which the lightning activity distribution in the 0°-30° South latitude and 150°-240° West longitude area can be drawn. Scanning this rectangle from West to East the location of the maximum lightning activity can be located versus the longitude. Fitting the location of these maximum with a polynomial function leads to a curve comparable with the monthly mean position of the SPCZ, showing that this band of cloudiness is the main source of lightning in this whole area. Besides, relations between surface atmospheric parameters, the number of thunder days and the number of flashes recorded around Tahiti have been analyzed using, the absolute humidity and the lightning activity recorded during the last nine years with the help of CIGRE Lightning Flash Counters. Since it is known that the cloud base is closely related to the boundary layer relative humidity, the aim of the analysis was to sort out a correlation between this parameter and the lightning activity. No correlation has been clearly put in evidence with the number of thunder days but the monthly mean values of the amount of flashes recorded exhibit similar oscillation with air humidity over a 9 year long period including the several phases of the ENSO.

  19. Humidity-induced room-temperature decomposition of Au contacted indium phosphide

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.; Weizer, Victor G.

    1990-01-01

    It has been found that Au-contacted InP is chemically unstable at room temperature in a humid ambient due to the leaching action of indium nitrate islands that continually remove In from the contact metallization and thus, in effect, from the Inp substrate. While similar appearing islands form on Au-contacted GaAs, that system appears to be stable since leaching of the group III element does not take place.

  20. IEC Quality Assurance Task Group 5: UV, Temperature, and Humidity (Presentation)

    SciTech Connect

    Miller, D.; Bath, J.; Kohl, M.; Shioda, T.

    2014-03-01

    Taskgroup 5 (TG5) is concerned with a comparative aging standard incorporating factors including ultraviolet radiation, temperature, and humidity. Separate experiments are being conducted in support of a test standard via the regional sub-groups in Asia, Europe, and the United States. The authors will describe the objectives and timeline for TG5 as well as providing an update on the experiments in progress.

  1. Organic particulate material levels in the atmosphere: conditions favoring sensitivity to varying relative humidity and temperature.

    PubMed

    Pankow, James F

    2010-04-13

    This study examines the sensitivity in predicted levels of atmospheric organic particulate matter (M(o), microg m(-3)) as those levels may potentially be affected by changes in relative humidity and temperature. In a given system, for each partitioning compound, f(g) and f(p) represent the gaseous and particulate fractions (f(g) + f(p) = 1). Sensitivity in the M(o) levels becomes dampened as the compounds contributing significantly to M(o) are increasingly found in the particle phase (f(p) --> 1). Thus, although local maxima in sensitivity can be encountered as M(o) levels increase, because as M(o) increases each f(p) --> 1, then increasing M(o) levels generally tend to reduce sensitivity in M(o) levels to changes in relative humidity and temperature. Experiments designed to elucidate the potential magnitudes of the effects of relative humidity and temperature on M(o) levels must be carried out at M(o) levels that are relevant for the ambient atmosphere: The f(p) values for the important partitioning compounds must not be elevated above ambient-relevant values. Systems in which M(o) levels are low (e.g., 1-2 microg m(-3)) and/or composed of unaged secondary organic aerosol are the ones most likely to show sensitivity to changing relative humidity and temperature. Results from two published chamber studies are examined in the above regard: [Warren B, et al. (2009) Atmos Environ 43:1789-1795] and [Prisle NL, et al. (2010) Geophys Res Lett 37:L01802].

  2. Arctic air may become cleaner as temperatures rise

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2011-10-01

    The air in the Arctic is cleaner during summer than during winter. Previous studies have shown that for light-scattering pollutants, this seasonal cycle is due mainly to summer precipitation removing pollutants from the air during atmospheric transport from midlatitude industrial and agricultural sources. With new measurements from Barrow, Alaska, and Alert, Nunavut, Canada, Garrett et al. extended previous research to show that light-absorbing aerosols such as black carbon are also efficiently removed by seasonal precipitation. Precipitation removes these particles from the air most efficiently at high humidities and relatively warm temperatures, suggesting that as the Arctic gets warmer and wetter in the future, the air and snow might also become cleaner.

  3. Sensor drift and predicted calibration intervals of handheld temperature and relative humidity meters under residential field-use conditions.

    PubMed

    Johnston James D; Magnusson, Brianna M; Eggett, Dennis; Mumford, Kyle; Collingwood, Scott C; Bernhardt, Scott A

    2014-10-01

    Handheld temperature and relative humidity (T/RH) meters are commonly used in residential indoor air surveys. Although popular, T/RH meters are prone to sensor drift and consequent loss of accuracy, and thus instrument manufacturers often recommend annual calibration and adjustment. Field-use conditions, however, have been shown to accelerate electronic sensor drift in outdoor applications, resulting in out-of-tolerance measurements in less than one year. In the study described in this article, sensor drift was evaluated under residential field use for 30 handheld T/RH meters to predict needed calibration intervals based on hierarchical linear modeling. Instruments were used in 43 home visits over a 93-day period and were calibrated (without adjustment) 49 times over the study period with a laboratory standard. Analysis of covariance showed significant drift among temperature sensors for all three instrument types (p < .0001) and among humidity sensors in two instruments. The authors' study suggests calibration frequency should be based on instrument performance under specific sampling conditions rather than on predetermined time intervals.

  4. Dynamics of the temperature-humidity index in the Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Segnalini, Maria; Nardone, Alessandro; Bernabucci, Umberto; Vitali, Andrea; Ronchi, Bruno; Lacetera, Nicola

    2011-03-01

    The study was aimed at describing the temperature humidity index (THI) dynamics over the Mediterranean basin for the period 1951-2007. The THI combines temperature and humidity into a single value, and may help to predict the effects of environmental warmth in farm animals. In particular, on the basis of THI values, numerous studies have been performed to establish thresholds for heat stress in dairy cows. The THI was calculated by using monthly mean values of temperature and humidity obtained from the National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis project. The analysis demonstrated a high degree of heterogeneity of THI patterns over the Mediterranean basin, a strong north-south gradient, and an overall warming during the study period, which was particularly marked during summer seasons. Results indicated that several areas of the basin present summer THI values which were unfavorable to cow welfare and productivity, and that risk of heat stress for cows is generally greater in the countries of the south coast of the basin. Furthermore, THI data from the summer 2003 revealed that severe positive anomalies may impact areas normally characterized by a favorable climate for animal production. In conclusion, THI dynamics should be taken into careful consideration by farmers and policy makers operating in Mediterranean countries when planning investments in the sector of animal production. The investments should at least partially be directed towards implementation of adaptation measures, which may help to alleviate the impact of hot on farm animals welfare, performance and health.

  5. Influence of Different Factors on Relative Air Humidity in Zaragoza, Spain

    NASA Astrophysics Data System (ADS)

    Cuadrat, José M.

    2015-03-01

    In this study, the spatial patterns of relative air humidity and its relation to urban, geographical and meteorological factors in the city of Zaragoza (Spain) is discussed. We created a relative humidity database by means of 32 urban transects. Data were taken on different days and with different weather types. This data set was used to map the mean spatial distribution of urban dry island (UDI). Using stepwise multiple regression analysis and Landsat ETM+ images the relationships between mean UDI and the main geographic-urban factors: topography, land cover and surface reflectivity, have been analyzed. Different spatial patterns of UDI were determined using Principal Component Analysis (Varimax rotation). The three components extracted accounted for 91% of the total variance. PC1 accounted for the most general patterns (similar to mean UDI); PC2 showed a shift of dry areas to the SE and PC3 a shift to NW. Using data on wind direction in Zaragoza, we have found that the displacement of dry areas to the SE (PC 2) was greater during NW winds while the shift to the NW (PC 3) was produced mainly by SE winds.

  6. Advances in Fast Response Acoustically Derived Air Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Bogoev, Ivan; Jacobsen, Larry; Horst, Thomas; Conrad, Benjamin

    2016-04-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity. The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  7. Utilization of rice husk silica as adsorbent for BTEX passive air sampler under high humidity condition.

    PubMed

    Areerob, Thanita; Grisdanurak, Nurak; Chiarakorn, Siriluk

    2016-03-01

    Selective adsorbent of benzene, toluene, ethylbenzene, and xylenes (BTEX) was developed based on mesoporous silica materials, RH-MCM-41. It was synthesized from rice husk silica and modified by silane reagents. The silane reagents used in this study were trimethylchlorosilane (TMS), triisopropylchlorosilane (TIPS), and phenyldimethylchlorosilane (PDMS). Physiochemical properties of synthesized materials were characterized by small-angle X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), and surface area analysis. Materials packed in passive air sampler were tested for BTEX uptake capacity. The tests were carried out under an influence of relative humidity (25 to 99 %). Overall, RH-MCM-41 modified by TMS outperformed compared to those modified by other silane agents. The comparative BTEX adsorption on this material and commercial graphitized carbon black was reported.

  8. Dependence on material choice of degradation of organic solar cells following exposure to humid air

    PubMed Central

    Glen, Tom S.; Scarratt, Nicholas W.; Yi, Hunan; Iraqi, Ahmed; Wang, Tao; Kingsley, James; Buckley, Alastair R.; Lidzey, David G.

    2015-01-01

    ABSTRACT Electron microscopy has been used to study the degradation of organic solar cells when exposed to humid air. Devices with various different combinations of commonly used organic solar cell hole transport layers and cathode materials have been investigated. In this way the ingress of water and the effect it has on devices could be studied. It was found that calcium and aluminum in the cathode both react with water, causing voids and delamination within the device. The use of poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) was found to increase the degradation by easing water ingress into the device. Replacing these materials removed these degradation features. © 2015 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 216–224 PMID:27594763

  9. How rainfall, relative humidity and temperature influence volatile emissions from apple trees in situ.

    PubMed

    Vallat, Armelle; Gu, Hainan; Dorn, Silvia

    2005-07-01

    Headspace volatiles from apple-bearing twigs were collected in the field with a Radiello sampler during three different diurnal periods over the complete fruit growing season. Analyses by thermal desorption-GC-MS identified a total of 62 compounds in changing quantities, including the terpenoids alpha-pinene, camphene, beta-pinene, limonene, beta-caryophyllene and (E,E)-alpha-farnesene, the aldehydes (E)-2-hexenal, benzaldehyde and nonanal, and the alcohol (Z)-3-hexen-1-ol. The variations in emission of these plant odours were statistically related to temperature, humidity and rainfall in the field. Remarkably, rainfall had a significant positive influence on changes in volatile release during all three diurnal periods, and further factors of significance were temperature and relative humidity around noon, relative humidity in the late afternoon, and temperature and relative humidity during the night. Rainfall was associated consistently with an increase in the late afternoon in terpene and aldehyde volatiles with a known repellent effect on the codling moth, one of the key pests of apple fruit. During the summer of 2003, a season characterized by below-average rainfall, some postulated effects of drought on trees were tested by establishing correlations with rainfall. Emissions of the wood terpenes alpha-pinene, beta-pinene and limonene were negatively correlated with rainfall. Another monoterpene, camphene, was only detected in this summer but not in the previous years, and its emissions were negatively correlated with rainfall, further supporting the theory that drought can result in higher formation of secondary metabolites. Finally, the two green leaf volatiles (E)-2-hexenal and (Z)-3-hexen-1-ol were negatively correlated with rainfall, coinciding well with the expectation that water deficit stress increases activity of lipoxygenase. To our knowledge, this work represents the first empirical study concerning the influence of abiotic factors on volatile

  10. An experimental investigation of strain rate, temperature and humidity effects on the mechanical behavior of a perfluorosulfonic acid membrane

    NASA Astrophysics Data System (ADS)

    Lu, Zongwen; Lugo, Melissa; Santare, Michael H.; Karlsson, Anette M.; Busby, F. Colin; Walsh, Peter

    2012-09-01

    The time-dependent hygro-thermal mechanical behavior of a perfluorosulfonic acid (PFSA) membrane (Nafion® 211 membrane) commonly used in Proton Exchange Membrane Fuel Cells (PEMFCs) is investigated at selected strain rates for a broad range of temperatures and humidities. Tensile tests and relaxation tests are conducted to determine Young's modulus and proportional limit stress as functions of strain rate, temperature and humidity. The results show that Young's modulus and proportional limit stress increase as the strain rate increases, and decrease as the temperature or humidity increases. The results also show that the mechanical response of Nafion® 211 membrane is more sensitive to typical changes in strain rate or temperature than to typical changes in humidity. In addition, two temperature/humidity cycles are conducted to determine the steady state swelling behavior of Nafion® 211 membrane as a function of temperature and humidity. The results show that the membrane swells with increasing temperature and humidity, and that there is little or no hygro-thermal history effect for the swelling strains.

  11. Turbulent transport across an interface between dry and humid air in a stratified environment

    NASA Astrophysics Data System (ADS)

    Gallana, Luca; de Santi, Francesca; di Savino, Silvio; Iovieno, Michele; Ricchiardone, Renzo; Tordella, Daniela

    2014-11-01

    The transport of energy and water vapor across a thin layer which separates two decaying isotropic turbulent flows with different kinetic energy and humidity is considered. The interface is placed in a shearless stratified environment in temporal decay. This system reproduces a few aspects of small scale turbulent transport across a dry air/moist air interface in an atmospheric like context. In our incompressible DNS at Reλ = 250 , Boussinesq's approximation is used for momentum and energy transport while the vapor is modeled as a passive scalar (Kumar, Schumacher & Shaw 2014). We investigated different stratification levels with an initial Fr between 0.8 and 8 in presence of a kinetic energy ratio equal to 7. As the buoyancy term becomes of the same order of the inertial ones, a spatial redistribution of kinetic energy, dissipation and vapor concentration is observed. This eventually leads to the onset of a well of kinetic energy in the low energy side of the mixing layer which blocks the entrainment of dry air. Results are discussed and compared with laboratory and numerical experiments. A posteriori estimates of the eventual compression/expansion of fluid particles inside the interfacial mixing layer are given (Nance & Durran 1994).

  12. High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to

  13. A Decrease in Temperature and Humidity Precedes Human Rhinovirus Infections in a Cold Climate

    PubMed Central

    Ikäheimo, Tiina M.; Jaakkola, Kari; Jokelainen, Jari; Saukkoriipi, Annika; Roivainen, Merja; Juvonen, Raija; Vainio, Olli; Jaakkola, Jouni J.K.

    2016-01-01

    Both temperature and humidity may independently or jointly contribute to the risk of human rhinovirus (HRV) infections, either through altered survival and spread of viruses in the environment or due to changes in host susceptibility. This study examined the relationship between short-term variations in temperature and humidity and the risk of HRV infections in a subarctic climate. We conducted a case-crossover study among conscripts (n = 892) seeking medical attention due to respiratory symptoms during their military training and identified 147 HRV cases by real-time PCR. An average temperature, a decline in daily ambient temperature and absolute humidity (AH) during the three preceding days of the onset (hazard period) and two reference periods (a week prior and after the onset) were obtained. The average daily temperature preceding HRV infections was −9.9 ± 4.9 °C and the average AH was 2.2 ± 0.9 g/m3. An average (odds ratios (OR) 1.07 (95% confidence interval (CI) 1.00–1.15)) and maximal (OR 1.08 (1.01–1.17)) change in temperature increased the risk of HRV infections by 8% per 1 °C decrease. An average (OR 1.20 (CI 1.03–1.40)) and maximal decrease (OR 1.13 (CI 0.96–1.34)) in AH increased the risk of HRV infection by 13% and 20% per 0.5 g/m3 decrease. A higher average temperature during the three preceding days was positively associated with HRV infections (OR 1.07 (CI 1.00–1.15)). A decrease rather than low temperature and humidity per se during the preceding few days increases the risk of HRV infections in a cold climate. The information is applicable to populations residing in cold climates for appropriate personal protection and prevention of adverse health effects. PMID:27598190

  14. The influence of temperature and humidity on the wettability of immersion tin coated printed wiring boards

    SciTech Connect

    Ray, U.; Artaki, I.; Vianco, P.T.

    1993-12-31

    This paper investigates the merits and drawbacks of immersion tin coatings as potential printed wiring board (PWB) surface finishes. Immersion tin films applied in various thicknesses (0.2 to 2 {mu}m) to different copper substrates were characterized relative to thermal stability and shelflife. Thermal excursions included those typical in mixed technology assembly processes. Exposure to temperature/humidity was varied from near ambient (35{degree}C/85%RH) to harsh (steam aging). A minimum thickness of {approximately}60{mu}in (1.5{mu}m) was determined to be critical for assembly operations involving multiple thermal excursions. Even though formation of Cu-Sn intermetallic compounds (IMC) is facile, at the copper-tin interface, these compounds do not adversely affect the soldering performance, as long as the IMC phase is protected by a tin surface layer. Immersion tin finishes are relatively stable to thermal exposure, but are readily oxidized in the presence of humidity. This oxide growth is directly responsible for solderability degradation. The underlying copper substrate was also found to have a significant impact on the thermal stability of tin films. An electroless copper substrate caused significantly more intermetallic formation, that resulted in poor solderability even under moderate temperature, humidity conditions.

  15. Physical and chemical changes in whey protein concentrate stored at elevated temperature and humidity.

    PubMed

    Tunick, Michael H; Thomas-Gahring, Audrey; Van Hekken, Diane L; Iandola, Susan K; Singh, Mukti; Qi, Phoebe X; Ukuku, Dike O; Mukhopadhyay, Sudarsan; Onwulata, Charles I; Tomasula, Peggy M

    2016-03-01

    In a case study, we monitored the physical properties of 2 batches of whey protein concentrate (WPC) under adverse storage conditions to provide information on shelf life in hot, humid areas. Whey protein concentrates with 34.9 g of protein/100g (WPC34) and 76.8 g of protein/100g (WPC80) were stored for up to 18 mo under ambient conditions and at elevated temperature and relative humidity. The samples became yellower with storage; those stored at 35 °C were removed from the study by 12 mo because of their unsatisfactory appearance. Decreases in lysine and increases in water activity, volatile compound formation, and powder caking values were observed in many specimens. Levels of aerobic mesophilic bacteria, coliforms, yeast, and mold were <3.85 log10 cfu/g in all samples. Relative humidity was not a factor in most samples. When stored in sealed bags, these samples of WPC34 and WPC80 had a shelf life of 9 mo at 35 °C but at least 18 mo at lower temperatures, which should extend the market for these products.

  16. Solid State Humidity Sensors

    NASA Astrophysics Data System (ADS)

    Chang, Song-Lin

    There are only a few solid state humidity sensors available today. Most of those sensors use a porous oxide material as a principal part of the device. The devices work on the basis of a change in resistance as the moisture in the air varies. In this experiment, two solid state humidity sensors have been developed for use under practical conditions. One is a Polymer Oxide Semiconductor device with a POLYOX film that absorbs the moisture from the air. The amount of water dipoles absorbed by the polymer is a function of relative humidity. This sensor can measure relative humidity from 20% to 90%. The other is a Dew Point sensor. The sensor is in contact with the upper surface of a miniature Peltier cooler. Water molecules deposited on the sensor surface cause the electrical current through the sensor to increase. The operator adjusts the temperature of the Peltier cooler until a saturated current through the sensor is reached. About one min. is required to measure low relative humidities. The Dew Point sensor can measure a range of relative humidities of 30% to 80%.

  17. Temperature- and humidity-controlled SAXS analysis of proton-conductive ionomer membranes for fuel cells.

    PubMed

    Mochizuki, Takashi; Kakinuma, Katsuyoshi; Uchida, Makoto; Deki, Shigehito; Watanabe, Masahiro; Miyatake, Kenji

    2014-03-01

    We report herein temperature- and humidity-controlled small-angle X-ray scattering (SAXS) analyses of proton-conductive ionomer membranes. The morphological changes of perfluorosulfonic acid polymers (Nafion and Aquivion) and sulfonated aromatic block copolymers (SPE-bl-1 and SPK-bl-1) were investigated and compared under conditions relevant to fuel cell operation. For the perfluorinated ionomer membranes, water molecules were preferentially incorporated into ionic clusters, resulting in phase separation and formation of ion channels. In contrast, for the aromatic ionomer membranes, wetting led to randomization of the ionic clusters. The results describe the differences in the proton-conducting behavior between the fluorinated and nonfluorinated ionomer membranes, and their dependence on the humidity.

  18. Effect of relative humidity and temperature on PVC degradation under gamma irradiation: Evolution of HCl production Yields

    NASA Astrophysics Data System (ADS)

    Labed, V.; Obeid, H.; Ressayre, K.

    2013-03-01

    The separate and combined effects of the relative humidity and temperature were investigated on the HCl production yields arising from two types of PVC subjected to gamma irradiation (pure PVC and PVC formulated with plasticizing additives). The test procedure developed included experiments performed at different dose rates (400 Gy h-1 and 4 kGy h-1), temperatures (room temperature and 70 °C) and relative humidity values (<10%, 70-75%, and 100%), for irradiation doses ranging from 0.1 to 4 MGy. These operating conditions are representative of applications in a nuclear environment. For the plasticized PVC at low dose rates, raising the temperature increases the HCl production by a factor of about 1.3, with either low or high relative humidity. For pure PVC, depending on the humidity and dose rate, G(HCl) varies differently with the temperature: at low humidity and low dose rates, G(HCl) increases by a factor of 1.7 for a 45 °C temperature increase; at high humidity, the same temperature increase does not result in a significant increase of G(HCl). The influence of the relative humidity on HCl production has not been clearly identified and interpreted. The relative humidity appears to be a factor limiting the effects of temperature on the formation of HCl from pure PVC at high dose rates. The G values remain constant and even diminish under some experimental conditions. For plasticized PVC, the relative humidity has no influence on the HCl production yields.

  19. Effect of temperature and relative humidity on ultraviolet (UV 254) inactivation of airborne porcine respiratory and reproductive syndrome virus.

    PubMed

    Cutler, Timothy D; Wang, Chong; Hoff, Steven J; Zimmerman, Jeffrey J

    2012-09-14

    The objective of this research was to estimate the effects of temperature and relative humidity on the inactivation of airborne porcine reproductive and respiratory syndrome (PRRS) virus by ultraviolet light (UV(254)). Aerosols of PRRS virus were exposed to one of four doses of UV(254) under nine combinations of temperature (n=3) and relative humidity (n=3). Inactivation constants (k), defined as the absolute value of the slope of the linear relationship between the survival fraction of the microbial population and the UV(254) exposure dose, were estimated using the random coefficient model. The associated UV(254) half-life dose for each combination of environmental factors was determined as (log(10)2/k) and expressed as UV(254) mJ per unit volume. The effects of UV(254) dose, temperature, and relative humidity were all statistically significant, as were the interactions between UV(254) dose × temperature and UV(254) dose × relative humidity. PRRS virus was more susceptible to ultraviolet as temperature decreased; most susceptible to ultraviolet inactivation at relative humidity between 25% and 79%, less susceptible at relative humidity ≤ 24%, and least susceptible at ≥ 80% relative humidity. The current study allows for calculating the dose of UV(254) required to inactivate airborne PRRS virus under various laboratory and field conditions using the inactivation constants and UV(254) half-life doses reported therein.

  20. Interaction of humidity and air pollutants on vegetation. Final report, 16 July 1986-30 April 1988

    SciTech Connect

    Thompson, C.R.; Olszyk, D.M.

    1988-03-01

    This study used a humidification system that adds dry steam to open-top field chambers to determine how relative-humidity affects plant responses to air pollutants in the field. There was a definite interaction between humidity and air pollution on leaf injury, with increasing humidity greatly increasing the amount of visible leaf necrosis and senescence from ozone. However, the injury interaction was not associated with any general interaction in terms of crop yield. Ozone caused visible injury to tomatoes, almonds, beans, and melons; reduced yield, growth, and biomass production for tomatoes and beans; and reduced physiological processes for tomatoes, beans, and almonds. Sulfur dioxide reduced growth and biomass production in wheat and lettuce, and yield for wheat. Humidification increased biomass production for tomatoes, carrots, onions, and beans, yield for carrots, onions, and lettuce, but decreased yields in beans.

  1. The effect of water contamination on the dew-point temperature scale realization with humidity generators

    NASA Astrophysics Data System (ADS)

    Vilbaste, M.; Heinonen, M.; Saks, O.; Leito, I.

    2013-08-01

    The purpose of this paper is to study the effect of contaminated water in the context of humidity generators. Investigation of different methods to determine the drop in dew-point temperature due to contamination and experiments on actual contamination rates are reported. Different methods for calculating the dew-point temperature effect from electrical conductivity and density measurements are studied with high-purity water and aqueous solutions of NaCl and LiCl. The outcomes of the calculation methods are compared with the results of direct humidity measurements. The results show that the often applied Raoult's law based calculation method is in good agreement with other methods. For studying actual contamination, water samples were kept in glass, plastic, copper and stainless-steel vessels for up to 13 months to investigate natural ionic and organic contamination in vessels with different wall materials. The amount of ionic contamination was found to be higher in copper and glass vessels than in stainless-steel and plastic vessels. The amount of organic contamination was found to be highest in the plastic vessel. In all the cases, however, the corresponding drop in dew-point temperature due to natural contamination was found to be below 0.1 mK. The largest rate of change of dew-point temperature was 26 µK/month. Thus, if proper cleanness is maintained in a humidity generator the effect of contamination of water in the saturator is insignificant compared with the major uncertainty components even in the most accurate generators today.

  2. A 6U CubeSat Constellation for Atmospheric Temperature and Humidity Sounding

    NASA Technical Reports Server (NTRS)

    Padmanabhan, Sharmila; Brown, Shannon; Kangaslahti, Pekka; Cofield, Richard; Russell, Damon; Stachnik, Robert; Steinkraus, Joel; Lim, Boon

    2013-01-01

    We are currently developing a 118/183 GHz sensor that will enable observations of temperature and precipitation profiles over land and ocean. The 118/183 GHz system is well suited for a CubeSat deployment as 10cm antenna aperture provides sufficiently small footprint sizes (is approx. 25km). This project will enable low cost, compact radiometer instrumentation at 118 and 183 GHz that would fit in a 6U CubeSat with the objective of mass-producing this design to enable a suite of small satellites to image the key geophysical parameters that are needed to improve prediction of extreme weather events. We will take advantage of past and current technology developments at JPL viz. HAMSR (High Altitude Microwave Scanning Radiometer), Advanced Component Technology (ACT'08) to enable low-mass and low-power high frequency airborne radiometers. The 35 nm InP enabling technology provides significant reduction in power consumption (Low Noise Amplifier + Mixer Block consumes 24 mW). In this paper, we will describe the design and implementation of the 118 GHz temperature sounder and 183 GHz humidity sounder instrument on the 6U CubeSat. In addition, a summary of radiometer calibration and retrieval techniques of the temperature and humidity will be discussed. The successful demonstration of this instrument on the 6U CubeSat would pave the way for the development of a constellation consisting of suite of these instruments. The proposed constellation of these 6U CubeSat radiometers would allow sampling of tropospheric temperature and humidity with fine temporal (on the order of minutes) and spatial resolution (is approx. 25 km).

  3. INVESTIGATING THE INFLUENCE OF RELATIVE HUMIDITY, AIR VELOCITY, AND AMPLIFICATION ON THE EMISSION RATES OF FUNGAL SPORES

    EPA Science Inventory

    The paper discusses the impact of relative humidity (RH), air velocity, and surface growth on the emission rates of fungal spores from the surface of contaminated material. Although the results show a complex interaction of factors, we have determined, for this limited data set,...

  4. Oxidation and hydration of U3O8 materials following controlled exposure to temperature and humidity.

    PubMed

    Tamasi, Alison L; Boland, Kevin S; Czerwinski, Kenneth; Ellis, Jason K; Kozimor, Stosh A; Martin, Richard L; Pugmire, Alison L; Reilly, Dallas; Scott, Brian L; Sutton, Andrew D; Wagner, Gregory L; Walensky, Justin R; Wilkerson, Marianne P

    2015-04-21

    Chemical signatures correlated with uranium oxide processing are of interest to forensic science for inferring sample provenance. Identification of temporal changes in chemical structures of process uranium materials as a function of controlled temperatures and relative humidities may provide additional information regarding sample history. In this study, a high-purity α-U3O8 sample and three other uranium oxide samples synthesized from reaction routes used in nuclear conversion processes were stored under controlled conditions over 2-3.5 years, and powder X-ray diffraction analysis and X-ray absorption spectroscopy were employed to characterize chemical speciation. Signatures measured from the α-U3O8 sample indicated that the material oxidized and hydrated after storage under high humidity conditions over time. Impurities, such as uranyl fluoride or schoepites, were initially detectable in the other uranium oxide samples. After storage under controlled conditions, the analyses of the samples revealed oxidation over time, although the signature of the uranyl fluoride impurity diminished. The presence of schoepite phases in older uranium oxide material is likely indicative of storage under high humidity and should be taken into account for assessing sample history. The absence of a signature from a chemical impurity, such as uranyl fluoride hydrate, in an older material may not preclude its presence at the initial time of production. LA-UR-15-21495.

  5. Oxidation and Hydration of U 3 O 8 Materials Following Controlled Exposure to Temperature and Humidity

    DOE PAGES

    Tamasi, Alison L.; Boland, Kevin S.; Czerwinski, Kenneth; ...

    2015-03-18

    Chemical signatures correlated with uranium oxide processing are of interest to forensic science for inferring sample provenance. Identification of temporal changes in chemical structures of process uranium materials as a function of controlled temperatures and relative humidities may provide additional information regarding sample history. In our study, a high-purity α-U3O8 sample and three other uranium oxide samples synthesized from reaction routes used in nuclear conversion processes were stored under controlled conditions over 2–3.5 years, and powder X-ray diffraction analysis and X-ray absorption spectroscopy were employed to characterize chemical speciation. We measured signatures from the α-U3O8 sample indicated that the materialmore » oxidized and hydrated after storage under high humidity conditions over time. Impurities, such as uranyl fluoride or schoepites, were initially detectable in the other uranium oxide samples. After storage under controlled conditions, the analyses of the samples revealed oxidation over time, although the signature of the uranyl fluoride impurity diminished. The presence of schoepite phases in older uranium oxide material is likely indicative of storage under high humidity and should be taken into account for assessing sample history. Finally, the absence of a signature from a chemical impurity, such as uranyl fluoride hydrate, in an older material may not preclude its presence at the initial time of production. LA-UR-15-21495.« less

  6. Bacterial survival in response to desiccation and high humidity at above zero and subzero temperatures

    NASA Astrophysics Data System (ADS)

    Yang, Yinjie; Yokobori, Shin-ichi; Yamagishi, Akihiko

    2009-04-01

    Earthly microorganisms might have contaminated Mars for millions of years by intellectual activities or natural transfer. Knowledge on the preservation of microorganisms may help our searching for life on outer planets, particularly Mars-contaminated earthly microorganisms at ancient time. Extreme dryness is one of the current Mars characteristics. However, a humid or watery Mars at earlier time was suggested by evidence accumulated in recent decades. It raises the question that whether water helps preservation of the microorganisms or not, particularly those with high possibility of interplanetary transfer like spores and Deinococci. In this study, we examined the effects of desiccation and high humidity on survival and DNA double strand breaks (DSB) of Escherichia coli, Deinococcus radiodurans and spores of Bacillus pumilus at 25, 4 and -70 °C. They exhibited different survival rates and DSB patterns under desiccation and high humidity. Higher survival and less DSB occurred at lower temperature. We suggest that some Mars-contaminated bacteria might have been viably preserved on cold Mars regions for long periods, regardless of water availability. It is more likely to find ancient spores than ancient Deinococci on Mars. In our search for preserved extraterrestrial life, priority should be given to the Mars Polar Regions.

  7. Influence of relative humidity and temperature on quantity of electric charge of static protective clothing used in petrochemical industry

    NASA Astrophysics Data System (ADS)

    Zhang, Yunpeng; Liu, Quanzhen; Liu, Baoquan; Li, Yipeng; Zhang, Tingting

    2013-03-01

    In this paper, the working principle of static protective clothing and its testing method of quantity of electric charge are introduced, and the influence of temperature and relative humidity on the quantity of electric charge (qe) of static protective clothing is studied by measuring qe of different clothing samples. The result shows that temperature and relative humidity can influence qe of static protective clothing to some extent and the influence of relative humidity is bigger than that of temperature. According to experimental results, the relationship of qe and relative humidity and temperature was analysed, and the safety boundary of quantity of electric charge is discussed. In order to reduce the occurrence of electrostatic accidents and ensure safe production and operation of petrochemical industry, some suggestions on choosing and using of static protective clothing are given for guaranteeing its static protective performance.

  8. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James C. R.; Leijnse, Hidde; Steeneveld, Gert-Jan; Horn, Berthold K. P.; Uijlenhoet, Remko

    2014-05-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. It has been shown that a straightforward heat transfer model can be employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. The methodology has been applied to Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree

  9. Evaluation of measurement errors of temperature and relative humidity from HOBO data logger under different conditions of exposure to solar radiation.

    PubMed

    da Cunha, Antonio Ribeiro

    2015-05-01

    This study aimed to assess measurements of temperature and relative humidity obtained with HOBO a data logger, under various conditions of exposure to solar radiation, comparing them with those obtained through the use of a temperature/relative humidity probe and a copper-constantan thermocouple psychrometer, which are considered the standards for obtaining such measurements. Data were collected over a 6-day period (from 25 March to 1 April, 2010), during which the equipment was monitored continuously and simultaneously. We employed the following combinations of equipment and conditions: a HOBO data logger in full sunlight; a HOBO data logger shielded within a white plastic cup with windows for air circulation; a HOBO data logger shielded within a gill-type shelter (multi-plate prototype plastic); a copper-constantan thermocouple psychrometer exposed to natural ventilation and protected from sunlight; and a temperature/relative humidity probe under a commercial, multi-plate radiation shield. Comparisons between the measurements obtained with the various devices were made on the basis of statistical indicators: linear regression, with coefficient of determination; index of agreement; maximum absolute error; and mean absolute error. The prototype multi-plate shelter (gill-type) used in order to protect the HOBO data logger was found to provide the best protection against the effects of solar radiation on measurements of temperature and relative humidity. The precision and accuracy of a device that measures temperature and relative humidity depend on an efficient shelter that minimizes the interference caused by solar radiation, thereby avoiding erroneous analysis of the data obtained.

  10. Assimilating synthetic hyperspectral sounder temperature and humidity retrievals to improve severe weather forecasts

    NASA Astrophysics Data System (ADS)

    Jones, Thomas A.; Koch, Steven; Li, Zhenglong

    2017-04-01

    Assimilation of hyperspectral sounder data into numerical weather prediction (NWP) models has proven vital to generating accurate model analyses of tropospheric temperature and humidity where few conventional observations exist. Applications to storm-scale models are limited since the low temporal resolution provided by polar orbiting sensors cannot adequately sample rapidly changing environments associated with high impact weather events. To address this limitation, hyperspectral sounders have been proposed for geostationary orbiting satellites, but these have yet to be built and launched in part due to much higher engineering costs and a lack of a definite requirement for the data. This study uses an Observation System Simulation Experiment (OSSE) approach to simulate temperature and humidity profiles from a hypothetical geostationary-based sounder from a nature run of a high impact weather event on 20 May 2013. The simulated observations are then assimilated using an ensemble adjustment Kalman filter approach, testing both hourly and 15 minute cycling to determine their relative effectiveness at improving the near storm environment. Results indicate that assimilating both temperature and humidity profiles reduced mid-tropospheric both mean and standard deviation of analysis and forecast errors compared to assimilating conventional observations alone. The 15 minute cycling generally produced the lowest errors while also generating the best 2-4 hour updraft helicity forecasts of ongoing convection. This study indicates the potential for significant improvement in short-term forecasting of severe storms from the assimilation of hyperspectral geostationary satellite data. However, more studies are required using improved OSSE designs encompassing multiple storm environments and additional observation types such as radar reflectivity to fully define the effectiveness of assimilating geostationary hyperspectral observations for high impact weather forecasting

  11. 1DVAR Analysis of Temperature and Humidity Using GPS Radio Occultation Data

    NASA Technical Reports Server (NTRS)

    Poli, Paul; Joiner, Joanna; Kursinski, Robert

    2000-01-01

    The Global Positioning System enables positioning in 3 dimensions about our planet. It has been operational since 1994. Twenty-four satellites are used to aclile\\,e this performance. The signals sent by these satellites are electromagnetic waves travelling through our atmosphere down to the small receivers used by the civilian community and the military. Because of varying meteorological conditions (namely, temperature and humidity changes along the ray path), the rays do not travel in a straight line. They bend towards the surface. As a consequence, the ray path between two points is longer than a straight line, and the time it takes for a signal to travel this distance is longer. In 1995, a small GPS receiver was launched on a satellite (GPS/MET). It become possible to perform radio occultations around the Earth: the source - one of the 24 GPS satellites - is seen by the receiver as it rises or sets around the other side of the Earth. When the source disappears, the receiver progressively loses the signals. By measuring accurately the time delay between the emission and the reception of the signal, it is possible to infer which part of the delay is due to the atmosphere. We use GPS/MET data to retrieve temperature and humidity profiles simultaneously. A specific method is implemented: it combines information from numerical forecasts and GPS observations in an optimal way. Comparing the result with an independent source of observations (weather balloons), we demonstrate that GPS data have the potential to improve weather analyses. We also show that improved temperature and humidity profiles can be obtained using information from a forecast model. This confirms results obtained in this study using simulated data.

  12. Elevated air movement enhances stomatal sensitivity to abscisic acid in leaves developed at high relative air humidity

    PubMed Central

    Carvalho, Dália R. A.; Torre, Sissel; Kraniotis, Dimitrios; Almeida, Domingos P. F.; Heuvelink, Ep; Carvalho, Susana M. P.

    2015-01-01

    High relative air humidity (RH ≥ 85%) during growth leads to stomata malfunctioning, resulting in water stress when plants are transferred to conditions of high evaporative demand. In this study, we hypothesized that an elevated air movement (MOV) 24 h per day, during the whole period of leaf development would increase abscisic acid concentration ([ABA]) enhancing stomatal functioning. Pot rose ‘Toril’ was grown at moderate (61%) or high (92%) RH combined with a continuous low (0.08 m s-1) or high (0.92 m s-1) MOV. High MOV reduced stomatal pore length and aperture in plants developed at high RH. Moreover, stomatal function improved when high MOV-treated plants were subjected to leaflet desiccation and ABA feeding. Endogenous concentration of ABA and its metabolites in the leaves was reduced by 35% in high RH, but contrary to our hypothesis this concentration was not significantly affected by high MOV. Interestingly, in detached leaflets grown at high RH, high MOV increased stomatal sensitivity to ABA since the amount of exogenous ABA required to decrease the transpiration rate was significantly reduced. This is the first study to show that high MOV increases stomatal functionality in leaves developed at high RH by reducing the stomatal pore length and aperture and enhancing stomatal sensitivity to ABA rather than increasing leaf [ABA]. PMID:26074943

  13. Tribology of Si/SiO2 in humid air: transition from severe chemical wear to wearless behavior at nanoscale.

    PubMed

    Chen, Lei; He, Hongtu; Wang, Xiaodong; Kim, Seong H; Qian, Linmao

    2015-01-13

    Wear at sliding interfaces of silicon is a main cause for material loss in nanomanufacturing and device failure in microelectromechanical system (MEMS) applications. However, a comprehensive understanding of the nanoscale wear mechanisms of silicon in ambient conditions is still lacking. Here, we report the chemical wear of single crystalline silicon, a material used for micro/nanoscale devices, in humid air under the contact pressure lower than the material hardness. A transmission electron microscopy (TEM) analysis of the wear track confirmed that the wear of silicon in humid conditions originates from surface reactions without significant subsurface damages such as plastic deformation or fracture. When rubbed with a SiO2 ball, the single crystalline silicon surface exhibited transitions from severe wear in intermediate humidity to nearly wearless states at two opposite extremes: (a) low humidity and high sliding speed conditions and (b) high humidity and low speed conditions. These transitions suggested that at the sliding interfaces of Si/SiO2 at least two different tribochemical reactions play important roles. One would be the formation of a strong "hydrogen bonding bridge" between hydroxyl groups of two sliding interfaces and the other the removal of hydroxyl groups from the SiO2 surface. The experimental data indicated that the dominance of each reaction varies with the ambient humidity and sliding speed.

  14. SRNL PHASE II SHELF LIFE STUDIES - SERIES 1 ROOM TEMPERATURE AND HIGH RELATIVE HUMIDITY

    SciTech Connect

    Mickalonis, J.; Duffey, J.

    2012-09-12

    The Savannah River National Laboratory (SRNL) Phase II, Series 1 shelf-life corrosion testing for the Department of Energy Standard 3013 container is presented and discussed in terms of the localized corrosion behavior of Type 304 stainless steel in contact with moist plutonium oxide and chloride salt mixtures and the potential impact to the 3013 inner container. This testing was designed to address the influence of temperature, salt composition, initial salt moisture, residual stress and type of oxide/salt contact on the relative humidity inside a 3013 container and the initiation and propagation of localized corrosion, especially stress corrosion cracking. The integrated plan is being conducted by Los Alamos National Laboratory and SRNL. SRNL is responsible for conducting a corrosion study in small scale vessels containing plutonium oxide and chloride salts under conditions of humidity, temperature and oxide/salt compositions both within the limits of 3013 storage conditions as well as beyond the 3013 storage requirements to identify margins for minimizing the initiation of stress corrosion cracking. These worst case conditions provide data that bound the material packaged in 3013 containers. Phase I of this testing was completed in 2010. The Phase II, Series 1 testing was performed to verify previous results from Phase I testing and extend our understanding about the initiation of stress corrosion cracking and pitting that occur in 304L under conditions of room temperature, high humidity, and a specific plutonium oxide/salt chemistry. These results will aid in bounding the safe storage conditions of plutonium oxides in 3013 containers. A substantial change in the testing was the addition of the capability to monitor relative humidity during test exposure. The results show that under conditions of high initial moisture ({approx}0.5 wt%) and room temperature stress corrosion cracking occurred in 304L teardrop coupons in contact with the oxide/salt mixture at times

  15. International Space Station Temperature and Humidity Control Subsystem Verification for Node 1

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2007-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the nominal operation of the Node 1 THC subsystem design. The paper will also provide a discussion of the detailed Element Verification methodologies for nominal operation of the Node 1 THC subsystem operations utilized during the Qualification phase.

  16. Fast response temperature and humidity sensors for measurements in high Reynolds number flows

    NASA Astrophysics Data System (ADS)

    Fan, Yuyang; Arwatz, Gilad; Vallikivi, Margit; Hultmark, Marcus

    2013-11-01

    Conventional hot/cold wires have been widely used in measuring velocity and temperature in turbulent flows due to their fine resolutions and fast response. However, for very high Reynolds number flows, limitations on the resolution appear. A very high Reynolds number flow is the atmospheric boundary layer. In order to accurately predict the energy balance at the Earth's surface, one needs information about the different turbulent scalar fields, mainly temperature and humidity, which together with velocity, contribute to the turbulent fluxes away from the surface. The nano-scaled thermal anemometry probe (NSTAP) was previously developed at Princeton and has proven to have much higher spatial and temporal resolution than the regular hot wires. Here we introduce new fast-response temperature and humidity sensors that have been developed and tested. These sensors are made in-house using standard MEMS manufacturing techniques, leaving high flexibility in the process for optimization to different conditions. The small dimensions of these novel sensors enable very high spatial resolution while the small thermal mass allows significant improvements in the frequency response. These sensors have shown promising results in acquiring un-biased data of turbulent scalar and vector fields. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim).

  17. 1DVAR Analysis of Temperature and Humidity using GPS Radio Occulation Data

    NASA Technical Reports Server (NTRS)

    Poli, Paul; Joiner, Joanna; Kursinski, Robert; Kolodner, Marc

    2000-01-01

    The Global Positioning System (GPS) enables positioning with a very small receiver. The signals transmitted by the GPS satellites are sensitive to the atmosphere and can be used to perform soundings with the radio occultation technique (e.g., Kursinski et al., 1997). The GPS signal can be converted to refractivity N via the Abel transform. The refractivity can then be related to atmospheric pressure P, temperature T, and water vapor partial pressure P (sub w) the GPS measurement, (between 0.5 and 1.5 km), its self-calibration, and it's nearly all-weather capabilities make it a good candidate for use in data assimilation systems (DAS) and numerical weather prediction (NWP). In order to demonstrate its usefulness in a DAS or NWP system, a first step is to assess its impact oil the analysis. A one-dimensional variational off-line analysis (1DVAR), meaning the data are not assimilated 'In the 3D DAS, constitutes a starting approach to which further enhancements can be made. The chosen observable to be analyzed in this study is the refractivity. One way to extract temperature (humidity) from the refractivity, is to assume a humidity (temperature) profile. One variable may then be retrieved without any a priori information. The 1DVAR approach used here resolves the ambiguity problem raised in the interpretation of these data. It enables retrieving these two atmospheric variables at a reasonable computing cost.

  18. Effect of Relative Humidity and Temperature on Photochemical Aging of Secondary Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Nizkorodov, S.; Brady, M. V.; Hinks, M. L.; Lignell, H.; Bertram, A. K.; Song, M.; Laskin, A.; Laskin, J.; Lin, P.

    2014-12-01

    The viscosity of secondary organic aerosol material (SOM) is known to depend sensitively on both temperature and relative humidity (RH). This work investigates the effect of these two important environmental variables on photochemical processes occurring inside model SOM. The experiments are designed to test the hypothesis that an increased SOM viscosity, resulting from either lower temperatures or decreased RH, should slow down the rates of photochemical processes in the organic matrix by constraining molecular motion inside the matrix. Photolysis of a probe molecule, 2,4-dinitrophenol, dispersed in SOM made produced through oxidation of alpha-pinene and limonene by ozone is investigated with absorption spectroscopy methods under controlled humidity and temperature. Viscosity of SOM is directly measured using "bead-mobility" technique and "poke-flow" techniques. Finally, the products of 2,4-dinitrophenol are analyzed by liquid chromatography high resolution mass spectrometry methods. The experiments suggest that the presence of water strongly affects photodegradation rates of organic compounds contained in the SOM matrix. Given the paramount role of photochemistry in driving the chemical reactions in the environment, these results will have significant implications for predicting lifetimes of photolabile atmospheric organic compounds trapped in organic particles.

  19. Effects of relative humidity and root temperature on calcium concentration and tipburn development in lettuce.

    PubMed

    Collier, G F; Tibbitts, T W

    1984-03-01

    Growth chamber studies were undertaken with a tipburn-sensitive cultivar of romaine lettuce (Lactuca sativa L. cv. Lobjoits Green Cos) grown under a photosynthetic photon flux density of 320 micromoles s-1 m-2 for 16 hours; light and dark temperatures were 26.0 degrees and 12.5 degrees C, respectively. As the relative humidity (RH) during the light period was decreased from 74% to 51%, growth was retarded, Ca concentration increased, and the onset of tipburn delayed. Decreasing RH during the dark period from 95% to 90% reduced growth and resulted in lower Ca concentrations and earlier tipburn development. Further decreases from 90% to 65% caused no additional change in growth or tipburn response. Root temperatures of 23.5 degrees, compared with 15.0 degrees, slightly increased Ca concentration but induced earlier tipburn development. Ca concentrations were increased and tipburn delayed by humidity conditions which provided large diurnal fluctuations in water potential in the plant and which encouraged root pressure flow during the dark period. Elevated root temperatures did not provide expected increases in Ca accumulation in young leaves.

  20. Sensitive biomolecule detection in lateral flow assay with a portable temperature-humidity control device.

    PubMed

    Choi, Jane Ru; Hu, Jie; Feng, Shangsheng; Wan Abas, Wan Abu Bakar; Pingguan-Murphy, Belinda; Xu, Feng

    2016-05-15

    Lateral flow assays (LFAs) have currently attracted broad interest for point-of-care (POC) diagnostics, but their application has been restricted by poor quantification and limited sensitivity. While the former has been currently solved to some extent by the development of handheld or smartphone-based readers, the latter has not been addressed fully, particularly the potential influences of environmental conditions (e.g., temperature and relative humidity (RH)), which have not yet received serious attention. The present study reports the use of a portable temperature-humidity control device to provide an optimum environmental requirement for sensitivity improvement in LFAs, followed by quantification by using a smartphone. We found that a RH beyond 60% with temperatures of 55-60°C and 37-40°C produced optimum nucleic acid hybridization and antigen-antibody interaction in LFAs, respectively representing a 10-fold and 3-fold signal enhancement over ambient conditions (25°C, 60% RH). We envision that in the future the portable device could be coupled with a fully integrated paper-based sample-to-answer biosensor for sensitive detection of various target analytes in POC settings.

  1. The Relationship Between Air Temperature and Stream Temperature

    NASA Astrophysics Data System (ADS)

    Morrill, J. C.; Bales, R. C.; Conklin, M. H.

    2001-05-01

    This study examined the relationship, both linear and non-linear, between air temperature and stream temperature in order to determine if air temperature can be used as an accurate predictor of stream temperature, if general relationships could be developed that apply to a large number of streams, and how changes in stream temperature associated with climate variability or climate warming might affect the dissolved oxygen level, and thus the quality of life, in some of these streams. Understanding the relationship between air temperature and water temperature is important if we want to predict how stream temperatures are likely to respond to the increase in surface air temperature that is occurring. Data from over 50 streams in 13 countries, mostly gathered by K-12 students in the GLOBE program (Global Learning and Observations to Benefit the Environment), are examined. Only a few streams display a linear 1:1 air/water temperature trend. The majority of streams instead show an increase in water temperature of about 0.6 to 0.8 degrees for every 1-degree increase in air temperature. At some of these sites, where dissolved oxygen content is already low, an increase in summer stream temperatures of 2-3 degrees could cause the dissolved oxygen levels to fall into a critically low range. At some locations, such as near the source of a stream, water temperature does not change much despite wide ranges in air temperatures. The temperatures at these sites are likely to be least affected by surface warming. More data are needed in warmer climates, where the water temperature already gets above 25oC, in order to better examine the air/water temperature relationship under warmer conditions. Global average surface air temperature is expected to increase by 3-5oC by the middle of this century. Surface water temperature in streams, lakes and wetlands will likely increase as air temperature increases, although the change in water temperature may not be as large as the change in

  2. Stability of whey protein hydrolysate powders: effects of relative humidity and temperature.

    PubMed

    Zhou, Peng; Liu, Dasong; Chen, Xiaoxia; Chen, Yingjia; Labuza, Theodore P

    2014-05-01

    Whey protein hydrolysate (WPH) is now considered as an important and special dairy protein ingredient for its nutritional and functional properties. The objectives of the present study were to investigate the effect of environmental relative humidity (RH) and storage temperature on the physicochemical stability of three WPH powders with hydrolysis degrees (DH) of 5.2%, 8.8% and 14.9%, respectively. The water sorption isotherms of the three WPH powders fitted the Guggenheim-Andersson-DeBoer model well. An increase in water content leaded to a decrease in glass transition temperature (Tg), following a linear Tg vs log water content relationship. Moreover, an increase in DH caused the decrease in Tg at the same water content. Changes in microstructure and colour occurred significantly when the WPH powders were stored at high environmental RH or temperature, especially for those with high DH.

  3. A comparison of THI indices leads to a sensible heat-based heat stress index for shaded cattle that aligns temperature and humidity stress

    NASA Astrophysics Data System (ADS)

    Berman, A.; Horovitz, Talia; Kaim, M.; Gacitua, H.

    2016-10-01

    The combined temperature-humidity heat stress is estimated in farm animals by indices derived of an index based on human thermal comfort sensation. The latter index consists of temperature and humidity measures that sum to form the temperature-humidity index (THI). The hitherto unknown relative contribution of temperature and humidity to the THI was examined. A temperature-humidity data set (temperature 20-42 °C and relative humidity 10-70 %) was used to assess by regression procedures the relative weights of temperature and humidity in the variance of THI values produced by six commonly used heat stress indices. The temperature (Ta) effect was predominant (0.82-0.95 of variance) and humidity accounted for only 0.05 to 0.12 of THI variance, half of the variance encountered in animal responses to variable humidity heat stress. Significant difference in THI values was found between indices in the relative weights of temperature and humidity. As in THI indices, temperature and humidity are expressed in different physical units, their sum has no physical attributes, and empirical evaluations assess THI relation to animal responses. A sensible heat THI was created, in which at higher temperatures humidity reaches 0.25 of sensible heat, similarly to evaporative heat loss span in heat stressed animals. It relates to ambient temperature-humidity similarly to present THI; its values are similar to other THI but greater at higher humidity. In warm conditions, mean animal responses are similar in both indices. The higher sensitivity to humidity makes this index preferable for warm-humid conditions.

  4. Revision to the humidity correction equation in the calculation formulae of the air refractive index based on a phase step interferometer with three frequency-stabilized lasers

    NASA Astrophysics Data System (ADS)

    Chen, Qianghua; Zhang, Mengce; Liu, Shuaijie; He, Yongxi; Luo, Huifu; Luo, Jun; Lv, Weiwei

    2016-12-01

    At present the formulae proposed by G Boensch and E Potulski in 1998 (Boensch and Potulski 1998 Metrologia 35 133-9) are mostly used to calculate the air refractive index. However, the humidity correction equation in the formulae is derived by using the light source of a Cd lamp whose light frequency stability is poor and at a narrow temperature range, around 20 °C. So it is no longer suitable in present optical precision measurements. To solve this problem, we propose a refractive index measurement system based on phase step interferometer with three frequency stabilized lasers (532 nm, 633 nm, 780 nm), corrected coefficients of the humidity are measured and a corresponding revised humidity correction equation is acquired. Meanwhile, the application temperature range is extended from 14.6 °C to 25.0 °C. The experiment comparison results at the temperature of 22.2-23.2 °C show the accuracy by the presented equation is better than that of Boensch and Potulski.

  5. Humidity coefficient correction in the calculation equations of air refractive index by He-Ne laser based on phase step interferometry.

    PubMed

    Chen, Qianghua; Liu, Jinghai; He, Yongxi; Luo, Huifu; Luo, Jun; Wang, Feng

    2015-02-10

    The refractive index of air (RIA) is an important parameter in precision measurement. The revisions to Edlen's equations by Boensch and Potulski [Metrologia 35, 133 (1998)] are mostly used to calculate the RIA at present. Since the humidity correction coefficients in the formulas were performed with four wavelengths of a Cd(114) lamp (644.0, 508.7, 480.1, and 467.9 nm) and at the temperature range of 19.6°C-20.1°C, the application is restricted when an He-Ne laser is used as the light source, which is mostly applied in optical precision measurement, and the environmental temperature is far away from 20°C as well. To solve this problem, a measurement system based on phase step interferometry for measuring the effect of the humidity to the RIA is presented, and a corresponding humidity correction equation is derived. The analysis and comparison results show that the uncertainty of the presented equation is better than that of Boensch and Potulski's. It is more suitable in present precision measurements by He-Ne laser, and the application temperature range extends to 14.6°C-24.0°C as well.

  6. Improving Forecast Skill by Assimilation of AIRS Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The AIRS Version 5 retrieval algorithm, is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates delta T(p) for retrieved quantities and the use of these error estimates for Quality Control. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 deg. latitude X 0.67 deg longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates delta (p) were used as the uncertainty for each measurement in the data assimilation process. We compared forecasts analyses generated from the analyses done by assimilation of AIRS temperature profiles with three different sets of thresholds; Standard, Medium, and Tight. Assimilation of Quality Controlled AIRS temperature profiles significantly improve 5-7 day forecast skill compared to that obtained without the benefit of AIRS data in all of the cases studied. In addition, assimilation of Quality Controlled AIRS temperature soundings performs better than assimilation of AIRS observed radiances. Based on the experiments shown, Tight Quality Control of AIRS temperature profile performs best

  7. The (RH+t) aging correlation. Electrical resistivity of PVB at various temperatures and relative humidities

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.

    1985-01-01

    Electrical products having organic materials functioning as pottants, encapsulants, and insulation coatings are commonly exposed to elevated conditions of temperature and humidity. In order to assess service life potential from this method of accelerated aging, it was empirically observed that service life seems proportional to an aging correlation which is the sum of temperature in degrees Celsius (t), and the relative humidity (RH) expressed in percent. Specifically, the correlation involves a plot of time-to-failure on a log scale versus the variable RH + T plotted on a linear scale. A theoretical foundation is provided for this empirically observed correlation by pointing out that the correlation actually involves a relationship between the electrical resistivity (or conductivity) of the organic material, and the variable RH + t. If time-to-failure is a result of total number of coulombs conducted through the organic material, then the correlation of resistivity versus RH + t is synonymous with the empirical correlation of time-to-failure versus RH + t.

  8. Effect of temperature and humidity on hardness and friability of packaged paracetamol tablet formulations.

    PubMed

    Ahmad, I; Shaikh, R H

    1994-07-01

    The influence of various temperature and relative humidity conditions on changes in hardness and friability of five commercial brands of packaged paracetamol tablets stored over a period of six months has been investigated. At 75% RH all sample show deterioration in hardness at 25 degrees (5-10%) and at 45 degrees (10-39%). At 100% RH there is a little difference in deterioration in hardness at 25 degrees (16-24%) and 45 masculine (20-28%) suggesting that once the critical moisture content is reached by the tablets, further increase in relative humidity has little effect on changes in hardness. Under the same conditions, all tablets show an increase in friability ranging from 2.83 to 8.02%. The overall increase in friability with an increase in temperature from 25 degrees to 45 degrees at 75% and 100% RH is 0.0 to 25.2%. The results indicate that moisture sorption by tablet matrix through certain packaging materials may adversely affect the hardness and friability characteristics.

  9. A nonlinear optimal estimation inverse method for radio occultation measurements of temperature, humidity, and surface pressure

    NASA Astrophysics Data System (ADS)

    Palmer, Paul I.; Barnett, J. J.; Eyre, J. R.; Healy, S. B.

    2000-07-01

    An optimal estimation inverse method is presented which can be used to retrieve simultaneously vertical profiles of temperature and specific humidity, in addition to surface pressure, from satellite-to-satellite radio occultation observations of the Earth's atmosphere. The method is a nonlinear, maximum a posteriori technique which can accommodate most aspects of the real radio occultation problem and is found to be stable and to converge rapidly in most cases. The optimal estimation inverse method has two distinct advantages over the analytic inverse method in that it accounts for some of the effects of horizontal gradients and is able to retrieve optimally temperature and humidity simultaneously from the observations. It is also able to account for observation noise and other sources of error. Combined, these advantages ensure a realistic retrieval of atmospheric quantities. A complete error analysis emerges naturally from the optimal estimation theory, allowing a full characterization of the solution. Using this analysis, a quality control scheme is implemented which allows anomalous retrieval conditions to be recognized and removed, thus preventing gross retrieval errors. The inverse method presented in this paper has been implemented for bending angle measurements derived from GPS/MET radio occultation observations of the Earth. Preliminary results from simulated data suggest that these observations have the potential to improve numerical weather prediction model analyses significantly throughout their vertical range.

  10. Stress response of Escherichia coli induced by surface streamer discharge in humid air

    NASA Astrophysics Data System (ADS)

    Doležalová, Eva; Prukner, Václav; Lukeš, Petr; Šimek, Milan

    2016-02-01

    Inactivation of Escherichia coli by means of surface streamer discharge has been investigated to obtain new insights into the key mechanisms involved, with a particular emphasis placed on the microbial response to plasma-induced stress. The surface streamer discharge was produced in coplanar dielectric barrier discharge electrode geometry, and was driven by an amplitude-modulated ac high voltage in humid synthetic air at atmospheric pressure. The response to plasma-induced stress was evaluated by using conventional cultivation, sublethal injury and resazurin assay and the LIVE/DEAD® BacLight™ Bacterial Viability kit. Compared to conventional cultivation, the LIVE/DEAD® test labels bacteria with damaged membranes, while resazurin assay tracks their metabolic activity. Our results clearly demonstrate that the treated bacteria partly lost their ability to grow properly, i.e. they became injured and culturable, or even viable but nonculturable (VBNC). The ability to develop colonies could have been lost due to damage of the bacterial membrane. Damage of the membranes was mainly caused by the lipid peroxidation, evidencing the key role of oxygen reactive species, in particular ozone. We conclude that the conventional cultivation method overestimates the decontamination efficiency of various plasma sources, and must therefore be complemented by alternative techniques capable of resolving viable but nonculturable bacteria.

  11. Crystallization of spray-dried lactose/protein mixtures in humid air

    NASA Astrophysics Data System (ADS)

    Shawqi Barham, A.; Kamrul Haque, Md.; Roos, Yrjö H.; Kieran Hodnett, B.

    2006-10-01

    An in situ crystallization technique with X-ray diffraction analysis complemented by ex situ scanning electron microscopy and chromatographic analysis of the α/( α+ β) solid-state anomeric ratios has been developed to study the crystallization of lactose/protein mixtures in humid air. This technique was used to determine changes in phase composition and morphology during crystallization. Following an induction period during which water is sorbed, crystallization is rapid and the predominant phase observed using the in situ method in spray-dried lactose/sodium-caseinate, albumin and gelatin is α-lactose monohydrate. However, in the case of spray-dried lactose/whey protein isolate (WPI) the predominant phase that appears is the α/ β mixed phase with smaller amounts of α-lactose monohydrate. With pure lactose the α/ β mixed phase appears as a transient shortly after the onset of crystallization and α-lactose monohydrate and β-lactose both appear as stable crystalline phases at longer times. Another transient phase with 2 θ=12.2°, 20.7° and 21.8° was observed in spray-dried lactose/albumin. This phase decomposed as α-lactose monohydrate developed. Three phases seem to persist in the case of spray-dried lactose/gelatin, namely the phase with peaks at 2 θ=12.2°, 20.7° and 21.8°, α-lactose monohydrate and β-lactose for the duration of the in situ experiment.

  12. Energy-Efficient Supermarket Heating, Ventilation, and Air Conditioning in Humid Climates in the United States

    SciTech Connect

    Clark, J.

    2015-03-01

    Supermarkets are energy-intensive buildings that consume the greatest amount of electricity per square foot of building of any building type in the United States and represent 5% of total U.S. commercial building primary energy use (EIA 2005). Refrigeration and heating, ventilation, and air-conditioning (HVAC) systems are responsible for a large proportion of supermarkets’ total energy use. These two systems sometimes work together and sometimes compete, but the performance of one system always affects the performance of the other. To better understand these challenges and opportunities, the Commercial Buildings team at the National Renewable Energy Laboratory investigated several of the most promising strategies for providing energy-efficient HVAC for supermarkets and quantified the resulting energy use and costs using detailed simulations. This research effort was conducted on behalf of the U.S. Department of Energy (DOE) Commercial Building Partnerships (CBP) (Baechler et al. 2012; Parrish et al. 2013; Antonopoulos et al. 2014; Hirsch et al. 2014). The goal of CBP was to reduce energy use in the commercial building sector by creating, testing, and validating design concepts on the pathway to net zero energy commercial buildings. Several CBP partners owned or operated buildings containing supermarkets and were interested in optimizing the energy efficiency of supermarket HVAC systems in hot-humid climates. These partners included Walmart, Target, Whole Foods Market, SUPERVALU, and the Defense Commissary Agency.

  13. Chemo-Mechanical Characteristics of Mud Formed from Environmental Dust Particles in Humid Ambient Air

    NASA Astrophysics Data System (ADS)

    Hassan, Ghassan; Yilbas, B. S.; Said, Syed A. M.; Al-Aqeeli, N.; Matin, Asif

    2016-07-01

    Mud formed from environmental dust particles in humid ambient air significantly influences the performance of solar harvesting devices. This study examines the characterization of environmental dust particles and the chemo-mechanics of dry mud formed from dust particles. Analytical tools, including scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, particle sizing, and X-ray diffraction, are used to characterize dry mud and dust particles. A micro/nano tribometer is used to measure the tangential force and friction coefficient while tensile tests are carried out to assess the binding forces of dry mud pellets. After dry mud is removed, mud residuals on the glass surface are examined and the optical transmittance of the glass is measured. Dust particles include alkaline compounds, which dissolve in water condensate and form a mud solution with high pH (pH = 7.5). The mud solution forms a thin liquid film at the interface of dust particles and surface. Crystals form as the mud solution dries, thus, increasing the adhesion work required to remove dry mud from the surface. Optical transmittance of the glass is reduced after dry mud is removed due to the dry mud residue on the surface.

  14. Chemo-Mechanical Characteristics of Mud Formed from Environmental Dust Particles in Humid Ambient Air

    PubMed Central

    Hassan, Ghassan; Yilbas, B. S.; Said, Syed A. M.; Al-Aqeeli, N.; Matin, Asif

    2016-01-01

    Mud formed from environmental dust particles in humid ambient air significantly influences the performance of solar harvesting devices. This study examines the characterization of environmental dust particles and the chemo-mechanics of dry mud formed from dust particles. Analytical tools, including scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, particle sizing, and X-ray diffraction, are used to characterize dry mud and dust particles. A micro/nano tribometer is used to measure the tangential force and friction coefficient while tensile tests are carried out to assess the binding forces of dry mud pellets. After dry mud is removed, mud residuals on the glass surface are examined and the optical transmittance of the glass is measured. Dust particles include alkaline compounds, which dissolve in water condensate and form a mud solution with high pH (pH = 7.5). The mud solution forms a thin liquid film at the interface of dust particles and surface. Crystals form as the mud solution dries, thus, increasing the adhesion work required to remove dry mud from the surface. Optical transmittance of the glass is reduced after dry mud is removed due to the dry mud residue on the surface. PMID:27445272

  15. An Air Temperature Cloud Height Precipitation Phase Determination Scheme for Surface Based Modeling

    NASA Astrophysics Data System (ADS)

    Feiccabrino, J. M.

    2015-12-01

    Many hydrological and ecological models use simple surface temperature threshold equations rather than coupling with a complex meteorological model to determine if precipitation is rain or snow. Some comparative studies have found, the most common rain/snow threshold variable, air temperature to have more precipitation phase error than dew-point or wet-bulb temperature, which account for the important secondary role of humidity in the melting and sublimation processes. However, just like surface air temperature, surface humidity is often effected by soil conditions and vegetation and is therefore not always representative of the atmospheric humidity precipitation falls through. A viable alternative to using surface humidity as a proxy for atmospheric moisture would be to adjust the rain snow threshold for changes in cloud height. The height of a cloud base above the ground gives the depth of an unsaturated layer. An unsaturated atmospheric layer should have much different melting and sublimation rates than a saturated cloud layer. Therefore, rain and snow percentages at a given surface air temperature should change with the height of the lowest cloud base. This study uses hourly observations from 12 U.S. manually augmented meteorological stations located in the Great Plains and Midwest upwind or away from major water bodies in relatively flat areas in an attempt to limit geographical influences. The surface air temperature threshold for the ground to 200 feet (under 100m) was 0.0°C, 0.6°C for 300-600 feet (100-200m), 1.1°C for 700-1200 feet (300-400m), 1.7°C for 1300-2000 feet (500-600m), and 2.2°C for 2100-3300 feet (700-1000m). Total precipitation error for these cloud height air temperature thresholds reduced the error from the single air temperature threshold 1.1°C by 15% from 14% to 12% total error between -2.2°C and 3.9°C. These air temperature cloud height thresholds resulted in 1.5% less total error than the dew-point temperature threshold 0.0

  16. Test of firefighter's turnout gear in hot and humid air exposure.

    PubMed

    Holmér, Ingvar; Kuklane, Kalev; Gao, Chuansi

    2006-01-01

    Five students of a rescue training school cycled at 50 W for 20 min at 20 degrees C before walking at 5 km/hr up to 30 min in a climatic chamber at 55 degrees C and 30% relative humidity. 4 different types of clothing ensembles differing in terms of thickness and thermal insulation value were tested on separate days. All subjects completed 28-30 min in light clothing, but quit after 20-27 min in 3 firefighter ensembles due to a rectal temperature of 39.0 degrees C or subjective fatigue. No difference in the evolution of mean skin or rectal temperature was seen for the 3 turnout ensembles. Sweat production amounted to about 1000 g in the turnout gears of which less than 20% evaporated. It was concluded that the small differences between the turnout gears in terms of design, thickness and insulation value had no effect on the resulting heat physiological strain for the given experimental conditions.

  17. Winter soil respiration in a humid temperate forest: The roles of moisture, temperature, and snowpack

    NASA Astrophysics Data System (ADS)

    Contosta, Alexandra R.; Burakowski, Elizabeth A.; Varner, Ruth K.; Frey, Serita D.

    2016-12-01

    Winter soil respiration at midlatitudes can comprise a substantial portion of annual ecosystem carbon loss. However, winter soil carbon dynamics in these areas, which are often characterized by shallow snow cover, are poorly understood due to infrequent sampling at the soil surface. Our objectives were to continuously measure winter CO2 flux from soils and the overlying snowpack while also monitoring drivers of winter soil respiration in a humid temperate forest. We show that the relative roles of soil temperature and moisture in driving winter CO2 flux differed within a single soil-to-snow profile. Surface soil temperatures had a strong, positive influence on CO2 flux from the snowpack, while soil moisture exerted a negative control on soil CO2 flux within the soil profile. Rapid fluctuations in snow depth throughout the winter likely created the dynamic soil temperature and moisture conditions that drove divergent patterns in soil respiration at different depths. Such dynamic conditions differ from many previous studies of winter soil microclimate and respiration, where soil temperature and moisture are relatively stable until snowmelt. The differential response of soil respiration to temperature and moisture across depths was also a unique finding as previous work has not simultaneously quantified CO2 flux from soils and the snowpack. The complex interplay we observed among snow depth, soil temperature, soil moisture, and CO2 flux suggests that winter soil respiration in areas with shallow seasonal snow cover is more variable than previously understood and may fluctuate considerably in the future given winter climate change.

  18. Long-term variation of Surface Ozone, NO2, temperature and relative humidity on crop yield over Andhra Pradesh (AP), India

    NASA Astrophysics Data System (ADS)

    Arunachalam, M. S.; Obili, Manjula; Srimurali, M.

    2016-07-01

    Long-term variation of Surface Ozone, NO2, Temperature, Relative humidity and crop yield datasets over thirteen districts of Andhra Pradesh(AP) has been studied with the help of OMI, MODIS, AIRS, ERA-Interim re-analysis and Directorate of Economics and Statistics (DES) of AP. Inter comparison of crop yield loss estimates according to exposure metrics such as AOT40 (accumulated ozone exposure over a threshold of 40) and non-linear variation of surface temperature for twenty and eighteen varieties of two major crop growing seasons namely, kharif (April-September) and rabi (October-March), respectively has been made. Study is carried to establish a new crop-yield-exposure relationship for different crop cultivars of AP. Both ozone and temperature are showing a correlation coefficient of 0.66 and 0.87 with relative humidity; and 0.72 and 0.80 with NO2. Alleviation of high surface ozone results in high food security and improves the economy thereby reduces the induced warming of the troposphere caused by ozone. Keywords: Surface Ozone, NO2, Temperature, Relative humidity, Crop yield, AOT 40.

  19. High resolution humidity, temperature and aerosol profiling with MeteoSwiss Raman lidar

    NASA Astrophysics Data System (ADS)

    Dinoev, Todor; Arshinov, Yuri; Bobrovnikov, Sergei; Serikov, Ilya; Calpini, Bertrand; van den Bergh, Hubert; Parlange, Marc B.; Simeonov, Valentin

    2010-05-01

    Meteorological services rely, in part, on numerical weather prediction (NWP). Twice a day radiosonde observations of water vapor provide the required data for assimilation but this time resolution is insufficient to resolve certain meteorological phenomena. High time resolution temperature profiles from microwave radiometers are available as well but have rather low vertical resolution. The Raman LIDARs are able to provide temperature and humidity profiles with high time and range resolution, suitable for NWP model assimilation and validation. They are as well indispensible tools for continuous aerosol profiling for high resolution atmospheric boundary layer studies. To improve the database available for direct meteorological applications the Swiss meteo-service (MeteoSwiss), the Swiss Federal Institute of Technology in Lausanne (EPFL) and the Swiss National Science Foundation (SNSF) initiated a project to design and build an automated Raman lidar for day and night vertical profiling of tropospheric water vapor with the possibility to further upgrade it with an aerosol and temperature channels. The project was initiated in 2004 and RALMO (Raman Lidar for meteorological observations) was inaugurated in August 2008 at MeteoSwiss aerological station at Payerne. RALMO is currently operational and continuously profiles water vapor mixing ratio, aerosol backscatter ratio and aerosol extinction. The instrument is a fully automated, self-contained, eye-safe Raman lidar operated at 355 nm. Narrow field-of-view multi-telescope receiver and narrow band detection allow day and night-time vertical profiling of the atmospheric humidity. The rotational-vibrational Raman lidar responses from water vapor and nitrogen are spectrally separated by a high-throughput fiber coupled diffraction grating polychromator. The elastic backscatter and pure-rotational Raman lidar responses (PRR) from oxygen and nitrogen are spectrally isolated by a double grating polychromator and are used to

  20. Response surface modeling for hot, humid air decontamination of materials contaminated with Bacillus anthracis ∆Sterne and Bacillus thuringiensis Al Hakam spores

    PubMed Central

    2014-01-01

    Response surface methodology using a face-centered cube design was used to describe and predict spore inactivation of Bacillus anthracis ∆Sterne and Bacillus thuringiensis Al Hakam spores after exposure of six spore-contaminated materials to hot, humid air. For each strain/material pair, an attempt was made to fit a first or second order model. All three independent predictor variables (temperature, relative humidity, and time) were significant in the models except that time was not significant for B. thuringiensis Al Hakam on nylon. Modeling was unsuccessful for wiring insulation and wet spores because there was complete spore inactivation in the majority of the experimental space. In cases where a predictive equation could be fit, response surface plots with time set to four days were generated. The survival of highly purified Bacillus spores can be predicted for most materials tested when given the settings for temperature, relative humidity, and time. These predictions were cross-checked with spore inactivation measurements. PMID:24949256

  1. Comparison of absolute and relative air humidity sensors fabricated with inkjet printing technology

    NASA Astrophysics Data System (ADS)

    Selma, R.; Tarapata, G.; Marzecki, M.

    2015-09-01

    This paper describes design, manufacturing and testing of novelty humidity sensors manufactured in inkjet printing technology. Two types of sensors were produced - sensor for dew point hygrometer, along with heater and thermistor, and a relative humidity sensor. Both were tested and proven to be functional, with both advantages and disadvantages described further in the article.

  2. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, A.; Robinson, J. C. R.; Leijnse, H.; Steeneveld, G. J.; Horn, B. K. P.; Uijlenhoet, R.

    2013-08-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. A straightforward heat transfer model is employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas.

  3. Measurements of upper troposheric humidity at low temperatures during CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Herman, Robert L.; Heymsfield, Andrew J.; Ridley, Brian A.; Bui, Paul T.

    2003-01-01

    Aircraft condensation trails (contrails) and thin cirrus were studied by instruments on the NASA WB-57F high-altitude aircraft during contrails and optically thing cirrus are contrasted by different levels of supersaturation with respect to ice. During the July 13, 2002, flight of the WB-57F aircraft intercepted visible contrails produced by both the WB-57F and ER-2 aircraft. These contrails were located immediately below the local tropopause, where ambient temperatures were very low (-76 degree C). The contrails were clearly indicated by an abrupt increase in NO and a simultaneous, abrupt decrease in ice supersaturation. With in the contrail, the relative humidity was close to 130% with respect to ice, higher than expected from theory. Outside the contrails was a persistent layer of subvisible currus extending from approximately 13 to 15 km altitude. This layer was characterized y significant supersaturations because the ambient concentrations of ice particles were insufficient to significantly deplete the ice supersaturation. We will discuss in situ measurements and models simulations of humidity.

  4. Temperature and humidity within a mobile barchan sand dune, implications for microbial survival

    NASA Astrophysics Data System (ADS)

    Louge, M. Y.; Valance, A.; el-Moctar, A. Ould; Xu, J.; Hay, A. G.; Richer, R.

    2013-12-01

    Although microorganisms play an important role in biological soil crusts and plant rhizospheres in deserts, it is unclear whether temperature and moisture deep within relatively fast moving hyperarid mobile dunes present a suitable habitat for microbes. To inform this question, we report measurements of temperature and humidity from probes initially sunk below the leeward avalanche face of a mobile barchan dune in the Qatar desert, emerging windward after 15 months of deep burial. Despite large diurnal variations on the surface, temperature within this dune of 5.6 m height is predictable, as long as dune advection is properly considered. It evolves on smaller amplitude and longer timescale than the surface, lagging average seasonal atmospheric conditions by about 2 months. We contrast these deep thermal records with measurements of diurnal variations of the temperature profile just below the surface, which we calculate with a thermal model predicting the relative roles of wind‒driven convective heat transfer and net radiation flux on the dune. Observations and analyses also suggest why random precipitation on the leeward face produces a more unpredictable moisture patchwork on the windward slope. By rapidly reaching sheltered depths, small quantities of rain falling on that face escape evaporation and endure within the dune until resurfacing upwind. At depths below 10 cm, we show that moisture, rather than temperature, determines the viability of microbes and we provide initial microscopic and respiration‒based evidence of their presence below the windward slope.

  5. Controlled-Temperature Hot-Air Gun

    NASA Technical Reports Server (NTRS)

    Munoz, M. C.

    1986-01-01

    Materials that find applications in wind tunnels first tested in laboratory. Hot-Air Gun differs from commercial units in that flow rate and temperature monitored and controlled. With typical compressed-airsupply pressure of 25 to 38 psi (170 to 260 kPa), flow rate and maximum temperature are 34 stdft3/min (0.96 stdm3/min) and 1,090 degrees F (590 degrees C), respectively. Resembling elaborate but carefully regulated hot-air gun, setup used to apply blasts of air temperatures above 1,500 degrees F (815 degrees C) to test specimens.

  6. The effects of temperature, relative humidity, light, and resource quality on flight initiation in the red flour beetle, Tribolium castaneum

    PubMed Central

    Drury, Douglas W.; Whitesell, Matthew E.; Wade, Michael J.

    2016-01-01

    We investigated the environmental conditions that induce a flight response in the red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae), including resource quality, temperature, relative humidity, and light. Over 72-h trial periods, we observed the proportion of individuals emigrating by flight to range from 0.0 in extreme heat or cold to 0.82 with starvation. Resource quality, presence of a light source, and temperature all directly influenced the initiation of the flight response. We did not detect any effect of relative humidity or sudden change in temperature on the incidence of flight. We discuss our findings in the context of Tribolium ecology and evolution. PMID:27087697

  7. Effect of storage conditions (relative humidity, duration, and temperature) on the germination time of Aspergillus carbonarius and Penicillium chrysogenum.

    PubMed

    Lattab, Nadia; Kalai, Safaa; Bensoussan, Maurice; Dantigny, Philippe

    2012-11-01

    Fungal conidia are disseminated, often in the air, for a certain period of time, prior to contaminating food products. The objective of this study was to examine the effects of the relative humidity, RH (%), time (day), and temperature (°C) during this period of time, called "storage", on the germination time, τ (h), of Aspergillus carbonarius and Penicillium chrysogenum. A Doehlert design was used in the range, 20-100% RH, 2-28 days, and 5-25 °C. As compared to un-stored conidia, the germination time of conidia stored at 60% RH, 15 days, 5 °C was increased by 23 and 28%, for A. carbonarius and P. chrysogenum, respectively. Stored conidia exhibited a minimum τ value at 60% RH, and 100% RH for A. carbonarius and P. chrysogenum, respectively. For these species, τ was minimum for 2 days of storage. The effect of temperature was RH dependent for A. carbonarius. The germination time of stored conidia was clearly greater than that of fresh conidia obtained in the laboratory. This result should be taken into account to determine the mould free shelf-life of food products.

  8. Validation of Nimbus-7 temperature-humidity infrared radiometer estimates of cloud type and amount

    NASA Technical Reports Server (NTRS)

    Stowe, L. L.

    1982-01-01

    Estimates of clear and low, middle and high cloud amount in fixed geographical regions approximately (160 km) squared are being made routinely from 11.5 micron radiance measurements of the Nimbus-7 Temperature-Humidity Infrared Radiometer (THIR). The purpose of validation is to determine the accuracy of the THIR cloud estimates. Validation requires that a comparison be made between the THIR estimates of cloudiness and the 'true' cloudiness. The validation results reported in this paper use human analysis of concurrent but independent satellite images with surface meteorological and radiosonde observations to approximate the 'true' cloudiness. Regression and error analyses are used to estimate the systematic and random errors of THIR derived clear amount.

  9. Consistency of the National Realization of Dew-Point Temperature Using Standard Humidity Generators

    NASA Astrophysics Data System (ADS)

    Benyon, R.; Vicente, T.

    2012-09-01

    The comparison of two high-range standard humidity generators used by Instituto Nacional de Técnica Aeroespacial to realize dew-point temperature in the range from -10 °C to +95 °C has been performed using state-of-the art transfer standards and measurement procedures, over their overlapping range from -10 °C to +75 °C. The aim of this study is to investigate the level of agreement between the two generators, to determine any bias, and to quantify the level of consistency of the two realizations. The measurement procedures adopted to minimize the effect of the influence factors due to the transfer standards are described, and the results are discussed in the context of the declared calibration and measurement capabilities (CMCs).

  10. Evidence that nitric acid increases relative humidity in low-temperature cirrus clouds.

    PubMed

    Gao, R S; Popp, P J; Fahey, D W; Marcy, T P; Herman, R L; Weinstock, E M; Baumgardner, D G; Garrett, T J; Rosenlof, K H; Thompson, T L; Bui, P T; Ridley, B A; Wofsy, S C; Toon, O B; Tolbert, M A; Kärcher, B; Peter, Th; Hudson, P K; Weinheimer, A J; Heymsfield, A J

    2004-01-23

    In situ measurements of the relative humidity with respect to ice (RHi) and of nitric acid (HNO3) were made in both natural and contrail cirrus clouds in the upper troposphere. At temperatures lower than 202 kelvin, RHi values show a sharp increase to average values of over 130% in both cloud types. These enhanced RHi values are attributed to the presence of a new class of HNO3-containing ice particles (Delta-ice). We propose that surface HNO3 molecules prevent the ice/vapor system from reaching equilibrium by a mechanism similar to that of freezing point depression by antifreeze proteins. Delta-ice represents a new link between global climate and natural and anthropogenic nitrogen oxide emissions. Including Delta-ice in climate models will alter simulated cirrus properties and the distribution of upper tropospheric water vapor.

  11. Evidence That Nitric Acid Increases Relative Humidity in Low-Temperature Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Gao, R. S.; Popp, P. J.; Fahey, D. W.; Marcy, T. P.; Herman, R. L.; Weinstock, E. M.; Baumgardner, D. G.; Garrett, T. J.; Rosenlof, K. H.; Thompson, T. L.

    2004-01-01

    In situ measurements of the relative humidity with respect to ice (RH(sub(i)) and of nitric acid (HNO3) were made in both natural and contrail cirrus clouds in the upper troposphere. At temperatures lower than 202 kelvin, RH(sub i) values show a sharp increase to average values of over 130% in both cloud types. These enhanced RH(sub i) values are attributed to the presence of a new class of NHO3- containing ice particles (Delta-ice). We propose that surface HNO3 molecules prevent the ice/vapor system from reaching equilibrium by a mechanism similar to that of freezing point depression by antifreeze proteins. Delta-ice represents a new link between global climate and natural and anthropogenic nitrogen oxide emissions. Including Delta-ice in climate models will alter simulated cirrus properties and the distribution of upper tropospheric water vapor.

  12. Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing.

    PubMed

    Woyessa, Getinet; Pedersen, Jens K M; Fasano, Andrea; Nielsen, Kristian; Markos, Christos; Rasmussen, Henrik K; Bang, Ole

    2017-03-15

    In this Letter, we report for the first time, to the best of our knowledge, the fabrication and characterization of a Zeonex/PMMA microstructured polymer optical fiber (mPOF) Bragg grating sensor for simultaneous monitoring of relative humidity (RH) and temperature. The sensing element (probe) is based on two separate in-line fiber Bragg gratings (FBGs) inscribed in the fabricated mPOF. A root mean square deviation of 0.8% RH and 0.6°C in the range of 10%-90% RH and 20°C-80°C was found. The developed mPOFBG sensor constitutes an efficient route toward low-cost, easy-to-fabricate and compact multi-parameter sensing solutions.

  13. Lessons Learned from the Node 1 Temperature and Humidity Control Subsystem Design

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2010-01-01

    Node 1 flew to the International Space Station (ISS) on Flight 2A during December 1998. To date the National Aeronautics and Space Administration (NASA) has learned a lot of lessons from this module based on its history of approximately two years of acceptance testing on the ground and currently its twelve years on-orbit. This paper will provide an overview of the ISS Environmental Control and Life Support (ECLS) design of the Node 1 Temperature and Humidity Control (THC) subsystem and it will document some of the lessons that have been learned to date for this subsystem and it will document some of the lessons that have been learned to date for these subsystems based on problems prelaunch, problems encountered on-orbit, and operational problems/concerns. It is hoped that documenting these lessons learned from ISS will help in preventing them in future Programs. 1

  14. Low altitude temperature and humidity profile data for application to aircraft noise propagation

    NASA Technical Reports Server (NTRS)

    Connor, A. B.; Copeland, W. L.; Fulbright, D. C.

    1975-01-01

    A data search of the weather statistics from 11 widely dispersed geographical locations within the continental United States was conducted. The sites, located long both sea-coasts and in the interior, span the northern, southern, and middle latitudes. The weather statistics, retrieved from the records of these 11 sites, consist of two daily observations taken over a 10-year period. The data were sorted with respect to precipitation and surface winds and classified into temperature intervals of 5 C and relative humidity intervals of 10 percent for the lower 1400 meters of the atmosphere. These data were assembled in a statistical format and further classified into altitude increments of 200 meters. The data are presented as sets of tables for each site by season of the year and include both daily observations.

  15. Degradation kinetics of catechins in green tea powder: effects of temperature and relative humidity.

    PubMed

    Li, Na; Taylor, Lynne S; Mauer, Lisa J

    2011-06-08

    The stability of catechins in green tea powders is important for product shelf life and delivering health benefits. Most published kinetic studies of catechin degradation have been conducted with dilute solutions and, therefore, are limited in applicability to powder systems. In this study, spray-dried green tea extract powders were stored under various relative humidity (RH) (43-97%) and temperature (25-60 °C) conditions for up to 16 weeks. High-performance liquid chromatography (HPLC) was used to determine catechin contents. Catechin degradation kinetics were affected by RH and temperature, but temperature was the dominant factor. Kinetic models as functions of RH and temperature for the individual 2,3-cis-configured catechins (EGCG, EGC, ECG, and EC) were established. The reaction rate constants of catechin degradation also followed the Williams-Landel-Ferry (WLF) relationship. This study provides a powerful prediction approach for the shelf life of green tea powder and highlights the importance of glass transition in solid state kinetics studies.

  16. Effects of temperature and relative humidity on the stability of paper-immobilized antibodies.

    PubMed

    Wang, Jingyun; Yiu, Brian; Obermeyer, Jaclyn; Filipe, Carlos D M; Brennan, John D; Pelton, Robert

    2012-02-13

    The stability of a paper-immobilized antibody was investigated over a range of temperatures (40-140 °C) and relative humidities (RH, 30-90%) using both unmodified filter paper and the same paper impregnated with polyamide-epichlorohydrin (PAE) as supports. Antibody stability decreased with increasing temperature, as expected, but also decreased with increasing RH. At 40 °C, the half-life was more than 10 days, with little dependence on RH. However, at 80 °C, the half-life varied from ~3 days at low RH to less than half an hour at 90% RH, demonstrating that hydration of the antibody promotes unfolding. Antibody stability was not influenced by the PAE paper surface treatment. This work shows that antibodies are good candidates for development of bioactive paper as they have sufficient stability at high temperature to withstand printing and other roll-to-roll processing steps, and sufficient low temperature stability to allow long-term storage of bioactive paper materials.

  17. High-precision diode-laser-based temperature measurement for air refractive index compensation

    SciTech Connect

    Hieta, Tuomas; Merimaa, Mikko; Vainio, Markku; Seppae, Jeremias; Lassila, Antti

    2011-11-01

    We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements, it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlen equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilizes direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well-matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially nonhomogeneous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using a 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement.

  18. Evaluation of near-surface temperature, humidity, and equivalent temperature from regional climate models applied in type II downscaling

    NASA Astrophysics Data System (ADS)

    Pryor, S. C.; Schoof, J. T.

    2016-04-01

    Atmosphere-surface interactions are important components of local and regional climates due to their key roles in dictating the surface energy balance and partitioning of energy transfer between sensible and latent heat. The degree to which regional climate models (RCMs) represent these processes with veracity is incompletely characterized, as is their ability to capture the drivers of, and magnitude of, equivalent temperature (Te). This leads to uncertainty in the simulation of near-surface temperature and humidity regimes and the extreme heat events of relevance to human health, in both the contemporary and possible future climate states. Reanalysis-nested RCM simulations are evaluated to determine the degree to which they represent the probability distributions of temperature (T), dew point temperature (Td), specific humidity (q) and Te over the central U.S., the conditional probabilities of Td|T, and the coupling of T, q, and Te to soil moisture and meridional moisture advection within the boundary layer (adv(Te)). Output from all RCMs exhibits discrepancies relative to observationally derived time series of near-surface T, q, Td, and Te, and use of a single layer for soil moisture by one of the RCMs does not appear to substantially degrade the simulations of near-surface T and q relative to RCMs that employ a four-layer soil model. Output from MM5I exhibits highest fidelity for the majority of skill metrics applied herein, and importantly most realistically simulates both the coupling of T and Td, and the expected relationships of boundary layer adv(Te) and soil moisture with near-surface T and q.

  19. Lead Research and Development Activity for DOE's High Temperature, Low Relative Humidity Membrane Program (Topic 2)

    SciTech Connect

    James Fenton, PhD; Darlene Slattery, PhD; Nahid Mohajeri, PhD

    2012-09-05

    The Department of Energy’s High Temperature, Low Relative Humidity Membrane Program was begun in 2006 with the Florida Solar Energy Center (FSEC) as the lead organization. During the first three years of the program, FSEC was tasked with developing non-Nafion® proton exchange membranes with improved conductivity for fuel cells. Additionally, FSEC was responsible for developing protocols for the measurement of in-plane conductivity, providing conductivity measurements for the other funded teams, developing a method for through-plane conductivity and organizing and holding semiannual meetings of the High Temperature Membrane Working Group (HTMWG). The FSEC membrane research focused on the development of supported poly[perfluorosulfonic acid] (PFSA) – Teflon membranes and a hydrocarbon membrane, sulfonated poly(ether ether ketone). The fourth generation of the PFSA membrane (designated FSEC-4) came close to, but did not meet, the Go/No-Go milestone of 0.1 S/cm at 50% relative humidity at 120 °C. In-plane conductivity of membranes provided by the funded teams was measured and reported to the teams and DOE. Late in the third year of the program, DOE used this data and other factors to decide upon the teams to continue in the program. The teams that continued provided promising membranes to FSEC for development of membrane electrode assemblies (MEAs) that could be tested in an operating fuel cell. FSEC worked closely with each team to provide customized support. A logic flow chart was developed and discussed before MEA fabrication or any testing began. Of the five teams supported, by the end of the project, membranes from two of the teams were easily manufactured into MEAs and successfully characterized for performance. One of these teams exceeded performance targets, while the other requires further optimization. An additional team developed a membrane that shows great promise for significantly reducing membrane costs and increasing membrane lifetime.

  20. Influence of Temperature and Humidity on Pregnancy Rate of Murrah Buffaloes under Subtropical Climate

    PubMed Central

    Dash, Soumya; Chakravarty, A. K.; Sah, V.; Jamuna, V.; Behera, R.; Kashyap, N.; Deshmukh, B.

    2015-01-01

    Heat stress has adverse effects on fertility of dairy animals. Decline in fertility is linearly associated with an increase in combination of both temperature and humidity. The purpose of this study was to investigate the relationship between temperature humidity index (THI) and the pregnancy rate of Murrah buffaloes in a subtropical climate. The effects of genetic and non-genetic factors viz., sire, parity, period of calving and age group at first calving were found non-significant on pregnancy rate. The effect of THI was found significant (p<0.001) on pregnancy rate of Murrah buffaloes calved for first time and overall pregnancy rate. The threshold THI affecting the pregnancy rate was identified as THI 75. The months from October to March showed THI<75 and considered as non heat stress zone (NHSZ), while months from April to September were determined as heat stress zone (HSZ) with THI≥75. The lowest overall pregnancy rate (0.25) was obtained in July with THI 80.9, while the highest overall pregnancy rate (0.59) was found in November with THI 66.1. May and June were identified as critical heat stress zone (CHSZ) within the HSZ with maximum decline (−7%) in pregnancy rate with per unit increase in THI. The highest overall pregnancy rate was estimated as 0.45 in NHSZ with THI value 56.7 to 73.2. The pregnancy rate was found to have declined to 0.28 in HSZ with THI 73.5 to 83.7. However, the lowest pregnancy rate was estimated as 0.27 in CHSZ with THI value 80.3 to 81.6. PMID:26104398

  1. Air separation with temperature and pressure swing

    DOEpatents

    Cassano, Anthony A.

    1986-01-01

    A chemical absorbent air separation process is set forth which uses a temperature swing absorption-desorption cycle in combination with a pressure swing wherein the pressure is elevated in the desorption stage of the process.

  2. Air Temperature in the Undulator Hall

    SciTech Connect

    Not Available

    2010-12-07

    Various analyses have been performed recently to estimate the performance of the air conditioning (HVAC) system planned for the Undulator Hall. This reports summarizes the results and provides an upgrade plan to be used if new requirements are needed in the future. The estimates predict that with the planned loads the tunnel air temperature will be well within the allowed tolerance during normal operation.

  3. Synergistic interactions within disturbed habitats between temperature, relative humidity and UVB radiation on egg survival in a diadromous fish.

    PubMed

    Hickford, Michael J H; Schiel, David R

    2011-01-01

    Anthropogenic impacts, including urbanization, deforestation, farming, and livestock grazing have altered riparian margins worldwide. One effect of changes to riparian vegetation is that the ground-level light, temperature, and humidity environment has also been altered. Galaxias maculatus, one of the most widely distributed fishes of the southern hemisphere, lays eggs almost exclusively beneath riparian vegetation in tidally influenced reaches of rivers. We hypothesized that the survival of these eggs is greatly affected by the micro-environment afforded by vegetation, particularly relating to temperature, humidity and UVB radiation. We experimentally reduced riparian vegetation height and altered shading characteristics, tracked egg survival, and used small ground-level temperature, humidity and UVB sensors to relate survival to ground-level effects around egg masses. The ground-level physical environment was markedly different from the surrounding ambient conditions. Tall dense riparian vegetation modified ambient conditions to produce a buffered temperature regime with constant high relative humidity, generally above 90%, and negligible UVB radiation at ground-level. Where vegetation height was reduced, frequent high temperatures, low humidity, and high UVB irradiances reduced egg survival by up to 95%. Temperature effects on egg survival were probably indirect, through reduced humidity, because developing eggs are known to survive in a wide range of temperatures. In this study, it was remarkable how such small variations in relatively small sites could have such a large effect on egg survival. It appears that modifications to riparian vegetation and the associated changes in the physical conditions of egg laying sites are major mechanisms affecting egg survival. The impacts associated with vegetational changes through human-induced disturbances are complex yet potentially devastating. These effects are particularly important because they affect a very small

  4. Influence of ambient humidity on the current delivered by air-vented ionization chambers revisited

    NASA Astrophysics Data System (ADS)

    Poirier, Aurélie; Douysset, Guilhem

    2006-10-01

    The influence of ambient humidity on the current delivered by a vented ionization chamber has been re-investigated. A Nucletron 077.091 well-type chamber together with a 192Ir HDR brachytherapy source was enclosed in a climatic test chamber and the current was recorded for various humidity values. Great care has been taken for the design of the experimental setup in order to obtain reliable measurements of currents and humidity values inside the chamber active volume. A ±0.35% linear variation of the measured currents has been observed over a common range of humidities. This result is larger than the expected variation. No formal explanation of such a discrepancy has been found yet, however the present results could lead to a set of recommendations.

  5. The effect of increased air humidity on fine root and rhizome biomass and turnover of silver birch forest ecosystem - a FAHM study.

    NASA Astrophysics Data System (ADS)

    Ostonen, I.; Kupper, P.; Sõber, J.; Aosaar, J.; Varik, M.; Lõhmus, K.

    2012-04-01

    A facility for free air humidity manipulation (FAHM) was established to investigate the effect of increased air humidity on belowground biomass and turnover in silver birch (Betula pendula Roth.) forest ecosystems with respect to rising air humidity predicted for Northern Europe. Fine root and rhizomes are short-lived and recognized as the most important component contributing to below-ground C fluxes in forests. The FAHM system enables air relative humidity to be increased on average 7 units (%) over the ambient level during mist fumigation. The experimental site contains humidified (H) and control (C) plots; each plot contains sectors with diverse "forest" understory and early successional grasses. The trees were planted in 2006, humidification started in spring 2008, and soil cores to study fine root and rhizome biomass and turnover were taken in 2007, 2009 and 2010. In July 2009, total fine root and rhizome biomass was 8 tons per ha in C and 16 tons per ha in H plots. The roots of understory formed 86% in C and 93% H plots, respectively. Our preliminary data suggest that the increased humidity affected more the roots of understory plants: fine root and rhizome biomass and production increased approximately twice by increasing air humidity. However, the tendency was similar for fine root biomass and production of silver birch. Fine root turnover speeded up for both silver birch and understory roots in H plots. Hence, changes in air humidity can significantly affect forest carbon cycling.

  6. Cross-sensitivity of metal oxide gas sensor to ambient temperature and humidity: Effects on gas distribution mapping

    NASA Astrophysics Data System (ADS)

    Kamarudin, K.; Bennetts, V. H.; Mamduh, S. M.; Visvanathan, R.; Yeon, A. S. A.; Shakaff, A. Y. M.; Zakaria, A.; Abdullah, A. H.; Kamarudin, L. M.

    2017-03-01

    Metal oxide gas sensors have been widely used in robotics application to perform remote and mobile gas sensing. However, previous researches have indicated that this type of sensor technology is cross-sensitive to environmental temperature and humidity. This paper therefore investigates the effects of these two factors towards gas distribution mapping and gas source localization domains. A mobile robot equipped with TGS2600 gas sensor was deployed to build gas distribution maps of indoor environment, where the temperature and humidity varies. The results from the trials in environment with and without gas source indicated that there is a strong relation between the fluctuation of the mean and variance map with respect to the variations in the temperature and humidity maps.

  7. Effects of Ambient Humidity on Plant Growth Enhancement by Atmospheric Air Plasma Irradiation to Plant Seeds

    NASA Astrophysics Data System (ADS)

    Sarinont, Thapanut; Amano, Takaaki; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Humidity is an important factor for plasma-bio applications because composition of species generated by atmospheric pressure plasmas significantly depends on the humidity. Here we have examined effects of humidity on the growth enhancement to study the mechanism. Experiments were carried out with a scalable DBD device. 10 seeds of Raphanus sativus L. were set for x = 5 mm and y = 3 mm below the electrodes. The humidity Hair was 10 - 90 %Rh. The ratio of length of plants with plasma irradiation to that of control increases from 1.2 for Hair = 10 %Rh to 2.5 for Hair = 50 %Rh. The ratio is 2.5 for Hair = 50-90 %Rh. This humidity dependence is similar to the humidity dependence of O2+-H2O,H3O*, NO2--H2Oand NO3--H2Odensities, whereas it is different from that of other species such as O3, NO, and so on. The similarity gives information on key species for the growth enhancement.

  8. Investigating the Deliquescence Relative Humidity of Perchlorate Salts as a Function of Temperature: Implications for Mars

    NASA Astrophysics Data System (ADS)

    Gough, R. V.; Baustian, K. J.; Wise, M. E.; Tolbert, M. A.

    2009-12-01

    Recent observations suggest perchlorate salts are present in the regolith at the polar regions of Mars. Perchlorates are deliquescent, meaning they absorb significant water from the atmosphere and become an aqueous solution. Deliquescence of perchlorate salts is a possible explanation for the appearance and growth of droplet-like spheroids on a strut of the Phoenix lander. The relative humidity at which this deliquescence occurs (DRH) is often temperature-dependent, and the only value reported thus far is DRH = 44% for sodium perchlorate at room temperature. However, the deliquescence of perchlorate salts at Martian temperatures has not been studied, and the temperature dependence of this process is important for predicting the ability of liquid water to be stable on the Martian surface and in the shallow subsurface. To study the deliquescence of perchlorate at Martian temperatures, we are using a Raman microscope paired with an environmental cell. Deliquescence can be detected both spectrally and by visual inspection. We have determined that the DRH of pure perchlorate salts is independent of temperature. However, the DRH of pure perchlorate may be affected by the presence of minerals known to exist on Mars, such as phyllosilicates. Some clay minerals have unique water adsorption properties, and these competing water adsorption mechanisms may inhibit the ability of perchlorate salts to deliquesce, effectively shrinking the proposed window of aqueous perchlorate solution stability. For this reason, we also report DRH values for perchlorate mixed with analog minerals. These studies will help determine the likelihood of liquid water on present-day Mars and constrain the latitudes, seasons, and times of day in which it could exist.

  9. Temperature and relative humidity influence the microbial and physicochemical characteristics of Camembert-type cheese ripening.

    PubMed

    Leclercq-Perlat, M-N; Sicard, M; Trelea, I C; Picque, D; Corrieu, G

    2012-08-01

    To evaluate the effects of temperature and relative humidity (RH) on microbial and biochemical ripening kinetics, Camembert-type cheeses were prepared from pasteurized milk seeded with Kluyveromyces marxianus, Geotrichum candidum, Penicillium camemberti, and Brevibacterium aurantiacum. Microorganism growth and biochemical changes were studied under different ripening temperatures (8, 12, and 16°C) and RH (88, 92, and 98%). The central point runs (12°C, 92% RH) were both reproducible and repeatable, and for each microbial and biochemical parameter, 2 kinetic descriptors were defined. Temperature had significant effects on the growth of both K. marxianus and G. candidum, whereas RH did not affect it. Regardless of the temperature, at 98% RH the specific growth rate of P. camemberti spores was significantly higher [between 2 (8°C) and 106 times (16°C) higher]. However, at 16°C, the appearance of the rind was no longer suitable because mycelia were damaged. Brevibacterium aurantiacum growth depended on both temperature and RH. At 8°C under 88% RH, its growth was restricted (1.3 × 10(7) cfu/g), whereas at 16°C and 98% RH, its growth was favored, reaching 7.9 × 10(9) cfu/g, but the rind had a dark brown color after d 20. Temperature had a significant effect on carbon substrate consumption rates in the core as well as in the rind. In the rind, when temperature was 16°C rather than 8°C, the lactate consumption rate was approximately 2.9 times higher under 88% RH. Whatever the RH, temperature significantly affected the increase in rind pH (from 4.6 to 7.7 ± 0.2). At 8°C, an increase in rind pH was observed between d 6 and 9, whereas at 16°C, it was between d 2 and 3. Temperature and RH affected the increasing rate of the underrind thickness: at 16°C, half of the cheese thickness appeared ripened on d 14 (wrapping day). However, at 98% RH, the underrind was runny. In conclusion, some descriptors, such as yeast growth and the pH in the rind, depended solely on

  10. Wave number spectra from temperature-humidity infrared radiometer 6.7-micron water vapor data

    NASA Technical Reports Server (NTRS)

    Manney, Gloria L.; Stanford, John L.

    1990-01-01

    Wave number spectra from Nimbus 7 temperature-humidity infrared radiometer 6.7-micron water vapor data are analyzed using series 4800 km long, in regions free of high clouds and frontal zones. In these regions, the brightness temperatures approximate temperatures on a water vapor isosteric (constant density) surface, rather than averages over a broad vertical layer. Power above the noise can be extracted down to wavelengths of about 60 km. Fitting the power spectrum versus horizontal wave number k to a k to the -nth power law for wavelengths from 60 to a few hundred kilometers gives slopes of n = 2.7 to 3.0, depending on the exact wave numbers that are fitted. Thunderstorms and convective cloud systems may constitute an energy source for the reverse energy cascade which produces a -5/3 spectral slope. The results suggest that when these features are not present, the enstrophy-cascading process that gives a -3 slope may govern the motion at scales smaller than it has heretofore been observed.

  11. Effect of humidity and particle hygroscopicity on the mass loading capacity of high efficiency particulate air (HEPA) filters

    SciTech Connect

    Gupta, A.; Biswas, P. ); Monson, P.R. ); Novick, V.J. )

    1993-07-01

    The effect of humidity, particle hygroscopicity, and size on the mass loading capacity of glass fiber high efficiency particulate air filters was studied. Above the deliquescent point, the pressure drop across the filter increased nonlinearly with areal loading density (mass collected/filtration area) of a NaCl aerosol, thus significantly reducing the mass loading capacity of the filter compared to dry hygroscopic or nonhygroscopic particle mass loadings. The specific cake resistance K[sub 2] was computed for different test conditions and used as a measure of the mass loading capacity. K[sub 2] was found to decrease with increasing humidity for nonhygroscopic aluminum oxide particles and for hygroscopic NaCl particles (at humidities below the deliquescent point). It is postulated that an increase in humidity leads to the formation of a more open particulate cake which lowers the pressure drop for a given mass loading. A formula for predicting K[sub 2] for lognormally distributed aerosols (parameters obtained from impactor data) was derived. The resistance factor, R, calculated using this formula was compared to the theoretical R calculated using the Rudnick-Happel expression. For the nonhygroscopic aluminum oxide, the agreement was good but for the hygroscopic sodium chloride, due to large variation in the cake porosity estimates, the agreement was poor. 17 refs., 6 figs., 3 tabs.

  12. Nowcasting daily minimum air and grass temperature.

    PubMed

    Savage, M J

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient (b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  13. Nowcasting daily minimum air and grass temperature

    NASA Astrophysics Data System (ADS)

    Savage, M. J.

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient ( b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  14. Temperature-humidity-bias aging technique to identify defective surface mount capacitors

    SciTech Connect

    Chanchani, R.

    1994-01-01

    Ceramic chip capacitors can potentially crack due to thermal stresses in a surface mount assembly process. The electrical performance of the cracked capacitors will degrade with time, and they will prematurely short. In high reliability applications, the cracked capacitors must be identified and eliminated. We have developed and demonstrated the temperature-humidity-bias (THB) aging technique to identify cracked capacitors. The initial phase of the study involved setting up automated test equipment to monitor 100 surface mounted capacitors at 85% relative humidity, 85{degree}C with 50 volts dc bias. The capacitors subjected to severe thermal shock were aged along with control samples. Failure mode analysis was done on the failed capacitors. The capacitors with surface cracks short-out within the first 8 hours of aging, whereas the capacitors that failed after a longer aging time (8 to 1000 hours) had a shorting path in an internal void. Internal voids are typical defects introduced during manufacturing of multilayer ceramic (MLC) capacitors. In the second phase of the study, we used the THB aging technique to study the effect of surface mount processes on capacitor cracking and, thus the reliability. The surface mount processes studied were vapor phase, infra-red (IR) and convection belt reflow soldering. The results shoed that 6.3% of vapor phase soldered capacitors, and 1.25% of the IR and convection belt soldered capacitors had cracks. In all capacitors, regardless of the solder process used, an additional 3 to 4% of the capacitors failed due to a shorting path in the internal void. The results of this study confirm that this technique can be used to screen cracked capacitors and compare different solder and manufacturing processes.

  15. Sensitivity of New England Stream Temperatures to Air Temperature and Precipitation Under Projected Climate

    NASA Astrophysics Data System (ADS)

    Huang, T.; Samal, N. R.; Wollheim, W. M.; Stewart, R. J.; Zuidema, S.; Prousevitch, A.; Glidden, S.

    2015-12-01

    The thermal response of streams and rivers to changing climate will influence aquatic habitat. This study examines the impact that changing climate has on stream temperatures in the Merrimack River, NH/MA USA using the Framework for Aquatic Modeling in the Earth System (FrAMES), a spatially distributed river network model driven by air temperature, air humidity, wind speed, precipitation, and solar radiation. Streamflow and water temperatures are simulated at a 45-second (latitude x longitude) river grid resolution for 135 years under historical and projected climate variability. Contemporary streamflow (Nash-Sutcliffe Coefficient = 0.77) and river temperatures (Nash-Sutcliffe Coefficient = 0.89) matched at downstream USGS gauge data well. A suite of model runs were made in combination with uniformly increased daily summer air temperatures by 2oC, 4 oC and 6 oC as well as adjusted precipitation by -40%, -30%, -20%, -10% and +10% as a sensitivity analysis to explore a broad range of potential future climates. We analyzed the summer stream temperatures and the percent of river length unsuitable for cold to warm water fish habitats. Impacts are greatest in large rivers due to the accumulation of river temperature warming throughout the entire river network. Cold water fish (i.e. brook trout) are most strongly affected while, warm water fish (i.e. largemouth bass) aren't expected to be impacted. The changes in stream temperatures under various potential climate scenarios will provide a better understanding of the specific impact that air temperature and precipitation have on aquatic thermal regimes and habitat.

  16. Room temperature degradation of YBa2Cu3O(7-x) superconductors in varying relative humidity environments

    NASA Technical Reports Server (NTRS)

    Hooker, M. W.; Wise, S. A.; Carlberg, I. A.; Stephens, R. M.; Simchick, R. T.; Farjami, A.

    1993-01-01

    An aging study was performed to determine the stability of YBa2Cu3O(7-x) ceramics in humid environments at 20 C. In this study, fired ceramic specimens were exposed to humidity levels ranging from 30.5 to 100 percent for 2-, 4-, and 6-week time intervals. After storage under these conditions, the specimens were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrical resistance measurements. At every storage condition evaluated, the fired ceramics were found to interact with H2O present in the surrounding environment, resulting in the decomposition of the YBa2Cu3O(7-x) phase. XRD data showed that BaCO3, CuO, and Y2BaCuO5 were present after aging and that the peak intensities of these impurity phases increased both with increasing humidity level and with increasing time of exposure. Additionally, SEM analyses of the ceramic microstructures after aging revealed the development of needle-like crystallites along the surface of the test specimens after aging. Furthermore, the superconducting transition temperature T(sub c) was found to decrease both with increasing humidity level and with increasing time of exposure. All the specimens aged at 30.5, 66, and 81 percent relative humidity exhibited superconducting transitions above 80 K, although these values were reduced by the exposure to the test conditions. Conversely, the specimens stored in direct contact with water (100 percent relative humidity) exhibited no superconducting transitions.

  17. Growth of microorganisms on HVAC filters under controlled temperature and humidity conditions

    SciTech Connect

    Kemp, S.J. |; Kuehn, T.H.; Pui, D.Y.H.; Vesley, D.; Streifel, A.J.

    1995-08-01

    A recirculating duct system was used to challenge a glass fiber media filter, a polymer fiber media filter, and a two-stage electrostatic precipitator (electronic air cleaner) with generated Cladosporium fungal spores and Flavobacterium bacteria. Over a period of a year, the continuous airflow in the ducts was maintained at 70 F (21 C) and 90% relative humidity (RH), but ambient loading was minimal. Filtration efficiency measurements were made, as well as microbial sampling on the surfaces of the filters, to determine filter removal and potential growth of the generated bioaerosols. The electrostatic precipitator demonstrated greater than 90% effectiveness on the fungal and bacterial bioaerosols. The media filters demonstrated initially lower efficiencies, which rose to more than 90% as the filters loaded. At the end of the first year, observable microbial growth took place only on the upstream side of the glass fiber filter. With subsequent nutrient loading and wetting, however, significant microbial growth was found on the downstream side as well as the upstream side of the fiber media filters.

  18. Temperature Tunable Air-Gap Etalon Filter

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Stephen, Mark A.; Lunt, David L.

    1998-01-01

    We report on experimental measurements of a temperature tuned air-gap etalon filter. The filter exhibits temperature dependent wavelength tuning of 54 pm/C. It has a nominal center wavelength of 532 nm. The etalon filter has a 27 pm optical bandpass and 600 pm free spectral range (finesse approximately 22). The experimental results are in close agreement with etalon theory.

  19. Groundwater circulations within a tropical humid andesitic volcanic watershed using the temperature as a tracer

    NASA Astrophysics Data System (ADS)

    Selles, Adrien; Violette, Sophie; Hendrayana, Heru

    2014-05-01

    water temperature has been used as a tracer to understand the pattern of groundwater flow and to determine the mean recharge elevation for springs. Inferences from standard oxygen and hydrogen isotopic measurements are compared with temperature measurements made at the springs to confirm the recharge elevation estimation and whether groundwater circulates to shallow or deeper depths. The METIS model, coupling groundwater flow and heat transport simulations in 2D steady flow regime, has been used in order to confirm the findings of the temperature and mean flow rate analysis and to characterize the regional flow of the multi-layered aquifer system. This approach provides methodological insights into characterization of the groundwater pathway within complex porous media in tropical humid regions. This study enable us to provide guidance on the required level of model complexity as well as on the amount and type of observations data required.

  20. Multiscale Covariability of Surface Wind, Humidity and Temperature in the Subtropical Marine Boundary Layer

    NASA Astrophysics Data System (ADS)

    Fildier, Benjamin; Collins, William

    2016-04-01

    Trade cumulus and stratocumulus clouds in oceanic subtropical regions are sources of much uncertainty in current global climate model (GCM) simulations. Errors in low cloud fraction and rain amounts are a result of inadequate parameterizations for describing the small-scale boundary layer processes specific to the convective and cloud-formation dynamics of those regions. While most cloud parameterization techniques do consider sub-grid scale variability in specific humidity (q), the significant fluctuations in temperature (T) and wind speed (u) in the boundary layer are still often neglected. In order to better acknowledge the interactions of these fields with cloud and convection, understanding their codependence seems crucial. For example, using the negative correlations between T and q on large scales has helped to improve cloud parameterizations, and wind shear is known to modulate cloud layer decoupling and affect the liquid water path (LWP). While numerous studies document the spatial properties of T , q and u independently through power spectra and multifractal analyses, the covariation between these three variables and their spatial increments - and how these relationships change across spatial scales - has not been adequately and quantitatively characterized. The present work focuses on the spatial covariability and multiscale coupling between fluctuations in q, T and u in the marine boundary layer and seeks to understand which pieces of information are required for better predicting LWP on a variety of scales from a few tens to a few hundred kms. We use remote-sensing measurements of thermodynamic variables from MODIS and surface wind estimates from QuikSCAT. The scale-by-scale covariability of two variables is quantified through their Fourier and wavelet cross spectra, using Haar wavelets; these spectra permit the calculation of multiscale coupling exponents when appropriate. Results from this study are threefold: (1) we quantify the contributions of

  1. 20th Century Reanalysis Project Ensemble Gateway: 56 Estimates of World Temperature, Pressure, Humidity, and Wind, 1871-2010

    DOE Data Explorer

    This site provides data from the 20th Century Reanalysis Project, offering temperature, pressure, humidity, and wind predictions in 200 km sections all around the earth from 1871 to 2010, every 6 hours, based on historical data. The ensemble mean and standard deviation for each value were calculated over a set of 56 simulations. Data for each of the 56 ensemble members are included here. The dataset consists of files in netCDF 4 format that are available for download from the National Energy Research. The goal of the 20th Century Reanalysis Project is to use a Kalman filter-based technique to produce a global trophospheric circulation dataset at four-times-daily resolution back to 1871. The only dataset available for the early 20th century consists of error-ridden hand-drawn analyses of the mean sea level pressure field over the Northern Hemisphere. Modern data assimilation systems have the potential to improve upon these maps, but prior to 1948, few digitized upper-air sounding observations are available for such a reanalysis. The global tropospheric circulation dataset will provide an important validation check on the climate models used to make 21st century climate projections....[copied from http://portal.nersc.gov/project/20C_Reanalysis/

  2. Effect of relative humidity in high temperature oxidation of ceria nanoparticles coating on 316L austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Giraldez Pizarro, Luis Miguel

    A solution of 20 wt. % colloidal dispersion of Cerium Oxide (CeO2) in 2.5% of acetic acid, was used for depositing a coating film on an austenitic stainless steel 316L. Cerium compounds have been distinguished as potential corrosion inhibitors in coatings over several alloys. The oxidation behavior of the cerium oxide coating on 316L austenitic stainless steel alloy was evaluated in dry and humid environments, the weight changes (W/A) was monitored as a function of time using a custom built Thermogravimetrical Analysis (TGA) instrument at temperatures of 750°C, 800°C and 850°C, and different relative humidity levels (0%, 10% and 20%) respectively. The parabolic oxidation rate and activation energy is calculated experimentally for each relative humidity level. A measurement of the effective diameter size of the ceria nanoparticles was performed using a Light Scattering technique. A characterization of the film morphology and thickness before the oxidation was executed using Atomic Force Microscopy (AFM). Microstructure and chemical composition of the oxidized coated substrates were analyzed using Scanning Electronic Microscopy (SEM) with energy dispersive spectroscopy (EDS). X-Ray Diffractometer (XRD) was used to characterize oxides formed in the surface upon isothermal treatment. A comparison of activation energy values obtained to identify the influence of relative humidity in the oxidation process at high temperature was conducted. Cerium oxides coating may prevent crevice corrosion and increase pitting resistance of 316L relative to the uncoated substrate at high temperatures and different levels of relative humidity acting as a protective oxidation barrier. The calculated parabolic rate constants, kp, at the experimental temperatures tend to increase as a function of humidity levels. The activation energy tends to increase proportionally to higher level of humidity exposures. At 0% relative humidity a value of 319.29 KJ/mol of activation energy is being

  3. Temperature/Humidity sensitivity of sustained-release formulations containing Kollidon SR.

    PubMed

    Engineer, Sinju; Shao, Zezhi J; Khagani, Nouman A

    2004-01-01

    The effects of temperature and humidity on tablets containing Kollidon SR have been evaluated using diphenhydramine HCl as a model drug. Exposure of tablets to ICH accelerated stability condition (40 degrees C/75%RH) in an open dish resulted in rapid increases in tablet hardness, accompahied by step-wise decreases in dissolution rate. Such a change can be observed as fast as an hour upon exposure. The tablet matrix appears to rapidly absorb atmospheric moisture, as demonstrated by tablet weight gain and moisture adsorption isotherms. Exposure to 25 degrees C/60%RH similarly resulted in increases in tablet hardness, although with minimal impact on dissolution. Potential implications of such rapid moisture uptake during aqueous film-coating were further evaluated by spraying either water or an Opadry solution in a coating pan. Exposure of Kollidon SR tablets to the aqueous coating process indeed resulted in noticeable changes in both hardness and dissolution. Application of the Opadry solution appears to affect tablet behavior to a lesser degree, compared to water, most likely due to protection via formed barrier film. Attention needs to be paid to the extreme sensitivity of Kollidon SR matrix tablets to temperature and moisture during product development.

  4. THE INFLUENCE OF VARIABLE TEMPERATURE AND HUMIDITY ON THE PREDATION EFFICIENCY OF P. PERSIMILIS, N. CALIFORNICUS AND N. FALLACIS.

    PubMed

    Audenaert, J; Vangansbeke, D; Verhoeven, R; De Clercq, P; Tirry, L; Gobin, B

    2014-01-01

    Predatory mites like Phytoseiulus persimilis Athias-Henriot, Neoseiulus californicus McGregor and N. fallacis (Garman) (Acari: Phytoseiidae) are essential in sustainable control strategies of the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) in warm greenhouse cultures to complement imited available pesticides and to tackle emerging resistance. However, in response to high energy prices, greenhouse plant breeders have recently changed their greenhouse steering strategies, allowing more variation in temperature and humidity. The impact of these variations on biological control agents is poorly understood. Therefore, we constructed functional response models to demonstrate the impact of realistic climate variations on predation efficiency. First, two temperature regimes were compared at constant humidity (70%) and photoperiod (16L:8D): DIF0 (constant temperature) and DIF15 (variable temperature with day-night difference of 15°C). At mean temperatures of 25°C, DIF15 had a negative influence on the predation efficiency of P. persimilis and N. californicus, as compared to DIF0. At low mean temperatures of 15°C, however, DIF15 showed a higher predation efficiency for P. persimilis and N. californicus. For N. fallacis no difference was observed at both 15°C and 25°C. Secondly, two humidity regimes were compared, at a mean temperature of 25°C (DIFO) and constant photoperiod (16L:8D): RHCTE (constant 70% humidity) and RHALT (alternating 40% L:70%D humidity). For P. persimilis and N. fallacis RHCTE resulted in a higher predation efficiency than RHALT, for N. californicus this effect was opposite. This shows that N. californicus is more adapted to dry climates as compared to the other predatory mites. We conclude that variable greenhouse climates clearly affect predation efficiency of P. persimilis, N. californicus and N. fallacis. To obtain optimal control efficiency, the choice of predatory mites (including dose and application frequency

  5. Undulator Hall Air Temperature Fault Scenarios

    SciTech Connect

    Sevilla, J.; Welch, J.; /SLAC

    2010-11-17

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  6. Modeling monthly mean air temperature for Brazil

    NASA Astrophysics Data System (ADS)

    Alvares, Clayton Alcarde; Stape, José Luiz; Sentelhas, Paulo Cesar; de Moraes Gonçalves, José Leonardo

    2013-08-01

    Air temperature is one of the main weather variables influencing agriculture around the world. Its availability, however, is a concern, mainly in Brazil where the weather stations are more concentrated on the coastal regions of the country. Therefore, the present study had as an objective to develop models for estimating monthly and annual mean air temperature for the Brazilian territory using multiple regression and geographic information system techniques. Temperature data from 2,400 stations distributed across the Brazilian territory were used, 1,800 to develop the equations and 600 for validating them, as well as their geographical coordinates and altitude as independent variables for the models. A total of 39 models were developed, relating the dependent variables maximum, mean, and minimum air temperatures (monthly and annual) to the independent variables latitude, longitude, altitude, and their combinations. All regression models were statistically significant ( α ≤ 0.01). The monthly and annual temperature models presented determination coefficients between 0.54 and 0.96. We obtained an overall spatial correlation higher than 0.9 between the models proposed and the 16 major models already published for some Brazilian regions, considering a total of 3.67 × 108 pixels evaluated. Our national temperature models are recommended to predict air temperature in all Brazilian territories.

  7. Temperature and humidity measurements within desert barchan sand dunes, relation to dune aeolian mobility and microbial growth

    NASA Astrophysics Data System (ADS)

    Louge, Michel; Hay, Anthony; Richer, Renee; Valance, Alexandre; Ould el Moctar, Ahmed; Xu, Jin; Abdul-Majid, Sara

    2013-04-01

    We present diurnal variations of temperature and humidity profiles below the surface of hyper-arid aeolian crescent-shaped "barchan" dunes in Qatar and Mauritania, measured using a thermal probe and a new ultra-sensitive capacitance instrument that we developed for this purpose. We also report long-term measurements from a probe sunk on the downwind avalanche face of a mobile Qatar barchan, recording temperature and humidity until it emerged on the upwind slope 15 months later. We interpret the data by modeling heat and moisture transfer at the surface in terms of measured net surface radiation, wind, and atmospheric conditions. We demonstrate the presence of microbes on sand grains within these mobile dunes using microscopic observations, fluorescence counts, metagenomic sequencing, and C12/C13 isotope analysis of carbon dioxide sampled below the surface. By determining how water activity grows with moisture adsorbed on these sands, we delimit regions within the dune where our instruments recorded humidity conducive to microbial growth. Finally, we compare the mobility of two adjacent Mauritania barchans having distinct surface grain size, shape, and depth humidity profiles. Armored by large grains on its surface, the smaller dune was more oblong. As a result, it lacked flow recirculation in its wake, trapped less aeolian sand downwind, and was much less mobile than its smaller size would suggest. This slower mobility led to greater humidity and cohesion at depth than the larger dune exposed to the same atmospheric and wind conditions.

  8. A Life Cycle Assessment Case Study of Coal-Fired Electricity Generation with Humidity Swing Direct Air Capture of CO2 versus MEA-Based Postcombustion Capture.

    PubMed

    van der Giesen, Coen; Meinrenken, Christoph J; Kleijn, René; Sprecher, Benjamin; Lackner, Klaus S; Kramer, Gert Jan

    2017-01-17

    Most carbon capture and storage (CCS) envisions capturing CO2 from flue gas. Direct air capture (DAC) of CO2 has hitherto been deemed unviable because of the higher energy associated with capture at low atmospheric concentrations. We present a Life Cycle Assessment of coal-fired electricity generation that compares monoethanolamine (MEA)-based postcombustion capture (PCC) of CO2 with distributed, humidity-swing-based direct air capture (HS-DAC). Given suitable temperature, humidity, wind, and water availability, HS-DAC can be largely passive. Comparing energy requirements of HS-DAC and MEA-PCC, we find that the parasitic load of HS-DAC is less than twice that of MEA-PCC (60-72 kJ/mol versus 33-46 kJ/mol, respectively). We also compare other environmental impacts as a function of net greenhouse gas (GHG) mitigation: To achieve the same 73% mitigation as MEA-PCC, HS-DAC would increase nine other environmental impacts by on average 38%, whereas MEA-PCC would increase them by 31%. Powering distributed HS-DAC with photovoltaics (instead of coal) while including recapture of all background GHG, reduces this increase to 18%, hypothetically enabling coal-based electricity with net-zero life-cycle GHG. We conclude that, in suitable geographies, HS-DAC can complement MEA-PCC to enable CO2 capture independent of time and location of emissions and recapture background GHG from fossil-based electricity beyond flue stack emissions.

  9. Breathing hot humid air induces airway irritation and cough in patients with allergic rhinitis.

    PubMed

    Khosravi, Mehdi; Collins, Paul B; Lin, Ruei-Lung; Hayes, Don; Smith, Jaclyn A; Lee, Lu-Yuan

    2014-07-01

    We studied the respiratory responses to an increase in airway temperature in patients with allergic rhinitis (AR). Responses to isocapnic hyperventilation (40% of maximal voluntary ventilation) for 4min of humidified hot air (HA; 49°C) and room air (RA; 21°C) were compared between AR patients (n=7) and healthy subjects (n=6). In AR patients, cough frequency increased pronouncedly from 0.10±0.07 before to 2.37±0.73 during, and 1.80±0.79coughs/min for the first 8min after the HA challenge, but not during the RA challenge. In contrast, neither HA nor RA had any significant tussive effect in healthy subjects. The HA challenge also caused respiratory discomfort (mainly throat irritation) measured by the handgrip dynamometry in AR patients, but not in healthy subjects. Bronchoconstriction was not detected after the HA challenge in either group of subjects. In conclusion, hyperventilation of HA triggered vigorous cough response and throat irritation in AR patients, indicating the involvement of sensory nerves innervating upper airways.

  10. Modeling of global surface air temperature

    NASA Astrophysics Data System (ADS)

    Gusakova, M. A.; Karlin, L. N.

    2012-04-01

    A model to assess a number of factors, such as total solar irradiance, albedo, greenhouse gases and water vapor, affecting climate change has been developed on the basis of Earth's radiation balance principle. To develop the model solar energy transformation in the atmosphere was investigated. It's a common knowledge, that part of the incoming radiation is reflected into space from the atmosphere, land and water surfaces, and another part is absorbed by the Earth's surface. Some part of outdoing terrestrial radiation is retained in the atmosphere by greenhouse gases (carbon dioxide, methane, nitrous oxide) and water vapor. Making use of the regression analysis a correlation between concentration of greenhouse gases, water vapor and global surface air temperature was obtained which, it is turn, made it possible to develop the proposed model. The model showed that even smallest fluctuations of total solar irradiance intensify both positive and negative feedback which give rise to considerable changes in global surface air temperature. The model was used both to reconstruct the global surface air temperature for the 1981-2005 period and to predict global surface air temperature until 2030. The reconstructions of global surface air temperature for 1981-2005 showed the models validity. The model makes it possible to assess contribution of the factors listed above in climate change.

  11. Dissimilarity between temperature-humidity in the atmospheric surface layer and implications for estimates of evaporation

    NASA Astrophysics Data System (ADS)

    Cancelli, D. M.; Dias, N. L.; Chamecki, M.

    2012-12-01

    In several methods used in water resources to estimate evaporation from land and water surfaces, a fundamental assumption is that temperature (T) and specific humidity (q) fluctuations behave similarly in the atmospheric surface layer (ASL). In the Energy-Budget Bowen Ratio method it is assumed that both eddy diffusivities are equal, while in the variance method it is often assumed that all the Monin-Obukhov Similarity (MOS) functions for the two scalars are equal. However, it is well-known that the T-q similarity does not always hold and that the dissimilarity found in practice can significantly impact the estimates of evaporation. Given the frequent dissimilarity between temperature and humidity, two important problems arise. The first one is related to the choice of the function used to characterize scalar similarity, given that not all commonly used functions are equally capable of identifying scalar dissimilarity. The second problem is associated with the identification of the physical mechanisms behind scalar dissimilarity in each particular case: local advection, nonstationarity, surface heterogeneity, active/passive roles of the scalars, entrainment fluxes at the top of the atmospheric boundary layer are typically cited as possible causes, but seldom a convincing argument is presented. In this work we combine experimental data and numerical simulations to study similarity between T and q in the ASL. Data measured over a lake in Brazil suggests a strong relationship between scalar similarity and the balance between local production and dissipation of scalar variance, which is in practice related to the strength of the surface forcing. Scalar variance and covariance budgets are used to derive a set of dimensionless Scalar Flux numbers that are capable of diagnosing the balance between gradient production and molecular dissipation of scalar variance and covariance. Experimental data shows that these Scalar Flux numbers are good predictors of scalar (dis

  12. Membrane Dehumidifier: High-Efficiency, On-Line Membrane Air Dehumidifier Enabling Sensible Cooling for Warm and Humid Climates

    SciTech Connect

    2010-09-01

    BEETIT Project: ADMA Products is developing a foil-like membrane for air conditioners that efficiently removes moisture from humid air. ADMA Products’s metal foil-like membrane consists of a paper thin, porous metal sheet coated with a layer of water-loving molecules. This new membrane allows water vapor to permeate across the membrane at high fluxes and at the same time, blocks air penetration efficiently resulting in high selectivity. The high selectivity of the membrane translates to less energy use, while the high permeation fluxes result in a more compact device. The new materials and the flat foil-like nature of the membrane facilitate the mass production of a low-coast compact dehumidification device

  13. Health symptoms in relation to temperature, humidity, and self-reported perceptions of climate in New York City residential environments.

    PubMed

    Quinn, Ashlinn; Shaman, Jeffrey

    2017-01-20

    Little monitoring has been conducted of temperature and humidity inside homes despite the fact that these conditions may be relevant to health outcomes. Previous studies have observed associations between self-reported perceptions of the indoor environment and health. Here, we investigate associations between measured temperature and humidity, perceptions of indoor environmental conditions, and health symptoms in a sample of New York City apartments. We measured temperature and humidity in 40 New York City apartments during summer and winter seasons and collected survey data from the households' residents. Health outcomes of interest were (1) sleep quality, (2) symptoms of heat illness (summer season), and (3) symptoms of respiratory viral infection (winter season). Using mixed-effects logistic regression models, we investigated associations between the perceptions, symptoms, and measured conditions in each season. Perceptions of indoor temperature were significantly associated with measured temperature in both the summer and the winter, with a stronger association in the summer season. Sleep quality was inversely related to measured and perceived indoor temperature in the summer season only. Heat illness symptoms were associated with perceived, but not measured, temperature in the summer season. We did not find an association between any measured or perceived condition and cases of respiratory infection in the winter season. Although limited in size, the results of this study reveal that indoor temperature may impact sleep quality, and that thermal perceptions of the indoor environment may indicate vulnerability to heat illness. These are both important avenues for further investigation.

  14. Health symptoms in relation to temperature, humidity, and self-reported perceptions of climate in New York City residential environments

    NASA Astrophysics Data System (ADS)

    Quinn, Ashlinn; Shaman, Jeffrey

    2017-01-01

    Little monitoring has been conducted of temperature and humidity inside homes despite the fact that these conditions may be relevant to health outcomes. Previous studies have observed associations between self-reported perceptions of the indoor environment and health. Here, we investigate associations between measured temperature and humidity, perceptions of indoor environmental conditions, and health symptoms in a sample of New York City apartments. We measured temperature and humidity in 40 New York City apartments during summer and winter seasons and collected survey data from the households' residents. Health outcomes of interest were (1) sleep quality, (2) symptoms of heat illness (summer season), and (3) symptoms of respiratory viral infection (winter season). Using mixed-effects logistic regression models, we investigated associations between the perceptions, symptoms, and measured conditions in each season. Perceptions of indoor temperature were significantly associated with measured temperature in both the summer and the winter, with a stronger association in the summer season. Sleep quality was inversely related to measured and perceived indoor temperature in the summer season only. Heat illness symptoms were associated with perceived, but not measured, temperature in the summer season. We did not find an association between any measured or perceived condition and cases of respiratory infection in the winter season. Although limited in size, the results of this study reveal that indoor temperature may impact sleep quality, and that thermal perceptions of the indoor environment may indicate vulnerability to heat illness. These are both important avenues for further investigation.

  15. Modeling and Simulation of the Transient Response of Temperature and Relative Humidity Sensors with and without Protective Housing

    PubMed Central

    Rocha, Keller Sullivan Oliveira; Martins, José Helvecio; Martins, Marcio Arêdes; Ferreira Tinôco, Ilda de Fátima; Saraz, Jairo Alexander Osorio; Filho, Adílio Flauzino Lacerda; Fernandes, Luiz Henrique Martins

    2014-01-01

    Based on the necessity for enclosure protection of temperature and relative humidity sensors installed in a hostile environment, a wind tunnel was used to quantify the time that the sensors take to reach equilibrium in the environmental conditions to which they are exposed. Two treatments were used: (1) sensors with polyvinyl chloride (PVC) enclosure protection, and (2) sensors with no enclosure protection. The primary objective of this study was to develop and validate a 3-D computational fluid dynamics (CFD) model for analyzing the temperature and relative humidity distribution in a wind tunnel using sensors with PVC enclosure protection and sensors with no enclosure protection. A CFD simulation model was developed to describe the temperature distribution and the physics of mass transfer related to the airflow relative humidity. The first results demonstrate the applicability of the simulation. For verification, a sensor device was successfully assembled and tested in an environment that was optimized to ensure fast change conditions. The quantification setup presented in this paper is thus considered to be adequate for testing different materials and morphologies for enclosure protection. The results show that the boundary layer flow regime has a significant impact on the heat flux distribution. The results indicate that the CFD technique is a powerful tool which provides a detailed description of the flow and temperature fields as well as the time that the relative humidity takes to reach equilibrium with the environment in which the sensors are inserted. PMID:24851994

  16. Egg hatch and survival and development of beet webworm (Lepidoptera: Crambidae) larvae at different combinations of temperature and relative humidity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To understand the role that temperature and humidity play in the population dynamics of the beet webworm, Loxostege sticticalis L. (Lepidoptera: Crambidae), egg hatchability, survival of 1st - 5th instars, survival of the complete larval stage, survival curves, and larval development rates were inve...

  17. Effects of irrigation and air humidity preconditioning on water relations, growth and survival of Rosmarinus officinalis plants during and after transplanting.

    PubMed

    Sánchez-Blanco, Maria Jesús; Ferrández, Trinitario; Navarro, Alejandra; Bañon, Sebastián; Alarcón, Juan José

    2004-10-01

    The effect of different irrigation and air humidity conditioning treatments on the morphological and physiological responses of Rosmarinus officinalis in nursery conditions was investigated in order to evaluate the degree of hardening resulting from these conditions. Rosmarinus officinalis seedlings were pot-grown during 4 months in two greenhouses (nursery period), in which two irrigation treatments were used (control and deficit). In one of these greenhouses, air humidity was controlled using a dehumidifying system (low humidity), in the other greenhouse the air conditions were not artificially modified (control humidity). After the nursery period, the plants of all treatments were transplanted and well watered (100% water holding capacity for 1 month, transplanting period). After this period, they received no water (establishment period). At the end of the nursery period it was seen that deficit irrigation had altered the morphology of the R. officinalis plants by reducing plant height, stem diameter, leaf area, total dry weight, and root length, while humidity influenced the parameters related with plant water relations. Low air humidity and deficit irrigation-induced tissue dehydration and lower stomatal conductance values (gs). The plants subjected to deficit irrigation developed leaf osmotic adjustment, which was maintained during the transplanting period. At that time, the plants that had been exposed to deficit irrigation and low humidity showed efficient stomatal regulation (lower gs values). After transplanting and during the establishment period, these plants showed a better water status (higher psil and gs values). Their post-planting survival rate improved as a result of acclimation processes.

  18. Temperature differences in the air layer close to a road surface

    NASA Astrophysics Data System (ADS)

    Bogren, Jörgen; Gustavsson, Torbjörn; Karlsson, Maria

    2001-12-01

    In this study, profiles of temperature and humidity (<250 cm above the road and 5 m into the surroundings) have been used to examine the development of temperature differences in the air layer close to the road. Temperature, humidity and wind profiles were measured, together with net radiation and observations of road surface state, at a test site at Road 45, Surte, Sweden. Measured temperature differences were compared with present weather, preceding weather, surface status, wind direction and other parameters thought to be important for the development of temperature differences. The results showed that large temperature differences (1-3 °C between 250 cm and 10 cm above the road) occurred when there was a high risk of slipperiness caused by hoarfrost, snow or ice on the road. The temperature differences between different levels were associated with the exchange of humidity and temperature between the air layer and the road surface. The 10 cm level reflected the surface processes well. Higher levels were influenced by the surroundings because of turbulence and advection. This study emphasises the need for measurements to be taken at a height and place that reflects the processes at the road surface.

  19. Induced Air Movement for Wide-Span Schools in Humid Asia. Educational Building Digest 9.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and Oceania.

    Schools in the hot and humid zones of the Asian region are narrow to ensure good ventilation. The purpose of this report is to show that it is possible, through appropriate design, to obtain sufficient breeze for thermal comfort in buildings as wide as 15 meters. Some of the conclusions of a study of the subject are summarized. The summary is…

  20. Morphology of U3O8 materials following storage under controlled conditions of temperature and relative humidity

    DOE PAGES

    Tamasi, Alison L.; Cash, Leigh J.; Mullen, William Tyler; ...

    2016-07-05

    Changes in the visual characteristics of uranium oxide surfaces and morphology following storage under different conditions of temperature and relative humidity may provide insight into the history of an unknown sample. Sub-samples of three α-U3O8 materials—one that was phase-pure and two that were phase-impure—were stored under controlled conditions for two years. We used scanning electron microscopy to image the oxides before and after storage, and a morphology lexicon was used to characterize the images. Finally, temporal changes in morphology were observed in some sub-samples, and changes were greatest following exposure to high relative humidity.

  1. Humidity micro switch based on humidity-sensitive polymers

    NASA Astrophysics Data System (ADS)

    Bellmann, C.; Steinke, A.; Frank, T.; Gerlach, G.

    2015-04-01

    We present recent results on a binary threshold sensor based on the binary zero-power sensor (BIZEPS) platform which is able to use the energy provided directly from the measured relative humidity of the ambient air to mechanically switch an electrical micro contact. This zero-power switch behavior is realized by using the humidity-sensitive volume swelling of a polymer layer as the detection element deflecting a mechanically deformable silicon boss structure, thus closing the electrical contacts of the switch. For the humidity-sensitive sensor switch considered here, a humidity-sensitive hydrogel blend of poly(vinyl alcohol) and poly(acryl acid) was used. The sensitive part affected by the measurand is completely separated from the electrical part, thus providing long-term stability. By using an inverse silicone stamping technique the polymer layer with a thickness of about 15 μm was patterned on test structures possessing a thin silicon flexure plate of 5 mm x 5 mm in size and 20 μm in thickness. Reproducible deformations of up to 15 … 24 μm has been measured. Investigations of the swelling kinetics showed for several discrete relative humidity values a saturation of the water load. The time to reach this saturation state is reduced from 5 hours down to approx. 20 min by increasing the relative humidity beyond the threshold value of 70% r.H. A significant influence of the temperature to the humidity load could not be observed.

  2. PYR/RCAR receptors contribute to ozone-, reduced air humidity-, darkness-, and CO2-induced stomatal regulation.

    PubMed

    Merilo, Ebe; Laanemets, Kristiina; Hu, Honghong; Xue, Shaowu; Jakobson, Liina; Tulva, Ingmar; Gonzalez-Guzman, Miguel; Rodriguez, Pedro L; Schroeder, Julian I; Broschè, Mikael; Kollist, Hannes

    2013-07-01

    Rapid stomatal closure induced by changes in the environment, such as elevation of CO2, reduction of air humidity, darkness, and pulses of the air pollutant ozone (O3), involves the SLOW ANION CHANNEL1 (SLAC1). SLAC1 is activated by OPEN STOMATA1 (OST1) and Ca(2+)-dependent protein kinases. OST1 activation is controlled through abscisic acid (ABA)-induced inhibition of type 2 protein phosphatases (PP2C) by PYRABACTIN RESISTANCE/REGULATORY COMPONENTS OF ABA RECEPTOR (PYR/RCAR) receptor proteins. To address the role of signaling through PYR/RCARs for whole-plant steady-state stomatal conductance and stomatal closure induced by environmental factors, we used a set of Arabidopsis (Arabidopsis thaliana) mutants defective in ABA metabolism/signaling. The stomatal conductance values varied severalfold among the studied mutants, indicating that basal ABA signaling through PYR/RCAR receptors plays a fundamental role in controlling whole-plant water loss through stomata. PYR/RCAR-dependent inhibition of PP2Cs was clearly required for rapid stomatal regulation in response to darkness, reduced air humidity, and O3. Furthermore, PYR/RCAR proteins seem to function in a dose-dependent manner, and there is a functional diversity among them. Although a rapid stomatal response to elevated CO2 was evident in all but slac1 and ost1 mutants, the bicarbonate-induced activation of S-type anion channels was reduced in the dominant active PP2C mutants abi1-1 and abi2-1. Further experiments with a wider range of CO2 concentrations and analyses of stomatal response kinetics suggested that the ABA signalosome partially affects the CO2-induced stomatal response. Thus, we show that PYR/RCAR receptors play an important role for the whole-plant stomatal adjustments and responses to low humidity, darkness, and O3 and are involved in responses to elevated CO2.

  3. Empirical model for estimating dengue incidence using temperature, rainfall, and relative humidity: a 19-year retrospective analysis in East Delhi

    PubMed Central

    2016-01-01

    OBJECTIVES Aedes mosquitoes are responsible for transmitting the dengue virus. The mosquito lifecycle is known to be influenced by temperature, rainfall, and relative humidity. This retrospective study was planned to investigate whether climatic factors could be used to predict the occurrence of dengue in East Delhi. METHODS The number of monthly dengue cases reported over 19 years was obtained from the laboratory records of our institution. Monthly data of rainfall, temperature, and humidity collected from a local weather station were correlated with the number of monthly reported dengue cases. One-way analysis of variance was used to analyse whether the climatic parameters differed significantly among seasons. Four models were developed using negative binomial generalized linear model analysis. Monthly rainfall, temperature, humidity, were used as independent variables, and the number of dengue cases reported monthly was used as the dependent variable. The first model considered data from the same month, while the other three models involved incorporating data with a lag phase of 1, 2, and 3 months, respectively. RESULTS The greatest number of cases was reported during the post-monsoon period each year. Temperature, rainfall, and humidity varied significantly across the pre-monsoon, monsoon, and post-monsoon periods. The best correlation between these three climatic factors and dengue occurrence was at a time lag of 2 months. CONCLUSIONS This study found that temperature, rainfall, and relative humidity significantly affected dengue occurrence in East Delhi. This weather-based dengue empirical model can forecast potential outbreaks 2-month in advance, providing an early warning system for intensifying dengue control measures. PMID:27899025

  4. Effect of the temperature-humidity index on body temperature and conception rate of lactating dairy cows in southwestern Japan.

    PubMed

    Nabenishi, Hisashi; Ohta, Hiroshi; Nishimoto, Toshihumi; Morita, Tetsuo; Ashizawa, Koji; Tsuzuki, Yasuhiro

    2011-09-01

    In the present study, we investigated the relationship between the temperature-humidity index (THI) and the conception rate of lactating dairy cows in southwestern Japan, one of the hottest areas of the country. We also investigated the relationship between measurement of the vaginal temperature of lactating dairy cows as their core body temperature at one-hour intervals for 25 consecutive days in hot (August-September, n=6) and cool (January-February, n=5) periods and their THI. Furthermore, we discussed the above relationship using these vaginal temperatures, the conception rates and the THI. As a result, when the conception rates from day 2 to 0 before AI were classified into day 2, 1 and 0 groups by the six maximum THI values in each group (mTHI; <61, 61-65, 66-70, 71-75, 76-80, >80), only the conception rate for the mTHI over 80 at 1 day before AI group was significantly lower (P<0.05) than the other groups. The conception rate for days 15 to 17, but not days 19 to 22 and 30 to 35, after AI in the cows that experienced average mTHI over 80 (amTHI>80) was significantly lower (P<0.05) than that of the cows that did not experience amTHI>80. There was a significant positive correlation (P<0.01) between the mTHI and the mean daily vaginal temperature, but not during the cool period. When the mTHI reached 69, the vaginal temperature started to increase. As for the relationship between the conception rates and vaginal temperatures for all mTHI classes, in the mTHI>80 at 1 day before AI group, the vaginal temperature increased by 0.6 C from 38.7 C, resulting in a reduction of 11.6% in the conception rate from 40.5%. In conclusion, these results suggest that one of the causes of the fall in conception rate of lactating dairy cows during the summer season in southwestern Japan may be an increase in their core body temperature with a higher mTHI than the critical mTHI of 69 at 1 day before AI.

  5. Influence of temperature and relative humidity conditions on the pan coating of hydroxypropyl cellulose molded capsules.

    PubMed

    Macchi, Elena; Zema, Lucia; Pandey, Preetanshu; Gazzaniga, Andrea; Felton, Linda A

    2016-03-01

    In a previous study, hydroxypropyl cellulose (HPC)-based capsular shells prepared by injection molding and intended for pulsatile release were successfully coated with 10mg/cm(2) Eudragit® L film. The suitability of HPC capsules for the development of a colon delivery platform based on a time dependent approach was demonstrated. In the present work, data logging devices (PyroButton®) were used to monitor the microenvironmental conditions, i.e. temperature (T) and relative humidity (RH), during coating processes performed under different spray rates (1.2, 2.5 and 5.5g/min). As HPC-based capsules present special features, a preliminary study was conducted on commercially available gelatin capsules for comparison purposes. By means of PyroButton data-loggers it was possible to acquire information about the impact of the effective T and RH conditions experienced by HPC substrates during the process on the technological properties and release performance of the coated systems. The use of increasing spray rates seemed to promote a tendency of the HPC shells to slightly swell at the beginning of the spraying process; moreover, capsules coated under spray rates of 1.2 and 2.5g/min showed the desired release performance, i.e. ability to withstand the acidic media followed by the pulsatile release expected for uncoated capsules. Preliminary stability studies seemed to show that coating conditions might also influence the release performance of the system upon storage.

  6. Lack of response of laying hens to relative humidity at high ambient temperature.

    PubMed

    Yahav, S; Shinder, D; Razpakovski, V; Rusal, M; Bar, A

    2000-12-01

    1. The effects of relative humidity (rh=40% to 70%) at high ambient temperature (Ta) on the performance of laying hens at different ages (8 to 10 months, Trial 1; and 16 to 18 months, Trial 2) was evaluated. Laying hens were exposed to 25 degrees C (control) for 3 weeks and thereafter acclimated for 1 week to 35 degrees C and 4 different rh. 2. Body weight declined significantly in young and older hens exposed to 60% or 70% and 70% rh, respectively: Food intake declined with increasing Ta, except in the case of older hens exposed to 60% rh, for which it remained relatively constant. Water consumption, however, increased with increasing Ta but the increase was significant in young hens exposed to 70% rh only. 3. Egg production was not affected by the changes in Ta. However, a decrease in egg production was observed in older hens exposed to 60% rh. 4. Egg weight (EW), shell weight (SW) and shell thickness (ST) were significantly reduced by exposure to elevated Ta, whereas % breakage significantly increased. In young hens, a response to rh was exhibited in ST which was significantly higher in hens exposed to the low rh (40% to 45%) than in those exposed to the highest rh (70% to 75%). 5. It can be concluded that Ta is the main environmental factor affecting young and older laying hens while the effect of rh is minor.

  7. Temperature and Humidity Sensor Powered by an Individual Microbial Fuel Cell in a Power Management System.

    PubMed

    Zheng, Qi; Xiong, Lei; Mo, Bing; Lu, Weihong; Kim, Suki; Wang, Zhenyu

    2015-09-11

    Microbial fuel cells (MFCs) are of increasing interest as bioelectrochemical systems for decomposing organic materials and converting chemical energy into electricity. The main challenge for this technology is that the low power and voltage of the devices restricts the use of MFCs in practical applications. In this paper, a power management system (PMS) is developed to store the energy and export an increased voltage. The designed PMS successfully increases the low voltage generated by an individual MFC to a high potential of 5 V, capable of driving a wireless temperature and humidity sensor based on nRF24L01 data transmission modules. With the PMS, MFCs can intermittently power the sensor for data transmission to a remote receiver. It is concluded that even an individual MFC can supply the energy required to power the sensor and telemetry system with the designed PMS. The presented PMS can be widely used for unmanned environmental monitoring such as wild rivers, lakes, and adjacent water areas, and offers promise for further advances in MFC technology.

  8. Temperature Humidity and Sea Level Pressure Increments Induced by 1DVAR Analysis of GPS Refractivity

    NASA Technical Reports Server (NTRS)

    Poli, Paul; Joiner, Joanna; Kursinski, Emil Robert; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The Global Positioning System (GPS) transmitted signals are affected by the atmosphere. Using the radio occultation technique, where a receiver is placed on a low-Earth-orbiting platform. it is possible to perform soundings. by measuring the bending angles of the rays. The information can be converted into atmospheric refractivity. We have developed a one dimensional variational (1DVAR) analysis that uses GPS/MET 1995 refractivity and 6-hour FVDAS (Finite Volume Data Assimilation System) forecasts as background information to constrain the retrievals. The analysis increments are defined as 1DVAR minus background temperature, humidity and sea level pressure. Before assimilating the 1DVAR profiles into the FVDAS. the increments need to be understood. First, some bias could be induced in the retrievals when confronted with actual biased data: second. bias in the back-round could create undesired bias in the retrievals. Anv bias in the analyses will ultimately change the climatology of the model the retrievals will be assimilated into. We relate the increments to the reduction of the difference between observed minus computed refractivity profiles. We also point out the difference in the mean increments using backgrounds which have assimilated either NESDIS TIROS Operational Vertical Sounder (TOVS) operational retrievals or Data Assimilation Office (DAO) TOVS interactive retrievals. The climatology of the model in terms of refractivity is significantly different and this impacts the GPS 1DVAR increments. This testifies that changing the basic load of assimilated data has an influence on the impact the GPS data may have in a DAS.

  9. Return glider radiosonde to measure temperature, humidity and radiation profiles through the atmosphere

    NASA Astrophysics Data System (ADS)

    Kraeuchi, Andreas; Philipona, Rolf

    2015-04-01

    Very promising radiation profile measurements through the atmosphere were made in 2011 with a balloon borne short- and longwave net radiometer. New and improved radiation sensors from Kipp&Zonen are now used in a glider aircraft together with a standard Swiss radiosonde from Meteolabor AG. This new return glider radiosonde (RG-R), is lifted up with double balloon technique to prevent pendulum motion and to keep the radiation instruments as horizontal as possible during the ascent measuring phase. The RG-R is equipped with a mechanism that allows to release the radiosonde at a preset altitude, and an autopilot allowing to fly the radiosonde back to the launch site and to land it savely with a parachute at a preset location. The return glider radiosonde technique as well as new measurement possibilities will be shown. First measurements show temperature, humidity and radiation profiles through the atmosphere up to 30 hPa (24 km) during different atmospheric conditions. Radiation profiles during different daytimes show possibilities with respect to temporal resolution of vertical radiation profiles trough the atmosphere.

  10. Temperature and Humidity Sensor Powered by an Individual Microbial Fuel Cell in a Power Management System

    PubMed Central

    Zheng, Qi; Xiong, Lei; Mo, Bing; Lu, Weihong; Kim, Suki; Wang, Zhenyu

    2015-01-01

    Microbial fuel cells (MFCs) are of increasing interest as bioelectrochemical systems for decomposing organic materials and converting chemical energy into electricity. The main challenge for this technology is that the low power and voltage of the devices restricts the use of MFCs in practical applications. In this paper, a power management system (PMS) is developed to store the energy and export an increased voltage. The designed PMS successfully increases the low voltage generated by an individual MFC to a high potential of 5 V, capable of driving a wireless temperature and humidity sensor based on nRF24L01 data transmission modules. With the PMS, MFCs can intermittently power the sensor for data transmission to a remote receiver. It is concluded that even an individual MFC can supply the energy required to power the sensor and telemetry system with the designed PMS. The presented PMS can be widely used for unmanned environmental monitoring such as wild rivers, lakes, and adjacent water areas, and offers promise for further advances in MFC technology. PMID:26378546

  11. Biological activity of two new pyrrole derivatives against stored-product species: influence of temperature and relative humidity.

    PubMed

    Boukouvala, M C; Kavallieratos, N G; Athanassiou, C G; Hadjiarapoglou, L P

    2016-08-01

    Members of the pyrrole group are likely to have interesting properties that merit additional investigation as insecticides at the post-harvest stages of agricultural commodities. In the present work, the insecticidal effect of two new pyrrole derivatives, ethyl 3-(benzylthio)-4,6-dioxo-5-phenyl-2,4,5,6-tetrahydropyrrolo[3,4-c]pyrrole-carboxylate (3i) and isopropyl 3-(benzylthio)-4,6-dioxo-5-phenyl-2,4,5,6-tetrahydropyrrolo[3,4-c]pyrrole-carboxylate (3k) were studied as stored-wheat protectants against two major stored-product insect species, the confused flour beetle, Tribolium confusum Jaquelin du Val adults and larvae and the Mediterranean flour moth, Ephestia kuehniella Zeller larvae at different doses (0.1, 1 and 10 ppm), exposure intervals (7, 14 and 21 days), temperatures (20, 25 and 30°C) and relative humidity (55 and 75%) levels. For T. confusum adults, in the case of the pyrrole derivative 3i, mortality was low and it did not exceed 32.2% in wheat treated with 10 ppm 3i at 30°C and 55% relative humidity. Progeny production was very low (<1 individual/vial) in all combinations of 55% relative humidity, including control. In the case of the pyrrole derivative 3k, mortality reached 67.8% at 30°C and 55% relative humidity in wheat treated with 10 ppm after 21 days of exposure. Progeny production was low in all tested combinations (≤0.7 individuals/vial) of 55% relative humidity, including control. For T. confusum larvae, in the case of the pyrrole derivative 3i, at the highest dose, mortality was 82.2% at 25°C and 55% relative humidity whereas in the case of 3k it reached 77.8% at the same combination. In contrast, mortality at 75% relative humidity remained very low and did not exceed 13.3%. For E. kuehniella larvae, the highest mortalities, 44.4 and 63.3%, were observed in 10 ppm at 25°C and 55% relative humidity for both pyrrole derivatives. The compounds tested here have a certain insecticidal effect, but this effect is moderated by the exposure

  12. Standard energy metabolism of a desert harvester ant, Pogonomyrmex rugosus: Effects of temperature, body mass, group size, and humidity

    SciTech Connect

    Lighton, J.R.B.; Bartholomew, G.A. )

    1988-07-01

    Pogonomyrmex rugosus is an important seed predator in the Mojave Desert of the southwestern United States. Its standard rate of O{sub 2} consumption (Vo{sub 2}) varied significantly with temperature. The ratio of the Vo{sub 2} values at 10{degree}C increments in body temperature, Q{sub 10}, also varied with temperature; methods of calculating Vo{sub 2} from temperature with a shifting Q{sub 10} are described. Vo{sub 2} also varied with body mass. Vo{sub 2} was inversely related to relative humidity and was independent of group size. The rise in Vo{sub 2} at low relative humidities was caused by increased activity and resulted in higher rates of net water loss. The primary metabolic adaptation to xeric conditions in P. rugosus appears to be a lower-than-predicted metabolic rate.

  13. Correlation formulas for the frost thickness and heat transfer coefficient on a cylinder in humid air cross flow

    SciTech Connect

    Sengupta, S.; Sherif, S.A.; Wong, K.V.

    1995-12-31

    This paper reports on results of an experimental investigation where the emphasis was placed on obtaining empirical correlations for the frost thickness-time history and the heat transfer coefficient-time history for a cylinder in humid air cross flow. The facility employed for the investigation consisted of a low velocity wind tunnel comprised of a rectangular test section, a transition section and a honeycomb placed at the tunnel entrance. An external refrigerator was used to cool an antifreeze solution having a mixture of 90% methanol and 10% ethylene glycol. Measured parameters included, among other things, the heat transfer coefficient as well as the frost thickness.

  14. Concomitant adsorption and desorption of organic vapor in dry and humid air streams using microwave and direct electrothermal swing adsorption.

    PubMed

    Hashisho, Zaher; Emamipour, Hamidreza; Rood, Mark J; Hay, K James; Kim, Byung J; Thurston, Deborah

    2008-12-15

    Industrial gas streams can contain highly variable organic vapor concentrations that need to be processed before they are emitted to the atmosphere. Fluctuations in organic vapor concentrations make it more difficult to operate a biofilter when compared to a constant vapor concentration. Hence, there is a need to stabilize the concentration of rapidly fluctuating gas streams for optimum operation of biofilters. This paper describes new concomitant adsorption desorption (CAD) systems used with variable organic vapor concentration gas streams to provide the same gas stream, but at a user-selected constant vapor concentration that can then be more readily processed by a secondary air pollution control device such as a biofilter. The systems adsorb organic vapor from gas streams and simultaneously heat the adsorbent using microwave or direct electrothermal energy to desorb the organic vapor at a user-selected set-point concentration. Both systems depicted a high degree of concentration stabilization with a mean relative deviation between set-point and stabilized concentration of 0.3-0.4%. The direct electrothermal CAD system was also evaluated to treat a humid gas stream (relative humidity = 85%) that contained a variable organic vapor concentration. The high humidity did not interfere with CAD operation as water vapor did not adsorb but penetrated through the adsorbent These results are important because they demonstrate the ability of CAD to effectively dampen concentration fluctuation in gas streams.

  15. δ 13C response surface resolves humidity and temperature signals in trees

    NASA Astrophysics Data System (ADS)

    Edwards, T. W. D.; Graf, W.; Trimborn, P.; Stichler, W.; Lipp, J.; Payer, H. D.

    2000-01-01

    Stem cellulose of bean plants ( Vicia faba) grown under controlled conditions exhibits inverse linear carbon-isotope reactions to changes in both relative humidity (RH) and temperature (T), readily mappable as a planar δ 13C response surface in RH-T space. The analogous response surface for annual late-wood cellulose δ 13C from a field calibration using fir trees ( Abies alba) in the Black Forest, southern Germany, also supports resolution of independent δ-RH and δ-T effects. The response of cellulose δ 13C to RH and T derived from this new calibration differs markedly from estimates based on univariate linear regression analysis: The sensitivity of δ 13C to RH is stronger than that inferred previously ( c. -0.17‰/% vs. -0.12‰/%, respectively), whereas the δ-T coefficient is weaker and reversed in sign ( c. -0.15‰/K vs. +0.36‰/K). This new perspective on the coupled influence of moisture and temperature changes on tree-ring cellulose δ 13C helps to unify divergent observations about carbon-isotope signals in trees, especially the broad range of apparent δ-T relations obtained in calibration studies, which are often used as paleoclimate transfer functions. Although this highlights the large potential uncertainties surrounding paleoclimate reconstruction based solely on δ 13C data, coupling of the carbon-isotope response-surface approach with equivalent response surfaces for hydrogen or oxygen isotopes may afford new opportunities for investigating the nature of past climate variability and change from tree-ring sequences.

  16. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  17. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  18. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  19. Effects of temperature and humidity cycling on the strengths of textile reinforced carbon/epoxy composite materials

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Furrow, Keith W.

    1993-01-01

    Results are presented from an experimental evaluation of the combined effects of temperature and humidity cycling on AS4/3501-6 composites (unstitched, Kevlar 29 stitched, and S-2 glass stitched uniweave fabric) and AS4/E905L composites (2-D, S-2 glass stitched 2-D, and 3-D braided fabric). The AS4/3501-6 uniweave material had a quasi-isotropic layup, whereas the AS4/E905L materials were braided in a (+/-30 deg/0 deg)(sub s) orientation. Data presented include compression strengths and compression-compression fatigue results for uncycled composites and cycled composites (160, 480, 720, and 1280 cycles from 140 deg F at 95 percent relative humidity to -67 deg F). To observe the presence of microcracking within the laminates, photomicrographs were taken of each material type at the end of each cycling period. Microcracks were found to be more prevalent within stitched laminates, predominantly around individual stitches. The glass stitched laminates showed significant microcracking even before cycling. Less microcracking was evident in the Kevlar stitched materials, whereas the unstitched uniweave material developed microcracks only after cycling. The 3-D braid did not develop microcracks. The static compression strengths of the unstitched and Kevlar stitched uniweave materials were degraded by about 10 percent after 1280 temperature/humidity cycles, whereas the reduction in compression strength for the glass stitched uniweave was less than 3 percent. The reduction in compression strength for the glass stitched 2-D braid was less than 8 percent. The unstitched 2-D and 3-D braids did not lose strength from temperature/humidity cycling. The compression-compression fatigue properties of all six material types were not affected by temperature/humidity cycling.

  20. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    SciTech Connect

    Kerrigan, P.

    2014-03-01

    Building Science Corporation (BSC) worked directly with the David Weekley Homes - Houston division to develop a cost-effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses in preparation for the upcoming code changes in 2015. This research project addressed the following questions: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost?

  1. Imaging of Biological Macromolecules on Mica in Humid Air by Scanning Electrochemical Microscopy

    NASA Astrophysics Data System (ADS)

    Fan, Fu-Ren F.; Bard, Allen J.

    1999-12-01

    Imaging of DNA, keyhole limpet hemocyanin, mouse monoclonal IgG, and glucose oxidase on a mica substrate has been accomplished by scanning electrochemical microscopy with a tungsten tip. The technique requires the use of a high relative humidity to form a thin film of water on the mica surface that allows electrochemical reactions to take place at the tip and produce a faradaic current (≈ 1\\ pA) that can be used to control tip position. The effect of relative humidity and surface pretreatment with buffer solutions on the ionic conductivity of a mica surface was investigated to find appropriate conditions for imaging. Resolution of the order of 1 nm was obtained.

  2. Quantitative Ethylene Measurements with MOx Chemiresistive Sensors at Different Relative Air Humidities.

    PubMed

    Krivec, Matic; Mc Gunnigle, Gerald; Abram, Anže; Maier, Dieter; Waldner, Roland; Gostner, Johanna M; Überall, Florian; Leitner, Raimund

    2015-11-06

    The sensitivity of two commercial metal oxide (MOx) sensors to ethylene is tested at different relative humidities. One sensor (MiCS-5914) is based on tungsten oxide, the other (MQ-3) on tin oxide. Both sensors were found to be sensitive to ethylene concentrations down to 10 ppm. Both sensors have significant response times; however, the tungsten sensor is the faster one. Sensor models are developed that predict the concentration of ethylene given the sensor output and the relative humidity. The MQ-3 sensor model achieves an accuracy of ±9.2 ppm and the MiCS-5914 sensor model predicts concentration to ±7.0 ppm. Both sensors are more accurate for concentrations below 50 ppm, achieving ±6.7 ppm (MQ-3) and 5.7 ppm (MiCS-5914).

  3. Effects of Varroa destructor on temperature and humidity conditions and expression of energy metabolism genes in infested honeybee colonies.

    PubMed

    Hou, C S; Li, B B; Deng, S; Diao, Q Y

    2016-09-23

    Varroa destructor mites pose an increasing global threat to the apicultural industry and agricultural ecology; however, the issue of whether certain environmental factors reflect the level of mite infection is far from resolved. Here, a wireless sensor network (WSN) system was used to examine how V. destructor, which has vital impacts on honeybee (Apis mellifera) health and survival, affects the temperature and humidity of honeybee hives in a field experiment. This approach may facilitate early identification of V. destructor in hives, and thus enable timely remedial action. Using quantitative PCR, we also evaluated the expression of two genes, adipokinetic hormone (AKH) and adipokinetic hormone receptor (AKHR).The results showed that temperature in highly infested broods was higher than that in broods with low infestation. Moreover, mite infection in honeybee colonies was positively correlated with temperature but negatively correlated with humidity (P < 0.05). Similar to previous observations, quantitative analysis suggested that the expression levels of AKH and AKHR from honeybees with low infection were significantly higher than those from bees with high infection (P < 0.01). These results showed that the expression levels of these genes in colonies with high mite infestation were closely associated with changes in hive temperature and humidity. This study demonstrates that Varroa infection not only causes changes in temperature inside honeybee colonies, but also affects the expression of honeybee energy metabolism genes.

  4. Novel Knob-integrated fiber Bragg grating sensor with polyvinyl alcohol coating for simultaneous relative humidity and temperature measurement.

    PubMed

    Yan, Guofeng; Liang, Yanhong; Lee, El-Hang; He, Sailing

    2015-06-15

    A novel high performance optical fiber sensor for simultaneous measurement of relative humidity (RH) and temperature based on our newly designed knob-integrated fiber Bragg grating (FBG) is proposed and experimentally demonstrated. The knob-shaped taper followed by an FBG works as a multifunctional joint that not only excites the cladding modes but also recouples the cladding modes reflected by the FBG back into the leading single mode fiber. Polyvinyl alcohol (PVA) film is plated on the fiber surface by dip-coating technique as a humidity-to-refractive index (RI) transducer, and affects the intensity of reflected cladding modes by way of evanescent fields. By monitoring the intensity and wavelength of the reflected cladding modes, the RH and temperature variance can be determined simultaneously. Experimental results show an RH sensitivity of up to 1.2 dB/%RH within an RH range of 30-95%, which is significantly better than previously reported values. And the temperature sensitivity of 8.2 pm/°Ccould be achieved in the temperature range of 25-60°C. A fast and reversible time response has also been demonstrated, enabling to pick up a humidity change as fast as 630 ms. The capability of simultaneous measurement of RH and temperature, the fast response, the reusability and the simple fabrication process make this structure a highly promising sensor for real-time practical RH monitoring applications.

  5. Cost benefit analysis and energy savings of using compression and absorption chillers for air conditioners in hot and humid climates

    NASA Astrophysics Data System (ADS)

    Shekarchian, M.; Moghavvemi, M.; Motasemi, F.; Mahlia, T. M. I.

    2012-06-01

    The electricity consumption growth has increased steadily in the recent decade which is a great concern for the environment. Increasing the number of high-rise air-conditioned buildings and the rapid use of electrical appliances in residential and commercial sectors are two important factors for high electricity consumption. This paper investigates the annual energy required for cooling per unit area and the total energy cost per unit area for each type of air conditioning systems in hot and humid climates. The effects of changing the coefficient of performance (COP) of absorption chillers on cost saving was also investigated in this study. The results showed that using absorption chillers for cooling will increase the amount of energy consumption per unit area; however the energy cost per unit area will decrease. In addition this research indicates that for each 0.1 increment in COP of absorption chillers, there is about 500 USD/m2 saved cost.

  6. Control of Relative Air Humidity as a Potential Means to Improve Hygiene on Surfaces: A Preliminary Approach with Listeria monocytogenes

    PubMed Central

    Zoz, Fiona; Iaconelli, Cyril; Lang, Emilie; Iddir, Hayet; Guyot, Stéphane; Grandvalet, Cosette; Gervais, Patrick; Beney, Laurent

    2016-01-01

    Relative air humidity fluctuations could potentially affect the development and persistence of pathogenic microorganisms in their environments. This study aimed to characterize the impact of relative air humidity (RH) variations on the survival of Listeria monocytogenes, a bacterium persisting on food processing plant surfaces. To assess conditions leading to the lowest survival rate, four strains of L. monocytogenes (EGDe, CCL500, CCL128, and LO28) were exposed to different RH conditions (75%, 68%, 43% and 11%) with different drying kinetics and then rehydrated either progressively or instantaneously. The main factors that affected the survival of L. monocytogenes were RH level and rehydration kinetics. Lowest survival rates between 1% and 0.001% were obtained after 3 hours of treatment under optimal conditions (68% RH and instantaneous rehydration). The survival rate was decreased under 0.001% after prolonged exposure (16h) of cells under optimal conditions. Application of two successive dehydration and rehydration cycles led to an additional decrease in survival rate. This preliminary study, performed in model conditions with L. monocytogenes, showed that controlled ambient RH fluctuations could offer new possibilities to control foodborne pathogens in food processing environments and improve food safety. PMID:26840373

  7. An integrated evaluation of thirteen modelling solutions for the generation of hourly values of air relative humidity

    NASA Astrophysics Data System (ADS)

    Bregaglio, Simone; Donatelli, Marcello; Confalonieri, Roberto; Acutis, Marco; Orlandini, Simone

    2010-11-01

    The availability of hourly air relative humidity (HARH) data is a key requirement for the estimation of epidemic dynamics of plant fungal pathogens, in particular for the simulation of both the germination of the spores and the infection process. Most of the existing epidemic forecasting models require these data as input directly or indirectly, in the latter case for the estimation of leaf wetness duration. In many cases, HARH must be generated because it is not available in historical series and when there is the need to simulate epidemics either on a wide scale or with different climate scenarios. Thirteen modelling solutions (MS) for the generation of this variable were evaluated, with different input requirements and alternative approaches, on a large dataset including several sites and years. A composite indicator was developed using fuzzy logic to compare and to evaluate the performances of the models. The indicator consists of four modules: Accuracy, Correlation, Pattern and Robustness. Results showed that when available, daily maximum and minimum air relative humidity data substantially improved the estimation of HARH. When such data are not available, the choice of the MS is crucial, given the difference in predicting skills obtained during the analysis, which allowed a clear detection of the best performing MS. This study represents the first step of the creation of a robust modelling chain coupling the MS for the generation of HARH and disease forecasting models, including the systematic validation of each step of the simulation.

  8. Control of Relative Air Humidity as a Potential Means to Improve Hygiene on Surfaces: A Preliminary Approach with Listeria monocytogenes.

    PubMed

    Zoz, Fiona; Iaconelli, Cyril; Lang, Emilie; Iddir, Hayet; Guyot, Stéphane; Grandvalet, Cosette; Gervais, Patrick; Beney, Laurent

    2016-01-01

    Relative air humidity fluctuations could potentially affect the development and persistence of pathogenic microorganisms in their environments. This study aimed to characterize the impact of relative air humidity (RH) variations on the survival of Listeria monocytogenes, a bacterium persisting on food processing plant surfaces. To assess conditions leading to the lowest survival rate, four strains of L. monocytogenes (EGDe, CCL500, CCL128, and LO28) were exposed to different RH conditions (75%, 68%, 43% and 11%) with different drying kinetics and then rehydrated either progressively or instantaneously. The main factors that affected the survival of L. monocytogenes were RH level and rehydration kinetics. Lowest survival rates between 1% and 0.001% were obtained after 3 hours of treatment under optimal conditions (68% RH and instantaneous rehydration). The survival rate was decreased under 0.001% after prolonged exposure (16h) of cells under optimal conditions. Application of two successive dehydration and rehydration cycles led to an additional decrease in survival rate. This preliminary study, performed in model conditions with L. monocytogenes, showed that controlled ambient RH fluctuations could offer new possibilities to control foodborne pathogens in food processing environments and improve food safety.

  9. Approximating snow surface temperature from standard temperature and humidity data: new possibilities for snow model and remote sensing validation (Invited)

    NASA Astrophysics Data System (ADS)

    Raleigh, M. S.; Landry, C.; Hayashi, M.; Quinton, W. L.; Lundquist, J. D.

    2013-12-01

    The snow surface skin temperature (Ts) is important in the snowmelt energy balance, land-atmosphere interactions, weak layer formation (avalanche risk), and winter recreation, but is rarely measured at observational networks. Reliable Ts datasets are needed to validate remote sensing and distributed modeling, in order to represent land-atmosphere feedbacks. Previous research demonstrated that the dew point temperature (Td) close to the snow surface approximates Ts well because air is saturated immediately above snow. However, standard height (2 to 4 m) measurements of the saturation temperatures, Td and wet-bulb temperature (Tw), are much more readily available than measurements of Ts or near-surface Td. There is limited understanding of how these standard height variables approximate Ts, and how the approximations vary with climate, seasonality, time of day, and atmospheric conditions (stability and radiation). We used sub-daily measurements from seven sites in varying snow climates and environments to test Ts approximations with standard height temperature and moisture. Td produced the lowest bias (-2.2 °C to +2.6 °C) and root mean squared error (RMSE) when approximating mean daily Ts, but tended to underestimate daily extremes in Ts. For comparison, air temperature (Ta) was biased +3.2 °C to +6.8 °C. Ts biases increased with increasing frequency in nighttime stability and daytime clear sky conditions. We illustrate that mean daily Td can be used to detect systematic input data bias in physically-based snowmelt modeling, a useful tool when validating spatially distributed snow models in data sparse regions. Thus, improved understanding of Td variations can advance understanding of Ts in space and time, providing a simple yet robust measure of surface feedback to the atmospheric energy budget.

  10. Effects of temperature-humidity index on health and growth performance in Japanese black calves.

    PubMed

    Nabenishi, Hisashi; Yamazaki, Atusi

    2017-02-01

    We evaluated the relationship between the temperature-humidity index (THI) and health and growth performance in Japanese black calves in Japan. Data were collected from medical records of 19,313 Japanese black calves aged up to 3 months for correlation analysis with THI from July 2008 to June 2011. Data were also collected on the market weights of 57,144 Japanese black calves, and we calculated the body weight gain (BWG) of each calf based on body weight and age in days at the calf market. Analysis for the relationship between disease incidence and THI demonstrated a negative correlation (r = -0.54, p < 0.01). In addition, the mean disease incidence at THI of ≤50 was significantly higher than that at THI of ≥71. Analysis for the relationship between growth performance in calves and THI revealed that a lower THI during the month of birth was associated with a lower BWG at the calf market and that BWG with THI of ≤70 was significantly lower than that with THI of ≥71 (p < 0.05). In contrast, a higher mean THI during the third month after birth was associated with a lower BWG at the calf market, and BWG with THI of >75 was significantly lower than that with THI of ≤50 or THI ranging from 56 to 60 (p < 0.05). These results indicate that Japanese black calves are susceptible to a cold environment immediately after birth, whereas they are susceptible to a heat environment 3 months after birth.

  11. Air conditioner operation behaviour based on students' skin temperature in a classroom.

    PubMed

    Song, Gook-Sup; Lim, Jae-Han; Ahn, Tae-Kyung

    2012-01-01

    A total of 25 college students participated in a study to determine when they would use an air conditioner during a lecture in a university classroom. The ambient temperature and relative humidity were measured 75 cm above the floor every minute. Skin temperatures were measured every minute at seven points, according to the recommendation of Hardy and Dubois. The average clothing insulation value (CLO) of subjects was 0.53 ± 0.07 CLO. The mean air velocity in the classroom was 0.13 ± 0.028 m/s. When the subjects turned the air conditioner both on and off, the average ambient temperatures, relative humidity and mean skin temperatures were 27.4 and 23.7 °C (p = 0.000), 40.9 and 40.0% (p = 0.528) and 32.7 and 32.2 °C (p = 0.024), respectively. When the status of the air conditioner was changed, the differences of skin temperatures in core body parts (head, abdomen and thigh) were not statistically significant. However, in the extremities (mid-lower arm, hand, shin and instep), the differences were statistically significant. Subjects preferred a fluctuating environment to a constant temperature condition. We found that a changing environment does not affect classroom study.

  12. Population Growth and Development of the Psocid Liposcelis fusciceps (Psocoptera: Liposcelididae) at Constant Temperatures and Relative Humidities.

    PubMed

    Gautam, S G; Opit, G P; Shakya, K

    2016-02-01

    We investigated the effects of seven temperatures (22.5, 25.0, 27.5, 30.0, 32.5, 35.0, and 37.5°C) and four relative humidities (43, 55, 63, and 75%) on population growth and development of the psocid Liposcelis fusciceps Badonnel (Psocoptera: Liposcelididae). Results demonstrated that L. fusciceps did not survive at 43% RH, at all temperatures tested. At 55% RH, L. fusciceps did not survive at the highest three temperatures and no psocids survived at 37.5°C and 63% RH. The highest population growth was recorded at 30.0°C and 75% RH where populations increased 16-fold from an initial population of five females. L. fusciceps males have two to four nymphal instars, and the percentages of males with two, three, and four instars were 28, 70, and 2%, respectively. Female L. fusciceps have two to five instars, and the percentages of females with two, three, four, and five instars were 2, 33, 63, and 2%, respectively. The total developmental time for males was shorter than females. We developed temperature-dependent development equations for male and female eggs, individual nymphal, combined nymphal, and combined immature stages. Based on 30-d population growth, L. fusciceps can survive and multiply at a relative humidity of 55% at 22.5-30.0°C, but does better at 27.5-32.5°C and a higher relative humidity of 75%. Relative humidities of ≤ 63% and temperatures of ≥ 32.5°C are detrimental to L. fusciceps. These data provide a better understanding of L. fusciceps population dynamics and can be used to develop effective management strategies for this psocid.

  13. Properties of Ammonium Ion–Water Clusters: Analyses of Structure Evolution, Noncovalent Interactions, and Temperature and Humidity Effects

    SciTech Connect

    Pei, Shi-Tu; Jiang, Shuai; Liu, Yi-Rong; Huang, Teng; Xu, Kang-Ming; Wen, Hui; Zhu, Yu-Peng; Huang, Wei

    2015-03-03

    Although ammonium ion–water clusters are abundant in the biosphere, some information regarding these clusters, such as their growth route, the influence of temperature and humidity, and the concentrations of various hydrated clusters, is lacking. In this study, theoretical calculations are performed on ammonium ion–water clusters. These theoretical calculations are focused on determining the following characteristics: (1) the pattern of cluster growth; (2) the percentages of clusters of the same size at different temperatures and humidities; (3) the distributions of different isomers for the same size clusters at different temperatures; (4) the relative strengths of the noncovalent interactions for clusters of different sizes. The results suggest that the dipole moment may be very significant for the ammonium ion–water system, and some new stable isomers were found. The nucleation of ammonium ions and water molecules is favorable at low temperatures; thus, the clusters observed at high altitudes might not be present at low altitudes. High humidity can contribute to the formation of large ammonium ion–water clusters, whereas the formation of small clusters may be favorable under low-humidity conditions. The potential energy surfaces (PES) of these different sized clusters are complicated and differ according to the distribution of isomers at different temperatures. Some similar structures are observed between NH4+(H2O)n and M(H2O)n (where M represents an alkali metal ion or water molecule); when n = 8, the clusters begin to form the closed-cage geometry. As the cluster size increases, these interactions become progressively weaker. The successive binding energy at the DF-MP2-F12/VDZ-F12 level is better than that at the PW91PW91/6-311++G(3df, 3pd) level and is consistent with the experimentally determined values.

  14. Modeling air temperature changes in Northern Asia

    NASA Astrophysics Data System (ADS)

    Onuchin, A.; Korets, M.; Shvidenko, A.; Burenina, T.; Musokhranova, A.

    2014-11-01

    Based on time series (1950-2005) of monthly temperatures from 73 weather stations in Northern Asia (limited by 70-180° EL and 48-75° NL), it is shown that there are statistically significant spatial differences in character and intensity of the monthly and yearly temperature trends. These differences are defined by geomorphological and geographical parameters of the area including exposure of the territory to Arctic and Pacific air mass, geographic coordinates, elevation, and distances to Arctic and Pacific oceans. Study area has been divided into six domains with unique groupings of the temperature trends based on cluster analysis. An original methodology for mapping of temperature trends has been developed and applied to the region. The assessment of spatial patterns of temperature trends at the regional level requires consideration of specific regional features in the complex of factors operating in the atmosphere-hydrosphere-lithosphere-biosphere system.

  15. Fate of Enterobacter sakazakii attached to or in biofilms on stainless steel upon exposure to various temperatures or relative humidities.

    PubMed

    Kim, Hoikyung; Bang, Jihyun; Beuchat, Larry R; Ryu, Jee-Hoon

    2008-05-01

    Survival of Enterobacter sakazakii dried on the surface of stainless steel and exposed to 43% relative humidity, as affected by temperature, was studied. Populations of E. sakazakii (7.4 to 8.6 log CFU per coupon) on coupons dried for 2 h at 22 degrees C decreased significantly (P < or = 0.05) at 4, 25, and 37 degrees C within 10, 3, and 1 day(s), respectively, but the pathogen remained viable for up to 60 days. At a given storage temperature and time, reductions were significantly greater when cells had been suspended in water rather than in infant formula before drying. Formation of biofilm by E. sakazakii on stainless steel immersed in M9 medium, which contains minimal concentrations of nutrients, and infant formula at 25 degrees C and subsequent survival of cells at 25 degrees C as affected by exposure to 23, 43, 68, 85, and 100% relative humidity were investigated. Some of the cells in these biofilms survived under all test relative humidities for up to 42 days. The overall order of survival as affected by relative humidity was 100 > 23 = 43 = 68 > 85% relative humidity, regardless of the medium in which the biofilm was formed. Reduction in viability of cells was significantly greater in biofilm that had formed in M9 medium than in biofilm formed in infant formula. Results indicate that infant formula provides protection for attached cells, as well as cells in biofilm, against lethality on exposure to desiccation. These results are useful when predicting the survival characteristics of E. sakazakii on stainless steel surfaces in processing and preparation kitchen environments.

  16. Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control

    DTIC Science & Technology

    2012-11-01

    42 6.1.1 ASHRAE Comfort Zone...Laboratory AHU air-handling unit AILR AIL Research ASHRAE American Society of Heating, Refrigerating, and Air- Conditioning Engineers Btu...psychrometric comfort zone • Chiller power • Reheat run-time • ə% of hours outside ASHRAE summer comfort zone • Reduce chiller/reheat run-time

  17. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    SciTech Connect

    Kerrigan, P.

    2014-03-01

    BSC worked directly with the David Weekley Homes - Houston division to redesign three floor plans in order to locate the HVAC system in conditioned space. The purpose of this project is to develop a cost effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses. This is in preparation for the upcoming code changes in 2015. The builder wishes to develop an upgrade package that will allow for a seamless transition to the new code mandate. The following research questions were addressed by this research project: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost? BSC and the builder developed a duct design strategy that employs a system of dropped ceilings and attic coffers for moving the ductwork from the vented attic to conditioned space. The furnace has been moved to either a mechanical closet in the conditioned living space or a coffered space in the attic.

  18. Effects of Humidity Swings on Adsorption Columns for Air Revitalization: Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    LeVan, M. Douglas; Finn, John E.

    1997-01-01

    The goal of this research was to develop a dynamic model which can predict the effect of humidity swings on activated carbon adsorption beds used to remove trace contaminants from the atmosphere in spacecraft. Specifically, the model was to be incorporated into a computer simulation to predict contaminant concentrations exiting the bed as a function of time after a humidity swing occurs. Predicted breakthrough curves were to be compared to experimentally measured results. In all respects the research was successful. The two major aspects of this research were the mathematical model and the experiments. Experiments were conducted by Mr. Appel using a fixed-bed apparatus at NASA-Ames Research Center during the summers of 1994 and 1995 and during the first 8 months of 1996. Mr. Appel conducted most of his mathematical modeling work at the University of Virginia. The simulation code was used to predict breakthrough curves using adsorption equilibrium correlations developed previously by M. D. LeVan's research group at the University of Virginia. These predictions were compared with the experimental measurements, and this led to improvements in both the simulation code and the apparatus.

  19. Determination of humidity and temperature fluctuations based on MOZAIC data and parametrisation of persistent contrail coverage for general circulation models

    NASA Astrophysics Data System (ADS)

    Gierens, K. M.; Schumann, U.; Smit, H. G. J.; Helten, M.; Zängl, G.

    1997-08-01

    Humidity and temperature fluctuations at pressure levels between 166 and 290 hPa on the grid scale of general circulation models for a region covered by the routes of airliners, mainly over the Atlantic, have been determined by evaluation of the data obtained with almost 2000 flights within the MOZAIC programme. It is found that the distributions of the fluctuations cannot be modelled by Gaussian distributions, because large fluctuations appear with a relatively high frequency. Lorentz distributions were used for the analytical representation of the fluctuation distributions. From these a joint probability distribution has been derived for simultaneous temperature and humidity fluctuations. This function together with the criteria for the formation and persistence of contrails are used to derive the maximum possible fractional coverage of persistent contrails in a grid cell of a GCM. This can be employed in a statistical formulation of contrail appearance in a climate model.

  20. Assimilation of humidity and temperature observations retrieved from ground-based microwave radiometers into a convective-scale NWP model

    NASA Astrophysics Data System (ADS)

    Caumont, Olivier; Vincendon, Béatrice; Cimini, Domenico; Löhnert, Ulrich; Alados-Arboledas, Lucas; Bleisch, René; Buffa, Franco; Enrico Ferrario, Massimo; Haefele, Alexander; Huet, Thierry; Madonna, Fabio; Pace, Giandomenico

    2016-04-01

    Temperature and humidity retrievals from an international network of ground-based microwave radiometers (MWR) have been collected to assess the potential of their assimilation into a convective-scale Numerical Weather Prediction (NWP) system. Thirteen stations over a domain encompassing the western Mediterranean basin were considered for a time period of forty-one days in autumn, when heavy-precipitation events most often plague this area. Prior to their assimilation, MWR data were compared to very-short-term forecasts. Observation-minus-background statistics revealed some biases, but standard deviations were comparable to that obtained with radiosondes. The MWR data were then assimilated in a three-dimensional variational (3DVar) data assimilation system through the use of a rapid update cycle. A set of sensitivity experiments allowed assessing extensively the impact of the assimilation of temperature and humidity profiles, both separately and jointly. The respective benefit of MWR data and radiosonde data on analyses and forecasts was also investigated.

  1. International Space Station Environmental Control and Life Support System Acceptance Testing for Node 1 Temperature and Humidity Control Subsystem

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2011-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.

  2. The Role of Temperature and Humidity on Seasonal Influenza in Tropical Areas: Guatemala, El Salvador and Panama, 2008-2013

    NASA Technical Reports Server (NTRS)

    Soebiyanto, Radina P.; Clara, Wilfrido; Jara, Jorge; Castillo, Leticia; Sorto, Oscar Rene; Marinero, Sidia; Antinori, Maria E. Barnett de; McCracken, John P.; Widdowson, Marc-Alain; Azziz-Baumgartner, Eduardo; Kiang, Richard K.

    2014-01-01

    Background: The role of meteorological factors on influenza transmission in the tropics is less defined than in the temperate regions. We assessed the association between influenza activity and temperature, specific humidity and rainfall in 6 study areas that included 11 departments or provinces within 3 tropical Central American countries: Guatemala, El Salvador and Panama. Method/ Findings: Logistic regression was used to model the weekly proportion of laboratory-confirmed influenza positive samples during 2008 to 2013 (excluding pandemic year 2009). Meteorological data was obtained from the Tropical Rainfall Measuring Mission satellite and the Global Land Data Assimilation System. We found that specific humidity was positively associated with influenza activity in El Salvador (Odds Ratio (OR) and 95% Confidence Interval of 1.18 (1.07-1.31) and 1.32 (1.08-1.63)) and Panama (OR = 1.44 (1.08-1.93) and 1.97 (1.34-2.93)), but negatively associated with influenza activity in Guatemala (OR = 0.72 (0.6-0.86) and 0.79 (0.69-0.91)). Temperature was negatively associated with influenza in El Salvador's west-central departments (OR = 0.80 (0.7-0.91)) whilst rainfall was positively associated with influenza in Guatemala's central departments (OR = 1.05 (1.01-1.09)) and Panama province (OR = 1.10 (1.05-1.14)). In 4 out of the 6 locations, specific humidity had the highest contribution to the model as compared to temperature and rainfall. The model performed best in estimating 2013 influenza activity in Panama and west-central El Salvador departments (correlation coefficients: 0.5-0.9). Conclusions/Significance: The findings highlighted the association between influenza activity and specific humidity in these 3 tropical countries. Positive association with humidity was found in El Salvador and Panama. Negative association was found in the more subtropical Guatemala, similar to temperate regions. Of all the study locations, Guatemala had annual mean temperature and specific

  3. The Role of Temperature and Humidity on Seasonal Influenza in Tropical Areas: Guatemala, El Salvador and Panama, 2008–2013

    PubMed Central

    Soebiyanto, Radina P.; Clara, Wilfrido; Jara, Jorge; Castillo, Leticia; Sorto, Oscar Rene; Marinero, Sidia; de Antinori, María E. Barnett; McCracken, John P.; Widdowson, Marc-Alain; Azziz-Baumgartner, Eduardo; Kiang, Richard K.

    2014-01-01

    Background The role of meteorological factors on influenza transmission in the tropics is less defined than in the temperate regions. We assessed the association between influenza activity and temperature, specific humidity and rainfall in 6 study areas that included 11 departments or provinces within 3 tropical Central American countries: Guatemala, El Salvador and Panama. Method/Findings Logistic regression was used to model the weekly proportion of laboratory-confirmed influenza positive samples during 2008 to 2013 (excluding pandemic year 2009). Meteorological data was obtained from the Tropical Rainfall Measuring Mission satellite and the Global Land Data Assimilation System. We found that specific humidity was positively associated with influenza activity in El Salvador (Odds Ratio (OR) and 95% Confidence Interval of 1.18 (1.07–1.31) and 1.32 (1.08–1.63)) and Panama (OR = 1.44 (1.08–1.93) and 1.97 (1.34–2.93)), but negatively associated with influenza activity in Guatemala (OR = 0.72 (0.6–0.86) and 0.79 (0.69–0.91)). Temperature was negatively associated with influenza in El Salvador's west-central departments (OR = 0.80 (0.7–0.91)) whilst rainfall was positively associated with influenza in Guatemala's central departments (OR = 1.05 (1.01–1.09)) and Panama province (OR = 1.10 (1.05–1.14)). In 4 out of the 6 locations, specific humidity had the highest contribution to the model as compared to temperature and rainfall. The model performed best in estimating 2013 influenza activity in Panama and west-central El Salvador departments (correlation coefficients: 0.5–0.9). Conclusions/Significance The findings highlighted the association between influenza activity and specific humidity in these 3 tropical countries. Positive association with humidity was found in El Salvador and Panama. Negative association was found in the more subtropical Guatemala, similar to temperate regions. Of all the study locations, Guatemala had

  4. The extent of the unstable Monin-Obukhov layer for temperature and humidity above complex hilly grassland

    NASA Technical Reports Server (NTRS)

    Brutsaert, Wilfried; Sugita, Michiaki

    1990-01-01

    An analysis is given of radiosonde measurements of the potential temperature, specific humidity, and wind profiles under unstable windy conditions during the First International Satellite Land Surface Climatology Project Field Experiment in Kansas. It is found that about 86 percent of the profiles have a height range over which the Monin-Obukhov (1954) similarity is valid. It is shown that the Businger-Dyer version of the similarity functions (Businger, 1988) is satisfactory for analyzing radiosonde profiles.

  5. How the Plant Temperature Links to the Air Temperature in the Desert Plant Artemisia ordosica.

    PubMed

    Yu, Ming-Han; Ding, Guo-Dong; Gao, Guang-Lei; Sun, Bao-Ping; Zhao, Yuan-Yuan; Wan, Li; Wang, De-Ying; Gui, Zi-Yang

    2015-01-01

    Plant temperature (Tp) is an important indicator of plant health. To determine the dynamics of plant temperature and self-cooling ability of the plant, we measured Tp in Artemisia ordosica in July, in the Mu Us Desert of Northwest China. Related factors were also monitored to investigate their effects on Tp, including environmental factors, such as air temperature (Ta), relative humidity, wind speed; and physiological factors, such as leaf water potential, sap flow, and water content. The results indicate that: 1) Tp generally changes in conjunction with Ta mainly, and varies with height and among the plant organs. Tp in the young branches is most constant, while it is the most sensitive in the leaves. 2) Correlations between Tp and environmental factors show that Tp is affected mainly by Ta. 3) The self-cooling ability of the plant was effective by midday, with Tp being lower than Ta. 4) Increasing sap flow and leaf water potential showed that transpiration formed part of the mechanism that supported self-cooling. Increased in water conductance and specific heat at midday may be additional factors that contribute to plant cooling ability. Therefore, our results confirmed plant self-cooling ability. The response to high temperatures is regulated by both transpiration speed and an increase in stem water conductance. This study provides quantitative data for plant management in terms of temperature control. Moreover, our findings will assist species selection with taking plant temperature as an index.

  6. Effect of temperature, relative humidity and rainfall on dengue fever and leptospirosis infections in Manila, the Philippines.

    PubMed

    Sumi, A; Telan, E F O; Chagan-Yasutan, H; Piolo, M B; Hattori, T; Kobayashi, N

    2017-01-01

    Dengue fever (DF) and leptospirosis are serious public problems in tropical regions, especially in Manila, the Philippines. In attempting to understand the causes of DF and leptospirosis seasonality, meteorological factors have been suspected, but quantitative correlation between seasonality and meteorological factors has not been fully investigated. In this study, we investigated correlation of temporal patterns of reported numbers of laboratory-confirmed cases of both DF and leptospirosis with meteorological conditions (temperature, relative humidity, rainfall) in Manila. We used time-series analysis combined with spectral analysis and the least squares method. A 1-year cycle explained underlying variations of DF, leptospirosis and meteorological data. There was a peak of the 1-year cycle in temperature during May, followed by maxima in rainfall, relative humidity and number of laboratory-confirmed DF and leptospirosis cases. This result suggests that DF and leptospirosis epidemics are correlated not only with rainfall but also relative humidity and temperature in the Philippines. Quantifying the correlation of DF and leptospirosis infections with meteorological conditions may prove useful in predicting DF and leptospirosis epidemics, and health services should plan accordingly.

  7. Real-time remote monitoring of temperature and humidity within a proton exchange membrane fuel cell using flexible sensors.

    PubMed

    Kuo, Long-Sheng; Huang, Hao-Hsiu; Yang, Cheng-Hao; Chen, Ping-Hei

    2011-01-01

    This study developed portable, non-invasive flexible humidity and temperature microsensors and an in situ wireless sensing system for a proton exchange membrane fuel cell (PEMFC). The system integrated three parts: a flexible capacitive humidity microsensor, a flexible resistive temperature microsensor, and a radio frequency (RF) module for signal transmission. The results show that the capacitive humidity microsensor has a high sensitivity of 0.83 pF%RH(-1) and the resistive temperature microsensor also exhibits a high sensitivity of 2.94 × 10(-3) °C(-1). The established RF module transmits the signals from the two microsensors. The transmission distance can reach 4 m and the response time is less than 0.25 s. The performance measurements demonstrate that the maximum power density of the fuel cell with and without these microsensors are 14.76 mW·cm(-2) and 15.90 mW·cm(-2), with only 7.17% power loss.

  8. [Effects of high temperature, high relative humidity and rain process on particle size distributions in the summer of Beijing].

    PubMed

    Hu, Min; Liu, Shang; Wu, Zhi-Jun; Zhang, Jing; Zhao, Yun-Liang; Wehner, Birgit; Wiedensolher, Alfred

    2006-11-01

    On-line measurements of particle number size distribution were conducted during 2004-07-13 - 2004-08-23 by using TDMPS-APS system in Beijing; in between the size distributions of particle mass and chemical compositions were measured by using MOUDI cascade impactor under three kinds of weather conditions: (1) high temperature and high relative humidity night, (2) high temperature and high relative humidity day, and (3) clear days. The results indicate that particulate matter, especially fine particle pollution becomes severe under high temperature and high relative humidity conditions, which results in low visibility (2.5km); the average concentrations of PM1.8 and PM10 are 170.68 microg/m3 and 249.35 microg/m3, respectively, PM1.8 accounts for 68% of PM10; number concentration mainly concentrates in the range of 50 - 100nm, about 2 x 10(4) - 3 x 10(4)cm(-3); rain process has a great effect on scavenging particles, especially fine particles. After the rain process PM10 is 3 times lower and PM1.8 is 6 times lower than the values before the rain; in the following clear day, new particle formation is observed, the newly formed particles (3 - 20nm) grow to 50 - 100nm rapidly. After that, the pollutants start to accumulate and it becomes heavy polluted in few days.

  9. Real-Time Remote Monitoring of Temperature and Humidity Within a Proton Exchange Membrane Fuel Cell Using Flexible Sensors

    PubMed Central

    Kuo, Long-Sheng; Huang, Hao-Hsiu; Yang, Cheng-Hao; Chen, Ping-Hei

    2011-01-01

    This study developed portable, non-invasive flexible humidity and temperature microsensors and an in situ wireless sensing system for a proton exchange membrane fuel cell (PEMFC). The system integrated three parts: a flexible capacitive humidity microsensor, a flexible resistive temperature microsensor, and a radio frequency (RF) module for signal transmission. The results show that the capacitive humidity microsensor has a high sensitivity of 0.83 pF%RH−1 and the resistive temperature microsensor also exhibits a high sensitivity of 2.94 × 10−3 °C−1. The established RF module transmits the signals from the two microsensors. The transmission distance can reach 4 m and the response time is less than 0.25 s. The performance measurements demonstrate that the maximum power density of the fuel cell with and without these microsensors are 14.76 mW·cm−2 and 15.90 mW·cm−2, with only 7.17% power loss. PMID:22164099

  10. Global surface air temperatures - Update through 1987

    NASA Technical Reports Server (NTRS)

    Hansen, James; Lebedeff, Sergej

    1988-01-01

    Data from meteorological stations show that surface air temperatures in the 1980s are the warmest in the history of instrumental records. The four warmest years on record are all in the 1980s, with the warmest years in the analysis being 1981 and 1987. The rate of warming between the mid-1960s and the present is higher than that which occurrred in the previous period of rapid warming between the 1880s and 1940.

  11. Global trends of measured surface air temperature

    NASA Technical Reports Server (NTRS)

    Hansen, James; Lebedeff, Sergej

    1987-01-01

    The paper presents the results of surface air temperature measurements from available meteorological stations for the period of 1880-1985. It is shown that the network of meteorological stations is sufficient to yield reliable long-term, decadal, and interannual temperature changes for both the Northern Hemisphere and the Southern Hemisphere, despite the fact that most stations are located on the continents. The results indicate a global warming of about 0.5-0.7 C in the past century, with warming of similar magnitude in both hemispheres. A strong warming trend between 1965 and 1980 raised the global mean temperature in 1980 and 1981 to the highest level in the period of instrumental records. Selected graphs of the temperature change in each of the eight latitude zones are included.

  12. Solar Powered Liquid Desiccant Air Conditioner for Low-Electricity Humidity Control

    DTIC Science & Technology

    2012-07-01

    thermal comfort conditions. Liquid-desiccants are solutions that are hygroscopic but are easily able to be pumped and applied within heating, ventilating, and air conditioning (HVAC) equipment as necessary.

  13. Temperature Dependence of Lithium Reactions with Air

    NASA Astrophysics Data System (ADS)

    Sherrod, Roman; Skinner, C. H.; Koel, Bruce

    2016-10-01

    Liquid lithium plasma facing components (PFCs) are being developed to handle long pulse, high heat loads in tokamaks. Wetting by lithium of its container is essential for this application, but can be hindered by lithium oxidation by residual gases or during tokamak maintenance. Lithium PFCs will experience elevated temperatures due to plasma heat flux. This work presents measurements of lithium reactions at elevated temperatures (298-373 K) when exposed to natural air. Cylindrical TZM wells 300 microns deep with 1 cm2 surface area were filled with metallic lithium in a glovebox containing argon with less than 1.6 ppm H20, O2, and N2. The wells were transferred to a hot plate in air, and then removed periodically for mass gain measurements. Changes in the surface topography were recorded with a microscope. The mass gain of the samples at elevated temperatures followed a markedly different behavior to that at room temperature. One sample at 373 K began turning red indicative of lithium nitride, while a second turned white indicative of lithium carbonate formation. Data on the mass gain vs. temperature and associated topographic changes of the surface will be presented. Science Undergraduate Laboratory Internship funded by Department of Energy.

  14. Temperature/Humidity Conditions in Stacked Flexible Intermediate Bulk Containers for Shelled Peanuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shelled peanuts are loaded into flexible intermediate bulk containers, or totes. After loading, the 1000-kg totes are placed directly into cold storage at 3ºC and 65% relative humidity until shipment to the customer domestically in the United States or internationally requiring transport overseas. ...

  15. Understanding the Temperature and Humidity Environment Inside a PV Module (Presentation)

    SciTech Connect

    Kempe, M.

    2013-06-01

    This presentation addresses moisture-driven degradation processes in PV modules and the conditions to use for accelerated stress testing. Here we show that by choosing humidity conditions that more closely match the use environment, one can minimize the uncertainty associated with moisture induced degradation modes.

  16. Des-acyl ghrelin prevents heatstroke-like symptoms in rats exposed to high temperature and high humidity.

    PubMed

    Inoue, Yoshiyuki; Hayashi, Yujiro; Kangawa, Kenji; Suzuki, Yoshihiro; Murakami, Noboru; Nakahara, Keiko

    2016-02-26

    We have shown previously that des-acyl ghrelin decreases body temperature in rats through activation of the parasympathetic nervous system. Here we investigated whether des-acyl ghrelin ameliorates heatstroke in rats exposed to high temperature. Peripheral administration of des-acyl ghrelin significantly attenuated hyperthermia induced by exposure to high-temperature (35°C) together with high humidity (70-80%). Although biochemical analysis revealed that exposure to high temperature significantly increased hematocrit and the serum levels of aspartate amino transferase (AST), alanine transaminase (ALT), blood urea nitrogen (BUN), creatinine and electrolytes (Na(+), K(+), Cl(-)), most of these heatstroke-associated reactions were significantly reduced by treatment with des-acyl ghrelin. The level of des-acyl ghrelin in plasma was also found to be significantly increased under high-temperature conditions. These results suggest that des-acyl ghrelin could be useful for preventing heatstroke under high temperature condition.

  17. Air Surface Temperature Correlation with Greenhouse Gases by Using Airs Data Over Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Rajab, Jasim Mohammed; MatJafri, M. Z.; Lim, H. S.

    2014-08-01

    The main objective of this study is to develop algorithms for calculating the air surface temperature (AST). This study also aims to analyze and investigate the effects of greenhouse gases (GHGs) on the AST value in Peninsular Malaysia. Multiple linear regression is used to ach