Science.gov

Sample records for air temperature maps

  1. A comparison of urban heat islands mapped using skin temperature, air temperature, and apparent temperature (Humidex), for the greater Vancouver area.

    PubMed

    Ho, Hung Chak; Knudby, Anders; Xu, Yongming; Hodul, Matus; Aminipouri, Mehdi

    2016-02-15

    Apparent temperature is more closely related to mortality during extreme heat events than other temperature variables, yet spatial epidemiology studies typically use skin temperature (also known as land surface temperature) to quantify heat exposure because it is relatively easy to map from satellite data. An empirical approach to map apparent temperature at the neighborhood scale, which relies on publicly available weather station observations and spatial data layers combined in a random forest regression model, was demonstrated for greater Vancouver, Canada. Model errors were acceptable (cross-validated RMSE=2.04 °C) and the resulting map of apparent temperature, calibrated for a typical hot summer day, corresponded well with past temperature research in the area. A comparison with field measurements as well as similar maps of skin temperature and air temperature revealed that skin temperature was poorly correlated with both air temperature (R(2)=0.38) and apparent temperature (R(2)=0.39). While the latter two were more similar (R(2)=0.87), apparent temperature was predicted to exceed air temperature by more than 5 °C in several urban areas as well as around the confluence of the Pitt and Fraser rivers. We conclude that skin temperature is not a suitable proxy for human heat exposure, and that spatial epidemiology studies could benefit from mapping apparent temperature, using an approach similar to the one reported here, to better quantify differences in heat exposure that exist across an urban landscape.

  2. Spatial downscaling and mapping of daily precipitation and air temperature using daily station data and monthly mean maps

    NASA Astrophysics Data System (ADS)

    Flint, A. L.; Flint, L. E.; Stern, M. A.

    2013-12-01

    Accurate maps of daily weather variables are an essential component of hydrologic and ecologic modeling. Here we present a four-step method that uses daily station data and transient monthly maps of precipitation and air temperature. This method uses the monthly maps to help interpolate between stations for more accurate production of daily maps at any spatial resolution. The first step analyzes the quality of the each station's data using a discrepancy analysis that compares statistics derived from a statistical jack-knifing approach with a time-series evaluation of discrepancies generated for each station. Although several methods could be used for the second step of producing initial maps, such as kriging, splines, etc., we used a gradient plus inverse distance squared method that was developed to produce accurate climate maps for sparse data regions with widely separated and few climate stations, far fewer than would be needed for techniques such as kriging. The gradient plus inverse distance squared method uses local gradients in the climate parameters, easting, northing, and elevation, to adjust the inverse distance squared estimates for local gradients such as lapse rates, inversions, or rain shadows at scales of 10's of meters to kilometers. The third step is to downscale World Wide Web (web) based transient monthly data, such as Precipitation-Elevation Regression on Independent Slope Method (PRISM) for the US (4 km or 800 m maps) or Climate Research Unit (CRU 3.1) data sets (40 km for global applications) to the scale of the daily data's digital elevation model. In the final step the downscaled transient monthly maps are used to adjust the daily time-series mapped data (~30 maps/month) for each month. These adjustments are used to scale daily maps so that summing them for precipitation or averaging them for temperature would more accurately reproduce the variability in selected monthly maps. This method allows for individual days to have maxima or minima

  3. Air Data - Concentration Map

    EPA Pesticide Factsheets

    Make a map of daily concentrations over several days. The daily air quality can be displayed in terms of the Air Quality Index or in concentration ranges for certain PM species like organic carbon, nitrates, and sulfates.

  4. Neutral gas temperature maps of the pin-to-plate argon micro discharge into the ambient air

    SciTech Connect

    Xu, S. F.; Zhong, X. X.; Majeed, Asif

    2015-03-15

    This study is designed to explore the two dimensional temperature maps of the atmospheric argon discharge consisting of pin-to-plane electrodes supplied by a high voltage DC source. After checking the stability of the micro discharge, the two dimensional image plane focused by a quartz lens was scanned by the fiber probe driven by a 3D Mobile Platform. The rotational and vibrational temperatures are calculated using nitrogen emissions collected by the high resolution spectrometer and high sensitive intensified charge coupled device. The rotational temperature varies from 1558.15 K to 2621.14 K and vibrational temperature varies from 3010.38 K to 3774.69 K, indicating a great temperature gradient due to small discharge size. The temperature maps show a lateral expansion and a sharp truncation in the radial direction. A double layers discharge is identified, where an arc discharge coats the glow discharge.

  5. Temperature Mapping of Air Film-Cooled Thermal Barrier Coated Surfaces Using Cr-Doped GdAlO3 Phosphor Thermography

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    It has been recently shown that the high luminescence intensity from a Cr-doped GdAlO3 (Cr:GdAlO3) thermographic phosphor enables non-rastered full-field temperature mapping of thermal barrier coating (TBC) surfaces to temperatures above 1000C. In this presentation, temperature mapping by Cr:GdAlO3 based phosphor thermometry of air film-cooled TBC-coated surfaces is demonstrated for both scaled-up cooling hole geometries as well as for actual components in a burner rig test environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  6. Combined current and temperature mapping in an air-cooled, open-cathode polymer electrolyte fuel cell under steady-state and dynamic conditions

    NASA Astrophysics Data System (ADS)

    Meyer, Q.; Ronaszegi, K.; Robinson, J. B.; Noorkami, M.; Curnick, O.; Ashton, S.; Danelyan, A.; Reisch, T.; Adcock, P.; Kraume, R.; Shearing, P. R.; Brett, D. J. L.

    2015-11-01

    In situ diagnostic techniques provide a means of understanding the internal workings of fuel cells so that improved designs and operating regimes can be identified. Here, for the first time, a combined current density and temperature distributed measurement system is used to generate an electro-thermal performance map of an air-cooled, air-breathing polymer electrolyte fuel cell stack operating in an air/hydrogen cross-flow configuration. Analysis is performed in low- and high-current regimes and a complex relationship between localised current density, temperature and reactant supply is identified that describes the way in which the system enters limiting performance conditions. Spatiotemporal analysis was carried out to characterise transient operations in dead-ended anode/purge mode which revealed extensive current density and temperature gradients.

  7. Spatio-temporal reconstruction of air temperature maps and their application to estimate rice growing season heat accumulation using multi-temporal MODIS data.

    PubMed

    Zhang, Li-wen; Huang, Jing-feng; Guo, Rui-fang; Li, Xin-xing; Sun, Wen-bo; Wang, Xiu-zhen

    2013-02-01

    The accumulation of thermal time usually represents the local heat resources to drive crop growth. Maps of temperature-based agro-meteorological indices are commonly generated by the spatial interpolation of data collected from meteorological stations with coarse geographic continuity. To solve the critical problems of estimating air temperature (T(a)) and filling in missing pixels due to cloudy and low-quality images in growing degree days (GDDs) calculation from remotely sensed data, a novel spatio-temporal algorithm for T(a) estimation from Terra and Aqua moderate resolution imaging spectroradiometer (MODIS) data was proposed. This is a preliminary study to calculate heat accumulation, expressed in accumulative growing degree days (AGDDs) above 10 °C, from reconstructed T(a) based on MODIS land surface temperature (LST) data. The verification results of maximum T(a), minimum T(a), GDD, and AGDD from MODIS-derived data to meteorological calculation were all satisfied with high correlations over 0.01 significant levels. Overall, MODIS-derived AGDD was slightly underestimated with almost 10% relative error. However, the feasibility of employing AGDD anomaly maps to characterize the 2001-2010 spatio-temporal variability of heat accumulation and estimating the 2011 heat accumulation distribution using only MODIS data was finally demonstrated in the current paper. Our study may supply a novel way to calculate AGDD in heat-related study concerning crop growth monitoring, agricultural climatic regionalization, and agro-meteorological disaster detection at the regional scale.

  8. Spatio-temporal reconstruction of air temperature maps and their application to estimate rice growing season heat accumulation using multi-temporal MODIS data*

    PubMed Central

    Zhang, Li-wen; Huang, Jing-feng; Guo, Rui-fang; Li, Xin-xing; Sun, Wen-bo; Wang, Xiu-zhen

    2013-01-01

    The accumulation of thermal time usually represents the local heat resources to drive crop growth. Maps of temperature-based agro-meteorological indices are commonly generated by the spatial interpolation of data collected from meteorological stations with coarse geographic continuity. To solve the critical problems of estimating air temperature (T a) and filling in missing pixels due to cloudy and low-quality images in growing degree days (GDDs) calculation from remotely sensed data, a novel spatio-temporal algorithm for T a estimation from Terra and Aqua moderate resolution imaging spectroradiometer (MODIS) data was proposed. This is a preliminary study to calculate heat accumulation, expressed in accumulative growing degree days (AGDDs) above 10 °C, from reconstructed T a based on MODIS land surface temperature (LST) data. The verification results of maximum T a, minimum T a, GDD, and AGDD from MODIS-derived data to meteorological calculation were all satisfied with high correlations over 0.01 significant levels. Overall, MODIS-derived AGDD was slightly underestimated with almost 10% relative error. However, the feasibility of employing AGDD anomaly maps to characterize the 2001–2010 spatio-temporal variability of heat accumulation and estimating the 2011 heat accumulation distribution using only MODIS data was finally demonstrated in the current paper. Our study may supply a novel way to calculate AGDD in heat-related study concerning crop growth monitoring, agricultural climatic regionalization, and agro-meteorological disaster detection at the regional scale. PMID:23365013

  9. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James C. R.; Leijnse, Hidde; Steeneveld, Gert-Jan; Horn, Berthold K. P.; Uijlenhoet, Remko

    2014-05-01

    Celsius. This shows that monitoring air temperatures employing an Android application holds great promise. This study will particularly focus on new results: The methodology has been applied to data from three cities in the Netherlands (Amsterdam, Rotterdam, and Utrecht) for the period June - August 2013. It is shown that on average 282 battery temperature readings per day are already sufficient to accurately estimate daily-averaged air temperatures. Results clearly deteriorate when on average only 80 battery temperature readings are available. Since 75% of the world's population has a cell phone, 20% of the land surface of the earth has cellular telephone coverage, and 500 million devices use the Android operating system, there is a huge potential for measuring air temperatures employing cell phones. This could eventually lead to real-time world-wide temperature maps over the continents.

  10. AIRS Retrieved Temperature Isotherms over Southern Europe

    NASA Technical Reports Server (NTRS)

    2002-01-01

    AIRS Retrieved Temperature Isotherms over Southern Europe viewed from the west, September 8, 2002. The isotherms in this map made from AIRS data show regions of the same temperature in the atmosphere.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  11. Mapping Temperatures On Heat Pipes

    NASA Technical Reports Server (NTRS)

    Gunnerson, Fred S.; Thorncroft, Glen E.

    1993-01-01

    Paints containing thermochromic liquid crystals (TLC's) used to map temperatures on heat pipes and thermosyphons. Color of thermally sensitive TLC coat changes reversibly upon heating or cooling. Each distinct color indicates particular temperature. Transient and steady-state isotherms become visible as colored bands. Positions and movements of bands yield information about startup transients, steady-state operation, cooler regions containing noncondensible gas, and other phenomena relevant to performance of heat pipe.

  12. Temperature Map of Tempel 1

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A temperature map of the nucleus with different spatial resolutions. The context image (in black and white) is a HRIVIS image taken just before impact. The color bar in the middle gives temperature in Kelvins. The sun is to the right in all images.

    These data were acquired with the IR spectrometer using signal between 1.8 and 2.2 um and modeled to contain both a reflected and an emitted component. After this model is applied, the resulting number is a temperature which is represented by different colors with red being the highest and purple the coldest.

    The derived temperature varies from 260 +/- 6K to 329 +/- 8K. Shadows are the coolest temperatures, and the point directly below the sun is hottest. These temperatures indicate that the thermal inertia of the surface (the quality of the surface describing the ability to conduct and store heat) is low. In other words, on Tempel 1, it is hot in the sun and cold in the shadows. A value for thermal inertia is estimated at <100 W/K/m2/s1/2.

  13. Modeling air temperature changes in Northern Asia

    NASA Astrophysics Data System (ADS)

    Onuchin, A.; Korets, M.; Shvidenko, A.; Burenina, T.; Musokhranova, A.

    2014-11-01

    Based on time series (1950-2005) of monthly temperatures from 73 weather stations in Northern Asia (limited by 70-180° EL and 48-75° NL), it is shown that there are statistically significant spatial differences in character and intensity of the monthly and yearly temperature trends. These differences are defined by geomorphological and geographical parameters of the area including exposure of the territory to Arctic and Pacific air mass, geographic coordinates, elevation, and distances to Arctic and Pacific oceans. Study area has been divided into six domains with unique groupings of the temperature trends based on cluster analysis. An original methodology for mapping of temperature trends has been developed and applied to the region. The assessment of spatial patterns of temperature trends at the regional level requires consideration of specific regional features in the complex of factors operating in the atmosphere-hydrosphere-lithosphere-biosphere system.

  14. AIRS Maps from Space Processing Software

    NASA Technical Reports Server (NTRS)

    Thompson, Charles K.; Licata, Stephen J.

    2012-01-01

    This software package processes Atmospheric Infrared Sounder (AIRS) Level 2 swath standard product geophysical parameters, and generates global, colorized, annotated maps. It automatically generates daily and multi-day averaged colorized and annotated maps of various AIRS Level 2 swath geophysical parameters. It also generates AIRS input data sets for Eyes on Earth, Puffer-sphere, and Magic Planet. This program is tailored to AIRS Level 2 data products. It re-projects data into 1/4-degree grids that can be combined and averaged for any number of days. The software scales and colorizes global grids utilizing AIRS-specific color tables, and annotates images with title and color bar. This software can be tailored for use with other swath data products for the purposes of visualization.

  15. Surface Temperature variability from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Dang, V. T.; Aumann, H. H.

    2015-12-01

    To address the existence and possible causes of the climate hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014for the day and night conditions. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We compare the satellite data with the new surface data produced by Karl et al. (2015) who denies the reality of the climate hiatus. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The day-night difference is an indicator of the anthropogenic trend. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  16. Simultaneous Luminescence Pressure and Temperature Mapping

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M. (Inventor)

    1998-01-01

    A simultaneous luminescence pressure and temperature mapping system is developed including improved dye application techniques for surface temperature and pressure measurements from 5 torr to 1000 torr with possible upgrade to from 0.5 torr to several atmospheres with improved camera resolution. Adsorbed perylene dye on slip-cast silica is pressure (oxygen) sensitive and reusable to relatively high temperatures (-150 C). Adsorbed luminescence has an approximately linear color shift with temperature, which can be used for independent temperature mapping and brightness pressure calibration with temperature.

  17. Simultaneous Luminescence Pressure and Temperature Mapping System

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M. (Inventor)

    1995-01-01

    A simultaneous luminescence pressure and temperature mapping system is developed including improved dye application techniques for surface temperature and pressure measurements from 5 torr to 1000 torr with possible upgrade to from 0.5 torr to several atmospheres with improved camera resolution. Adsorbed perylene dye on slip-cast silica is pressure (oxygen) sensitive and reusable to relatively high temperatures (approximately 150 C). Adsorbed luminescence has an approximately linear color shift with temperature, which can be used for independent temperature mapping and brightness pressure calibration with temperature.

  18. Infrared temperature maps of EHD lubrication

    NASA Technical Reports Server (NTRS)

    Sanborn, D. M.; Winer, W. O.

    1977-01-01

    Technique uses an infrared detector with two specially selected infrared filters, in separately mapping the contact-surface temperature and average oil-film temperature in an elastohydrodynamic conjunction. Apparatus includes conventional four-ball bearing tester and temperature controlled lubricant system.

  19. Retrieval of air temperatures from crowd-sourced battery temperatures of cell phones

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James; Leijnse, Hidde; Uijlenhoet, Remko; Steeneveld, Gert-Jan; Horn, Berthold K. P.

    2013-04-01

    Accurate air temperature observations are important for urban meteorology, for example to study the urban heat island and adverse effects of high temperatures on human health. The number of available temperature observations is often relatively limited. A new development is presented to derive temperature information for the urban canopy from an alternative source: cell phones. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. Results are presented for Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree Celsius. This shows that monitoring air temperatures employing an Android application holds great promise. Since 75% of the world's population has a cell phone, 20% of the land surface of the earth has cellular telephone coverage, and 500 million devices use the Android operating system, there is a huge potential for measuring air temperatures employing cell phones. This could eventually lead to real-time world-wide temperature maps.

  20. Global mapping of minor atmospheric constituents with AIRS on EOS

    NASA Technical Reports Server (NTRS)

    Aumann, H. H.; Haskins, R. D.

    1990-01-01

    The Atmospheric Infrared Sounder (AIRS) is a grating-array spectrometer on EOS. It covers the region from 650 to 3000/cm with spectral resolution of 1200. The prime objective of AIRS is the global retrieval of temperature and water vapor profiles and of surface temperatures. The wide spectral coverage of AIRS permits the measurement of a number of additional atmospheric and surface parameters. Of particular interest is the potential to produce daily global maps of the spatial distribution of the more abundant of the minor gases, e.g. ozone, CO, CH4, and N2O. This potential capability for CH4 and N2O is strongly affected by cloud residual. Using the CH4 band at 1306/cm as example, spatial averaging of AIRS data is required to measure a 10 percent change in the nominal CH4 column abundance. At 1300/cm, this requires cloud clearing at the 0.3 percent level. The mapping capability for ozone and CO in terms of rural/urban abundance patterns is not likely to be impacted with cloud-clearing residuals as high as 5 percent.

  1. The Relationship Between Air Temperature and Stream Temperature

    NASA Astrophysics Data System (ADS)

    Morrill, J. C.; Bales, R. C.; Conklin, M. H.

    2001-05-01

    This study examined the relationship, both linear and non-linear, between air temperature and stream temperature in order to determine if air temperature can be used as an accurate predictor of stream temperature, if general relationships could be developed that apply to a large number of streams, and how changes in stream temperature associated with climate variability or climate warming might affect the dissolved oxygen level, and thus the quality of life, in some of these streams. Understanding the relationship between air temperature and water temperature is important if we want to predict how stream temperatures are likely to respond to the increase in surface air temperature that is occurring. Data from over 50 streams in 13 countries, mostly gathered by K-12 students in the GLOBE program (Global Learning and Observations to Benefit the Environment), are examined. Only a few streams display a linear 1:1 air/water temperature trend. The majority of streams instead show an increase in water temperature of about 0.6 to 0.8 degrees for every 1-degree increase in air temperature. At some of these sites, where dissolved oxygen content is already low, an increase in summer stream temperatures of 2-3 degrees could cause the dissolved oxygen levels to fall into a critically low range. At some locations, such as near the source of a stream, water temperature does not change much despite wide ranges in air temperatures. The temperatures at these sites are likely to be least affected by surface warming. More data are needed in warmer climates, where the water temperature already gets above 25oC, in order to better examine the air/water temperature relationship under warmer conditions. Global average surface air temperature is expected to increase by 3-5oC by the middle of this century. Surface water temperature in streams, lakes and wetlands will likely increase as air temperature increases, although the change in water temperature may not be as large as the change in

  2. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, A.; Robinson, J. C. R.; Leijnse, H.; Steeneveld, G. J.; Horn, B. K. P.; Uijlenhoet, R.

    2013-08-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. A straightforward heat transfer model is employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas.

  3. Controlled-Temperature Hot-Air Gun

    NASA Technical Reports Server (NTRS)

    Munoz, M. C.

    1986-01-01

    Materials that find applications in wind tunnels first tested in laboratory. Hot-Air Gun differs from commercial units in that flow rate and temperature monitored and controlled. With typical compressed-airsupply pressure of 25 to 38 psi (170 to 260 kPa), flow rate and maximum temperature are 34 stdft3/min (0.96 stdm3/min) and 1,090 degrees F (590 degrees C), respectively. Resembling elaborate but carefully regulated hot-air gun, setup used to apply blasts of air temperatures above 1,500 degrees F (815 degrees C) to test specimens.

  4. Air separation with temperature and pressure swing

    DOEpatents

    Cassano, Anthony A.

    1986-01-01

    A chemical absorbent air separation process is set forth which uses a temperature swing absorption-desorption cycle in combination with a pressure swing wherein the pressure is elevated in the desorption stage of the process.

  5. Air Temperature in the Undulator Hall

    SciTech Connect

    Not Available

    2010-12-07

    Various analyses have been performed recently to estimate the performance of the air conditioning (HVAC) system planned for the Undulator Hall. This reports summarizes the results and provides an upgrade plan to be used if new requirements are needed in the future. The estimates predict that with the planned loads the tunnel air temperature will be well within the allowed tolerance during normal operation.

  6. Nanoscale temperature mapping in operating microelectronic devices

    DOE PAGES

    Mecklenburg, Matthew; Hubbard, William A.; White, E. R.; ...

    2015-02-05

    We report that modern microelectronic devices have nanoscale features that dissipate power nonuniformly, but fundamental physical limits frustrate efforts to detect the resulting temperature gradients. Contact thermometers disturb the temperature of a small system, while radiation thermometers struggle to beat the diffraction limit. Exploiting the same physics as Fahrenheit’s glass-bulb thermometer, we mapped the thermal expansion of Joule-heated, 80-nanometer-thick aluminum wires by precisely measuring changes in density. With a scanning transmission electron microscope (STEM) and electron energy loss spectroscopy (EELS), we quantified the local density via the energy of aluminum’s bulk plasmon. Rescaling density to temperature yields maps with amore » statistical precision of 3 kelvin/hertz₋1/2, an accuracy of 10%, and nanometer-scale resolution. Lastly, many common metals and semiconductors have sufficiently sharp plasmon resonances to serve as their own thermometers.« less

  7. Nanoscale temperature mapping in operating microelectronic devices

    SciTech Connect

    Mecklenburg, Matthew; Hubbard, William A.; White, E. R.; Dhall, Rohan; Cronin, Stephen B.; Aloni, Shaul; Regan, B. C.

    2015-02-05

    We report that modern microelectronic devices have nanoscale features that dissipate power nonuniformly, but fundamental physical limits frustrate efforts to detect the resulting temperature gradients. Contact thermometers disturb the temperature of a small system, while radiation thermometers struggle to beat the diffraction limit. Exploiting the same physics as Fahrenheit’s glass-bulb thermometer, we mapped the thermal expansion of Joule-heated, 80-nanometer-thick aluminum wires by precisely measuring changes in density. With a scanning transmission electron microscope (STEM) and electron energy loss spectroscopy (EELS), we quantified the local density via the energy of aluminum’s bulk plasmon. Rescaling density to temperature yields maps with a statistical precision of 3 kelvin/hertz₋1/2, an accuracy of 10%, and nanometer-scale resolution. Lastly, many common metals and semiconductors have sufficiently sharp plasmon resonances to serve as their own thermometers.

  8. Nowcasting daily minimum air and grass temperature.

    PubMed

    Savage, M J

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient (b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  9. Nowcasting daily minimum air and grass temperature

    NASA Astrophysics Data System (ADS)

    Savage, M. J.

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient ( b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  10. Infrared temperature mapping in elastohydrodynamic lubrication

    NASA Technical Reports Server (NTRS)

    Ausherman, V. K.; Sanborn, D. M.; Winer, W. O.; Nagaraj, H. S.

    1975-01-01

    An improved technique for the measurement of temperature distributions in an EHD conjunction is presented. The technique reported here employs the infrared radiation emitted by the EHD conjunction and appears more rigorous, more reliable, and less cumbersome than that reported previously by the authors. Detailed mapping of fluid temperature (averaged through the thickness) and the ball surface temperature can be obtained. These temperature distributions have been reported for a naphthenic mineral oil for peak Hertz pressures of 1.05 and 1.51 GN/sq m (148 and 219 kpsi), at sliding speeds ranging from 0.35 to 12.7 m/s (13.4 to 500 ips) and a bath temperature of 40 C.

  11. Temperature Tunable Air-Gap Etalon Filter

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Stephen, Mark A.; Lunt, David L.

    1998-01-01

    We report on experimental measurements of a temperature tuned air-gap etalon filter. The filter exhibits temperature dependent wavelength tuning of 54 pm/C. It has a nominal center wavelength of 532 nm. The etalon filter has a 27 pm optical bandpass and 600 pm free spectral range (finesse approximately 22). The experimental results are in close agreement with etalon theory.

  12. Undulator Hall Air Temperature Fault Scenarios

    SciTech Connect

    Sevilla, J.; Welch, J.; /SLAC

    2010-11-17

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  13. Modeling monthly mean air temperature for Brazil

    NASA Astrophysics Data System (ADS)

    Alvares, Clayton Alcarde; Stape, José Luiz; Sentelhas, Paulo Cesar; de Moraes Gonçalves, José Leonardo

    2013-08-01

    Air temperature is one of the main weather variables influencing agriculture around the world. Its availability, however, is a concern, mainly in Brazil where the weather stations are more concentrated on the coastal regions of the country. Therefore, the present study had as an objective to develop models for estimating monthly and annual mean air temperature for the Brazilian territory using multiple regression and geographic information system techniques. Temperature data from 2,400 stations distributed across the Brazilian territory were used, 1,800 to develop the equations and 600 for validating them, as well as their geographical coordinates and altitude as independent variables for the models. A total of 39 models were developed, relating the dependent variables maximum, mean, and minimum air temperatures (monthly and annual) to the independent variables latitude, longitude, altitude, and their combinations. All regression models were statistically significant ( α ≤ 0.01). The monthly and annual temperature models presented determination coefficients between 0.54 and 0.96. We obtained an overall spatial correlation higher than 0.9 between the models proposed and the 16 major models already published for some Brazilian regions, considering a total of 3.67 × 108 pixels evaluated. Our national temperature models are recommended to predict air temperature in all Brazilian territories.

  14. Modeling of global surface air temperature

    NASA Astrophysics Data System (ADS)

    Gusakova, M. A.; Karlin, L. N.

    2012-04-01

    A model to assess a number of factors, such as total solar irradiance, albedo, greenhouse gases and water vapor, affecting climate change has been developed on the basis of Earth's radiation balance principle. To develop the model solar energy transformation in the atmosphere was investigated. It's a common knowledge, that part of the incoming radiation is reflected into space from the atmosphere, land and water surfaces, and another part is absorbed by the Earth's surface. Some part of outdoing terrestrial radiation is retained in the atmosphere by greenhouse gases (carbon dioxide, methane, nitrous oxide) and water vapor. Making use of the regression analysis a correlation between concentration of greenhouse gases, water vapor and global surface air temperature was obtained which, it is turn, made it possible to develop the proposed model. The model showed that even smallest fluctuations of total solar irradiance intensify both positive and negative feedback which give rise to considerable changes in global surface air temperature. The model was used both to reconstruct the global surface air temperature for the 1981-2005 period and to predict global surface air temperature until 2030. The reconstructions of global surface air temperature for 1981-2005 showed the models validity. The model makes it possible to assess contribution of the factors listed above in climate change.

  15. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  16. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  17. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  18. 106. Air defense command "master plan", base map," RCA Service ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    106. Air defense command "master plan", base map," RCA Service Company tab no. F-1, sheet 1 of 2, dated 22 October, 1965. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  19. Variability of Winter Air Temperature in Mid-Latitude Europe

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Ardizzone, J.; Atlas, R.; Bungato, D.; Cierniewski, J.; Jusem, J. C.; Przybylak, R.; Schubert, S.; Starr, D.; Walczewski, J.

    2002-01-01

    The aim of this paper is to report extreme winter/early-spring air temperature (hereinafter temperature) anomalies in mid-latitude Europe, and to discuss the underlying forcing to these interannual fluctuations. Warm advection from the North Atlantic in late winter controls the surface-air temperature, as indicated by the substantial correlation between the speed of the surface southwesterlies over the eastern North Atlantic (quantified by a specific Index Ina) and the 2-meter level air temperatures (hereinafter Ts) over Europe, 45-60 deg N, in winter. In mid-March and subsequently, the correlation drops drastically (quite often it is negative). This change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature: absorption of insolation replaces the warm advection as the dominant control. This forcing by maritime-air advection in winter was demonstrated in a previous publication, and is re-examined here in conjunction with extreme fluctuations of temperatures in Europe. We analyze here the interannual variability at its extreme by comparing warm-winter/early-spring of 1989/90 with the opposite scenario in 1995/96. For these two December-to-March periods the differences in the monthly mean temperature in Warsaw and Torun, Poland, range above 10 C. Short-term (shorter than a month) fluctuations of the temperature are likewise very strong. We conduct pentad-by-pentad analysis of the surface-maximum air temperature (hereinafter Tmax), in a selected location, examining the dependence on Ina. The increased cloudiness and higher amounts of total precipitable water, corollary effects to the warm low-level advection. in the 1989/90 winter, enhance the positive temperature anomalies. The analysis of the ocean surface winds is based on the Special Sensor Microwave/Imager (SSM/I) dataset; ascent rates, and over land wind data are from the European Centre for Medium-Range Weather Forecasts (ECMWF); maps of 2-m temperature, cloud

  20. Air Velocity Mapping of Environmental Test Chambers

    DTIC Science & Technology

    1989-07-01

    variable that must be measured for the evaluations of the air diffusion performance index (ADPI), or the thermal comfort indices such as predicted mean...altered. The impact of asymmetrical airflow patterns undoubtedly affect human thermal comfort votes. The standardized 6 technique described in this...report could be easily employed prior to or along with specific studies requiring precise air velocity data, and coupled with human thermal comfort surveys

  1. Uncertainty in mapping urban air quality using crowdsourcing techniques

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; Castell, Nuria; Lahoz, William; Bartonova, Alena

    2016-04-01

    Small and low-cost sensors measuring various air pollutants have become available in recent years owing to advances in sensor technology. Such sensors have significant potential for improving high-resolution mapping of air quality in the urban environment as they can be deployed in comparatively large numbers and therefore are able to provide information at unprecedented spatial detail. However, such sensor devices are subject to significant and currently little understood uncertainties that affect their usability. Not only do these devices exhibit random errors and biases of occasionally substantial magnitudes, but these errors may also shift over time. In addition, there often tends to be significant inter-sensor variability even when supposedly identical sensors from the same manufacturer are used. We need to quantify accurately these uncertainties to make proper use of the information they provide. Furthermore, when making use of the data and producing derived products such as maps, the measurement uncertainties that propagate throughout the analysis need to be clearly communicated to the scientific and non-scientific users of the map products. Based on recent experiences within the EU-funded projects CITI-SENSE and hackAIR we discuss the uncertainties along the entire processing chain when using crowdsourcing techniques for mapping urban air quality. Starting with the uncertainties exhibited by the sensors themselves, we present ways of quantifying the error characteristics of a network of low-cost microsensors and show suitable statistical metrics for summarizing them. Subsequently, we briefly present a data-fusion-based method for mapping air quality in the urban environment and illustrate how we propagate the uncertainties of the individual sensors throughout the mapping system, resulting in detailed maps that document the pixel-level uncertainty for each concentration field. Finally, we present methods for communicating the resulting spatial uncertainty

  2. Global surface air temperatures - Update through 1987

    NASA Technical Reports Server (NTRS)

    Hansen, James; Lebedeff, Sergej

    1988-01-01

    Data from meteorological stations show that surface air temperatures in the 1980s are the warmest in the history of instrumental records. The four warmest years on record are all in the 1980s, with the warmest years in the analysis being 1981 and 1987. The rate of warming between the mid-1960s and the present is higher than that which occurrred in the previous period of rapid warming between the 1880s and 1940.

  3. Global trends of measured surface air temperature

    NASA Technical Reports Server (NTRS)

    Hansen, James; Lebedeff, Sergej

    1987-01-01

    The paper presents the results of surface air temperature measurements from available meteorological stations for the period of 1880-1985. It is shown that the network of meteorological stations is sufficient to yield reliable long-term, decadal, and interannual temperature changes for both the Northern Hemisphere and the Southern Hemisphere, despite the fact that most stations are located on the continents. The results indicate a global warming of about 0.5-0.7 C in the past century, with warming of similar magnitude in both hemispheres. A strong warming trend between 1965 and 1980 raised the global mean temperature in 1980 and 1981 to the highest level in the period of instrumental records. Selected graphs of the temperature change in each of the eight latitude zones are included.

  4. Temperature Dependence of Lithium Reactions with Air

    NASA Astrophysics Data System (ADS)

    Sherrod, Roman; Skinner, C. H.; Koel, Bruce

    2016-10-01

    Liquid lithium plasma facing components (PFCs) are being developed to handle long pulse, high heat loads in tokamaks. Wetting by lithium of its container is essential for this application, but can be hindered by lithium oxidation by residual gases or during tokamak maintenance. Lithium PFCs will experience elevated temperatures due to plasma heat flux. This work presents measurements of lithium reactions at elevated temperatures (298-373 K) when exposed to natural air. Cylindrical TZM wells 300 microns deep with 1 cm2 surface area were filled with metallic lithium in a glovebox containing argon with less than 1.6 ppm H20, O2, and N2. The wells were transferred to a hot plate in air, and then removed periodically for mass gain measurements. Changes in the surface topography were recorded with a microscope. The mass gain of the samples at elevated temperatures followed a markedly different behavior to that at room temperature. One sample at 373 K began turning red indicative of lithium nitride, while a second turned white indicative of lithium carbonate formation. Data on the mass gain vs. temperature and associated topographic changes of the surface will be presented. Science Undergraduate Laboratory Internship funded by Department of Energy.

  5. Photopolarimeter/Radiometer (PPR) Temperature Map of Great Red Spot

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This map shows temperatures for the region around Jupiter's Great Red Spot and an area to the northwest. The center of the Great Red Spot appears colder than the surrounding areas, and actually is colder than any other place in Jupiter's atmosphere. The center of the spot is a region where winds bring gases up from underneath. The ammonia in the rising air condenses as it comes up and so forms tall thick clouds, much the same way as rising air in the Earth's atmosphere over moist areas forms high water clouds. It is a little warmer to the immediate east and west of the spot, where the uprising winds are weaker. To the south is a warm area where winds are generally descending and clearer of clouds. The northwestern area in this map shows atmosphere that is much warmer and drier, and the gases there are descending, so it is much clearer of clouds. This map corresponds to a level in Jupiter's atmosphere where the pressure is only 1/4 of the Earth's at sea level (250 millibars), the same as it is near 1200 meters (40,000 feet) above sea level in the Earth. This map was made from data taken by the Photopolarimeter/Radiometer (PPR) instrument on June 26, 1996.

    JPL manages the Galileo mission for NASA's Office of Space Science, Washington, D.C.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  6. Trends in Surface Temperature from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Aumann, H. H.

    2014-12-01

    To address possible causes of the current hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We find a monotonic positive trend for the land temperature but not for the ocean temperature. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The results are compared with the model studies. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  7. Is Air Temperature Enough to Predict Lake Surface Temperature?

    NASA Astrophysics Data System (ADS)

    Piccolroaz, S.; Toffolon, M.; Majone, B.

    2014-12-01

    Lake surface water (LST) is a key factor that controls most of the physical and ecological processes occurring in lakes. Reliable estimates are especially important in the light of recent studies, which revealed that inland water bodies are highly sensitive to climate, and are rapidly warming throughout the world. However, an accurate estimation of LST usually requires a significant amount of information that is not always available. In this work, we present an application of air2water, a lumped model that simulates LST as a function of air temperature only. In addition, air2water allows for a qualitative evaluation of the depth of the epilimnion during the annual stratification cycle. The model consists in a simplification of the complete heat budget of the well-mixed surface layer, and has a few parameters (from 4 to 8 depending on the version) that summarize the role of the different heat flux components. Model calibration requires only air and water temperature data, possibly covering sufficiently long historical periods in order to capture inter-annual variability and long-term trends. During the calibration procedure, the information included in input data is retrieved to directly inform model parameters, which can be used to classify the thermal behavior of the lake. In order to investigate how thermal dynamics are related to morphological features, the model has been applied to 14 temperate lakes characterized by different morphological and hydrological conditions, by different sources of temperature data (buoys, satellite), and by variable frequency of acquisition. A good agreement between observed and simulated LST has been achieved, with a RMSE in the order of 1°C, which is fully comparable to the performances of more complex process-based models. This application allowed for a deeper understanding of the thermal response of lakes as a function of their morphology, as well as for specific analyses as for example the investigation of the exceptional

  8. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  9. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  10. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  11. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  12. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  13. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  14. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  15. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  16. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  17. Historical Air Temperatures Across the Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Kagawa-Viviani, A.; Giambelluca, T. W.

    2015-12-01

    This study focuses on an analysis of daily temperature from over 290 ground-based stations across the Hawaiian Islands from 1905-2015. Data from multiple stations were used to model environmental lapse rates by fitting linear regressions of mean daily Tmax and Tmin on altitude; piecewise regressions were also used to model the discontinuity introduced by the trade wind inversion near 2150m. Resulting time series of both model coefficients and lapse rates indicate increasing air temperatures near sea level (Tmax: 0.09°C·decade-1 and Tmin: 0.23°C·decade-1 over the most recent 65 years). Evaluation of lapse rates during this period suggest Tmax lapse rates (~0.6°C·100m-1) are decreasing by 0.006°C·100m-1decade-1 due to rapid high elevation warming while Tmin lapse rates (~0.8°C·100m-1) are increasing by 0.002°C·100m-1decade-1 due to the stronger increase in Tmin at sea level versus at high elevation. Over the 110 year period, temperatures tend to vary coherently with the PDO index. Our analysis verifies warming trends and temperature variability identified earlier by analysis of selected index stations. This method also provides temperature time series we propose are more robust to station inhomogeneities.

  18. InMAP: a new model for air pollution interventions

    NASA Astrophysics Data System (ADS)

    Tessum, C. W.; Hill, J. D.; Marshall, J. D.

    2015-10-01

    Mechanistic air pollution models are essential tools in air quality management. Widespread use of such models is hindered, however, by the extensive expertise or computational resources needed to run most models. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations - the air pollution outcome generally causing the largest monetized health damages - attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical information from the output of a state-of-the-science chemical transport model (WRF-Chem) within an Eulerian modeling framework, to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. InMAP uses a variable resolution grid that focuses on human exposures by employing higher spatial resolution in urban areas and lower spatial resolution in rural and remote locations and in the upper atmosphere; and by directly calculating steady-state, annual average concentrations. In comparisons run here, InMAP recreates WRF-Chem predictions of changes in total PM2.5 concentrations with population-weighted mean fractional error (MFE) and bias (MFB) < 10 % and population-weighted R2 ~ 0.99. Among individual PM2.5 species, the best predictive performance is for primary PM2.5 (MFE: 16 %; MFB: 13 %) and the worst predictive performance is for particulate nitrate (MFE: 119 %; MFB: 106 %). Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. Features planned for future model releases include a larger spatial domain, more temporal information, and the ability to predict ground-level ozone (O3

  19. Variation in the urban vegetation, surface temperature, air temperature nexus.

    PubMed

    Shiflett, Sheri A; Liang, Liyin L; Crum, Steven M; Feyisa, Gudina L; Wang, Jun; Jenerette, G Darrel

    2017-02-01

    Our study examines the urban vegetation - air temperature (Ta) - land surface temperature (LST) nexus at micro- and regional-scales to better understand urban climate dynamics and the uncertainty in using satellite-based LST for characterizing Ta. While vegetated cooling has been repeatedly linked to reductions in urban LST, the effects of vegetation on Ta, the quantity often used to characterize urban heat islands and global warming, and on the interactions between LST and Ta are less well characterized. To address this need we quantified summer temporal and spatial variation in Ta through a network of 300 air temperature sensors in three sub-regions of greater Los Angeles, CA, which spans a coastal to desert climate gradient. Additional sensors were placed within the inland sub-region at two heights (0.1m and 2m) within three groundcover types: bare soil, irrigated grass, and underneath citrus canopy. For the entire study region, we acquired new imagery data, which allowed calculation of the normalized difference vegetation index (NDVI) and LST. At the microscale, daytime Ta measured along a vertical gradient, ranged from 6 to 3°C cooler at 0.1 and 2m, underneath tall canopy compared to bare ground respectively. At the regional scale NDVI and LST were negatively correlated (p<0.001). Relationships between diel variation in Ta and daytime LST at the regional scale were progressively weaker moving away from the coast and were generally limited to evening and nighttime hours. Relationships between NDVI and Ta were stronger during nighttime hours, yet effectiveness of mid-day vegetated cooling increased substantially at the most arid region. The effectiveness of vegetated Ta cooling increased during heat waves throughout the region. Our findings suggest an important but complex role of vegetation on LST and Ta and that vegetation may provide a negative feedback to urban climate warming.

  20. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  1. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  2. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  3. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  4. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  5. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  6. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  7. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  8. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  9. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  10. Air temperature variation across the seed cotton dryer mixpoint

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eighteen tests were conducted in six gins in the fall of 2008 to measure air temperature variation within various heated air seed cotton drying systems with the purpose of: checking validation of recommendations by a professional engineering society and measuring air temperature variation across the...

  11. AIR TEMPERATURE DISTRIBUTION IN SEED COTTON DRYING SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ten tests were conducted in the fall of 2007 to measure air temperature variation within various heated air seed cotton drying systems with the purpose of: checking validation of recommendations by a professional engineering society and measuring air temperature variation across the airflow ductwork...

  12. Possible Economies in Air-Conditioning by Accepting Temperature Swings.

    ERIC Educational Resources Information Center

    Loudon, A. G.; Petherbridge, P.

    Public building air conditioning systems, which use constant and varying heat and cooling loads, are compared and investigated. Experiments indicated that constant temperature controls based on outside air temperature alone were inefficient. Ventilating a building with outside air and the methods of doing so are cited as being the most economical…

  13. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  14. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  15. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  16. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  17. Comparison of satellite and air photo based landslide susceptibility maps

    NASA Astrophysics Data System (ADS)

    Weirich, Frank; Blesius, Leonhard

    2007-07-01

    Landslide susceptibility maps can be prepared in a variety of ways. Many geoscientists favour the use of an overlay model approach in which several map layers are combined by some arithmetic rules to determine the potential for sliding in an area or region. The resulting susceptibility maps, although based on a subjective weighting of relevant factors, can often be of high accuracy and utility. In order to obtain the relevant input data for this type of analysis, remotely sensed data are often used. To date, susceptibility mapping, just as the mapping of historic and individual landslides, has tended to require higher-resolution imagery. This has somewhat limited the application of landslide susceptibility mapping. While high-resolution air photo or satellite imagery is superior to lower resolution imagery for the purpose of mapping of historic and individual landslides, such higher levels of resolution may not be required for the development of landslide susceptibility maps. In order to determine if medium-resolution satellite imagery, such as SPOT or ASTER, could provide the needed data for landslide susceptibility mapping, a comparison was undertaken of landslide susceptibility model output resulting from the use of stereo NAPP aerial photography versus the use of data obtained from stereo SPOT imagery. The test area selected for this study consisted of two watersheds, Pena Canyon and Big Rock Canyon, situated west of Santa Monica, California, USA, along the Pacific Coast Highway. Both watersheds have a long and well-documented history of landslide activity and sufficient geologic variability and complexity to provide a good test site. The specific overlay model used in this evaluation required input data consistent with the needs of many other models of this type. The model output derived from the two different data sources and presented here in the form of susceptibility maps were virtually identical. Statistical and difference analysis confirmed that both

  18. Two-dimensional temperature mapping using thermographic phosphors

    SciTech Connect

    Noel, B.W. ); Turley, W.D. ); Cates, M.R.; Tobin, K.W. )

    1990-01-01

    We have demonstrated the feasibility of extending a point-temperature measurement method to two-dimensional mapping of temperature distributions on surfaces. The point-measurement method used the temperature-dependant characteristics of sharp emission lines from thermographic phosphors to measure temperature. The two-dimensional extrusion uses an ultraviolet light source to illuminate the phosphor-coated surface and a high-grain video camera filtered to select the desired emission line. By changing filters, we acquire video data that are over-laid and analyzed by a video processor, then displayed in contour or pseudocolor maps of the temperature distribution. 13 refs., 14 figs., 1 tabs.

  19. Mapping air quality zones for coastal urban centers.

    PubMed

    Freeman, Brian; Gharabaghi, Bahram; Thé, Jesse; Munshed, Mohammad; Faisal, Shah; Abdullah, Meshal; Al Aseed, Athari

    2017-05-01

    This study presents a new method that incorporates modern air dispersion models allowing local terrain and land-sea breeze effects to be considered along with political and natural boundaries for more accurate mapping of air quality zones (AQZs) for coastal urban centers. This method uses local coastal wind patterns and key urban air pollution sources in each zone to more accurately calculate air pollutant concentration statistics. The new approach distributes virtual air pollution sources within each small grid cell of an area of interest and analyzes a puff dispersion model for a full year's worth of 1-hr prognostic weather data. The difference of wind patterns in coastal and inland areas creates significantly different skewness (S) and kurtosis (K) statistics for the annually averaged pollutant concentrations at ground level receptor points for each grid cell. Plotting the S-K data highlights grouping of sources predominantly impacted by coastal winds versus inland winds. The application of the new method is demonstrated through a case study for the nation of Kuwait by developing new AQZs to support local air management programs. The zone boundaries established by the S-K method were validated by comparing MM5 and WRF prognostic meteorological weather data used in the air dispersion modeling, a support vector machine classifier was trained to compare results with the graphical classification method, and final zones were compared with data collected from Earth observation satellites to confirm locations of high-exposure-risk areas. The resulting AQZs are more accurate and support efficient management strategies for air quality compliance targets effected by local coastal microclimates.

  20. Temperature mapping using photoacoustic and thermoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Ke, Haixin; Erpelding, Todd N.; Jankovic, Ladislav; Wang, Lihong V.

    2012-02-01

    Photoacoustic (PA) and thermoacoustic (TA) effects are based on the generation of acoustic waves after tissues absorb electromagnetic energy. The amplitude of the acoustic signal is related to the temperature of the absorbing target tissue. A combined photoacoustic and thermoacoustic imaging system built around a modified commercial ultrasound scanner was used to obtain an image of the target's temperature, using reconstructed photoacoustic or thermoacoustic images. To demonstrate these techniques, we used photoacoustic imaging to monitor the temperature changes of methylene blue solution buried at a depth of 1.5 cm in chicken breast tissue from 12 to 42 °C. We also used thermoacoustic imaging to monitor the temperature changes of porcine muscle embedded in 2 cm porcine fat from 14 to 28 °C. The results demonstrate that these techniques can provide noninvasive real-time temperature monitoring of embedded objects and tissue.

  1. Impact of Surface Air Temperature and Snow Cover Depth on the Upper Soil Temperature Variations in Russia

    NASA Astrophysics Data System (ADS)

    Sherstyukov, A. B.; Sherstyukov, B. G.; Groisman, P. Y.

    2007-12-01

    A study of the impact of climate changes during for the last four decades on soil temperatures at depths up to 3.2 meters has been conducted for the territory of Russia. For the 1965-2004 period, we compiled and analyzed data from all Russian meteorological stations with long-term soil temperature observations at depths 80, 160 and 320 cm. Traditionally, these stations also observe a complete set of standard meteorological variables (that include surface air temperature and extensive monitoring of snow cover characteristics). This allowed us to investigate the impact of surface air temperatures and snow depth variations on soil temperatures in the upper soil layer, to quantify it using statistical analyses of multi-dimensional 40-year-long time series at 164 locations throughout the country, and assess the representativeness of the obtained results. Three-dimensional spatial distributions of regression and correlation coefficients were mapped for warm and cold seasons separately as well as for the entire year, and thereafter analyzed. In the permafrost zone we found special features in these fields that distinctively separate the permafrost zone from the remaining territory. In this zone, soil temperatures are practically uncorrelated with surface air temperatures and variations of the snow depth controls soil temperature variations (with R2 up to 0.5) Quantitative estimates of the contribution of mid-annual air temperature and snow cover depth in the long-term changes of mid-annual soil temperatures across the Russia territory were received. We found that the prevailing influence on soil temperature variations in the European part was surface air temperatures and in the Asian part of Russia was snow cover depth. Furthermore, increase of the winter snow depth in the permafrost zone (by preserving the heat accumulated in the warm season) promotes annual soil temperature increase and therefore may foster the further permafrost degradation associated with ongoing

  2. Evaluating and mapping of spatial air ion quality patterns in a residential garden using a geostatistic method.

    PubMed

    Wu, Chen-Fa; Lai, Chun-Hsien; Chu, Hone-Jay; Lin, Wen-Huang

    2011-06-01

    Negative air ions (NAI) produce biochemical reactions that increase the levels of the mood chemical serotonin in the environment. Moreover, they benefit both the psychological well being and the human body's physiological condition. The aim of this research was to estimate and measure the spatial distributions of negative and positive air ions in a residential garden in central Taiwan. Negative and positive air ions were measured at thirty monitoring locations in the study garden from July 2009 to June 2010. Moreover, Kriging was applied to estimate the spatial distribution of negative and positive air ions, as well as the air ion index in the study area. The measurement results showed that the numbers of NAI and PAI differed greatly during the four seasons, the highest and the lowest negative and positive air ion concentrations were found in the summer and winter, respectively. Moreover, temperature was positively affected negative air ions concentration. No matter what temperature is, the ranges of variogram in NAI/PAI were similar during four seasons. It indicated that spatial patterns of NAI/PAI were independent of the seasons and depended on garden elements and configuration, thus the NAP/PAI was a good estimate of the air quality regarding air ions. Kriging maps depicted that the highest negative and positive air ion concentration was next to the waterfall, whereas the lowest air ions areas were next to the exits of the garden. The results reveal that waterscapes are a source of negative and positive air ions, and that plants and green space are a minor source of negative air ions in the study garden. Moreover, temperature and humidity are positively and negatively affected negative air ions concentration, respectively. The proposed monitoring and mapping approach provides a way to effectively assess the patterns of negative and positive air ions in future landscape design projects.

  3. Honeybee flight metabolic rate: does it depend upon air temperature?

    PubMed

    Woods, William A; Heinrich, Bernd; Stevenson, Robert D

    2005-03-01

    Differing conclusions have been reached as to how or whether varying heat production has a thermoregulatory function in flying honeybees Apis mellifera. We investigated the effects of air temperature on flight metabolic rate, water loss, wingbeat frequency, body segment temperatures and behavior of honeybees flying in transparent containment outdoors. For periods of voluntary, uninterrupted, self-sustaining flight, metabolic rate was independent of air temperature between 19 and 37 degrees C. Thorax temperatures (T(th)) were very stable, with a slope of thorax temperature on air temperature of 0.18. Evaporative heat loss increased from 51 mW g(-1) at 25 degrees C to 158 mW g(-1) at 37 degrees C and appeared to account for head and abdomen temperature excess falling sharply over the same air temperature range. As air temperature increased from 19 to 37 degrees C, wingbeat frequency showed a slight but significant increase, and metabolic expenditure per wingbeat showed a corresponding slight but significant decrease. Bees spent an average of 52% of the measurement period in flight, with 19 of 78 bees sustaining uninterrupted voluntary flight for periods of >1 min. The fraction of time spent flying declined as air temperature increased. As the fraction of time spent flying decreased, the slope of metabolic rate on air temperature became more steeply negative, and was significant for bees flying less than 80% of the time. In a separate experiment, there was a significant inverse relationship of metabolic rate and air temperature for bees requiring frequent or constant agitation to remain airborne, but no dependence for bees that flew with little or no agitation; bees were less likely to require agitation during outdoor than indoor measurements. A recent hypothesis explaining differences between studies in the slope of flight metabolic rate on air temperature in terms of differences in metabolic capacity and thorax temperature is supported for honeybees in voluntary

  4. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

  5. NOTE: MRI temperature mapping during thermal balloon angioplasty

    NASA Astrophysics Data System (ADS)

    Shmatukha, Andriy V.; Bakker, Chris J. G.

    2006-04-01

    Knowledge on the thermal dose delivered during thermal balloon angioplasty (TBA) is desirable to understand why TBA's outcome varies widely among patients and why it is subject to high restenosis rates. In its conventional implementation, TBA involves injection of a heated medium into a balloon positioned within a stenotic blood vessel. The medium injection causes flow, motion and susceptibility-redistribution artefacts that are devastating to the proton resonance frequency shift (PRFS) technique of MRI temperature mapping. Here, we propose to separate in time medium injection and heating by first inflating a balloon with a medium at an initial temperature, and then by heating the medium up using laser light. The separation is shown to eliminate all the mentioned artefacts and to enable real-time MRI temperature mapping using the PRFS technique. Accurate and reliable temperature maps were acquired in a TBA balloon itself and in the surrounding phantom tissue during heat application.

  6. Direct temperature mapping of nanoscale plasmonic devices.

    PubMed

    Desiatov, Boris; Goykhman, Ilya; Levy, Uriel

    2014-02-12

    Side by side with the great advantages of plasmonics in nanoscale light confinement, the inevitable ohmic loss results in significant joule heating in plasmonic devices. Therefore, understanding optical-induced heat generation and heat transport in integrated on-chip plasmonic devices is of major importance. Specifically, there is a need for in situ visualization of electromagnetic induced thermal energy distribution with high spatial resolution. This paper studies the heat distribution in silicon plasmonic nanotips. Light is coupled to the plasmonic nanotips from a silicon nanowaveguide that is integrated with the tip on chip. Heat is generated by light absorption in the metal surrounding the silicon nanotip. The steady-state thermal distribution is studied numerically and measured experimentally using the approach of scanning thermal microscopy. It is shown that following the nanoscale heat generation by a 10 mW light source within a silicon photonic waveguide the temperature in the region of the nanotip is increased by ∼ 15 °C compared with the ambient temperature. Furthermore, we also perform a numerical study of the dynamics of the heat transport. Given the nanoscale dimensions of the structure, significant heating is expected to occur within the time frame of picoseconds. The capability of measuring temperature distribution of plasmonic structures at the nanoscale is shown to be a powerful tool and may be used in future applications related to thermal plasmonic applications such as control heating of liquids, thermal photovoltaic, nanochemistry, medicine, heat-assisted magnetic memories, and nanolithography.

  7. GOAT (Global Oxygen And Temperature) Mapping

    NASA Astrophysics Data System (ADS)

    Slanger, T. G.; Kostko, O.; Pejakovic, D. A.; Kalogerakis, K. S.

    2012-04-01

    The O2(b1Σg+ - X3Σg-) Atmospheric Band system has been studied extensively since the days of Fraunhofer, who first showed that solar photoabsorption in the 762 nm region was caused by terrestrial oxygen; in this case, the 0-0 band of the b - X system. The O2(b) state is generated by two different mechanisms in the atmosphere: by O(3P ) atom recombination, where O2(b) is one of several excited O2 states produced, and by the energy transfer from O(1D) to O2, where the products are O2(b, v = 0, 1). The latter is an ionospheric process and is the case of interest here. Recent studies at SRI International have demonstrated that O2(b, v = 1) is the predominant product of the energy transfer, with the nascent [v = 1]/[v = 0] ratio being close to 4 and temperature independent. Collisional quenching of b(1) by O2, to produce b(0), proceeds six orders of magnitude faster than b(0) quenching [Slanger and Copeland, 2003]. As a consequence, the [b - X(1-1)]/[b - X(0-0)] intensity ratio as a function of thermospheric altitude shows the degree to which b(1) has been converted to b(0), which can be interpreted in terms of atmospheric composition. Of the three colliders - O2, O(3P ), and N2 - it is the first two that control the b(1) → b(0) relaxation rate. To observe the b(v = 0, 1) emission requires space-based measurements in the 755-780 nm region of the 0-0 and 1-1 bands. In addition to the varying intensity ratio of the two bands, the shapes will differ as a function of temperature as the rotational temperature changes. Thus, observations of the shapes and the relative intensities of the two bands will simultaneously lead to information on temperature and on the [O2] + [O(3P )] densities as a function of altitude. The technique is relevant to the dayglow and to the portion of the night when O(1D) is still detectable. T. G. Slanger and R. A. Copeland, Chem. Rev. 103, 4731-65, 2003. Supported by NASA ITM Grant NNX10AL08G and NSF Aeronomy Grant AGS-0937317.

  8. Air Pollution in China: Mapping of Concentrations and Sources

    PubMed Central

    Rohde, Robert A.; Muller, Richard A.

    2015-01-01

    China has recently made available hourly air pollution data from over 1500 sites, including airborne particulate matter (PM), SO2, NO2, and O3. We apply Kriging interpolation to four months of data to derive pollution maps for eastern China. Consistent with prior findings, the greatest pollution occurs in the east, but significant levels are widespread across northern and central China and are not limited to major cities or geologic basins. Sources of pollution are widespread, but are particularly intense in a northeast corridor that extends from near Shanghai to north of Beijing. During our analysis period, 92% of the population of China experienced >120 hours of unhealthy air (US EPA standard), and 38% experienced average concentrations that were unhealthy. China’s population-weighted average exposure to PM2.5 was 52 μg/m3. The observed air pollution is calculated to contribute to 1.6 million deaths/year in China [0.7–2.2 million deaths/year at 95% confidence], roughly 17% of all deaths in China. PMID:26291610

  9. Air Pollution in China: Mapping of Concentrations and Sources.

    PubMed

    Rohde, Robert A; Muller, Richard A

    2015-01-01

    China has recently made available hourly air pollution data from over 1500 sites, including airborne particulate matter (PM), SO2, NO2, and O3. We apply Kriging interpolation to four months of data to derive pollution maps for eastern China. Consistent with prior findings, the greatest pollution occurs in the east, but significant levels are widespread across northern and central China and are not limited to major cities or geologic basins. Sources of pollution are widespread, but are particularly intense in a northeast corridor that extends from near Shanghai to north of Beijing. During our analysis period, 92% of the population of China experienced >120 hours of unhealthy air (US EPA standard), and 38% experienced average concentrations that were unhealthy. China's population-weighted average exposure to PM2.5 was 52 μg/m3. The observed air pollution is calculated to contribute to 1.6 million deaths/year in China [0.7-2.2 million deaths/year at 95% confidence], roughly 17% of all deaths in China.

  10. Comparison of MODIS Land Surface Temperature and Air Temperature over the Continental USA Meteorological Stations

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Bounoua, Lahouari; Imhoff, Marc L.; Wolfe, Robert E.; Thome, Kurtis

    2014-01-01

    The National Land Cover Database (NLCD) Impervious Surface Area (ISA) and MODIS Land Surface Temperature (LST) are used in a spatial analysis to assess the surface-temperature-based urban heat island's (UHIS) signature on LST amplitude over the continental USA and to make comparisons to local air temperatures. Air-temperature-based UHIs (UHIA), calculated using the Global Historical Climatology Network (GHCN) daily air temperatures, are compared with UHIS for urban areas in different biomes during different seasons. NLCD ISA is used to define urban and rural temperatures and to stratify the sampling for LST and air temperatures. We find that the MODIS LST agrees well with observed air temperature during the nighttime, but tends to overestimate it during the daytime, especially during summer and in nonforested areas. The minimum air temperature analyses show that UHIs in forests have an average UHIA of 1 C during the summer. The UHIS, calculated from nighttime LST, has similar magnitude of 1-2 C. By contrast, the LSTs show a midday summer UHIS of 3-4 C for cities in forests, whereas the average summer UHIA calculated from maximum air temperature is close to 0 C. In addition, the LSTs and air temperatures difference between 2006 and 2011 are in agreement, albeit with different magnitude.

  11. Temperature Mapping of Nitrogen-doped Niobium Superconducting Radiofrequency Cavities

    SciTech Connect

    Makita, Junki; Ciovati, Gianluigi; Dhakal, Pashupati

    2015-09-01

    It was recently shown that diffusing nitrogen on the inner surface of superconducting radiofrequency (SRF) cavities at high temperature can improve the quality factor of the niobium cavity. However, a reduction of the quench field is also typically found. To better understand the location of rf losses and quench, we used a thermometry system to map the temperature of the outer surface of ingot Nb cavities after nitrogen doping and electropolishing. Surface temperature of the cavities was recorded while increasing the rf power and also during the quenching. The results of thermal mapping showed no precursor heating on the cavities and quenching to be ignited near the equator where the surface magnetic field is maximum. Hot-spots at the equator area during multipacting were also detected by thermal mapping.

  12. CityAir app: Mapping air-quality perception using people as sensors

    NASA Astrophysics Data System (ADS)

    Castell, Nuria; Fredriksen, Mirjam; Cole-Hunter, Thomas; Robinson, Johanna; Keune, Hans; Nieuwenhuijsen, Mark; Bartonova, Alena

    2016-04-01

    Outdoor air pollution is a major environmental health problem affecting all people in developed and developing countries alike. Ambient (outdoor) air pollution in both cities and rural areas was estimated to cause 3.7 million premature deaths worldwide in 2012. In modern society, people are expending an increasing amount of time in polluted urban environments, thus increasing their exposure and associated health responses. Some cities provide information about air pollution levels to their citizens using air quality monitoring networks. However, due to their high cost and maintenance, the density of the monitoring networks is very low and not capable to capture the high temporal and spatial variability of air pollution. Thus, the citizen lacks a specific answer to the question of "how the air quality is in our surroundings". In the framework of the EU-funded CITI-SENSE project the innovative concept of People as Sensors is being applied to the field of outdoor air pollution. This is being done in eight European cities, including Barcelona, Belgrade, Edinburgh, Haifa, Ljubljana, Oslo, Ostrava and Vienna. People as Sensors defines a measurement model, in which measurements are not only taken by hardware sensors, but in which also humans can contribute with their individual "measurements" such as their subjective perception of air quality and other personal observations. In order to collect the personal observations a mobile app, CityAir, has been developed. CityAir allows citizens to rate the air quality in their surroundings with colour at their current location: green if air quality is very good, yellow if air quality is good, orange if air quality is poor and red if air quality is very poor. The users have also the possibility of indicating the source of pollution (i.e. traffic, industry, wood burning) and writing a comment. The information is on-line and accessible for other app users, thus contributing to create an air-quality map based on citizens' perception

  13. Solar Eclipse Effect on Shelter Air Temperature

    NASA Technical Reports Server (NTRS)

    Segal, M.; Turner, R. W.; Prusa, J.; Bitzer, R. J.; Finley, S. V.

    1996-01-01

    Decreases in shelter temperature during eclipse events were quantified on the basis of observations, numerical model simulations, and complementary conceptual evaluations. Observations for the annular eclipse on 10 May 1994 over the United States are presented, and these provide insights into the temporal and spatial changes in the shelter temperature. The observations indicated near-surface temperature drops of as much as 6 C. Numerical model simulations for this eclipse event, which provide a complementary evaluation of the spatial and temporal patterns of the temperature drops, predict similar decreases. Interrelationships between the temperature drop, degree of solar irradiance reduction, and timing of the peak eclipse are also evaluated for late spring, summer, and winter sun conditions. These simulations suggest that for total eclipses the drops in shelter temperature in midlatitudes can be as high as 7 C for a spring morning eclipse.

  14. Monitored summer peak attic air temperatures in Florida residences

    SciTech Connect

    Parker, D.S.; Sherwin, J.R.

    1998-12-31

    The Florida Solar Energy Center (FSEC) has analyzed measured summer attic air temperature data taken for some 21 houses (three with two different roof configurations) over the last several years. The analysis is in support of the calculation within ASHRAE Special Project 152P, which will be used to estimate duct system conductance gains that are exposed to the attic space. Knowledge of prevailing attic thermal conditions are critical to the duct heat transfer calculations for estimation of impacts on residential cooling system sizing. The field data were from a variety of residential monitoring projects that were classified according to intrinsic differences in roofing configurations and characteristics. The sites were occupied homes spread around the state of Florida. There were a variety of different roofing construction types, roof colors, and ventilation configurations. Data at each site were obtained from June 1 to September 30 according to the ASHRAE definition of summer. The attic air temperature and ambient air temperature were used for the data analysis. The attic air temperature was measured with a shielded type-T thermocouple at mid-attic height, halfway between the decking and insulation surface. The ambient air temperature was obtained at each site by thermocouples located inside a shielded exterior enclosure at a 3 to 4 m (10--12 ft) height. The summer 15-minute data from each site were sorted by the average ambient air temperature into the top 2.5% of the observations of the highest temperature. Within this limited group of observations, the average outside air temperature, attic air temperature, and coincident difference were reported.

  15. Solar activity influence on air temperature regimes in caves

    NASA Astrophysics Data System (ADS)

    Stoeva, Penka; Mikhalev, Alexander; Stoev, Alexey

    Cave atmospheres are generally included in the processes that happen in the external atmosphere as circulation of the cave air is connected with the most general circulation of the air in the earth’s atmosphere. Such isolated volumes as the air of caves are also influenced by the variations of solar activity. We discuss cave air temperature response to climate and solar and geomagnetic activity for four show caves in Bulgaria studied for a period of 46 years (1968 - 2013). Everyday noon measurements in Ledenika, Saeva dupka, Snezhanka and Uhlovitsa cave have been used. Temperatures of the air in the zone of constant temperatures (ZCT) are compared with surface temperatures recorded at meteorological stations situated near about the caves - in the towns of Vratsa, Lovech, Peshtera and Smolyan, respectively. For comparison, The Hansen cave, Middle cave and Timpanogos cave from the Timpanogos Cave National Monument, Utah, USA situated nearly at the same latitude have also been examined. Our study shows that the correlation between cave air temperature time series and sunspot number is better than that between the cave air temperature and Apmax indices; that t°ZCT is rather connected with the first peak in geomagnetic activity, which is associated with transient solar activity (CMEs) than with the second one, which is higher and connected with the recurrent high speed streams from coronal holes. Air temperatures of all examined show caves, except the Ledenika cave, which is ice cave show decreasing trends. On the contrary, measurements at the meteorological stations show increasing trends in the surface air temperatures. The trend is decreasing for the Timpanogos cave system, USA. The conclusion is that surface temperature trends depend on the climatic zone, in which the cave is situated, and there is no apparent relation between temperatures inside and outside the caves. We consider possible mechanism of solar cosmic rays influence on the air temperatures in caves

  16. Spatial-temperature high resolution map for early cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Gavriloaia, Gheorghe V.; Hurduc, Anca; Ghimigean, Ana-Maria; Fumarel, Radu

    2009-02-01

    Heat is one of the most important parameters of living beings. Skin temperature is not the same on the entire body and so, a thermal signature can be got. Infrared map on serial imaging can constitute an early sign of an abnormality. Thermography detects changes in tissue that appear before and accompany many diseases including cancer. As this map has a better resolution an early cancer diagnosis can be done. The temperature of neoplasic tissue is different up to 1.5 °C than that of the healthy tissue as a result of the specific metabolic rate. The infrared camera images show very quickly the heat transferred by radiation. A lot of factors disturb the temperature conversion to pixel intensity. A sensitive temperature sensor with a 10 Mpixels video camera, showing its spatial position, and a computer fusion program were used for the map with high spatial-temperature resolution. A couple of minutes are necessary to get a high resolution map. The asymmetry and borders were the main parameters analyzed. The right cancer diagnosis was for about 78.4% of patients with thyroid cancer, and more than 89.6% from patients with breast cancer. In the near future, the medical prognosis will be improved by fractal analysis.

  17. Associations of endothelial function and air temperature in diabetic subjects

    EPA Science Inventory

    Background and Objective: Epidemiological studies consistently show that air temperature is associated with changes in cardiovascular morbidity and mortality. However, the biological mechanisms underlying the association remain largely unknown. As one index of endothelial functio...

  18. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... must be made within 100 cm of the air-intake of the engine. The measurement location must be either in... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test...

  19. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... must be made within 100 cm of the air-intake of the engine. The measurement location must be either in... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test...

  20. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... location must be within 10 cm of the engine intake system (i.e., the air cleaner, for most engines.) (b... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19...

  1. High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to

  2. Making cosmic microwave background temperature and polarization maps with MADAM

    NASA Astrophysics Data System (ADS)

    Keihänen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.; Sirviö, A.-S.

    2010-02-01

    MADAM is a CMB map-making code, designed to make temperature and polarization maps of time-ordered data of total power experiments like Planck. The algorithm is based on the destriping technique, but it also makes use of known noise properties in the form of a noise prior. The method in its early form was presented in an earlier work by Keihänen et al. (2005, MNRAS, 360, 390). In this paper we present an update of the method, extended to non-averaged data, and include polarization. In this method the baseline length is a freely adjustable parameter, and destriping can be performed at a different map resolution than that of the final maps. We show results obtained with simulated data. This study is related to Planck LFI activities.

  3. Ambient air temperature effects on the temperature of sewage sludge composting process.

    PubMed

    Huang, Qi-fei; Chen, Tong-bin; Gao, Ding; Huang, Ze-chun

    2005-01-01

    Using data obtained with a full-scale sewage sludge composting facility, this paper studied the effects of ambient air temperature on the composting temperature with varying volume ratios of sewage sludge and recycled compost to bulking agent. Two volume ratios were examined experimentally, 1: 0: 1 and 3: 1: 2. The results show that composting temperature was influenced by ambient air temperature and the influence was more significant when composting was in the temperature rising process: composting temperature changed 2.4-6.5 degrees C when ambient air temperature changed 13 degrees C. On the other hand, the influence was not significant when composting was in the high-temperature and/or temperature falling process: composting temperature changed 0.75-1.3 degrees C when ambient air temperature changed 8-15 degrees C. Hysteresis effect was observed in composting temperature's responses to ambient air temperature. When the ventilation capability of pile was excellent (at a volume ratio of 1:0:1), the hysteresis time was short and ranging 1.1-1.2 h. On the contrary, when the proportion of added bulking agent was low, therefore less porosity in the substrate (at a volume ratio of 3:1:2), the hysteresis time was long and ranging 1.9-3.1 h.

  4. Unique, clean-air, continuous-flow, high-stagnation-temperature facility for supersonic combustion research

    NASA Technical Reports Server (NTRS)

    Krauss, R. H.; Mcdaniel, J. C., Jr.; Scott, J. E., Jr.; Whitehurst, R. B., III; Segal, C.

    1988-01-01

    Accurate, spatially-resolved measurements can be conducted of a model supersonic combustor in a clean air/continuous flow supersonic combustion facility whose long run times will allow not only the point-by-point mapping of flow field variables with laser diagnostics but facilitate the simulation of steady-state combustor conditions. The facility will provide a Mach 2 freestream with static pressures in the 1 to 1/6 atm range, and stagnation temperatures of up to 2000 K.

  5. Effect of Initial Mixture Temperature on Flame Speed of Methane-Air, Propane-Air, and Ethylene-Air Mixtures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L

    1952-01-01

    Flame speeds based on the outer edge of the shadow cast by the laminar Bunsen cone were determined as functions of composition for methane-air mixtures at initial mixture temperatures ranging from -132 degrees to 342 degrees c and for propane-air and ethylene-air mixtures at initial mixture temperatures ranging from -73 degrees to 344 degrees c. The data showed that maximum flame speed increased with temperature at an increasing rate. The percentage change in flame speed with change in initial temperature for the three fuels followed the decreasing order, methane, propane, and ethylene. Empirical equations were determined for maximum flame speed as a function of initial temperature over the temperature range covered for each fuel. The observed effect of temperature on flame speed for each of the fuels was reasonably well predicted by either the thermal theory as presented by Semenov or the square-root law of Tanford and Pease.

  6. Temperature mapping of operating nanoscale devices by scanning probe thermometry

    NASA Astrophysics Data System (ADS)

    Menges, Fabian; Mensch, Philipp; Schmid, Heinz; Riel, Heike; Stemmer, Andreas; Gotsmann, Bernd

    2016-03-01

    Imaging temperature fields at the nanoscale is a central challenge in various areas of science and technology. Nanoscopic hotspots, such as those observed in integrated circuits or plasmonic nanostructures, can be used to modify the local properties of matter, govern physical processes, activate chemical reactions and trigger biological mechanisms in living organisms. The development of high-resolution thermometry techniques is essential for understanding local thermal non-equilibrium processes during the operation of numerous nanoscale devices. Here we present a technique to map temperature fields using a scanning thermal microscope. Our method permits the elimination of tip-sample contact-related artefacts, a major hurdle that so far has limited the use of scanning probe microscopy for nanoscale thermometry. We map local Peltier effects at the metal-semiconductor contacts to an indium arsenide nanowire and self-heating of a metal interconnect with 7 mK and sub-10 nm spatial temperature resolution.

  7. Temperature mapping of operating nanoscale devices by scanning probe thermometry

    PubMed Central

    Menges, Fabian; Mensch, Philipp; Schmid, Heinz; Riel, Heike; Stemmer, Andreas; Gotsmann, Bernd

    2016-01-01

    Imaging temperature fields at the nanoscale is a central challenge in various areas of science and technology. Nanoscopic hotspots, such as those observed in integrated circuits or plasmonic nanostructures, can be used to modify the local properties of matter, govern physical processes, activate chemical reactions and trigger biological mechanisms in living organisms. The development of high-resolution thermometry techniques is essential for understanding local thermal non-equilibrium processes during the operation of numerous nanoscale devices. Here we present a technique to map temperature fields using a scanning thermal microscope. Our method permits the elimination of tip–sample contact-related artefacts, a major hurdle that so far has limited the use of scanning probe microscopy for nanoscale thermometry. We map local Peltier effects at the metal–semiconductor contacts to an indium arsenide nanowire and self-heating of a metal interconnect with 7 mK and sub-10 nm spatial temperature resolution. PMID:26936427

  8. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... temperature measurement must be made within 122 cm of the engine. The measurement location must be made either... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES...

  9. Effects of tissue susceptibility on brain temperature mapping.

    PubMed

    Maudsley, Andrew A; Goryawala, Mohammed Z; Sheriff, Sulaiman

    2017-02-01

    A method for mapping of temperature over a large volume of the brain using volumetric proton MR spectroscopic imaging has been implemented and applied to 150 normal subjects. Magnetic susceptibility-induced frequency shifts in gray- and white-matter regions were measured and included as a correction in the temperature mapping calculation. Additional sources of magnetic susceptibility variations of the individual metabolite resonance frequencies were also observed that reflect the cellular-level organization of the brain metabolites, with the most notable differences being attributed to changes of the N-Acetylaspartate resonance frequency that reflect the intra-axonal distribution and orientation of the white-matter tracts with respect to the applied magnetic field. These metabolite-specific susceptibility effects are also shown to change with age. Results indicate no change of apparent brain temperature with age from 18 to 84 years old, with a trend for increased brain temperature throughout the cerebrum in females relative for males on the order of 0.1°C; slightly increased temperatures in the left hemisphere relative to the right; and a lower temperature of 0.3°C in the cerebellum relative to that of cerebral white-matter. This study presents a novel acquisition method for noninvasive measurement of brain temperature that is of potential value for diagnostic purposes and treatment monitoring, while also demonstrating limitations of the measurement due to the confounding effects of tissue susceptibility variations.

  10. Temperature distribution of air source heat pump barn with different air flow

    NASA Astrophysics Data System (ADS)

    He, X.; Li, J. C.; Zhao, G. Q.

    2016-08-01

    There are two type of airflow form in tobacco barn, one is air rising, the other is air falling. They are different in the structure layout and working principle, which affect the tobacco barn in the distribution of temperature field and velocity distribution. In order to compare the temperature and air distribution of the two, thereby obtain a tobacco barn whose temperature field and velocity distribution are more uniform. Taking the air source heat pump tobacco barn as the investigated subject and establishing relevant mathematical model, the thermodynamics of the two type of curing barn was analysed and compared based on Fluent. Provide a reasonable evidence for chamber arrangement and selection of outlet for air source heat pump tobacco barn.

  11. Improving Forecast Skill by Assimilation of AIRS Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The AIRS Version 5 retrieval algorithm, is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates delta T(p) for retrieved quantities and the use of these error estimates for Quality Control. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 deg. latitude X 0.67 deg longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates delta (p) were used as the uncertainty for each measurement in the data assimilation process. We compared forecasts analyses generated from the analyses done by assimilation of AIRS temperature profiles with three different sets of thresholds; Standard, Medium, and Tight. Assimilation of Quality Controlled AIRS temperature profiles significantly improve 5-7 day forecast skill compared to that obtained without the benefit of AIRS data in all of the cases studied. In addition, assimilation of Quality Controlled AIRS temperature soundings performs better than assimilation of AIRS observed radiances. Based on the experiments shown, Tight Quality Control of AIRS temperature profile performs best

  12. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  13. Temperature effect on titanium nitride nanometer thin film in air

    NASA Astrophysics Data System (ADS)

    Cen, Z. H.; Xu, B. X.; Hu, J. F.; Ji, R.; Toh, Y. T.; Ye, K. D.; Hu, Y. F.

    2017-02-01

    Titanium nitride (TiN) is a promising alternative plasmonic material to conventional novel metals. For practical plasmonic applications under the influence of air, the temperature-dependent optical properties of TiN thin films in air and its volume variation are essential. Ellipsometric characterizations on a TiN thin film at different increasing temperatures in ambient air were conducted, and optical constants along with film thickness were retrieved. Below 200 °C, the optical properties varied linearly with temperature, in good agreement with other temperature dependent studies of TiN films in vacuum. The thermal expansion coefficient of the TiN thin film was determined to be 10.27  ×  10‑6 °C‑1. At higher temperatures, the TiN thin film gradually loses its metallic characteristics and has weaker optical absorption, impairing its plasmonic performance. In addition, a sharp increase in film thickness was observed at the same time. Changes in the optical properties and film thickness with temperatures above 200 °C were revealed to result from TiN oxidation in air. For the stability of TiN-based plasmonic devices, operation temperatures of lower than 200 °C, or measures to prevent oxidation, are required. The present study is important to fundamental physics and technological applications of TiN thin films.

  14. Soil temperature prediction from air temperature for alluvial soils in lower Indo-Gangetic plain

    NASA Astrophysics Data System (ADS)

    Barman, D.; Kundu, D. K.; Pal, Soumen; Pal, Susanto; Chakraborty, A. K.; Jha, A. K.; Mazumdar, S. P.; Saha, R.; Bhattacharyya, P.

    2017-01-01

    Soil temperature is an important factor in biogeochemical processes. On-site monitoring of soil temperature is limited in spatiotemporal scale as compared to air temperature data inventories due to various management difficulties. Therefore, empirical models were developed by taking 30-year long-term (1985-2014) air and soil temperature data for prediction of soil temperatures at three depths (5, 15, 30 cm) in morning (0636 Indian standard time) and afternoon (1336 Indian standard time) for alluvial soils in lower Indo-Gangetic plain. At 5 cm depth, power and exponential regression models were best fitted for daily data in morning and afternoon, respectively, but it was reverse at 15 cm. However, at 30 cm, exponential models were best fitted for both the times. Regression analysis revealed that in morning for all three depths and in afternoon for 30 cm depth, soil temperatures (daily, weekly, and monthly) could be predicted more efficiently with the help of corresponding mean air temperature than that of maximum and minimum. However, in afternoon, prediction of soil temperature at 5 and 15 cm depths were more precised for all the time intervals when maximum air temperature was used, except for weekly soil temperature at 15 cm, where the use of mean air temperature gave better prediction.

  15. An analysis of the Venus thermal infrared temperature maps

    NASA Technical Reports Server (NTRS)

    Ainsworth, J. E.; Herman, J. R.

    1978-01-01

    A detailed analysis of the published Venus IR maps has been performed and a number of new results have been obtained. The global contour map of the average temperature variations in the vicinity of 6120 km reveals the existence of saddle points along the equator at dawn, at noon, and just before sunset. The hot spots observed at 4:30-4:40 A.M. at 65 deg to 68 deg S latitude appear to be in the vicinity of the coldest region from which the 8- to 14-micron emissions originate. At large earth zenith angles the limb darkening curves show a hump which is attributed primarily to a single patchy haze layer in the vicinity of 6123 km and with a thickness of the order of 3 km. An average IR source region temperature of 250 K is obtained at the equator. At the poles the same altitude region is 8 K cooler.

  16. Correlation of air temperature above water-air sections with the forecasted low level clouds

    NASA Astrophysics Data System (ADS)

    Huseynov, N. Sh.; Malikov, B. M.

    2009-04-01

    As a case study approach the development of low clouds forecasting methods in correlation with air temperature transformational variations on the sections "water-air" is surveyed. It was evident, that transformational variations of air temperature mainly depend on peculiarities and value of advective variations of temperature. DT is the differences of initial temperature on section water-air in started area, from contrast temperature of water surface along a trajectory of movement of air masses and from the temperature above water surface in a final point of a trajectory. Main values of transformational variations of air temperature at advection of a cold masses is 0.530C•h, and at advection of warm masses is -0.370C•h. There was dimensionless quantity K determined and implemented into practice which was characterized with difference of water temperature in forecasting point and air temperature in an initial point in the ratio of dew-points deficiency at the forecasting area. It follows, that the appropriate increasing or decreasing of K under conditions of cold and warm air masses advection, contributes decreasing of low clouds level. References: Abramovich K.G.: Conditions of development and forecasting of low level clouds. vol. #78, 124 pp., Hydrometcenter USSR 1973. Abramovich K.G.: Variations of low clouds level // Meteorology and Hydrology, vol. # 5, 30-41, Moscow, 1968. Budiko M.I.: Empirical assessment of climatic changes toward the end of XX century // Meteorology and Hydrology, vol. #12, 5-13, Moscow, 1999. Buykov M.V.: Computational modeling of daily evolutions of boundary layer of atmosphere at the presence of clouds and fog // Meteorology and Hydrology, vol. # 4, 35-44, Moscow, 1981. Huseynov N.Sh. Transformational variations of air temperature above Caspian Sea / Proceedings of Conference On Climate And Protection of Environment, 118-120, Baku, 1999. Huseynov N.Sh.: Consideration of advective and transformational variations of air temperature in

  17. Heat tolerance of higher plants cenosis to damaging air temperatures

    NASA Astrophysics Data System (ADS)

    Ushakova, Sofya; Shklavtsova, Ekaterina

    Designing sustained biological-technical life support systems (BTLSS) including higher plants as a part of a photosynthesizing unit, it is important to foresee the multi species cenosis reaction on either stress-factors. Air temperature changing in BTLSS (because of failure of a thermoregulation system) up to the values leading to irreversible damages of photosynthetic processes is one of those factors. However, it is possible to increase, within the certain limits, the plant cenosis tolerance to the unfavorable temperatures’ effect due to the choice of the higher plants possessing resistance both to elevated and to lowered air temperatures. Besides, the plants heat tolerance can be increased when subjecting them during their growing to the hardening off temperatures’ effect. Thus, we have come to the conclusion that it is possible to increase heat tolerance of multi species cenosis under the damaging effect of air temperature of 45 (°) СC.

  18. AIRS Sea Surface Temperature and Pacific Decadal Oscillation

    NASA Astrophysics Data System (ADS)

    Chen, L. L.

    2015-12-01

    Atmospheric Infrared Sounder (AIRS) has been providing necessary measurements for long term atmospheric and surface processes aboard NASA' s Aqua polar orbiter since May 2002. Here, we use time series of AIRS sea surface temperature (SST) anomalies to show the time evolution of Pacific Decadal Oscillation (PDO) in the Gulf of Alaska (lon:-144.5, lat:54.5) from 2003 to 2014. PDO is connected to the first mode of North Pacific SST variability and is tele-connected to ENSO in the tropics. Further analysis of AIRS data can provide clarification of Pacific climate variability.

  19. Database of ion temperature maps during geomagnetic storms.

    PubMed

    Keesee, Amy M; Scime, Earl E

    2015-02-01

    Ion temperatures as a function of the x and y axes in the geocentric solar magnetospheric (GSM) coordinate system and time are available for 76 geomagnetic storms that occurred during the period July 2008 to December 2013 on CDAWeb. The method for mapping energetic neutral atom data from the Two Wide-angle Imaging Spectrometers (TWINS) mission to the GSM equatorial plane and subsequent ion temperature calculation are described here. The ion temperatures are a measure of the average thermal energy of the bulk ion population in the 1-40 keV energy range. These temperatures are useful for studies of ion dynamics, for placing in situ measurements in a global context, and for establishing boundary conditions for models of the inner magnetosphere and the plasma sheet.

  20. Passive radiative cooling below ambient air temperature under direct sunlight.

    PubMed

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day.

  1. The relationship of air temperature variations over the northern hemisphere during the secular and 11-year solar cycles

    NASA Technical Reports Server (NTRS)

    Ryzhakov, L. Y.; Tomskaya, A. S.

    1978-01-01

    A comparison was made of air temperature anomaly maps for the months of January and July against a background of high and low secular solar activity, with and without regard for the 11 year cycle. By comparing temperature variations during the 11 year and secular cycles, it is found that the 11 year cycle influences thermal conditions more strongly than the secular cycle, and that temperature differences between extreme phases of the solar cycles are greater in January than in July.

  2. MR mapping of temperature and perfusion for hyperthermia therapy

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, Waldemar; Vlad, Julia; Lange, Thomas; Wust, Peter; Felix, Roland

    2001-05-01

    The promising results, recently obtained in phantom experiments employing the MR-based proton resonance frequency (PRF) method as a non-invasive tool for the temperature monitoring of hyperthermia therapy, are not easily reproduced in vivo. One of the reasons is the impact of perfusion changes on the PRF-measured temperature. In our experiments in vivo, heat was supplied on one side of the volunteers knee or pelvis by a rubber hose with circulating warm water (50iC). The PRF method was calibrated by the constant temperature sensitivity of pure water of 0.011 ppm/iC. MR mapping of perfusion changes was based on T2*-weighted tracking of the first-pass kinetics of contrast agent. The hemodynamic parameters of regional blood volume (rBV) and mean transit time (MTT) were extracted by fitting pixel-by-pixel the first- pass kinetics to the gamma-variate model. Special attention was directed to improve a quality of the automatic non-linear fit at low signal-to-noise values. The distributions of PRF- based temperature changes show large areas of apparently high temperature elevations (exceeding 10iC) in regions close to the heat source, and others with just as large temperature decays in more distant regions. Areas of apparently high temperature elevations correlate with areas of blood flow increase and vice versa. In conclusion, the visible heat- induced PRF changes in vivo are primarily perfusion changes, which mask the much smaller true temperature changes.

  3. A Performance Map for Ideal Air Breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2001-01-01

    The performance of an ideal, air breathing Pulse Detonation Engine is described in a manner that is useful for application studies (e.g., as a stand-alone, propulsion system, in combined cycles, or in hybrid turbomachinery cycles). It is shown that the Pulse Detonation Engine may be characterized by an averaged total pressure ratio, which is a unique function of the inlet temperature, the fraction of the inlet flow containing a reacting mixture, and the stoichiometry of the mixture. The inlet temperature and stoichiometry (equivalence ratio) may in turn be combined to form a nondimensional heat addition parameter. For each value of this parameter, the average total enthalpy ratio and total pressure ratio across the device are functions of only the reactant fill fraction. Performance over the entire operating envelope can thus be presented on a single plot of total pressure ratio versus total enthalpy ratio for families of the heat addition parameter. Total pressure ratios are derived from thrust calculations obtained from an experimentally validated, reactive Euler code capable of computing complete Pulse Detonation Engine limit cycles. Results are presented which demonstrate the utility of the described method for assessing performance of the Pulse Detonation Engine in several potential applications. Limitations and assumptions of the analysis are discussed. Details of the particular detonative cycle used for the computations are described.

  4. Pulsed positive streamer discharges in air at high temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Kamakura, Taku

    2016-08-01

    Atmospheric-pressure air pulsed positive streamer discharges are generated in a 13 mm point-plane gap in the temperature range of 293 K-1136 K, and the effect of temperature on the streamer discharges is studied. When the temperature is increased, the product of applied voltage and temperature VT proportional to the reduced electric field can be used as a primary parameter that determines some discharge parameters regardless of temperature. For a given VT, the transferred charge per pulse, streamer diameter, product of discharge energy and temperature, and length of secondary streamer are almost constant regardless of T, whereas the streamer velocity decreases with increasing T and the decay rate of the discharge current is proportional to 1/T. The N2(C) emission intensity is approximately determined by the discharge energy independent of T. These results are useful to predict the streamer discharge and its reactive species production when the ambient temperature is increased.

  5. Effects of air flow directions on composting process temperature profile

    SciTech Connect

    Kulcu, Recep; Yaldiz, Osman

    2008-07-01

    In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO{sub 2} and O{sub 2} ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperature distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2.

  6. Modeling daily average stream temperature from air temperature and watershed area

    NASA Astrophysics Data System (ADS)

    Butler, N. L.; Hunt, J. R.

    2012-12-01

    Habitat restoration efforts within watersheds require spatial and temporal estimates of water temperature for aquatic species especially species that migrate within watersheds at different life stages. Monitoring programs are not able to fully sample all aquatic environments within watersheds under the extreme conditions that determine long-term habitat viability. Under these circumstances a combination of selective monitoring and modeling are required for predicting future geospatial and temporal conditions. This study describes a model that is broadly applicable to different watersheds while using readily available regional air temperature data. Daily water temperature data from thirty-eight gauges with drainage areas from 2 km2 to 2000 km2 in the Sonoma Valley, Napa Valley, and Russian River Valley in California were used to develop, calibrate, and test a stream temperature model. Air temperature data from seven NOAA gauges provided the daily maximum and minimum air temperatures. The model was developed and calibrated using five years of data from the Sonoma Valley at ten water temperature gauges and a NOAA air temperature gauge. The daily average stream temperatures within this watershed were bounded by the preceding maximum and minimum air temperatures with smaller upstream watersheds being more dependent on the minimum air temperature than maximum air temperature. The model assumed a linear dependence on maximum and minimum air temperature with a weighting factor dependent on upstream area determined by error minimization using observed data. Fitted minimum air temperature weighting factors were consistent over all five years of data for each gauge, and they ranged from 0.75 for upstream drainage areas less than 2 km2 to 0.45 for upstream drainage areas greater than 100 km2. For the calibration data sets within the Sonoma Valley, the average error between the model estimated daily water temperature and the observed water temperature data ranged from 0.7

  7. Using electrical resistance tomography to map subsurface temperatures

    DOEpatents

    Ramirez, Abelardo L.; Chesnut, Dwayne A.; Daily, William D.

    1994-01-01

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations.

  8. Using electrical resistance tomography to map subsurface temperatures

    DOEpatents

    Ramirez, A.L.; Chesnut, D.A.; Daily, W.D.

    1994-09-13

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations. 1 fig.

  9. An Optimization Approach to Analyzing the Effect of Supply Water and Air Temperatures in Planning an Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Karino, Naoki; Shiba, Takashi; Yokoyama, Ryohei; Ito, Koichi

    In planning an air conditioning system, supply water and air temperatures are important factors from the viewpoint of cost reduction. For example, lower temperature supply water and air reduce the coefficient of performance of a refrigeration machine, and increase the thickness of heat insulation material. However, they enable larger temperature differences, and reduce equipment sizes and power demand. The purposes of this paper are to propose an optimal planning method for a cold air distribution system, and to analyze the effect of supply water and air temperatures on the long-term economics through a numerical study for an office building. As a result, it is shown that the proposed method effectively determines supply water and air temperatures for a cold air distribution system, and that the influence of supply air temperature is larger than that of supply water temperature on the long-term economics.

  10. Fiber optic distributed temperature sensor mapping of a jet-mixing flow field

    SciTech Connect

    Lomperski, Stephen; Gerardi, Craig; Pointer, William David

    2015-03-04

    In this paper, we introduce the use of a Rayleigh backscatter-based distributed fiber optic sensor to map the temperature field in air flow for a thermal fatigue application. The experiment involves a pair of air jets at 22 and 70°C discharging from 136 mm hexagonal channels into a 1 × 1 × 1.7 m tank at atmospheric pressure. A 40 m-long, Φ155 µm fiber optic sensor was wound back and forth across the tank midplane to form 16 horizontal measurement sections with a vertical spacing of 51 mm. This configuration generated a 2D temperature map with 2800 data points over a 0.76 × 1.7 m plane. Fiber optic sensor readings were combined with PIV and infrared measurements to relate flow field characteristics to the thermal signature of the tank lid. The paper includes sensor stability data and notes issues encountered using the distributed temperature sensor in a flow field. In conclusion, sensors are sensitive to strain and humidity, and so accuracy relies upon strict control of both.

  11. Fiber optic distributed temperature sensor mapping of a jet-mixing flow field

    DOE PAGES

    Lomperski, Stephen; Gerardi, Craig; Pointer, William David

    2015-03-04

    In this paper, we introduce the use of a Rayleigh backscatter-based distributed fiber optic sensor to map the temperature field in air flow for a thermal fatigue application. The experiment involves a pair of air jets at 22 and 70°C discharging from 136 mm hexagonal channels into a 1 × 1 × 1.7 m tank at atmospheric pressure. A 40 m-long, Φ155 µm fiber optic sensor was wound back and forth across the tank midplane to form 16 horizontal measurement sections with a vertical spacing of 51 mm. This configuration generated a 2D temperature map with 2800 data points overmore » a 0.76 × 1.7 m plane. Fiber optic sensor readings were combined with PIV and infrared measurements to relate flow field characteristics to the thermal signature of the tank lid. The paper includes sensor stability data and notes issues encountered using the distributed temperature sensor in a flow field. In conclusion, sensors are sensitive to strain and humidity, and so accuracy relies upon strict control of both.« less

  12. Arctic air may become cleaner as temperatures rise

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2011-10-01

    The air in the Arctic is cleaner during summer than during winter. Previous studies have shown that for light-scattering pollutants, this seasonal cycle is due mainly to summer precipitation removing pollutants from the air during atmospheric transport from midlatitude industrial and agricultural sources. With new measurements from Barrow, Alaska, and Alert, Nunavut, Canada, Garrett et al. extended previous research to show that light-absorbing aerosols such as black carbon are also efficiently removed by seasonal precipitation. Precipitation removes these particles from the air most efficiently at high humidities and relatively warm temperatures, suggesting that as the Arctic gets warmer and wetter in the future, the air and snow might also become cleaner.

  13. Flame Speeds of Methane-Air, Propane-Air, and Ethylene-Air Mixtures at Low Initial Temperatures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L; Heimel, Sheldon

    1952-01-01

    Flame speeds were determined for methane-air, propane-air, and ethylene-air mixtures at -73 C and for methane-air mixtures at -132 C. The data extend the curves of maximum flame speed against initial mixture temperature previously established for the range from room temperature to 344 C. Empirical equations for maximum flame speed u(cm/ sec) as a function of initial mixture temperature T(sub O) were determined to be as follows: for methane, for T(sub O) from 141 to 615 K, u = 8 + 0.000160 T(sub O)(exp 2.11); for propane, for T(sub O) from 200 to 616 K, u = 10 + 0.000342 T(sub O)(exp 2.00); for ethylene, for T(sub O) from 200 to 617 K, u = 10 + 0.00259 T(sub O)(exp 1.74). Relative flame speeds at low initial temperatures were predicted within approximately 20 percent by either the thermal theory as presented by Semenov or by the diffusion theory of Tanford and Pease. The same order was found previously for high initial temperatures. The low-temperature data were also found to extend the linear correlations between maximum flame speed and calculated equilibrium active-radical concentrations, which were established by the previously reported high-temperature data.

  14. Advances in Fast Response Acoustically Derived Air Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Bogoev, Ivan; Jacobsen, Larry; Horst, Thomas; Conrad, Benjamin

    2016-04-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity. The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  15. Ultrasonic noninvasive temperature estimation using echoshift gradient maps: simulation results.

    PubMed

    Techavipoo, Udomchai; Chen, Quan; Varghese, Tomy

    2005-07-01

    Percutaneous ultrasound-image-guided radiofrequency (rf) ablation is an effective treatment for patients with hepatic malignancies that are excluded from surgical resection due to other complications. However, ablated regions are not clearly differentiated from normal untreated regions using conventional ultrasound imaging due to similar echogenic tissue properties. In this paper, we investigate the statistics that govern the relationship between temperature elevation and the corresponding temperature map obtained from the gradient of the echoshifts obtained using consecutive ultrasound radiofrequency signals. A relationship derived using experimental data on the sound speed and tissue expansion variations measured on canine liver tissue samples at different elevated temperatures is utilized to generate ultrasound radiofrequency simulated data. The simulated data set is then utilized to statistically estimate the accuracy and precision of the temperature distributions obtained. The results show that temperature increases between 37 and 67 degrees C can be estimated with standard deviations of +/- 3 degrees C. Our results also indicate that the correlation coefficient between consecutive radiofrequency signals should be greater than 0.85 to obtain accurate temperature estimates.

  16. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  17. Discovery about temperature fluctuations in turbulent air flows

    NASA Astrophysics Data System (ADS)

    1985-02-01

    The law of spatial fluctuations of temperature in a turbulent flow in the atmosphere was studied. The turbulent movement of air in the atmosphere manifests itself in random changes in wind velocity and in the dispersal of smoke. If a miniature thermometer with sufficient sensitivity and speed of response were placed in a air flow, its readings would fluctuate chaotically against the background of average temperature. This is Characteristic of practically every point of the flow. The temperature field forms as a result of the mixing of the air. A method using the relation of the mean square of the difference in temperatures of two points to the distance between these points as the structural characteristic of this field was proposed. It was found that the dissipation of energy in a flow and the equalization of temperatures are connected with the breaking up of eddies in a turbulent flow into smaller ones. Their energy in turn is converted into heat due to the viscosity of the medium. The law that has been discovered makes for a much broader field of application of physical methods of analyzing atmospheric phenomena.

  18. Assessment of two-temperature kinetic model for ionizing air

    NASA Technical Reports Server (NTRS)

    Park, Chul

    1987-01-01

    A two-temperature chemical-kinetic model for air is assessed by comparing theoretical results with existing experimental data obtained in shock-tubes, ballistic ranges, and flight experiments. In the model, named the TTv model, one temperature (T) is assumed to characterize the heavy-particle translational and molecular rotational energies, and another temperature (Tv) to characterize the molecular vibrational, electron translational, and electronic excitation energies. The theoretical results for nonequilibrium air flow in shock tubes are obtained using the computer code STRAP (Shock-Tube Radiation Program), and for flow along the stagnation streamline in the shock layer over spherical bodies using the newly developed code STRAP (Stagnation-Point Radiation Program). Substantial agreement is shown between the theoretical and experimental results for relaxation times and radiative heat fluxes. At very high temperatures the spectral calculations need further improvement. The present agreement provides strong evidence that the two-temperature model characterizes principal features of nonequilibrium air flow. New theoretical results using the model are presented for the radiative heat fluxes at the stagnation point of a 6-m-radius sphere, representing an aeroassisted orbital transfer vehicle, over a range of free-stream conditions. Assumptions, approximations, and limitations of the model are discussed.

  19. The mass and speed dependence of meteor air plasma temperatures.

    PubMed

    Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  20. Can air temperature be used to project influences of climate change on stream temperature?

    USGS Publications Warehouse

    Arismendi, Ivan; Safeeq, Mohammad; Dunham, Jason B.; Johnson, Sherri L.

    2014-01-01

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To address this knowledge gap, we examined the performance of two widely used linear and nonlinear regression models that predict stream temperatures based on air temperatures. We evaluated model performance and temporal stability of model parameters in a suite of regulated and unregulated streams with 11–44 years of stream temperature data. Although such models may have validity when predicting stream temperatures within the span of time that corresponds to the data used to develop them, model predictions did not transfer well to other time periods. Validation of model predictions of most recent stream temperatures, based on air temperature–stream temperature relationships from previous time periods often showed poor performance when compared with observed stream temperatures. Overall, model predictions were less robust in regulated streams and they frequently failed in detecting the coldest and warmest temperatures within all sites. In many cases, the magnitude of errors in these predictions falls within a range that equals or exceeds the magnitude of future projections of climate-related changes in stream temperatures reported for the region we studied (between 0.5 and 3.0 °C by 2080). The limited ability of regression-based statistical models to accurately project stream temperatures over time likely stems from the fact that underlying processes at play, namely the heat budgets of air and water, are distinctive in each medium and vary among localities and through time.

  1. Agriculture pest and disease risk maps considering MSG satellite data and land surface temperature

    NASA Astrophysics Data System (ADS)

    Marques da Silva, J. R.; Damásio, C. V.; Sousa, A. M. O.; Bugalho, L.; Pessanha, L.; Quaresma, P.

    2015-06-01

    Pest risk maps for agricultural use are usually constructed from data obtained from in-situ meteorological weather stations, which are relatively sparsely distributed and are often quite expensive to install and difficult to maintain. This leads to the creation of maps with relatively low spatial resolution, which are very much dependent on interpolation methodologies. Considering that agricultural applications typically require a more detailed scale analysis than has traditionally been available, remote sensing technology can offer better monitoring at increasing spatial and temporal resolutions, thereby, improving pest management results and reducing costs. This article uses ground temperature, or land surface temperature (LST), data distributed by EUMETSAT/LSASAF (with a spatial resolution of 3 × 3 km (nadir resolution) and a revisiting time of 15 min) to generate one of the most commonly used parameters in pest modeling and monitoring: "thermal integral over air temperature (accumulated degree-days)". The results show a clear association between the accumulated LST values over a threshold and the accumulated values computed from meteorological stations over the same threshold (specific to a particular tomato pest). The results are very promising and enable the production of risk maps for agricultural pests with a degree of spatial and temporal detail that is difficult to achieve using in-situ meteorological stations.

  2. Microwave temperature profiler for clear air turbulence prediction

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    1992-01-01

    A method is disclosed for determining Richardson Number, Ri, or its reciprocal, RRi, for clear air prediction using measured potential temperature and determining the vertical gradient of potential temperature, d(theta)/dz. Wind vector from the aircraft instrumentation versus potential temperature, dW/D(theta), is determined and multiplies by d(theta)/dz to obtain dW/dz. Richardson number or its reciprocal is then determined from the relationship Ri = K(d theta)/dz divided by (dW/dz squared) for use in detecting a trend toward a threshold value for the purpose of predicting clear air turbulence. Other equations for this basic relationship are disclosed together with the combination of other atmospheric observables using multiple regression techniques.

  3. CARS Temperature and Species Measurements For Air Vehicle Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Gord, James R.; Grisch, Frederic; Klimenko, Dmitry; Clauss, Walter

    2005-01-01

    The coherent anti-Stokes Raman spectroscopy (CARS) method has recently been used in the United States and Europe to probe several different types of propulsion systems for air vehicles. At NASA Langley Research Center in the United States, CARS has been used to simultaneously measure temperature and the mole fractions of N2, O2 and H2 in a supersonic combustor, representative of a scramjet engine. At Wright- Patterson Air Force Base in the United States, CARS has been used to simultaneously measure temperature and mole fractions of N2, O2 and CO2, in the exhaust stream of a liquid-fueled, gas-turbine combustor. At ONERA in France and the DLR in Germany researchers have used CARS to measure temperature and species concentrations in cryogenic LOX-H2 rocket combustion chambers. The primary aim of these measurements has been to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.

  4. Cassini-VIMS temperature maps of Saturn's satellites

    NASA Astrophysics Data System (ADS)

    Filacchione, G.; Capaccioni, F.; Ciarniello, M.; Tosi, F.; D'Aversa, E.; Clark, R. N.; Brown, R. H.; Buratti, B. J.; Cruikshank, D. P.; Dalle Ore, M. C.; Scipioni, F.; Cerroni, P.

    The spectral position of the 3.6 mu m continuum peak measured on Cassini-VIMS reflectance spectra is used to infer the temperature of the regolith particles covering the surfaces of Saturn's icy satellites. Laboratory measurements by \\cite{Clark2012} have shown that 3.6 mu m peak for pure crystalline water ice particles shifts towards shorter wavelengths when the sample is cooled, moving from about 3.65 mu m at T=123 K to about 3.55 mu m at T=88 K. A similar trend is observed also in the imaginary part (k) of the refractive index of water ice when the sample is cooled from T=140 K to 20 K \\citep{Mastrapa2009}. Since water ice is the dominant endmember on Saturn's satellites surfaces \\citep{Filacchione2012}, the measurement of the wavelength at which the 3.6 mu m reflectance peak occurs can be considered as a temperature indicator. We report about temperature maps of Mimas, Enceladus, Tethys, Dione and Rhea derived by applying this method to Cassini-VIMS data taken at spatial resolution of 20-40 km/pixel. These maps allow us to correlate the temperature distribution with solar illumination conditions and with geological features. On average Enceladus' midlatitudes regions appear at T<100 K while the south pole tiger-stripes active area shows a thermal emission at T>115 K. Tethys' and Mimas' equatorial lenses show significant thermal anomalies: despite these features have low visible albedo they appear more cold than the surrounding mid-latitude regions as a consequence of a much higher thermal inertia. On Mimas, Hershel crater's floor appears warmer (T>115 K) than the adjacent equatorial lens area (T<110 K). Finally, Dione's analysis evidences lower temperature across the bright wispy terrains than the nearby low albedo areas.

  5. Impacts of Lowered Urban Air Temperatures on Precursor Emission and Ozone Air Quality.

    PubMed

    Taha, Haider; Konopacki, Steven; Akbari, Hashem

    1998-09-01

    Meteorological, photochemical, building-energy, and power plant simulations were performed to assess the possible precursor emission and ozone air quality impacts of decreased air temperatures that could result from implementing the "cool communities" concept in California's South Coast Air Basin (SoCAB). Two pathways are considered. In the direct pathway, a reduction in cooling energy use translates into reduced demand for generation capacity and, thus, reduced precursor emissions from electric utility power plants. In the indirect pathway, reduced air temperatures can slow the atmospheric production of ozone as well as precursor emission from anthropogenic and biogenic sources. The simulations suggest small impacts on emissions following implementation of cool communities in the SoCAB. In summer, for example, there can be reductions of up to 3% in NOx emissions from in-basin power plants. The photochemical simulations suggest that the air quality impacts of these direct emission reductions are small. However, the indirect atmospheric effects of cool communities can be significant. For example, ozone peak concentrations can decrease by up to 11% in summer and population-weighted exceedance exposure to ozone above the California and National Ambient Air Quality Standards can decrease by up to 11 and 17%, respectively. The modeling suggests that if these strategies are combined with others, such as mobile-source emission control, the improvements in ozone air quality can be substantial.

  6. The Effects of Air Pollution and Temperature on COPD

    PubMed Central

    Hansel, Nadia N.; McCormack, Meredith C.; Kim, Victor

    2016-01-01

    Chronic Obstructive Pulmonary Disease (COPD) affects 12–16 million people in the United States and is the third-leading cause of death. In developed countries, smoking is the greatest risk factor for the development of COPD, but other exposures also contribute to the development and progression of the disease. Several studies suggest, though are not definitive, that outdoor air pollution exposure is linked to the prevalence and incidence of COPD. Among individuals with COPD, outdoor air pollutants are associated with loss of lung function and increased respiratory symptoms. In addition, outdoor air pollutants are also associated with COPD exacerbations and mortality. There is much less evidence for the impact of indoor air on COPD, especially in developed countries in residences without biomass exposure. The limited existing data suggests that indoor particulate matter and nitrogen dioxide concentrations are linked to increased respiratory symptoms among patients with COPD. In addition, with the projected increases in temperature and extreme weather events in the context of climate change there has been increased attention to the effects of heat exposure. Extremes of temperature—both heat and cold—have been associated with increased respiratory morbidity in COPD. Some studies also suggest that temperature may modify the effect of pollution exposure and though results are not conclusive, understanding factors that may modify susceptibility to air pollution in patients with COPD is of utmost importance. PMID:26683097

  7. Temperature map computation for X-ray clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Bourdin, H.; Sauvageot, J.-L.; Slezak, E.; Bijaoui, A.; Teyssier, R.

    2004-02-01

    Recent numerical simulations have shown that the variations of the gas temperature in clusters of galaxies are indicative of the dynamical state of these clusters. Maps of the temperature variation show complex structures with different shapes at different spatial scales, such as hot compression regions, filaments, cooling flows, or large-scale temperature profiles. A new multiscale spectro-imagery algorithm for restoring the spatial temperature variations within clusters of galaxies is presented here. It has been especially developed to work with the EPIC MOS1, MOS2 and PN spectro-imagers on board the XMM-Newton satellite. The temperature values are fitted to an emission model that includes the source, the cosmic X-ray background and cosmic-ray induced particle background. The spatial temperature variations are coded at different scales in the wavelet space using the Haar wavelet and denoised by thresholding the wavelet coefficients. Our local temperature estimator behaves asymptotically like an optimal mininum variance bound estimator. But it is highly sensitive to the instrumental and astrophysical backgrounds, so that a good knowledge of each component of the emission model is required. Our algorithm has been applied to a simulated 60 ks observation of a merging cluster at z =0.1. The cluster at different stages of merging has been provided by 3-D hydrodynamical simulations of structure formation (AMR). The multiscale approach has enabled us to restore the faint structures within the core of the merging subgroups where the gas emissivity is high, but also the temperature decrease at large scale in their external regions.

  8. Requirements for high-temperature air-cooled central receivers

    NASA Astrophysics Data System (ADS)

    Wright, J. D.; Copeland, R. J.

    1983-12-01

    The design of solar thermal central receivers will be shaped by the end user's need for energy. This paper identifies the requirements for receivers supplying heat for industrial processes or electric power generation in the temperature range 540 to 1000(0)C and evaluates the effects of the requirements on air cooled central receivers. Potential IPH applications are identified as large baseload users that are located some distance from the receiver. In the electric power application, the receiver must supply heat to a pressurized gas power cycle. The difficulty in providing cost effective thermal transport and thermal storage for air cooled receivers is a critical problem.

  9. Climate change and river temperature sensitivity to warmer nighttime vs. warmer daytime air temperatures

    NASA Astrophysics Data System (ADS)

    Diabat, M.; Haggerty, R.; Wondzell, S. M.

    2011-12-01

    We investigated the July river temperature response to atmospheric warming over the diurnal cycle in a 36 km reach of the upper Middle Fork John Day River of Oregon, USA. The physical model Heat Source was calibrated and used to run 3 different cases of increased air temperature during July: 1) uniform increase over the whole day ("delta method"), 2) warmer daytime, and 3) warmer nighttime. All 3 cases had the same mean daily air temperatures - a 4 °C increase relative to 2002. Results show that the timing of air temperature increases has a significant effect on the magnitude, timing and duration of changes in water temperatures relative to current conditions. In all cases, river temperatures in the lower reach increased by at least 1.1 °C . For the delta case, water temperature increases never exceeded 2.3 °C. In contrast, under the warmer daytime case, water temperature increases exceeded 2.3 °C for 6.6 hours/day on average, with the largest increases occurring during mid-day. In the warmer night case the river temperature increases exceeded 2.3 °C for 4.3 hours/day on average with the largest increases occurring around midnight. In addition, an average increase of 4 °C in air temperature under the delta case increased the water temperature by an average of 1.9 °C uniformly during daytime and nighttime. Still, an average increase of 4 °C in air temperature under the warmer daytime case increased water temperature by an average of at least 1.6 °C during the daytime and by an average of up to 2.5 °C during the nighttime, while an average increase of 4 °C in air temperature under the warmer nighttime case increased the water temperature by an average of at least 1.4 °C during the nighttime and by an average of up to 2.4 °C during the daytime. The spatial response of temperature was different for each case. The lower 13 rkm warmed by at least 1.1 °C with the delta case, while only the lower 6 rkm warmed by at least 1.1 °C with the warmer daytime case

  10. Evaluating CMIP5 models using AIRS tropospheric air temperature and specific humidity climatology

    NASA Astrophysics Data System (ADS)

    Tian, Baijun; Fetzer, Eric J.; Kahn, Brian H.; Teixeira, Joao; Manning, Evan; Hearty, Thomas

    2013-01-01

    This paper documents the climatological mean features of the Atmospheric Infrared Sounder (AIRS) monthly mean tropospheric air temperature (ta, K) and specific humidity (hus, kg/kg) products as part of the Obs4MIPs project and compares them to those from NASA's Modern Era Retrospective analysis for Research and Applications (MERRA) for validation and 16 models from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) for CMIP5 model evaluation. MERRA is warmer than AIRS in the free troposphere but colder in the boundary layer with differences typically less than 1 K. MERRA is also drier (~10%) than AIRS in the tropical boundary layer but wetter (~30%) in the tropical free troposphere and the extratropical troposphere. In particular, the large MERRA-AIRS specific humidity differences are mainly located in the deep convective cloudy regions indicating that the low sampling of AIRS in the cloudy regions may be the main reason for these differences. In comparison to AIRS and MERRA, the sixteen CMIP5 models can generally reproduce the climatological features of tropospheric air temperature and specific humidity well, but several noticeable biases exist. The models have a tropospheric cold bias (around 2 K), especially in the extratropical upper troposphere, and a double-ITCZ problem in the troposphere from 1000 hPa to 300 hPa, especially in the tropical Pacific. The upper-tropospheric cold bias exists in the most (13 of 16) models, and the double-ITCZ bias is found in all 16 CMIP5 models. Both biases are independent of the reference dataset used (AIRS or MERRA).

  11. Record low surface air temperature at Vostok station, Antarctica

    NASA Astrophysics Data System (ADS)

    Turner, John; Anderson, Phil; Lachlan-Cope, Tom; Colwell, Steve; Phillips, Tony; Kirchgaessner, AméLie; Marshall, Gareth J.; King, John C.; Bracegirdle, Tom; Vaughan, David G.; Lagun, Victor; Orr, Andrew

    2009-12-01

    The lowest recorded air temperature at the surface of the Earth was a measurement of -89.2°C made at Vostok station, Antarctica, at 0245 UT on 21 July 1983. Here we present the first detailed analysis of this event using meteorological reanalysis fields, in situ observations and satellite imagery. Surface temperatures at Vostok station in winter are highly variable on daily to interannual timescales as a result of the great sensitivity to intrusions of maritime air masses as Rossby wave activity changes around the continent. The record low temperature was measured following a near-linear cooling of over 30 K over a 10 day period from close to mean July temperatures. The event occurred because of five specific conditions that arose: (1) the temperature at the core of the midtropospheric vortex was at a near-record low value; (2) the center of the vortex moved close to the station; (3) an almost circular flow regime persisted around the station for a week resulting in very little warm air advection from lower latitudes; (4) surface wind speeds were low for the location; and (5) no cloud or diamond dust was reported above the station for a week, promoting the loss of heat to space via the emission of longwave radiation. We estimate that should a longer period of isolation occur the surface temperature at Vostok could drop to around -96°C. The higher site of Dome Argus is typically 5-6 K colder than Vostok so has the potential to record an even lower temperature.

  12. Temperature Mapping in Hydrogel Matrices Using Unmodified Digital Camera.

    PubMed

    Darwish, Ghinwa H; Fakih, Hassan H; Karam, Pierre

    2017-02-09

    We report a simple, generally applicable, and noninvasive fluorescent method for mapping thermal fluctuations in hydrogel matrices using an unmodified commercially available digital single-lens reflex camera (DSLR). The nanothermometer is based on the complexation of short conjugated polyelectrolytes, poly(phenylene ethynylene) carboxylate, with an amphiphilic polymer, polyvinylpyrrolidone, which is in turn trapped within the porous network of a gel matrix. Changes in the temperature lead to a fluorescent ratiometric response with a maximum relative sensitivity of 2.0% and 1.9% at 45.0 °C for 0.5% agarose and agar, respectively. The response was reversible with no observed hysteresis when samples were cycled between 20 and 40 °C. As a proof of concept, the change in fluorescent signal/color was captured using a digital camera. The images were then dissected into their red-green-blue (RGB) components using a Matlab routine. A linear correlation was observed between the hydrogel temperature and the green and blue intensity channels. The reported sensor has the potential to provide a wealth of information when thermal fluctuations mapped in soft gels matrices are correlated with chemical or physical processes.

  13. Temperature and Transpiration Resistances of Xanthium Leaves as Affected by Air Temperature, Humidity, and Wind Speed 1

    PubMed Central

    Drake, B. G.; Raschke, K.; Salisbury, F. B.

    1970-01-01

    Transpiration and temperatures of single, attached leaves of Xanthium strumarium L. were measured in high intensity white light (1.2 calories per square centimeter per minute on a surface normal to the radiation), with abundant water supply, at wind speeds of 90, 225, and 450 centimeters per second, and during exposure to moist and dry air. Partitioning of absorbed radiation between transpiration and convection was determined, and transpiration resistances were computed. Leaf resistances decreased with increasing temperature (down to a minimum of 0.36 seconds per centimeter). Silicone rubber replicas of leaf surfaces proved that the decrease was due to increased stomatal apertures. At constant air temperature, leaf resistances were higher in dry than in moist air with the result that transpiration varied less than would have been predicted on the basis of the water-vapor pressure difference between leaf and air. The dependence of stomatal conductance on temperature and moisture content of the air caused the following effects. At air temperatures below 35 C, average leaf temperatures were above air temperature by an amount dependent on wind velocity; increasing wind diminished transpiration. At air temperatures above 35 C, leaf temperatures were below air temperatures, and increasing wind markedly increased transpiration. Leaf temperatures equaled air temperature near 35 C at all wind speeds and in moist as well as in dry air. PMID:16657458

  14. How BenMAP-CE Estimates the Health and Economic Effects of Air Pollution

    EPA Pesticide Factsheets

    The BenMAP-CE tool estimates the number and economic value of health impacts resulting from changes in air quality - specifically, ground-level ozone and fine particles. Learn what data BenMAP-CE uses and how the estimates are calculated.

  15. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect

    Waye, S.; Musselman, M.; King, C.

    2014-09-01

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  16. Temperature Variations Recorded During Interinstitutional Air Shipments of Laboratory Mice

    PubMed Central

    Syversen, Eric; Pineda, Fernando J; Watson, Julie

    2008-01-01

    Despite extensive guidelines and regulations that govern most aspects of rodent shipping, few data are available on the physical environment experienced by rodents during shipment. To document the thermal environment experienced by mice during air shipments, we recorded temperatures at 1-min intervals throughout 103 routine interinstitutional shipments originating at our institution. We found that 49.5% of shipments were exposed to high temperatures (greater than 29.4 °C), 14.6% to low temperatures (less than 7.2 °C), and 61% to temperature variations of 11 °C or more. International shipments were more likely than domestic shipments to experience temperature extremes and large variations in temperature. Freight forwarders using passenger airlines rather than their own airplanes were more likely to have shipments that experienced temperature extremes or variations. Temperature variations were most common during stopovers. Some airlines were more likely than others to experience inflight temperature extremes or swings. Most domestic shipments lasted at least 24 h, whereas international shipments lasted 48 to 72 h. Despite exposure to high and low temperatures, animals in all but 1 shipment arrived alive. We suggest that simple measures, such as shipping at night during hot weather, provision of nesting material in shipping crates, and specifying aircraft cargo-hold temperatures that are suitable for rodents, could reduce temperature-induced stress. Measures such as additional training for airport ground crews, as previously recommended by the American Veterinary Medical Association, could further reduce exposure of rodents to extreme ambient temperatures during airport stopovers. PMID:18210996

  17. Global surface air temperature variations: 1851-1984

    SciTech Connect

    Jones, P.D.; Raper, S.C.B.; Kelly, P.M.

    1986-11-01

    Many attempts have been made to combine station surface air temperature data into an average for the Northern Hemisphere. Fewer attempts have been made for the Southern Hemisphere because of the unavailability of data from the Antarctic mainland before the 1950s and the uncertainty of making a hemispheric estimate based solely on land-based analyses for a hemisphere that is 80% ocean. Past estimates have been based largely on data from the World Weather Records (Smithsonian Institution, 1927, 1935, 1947, and U.S. Weather Bureau, 1959-82) and have been made without considerable effort to detect and correct station inhomogeneities. Better estimates for the Southern Hemisphere are now possible because of the availability of 30 years of climatological data from Antarctica. The mean monthly surface air temperature anomalies presented in this package for the than those previously published because of the incorporation of data previously hidden away in archives and the analysis of station homogeneity before estimation.

  18. Strong Discrepancies between Local Temperature Mapping and Interpolated Climatic Grids in Tropical Mountainous Agricultural Landscapes

    PubMed Central

    Faye, Emile; Herrera, Mario; Bellomo, Lucio; Silvain, Jean-François; Dangles, Olivier

    2014-01-01

    Bridging the gap between the predictions of coarse-scale climate models and the fine-scale climatic reality of species is a key issue of climate change biology research. While it is now well known that most organisms do not experience the climatic conditions recorded at weather stations, there is little information on the discrepancies between microclimates and global interpolated temperatures used in species distribution models, and their consequences for organisms’ performance. To address this issue, we examined the fine-scale spatiotemporal heterogeneity in air, crop canopy and soil temperatures of agricultural landscapes in the Ecuadorian Andes and compared them to predictions of global interpolated climatic grids. Temperature time-series were measured in air, canopy and soil for 108 localities at three altitudes and analysed using Fourier transform. Discrepancies between local temperatures vs. global interpolated grids and their implications for pest performance were then mapped and analysed using GIS statistical toolbox. Our results showed that global interpolated predictions over-estimate by 77.5±10% and under-estimate by 82.1±12% local minimum and maximum air temperatures recorded in the studied grid. Additional modifications of local air temperatures were due to the thermal buffering of plant canopies (from −2.7°K during daytime to 1.3°K during night-time) and soils (from −4.9°K during daytime to 6.7°K during night-time) with a significant effect of crop phenology on the buffer effect. This discrepancies between interpolated and local temperatures strongly affected predictions of the performance of an ectothermic crop pest as interpolated temperatures predicted pest growth rates 2.3–4.3 times lower than those predicted by local temperatures. This study provides quantitative information on the limitation of coarse-scale climate data to capture the reality of the climatic environment experienced by living organisms. In highly heterogeneous

  19. Strong discrepancies between local temperature mapping and interpolated climatic grids in tropical mountainous agricultural landscapes.

    PubMed

    Faye, Emile; Herrera, Mario; Bellomo, Lucio; Silvain, Jean-François; Dangles, Olivier

    2014-01-01

    Bridging the gap between the predictions of coarse-scale climate models and the fine-scale climatic reality of species is a key issue of climate change biology research. While it is now well known that most organisms do not experience the climatic conditions recorded at weather stations, there is little information on the discrepancies between microclimates and global interpolated temperatures used in species distribution models, and their consequences for organisms' performance. To address this issue, we examined the fine-scale spatiotemporal heterogeneity in air, crop canopy and soil temperatures of agricultural landscapes in the Ecuadorian Andes and compared them to predictions of global interpolated climatic grids. Temperature time-series were measured in air, canopy and soil for 108 localities at three altitudes and analysed using Fourier transform. Discrepancies between local temperatures vs. global interpolated grids and their implications for pest performance were then mapped and analysed using GIS statistical toolbox. Our results showed that global interpolated predictions over-estimate by 77.5 ± 10% and under-estimate by 82.1 ± 12% local minimum and maximum air temperatures recorded in the studied grid. Additional modifications of local air temperatures were due to the thermal buffering of plant canopies (from -2.7 °K during daytime to 1.3 °K during night-time) and soils (from -4.9 °K during daytime to 6.7 °K during night-time) with a significant effect of crop phenology on the buffer effect. This discrepancies between interpolated and local temperatures strongly affected predictions of the performance of an ectothermic crop pest as interpolated temperatures predicted pest growth rates 2.3-4.3 times lower than those predicted by local temperatures. This study provides quantitative information on the limitation of coarse-scale climate data to capture the reality of the climatic environment experienced by living organisms. In highly heterogeneous

  20. Evidence of Lunar Phase Influence on Global Surface Air Temperatures

    NASA Technical Reports Server (NTRS)

    Anyamba, Ebby; Susskind, Joel

    2000-01-01

    Intraseasonal oscillations appearing in a newly available 20-year record of satellite-derived surface air temperature are composited with respect to the lunar phase. Polar regions exhibit strong lunar phase modulation with higher temperatures occurs near full moon and lower temperatures at new moon, in agreement with previous studies. The polar response to the apparent lunar forcing is shown to be most robust in the winter months when solar influence is minimum. In addition, the response appears to be influenced by ENSO events. The highest mean temperature range between full moon and new moon in the polar region between 60 deg and 90 deg latitude was recorded in 1983, 1986/87, and 1990/91. Although the largest lunar phase signal is in the polar regions, there is a tendency for meridional equatorward progression of anomalies in both hemispheres so that the warning in the tropics occurs at the time of the new moon.

  1. Antarctic Sea ice variations and seasonal air temperature relationships

    NASA Technical Reports Server (NTRS)

    Weatherly, John W.; Walsh, John E.; Zwally, H. J.

    1991-01-01

    Data through 1987 are used to determine the regional and seasonal dependencies of recent trends of Antarctic temperature and sea ice. Lead-lag relationships involving regional sea ice and air temperature are systematically evaluated, with an eye toward the ice-temperature feedbacks that may influence climatic change. Over the 1958-1087 period the temperature trends are positive in all seasons. For the 15 years (l973-l987) for which ice data are available, the trends are predominantly positive only in winter and summer, and are most strongly positive over the Antarctic Peninsula. The spatially aggregated trend of temperature for this latter period is small but positive, while the corresponding trend of ice coverage is small but negative. Lag correlations between seasonal anomalies of the two variables are generally stronger with ice lagging the summer temperatures and with ice leading the winter temperatures. The implication is that summer temperatures predispose the near-surface waters to above-or below-normal ice coverage in the following fall and winter.

  2. Daily Air Temperature and Electricity Load in Spain.

    NASA Astrophysics Data System (ADS)

    Valor, Enric; Meneu, Vicente; Caselles, Vicente

    2001-08-01

    Weather has a significant impact on different sectors of the economy. One of the most sensitive is the electricity market, because power demand is linked to several weather variables, mainly the air temperature. This work analyzes the relationship between electricity load and daily air temperature in Spain, using a population-weighted temperature index. The electricity demand shows a significant trend due to socioeconomic factors, in addition to daily and monthly seasonal effects that have been taken into account to isolate the weather influence on electricity load. The results indicate that the relationship is nonlinear, showing a `comfort interval' of ±3°C around 18°C and two saturation points beyond which the electricity load no longer increases. The analysis has also revealed that the sensitivity of electricity load to daily air temperature has increased along time, in a higher degree for summer than for winter, although the sensitivity in the cold season is always more significant than in the warm season. Two different temperature-derived variables that allow a better characterization of the observed relationship have been used: the heating and cooling degree-days. The regression of electricity data on them defines the heating and cooling demand functions, which show correlation coefficients of 0.79 and 0.87, and predicts electricity load with standard errors of estimate of ±4% and ±2%, respectively. The maximum elasticity of electricity demand is observed at 7 cooling degree-days and 9 heating degree-days, and the saturation points are reached at 11 cooling degree-days and 13 heating degree-days, respectively. These results are helpful in modeling electricity load behavior for predictive purposes.

  3. Mapping Air Quality Index of Carbon Monoxide (CO) in Medan City

    NASA Astrophysics Data System (ADS)

    Suryati, I.; Khair, H.

    2017-03-01

    This study aims to map and analyze air quality index of carbon monoxide (CO) in Medan City. This research used 12 (twelve) sampling points around in Medan with an hour duration each point. CO concentration was analyzed using the NDIR CO Analyzer sampling tool. The concentration CO was obtained between 1 ppm - 23 ppm, with an average concentration was 9.5 ppm. This condition is still below the national ambient air quality standard set by Government Regulation of Indonesian Republic Number 41-1999 amounted to 29 ppm. The result of CO concentration measurements was converted into air pollutant standard index, obtained the index value of 58 - 204. Surfer 10 was used to create map of air pollutant standard index for CO. The map illustrates very unhealthy area where located in the Medan Belawan district. The main factors affecting the concentration of CO are from transportation and meteorological factors.

  4. Sensitivity of New England Stream Temperatures to Air Temperature and Precipitation Under Projected Climate

    NASA Astrophysics Data System (ADS)

    Huang, T.; Samal, N. R.; Wollheim, W. M.; Stewart, R. J.; Zuidema, S.; Prousevitch, A.; Glidden, S.

    2015-12-01

    The thermal response of streams and rivers to changing climate will influence aquatic habitat. This study examines the impact that changing climate has on stream temperatures in the Merrimack River, NH/MA USA using the Framework for Aquatic Modeling in the Earth System (FrAMES), a spatially distributed river network model driven by air temperature, air humidity, wind speed, precipitation, and solar radiation. Streamflow and water temperatures are simulated at a 45-second (latitude x longitude) river grid resolution for 135 years under historical and projected climate variability. Contemporary streamflow (Nash-Sutcliffe Coefficient = 0.77) and river temperatures (Nash-Sutcliffe Coefficient = 0.89) matched at downstream USGS gauge data well. A suite of model runs were made in combination with uniformly increased daily summer air temperatures by 2oC, 4 oC and 6 oC as well as adjusted precipitation by -40%, -30%, -20%, -10% and +10% as a sensitivity analysis to explore a broad range of potential future climates. We analyzed the summer stream temperatures and the percent of river length unsuitable for cold to warm water fish habitats. Impacts are greatest in large rivers due to the accumulation of river temperature warming throughout the entire river network. Cold water fish (i.e. brook trout) are most strongly affected while, warm water fish (i.e. largemouth bass) aren't expected to be impacted. The changes in stream temperatures under various potential climate scenarios will provide a better understanding of the specific impact that air temperature and precipitation have on aquatic thermal regimes and habitat.

  5. Variation of winter road surface temperature due to topography and application of Thermal Mapping

    NASA Astrophysics Data System (ADS)

    Shao, J.; Swanson, J. C.; Patterson, R.; Lister, P. J.; McDonald, A. N.

    1997-06-01

    It is known that topography is an important factor controlling the variation of road surface temperature (RST). In order to explore possible relationships between RST and topography, the authors used Thermal Mapping data obtained by a vehicle-mounted thermometer in a mountainous area in Nevada, USA, under different weather conditions in December 1994. The data were validated against the measurements of road surface sensors. After that, a step-wise regression technique is employed to find out possible statistic relationships between RST and altitude at different surveying routes. It was found that the relationships exhibited different characteristics in different climate domains and under different weather types. In most cases, the relationships were non-linear. In order to obtain more information about the cause of the residuals and the variation, the error of regression fitting is related to near-ground meteorological parameters (air temperature, dew point and wind, etc.). This study proved that Thermal Mapping is a reliable and effective method to display spatial variation of road surface temperature.

  6. Mapping Pluto's Temperature Distribution Through Twenty Years of Stellar Occultations

    NASA Astrophysics Data System (ADS)

    Zangari, Amanda; Binzel, R. P.; Person, M. J.

    2012-10-01

    Multi-chord, high signal-to-noise Pluto occultations have been observed several times over the past two decades, including events in 1988, 2002, 2006, 2007, 2010 and 2011 (Elliot et al. 1989, 2003, 2007; Person et al. 2008, 2010, 2011). We fit separate immersion and emersion occultation light-curve models to each of the individual light curves obtained from these efforts. Asymmetries in the light curves result in the half-light temperatures for opposite sides of a single chord to differ by up to 20 Kelvin in the largest case. The temperature difference for each chord is consistent using both isothermal (b=0) and non-isothermal (e.g. b=-2.2) models based on the methodology described by Elliot & Young (1992). We examine the relationship between the location of immersion and emersion points on Pluto and these temperatures at the half-light radius and will present results for correlations between these location/temperature data and surface composition maps, Pluto geometry, and accumulated insolation patterns. This work was supported by NASA Planetary Astronomy Grant to MIT (NNX10AB27G), and NSF Astronomy and Astrophysics Grant to MIT (0707609). The authors would like to acknowledge the late Professor James L. Elliot for his efforts in beginning this work. References: Elliot, J. L., Dunham, E. W., Bosh, A. S., et al. 1989, Icarus, 77,148 Elliot, J. L., Ates, A., Babcock, B. A., et al. 2003, Nature, 424,165 Elliot, J. L., Person, M. J., Gulbis, A. A. S., et al. 2007, AJ, 134, 1 Elliot, J. L., & Young, L. A. 1992, AJ, 103, 991. Person, M. J., Elliot, J. L., Gulbis, A. A. S., et al. 2008, AJ, 136, 1510 Person, M. J., Elliot, J. L., Bosh, A. S., et al. 2010, Bulletin of the American Astronomical Society, 42, 983 Person, M. J., Dunham, E. W., Bida, T., et al. 2011, EPSC-DPS Joint Meeting 2011, 1374.

  7. On extreme rainfall intensity increases with air temperature

    NASA Astrophysics Data System (ADS)

    Molnar, Peter; Fatichi, Simone; Paschalis, Athanasios; Gaal, Ladislav; Szolgay, Jan; Burlando, Paolo

    2016-04-01

    The water vapour holding capacity of air increases at about 7% per degree C according to the Clausius-Clapeyron (CC) relation. This is one of the arguments why a warmer future atmosphere, being able to hold more moisture, will generate higher extreme precipitation intensities. However, several empirical studies have recently demonstrated an increase in extreme rain intensities with air temperature above CC rates, in the range 7-14% per degree C worldwide (called super-CC rates). This was observed especially for shorter duration rainfall, i.e. in hourly and finer resolution data (e.g. review in Westra et al., 2014). The super-CC rate was attributed to positive feedbacks between water vapour and the updraft dynamics in convective clouds and lateral supply (convergence) of moisture. In addition, mixing of storm types was shown to be potentially responsible for super-CC rates in empirical studies. Assuming that convective events are accompanied by lightning, we will show on a large rainfall dataset in Switzerland (30 year records of 10-min and 1-hr data from 59 stations) that while the average rate of increase in extreme rainfall intensity (95th percentile) is 6-7% in no-lightning events and 8-9% in lightning events, it is 11-13% per degree C when all events are combined (Molnar et al., 2015). These results are relevant for climate change studies which predict shifts in storm types in a warmer climate in some parts of the world. The observation that extreme rain intensity and air temperature are positively correlated has consequences for the stochastic modelling of rainfall. Most current stochastic models do not explicitly include a direct rain intensity-air temperature dependency beyond applying factors of change predicted by climate models to basic statistics of precipitation. Including this dependency explicitly in stochastic models will allow, for example in the nested modelling approach of Paschalis et al. (2014), the random cascade disaggregation routine to be

  8. Air-sea interactions in sea surface temperature frontal region

    NASA Astrophysics Data System (ADS)

    Pianezze, Joris; Redelsperger, Jean-Luc; Ardhuin, Fabrice; Reynaud, Thierry; Marié, Louis; Bouin, Marie-Noelle; Garnier, Valerie

    2015-04-01

    Representation of air-sea exchanges in coastal, regional and global models represent a challenge firstly due to the small scale of acting turbulent processes comparatively to the resolved scales of these models. Beyond this subgrid parameterization issue, a comprehensive understanding of air-sea interactions at the turbulent process scales is still lacking. Many successful efforts are dedicated to measure the energy and mass exchanges between atmosphere and ocean, including the effect of surface waves. In comparison less efforts are brought to understand the interactions between the atmospheric boundary layer and the oceanic mixing layer. In this regard, we are developing research mainly based on ideal and realistic numerical simulations which resolve very small scales (horizontal resolutions from 1 to 100 meters) in using grid nesting technics and coupled ocean-wave-atmosphere models. As a first step, the impact of marked gradients in sea surface temperatures (SST) on air-sea exchanges has been explored through realistic numerical simulations at 100m horizontal resolution. Results from simulations of a case observed during the FROMVAR experiment will be shown. The talk will mainly focus on the marked impact of SST front on the atmospheric boundary layer (stability and winds), the air-sea exchanges and surface parameters (rugosity, drag coefficient) Results will be also shown on the strong impact on the simulated atmosphere of small scale variability of SST field.

  9. Generation of low-temperature air plasma for food processing

    NASA Astrophysics Data System (ADS)

    Stepanova, Olga; Demidova, Maria; Astafiev, Alexander; Pinchuk, Mikhail; Balkir, Pinar; Turantas, Fulya

    2015-11-01

    The project is aimed at developing a physical and technical foundation of generating plasma with low gas temperature at atmospheric pressure for food industry needs. As known, plasma has an antimicrobial effect on the numerous types of microorganisms, including those that cause food spoilage. In this work an original experimental setup has been developed for the treatment of different foods. It is based on initiating corona or dielectric-barrier discharge in a chamber filled with ambient air in combination with a certain helium admixture. The experimental setup provides various conditions of discharge generation (including discharge gap geometry, supply voltage, velocity of gas flow, content of helium admixture in air and working pressure) and allows for the measurement of the electrical discharge parameters. Some recommendations on choosing optimal conditions of discharge generation for experiments on plasma food processing are developed.

  10. Mapping forest canopy gaps using air-photo interpretation and ground surveys

    USGS Publications Warehouse

    Fox, T.J.; Knutson, M.G.; Hines, R.K.

    2000-01-01

    Canopy gaps are important structural components of forested habitats for many wildlife species. Recent improvements in the spatial accuracy of geographic information system tools facilitate accurate mapping of small canopy features such as gaps. We compared canopy-gap maps generated using ground survey methods with those derived from air-photo interpretation. We found that maps created from high-resolution air photos were more accurate than those created from ground surveys. Errors of omission were 25.6% for the ground-survey method and 4.7% for the air-photo method. One variable of inter est in songbird research is the distance from nests to gap edges. Distances from real and simulated nests to gap edges were longer using the ground-survey maps versus the air-photo maps, indicating that gap omission could potentially bias the assessment of spatial relationships. If research or management goals require location and size of canopy gaps and specific information about vegetation structure, we recommend a 2-fold approach. First, canopy gaps can be located and the perimeters defined using 1:15,000-scale or larger aerial photographs and the methods we describe. Mapped gaps can then be field-surveyed to obtain detailed vegetation data.

  11. AIRS Map of Carbon Monoxide Draped on Globe: Time Series from 8/1/2005 to 9/30/2005

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of AIRS Map of Carbon Monoxide Draped on Globe

    Forest fires and agricultural burning create large amounts of carbon monoxide. AIRS provides daily global maps of carbon monoxide from space, allowing scientists to follow the global transport of this gas day-to-day. In this image sequence, carbon monoxide pollution from agricultural burning blooms repeatedly over the Amazonian basin. The gas is then transported across the Atlantic Ocean. Carbon monoxide pollution from fires in sub-Saharan Africa is also apparent.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  12. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  13. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  14. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  15. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  16. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  17. Pd-modified Reactive Air Braze for Increased Melting Temperature

    SciTech Connect

    Hardy, John S.; Weil, K. Scott; Kim, Jin Yong Y.; Darsell, Jens T.

    2005-03-01

    Complex high temperature devices such as planar solid oxide fuel cell (pSOFC) stacks often require a two-step sealing process. For example, in pSOFC stacks the oxide ceramic fuel cell plates might be sealed into metallic support frames in one step. Then the frames with the fuel plates sealed to them would be joined together in a separate sealing step to form the fuel cell stack. In this case, the initial seal should have a sufficiently high solidus temperature that it will not begin to remelt at the sealing temperature of the material used for the subsequent sealing step. Previous experience has indicated that, when heated at a rate of 10°C/min, Ag-CuO reactive air braze (RAB) compositions have solidus and liquidus temperatures in the approximate range of 925 to 955°C. Therefore, compositionally modifying the original Ag-CuO braze with Pd-additions such that the solidus temperature of the new braze is between 1025 and 1050°C would provide two RAB compositions with a difference in melting points large enough to allow reactive air brazing of both sets of seals in the fuel cell stack. This study determines the appropriate ratio of Pd to Ag in RAB required to achieve a solidus in the desired range and discusses the wettability of the resulting Pd-Ag-CuO brazes on YSZ substrates. The interfacial microstructures and flexural strengths of Pd-Ag-CuO joints in YSZ will also be presented.

  18. Sea-surface temperature and salinity mapping from remote microwave radiometric measurements of brightness temperature

    NASA Technical Reports Server (NTRS)

    Hans-Juergen, C. B.; Kendall, B. M.; Fedors, J. C.

    1977-01-01

    A technique to measure remotely sea surface temperature and salinity was demonstrated with a dual frequency microwave radiometer system. Accuracies in temperature of 1 C and in salinity of part thousand for salinity greater than 5 parts per thousand were attained after correcting for the influence of extraterrestrial background radiation, atmospheric radiation and attenuation, sea-surface roughness, and antenna beamwidth. The radiometers, operating at 1.43 and 2.65 GHz, comprise a third-generation system using null balancing and feedback noise injection. Flight measurements from an aircraft at an altitude of 1.4 km over the lower Chesapeake Bay and coastal areas of the Atlantic Ocean resulted in contour maps of sea-surface temperature and salinity with a spatial resolution of 0.5 km.

  19. Apparatus and method for temperature mapping a turbine component in a high temperature combustion environment

    DOEpatents

    Baleine, Erwan; Sheldon, Danny M

    2014-06-10

    Method and system for calibrating a thermal radiance map of a turbine component in a combustion environment. At least one spot (18) of material is disposed on a surface of the component. An infrared (IR) imager (14) is arranged so that the spot is within a field of view of the imager to acquire imaging data of the spot. A processor (30) is configured to process the imaging data to generate a sequence of images as a temperature of the combustion environment is increased. A monitor (42, 44) may be coupled to the processor to monitor the sequence of images of to determine an occurrence of a physical change of the spot as the temperature is increased. A calibration module (46) may be configured to assign a first temperature value to the surface of the turbine component when the occurrence of the physical change of the spot is determined.

  20. Model-based estimation of changes in air temperature seasonality

    NASA Astrophysics Data System (ADS)

    Barbosa, Susana; Trigo, Ricardo

    2010-05-01

    Seasonality is a ubiquitous feature in climate time series. Climate change is expected to involve not only changes in the mean of climate parameters but also changes in the characteristics of the corresponding seasonal cycle. Therefore the identification and quantification of changes in seasonality is a highly relevant topic in climate analysis, particularly in a global warming context. However, the analysis of seasonality is far from a trivial task. A key challenge is the discrimination between long-term changes in the mean and long-term changes in the seasonal pattern itself, which requires the use of appropriate statistical approaches in order to be able to distinguish between overall trends in the mean and trends in the seasons. Model based approaches are particularly suitable for the analysis of seasonality, enabling to assess uncertainties in the amplitude and phase of seasonal patterns within a well defined statistical framework. This work addresses the changes in the seasonality of air temperature over the 20th century. The analysed data are global air temperature values close to surface (2m above ground) and mid-troposphere (500 hPa geopotential height) from the recently developed 20th century reanalysis. This new 3-D Reanalysis dataset is available since 1891, considerably extending all other Reanalyses currently in use (e.g. NCAR, ECWMF), and was obtained with the Ensemble Filter (Compo et al., 2006) by assimilation of pressure observations into a state-of-the-art atmospheric general circulation model that includes the radiative effects of historical time-varying CO2 concentrations, volcanic aerosol emissions and solar output variations. A modeling approach based on autoregression (Barbosa et al, 2008; Barbosa, 2009) is applied within a Bayesian framework for the estimation of a time varying seasonal pattern and further quantification of changes in the amplitude and phase of air temperature over the 20th century. Barbosa, SM, Silva, ME, Fernandes, MJ

  1. Oscillating Adriatic temperature and salinity regimes mapped using the Self-Organizing Maps method

    NASA Astrophysics Data System (ADS)

    Matić, Frano; Kovač, Žarko; Vilibić, Ivica; Mihanović, Hrvoje; Morović, Mira; Grbec, Branka; Leder, Nenad; Džoić, Tomislav

    2017-01-01

    This paper aims to document salinity and temperature regimes in the middle and south Adriatic Sea by applying the Self-Organizing Maps (SOM) method to the available long-term temperature and salinity series. The data were collected on a seasonal basis between 1963 and 2011 in two dense water collecting depressions, Jabuka Pit and Southern Adriatic Pit, and over the Palagruža Sill. Seasonality was removed prior to the analyses. Salinity regimes have been found to oscillate rapidly between low-salinity and high-salinity SOM solutions, ascribed to the advection of Western and Eastern Mediterranean waters, respectively. Transient salinity regimes normally lasted less than a season, while temperature transient regimes lasted longer. Salinity regimes prolonged their duration after the major basin-wide event, the Eastern Mediterranean Transient, in the early 1990s. A qualitative relationship between high-salinity regimes and dense water formation and dynamics has been documented. The SOM-based analyses have a large capacity for classifying the oscillating ocean regimes in a basin, which, in the case of the Adriatic Sea, beside climate forcing, is an important driver of biogeochemical changes that impacts trophic relations, appearance and abundance of alien organisms, and fisheries, etc.

  2. The Role of Auxiliary Variables in Deterministic and Deterministic-Stochastic Spatial Models of Air Temperature in Poland

    NASA Astrophysics Data System (ADS)

    Szymanowski, Mariusz; Kryza, Maciej

    2017-02-01

    Our study examines the role of auxiliary variables in the process of spatial modelling and mapping of climatological elements, with air temperature in Poland used as an example. The multivariable algorithms are the most frequently applied for spatialization of air temperature, and their results in many studies are proved to be better in comparison to those obtained by various one-dimensional techniques. In most of the previous studies, two main strategies were used to perform multidimensional spatial interpolation of air temperature. First, it was accepted that all variables significantly correlated with air temperature should be incorporated into the model. Second, it was assumed that the more spatial variation of air temperature was deterministically explained, the better was the quality of spatial interpolation. The main goal of the paper was to examine both above-mentioned assumptions. The analysis was performed using data from 250 meteorological stations and for 69 air temperature cases aggregated on different levels: from daily means to 10-year annual mean. Two cases were considered for detailed analysis. The set of potential auxiliary variables covered 11 environmental predictors of air temperature. Another purpose of the study was to compare the results of interpolation given by various multivariable methods using the same set of explanatory variables. Two regression models: multiple linear (MLR) and geographically weighted (GWR) method, as well as their extensions to the regression-kriging form, MLRK and GWRK, respectively, were examined. Stepwise regression was used to select variables for the individual models and the cross-validation method was used to validate the results with a special attention paid to statistically significant improvement of the model using the mean absolute error (MAE) criterion. The main results of this study led to rejection of both assumptions considered. Usually, including more than two or three of the most significantly

  3. Effect of Ambient Design Temperature on Air-Cooled Binary Plant Output

    SciTech Connect

    Dan Wendt; Greg Mines

    2011-10-01

    Air-cooled binary plants are designed to provide a specified level of power production at a particular air temperature. Nominally this air temperature is the annual mean or average air temperature for the plant location. This study investigates the effect that changing the design air temperature has on power generation for an air-cooled binary plant producing power from a resource with a declining production fluid temperature and fluctuating ambient temperatures. This analysis was performed for plants operating both with and without a geothermal fluid outlet temperature limit. Aspen Plus process simulation software was used to develop optimal air-cooled binary plant designs for specific ambient temperatures as well as to rate the performance of the plant designs at off-design operating conditions. Results include calculation of annual and plant lifetime power generation as well as evaluation of plant operating characteristics, such as improved power generation capabilities during summer months when electric power prices are at peak levels.

  4. DDT in fuel air mixtures at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Card, J.; Rival, D.; Ciccarelli, G.

    2005-11-01

    An experimental study was carried out to investigate flame acceleration and deflagration-to-detonation transition (DDT) in fuel air mixtures at initial temperatures up to 573 K and pressures up to 2 atm. The fuels investigated include hydrogen, ethylene, acetylene and JP-10 aviation fuel. The experiments were performed in a 3.1-m long, 10-cm inner-diameter heated detonation tube equipped with equally spaced orifice plates. Ionization probes were used to measure the flame time-of-arrival from which the average flame velocity versus propagation distance could be obtained. The DDT composition limits and the distance required for the flame to transition to detonation were obtained from this flame velocity data. The correlation developed by Veser et al. (run-up distance to supersonic flames in obstacle-laden tubes. In the proceedings of the 4th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions, France (2002)) for the flame choking distance proved to work very well for correlating the detonation run-up distance measured in the present study. The only exception was for the hydrogen air data at elevated initial temperatures which tended to fall outside the scatter of the hydrocarbon mixture data. The DDT limits obtained at room temperature were found to follow the classical d/λ = 1 correlation, where d is the orifice plate diameter and λ is the detonation cell size. Deviations found for the high-temperature data could be attributed to the one-dimensional ZND detonation structure model used to predict the detonation cell size for the DDT limit mixtures. This simple model was used in place of actual experimental data not currently available.

  5. Multi-pollutant surface objective analyses and mapping of air quality health index over North America.

    PubMed

    Robichaud, Alain; Ménard, Richard; Zaïtseva, Yulia; Anselmo, David

    2016-01-01

    Air quality, like weather, can affect everyone, but responses differ depending on the sensitivity and health condition of a given individual. To help protect exposed populations, many countries have put in place real-time air quality nowcasting and forecasting capabilities. We present in this paper an optimal combination of air quality measurements and model outputs and show that it leads to significant improvements in the spatial representativeness of air quality. The product is referred to as multi-pollutant surface objective analyses (MPSOAs). Moreover, based on MPSOA, a geographical mapping of the Canadian Air Quality Health Index (AQHI) is also presented which provides users (policy makers, public, air quality forecasters, and epidemiologists) with a more accurate picture of the health risk anytime and anywhere in Canada and the USA. Since pollutants can also behave as passive atmospheric tracers, they provide information about transport and dispersion and, hence, reveal synoptic and regional meteorological phenomena. MPSOA could also be used to build air pollution climatology, compute local and national trends in air quality, and detect systematic biases in numerical air quality (AQ) models. Finally, initializing AQ models at regular time intervals with MPSOA can produce more accurate air quality forecasts. It is for these reasons that the Canadian Meteorological Centre (CMC) in collaboration with the Air Quality Research Division (AQRD) of Environment Canada has recently implemented MPSOA in their daily operations.

  6. Impact of Atlantic sea surface temperatures on the warmest global surface air temperature of 1998

    NASA Astrophysics Data System (ADS)

    Lu, Riyu

    2005-03-01

    The year 1998 is the warmest year in the record of instrumental measurements. In this study, an atmospheric general circulation model is used to investigate the role of sea surface temperatures (SSTs) in this warmth, with a focus on the role of the Atlantic Ocean. The model forced with the observed global SSTs captures the main features of land surface air temperature anomalies in 1998. A sensitivity experiment shows that in comparison with the global SST anomalies, the Atlantic SST anomalies can explain 35% of the global mean surface air temperature (GMAT) anomaly, and 57% of the land surface air temperature anomaly in 1998. The mechanisms through which the Atlantic Ocean influences the GMAT are likely different from season to season. Possible detailed mechanisms involve the impact of SST anomalies on local convection in the tropical Atlantic region, the consequent excitation of a Rossby wave response that propagates into the North Atlantic and the Eurasian continent in winter and spring, and the consequent changes in tropical Walker circulation in summer and autumn that induce changes in convection over the tropical Pacific. This in turn affects climate in Asia and Australia. The important role of the Atlantic Ocean suggests that attention should be paid not only to the tropical Pacific Ocean, but also to the tropical Atlantic Ocean in understanding the GMAT variability and its predictability.

  7. Assessing surface air temperature variability using quantile regression

    NASA Astrophysics Data System (ADS)

    Timofeev, A. A.; Sterin, A. M.

    2014-12-01

    Many researches in climate change currently involve linear trends, based on measured variables. And many of them only consider trends in mean values, whereas it is clear, that not only means, but also whole shape of distribution changes over time and requires careful assessment. For example extreme values including outliers may get bigger, while median has zero slope.Quantile regression provides a convenient tool, that enables detailed analysis of changes in full range of distribution by producing a vector of quantile trends for any given set of quantiles.We have applied quantile regression to surface air temperature observations made at over 600 weather stations across Russian Federation during last four decades. The results demonstrate well pronounced regions with similar values of significant trends in different parts of temperature value distribution (left tail, middle part, right tail). The uncertainties of quantile trend estimations for several spatial patterns of trends over Russia are estimated and analyzed for each of four seasons.For temperature trend estimation over vast territories, quantile regression is an effort consuming approach, but is more informative than traditional instrument, to assess decadal evolution of temperature values, including evolution of extremes.Partial support of ERA NET RUS ACPCA joint project between EU and RBRF 12-05-91656-ЭРА-А is highly appreciated.

  8. Effectiveness of an air-cooled vest using selected air temperature and humidity combinations.

    PubMed

    Pimental, N A; Cosimini, H M; Sawka, M N; Wenger, C B

    1987-02-01

    We evaluated the effectiveness of an air-cooled vest in reducing thermal strain of subjects exercising in the heat (49 degrees C dry bulb (db), 20 degrees C dew point (dp] in chemical protective clothing. Four male subjects attempted 300-min heat exposures at two metabolic rates (175 and 315 W) with six cooling combinations--control (no vest) and five different db and dp combinations. Air supplied to the vest at 15 scfm ranged from 20-27 degrees C db, 7-18 degrees C dp; theoretical cooling capacities were 498-687 W. Without the vest, endurance times were 118 min (175 W) and 73 min (315 W). Endurance times with the vest were 300 min (175 W) and 242-300 min (315 W). The five cooling combinations were similarly effective in reducing thermal strain and extending endurance time, although there was a trend for the vest to be more effective when supplied with air at the lower dry bulb temperature. At 175 W, subjects maintained a constant body temperature; at 315 W, the vest's ability to extend endurance is limited to about 5 hours.

  9. Exploiting crowdsourced observations: High-resolution mapping of real-time urban air quality throughout Europe

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; Castell, Nuria; Vallejo, Islen; van den Bossche, Joris; Lahoz, William; Bartonova, Alena

    2016-04-01

    With the technology of air quality sensors improving rapidly in recent years and with an increasing number of initiatives for collecting air quality information being established worldwide, there is a rapidly increasing amount of information on air quality. Such datasets can provide unprecedented spatial detail and thus exhibit a significant potential for allowing to create observation-based high-resolution maps of air quality in the urban environment. However, most datasets of observations made within a citizen science or crowdsourcing framework tend to have highly variable characteristics in terms of quantity, accuracy, measured parameters, and representativeness, and many more. It is therefore currently unknown how to best exploit this information for mapping purposes. In order to address this challenge we present a novel approach for combining crowdsourced observations of urban air quality with model information, allowing us to produce near-real-time, high-resolution maps of air quality in the urban environment. The approach is based on data fusion techniques, which allow for combining observations with model data in a mathematically objective way and therefore provide a means of adding value to both the observations and the model. The observations are improved by filling spatio-temporal gaps in the data and the model is improved by constraining it with observations. The model further provides detailed spatial patterns in areas where no observations are available. As such, data fusion of observations from high-density low-cost sensor networks together with air quality models can contribute to significantly improving urban-scale air quality mapping. The system has been implemented to run in an automated fashion in near real-time (once every hour) for several cities in Europe. Evaluation of the methodology is being carried out using the leave-one-out cross validation technique and simulated datasets. We present case studies demonstrating the methodology for

  10. Map Design for a 1:100,000 Ground/Air Product.

    DTIC Science & Technology

    1986-04-01

    maps when viewed view. In addition, slope zoning quickly summarizes mask- through the AN/PVS-5 night vision goggles (blue-green ing potential and clear...useful if mapped. Glick, David D. and Roger W. Wiley (1975). A Visual Comparison of Standard and Experimental Maps Using the AN/FVS-5 Night Vision ...terrain analysis needs of air and ground users. Accesion For NTIS CRA&I DTIC TAB U a:I’.Oi ,ed 0j J ttC t ......................... By ------ - -- w

  11. Daily Cycle of Air Temperature and Surface Temperature in Stone Forest

    NASA Astrophysics Data System (ADS)

    Wang, K.; Li, Y.; Wang, X.; Yuan, M.

    2013-12-01

    Urbanization is one of the most profound human activities that impact on climate change. In cities, where are highly artificial areas, the conflict between human activity and natural climate is particularly prominent. Urban areas always have the larger area of impervious land, the higher consumption of greenhouse gases, more emissions of anthropogenic heat and air pollution, all contribute to the urban warming phenomena. Understanding the mechanisms causing a variety of phenomena involved in the urban warming is critical to distinguish the anthropogenic effect and natural variation in the climate change. However, the exact dynamics of urban warming were poorly understood, and effective control strategies are not available. Here we present a study of the daily cycle of air temperature and surface temperature in Stone Forest. The specific heat of the stones in the Stone Forest and concrete of the man-made structures within the cities are approximate. Besides, the height of the Stone Forest and the height of buildings within the city are also similar. As a scenic area, the Stone Forest is being preserved and only opened for sightseeing. There is no anthropogenic heat, as well air pollution within the Stone Forest. The thermal environment in Stone Forest can be considered to be a simulation of thermal environment in the city, which can reveal the effect of man-made structures on urban thermal environment. We conducted the field studies and numerical analysis in the Stone Forest for 4 typical urban morphology and environment scenarios, including high-rise compact cities, low-rise sparse cities, garden cities and isolated single stone. Air temperature and relative humidity were measured every half an hour in 15 different locations, which within different spatial distribution of stones and can represent the four urban scenarios respectively. At the same time, an infrared camera was used to take thermal images and get the hourly surface temperatures of stones and

  12. Air Surface Temperature Correlation with Greenhouse Gases by Using Airs Data Over Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Rajab, Jasim Mohammed; MatJafri, M. Z.; Lim, H. S.

    2014-08-01

    The main objective of this study is to develop algorithms for calculating the air surface temperature (AST). This study also aims to analyze and investigate the effects of greenhouse gases (GHGs) on the AST value in Peninsular Malaysia. Multiple linear regression is used to achieve the objectives of the study. Peninsular Malaysia has been selected as the research area because it is among the regions of tropical Southeast Asia with the greatest humidity, pockets of heavy pollution, rapid economic growth, and industrialization. The predicted AST was highly correlated ( R = 0.783) with GHGs for the 6-year data (2003-2008). Comparisons of five stations in 2009 showed close agreement between the predicted AST and the observed AST from AIRS, especially in the wet season (within 1.3 K). The in situ data ranged from 1 to 2 K. Validation results showed that AST ( R = 0.776-0.878) has values nearly the same as the observed AST from AIRS. We found that O3 during the wet season was indicated by a strongly positive beta coefficient (0.264-0.992) with AST. The CO2 yields a reasonable relationship with temperature with low to moderate beta coefficient (-0.065 to 0.238). The O3, CO2, and environmental variables experienced different seasonal fluctuations that depend on weather conditions and topography. The concentration of gases and pollution were the highest over industrial zones and overcrowded cities, and the dry season was more polluted compared with the wet season. These results indicate the advantage of using the satellite AIRS data and a correlation analysis to investigate the effect of atmospheric GHGs on AST over Peninsular Malaysia. An algorithm that is capable of retrieving Peninsular Malaysian AST in all weather conditions with total uncertainties ranging from 1 to 2 K was developed.

  13. Temperature profile and producer gas composition of high temperature air gasification of oil palm fronds

    NASA Astrophysics Data System (ADS)

    Guangul, F. M.; Sulaiman, S. A.; Ramli, A.

    2013-06-01

    Environmental pollution and scarcity of reliable energy source are the current pressing global problems which need a sustainable solution. Conversion of biomass to a producer gas through gasification process is one option to alleviate the aforementioned problems. In the current research the temperature profile and composition of the producer gas obtained from the gasification of oil palm fronds by using high temperature air were investigated and compared with unheated air. By preheating the gasifying air at 500°C the process temperature were improved and as a result the concentration of combustible gases and performance of the process were improved. The volumetric percentage of CO, CH4 and H2 were improved from 22.49, 1.98, and 9.67% to 24.98, to 2.48% and 13.58%, respectively. In addition, HHV, carbon conversion efficiency and cold gas efficiency were improver from 4.88 MJ/Nm3, 83.8% and 56.1% to 5.90 MJ/Nm3, 87.3% and 62.4%, respectively.

  14. Cyclic Oxidation of High-Temperature Alloy Wires in Air

    NASA Technical Reports Server (NTRS)

    Reigel, Marissa M.

    2004-01-01

    High-temperature alloy wires are proposed for use in seal applications for future re-useable space vehicles. These alloys offer the potential for improved wear resistance of the seals. The wires must withstand the high temperature environments the seals are subjected to as well as maintain their oxidation resistance during the heating and cooling cycles of vehicle re-entry. To model this, the wires were subjected to cyclic oxidation in stagnant air. of this layer formation is dependent on temperature. Slow growing oxides such as chromia and alumina are desirable. Once the oxide is formed it can prevent the metal from further reacting with its environment. Cyclic oxidation models the changes in temperature these wires will undergo in application. Cycling the temperature introduces thermal stresses which can cause the oxide layer to break off. Re-growth of the oxide layer consumes more metal and therefore reduces the properties and durability of the material. were used for cyclic oxidation testing. The baseline material, Haynes 188, has a Co base and is a chromia former while the other two alloys, Kanthal A1 and PM2000, both have a Fe base and are alumina formers. Haynes 188 and Kanthal A1 wires are 250 pm in diameter and PM2000 wires are 150 pm in diameter. The coiled wire has a total surface area of 3 to 5 sq cm. The wires were oxidized for 11 cycles at 1204 C, each cycle containing a 1 hour heating time and a minimum 20 minute cooling time. Weights were taken between cycles. After 11 cycles, one wire of each composition was removed for analysis. The other wire continued testing for 70 cycles. Post-test analysis includes X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) for phase identification and morphology.

  15. Long-term dynamics of atmospheric circulation over Siberia and its relationship with air temperature

    NASA Astrophysics Data System (ADS)

    Podnebesnykh, N. V.; Ippolitov, I. I.

    2012-12-01

    The main objective of this study is the investigation of cyclone characteristics variability in the region bounded by the coordinates 50°-70° N, 60°-110° W which includes Western Siberia and the part of Eastern Siberia for the time interval 1976-2006, as well as the establishment of statistical relationships between the temperature conditions and the atmospheric circulation. For the dynamics of the climatic characteristics of cyclones and anticyclones over Siberia surface synoptic maps were used, and to study the trends of air temperature daily data from 169 ground-based meteorological stations and posts located in the study area were analyzed. During the period of the modern warming the territory of Siberia was characterized by rapidly temperature increase: average annual value was 0.36°C/10 years, and average monthly value was 0.83°C/10 years. The positive trend of temperature increasing is shown for all months except November. The total number of cyclones over the territory of under study for the period of 1976-2006 has decreased at a rate of 1.4 cyclone/10 years. For further analysis all cyclones were divided into three groups, according to their directions: north, west and south. It was found the number of south and west cyclones decreased, whole the number of cyclone from north directions increased. Such multidirectional dynamics of cyclones from different directions can be associated with the processes of strengthening and weakening of the Polar and Arctic fronts in the Atlantic sector of the Northern Hemisphere. Among characteristics of vortex activity the pressure in the centers of cyclones and anticyclones has the greatest influence on the air temperature and the total number of cyclones has the smallest. Multiple regression models have shown that in different months of a year the circulation can describe from 54% to 82% of temperature variability.

  16. Study of Ram-air Heat Exchangers for Reducing Turbine Cooling-air Temperature of a Supersonic Aircraft Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Diaguila, Anthony J; Livingood, John N B; Eckert, Ernst R G

    1956-01-01

    The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude of 70,000 feet. A compressor-bleed-air weight flow of 2.7 pounds per second was assumed for the coolant; ram air was considered as the other fluid. Pressure drops and inlet states of both fluids were prescribed, and ranges of compressor-bleed-air temperature reductions and of the ratio of compressor-bleed to ram-air weight flows were considered.

  17. Effect of production microclimate on female thermal state with increased temperature and air humidity

    NASA Technical Reports Server (NTRS)

    Machablishvili, O. G.

    1980-01-01

    The thermal state of women during the effect of high air temperature and relative humidity with a varying degree of physical loads was studied. Parameters for air temperature, relative humidity, and air movement were established. It was established that in women the thermo-regulatory stress occurs at lower air temperatures and with lower physical loads than in men. The accumulation of heat in women was revealed with lower air temperature than in men. It is concluded that to preserve the normal physiological state of the female organism it is necessary to create more favorable microclimate conditions and decrease the physical loads.

  18. The Air Sensor Citizen Science Toolbox: A Collaboration in Community Air Quality Monitoring and Mapping

    EPA Science Inventory

    Research in Action: Collect air quality data to characterize near-road/near-source hotspots; Determine potential impact on nearby residences & roadways; Case study of successful use of such data; Relationship between distance to roadways and industrial sources, exposure to...

  19. Air Sensor Kit Performance Testing and Pollutant Mapping Supports Community Air Monitoring Project

    EPA Pesticide Factsheets

    EPA is collaborating on a research project with the South Coast Air Quality Management District in Diamond Bar, Calif. to gain an enhanced understanding of fine particulate matter (PM2.5) and ozone concentrations across the study area.

  20. Impacts of wind farms on surface air temperatures

    PubMed Central

    Baidya Roy, Somnath; Traiteur, Justin J.

    2010-01-01

    Utility-scale large wind farms are rapidly growing in size and numbers all over the world. Data from a meteorological field campaign show that such wind farms can significantly affect near-surface air temperatures. These effects result from enhanced vertical mixing due to turbulence generated by wind turbine rotors. The impacts of wind farms on local weather can be minimized by changing rotor design or by siting wind farms in regions with high natural turbulence. Using a 25-y-long climate dataset, we identified such regions in the world. Many of these regions, such as the Midwest and Great Plains in the United States, are also rich in wind resources, making them ideal candidates for low-impact wind farms. PMID:20921371

  1. Impacts of wind farms on surface air temperatures.

    PubMed

    Baidya Roy, Somnath; Traiteur, Justin J

    2010-10-19

    Utility-scale large wind farms are rapidly growing in size and numbers all over the world. Data from a meteorological field campaign show that such wind farms can significantly affect near-surface air temperatures. These effects result from enhanced vertical mixing due to turbulence generated by wind turbine rotors. The impacts of wind farms on local weather can be minimized by changing rotor design or by siting wind farms in regions with high natural turbulence. Using a 25-y-long climate dataset, we identified such regions in the world. Many of these regions, such as the Midwest and Great Plains in the United States, are also rich in wind resources, making them ideal candidates for low-impact wind farms.

  2. Investigating high mortality during the cold season: mapping mean weather patterns of temperature and pressure

    NASA Astrophysics Data System (ADS)

    Allen, Michael J.; Lee, Cameron C.

    2014-11-01

    Due to a number of complicating factors, cold-related mortality has long been understudied. Through a synoptic climatological, environment-to-circulation perspective, this research takes a unique approach in examining anomalous surface temperature and pressure map patterns associated with the days leading up to high-mortality, spike days for Chicago, Illinois during the cold season. Atmospheric conditions leading to spike days during the cold season were evaluated through both seasonal anomaly and 1-day anomaly maps. Results indicate that high-mortality days are typically preceded by unseasonably cold weather situated over the region from 2 to 5 days beforehand, with significantly higher than average pressure 1 to 2 days before a mortality spike. As this system moves eastward, a significant 1-day warming trend accompanying a significant drop in sea level pressure follows—occurring on the day of the mortality spike or 1 day prior. Both scenarios—cold, high pressure air exposure and the rapid change in weather—are consistent with previous literature connecting them as factors contributing to cold-related mortality increases, with this sequence possibly playing a key role in yielding mortality levels anomalous enough to meet the threshold for a spike.

  3. Monitoring Air Pollution from Satellites (MAPS). Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Performance tests on an electro-optical model of an infrared sensor for remote measurements of trace atmospheric gases are detailed; the instrument utilized a sample of the gas to be measured as spectral filter. Also reported is the development of radiometric calibration equipment that determines responses to simulated pollution effects. Results show excellent agreement with theoretical performance predictions with the exception of nonuniform radiance responses. Balance stability to an accuracy better than the rms noise level was demonstrated for the EOM in both the NH3 and CO modes for a period of two days under laboratory conditions. Flight test results show that the temperature range of the absorption cell is restricted to 255 K or higher.

  4. Combustion and gasification characteristics of pulverized coal using high-temperature air

    SciTech Connect

    Hanaoka, R.; Nakamura, M.; Kiga, T.; Kosaka, H.; Iwahashi, T.; Yoshikawa, K.; Sakai, M.; Muramatsu, K.; Mochida, S.

    1998-07-01

    In order to confirm performance of high-temperature-air combusting of pulverized coal, laboratory-scale combustion and gasification tests of coal were conducted changing air temperature and oxygen concentration in the air. Theses were conducted in a drop tube furnace of 200mm in inside diameter and 2,000mm in length. The furnace was heated by ceramic heater up to 1,300 C. A high-temperature air preheater utilizing the HRS (High Cycle Regenerative Combustion System) was used to obtain high-temperature combustion air. As the results, NOx emission was reduced when pulverized coal was fired with high-temperature-air. On the other hand, by lower oxygen concentration in combustion air diluted by nitrogen, NOx emission slightly decreased while became higher under staging condition.

  5. Experimental study of the decrease in the temperature of an air/water-cooled turbine blade

    NASA Astrophysics Data System (ADS)

    Ryzhov, A. A.; Sereda, A. V.; Shaiakberov, V. F.; Iskakov, K. M.; Shatalov, Iu. S.

    Results of the full-scale testing of an air/water-cooled deflector-type turbine blade are reported. Data on the decrease in the temperature of the cooling air and of the blade are presented and compared with the calculated values. An analysis of the results indicates that the use of air/water cooling makes it possible to significantly reduce the temperature of the cooling air and of the blade with practically no increase in the engine weight and dimensions.

  6. Daily air temperature interpolated at high spatial resolution over a large mountainous region

    USGS Publications Warehouse

    Dodson, R.; Marks, D.

    1997-01-01

    Two methods are investigated for interpolating daily minimum and maximum air temperatures (Tmin and Tmax) at a 1 km spatial resolution over a large mountainous region (830 000 km2) in the U.S. Pacific Northwest. The methods were selected because of their ability to (1) account for the effect of elevation on temperature and (2) efficiently handle large volumes of data. The first method, the neutral stability algorithm (NSA), used the hydrostatic and potential temperature equations to convert measured temperatures and elevations to sea-level potential temperatures. The potential temperatures were spatially interpolated using an inverse-squared-distance algorithm and then mapped to the elevation surface of a digital elevation model (DEM). The second method, linear lapse rate adjustment (LLRA), involved the same basic procedure as the NSA, but used a constant linear lapse rate instead of the potential temperature equation. Cross-validation analyses were performed using the NSA and LLRA methods to interpolate Tmin and Tmax each day for the 1990 water year, and the methods were evaluated based on mean annual interpolation error (IE). The NSA method showed considerable bias for sites associated with vertical extrapolation. A correction based on climate station/grid cell elevation differences was developed and found to successfully remove the bias. The LLRA method was tested using 3 lapse rates, none of which produced a serious extrapolation bias. The bias-adjusted NSA and the 3 LLRA methods produced almost identical levels of accuracy (mean absolute errors between 1.2 and 1.3??C), and produced very similar temperature surfaces based on image difference statistics. In terms of accuracy, speed, and ease of implementation, LLRA was chosen as the best of the methods tested.

  7. How the Plant Temperature Links to the Air Temperature in the Desert Plant Artemisia ordosica.

    PubMed

    Yu, Ming-Han; Ding, Guo-Dong; Gao, Guang-Lei; Sun, Bao-Ping; Zhao, Yuan-Yuan; Wan, Li; Wang, De-Ying; Gui, Zi-Yang

    2015-01-01

    Plant temperature (Tp) is an important indicator of plant health. To determine the dynamics of plant temperature and self-cooling ability of the plant, we measured Tp in Artemisia ordosica in July, in the Mu Us Desert of Northwest China. Related factors were also monitored to investigate their effects on Tp, including environmental factors, such as air temperature (Ta), relative humidity, wind speed; and physiological factors, such as leaf water potential, sap flow, and water content. The results indicate that: 1) Tp generally changes in conjunction with Ta mainly, and varies with height and among the plant organs. Tp in the young branches is most constant, while it is the most sensitive in the leaves. 2) Correlations between Tp and environmental factors show that Tp is affected mainly by Ta. 3) The self-cooling ability of the plant was effective by midday, with Tp being lower than Ta. 4) Increasing sap flow and leaf water potential showed that transpiration formed part of the mechanism that supported self-cooling. Increased in water conductance and specific heat at midday may be additional factors that contribute to plant cooling ability. Therefore, our results confirmed plant self-cooling ability. The response to high temperatures is regulated by both transpiration speed and an increase in stem water conductance. This study provides quantitative data for plant management in terms of temperature control. Moreover, our findings will assist species selection with taking plant temperature as an index.

  8. Topographic and spatial impacts of temperature inversions on air quality using mobile air pollution surveys.

    PubMed

    Wallace, Julie; Corr, Denis; Kanaroglou, Pavlos

    2010-10-01

    We investigated the spatial and topographic effects of temperature inversions on air quality in the industrial city of Hamilton, located at the western tip of Lake Ontario, Canada. The city is divided by a 90-m high topographic scarp, the Niagara Escarpment, and dissected by valleys which open towards Lake Ontario. Temperature inversions occur frequently in the cooler seasons, exacerbating the impact of emissions from industry and traffic. This study used pollution data gathered from mobile monitoring surveys conducted over a 3-year period, to investigate whether the effects of the inversions varied across the city. Temperature inversions were identified with vertical temperature data from a meteorological tower located within the study area. We divided the study area into an upper and lower zone separated by the Escarpment and further into six zones, based on location with respect to the Escarpment and industrial and residential areas, to explore variations across the city. The results identified clear differences in the responses of nitrogen dioxide (NO(2)) and fine particulate matter (PM2.5) to temperature inversions, based on the topographic and spatial criteria. We found that pollution levels increased as the inversion strengthened, in the lower city. However, the results also suggested that temperature inversions identified in the lower city were not necessarily experienced in the upper city with the same intensity. Further, pollution levels in the upper city appeared to decrease as the inversion deepened in the lower city, probably because of an associated change in prevailing wind direction and lower wind speeds, leading to decreased long-range transport of pollutants.

  9. Environmentally sound thermal energy extraction from coal and wastes using high temperature air combustion technology

    SciTech Connect

    Yoshikawa, Kunio

    1999-07-01

    High temperature air combustion is one of promising ways of burning relatively low BTU gas obtained from gasification of low grade coal or wastes. In this report, the author proposes a new power generation system coupled with high temperature air gasification of coal/wastes and high temperature air combustion of the syngas from coal/wastes. This system is realized by employing Multi-staged Enthalpy Extraction Technology (MEET). The basic idea of the MEET system is that coal or wastes are gasified with high temperature air of about 1,000 C, then the generated syngas is cooled in a heat recovery boiler to be cleaned-up in a gas cleanup system (desulfurization, desalinization and dust removal). Part of thermal energy contained in this cleaned-up syngas is used for high temperature air preheating, and the complete combustion of the fuel gas is done using also high temperature air for driving gas turbines or steam generation in a boiler.

  10. Temporal and spatial assessments of minimum air temperature using satellite surface temperature measurements in Massachusetts, USA

    PubMed Central

    Kloog, Itai; Chudnovsky, Alexandra; Koutrakis, Petros; Schwartz, Joel

    2015-01-01

    Although meteorological stations provide accurate air temperature observations, their spatial coverage is limited and thus often insufficient for epidemiological studies. Satellite data expand spatial coverage, enhancing our ability to estimate near surface air temperature (Ta). However, the derivation of Ta from surface temperature (Ts) measured by satellites is far from being straightforward. In this study, we present a novel approach that incorporates land use regression, meteorological variables and spatial smoothing to first calibrate between Ts and Ta on a daily basis and then predict Ta for days when satellite Ts data were not available. We applied mixed regression models with daily random slopes to calibrate Moderate Resolution Imaging Spectroradiometer (MODIS) Ts data with monitored Ta measurements for 2003. Then, we used a generalized additive mixed model with spatial smoothing to estimate Ta in days with missing Ts. Out-of-sample tenfold cross-validation was used to quantify the accuracy of our predictions. Our model performance was excellent for both days with available Ts and days without Ts observations (mean out-of-sample R2=0.946 and R2=0.941 respectively). Furthermore, based on the high quality predictions we investigated the spatial patterns of Ta within the study domain as they relate to urban vs. non-urban land uses. PMID:22721687

  11. Temporal and spatial assessments of minimum air temperature using satellite surface temperature measurements in Massachusetts, USA.

    PubMed

    Kloog, Itai; Chudnovsky, Alexandra; Koutrakis, Petros; Schwartz, Joel

    2012-08-15

    Although meteorological stations provide accurate air temperature observations, their spatial coverage is limited and thus often insufficient for epidemiological studies. Satellite data expand spatial coverage, enhancing our ability to estimate near surface air temperature (Ta). However, the derivation of Ta from surface temperature (Ts) measured by satellites is far from being straightforward. In this study, we present a novel approach that incorporates land use regression, meteorological variables and spatial smoothing to first calibrate between Ts and Ta on a daily basis and then predict Ta for days when satellite Ts data were not available. We applied mixed regression models with daily random slopes to calibrate Moderate Resolution Imaging Spectroradiometer (MODIS) Ts data with monitored Ta measurements for 2003. Then, we used a generalized additive mixed model with spatial smoothing to estimate Ta in days with missing Ts. Out-of-sample tenfold cross-validation was used to quantify the accuracy of our predictions. Our model performance was excellent for both days with available Ts and days without Ts observations (mean out-of-sample R(2)=0.946 and R(2)=0.941 respectively). Furthermore, based on the high quality predictions we investigated the spatial patterns of Ta within the study domain as they relate to urban vs. non-urban land uses.

  12. Simultaneous Measurement of Air Temperature and Humidity Based on Sound Velocity and Attenuation Using Ultrasonic Probe

    NASA Astrophysics Data System (ADS)

    Motegi, Takahiro; Mizutani, Koichi; Wakatsuki, Naoto

    2013-07-01

    In this paper, an acoustic technique for air temperature and humidity measurement in moist air is described. The previous ultrasonic probe can enable the estimation of temperature from sound velocity in dry air by making use of the relationship between sound velocity and temperature. However, temperature measurement using the previous ultrasonic probe is not suitable in moist air because sound velocity also depends on humidity, and the temperature estimated from the sound velocity measured in moist air must be adjusted. Moreover, a method of humidity measurement by using only an ultrasonic probe has not been established. Thus, we focus on sound attenuation, which depends on temperature and humidity. Our proposed technique utilizes two parameters, sound velocity and attenuation, and can measure both temperature and humidity simultaneously. The acoustic technique for temperature and humidity measurement has the advantages that instantaneous temperature and humidity can be measured, and the measurement is not affected by thermal radiation because air itself is used as a sensing element. As an experiment, temperature and humidity are measured in a chamber, and compared with the reference values. The experimental results indicate the achievement of a practical temperature measurement accuracy of within +/-0.5 K in moist air, of which the temperature is 293-308 K and relative humidity (RH) is 50-90% RH, and the simultaneous measurement of temperature and humidity.

  13. Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H

    1937-01-01

    Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.

  14. Mathematical modeling of temperature mapping over skin surface and its implementation in thermal disease diagnostics.

    PubMed

    Deng, Zhong-Shan; Liu, Jing

    2004-09-01

    In non-invasive thermal diagnostics, accurate correlations between the thermal image on skin surface and interior human pathophysiology are often desired, which require general solutions for the bioheat equation. In this study, the Monte Carlo method was implemented to solve the transient three-dimensional bio-heat transfer problem with non-linear boundary conditions (simultaneously with convection, radiation and evaporation) and space-dependent thermal physiological parameters. Detailed computations indicated that the thermal states of biological bodies, reflecting physiological conditions, could be correlated to the temperature or heat flux mapping recorded at the skin surface. The effect of the skin emissivity and humidity, the convective heat transfer coefficient, the relative humidity and temperature of the surrounding air, the metabolic rate and blood perfusion rate in the tumor, and the tumor size and number on the sensitivity of thermography are comprehensively investigated. Moreover, several thermal criteria for disease diagnostic were proposed based on statistical principles. Implementations of this study for the clinical thermal diagnostics are discussed.

  15. An improved classical mapping method for homogeneous electron gases at finite temperature

    SciTech Connect

    Liu, Yu; Wu, Jianzhong

    2014-08-14

    We introduce a modified classical mapping method to predict the exchange-correlation free energy and the structure of homogeneous electron gases (HEG) at finite temperature. With the classical map temperature parameterized on the basis of the quantum Monte Carlo simulation data for the correlation energy and exact results at high and low temperature limits, the new theoretical procedure greatly improves the classical mapping method for correlating the energetic properties HEG over a broad range of thermodynamic conditions. Improvement can also be identified in predicting the long-range components of the spin-averaged pair correlation functions.

  16. From blood oxygenation level dependent (BOLD) signals to brain temperature maps.

    PubMed

    Sotero, Roberto C; Iturria-Medina, Yasser

    2011-11-01

    A theoretical framework is presented for converting Blood Oxygenation Level Dependent (BOLD) images to brain temperature maps, based on the idea that disproportional local changes in cerebral blood flow (CBF) as compared with cerebral metabolic rate of oxygen consumption (CMRO₂) during functional brain activity, lead to both brain temperature changes and the BOLD effect. Using an oxygen limitation model and a BOLD signal model, we obtain a transcendental equation relating CBF and CMRO₂ changes with the corresponding BOLD signal, which is solved in terms of the Lambert W function. Inserting this result in the dynamic bioheat equation describing the rate of temperature changes in the brain, we obtain a nonautonomous ordinary differential equation that depends on the BOLD response, which is solved numerically for each brain voxel. Temperature maps obtained from a real BOLD dataset registered in an attention to visual motion experiment were calculated, obtaining temperature variations in the range: (-0.15, 0.1) which is consistent with experimental results. The statistical analysis revealed that significant temperature activations have a similar distribution pattern than BOLD activations. An interesting difference was the activation of the precuneus in temperature maps, a region involved in visuospatial processing, an effect that was not observed on BOLD maps. Furthermore, temperature maps were more localized to gray matter regions than the original BOLD maps, showing less activated voxels in white matter and cerebrospinal fluid.

  17. Non-invasive temperature mapping using temperature-responsive water saturation shift referencing (T-WASSR) MRI

    PubMed Central

    Liu, Guanshu; Qin, Qin; Chan, Kannie W.Y.; Li, Yuguo; Bulte, Jeff W.M.; McMahon, Michael T.; van Zijl, Peter C.M.; Gilad, Assaf A.

    2014-01-01

    We present a non-invasive MRI approach for assessing the water proton resonance frequency (PRF) shifts associated with changes in temperature. This method is based on Water Saturation Shift Referencing (WASSR), a method first developed for assessing B0 field inhomogeneity. Temperature-induced water PRF shifts were determined by estimating the frequency of the minimum intensity of the water direct saturation spectrum at each temperature using Lorentzian line-shape fitting. The change in temperature was then calculated from the difference in water PRF shifts between temperatures. Optimal acquisition parameters were first estimated using simulations and later confirmed experimentally. Results in vitro and in vivo showed that the temperature changes measured using the temperature-responsive WASSR (T-WASSR) were in good agreement with those obtained with MR spectroscopy or phase mapping-based water PRF measurement methods,. In addition, the feasibility of temperature mapping in fat-containing tissue is demonstrated in vitro. In conclusion, the T-WASSR approach provides an alternative for non-invasive temperature mapping by MRI, especially suitable for temperature measurements in fat-containing tissues. PMID:24395616

  18. Short-term effects of air temperature on plasma metabolite concentrations in patients undergoing cardiac cattheterization.

    EPA Science Inventory

    BACKGROUND: Epidemiological studies have shown associations between air temperature and cardiovascular health outcomes. Metabolic dysregulation might also play a role in the development of cardiovascular disease.OBJECTIVES: To investigate short-term temperature effects on metabol...

  19. Mapping the body surface temperature of cattle by infrared thermography.

    PubMed

    Salles, Marcia Saladini Vieira; da Silva, Suelen Corrêa; Salles, Fernando André; Roma, Luiz Carlos; El Faro, Lenira; Bustos Mac Lean, Priscilla Ayleen; Lins de Oliveira, Celso Eduardo; Martello, Luciane Silva

    2016-12-01

    Infrared thermography (IRT) is an alternative non-invasive method that has been studied as a tool for identifying many physiological and pathological processes related to changes in body temperature. The objective of the present study was to evaluate the body surface temperature of Jersey dairy cattle in a thermoneutral environment in order to contribute to the determination of a body surface temperature pattern for animals of this breed in a situation of thermal comfort. Twenty-four Jersey heifers were used over a period of 35 days at APTA Brazil. Measurements were performed on all animals, starting with the physiological parameters. Body surface temperature was measured by IRT collecting images in different body regions: left and right eye area, right and left eye, caudal left foreleg, cranial left foreleg, right and left flank, and forehead. High correlations were observed between temperature and humidity index (THI) and right flank, left flank and forehead temperatures (0.85, 0.81, and 0.81, respectively). The IRT variables that exhibited the five highest correlation coefficients in principal component 1 were, in decreasing order: forehead (0.90), right flank (0.87), left flank (0.84), marker 1 caudal left foreleg (0.83), marker 2 caudal left foreleg (0.74). The THI showed a high correlation coefficient (0.88) and moderate to low correlations were observed for the physiological variables rectal temperature (0.43), and respiratory frequency (0.42). The thermal profile obtained indicates a surface temperature pattern for each region studied in a situation of thermal comfort and may contribute to studies investigating body surface temperature. Among the body regions studied, IRT forehead temperature showed the highest association with rectal temperature, and forehead and right and left flank temperatures are strongly associated with THI and may be adopted in future studies on thermoregulation and body heat production.

  20. Detailed temperature mapping-Warming characterizes archipelago zones

    NASA Astrophysics Data System (ADS)

    Veneranta, L.; Vanhatalo, J.; Urho, L.

    2016-12-01

    Rapidly warming shallow archipelago areas have the best energetic options for high ecological production. We analyzed and visualized the spring and summer temperature development in the Finnish coastal areas of the Northern Baltic Sea. Typical for the Baltic is a high annual periodicity and variability in water temperatures. The maximum difference between a single day average temperatures across the study area was 28.3 °C. During wintertime the littoral water temperature can decrease below zero in outer archipelago or open water areas when the protective ice cover is not present and the lowest observed value was -0.5 °C. The depth and exposition are the most important variables explaining the coastal temperature gradients from the innermost to the outermost areas in springtime when water is heated by increasing solar radiation. Temperature differs more within coastal area than between the basins. Water temperature sum was highest in innermost areas, lowest in open water areas and the variation in daily averages was highest in the middle region. At the end of the warming period, the difference in surface water temperatures between the innermost and outermost areas had diminished at the time when the cooling began in August-September. These clear temperature gradients enabled us use the cumulative water temperature to classify the coastal zones in a biologically sensible manner into five regions. Our study shows a novel approach to study detailed spatial variations in water temperatures. The results can further be used, for example, to model and predict the spatial distribution of aquatic biota and to determine appropriate spatio-temporal designs for aquatic biota surveys. The new spatial knowledge of temperature regions will also help the evaluation of possible causes of larger scale climatological changes in a biological context including productivity.

  1. Rainfall Prediction using Soil and Air Temperature in a Tropical Station

    NASA Astrophysics Data System (ADS)

    Chacko, Tessy P.; Renuka, G.

    2007-07-01

    An attempt is made to establish a linkage between soil and air temperature and south-west monsoon rainfall at Pillicode (12°12'N,75°10'E) a tropical station in north Kerala. The dependence of monsoon rainfall on pre-monsoon soil temperature decreases as the depth of the soil increases. A regression equation has been developed for the estimation of monsoon rainfall using pre-monsoon soil and air temperature. The results show that sub soil temperature along with air temperature can be used for forecasting the monsoon level.

  2. Real-time Process Monitoring and Temperature Mapping of the 3D Polymer Printing Process

    SciTech Connect

    Dinwiddie, Ralph Barton; Love, Lonnie J; Rowe, John C

    2013-01-01

    An extended range IR camera was used to make temperature measurements of samples as they are being manufactured. The objective is to quantify the temperature variation inside the system as parts are being fabricated, as well as quantify the temperature of a part during fabrication. The IR camera was used to map the temperature within the build volume of the oven and surface temperature measurement of a part as it was being manufactured. The development of the temperature map of the oven provides insight into the global temperature variation within the oven that may lead to understanding variations in the properties of parts as a function of location. The observation of the temperature variation of a part that fails during construction provides insight into how the deposition process itself impacts temperature distribution within a single part leading to failure.

  3. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy.

    PubMed

    Okabe, Kohki; Inada, Noriko; Gota, Chie; Harada, Yoshie; Funatsu, Takashi; Uchiyama, Seiichi

    2012-02-28

    Cellular functions are fundamentally regulated by intracellular temperature, which influences biochemical reactions inside a cell. Despite the important contributions to biological and medical applications that it would offer, intracellular temperature mapping has not been achieved. Here we demonstrate the first intracellular temperature mapping based on a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. The spatial and temperature resolutions of our thermometry were at the diffraction limited level (200 nm) and 0.18-0.58 °C. The intracellular temperature distribution we observed indicated that the nucleus and centrosome of a COS7 cell, both showed a significantly higher temperature than the cytoplasm and that the temperature gap between the nucleus and the cytoplasm differed depending on the cell cycle. The heat production from mitochondria was also observed as a proximal local temperature increase. These results showed that our new intracellular thermometry could determine an intrinsic relationship between the temperature and organelle function.

  4. Geologic mapping of the air intake shaft at the Waste Isolation Pilot Plant

    SciTech Connect

    Holt, R.M.; Powers, D.W. )

    1990-12-01

    The air intake shaft (AS) was geologically mapped from the surface to the Waste Isolation Pilot Plant (WIPP) facility horizon. The entire shaft section including the Mescalero Caliche, Gatuna Formation, Santa Rosa Formation, Dewey Lake Redbeds, Rustler Formation, and Salado Formation was geologically described. The air intake shaft (AS) at the Waste Isolation Pilot Plant (WIPP) site was constructed to provide a pathway for fresh air into the underground repository and maintain the desired pressure balances for proper underground ventilation. It was up-reamed to minimize construction-related damage to the wall rock. The upper portion of the shaft was lined with slip-formed concrete, while the lower part of the shaft, from approximately 903 ft below top of concrete at the surface, was unlined. As part of WIPP site characterization activities, the AS was geologically mapped. The shaft construction method, up-reaming, created a nearly ideal surface for geologic description. Small-scale textures usually best seen on slabbed core were easily distinguished on the shaft wall, while larger scale textures not generally revealed in core were well displayed. During the mapping, newly recognized textures were interpreted in order to refine depositional and post-depositional models of the units mapped. The objectives of the geologic mapping were to: (1) provide confirmation and documentation of strata overlying the WIPP facility horizon; (2) provide detailed information of the geologic conditions in strata critical to repository sealing and operations; (3) provide technical basis for field adjustments and modification of key and aquifer seal design, based upon the observed geology; (4) provide geological data for the selection of instrument borehole locations; (5) and characterize the geology at geomechanical instrument locations to assist in data interpretation. 40 refs., 27 figs., 1 tab.

  5. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 34 2013-07-01 2013-07-01 false NOX intake-air humidity...

  6. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 32 2010-07-01 2010-07-01 false NOX intake-air humidity...

  7. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 33 2014-07-01 2014-07-01 false NOX intake-air humidity...

  8. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 33 2011-07-01 2011-07-01 false NOX intake-air humidity...

  9. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 34 2012-07-01 2012-07-01 false NOX intake-air humidity...

  10. One-Component Pressure-Temperature Phase Diagrams in the Presence of Air

    ERIC Educational Resources Information Center

    Andrade-Gamboa, Julio; Martire, Daniel O.; Donati, Edgardo R.

    2010-01-01

    One-component phase diagrams are good approximations to predict pressure-temperature ("P-T") behavior of a substance in the presence of air, provided air pressure is not much higher than the vapor pressure. However, at any air pressure, and from the conceptual point of view, the use of a traditional "P-T" phase diagram is not strictly correct. In…

  11. Development of corrosion risk map for Peninsular Malaysia using climatic and air pollution data

    NASA Astrophysics Data System (ADS)

    U, Fathoni; M, Zakaria C.; O, Rohayu C.

    2013-06-01

    Malaysia has catapulted to an era of major transition. This rapid transition has also cause impact to the environment. The human activities contribute to pollutions. Buildings and it component's performances are affected directly or indirectly by air pollutions and climate factors. It has triggering and accelerating degradation processes. When deterioration start, service life of the buildings and its components will decrease. This paper presents initial development of corrosion risk map for Peninsular Malaysia using Geographical Information System (GIS). The air pollution and climate data obtained from Malaysia Meteorology Department (MMD). The air pollution data was the salt ion deposition of nitrate, chloride and sulphate in a form of wet fall out (WFO). The corrosion risk map generated using geographical information system (GIS) using inverse distance weighing (IDW) and weighted overlay method. It found that the corrosion risk map can be generated with further site verification and it can be used by engineers for further prediction of service life of building components in achieving sustainable construction design.

  12. Weather Measurements around Your School. Mapping Variations in Temperature and Humidity.

    ERIC Educational Resources Information Center

    Smith, David R.; And Others

    1991-01-01

    Presented is an activity where students conduct a micrometeorological study in their neighborhood using temperature, humidity measurements, and mapping skills. Included are a discussion of surface weather observations, the experiment, and directions. (KR)

  13. Startup of air-cooled condensers and dry cooling towers at low temperatures of the cooling air

    NASA Astrophysics Data System (ADS)

    Milman, O. O.; Ptakhin, A. V.; Kondratev, A. V.; Shifrin, B. A.; Yankov, G. G.

    2016-05-01

    The problems of startup and performance of air-cooled condensers (ACC) and dry cooling towers (DCT) at low cooling air temperatures are considered. Effects of the startup of the ACC at sub-zero temperatures are described. Different options of the ACC heating up are analyzed, and examples of existing technologies are presented (electric heating, heating up with hot air or steam, and internal and external heating). The use of additional heat exchanging sections, steam tracers, in the DCT design is described. The need for high power in cases of electric heating and heating up with hot air is noted. An experimental stand for research and testing of the ACC startup at low temperatures is described. The design of the three-pass ACC unit is given, and its advantages over classical single-pass design at low temperatures are listed. The formation of ice plugs inside the heat exchanging tubes during the start-up of ACC and DCT at low cooling air temperatures is analyzed. Experimental data on the effect of the steam flow rate, steam nozzle distance from the heat-exchange surface, and their orientation in space on the metal temperature were collected, and test results are analyzed. It is noted that the surface temperature at the end of the heat up is almost independent from its initial temperature. Recommendations for the safe start-up of ACCs and DCTs are given. The heating flow necessary to sufficiently heat up heat-exchange surfaces of ACCs and DCTs for the safe startup is estimated. The technology and the process of the heat up of the ACC with the heating steam external supply are described by the example of the startup of the full-scale section of the ACC at sub-zero temperatures of the cooling air, and the advantages of the proposed start-up technology are confirmed.

  14. Effects of Outside Air Temperature on Movement of Phosphine Gas in Concrete Elevator Bins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies that measured the movement and concentration of phosphine gas in upright concrete bins over time indicated that fumigant movement was dictated by air currents, which in turn, were a function of the difference between the average grain temperature and the average outside air temperature durin...

  15. Correction of Temperatures of Air-Cooled Engine Cylinders for Variation in Engine and Cooling Conditions

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Pinkel, Benjamin; Ellerbrock, Herman H , Jr

    1939-01-01

    Factors are obtained from semiempirical equations for correcting engine-cylinder temperatures for variation in important engine and cooling conditions. The variation of engine temperatures with atmospheric temperature is treated in detail, and correction factors are obtained for various flight and test conditions, such as climb at constant indicated air speed, level flight, ground running, take-off, constant speed of cooling air, and constant mass flow of cooling air. Seven conventional air-cooled engine cylinders enclosed in jackets and cooled by a blower were tested to determine the effect of cooling-air temperature and carburetor-air temperature on cylinder temperatures. The cooling air temperature was varied from approximately 80 degrees F. to 230 degrees F. and the carburetor-air temperature from approximately 40 degrees F. to 160 degrees F. Tests were made over a large range of engine speeds, brake mean effective pressures, and pressure drops across the cylinder. The correction factors obtained experimentally are compared with those obtained from the semiempirical equations and a fair agreement is noted.

  16. Predicting seed cotton moisture content from changes in drying air temperature - second year

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A mathematical model was used to predict seed cotton moisture content in the overhead section of a cotton gin. The model took into account the temperature, mass flow, and specific heat of both the air and seed cotton. Air temperatures and mass flows were measured for a second year at a commercial g...

  17. Prediction of air temperature in the aircraft cabin under different operational conditions

    NASA Astrophysics Data System (ADS)

    Volavý, F.; Fišer, J.; Nöske, I.

    2013-04-01

    This paper deals with the prediction of the air temperature in the aircraft cabin by means of Computational Fluid Dynamics. The simulations are performed on the CFD model which is based on geometry and cabin interior arrangement of the Flight Test Facility (FTF) located at Fraunhofer IBP, Germany. The experimental test flights under three different cabin temperatures were done in FTF and the various data were gathered during these flights. Air temperature in the cabin was measured on probes located near feet, torso and head of each passenger and also surface temperature and air temperature distributed from inlets were measured. The data were firstly analysed in order to obtain boundary conditions for cabin surfaces and inlets. Then the results of air temperature from the simulations were compared with measured data. The suitability and accuracy of the CFD approach for temperature prediction is discussed.

  18. Asteroid Bennu Temperature Maps for OSIRIS-REx Spacecraft and Instrument Thermal Analyses

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.; Emery, Josh; Delbo, Marco

    2014-01-01

    A thermophysical model has been developed to generate asteroid Bennu surface temperature maps for OSIRIS-REx spacecraft and instrument thermal design and analyses at the Critical Design Review (CDR). Two-dimensional temperature maps for worst hot and worst cold cases are used in Thermal Desktop to assure adequate thermal design margins. To minimize the complexity of the Bennu geometry in Thermal Desktop, it is modeled as a sphere instead of the radar shape. The post-CDR updated thermal inertia and a modified approach show that the new surface temperature predictions are more benign. Therefore the CDR Bennu surface temperature predictions are conservative.

  19. System and method for air temperature control in an oxygen transport membrane based reactor

    DOEpatents

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  20. Air temperature "singularities" as a tool for the comprehension of the climate diversity in Europe

    NASA Astrophysics Data System (ADS)

    Jarzyna, Krzysztof

    2014-05-01

    Air temperature "singularities" were used to study climate diversity in Europe. The basis of analysis were data of mean daily air temperature for 50-years period (1951-2000) from 66 European meteorological stations. Multiyear mean air temperature values were counted for the each day of the year at first (29th February was omitted). Next a theoretical sine curve of annual air temperature course was created with help of the Fourier's analysis for the each station. Differences between theoretical and observed mean vales of daily air temperatures were counted in the next step. The biggest of these differences (below the lower quartile and above the upper quartile) lasting at least 3 days can be treated as thermal "singularities". A cluster analysis was used to find similarities of the singularities occurrence in analyzed stations. As a result 8 clusters were distinguished representing regions with different thermal "singularities" occurrence pattern.

  1. Modeling subcanopy incoming longwave radiation to seasonal snow using air and tree trunk temperatures

    NASA Astrophysics Data System (ADS)

    Webster, Clare; Rutter, Nick; Zahner, Franziska; Jonas, Tobias

    2016-02-01

    Data collected at three Swiss alpine forested sites over a combined 11 year period were used to evaluate the role of air temperature in modeling subcanopy incoming longwave radiation to the snow surface. Simulated subcanopy incoming longwave radiation is traditionally partitioned into that from the sky and that from the canopy, i.e., a two-part model. Initial uncertainties in predicting longwave radiation using the two-part model resulted from vertical differences in measured air temperature. Above-canopy (35 m) air temperatures were higher than those within (10 m) and below (2 m) canopy throughout four snow seasons (December-April), demonstrating how the forest canopy can act as a cold sink for air. Lowest model root-mean-square error (RMSE) was using above-canopy air temperature. Further investigation of modeling subcanopy longwave radiation using above-canopy air temperature showed underestimations, particularly during periods of high insolation. In order to explicitly account for canopy temperatures in modeling longwave radiation, the two-part model was improved by incorporating a measured trunk view component and trunk temperature. Trunk temperature measurements were up to 25°C higher than locally measured air temperatures. This three-part model reduced the RMSE by up to 7.7 W m-2 from the two-part air temperature model at all sensor positions across the 2014 snowmelt season and performed particularly well during periods of high insolation when errors from the two-part model were up to 40 W m-2. A parameterization predicting tree trunk temperatures using measured air temperature and incoming shortwave radiation demonstrate a simple method that can be applied to provide input to the three-part model across midlatitude coniferous forests.

  2. Uncertainties of satellite-derived surface skin temperatures in the polar oceans: MODIS, AIRS/AMSU, and AIRS only

    NASA Astrophysics Data System (ADS)

    Kang, H.-J.; Yoo, J.-M.; Jeong, M.-J.; Won, Y.-I.

    2015-05-01

    Uncertainties in the satellite-derived Surface Skin Temperature (SST) data in the polar oceans during two periods (16-24 April and 15-23 September) of 2003-2014 were investigated and the three datasets were intercompared as follows: MODerate Resolution Imaging Spectroradiometer Ice Surface Temperature (MODIS IST), the SST of the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A (AIRS/AMSU), and AIRS only. AIRS only algorithm was developed in preparation for the degradation of the AMSU-A. MODIS IST was systematically up to 1.65 K warmer at the sea ice boundary and up to 2.04 K colder in the polar sea ice regions of both the Arctic and Antarctic than that of the AIRS/AMSU. This difference in the results could have been caused by the surface classification method. The spatial correlation coefficient of the AIRS only to the AIRS/AMSU (0.992-0.999) method was greater than that of the MODIS IST to the AIRS/AMSU (0.968-0.994). The SST of the AIRS only compared to that of the AIRS/AMSU had a bias of 0.168 K with a RMSE of 0.590 K over the Northern Hemisphere high latitudes and a bias of -0.109 K with a RMSE of 0.852 K over the Southern Hemisphere high latitudes. There was a systematic disagreement between the AIRS retrievals at the boundary of the sea ice, because the AIRS only algorithm utilized a~less accurate GCM forecast over the seasonally-varying frozen oceans than the microwave data. The three datasets (MODIS, AIRS/AMSU and AIRS only) showed significant warming rates (2.3 ± 1.7 ~2.8 ± 1.9 K decade-1) in the northern high latitude regions (70-80° N) as expected from the ice-albedo feedback. The systematic temperature disagreement associated with surface type classification had an impact on the resulting temperature trends.

  3. Uncertainties of satellite-derived surface skin temperatures in the polar oceans: MODIS, AIRS/AMSU, and AIRS only

    NASA Astrophysics Data System (ADS)

    Kang, H.-J.; Yoo, J.-M.; Jeong, M.-J.; Won, Y.-I.

    2015-10-01

    Uncertainties in the satellite-derived surface skin temperature (SST) data in the polar oceans during two periods (16-24 April and 15-23 September) 2003-2014 were investigated and the three data sets were intercompared as follows: MODerate Resolution Imaging Spectroradiometer Ice Surface Temperature (MODIS IST), the SST of the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A (AIRS/AMSU), and AIRS only. The AIRS only algorithm was developed in preparation for the degradation of the AMSU-A. MODIS IST was systematically warmer up to 1.65 K at the sea ice boundary and colder down to -2.04 K in the polar sea ice regions of both the Arctic and Antarctic than that of the AIRS/AMSU. This difference in the results could have been caused by the surface classification method. The spatial correlation coefficient of the AIRS only to the AIRS/AMSU (0.992-0.999) method was greater than that of the MODIS IST to the AIRS/AMSU (0.968-0.994). The SST of the AIRS only compared to that of the AIRS/AMSU had a bias of 0.168 K with a RMSE of 0.590 K over the Northern Hemisphere high latitudes and a bias of -0.109 K with a RMSE of 0.852 K over the Southern Hemisphere high latitudes. There was a systematic disagreement between the AIRS retrievals at the boundary of the sea ice, because the AIRS only algorithm utilized a less accurate GCM forecast over the seasonally varying frozen oceans than the microwave data. The three data sets (MODIS, AIRS/AMSU and AIRS only) showed significant warming rates (2.3 ± 1.7 ~ 2.8 ± 1.9 K decade-1) in the northern high regions (70-80° N) as expected from the ice-albedo feedback. The systematic temperature disagreement associated with surface type classification had an impact on the resulting temperature trends.

  4. Ground temperature measurement by PRT-5 for maps experiment

    NASA Technical Reports Server (NTRS)

    Gupta, S. K.; Tiwari, S. N.

    1978-01-01

    A simple algorithm and computer program were developed for determining the actual surface temperature from the effective brightness temperature as measured remotely by a radiation thermometer called PRT-5. This procedure allows the computation of atmospheric correction to the effective brightness temperature without performing detailed radiative transfer calculations. Model radiative transfer calculations were performed to compute atmospheric corrections for several values of the surface and atmospheric parameters individually and in combination. Polynomial regressions were performed between the magnitudes or deviations of these parameters and the corresponding computed corrections to establish simple analytical relations between them. Analytical relations were also developed to represent combined correction for simultaneous variation of parameters in terms of their individual corrections.

  5. Titan's Surface Temperatures Maps from Cassini - CIRS Observations

    NASA Astrophysics Data System (ADS)

    Cottini, Valeria; Nixon, C. A.; Jennings, D. E.; Anderson, C. M.; Samuelson, R. E.; Irwin, P. G. J.; Flasar, F. M.

    2009-09-01

    The Cassini Composite Infrared Spectrometer (CIRS) observations of Saturn's largest moon, Titan, are providing us with the ability to detect the surface temperature of the planet by studying its outgoing radiance through a spectral window in the thermal infrared at 19 μm (530 cm-1) characterized by low opacity. Since the first acquisitions of CIRS Titan data the instrument has gathered a large amount of spectra covering a wide range of latitudes, longitudes and local times. We retrieve the surface temperature and the atmospheric temperature profile by modeling proper zonally averaged spectra of nadir observations with radiative transfer computations. Our forward model uses the correlated-k approximation for spectral opacity to calculate the emitted radiance, including contributions from collision induced pairs of CH4, N2 and H2, haze, and gaseous emission lines (Irwin et al. 2008). The retrieval method uses a non-linear least-squares optimal estimation technique to iteratively adjust the model parameters to achieve a spectral fit (Rodgers 2000). We show an accurate selection of the wide amount of data available in terms of footprint diameter on the planet and observational conditions, together with the retrieved results. Our results represent formal retrievals of surface brightness temperatures from the Cassini CIRS dataset using a full radiative transfer treatment, and we compare to the earlier findings of Jennings et al. (2009). In future, application of our methodology over wide areas should greatly increase the planet coverage and accuracy of our knowledge of Titan's surface brightness temperature. References: Irwin, P.G.J., et al.: "The NEMESIS planetary atmosphere radiative transfer and retrieval tool" (2008). JQSRT, Vol. 109, pp. 1136-1150, 2008. Rodgers, C. D.: "Inverse Methods For Atmospheric Sounding: Theory and Practice". World Scientific, Singapore, 2000. Jennings, D.E., et al.: "Titan's Surface Brightness Temperatures." Ap. J. L., Vol. 691, pp. L103-L

  6. Comparing interpolation techniques for annual temperature mapping across Xinjiang region

    NASA Astrophysics Data System (ADS)

    Ren-ping, Zhang; Jing, Guo; Tian-gang, Liang; Qi-sheng, Feng; Aimaiti, Yusupujiang

    2016-11-01

    Interpolating climatic variables such as temperature is challenging due to the highly variable nature of meteorological processes and the difficulty in establishing a representative network of stations. In this paper, based on the monthly temperature data which obtained from the 154 official meteorological stations in the Xinjiang region and surrounding areas, we compared five spatial interpolation techniques: Inverse distance weighting (IDW), Ordinary kriging, Cokriging, thin-plate smoothing splines (ANUSPLIN) and Empirical Bayesian kriging(EBK). Error metrics were used to validate interpolations against independent data. Results indicated that, the ANUSPLIN performed best than the other four interpolation methods.

  7. The EUSTACE project: delivering global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Morice, C. P.; Rayner, N. A.; Auchmann, R.; Bessembinder, J.; Bronnimann, S.; Brugnara, Y.; Conway, E. A.; Ghent, D.; Good, E.; Herring, K.; Kennedy, J.; Lindgren, F.; Madsen, K. S.; Merchant, C. J.; van der Schrier, G.; Stephens, A.; Tonboe, R. T.; Waterfall, A. M.; Mitchelson, J.; Woolway, I.

    2015-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, we must develop an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. These relationships can be derived either empirically or with the help of a physical model.Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals would be used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. As the data volumes involved are considerable, such work needs to include development of new "Big Data" analysis methods.We will present plans and progress along this road in the EUSTACE project (2015-June 2018), i.e.: • providing new, consistent, multi-component estimates of uncertainty in surface skin temperature retrievals from satellites; • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras.Information will also be given on how interested users can become

  8. Air-Cooled Design of a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization Systems

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.; Affleck, Dave L.; Rosen, Micha; LeVan, M. Douglas; Wang, Yuan; Cavalcante, Celio L.

    2004-01-01

    The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. We have a developed a temperature-swing adsorption compressor (TSAC) for performing these tasks that is energy efficient, quiet, and has no rapidly moving parts. This paper discusses the mechanical design and the results of thermal model validation tests of a TSAC that uses air as the cooling medium.

  9. Some Effects of Air and Fuel Oil Temperatures on Spray Penetration and Dispersion

    NASA Technical Reports Server (NTRS)

    Gelalles, A G

    1930-01-01

    Presented here are experimental results obtained from a brief investigation of the appearance, penetration, and dispersion of oil sprays injected into a chamber of highly heated air at atmospheric pressure. The development of single sprays injected into a chamber containing air at room temperature and at high temperature was recorded by spray photography equipment. A comparison of spray records showed that with the air at the higher temperature, the spray assumed the appearance of thin, transparent cloud, the greatest part of which rapidly disappeared from view. With the chamber air at room temperature, a compact spray with an opaque core was obtained. Measurements of the records showed a decrease in penetration and an increase in the dispersion of the spray injected into the heated air. No ignition of the fuel injected was observed or recorded until the spray particles came in contact with the much hotter walls of the chamber about 0.3 second after the start of injection.

  10. Copping with Uncertainties in Mapping Extreme and Mean Temperatures at the Regional Level for Risk Management in Agriculture: A Case Study in Galicia, NW Spain

    NASA Astrophysics Data System (ADS)

    Mirás Avalos, J. M.; Vidal Vázquez, E.; Sande Fouz, P.; Paz González, A.

    2012-04-01

    Temperature is one of the main factors regulating crop growth and duration of crop cycle. Climate risk can be identified by characteristics such us geographic area (areal extent), time of year it is most likely to occur and its severity. Knowledge of the geographic coverage of mean, maxima and minima temperatures as well as the spatial distribution of this variable above or below a given threshold is fundamental for designing viable practices in the agriculture sector. Thus, managing temperature effects in agriculture needs reliable regional maps from which information can be obtained by downscaling at the farm scale. Several techniques are currently employed to create discretized, continuous surfaces from point data through a set of spatial interpolation techniques. Geostatistics, based in the random function theory is commonly used in the assessment of uncertainty associated with a spatially correlated variable, such as most climatic parameters, including temperature. The aim of this study was to provide a comparative analysis of various methods used for mapping monthly maximum, minimum and mean air temperatures in Galicia, northwest Spain over a 0.5 x 0.5 km grid size. The air temperature datasets involved more than 140 meteorological stations irregularly distributed in the region. Methods, included statistical and of spatial dependence analysis and mapping by inverse distance weighting (IDW) and several kriging techniques, including residual kriging (RK), collocated cokriging (COK) and kriging with an external drift (KED). There was a significant relationship between temperature and altitude for the study data sets. Interpolated monthly air temperature maps, produced by IDW indicate that the general pattern of values varied from one month to another, and therefore it can not be assessed based on previous records. Mean maxima and minima temperatures showed spatial dependence, which was described by spherical and gaussian variograms. First, IDW was used to

  11. Multi-fractal scaling comparison of the Air Temperature and the Surface Temperature over China

    NASA Astrophysics Data System (ADS)

    Jiang, Lei; Zhang, Jiping; Liu, Xinwei; Li, Fei

    2016-11-01

    The spatial and temporal multi-scaling behaviors between the daily Air Temperature (AT) and the Surface Temperature (ST) over China are compared in about 60-yr observations by Multi-fractal Detrended Fluctuation Analysis (MF-DFA) method. The different fractal phenomena and diversity features in the geographic distribution are found for the AT and ST series using MF-DFA. There are more multi-fractal features for the AT records but less for ST. The respective geographic sites show important scaling differences when compared to the multi-fractal signatures of AT with ST. An interval threshold for 95% confidence level is obtained by shuffling the AT records and the ST records. For the AT records, 93% of all observed stations shows the strong multi-fractal behaviors. In addition, the multi-fractal characteristics decrease with increasing latitude in South China and are obviously strong along the coast. The multi-fractal behaviors of the AT records between the Yangtze River and Yellow River basin and in most regions of Northwest China seem to be weak and not significant, even single mono-fractal features. However, for the ST records, the geographical distributions of multi-fractal phenomenon seem to be in disorder which account for 81% of the stations. The weak multi-fractal behaviors of the ST records are concentrated in North China, most regions of Northeast China.

  12. A Microwave Technique for Mapping Ice Temperature in the Arctic Seasonal Sea Ice Zone

    NASA Technical Reports Server (NTRS)

    St.Germain, Karen M.; Cavalieri, Donald J.

    1997-01-01

    A technique for deriving ice temperature in the Arctic seasonal sea ice zone from passive microwave radiances has been developed. The algorithm operates on brightness temperatures derived from the Special Sensor Microwave/Imager (SSM/I) and uses ice concentration and type from a previously developed thin ice algorithm to estimate the surface emissivity. Comparisons of the microwave derived temperatures with estimates derived from infrared imagery of the Bering Strait yield a correlation coefficient of 0.93 and an RMS difference of 2.1 K when coastal and cloud contaminated pixels are removed. SSM/I temperatures were also compared with a time series of air temperature observations from Gambell on St. Lawrence Island and from Point Barrow, AK weather stations. These comparisons indicate that the relationship between the air temperature and the ice temperature depends on ice type.

  13. Attribution of precipitation changes on ground-air temperature offset: Granger causality analysis

    NASA Astrophysics Data System (ADS)

    Cermak, Vladimir; Bodri, Louise

    2016-06-01

    This work examines the causal relationship between the value of the ground-air temperature offset and the precipitation changes for monitored 5-min data series together with their hourly and daily averages obtained at the Sporilov Geophysical Observatory (Prague). Shallow subsurface soil temperatures were monitored under four different land cover types (bare soil, sand, short-cut grass and asphalt). The ground surface temperature (GST) and surface air temperature (SAT) offset, ΔT(GST-SAT), is defined as the difference between the temperature measured at the depth of 2 cm below the surface and the air temperature measured at 5 cm above the surface. The results of the Granger causality test did not reveal any evidence of Granger causality for precipitation to ground-air temperature offsets on the daily scale of aggregation except for the asphalt pavement. On the contrary, a strong evidence of Granger causality for precipitation to the ground-air temperature offsets was found on the hourly scale of aggregation for all land cover types except for the sand surface cover. All results are sensitive to the lag choice of the autoregressive model. On the whole, obtained results contain valuable information on the delay time of ΔT(GST-SAT) caused by the rainfall events and confirmed the importance of using autoregressive models to understand the ground-air temperature relationship.

  14. Validation of AIRS V6 Surface Temperature over Greenland with GCN and NOAA Stations

    NASA Technical Reports Server (NTRS)

    Lee, Jae N.; Hearty, Thomas; Cullather, Richard; Nowicki, Sophie; Susskind, Joel

    2016-01-01

    This work compares the temporal and spatial characteristics of the AIRSAMSU (Atmospheric Infrared Sounder Advanced Microwave Sounding Unit A) Version 6 and MODIS (Moderate resolution Imaging Spectroradiometer) Collection 5 derived surface temperatures over Greenland. To estimate uncertainties in space-based surface temperature measurements, we re-projected the MODIS Ice Surface Temperature (IST) to 0.5 by 0.5 degree spatial resolution. We also re-gridded AIRS Skin Temperature (Ts) into the same grid but classified with different cloud conditions and surface types. These co-located data sets make intercomparison between the two instruments relatively straightforward. Using this approach, the spatial comparison between the monthly mean AIRS Ts and MODIS IST is in good agreement with RMS 2K for May 2012. This approach also allows the detection of any long-term calibration drift and the careful examination of calibration consistency in the MODIS and AIRS temperature data record. The temporal correlations between temperature data are also compared with those from in-situ measurements from GC-Net (GCN) and NOAA stations. The coherent time series of surface temperature evident in the correlation between AIRS Ts and GCN temperatures suggest that at monthly time scales both observations capture the same climate signal over Greenland. It is also suggested that AIRS surface air temperature (Ta) can be used to estimate the boundary layer inversion.

  15. Analysis of Temperature Maps of Selected Dawn Data Over the Surface of Vesta

    NASA Technical Reports Server (NTRS)

    Tosi, F.; Capria, M. T.; DeSanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; Combe, J.-Ph.; Sunshine, J. M.; McCord, T. B.; Li, Y.-Y.; Titus, T. N.; Russell, C. T.; Raymond, C. A.; Mittlefehldt, D. W.; Toplis, M. J.; Forni, O.; Sykes, M. V.

    2012-01-01

    The thermal behavior of areas of unusual albedo at the surface of Vesta can be related to physical properties that may provide some information about the origin of those materials. Dawn s Visible and Infrared Mapping Spectrometer (VIR) [1] hyperspectral cubes can be used to retrieve surface temperatures. Due to instrumental constraints, high accuracy is obtained only if temperatures are greater than 180 K. Bright and dark surface materials on Vesta are currently investigated by the Dawn team [e.g., 2 and 3 respectively]. Here we present temperature maps of several local-scale features that were observed by Dawn under different illumination conditions and different local solar times.

  16. Investigation of the impact of extreme air temperature on river water temperature: case study of the heat episode 2013.

    NASA Astrophysics Data System (ADS)

    Weihs, Philipp; Trimmel, Heidelinde; Goler, Robert; Formayer, Herbert; Holzapfel, Gerda; Rauch, Hans Peter

    2014-05-01

    Water stream temperature is a relevant factor for water quality since it is an important driver of water oxygen content and in turn also reduces or increases stress on the aquatic fauna. The water temperature of streams is determined by the source and inflow water temperature, by the energy balance at the stream surface and by the hydrological regime of the stream. Main factors driving the energy balance of streams are radiation balance and air temperature which influences the sensitive and latent heat flux. The present study investigates the impact of the heat episode of summer 2013 on water temperature of two lowland rivers in south eastern Austria. Within the scope of the project BIO_CLIC routine measurements of water temperature at 33 locations alongside the rivers Pinka and Lafnitz have been performed since spring 2012. In addition meteorological measurements of global shortwave and longwave radiation, air temperature, wind and air humidity have been carried out during this time. For the same time period, data of discharge and water levels of both rivers were provided by the public hydrological office. The heat episode of summer 2013 started, according to the Kysely- definition, on 18 July and lasted until 14 August. The highest air temperature ever recorded in Austria was reported on 8 August at 40.5°C. In Güssing, which is located within the project area, 40.0 °C were recorded. In the lower reaches of the river Pinka, at the station Burg the monthly mean water temperature of August 2013 was with more than 22°C, 1°C higher than the mean water temperature of the same period of the previous years. At the same station, the maximum water temperature of 27.1°C was recorded on 29 July, 9 days prior to the air temperature record. Analysis shows that at the downstream stations the main driving parameter is solar radiation whereas at the upstream stations a better correlation between air temperature and water temperature is obtained. Using the extensive data set

  17. Comparison of Near-Surface Air Temperatures and MODIS Ice-Surface Temperatures at Summit, Greenland (2008-2013)

    NASA Technical Reports Server (NTRS)

    Shuman, Christopher A.; Hall, Dorothy K.; DiGirolamo, Nicolo E.; Mefford, Thomas K.; Schnaubelt, Michael J.

    2014-01-01

    We have investigated the stability of the MODerate resolution Imaging Spectroradiometer (MODIS) infrared-derived ice surface temperature (IST) data from Terra for use as a climate quality data record. The availability of climate quality air temperature data (TA) from a NOAA Global Monitoring Division observatory at Greenlands Summit station has enabled this high temporal resolution study of MODIS ISTs. During a 5 year period (July 2008 to August 2013), more than 2500 IST values were compared with 3-minute average TA values derived from the 1-minute data from NOAAs primary 2 m air temperature sensor. These data enabled an expected small offset between air and surface temperatures at this the ice sheet location to be investigated over multiple annual cycles.

  18. The thermometer of social relations: mapping social proximity on temperature.

    PubMed

    Ijzerman, Hans; Semin, Gün R

    2009-10-01

    "Holding warm feelings toward someone" and "giving someone the cold shoulder" indicate different levels of social proximity. In this article, we show effects of temperature that go beyond these metaphors people live by. In three experiments, warmer conditions, compared with colder conditions, induced (a) greater social proximity, (b) use of more concrete language, and (c) a more relational focus. Different temperature conditions were created by either handing participants warm or cold beverages (Experiment 1) or placing them in comfortable warm or cold ambient conditions (Experiments 2 and 3). These studies corroborate recent findings in the field of grounded cognition revealing that concrete experiences ground abstract concepts with which they are coexperienced. Our studies show a systemic interdependence among language, perception, and social proximity: Environmentally induced conditions shape not only language use, but also the perception and construal of social relationships.

  19. An assessment of high school students' conceptual structures of heat and temperature through concept maps

    NASA Astrophysics Data System (ADS)

    Aykutlu, Isil; Bezen, Sevim; Bayrak, Celal

    2017-02-01

    This study is a qualitative one conducted in order to determine 9th, 10th, and 11th grade high school students' conceptual structures of heat and temperature through concept maps. The study was realized with the participation of a total of 80 students. As data gathering tool, a concept map developed by the researchers, which includes such items as heat, temperature, and matter, was used. Students were asked to form a concept map by using the concepts in the form and the concepts they thought were related with these. Data obtained from the research was analyzed via content analysis. As a result of the study, it was determined that students have misconceptions and lack of knowledge of heat and temperature. Lastly, the following can be given as examples of students' misconceptions or lack of knowledge: they think temperature comes into being as a result of heat and that heat is a kind of energy.

  20. Geographical and Geomorphological Effects on Air Temperatures in the Columbia Basin's Signature Vineyards

    NASA Astrophysics Data System (ADS)

    Olson, L.; Pogue, K. R.; Bader, N.

    2012-12-01

    The Columbia Basin of Washington and Oregon is one of the most productive grape-growing areas in the United States. Wines produced in this region are influenced by their terroir - the amalgamation of physical and cultural elements that influence grapes grown at a particular vineyard site. Of the physical factors, climate, and in particular air temperature, has been recognized as a primary influence on viticulture. Air temperature directly affects ripening in the grapes. Proper fruit ripening, which requires precise and balanced levels of acid and sugar, and the accumulation of pigment in the grape skin, directly correlates with the quality of wine produced. Many features control air temperature within a particular vineyard. Elevation, latitude, slope, and aspect all converge to form complex relationships with air temperatures; however, the relative degree to which these attributes affect temperatures varies between regions and is not well understood. This study examines the influence of geography and geomorphology on air temperatures within the American Viticultural Areas (AVAs) of the Columbia Basin in eastern Washington and Oregon. The premier vineyards within each AVA, which have been recognized for producing high-quality wine, were equipped with air temperature monitoring stations that collected hourly temperature measurements. A variety of temperature statistics were calculated, including daily average, maximum, and minimum temperatures. From these values, average diurnal variation and growing degree-days (10°C) were calculated. A variety of other statistics were computed, including date of first and last frost and time spent below a minimum temperature threshold. These parameters were compared to the vineyard's elevation, latitude, slope, aspect, and local topography using GPS, ArcCatalog, and GIS in an attempt to determine their relative influences on air temperatures. From these statistics, it was possible to delineate two trends of temperature variation

  1. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    PubMed Central

    Lee, Jing-Nang; Lin, Tsung-Min

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system. PMID:25250390

  2. Modeling validation and control analysis for controlled temperature and humidity of air conditioning system.

    PubMed

    Lee, Jing-Nang; Lin, Tsung-Min; Chen, Chien-Chih

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14 °C, 0006 kg(w)/kg(da) in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  3. Perceiving nasal patency through mucosal cooling rather than air temperature or nasal resistance.

    PubMed

    Zhao, Kai; Blacker, Kara; Luo, Yuehao; Bryant, Bruce; Jiang, Jianbo

    2011-01-01

    Adequate perception of nasal airflow (i.e., nasal patency) is an important consideration for patients with nasal sinus diseases. The perception of a lack of nasal patency becomes the primary symptom that drives these patients to seek medical treatment. However, clinical assessment of nasal patency remains a challenge because we lack objective measurements that correlate well with what patients perceive. The current study examined factors that may influence perceived patency, including air temperature, humidity, mucosal cooling, nasal resistance, and trigeminal sensitivity. Forty-four healthy subjects rated nasal patency while sampling air from three facial exposure boxes that were ventilated with untreated room air, cold air, and dry air, respectively. In all conditions, air temperature and relative humidity inside each box were recorded with sensors connected to a computer. Nasal resistance and minimum airway cross-sectional area (MCA) were measured using rhinomanometry and acoustic rhinometry, respectively. General trigeminal sensitivity was assessed through lateralization thresholds to butanol. No significant correlation was found between perceived patency and nasal resistance or MCA. In contrast, air temperature, humidity, and butanol threshold combined significantly contributed to the ratings of patency, with mucosal cooling (heat loss) being the most heavily weighted predictor. Air humidity significantly influences perceived patency, suggesting that mucosal cooling rather than air temperature alone provides the trigeminal sensation that results in perception of patency. The dynamic cooling between the airstream and the mucosal wall may be quantified experimentally or computationally and could potentially lead to a new clinical evaluation tool.

  4. Analysis of surface air temperature variations and local urbanization effects on central Yunnan Plateau, SW China

    NASA Astrophysics Data System (ADS)

    He, Yunling; Wu, Zhijie; Liu, Xuelian; Deng, Fuying

    2016-10-01

    With the surface air temperature (SAT) data at 37 stations on Central Yunnan Plateau (CYP) for 1961-2010 and the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light data, the temporal-spatial patterns of the SAT trends are detected using Sen's Nonparametric Estimator of Slope approach and MK test, and the impact of urbanization on surface warming is analyzed by comparing the differences between the air temperature change trends of urban stations and their corresponding rural stations. Results indicated that annual mean air temperature showed a significant warming trend, which is equivalent to a rate of 0.17 °C/decade during the past 50 years. Seasonal mean air temperature presents a rising trend, and the trend was more significant in winter (0.31 °C/decade) than in other seasons. Annual/seasonal mean air temperature tends to increase in most areas, and higher warming trend appeared in urban areas, notably in Kunming city. The regional mean air temperature series was significantly impacted by urban warming, and the urbanization-induced warming contributed to approximately 32.3-62.9 % of the total regional warming during the past 50 years. Meantime, the urbanization-induced warming trend in winter and spring was more significant than that in summer and autumn. Since 1985, the urban heat island (UHI) intensity has gradually increased. And the urban temperatures always rise faster than rural temperatures on the CYP.

  5. Comparison of Vertical Soundings and Sidewall Air Temperature Measurements in a Small Alpine Basin.

    NASA Astrophysics Data System (ADS)

    Whiteman, C. David; Eisenbach, Stefan; Pospichal, Bernhard; Steinacker, Reinhold

    2004-11-01

    Tethered balloon soundings from two sites on the floor of a 1-km-diameter limestone sinkhole in the eastern Alps are compared with pseudovertical temperature “soundings” from three lines of temperature dataloggers on the basin's northwest, southwest, and southeast sidewalls. Under stable nighttime conditions with low background winds, the pseudovertical profiles from all three lines were good proxies for free air temperature soundings over the basin center, with a mean nighttime cold temperature bias of about 0.4°C and a standard deviation of 0.4°C. Cold biases were highest in the upper basin where relatively warm air subsides to replace air that spills out of the basin through the lowest-altitude saddle. On a windy night, standard deviations increased to 1° 2°C. After sunrise, the varying exposures of the dataloggers to sunlight made the pseudovertical profiles less useful as proxies for free air soundings. The good correspondence between sidewall and free air temperatures during high-static-stability conditions suggests that sidewall soundings can be used to monitor temperatures, temperature gradients, and temperature inversion evolution in the sinkhole. Sidewall soundings can produce more frequent profiles at lower cost than can tethersondes or rawinsondes, and extension of these findings to other enclosed or semienclosed topographies may enhance future basic meteorological research or support applications studies in agriculture, forestry, air pollution, and land use planning.


  6. Combustion of Gaseous Fuels with High Temperature Air in Normal- and Micro-gravity Conditions

    NASA Technical Reports Server (NTRS)

    Wang, Y.; Gupta, A. K.

    2001-01-01

    The objective of this study is determine the effect of air preheat temperature on flame characteristics in normal and microgravity conditions. We have obtained qualitative (global flame features) and some quantitative information on the features of flames using high temperature combustion air under normal gravity conditions with propane and methane as the fuels. This data will be compared with the data under microgravity conditions. The specific focus under normal gravity conditions has been on determining the global flame features as well as the spatial distribution of OH, CH, and C2 from flames using high temperature combustion air at different equivalence ratio.

  7. Thermal Coupling Between Air and Ground Temperatures in the CMIP5 Historical and Future Simulations

    NASA Astrophysics Data System (ADS)

    García-García, A.; Cuesta-Valero, F. J.; Smerdon, J. E.; Beltrami, H.

    2015-12-01

    The thermal coupling between air and ground temperatures is investigated herein for General Circulation Models (GCMs) that participated in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). For each simulation, we evaluate the regional relationship between air and ground temperatures to study surface energy fluxes and the attenuation of the annual temperature signal across the air-ground interface and into the shallow subsurface for North America. Our results show that the transport of energy across the air-ground interface and into the shallow subsurface is different across GCMs and is dependent on the land surface models that each employs. The variability of the difference between air and ground temperatures is high among simulations and is not dependent on the depth of the bottom boundary of the subsurface soil model. The difference between air and ground temperatures differs significantly from observations. Additionally, while the variability among GCMs can be explained by the physics of the land surface models, the regional variability of the air-ground coupling is associated with the model treatment of soil properties as well as snow and vegetation processes within GCMs. The difference between air and ground temperatures at high latitudes within the majority of the CMIP5 models is directly proportional to the amount of snow on the ground, due to the insulating effect of snow cover. On the other hand, the difference between air and ground temperatures at low latitudes within some of the CMIP5 models is inversely proportional to the vegetation cover (leaf area index), due to changes in latent and sensible heat fluxes. The large variability among GCMs and the marked dependency of the results on the choice of the land-surface model illustrates the need for improving the simulation of air-ground coupling in land-surface models towards a robust simulation of near-surface processes, such as permafrost and soil carbon stability within GCMs.

  8. Summarising climate and air quality (ozone) data on self-organising maps: a Sydney case study.

    PubMed

    Jiang, Ningbo; Betts, Alan; Riley, Matt

    2016-02-01

    This paper explores the classification and visualisation utility of the self-organising map (SOM) method in the context of New South Wales (NSW), Australia, using gridded NCEP/NCAR geopotential height reanalysis for east Australia, together with multi-site meteorological and air quality data for Sydney from the NSW Office of Environment and Heritage Air Quality Monitoring Network. A twice-daily synoptic classification has been derived for east Australia for the period of 1958-2012. The classification has not only reproduced the typical synoptic patterns previously identified in the literature but also provided an opportunity to visualise the subtle, non-linear change in the eastward-migrating synoptic systems influencing NSW (including Sydney). The summarisation of long-term, multi-site air quality/meteorological data from the Sydney basin on the SOM plane has identified a set of typical air pollution/meteorological spatial patterns in the region. Importantly, the examination of these patterns in relation to synoptic weather types has provided important visual insights into how local and synoptic meteorological conditions interact with each other and affect the variability of air quality in tandem. The study illustrates that while synoptic circulation types are influential, the within-type variability in mesoscale flows plays a critical role in determining local ozone levels in Sydney. These results indicate that the SOM can be a useful tool for assessing the impact of weather and climatic conditions on air quality in the regional airshed. This study further promotes the use of the SOM method in environmental research.

  9. Delimiting affinity zones as a basis for air pollution mapping in Europe.

    PubMed

    Vienneau, Danielle; Briggs, David J

    2013-01-01

    Affinity zones are defined as areas within which air quality displays consistent behaviour over space and time. Constructed using multivariate statistical techniques and physiographic and landscape variables reflecting underlying sources and spatial patterns of air pollution, affinity zones provide a spatial structure suited to exploring the representativity of monitoring networks and as a basis for air pollution mapping and exposure assessment. The affinity zone method is demonstrated using European air pollution monitoring sites, and environmental data compiled within a 1 km GIS. Organised into three main stages, this method involves: (i) indicator selection, using principal components analysis, (ii) zonation by cluster analysis to classify areas into distinct types, and (iii) site allocation, to confirm similarity within affinity zones in terms of monitored air pollution concentrations. Ten interpretable and coherent air pollution affinity zones were constructed for Europe, including two rural zones and eight related to different types of densely populated and built up environments. Concentrations between affinity zones differed significantly for NO(2) background and traffic sites and for PM(10) traffic sites only. Not all zones, however, were found to be sufficiently represented by monitoring sites, illustrating the importance of affinity zones in identifying deficiencies in monitoring networks. Spatial modelling within affinity zones is also demonstrated, showing that simple kriging of background NO(2) concentrations within zones (compared to kriging ignoring zones) produced a ca. 22% reduction in errors and increased R(2) by 0.25 at reserved validation monitoring sites. The affinity zone method developed here is a robust, statistical approach that can be used for evaluating the representativity of routine monitoring networks often used in continental level environmental and health risk assessments.

  10. MISR Aerosol Air Mass Type Mapping over Mega-City: Validation and Applications

    NASA Astrophysics Data System (ADS)

    Patadia, F.; Kahn, R. A.

    2010-12-01

    Most aerosol air-quality monitoring in mega-city environments is done from scattered ground stations having detailed chemical and optical sampling capabilities. Satellite instruments such as the Multi-angle Imaging SpectroRadiometer (MISR) can retrieve total-column Aerosol Optical Depth (AOD), along with some information about particle microphysical properties. Although the particle property information from MISR is much less detailed than that obtained from the ground sampling stations, the coverage is extensive, making it possible to put individual surface observations into the context of regional aerosol air mass types. This paper presents an analysis of MISR aerosol observations made coincident with aircraft and ground-based instruments during the INTEX-B field campaign. These detailed comparisons of satellite aerosol property retrievals against dedicated field measurements provide the opportunity to validate the retrievals quantitatively at a regional level, and help to improve aerosol representation in retrieval algorithms. Validation of MISR retrieved AOD and other aerosol properties over the INTEX-B study region in and around Mexico City will be presented. MISR’s ability to distinguish among aerosol air mass types will be discussed. The goal of this effort is to use the MISR aerosol property retrievals for mapping both aerosol air mass type and AOD gradients in mega-city environments over the decade-plus that MISR has made global observations.

  11. Multichannel temperature controller for hot air solar house

    NASA Technical Reports Server (NTRS)

    Currie, J. R.

    1979-01-01

    This paper describes an electronic controller that is optimized to operate a hot air solar system. Thermal information is obtained from copper constantan thermocouples and a wall-type thermostat. The signals from the thermocouples are processed through a single amplifier using a multiplexing scheme. The multiplexing reduces the component count and automatically calibrates the thermocouple amplifier. The processed signals connect to some simple logic that selects one of the four operating modes. This simple, inexpensive, and reliable scheme is well suited to control hot air solar systems.

  12. High-precision diode-laser-based temperature measurement for air refractive index compensation

    SciTech Connect

    Hieta, Tuomas; Merimaa, Mikko; Vainio, Markku; Seppae, Jeremias; Lassila, Antti

    2011-11-01

    We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements, it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlen equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilizes direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well-matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially nonhomogeneous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using a 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement.

  13. Effect of optimizing supply water temperature and air volume on a VAV system

    SciTech Connect

    Karino, Naoki; Shiba, Takashi; Ito, Koichi; Yokoyama, Ryohei

    1999-07-01

    An optimal planning method is proposed for an air conditioning system composed of heat pump chillers and variable air volume (VAV) units. Supply water temperature, supply air volume, and thickness of heat insulation material are determined optimally so as to minimize the annual total cost of the system in consideration of equipment capacities and annual operation for the cooling load varying through a year. Through a numerical study on the system planned for an office building, influences of supply water/air temperatures and air volume on the system are investigated from the viewpoint of long-term economics. As a result, it is shown that the annual energy charge of the optimal VAV system can be reduced considerably in comparison with that of the optimal constant air volume (CAV) system, and that the effect of the energy conservation of the former system is large enough.

  14. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region

    PubMed Central

    Oikawa, P. Y.; Ge, C.; Wang, J.; Eberwein, J. R.; Liang, L. L.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-01-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality. PMID:26556236

  15. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region.

    PubMed

    Oikawa, P Y; Ge, C; Wang, J; Eberwein, J R; Liang, L L; Allsman, L A; Grantz, D A; Jenerette, G D

    2015-11-10

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality.

  16. Oxide modified air electrode surface for high temperature electrochemical cells

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1992-01-01

    An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

  17. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  18. Improved Temperature Sounding and Quality Control Methodology Using AIRS/AMSU Data: The AIRS Science Team Version 5 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John M.; Iredell, Lena; Keita, Fricky

    2009-01-01

    This paper describes the AIRS Science Team Version 5 retrieval algorithm in terms of its three most significant improvements over the methodology used in the AIRS Science Team Version 4 retrieval algorithm. Improved physics in Version 5 allows for use of AIRS clear column radiances in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of clear column radiances .R(sub i) for all channels. This new approach allows for the generation of more accurate values of .R(sub i) and T(p) under most cloud conditions. Secondly, Version 5 contains a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 also contains for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology, referred to as AIRS Version 5 AO, was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Results are shown comparing the relative performance of the AIRS Version 4, Version 5, and Version 5 AO for the single day, January 25, 2003. The Goddard DISC is now generating and distributing products derived using the AIRS Science Team Version 5 retrieval algorithm. This paper also described the Quality Control flags contained in the DISC AIRS/AMSU retrieval products and their intended use for scientific research purposes.

  19. Estimation of Surface Air Temperature Over Central and Eastern Eurasia from MODIS Land Surface Temperature

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.

    2011-01-01

    Surface air temperature (T(sub a)) is a critical variable in the energy and water cycle of the Earth.atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T(sub a) from satellite remotely sensed land surface temperature (T(sub s)) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T(sub a) and MODIS T(sub s). The relationships between the maximum T(sub a) and daytime T(sub s) depend significantly on land cover types, but the minimum T(sub a) and nighttime T(sub s) have little dependence on the land cover types. The largest difference between maximum T(sub a) and daytime T(sub s) appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T(sub a) were estimated from 1 km resolution MODIS T(sub s) under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T(sub a) were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T(sub a) varies from 2.4 C over closed shrublands to 3.2 C over grasslands, and the MAE of the estimated minimum Ta is about 3.0 C.

  20. Preliminary verification of instantaneous air temperature estimation for clear sky conditions based on SEBAL

    NASA Astrophysics Data System (ADS)

    Zhu, Shanyou; Zhou, Chuxuan; Zhang, Guixin; Zhang, Hailong; Hua, Junwei

    2017-02-01

    Spatially distributed near surface air temperature at the height of 2 m is an important input parameter for the land surface models. It is of great significance in both theoretical research and practical applications to retrieve instantaneous air temperature data from remote sensing observations. An approach based on Surface Energy Balance Algorithm for Land (SEBAL) to retrieve air temperature under clear sky conditions is presented. Taking the meteorological measurement data at one station as the reference and remotely sensed data as the model input, the research estimates the air temperature by using an iterative computation. The method was applied to the area of Jiangsu province for nine scenes by using MODIS data products, as well as part of Fujian province, China based on four scenes of Landsat 8 imagery. Comparing the air temperature estimated from the proposed method with that of the meteorological station measurement, results show that the root mean square error is 1.7 and 2.6 °C at 1000 and 30 m spatial resolution respectively. Sensitivity analysis of influencing factors reveals that land surface temperature is the most sensitive to the estimation precision. Research results indicate that the method has great potentiality to be used to estimate instantaneous air temperature distribution under clear sky conditions.

  1. Maps of the little bangs through energy density and temperature fluctuations

    SciTech Connect

    Basu, Sumit Chatterjee, Rupa; Nayak, Tapan K.

    2016-01-22

    Heavy-ion collisions at ultra-relativistic energies are often referred to as little bangs. We propose for the first time to map the heavy-ion collisions at ultra-relativistic energies, similar to the maps of the cosmic microwave background radiation, using fluctuations of energy density and temperature in small phase space bins. We study the evolution of fluctuations at each stage of the collision using an event-by-event hydrodynamic framework. We demonstrate the feasibility of making fluctuation maps from experimental data and its usefulness in extracting considerable information regarding the early stages of the collision and its evolution.

  2. A map of the temperature of interstellar dust in the Milky Way Galaxy

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A map of the temperature of interstellar dust in the Milky Way Galaxy derived from FIRAS sub-millimeter data. The map is a projection of the full sky in Galactic coordinates. The plane of the Milky Way is horizontal in the middle of the map with the Galactic center at the center. At high frequencies, the continuum in a FIRAS spectrum is dominated by thermal dust emission; at low frequencies, the cosmic microwave background dominates. A single-temperature dust model (with 1.55 adopted as the emissivity spectral index) was used to make this map. Different models can be used and assumptions made, and corresponding temperature and optical depth maps can be derived straightforwardly from the FIRAS Continuum Spectrum Maps (see 'About the Data Products' in the FIRAS section of the COBE Home Page). Reach et al. ( 1995, ApJ, 451, 188, 'Far-Infrared Spectral Observations of the Galaxy by COBE'), for example, report evidence for a ubiquitous cold (5 K) dust component.

  3. A Review of the Thermodynamic, Transport, and Chemical Reaction Rate Properties of High-temperature Air

    NASA Technical Reports Server (NTRS)

    Hansen, C Frederick; Heims, Steve P

    1958-01-01

    Thermodynamic and transport properties of high temperature air, and the reaction rates for the important chemical processes which occur in air, are reviewed. Semiempirical, analytic expressions are presented for thermodynamic and transport properties of air. Examples are given illustrating the use of these properties to evaluate (1) equilibrium conditions following shock waves, (2) stagnation region heat flux to a blunt high-speed body, and (3) some chemical relaxation lengths in stagnation region flow.

  4. Assessing the Potential of the AIRS Retrieved Surface Temperature for 6-Hour Average Temperature Forecast in River Forecast Centers

    NASA Astrophysics Data System (ADS)

    Ding, F.; Theobald, M.; Vollmer, B.; Savtchenko, A. K.; Hearty, T. J.; Esfandiari, A. E.

    2012-12-01

    Producing timely and accurate water forecast and information is the mission of National Weather Service River Forecast Centers (NWS RFCs) of National Oceanic and Atmospheric Administration (NOAA). The river forecast system in RFCs requires average surface temperature in the fixed 6-hour period 000-0600, 0600-1200, 1200-1800, and 1200-0000 UTC. The current logic of RFC temperature forecast relies on ingest of point values of daytime maximum and nighttime minimum temperature. Meanwhile, the mean temperature for the 6-hour period is estimated from a weighted average of daytime maximum and nighttime minimum temperature. The Atmospheric Infrared Sounder (AIRS) in the first high spectral resolution infrared sounder on board the Aqua satellite which was launched in May 2002 and follows a Sun-synchronous polar orbit. It is aimed to produce high resolution atmospheric profile and surface atmospheric parameters. As Aqua crosses the equator at about 1330 and 0130 local time, the AIRS retrieved surface temperature may represent daytime maximum and nighttime minimum value. Comparing to point observation from surface weather stations which are often sparse over the less-populated area and are unevenly distributed, satellite may obtain better area averaged observation. This test study assesses the potential of using AIRS retrieved surface temperature to forecast 6-hour average temperature for NWS RFCs. The California Nevada RFC is selected due to the poor coverage of surface observation in the mountainous region and spring snow melting. The study focuses on the March to May spring season when water from snowpack melting often plays important role in flood. AIRS retrieved temperature and surface weather station data set will be used to derive statistical weighting coefficient for 6-hour average temperature forecast. The resulting forecast biases and errors will be the main indicators of the potential usage. All study results will be presented in the meeting.

  5. Transport properties of high-temperature air in a magnetic field

    SciTech Connect

    Bruno, D.; Capitelli, M.; Catalfamo, C.; Giordano, D.

    2011-01-15

    Transport properties of equilibrium air plasmas in a magnetic field are calculated with the Chapman-Enskog method. The range considered for the temperature is [50-50 000] K and for the magnetic induction is [0-300] T.

  6. Biodiesel and Cold Temperature Effects on Speciated Mobile Source Air Toxics from Modern Diesel Trucks

    EPA Science Inventory

    Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...

  7. Biodiesel and Cold Temperature Effect on Speciated Mobile Source Air Toxics from Modern Diesel Trucks

    EPA Science Inventory

    Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...

  8. High-temperature stabilization by air of a pyrophoric catalyst for the synthesis of ammonia

    SciTech Connect

    Krylova, A.V.; Ustimenko, G.A.

    1982-12-01

    The reaction of a catalyst for the synthesis of ammonia with air at 480 to 520/sup 0/C leads to the formation on the surface of a thin protective oxide structure that eliminates its pyrophoric character. High-temperature stabilization by air is a considerably faster process than passivation and leads to the production of catalysts with increased resistance to oxidation.

  9. Temperature and Humidity Independent Control Research on Ground Source Heat Pump Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Chen, G.; Wang, L. L.

    Taking green demonstration center building air conditioning system as an example, this paper presents the temperature and humidity independent control system combined with ground source heat pump system, emphasis on the design of dry terminal device system, fresh air system and ground source heat pump system.

  10. Improving Forecast Skill by Assimilation of Quality-controlled AIRS Temperature Retrievals under Partially Cloudy Conditions

    NASA Technical Reports Server (NTRS)

    Reale, O.; Susskind, J.; Rosenberg, R.; Brin, E.; Riishojgaard, L.; Liu, E.; Terry, J.; Jusem, J. C.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite has been long recognized as an important contributor towards the improvement of weather forecasts. At this time only a small fraction of the total data produced by AIRS is being used by operational weather systems. In fact, in addition to effects of thinning and quality control, the only AIRS data assimilated are radiance observations of channels unaffected by clouds. Observations in mid-lower tropospheric sounding AIRS channels are assimilated primarily under completely clear-sky conditions, thus imposing a very severe limitation on the horizontal distribution of the AIRS-derived information. In this work it is shown that the ability to derive accurate temperature profiles from AIRS observations in partially cloud-contaminated areas can be utilized to further improve the impact of AIRS observations in a global model and forecasting system. The analyses produced by assimilating AIRS temperature profiles obtained under partial cloud cover result in a substantially colder representation of the northern hemisphere lower midtroposphere at higher latitudes. This temperature difference has a strong impact, through hydrostatic adjustment, in the midtropospheric geopotential heights, which causes a different representation of the polar vortex especially over northeastern Siberia and Alaska. The AIRS-induced anomaly propagates through the model's dynamics producing improved 5-day forecasts.

  11. Improving forecast skill by assimilation of quality-controlled AIRS temperature retrievals under partially cloudy conditions

    NASA Astrophysics Data System (ADS)

    Reale, O.; Susskind, J.; Rosenberg, R.; Brin, E.; Liu, E.; Riishojgaard, L. P.; Terry, J.; Jusem, J. C.

    2008-04-01

    The National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite is now recognized as an important contributor towards the improvement of weather forecasts. At this time only a small fraction of the total data produced by AIRS is being used by operational weather systems. In fact, in addition to effects of thinning and quality control, the only AIRS data assimilated are radiance observations of channels unaffected by clouds. Observations in mid-lower tropospheric sounding AIRS channels are assimilated primarily under completely clear-sky conditions, thus imposing a very severe limitation on the horizontal distribution of the AIRS-derived information. In this work it is shown that the ability to derive accurate temperature profiles from AIRS observations in partially cloud-contaminated areas can be utilized to further improve the impact of AIRS observations in a global model and forecasting system. The analyses produced by assimilating AIRS temperature profiles obtained under partial cloud cover result in a substantially colder representation of the northern hemisphere lower midtroposphere at higher latitudes. This temperature difference has a strong impact, through hydrostatic adjustment, in the midtropospheric geopotential heights, which causes a different representation of the polar vortex especially over northeastern Siberia and Alaska. The AIRS-induced anomaly propagates through the model's dynamics producing improved 5-day forecasts.

  12. Modelling the impact of room temperature on concentrations of polychlorinated biphenyls (PCBs) in indoor air.

    PubMed

    Lyng, Nadja Lynge; Clausen, Per Axel; Lundsgaard, Claus; Andersen, Helle Vibeke

    2016-02-01

    Buildings contaminated with polychlorinated biphenyls (PCBs) are a health concern for the building occupants. Inhalation exposure is linked to indoor air concentrations of PCBs, which are known to be affected by indoor temperatures. In this study, a highly PCB contaminated room was heated to six temperature levels between 20 and 30 C, i.e. within the normal fluctuation of indoor temperatures, while the air exchange rate was constant. The steady-state air concentrations of seven PCBs were determined at each temperature level. A model based on Clausius-Clapeyron equation, ln(P) = -ΔH/RT + a(0), where changes in steady-state air concentrations in relation to temperature, was tested. The model was valid for PCB-28, PCB-52 and PCB-101; the four other congeners were sporadic or non-detected. For each congener, the model described a large proportion (R(2)>94%) of the variation in indoor air PCB levels. The results showed that one measured concentration of PCB at a known steady-state temperature can be used to predict the steady-state concentrations at other temperatures under circumstances where e.g. direct sunlight does not influence temperatures and the air exchange rate is constant. The model was also tested on field data from a PCB remediation case in an apartment in another contaminated building complex where PCB concentrations and temperature were measured simultaneously and regularly throughout one year. The model fitted relatively well with the regression of measured PCB air concentrations, ln(P) vs. 1/T, at varying temperature between 16.3 and 28.2 °C, even though the measurements were carried out under uncontrolled environmental condition.

  13. Increasing influence of air temperature on upper Colorado River streamflow

    USGS Publications Warehouse

    Woodhouse, Connie A.; Pederson, Gregory T.; Morino, Kiyomi; McAfee, Stephanie A.; McCabe, Gregory

    2016-01-01

    This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture can result in flow deficits of similar magnitude, but recent droughts have been amplified by warmer temperatures that exacerbate the effects of relatively modest precipitation deficits. Since 1988, a marked increase in the frequency of warm years with lower flows than expected, given precipitation, suggests continued warming temperatures will be an increasingly important influence in reducing future UCRB water supplies.

  14. Increasing influence of air temperature on upper Colorado River streamflow

    NASA Astrophysics Data System (ADS)

    Woodhouse, Connie A.; Pederson, Gregory T.; Morino, Kiyomi; McAfee, Stephanie A.; McCabe, Gregory J.

    2016-03-01

    This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture can result in flow deficits of similar magnitude, but recent droughts have been amplified by warmer temperatures that exacerbate the effects of relatively modest precipitation deficits. Since 1988, a marked increase in the frequency of warm years with lower flows than expected, given precipitation, suggests continued warming temperatures will be an increasingly important influence in reducing future UCRB water supplies.

  15. Wideband Arrhythmia-Insensitive-Rapid (AIR) Pulse Sequence for Cardiac T1 mapping without Image Artifacts induced by ICD

    PubMed Central

    Hong, KyungPyo; Jeong, Eun-Kee; Wall, T. Scott; Drakos, Stavros G.; Kim, Daniel

    2015-01-01

    Purpose To develop and evaluate a wideband arrhythmia-insensitive-rapid (AIR) pulse sequence for cardiac T1 mapping without image artifacts induced by implantable-cardioverter-defibrillator (ICD). Methods We developed a wideband AIR pulse sequence by incorporating a saturation pulse with wide frequency bandwidth (8.9 kHz), in order to achieve uniform T1 weighting in the heart with ICD. We tested the performance of original and “wideband” AIR cardiac T1 mapping pulse sequences in phantom and human experiments at 1.5T. Results In 5 phantoms representing native myocardium and blood and post-contrast blood/tissue T1 values, compared with the control T1 values measured with an inversion-recovery pulse sequence without ICD, T1 values measured with original AIR with ICD were considerably lower (absolute percent error >29%), whereas T1 values measured with wideband AIR with ICD were similar (absolute percent error <5%). Similarly, in 11 human subjects, compared with the control T1 values measured with original AIR without ICD, T1 measured with original AIR with ICD was significantly lower (absolute percent error >10.1%), whereas T1 measured with wideband AIR with ICD was similar (absolute percent error <2.0%). Conclusion This study demonstrates the feasibility of a wideband pulse sequence for cardiac T1 mapping without significant image artifacts induced by ICD. PMID:25975192

  16. Rate constants for chemical reactions in high-temperature nonequilibrium air

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.

    1986-01-01

    In the nonequilibrium atmospheric chemistry regime that will be encountered by the proposed Aeroassisted Orbital Transfer Vehicle in the upper atmosphere, where air density is too low for thermal and chemical equilibrium to be maintained, the detailed high temperature air chemistry plays a critical role in defining radiative and convective heating loads. Although vibrational and electronic temperatures remain low (less than 15,000 K), rotational and translational temperatures may reach 50,000 K. Attention is presently given to the effects of multiple temperatures on the magnitudes of various chemical reaction rate constants, for the cases of both bimolecular exchange reactions and collisional excitation and dissociation reactions.

  17. Emperor penguin body surfaces cool below air temperature

    PubMed Central

    McCafferty, D. J.; Gilbert, C.; Thierry, A.-M.; Currie, J.; Le Maho, Y.; Ancel, A.

    2013-01-01

    Emperor penguins Aptenodytes forsteri are able to survive the harsh Antarctic climate because of specialized anatomical, physiological and behavioural adaptations for minimizing heat loss. Heat transfer theory predicts that metabolic heat loss in this species will mostly depend on radiative and convective cooling. To examine this, thermal imaging of emperor penguins was undertaken at the breeding colony of Pointe Géologie in Terre Adélie (66°40′ S 140° 01′ E), Antarctica in June 2008. During clear sky conditions, most outer surfaces of the body were colder than surrounding sub-zero air owing to radiative cooling. In these conditions, the feather surface will paradoxically gain heat by convection from surrounding air. However, owing to the low thermal conductivity of plumage any heat transfer to the skin surface will be negligible. Future thermal imaging studies are likely to yield further insights into the adaptations of this species to the Antarctic climate. PMID:23466479

  18. Cavity Ring Down Absorption of Oxygen in Air as a Temperature Sensor

    NASA Astrophysics Data System (ADS)

    Manzanares, Carlos; Nyaupane, Parashu R.

    2016-06-01

    The A-band of oxygen has been measured at low resolution at temperatures between 90 K and 373 K using the phase shift cavity ring down (PS-CRD) technique. For temperatures between 90 K and 295 K, the PS-CRD technique presented here involves an optical cavity attached to a cryostat. The static cell and mirrors of the optical cavity are all inside a vacuum chamber at the same temperature of the cryostat. The temperature of the cell can be changed between 77 K and 295 K. For temperatures above 295 K, a hollow glass cylindrical tube without windows has been inserted inside an optical cavity to measure the temperature of air flowing through the tube. The cavity consists of two highly reflective mirrors which are mounted parallel to each other and separated by a distance of 93 cm. In this experiment, air is passed through a heated tube. The temperature of the air flowing through the tube is determined by measuring the intensity of the oxygen absorption as a function of the wavenumber. The A-band of oxygen is measured between 298 K and 373 K, with several air flow rates. Accuracy of the temperature measurement is determined by comparing the calculated temperature from the spectra with the temperature obtained from a calibrated thermocouple inserted at the center of the tube.

  19. Enhancing the High Temperature Capability of Nanocrystalline Alloys: Utilizing Thermodynamic Stability Maps to Mitigate Grain Growth Through Solute Selection

    DTIC Science & Technology

    2013-12-01

    Army Research Laboratory Enhancing the High Temperature Capability of Nanocrystalline Alloys : Utilizing Thermodynamic Stability Maps to Mitigate...Laboratory Aberdeen Proving Ground, MD 21005 ARL-TR-6743 December 2013 Enhancing the High Temperature Capability of Nanocrystalline Alloys : Utilizing...Final Enhancing the High Temperature Capability of Nanocrystalline Alloys : Utilizing Thermodynamic Stability Maps to Mitigate Grain Growth Through

  20. Statistical temperature profile retrievals in clear-air using passive 118-GHz O2 observations

    NASA Technical Reports Server (NTRS)

    Gasiewski, A. J.; Johnson, J. T.

    1993-01-01

    The clean-air temperature profile accuracy yielded by a localized linear statistical retrieval operator applied to passive aircraft-based 118-GHz spectra is demonstrated. A comparison of the statistically and physically derived correlation coefficients of antenna temperature and kinetic temperature furnishes a physical justification of the statistical retrieval technique. The atmospheric temperature mean and covariance significantly depend on such geophysical parameters as latitude, longitude, local season, and time, as well as the prevailing meteorological state and orographic effects.

  1. 3D volume MR temperature mapping for HIFU heating trajectory comparisons

    NASA Astrophysics Data System (ADS)

    Todd, Nick; Vyas, Urvi; de Bever, Josh; Payne, Allison; Parker, Dennis L.

    2012-10-01

    Many areas of MR-guided thermal therapy research would benefit from temperature maps with high spatial and temporal resolution that cover a large 3-D volume. This paper describes an approach to achieve these goals that is suitable for research applications where retrospective reconstruction of the temperature maps is acceptable. The method acquires undersampled data from a modified 3-D segmented EPI sequence and creates images using a temporally constrained reconstruction algorithm. The 3-D images can be zero-filled to arbitrarily small voxel spacing in all directions and then converted into temperature maps using the standard proton resonance frequency (PRF) shift technique. During HIFU heating experiments, the proposed method was used to obtain temperature maps with 1.5×1.5×3.0 mm resolution, 288×162×78 mm field of view, and 1.7 second temporal resolution. The approach is validated to demonstrate that it can accurately capture the spatial characteristics and time dynamics of rapidly changing HIFU-induced temperature distributions. An example application is presented where the method is used to analyze and compare different HIFU volumetric heating trajectories.

  2. An Air Temperature Cloud Height Precipitation Phase Determination Scheme for Surface Based Modeling

    NASA Astrophysics Data System (ADS)

    Feiccabrino, J. M.

    2015-12-01

    Many hydrological and ecological models use simple surface temperature threshold equations rather than coupling with a complex meteorological model to determine if precipitation is rain or snow. Some comparative studies have found, the most common rain/snow threshold variable, air temperature to have more precipitation phase error than dew-point or wet-bulb temperature, which account for the important secondary role of humidity in the melting and sublimation processes. However, just like surface air temperature, surface humidity is often effected by soil conditions and vegetation and is therefore not always representative of the atmospheric humidity precipitation falls through. A viable alternative to using surface humidity as a proxy for atmospheric moisture would be to adjust the rain snow threshold for changes in cloud height. The height of a cloud base above the ground gives the depth of an unsaturated layer. An unsaturated atmospheric layer should have much different melting and sublimation rates than a saturated cloud layer. Therefore, rain and snow percentages at a given surface air temperature should change with the height of the lowest cloud base. This study uses hourly observations from 12 U.S. manually augmented meteorological stations located in the Great Plains and Midwest upwind or away from major water bodies in relatively flat areas in an attempt to limit geographical influences. The surface air temperature threshold for the ground to 200 feet (under 100m) was 0.0°C, 0.6°C for 300-600 feet (100-200m), 1.1°C for 700-1200 feet (300-400m), 1.7°C for 1300-2000 feet (500-600m), and 2.2°C for 2100-3300 feet (700-1000m). Total precipitation error for these cloud height air temperature thresholds reduced the error from the single air temperature threshold 1.1°C by 15% from 14% to 12% total error between -2.2°C and 3.9°C. These air temperature cloud height thresholds resulted in 1.5% less total error than the dew-point temperature threshold 0.0

  3. Data Assimilation Experiments Using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2009-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains a number of significant improvements over Version 4. Two very significant improvements are described briefly below. 1) The AIRS Science Team Radiative Transfer Algorithm (RTA) has now been upgraded to accurately account for effects of non-local thermodynamic equilibrium on the AIRS observations. This allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval algorithm during both day and night. Following theoretical considerations, tropospheric temperature profile information is obtained almost exclusively from clear column radiances in the 4.3 micron CO2 band in the AIRS Version 5 temperature profile retrieval step. These clear column radiances are a derived product that are indicative of radiances AIRS channels would have seen if the field of view were completely clear. Clear column radiances for all channels are determined using tropospheric sounding 15 micron CO2 observations. This approach allows for the generation of accurate values of clear column radiances and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel clear column radiances. These error estimates are used for quality control of the retrieved products. Based on error estimate thresholds, each temperature profiles is assigned a characteristic pressure, pg, down to which the profile is characterized as good for use for data assimilation purposes. We have conducted forecast impact experiments assimilating AIRS quality controlled temperature profiles using the NASA GEOS-5 data assimilation system, consisting of the NCEP GSI analysis coupled with the

  4. Two major volcanic cooling episodes derived from global marine air temperature, AD 1807-1827

    NASA Astrophysics Data System (ADS)

    Chenoweth, Michael

    A new data set of global marine air temperature data for the years 1807-1827 is used to show the impact of volcanic eruptions in ˜ 1809 (unlocated) and 1815 (Tambora, Indonesia). Both eruptions produced cooling exceeding that after Krakatoa, Indonesia (1883) and Pinatubo, Philippines (1991). The ˜1809 eruption is dated to March-June 1808 based on a sudden cooling in Malaysian temperature data and maximum cooling of marine air temperature in 1809. Two large-scale calibrated proxy temperature records, one from tree-ring-density data, the other using multi-proxy sources are compared to the marine air temperature data. Correlation is highest with maximum latewood density data and lowest with the multi-proxy data.

  5. Cardiac arrhythmogenesis in urban air pollution: Optical mapping in a tissue-engineered model

    NASA Astrophysics Data System (ADS)

    Bien, Harold H.

    Recent epidemiological evidence has implicated particulate matter air pollution in cardiovascular disease. We hypothesized that inflammatory mediators released from lung macrophages after exposure to particulate matter predisposes the heart to disturbances in rhythm. Using a rational design approach, a fluorescent optical mapping system was devised to image spatiotemporal patterns of excitation in a tissue engineered model of cardiac tissue. Algorithms for automated data analysis and characterization of rhythm stability were developed, implemented, and verified. Baseline evaluation of spatiotemporal instability patterns in normal cardiac tissue was performed for comparison to an in-vitro model of particulate matter air pollution exposure. Exposure to particulate-matter activated alveolar macrophage conditioned media resulted in paradoxical functional changes more consistent with improved growth. These findings might be indicative of a "stress" response to particulate-matter induced pulmonary inflammation, or may be specific to the animal model (neonatal rat) employed. In the pursuit of elucidating the proposed pathway, we have also furthered our understanding of fundamental behaviors of arrhythmias in general and established a model where further testing might ultimately reveal the mechanism for urban air pollution associated cardiovascular morbidity.

  6. Comparison of Vertical Soundings and Sidewall Air Temperature Measurements in a Small Alpine Basin

    SciTech Connect

    Whiteman, Charles D.; Eisenbach, Stefan; Pospichal, Bernhard; Steinacker, Reinhold

    2004-11-01

    Tethered balloon soundings from two sites on the floor of a 1-km diameter limestone sinkhole in the Eastern Alps are compared with pseudo-vertical temperature ‘soundings’ from three lines of temperature data loggers on the basin’s northwest, southwest and southeast sidewalls. Under stable nighttime conditions with low background winds, the pseudo-vertical profiles from all three lines were good proxies for free air temperature soundings over the basin center, with a mean nighttime cold temperature bias of about 0.4°C and a standard deviation of 0.4°C. Cold biases were highest in the upper basin where relatively warm air subsides to replace air that spills out of the basin through the lowest altitude saddle. On a windy night, standard deviations increased to 1 - 2°C. After sunrise, the varying exposures of the data loggers to sunlight made the pseudo-vertical profiles less useful as proxies for free air soundings. The good correspondence between sidewall and free air temperatures during high static stability conditions suggests that sidewall soundings will prove useful in monitoring temperatures and vertical temperature gradients in the sinkhole. The sidewall soundings can produce more frequent profiles at less cost than tethersondes or rawinsondes, and provide valuable advantages for some types of meteorological analyses.

  7. Air temperature distribution over a debris covered glacier in the Nepalese Himalayas

    NASA Astrophysics Data System (ADS)

    Pellicciotti, Francesca; Petersen, Lene; Wicki, Simon; Carenzo, Marco; Immerzeel, Walter

    2013-04-01

    Air temperature is a key control in the exchange of energy fluxes at the glacier-atmosphere interface and also the main input variable in many of the melt models (both energy balance or temperature-index type of models) currently used to predict glacier melt across a variety of scales. The commonly used approach to derive distributed temperature inputs is extrapolation from point measurements, often located outside the glacier surface, with a lapse rate that is assumed to be constant in time and uniform in space. Previous work for debris free glaciers has shown that lapse rates depend on several factors such as katabatic wind, humidity and the presence of clouds and that they vary in space and time. A dominant control however seems to be the presence of katabatic wind. For debris covered glaciers, the driving forces of air temperature are likely to be different but little is known because of the scarcity of field observations. Few preliminary studies have suggested that there is a strong coupling between surface and 2 m air temperature, while strong katabatic wind does not develop on debris covered tongues. In this study, we examine the variability in air temperature and lapse rates, as well as its atmospheric controls under different meteorological settings for the debris covered Lirung Glacier in the Nepalese Himalayas. We use a recently collected data set of air and surface temperature at a network of locations on the glacier tongue during the pre-monsoon season and the entire monsoon season of 2012. Additionally an AWS was installed on the glacier allowing the collection of meteorological observations. We investigate differences in air temperature during different climatic conditions (monsoon vs. dry period, upvalley vs. downvalley wind, cloudy vs. clear-sky, etc.). We identify the main controls on temperature and discuss how appropriate the application of a temperature lapse rate is over a debris covered glacier by investigating the correlation between

  8. Dependence of radon levels in Postojna Cave on outside air temperature

    NASA Astrophysics Data System (ADS)

    Gregorič, A.; Zidanšek, A.; Vaupotič, J.

    2011-05-01

    Postojna Cave is the largest of 21 show caves in Slovenia. The radon concentration there was measured continuously in the Great Mountain hall from July 2005 to October 2009 and ranged from about 200 Bq m-3 in winter to about 3 kBq m-3 in summer. The observed seasonal pattern of radon concentration is governed by air movement due to the difference in external and internal air densities, controlled mainly by air temperature. The cave behaves as a large chimney and in the cold period, the warmer cave air is released vertically through cracks and fissures to the colder outside atmosphere, enabling the inflow of fresh air with low radon levels. In summer the ventilation is minimal or reversed and the air flows from the higher to the lower openings of the cave. Our calculations have shown that the effect of the difference between outside and cave air temperatures on radon concentration is delayed for four days, presumably because of the distance of the measurement point from the lower entrance (ca. 2 km). A model developed for predicting radon concentration on the basis of outside air temperature has been checked and found to be successful.

  9. Application of high temperature air heaters to advanced power generation cycles

    SciTech Connect

    Thompson, T R; Boss, W H; Chapman, J N

    1992-03-01

    Recent developments in ceramic composite materials open up the possibility of recuperative air heaters heating air to temperatures well above the feasible with metal tubes. A high temperature air heater (HTAH) has long been recognized as a requirement for the most efficient MHD plants in order to reach high combustor flame temperatures. The application of gas turbines in coal-fired plants of all types has been impeded because of the problems in cleaning exhaust gas sufficiently to avoid damage to the turbine. With a possibility of a HTAH, such plants may become feasible on the basis of air turbine cycles, in which air is compressed and heated in the HTAH before being applied to turbine. The heat exchanger eliminates the need for the hot gas cleanup system. The performance improvement potential of advanced cycles with HTAH application including the air turbine cycle in several variations such as the DOE program on ``Coal-Fired Air Furnace Combined Cycle...,`` variations originated by the authors, and the MHD combined cycle are presented. The status of development of ceramic air heater technology is included.

  10. Thermal Coupling between Air and Ground Temperatures in the CMIP5 Historical and Future Simulations

    NASA Astrophysics Data System (ADS)

    García-García, Almudena; José Cuesta-Valero, Francisco; Beltrami, Hugo; Smerdon, Jason

    2016-04-01

    The decadal-scale thermal coupling between air and ground temperatures across North America is examined for 32 General Circulation Models (GCMs) from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). For each simulation, we evaluate the relationship between air and ground temperatures. Our results show that the transport of energy across the air-ground interface differs from observations, and among GCMs depending on each model's land-surface component. While the decadal variability among GCMs can be explained by the physics and parameterizations of each land-surface model, the spatial variability of the air-ground coupling for the historical and future simulations is associated with model treatment of the soil thermal properties as well as with processes associated with snow and vegetation cover within GCMs. The difference between air and ground temperatures at high latitudes within the majority of the CMIP5 models is related to the insulating effect of snow cover. On the other hand, the difference between air and ground temperatures at low latitudes within some of the CMIP5 models is inversely proportional to the leaf area index, due to changes in latent and sensible heat fluxes. The large variability among GCMs and the marked dependency of the results on the choice of the land-surface model illustrates the need for improving the simulation of air-ground coupling in land-surface models towards a robust simulation of near-surface processes, such as permafrost and soil carbon stability within GCMs.

  11. Characteristics of Gaseous Diffusion Flames with High Temperature Combustion Air in Microgravity

    NASA Technical Reports Server (NTRS)

    Ghaderi, M.; Gupta, A. K.

    2003-01-01

    The characteristics of gaseous diffusion flames have been obtained using high temperature combustion air under microgravity conditions. The time resolved flame images under free fall microgravity conditions were obtained from the video images obtained. The tests results reported here were conducted using propane as the fuel and about 1000 C combustion air. The burner included a 0.686 mm diameter central fuel jet injected into the surrounding high temperature combustion air. The fuel jet exit Reynolds number was 63. Several measurements were taken at different air preheats and fuel jet exit Reynolds number. The resulting hybrid color flame was found to be blue at the base of the flame followed by a yellow color flame. The length and width of flame during the entire free fall conditions has been examined. Also the relative flame length and width for blue and yellow portion of the flame has been examined under microgravity conditions. The results show that the flame length decreases and width increases with high air preheats in microgravity condition. In microgravity conditions the flame length is larger with normal temperature combustion air than high temperature air.

  12. Influence of intake air temperature on internal combustion engine operation

    NASA Astrophysics Data System (ADS)

    Birtok-Băneasă, C.; Raţiu, S.; Hepuţ, T.

    2017-01-01

    This paper presents three methods for reduce thermal losses in the intake system with improvement of airflow and thermal protection. In the experiment are involved two patented devices conceived by the author and one PhD theme device: 1- Dynamic device for air transfer, 2-Integrated thermal deflector, and, 3-Advanced thermal protection. The tests were carried on different vehicle running in real traffic and in the Internal Combustion Engines Laboratory, within the specialization “Road vehicle” belonging to the Faculty of Engineering Hunedoara, component of Politehnica University of Timişoara. The results have been processed and compared whit the ones obtained without these devices.

  13. Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels: The AIRS Version 6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002 together with ASMU-A and HSB to form a next generation polar orbiting infrared and microwave atmosphere sounding system (Pagano et al 2003). The theoretical approach used to analyze AIRS/AMSU/HSB data in the presence of clouds in the AIRS Science Team Version 3 at-launch algorithm, and that used in the Version 4 post-launch algorithm, have been published previously. Significant theoretical and practical improvements have been made in the analysis of AIRS/AMSU data since the Version 4 algorithm. Most of these have already been incorporated in the AIRS Science Team Version 5 algorithm (Susskind et al 2010), now being used operationally at the Goddard DISC. The AIRS Version 5 retrieval algorithm contains three significant improvements over Version 4. Improved physics in Version 5 allowed for use of AIRS clear column radiances (R(sub i)) in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations were used primarily in the generation of clear column radiances (R(sub i)) for all channels. This new approach allowed for the generation of accurate Quality Controlled values of R(sub i) and T(p) under more stressing cloud conditions. Secondly, Version 5 contained a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 contained for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Susskind et al 2010 shows that Version 5 AIRS Only sounding are only slightly degraded from the AIRS/AMSU soundings, even at large fractional cloud

  14. Apparatus and Method for Measuring Air Temperature Ahead of an Aircraft for Controlling a Variable Inlet/Engine Assembly

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    2001-01-01

    The apparatus and method employ remote sensing to measure the air temperature a sufficient distance ahead of the aircraft to allow time for a variable inlet/engine assembly to be reconfigured in response to the measured temperature, to avoid inlet unstart and/or engine compressor stall. In one embodiment, the apparatus of the invention has a remote sensor for measuring at least one air temperature ahead of the vehicle and an inlet control system for varying the inlet. The remote sensor determines a change in temperature value using at least one temperature measurement and prior temperature measurements corresponding to the location of the aircraft. The control system uses the change in air temperature value to vary the inlet configuration to maintain the position of the shock wave during the arrival of the measured air in the inlet. In one embodiment, the method of the invention includes measuring at least one air temperature ahead of the vehicle, determining an air temperature at the vehicle from prior air temperature measurements, determining a change in temperature value using the air temperature at the vehicle and the at least one air temperature measurement ahead of the vehicle, and using the change in temperature value to-reposition the airflow inlet, to cause the shock wave to maintain substantially the same position within the inlet as the airflow temperature changes within the inlet.

  15. Analysis of nocturnal air temperature in districts using mobile measurements and a cooling indicator

    NASA Astrophysics Data System (ADS)

    Leconte, François; Bouyer, Julien; Claverie, Rémy; Pétrissans, Mathieu

    2016-08-01

    The urban heat island phenomenon is generally defined as an air temperature difference between a city center and the non-urbanized rural areas nearby. However, this description does not encompass the intra-urban temperature differences that exist between neighborhoods in a city. This study investigates the air temperature dynamics of neighborhoods for meteorological conditions that lead to important urban heat island amplitude. Local climate zones (LCZs) have been determined in Nancy, France, and mobile screen-height air temperature measurements are performed using an instrumented vehicle. Initially, hourly measurements are performed within four different LCZs. These results show that air temperature within LCZ demonstrates a nocturnal cooling in two phases, i.e., a first phase between 1 to 3 h before sunset and 3 to 5 h after sunset, and a second phase from 3 to 5 h after sunset to sunrise. During phase 1, neighborhoods exhibit different cooling rate values and air temperature gaps develop between districts, while during phase 2, cooling rates tend to be analogous. Then, a larger meteorological data set is used to investigate these two phases for a selection of 13 LCZs. Normalized cooling rates are calculated between daytime measures and nighttime measures in order to quantify the air temperature dynamics of the studied areas during phase 1. Considering this indicator, three groups are emerging: LCZ compact midrise and open midrise with mean normalized cooling rate values of 0.09 h -1 LCZ large lowrise and open lowrise/sparsely built with mean normalized cooling rate values of 0.011 h -1 LCZ low plants with mean normalized cooling rate values of 0.014 h -1 Results indicate that the relative position of LCZ within the conurbation does not drive air temperature dynamics during phase 1. In addition, measures performed during phase 2 tend to illustrate that cooling rates are similar to all LCZ during this period.

  16. The relationship between radiant heat, air temperature and thermal comfort at rest and exercise.

    PubMed

    Guéritée, Julien; Tipton, Michael J

    2015-02-01

    The aims of the present work were to investigate the relationships between radiant heat load, air velocity and body temperatures with or without coincidental exercise to determine the physiological mechanisms that drive thermal comfort and thermoregulatory behaviour. Seven male volunteers wearing swimming trunks in 18°C, 22°C or 26°C air were exposed to increasing air velocities up to 3 m s(-1) and self-adjusted the intensity of the direct radiant heat received on the front of the body to just maintain overall thermal comfort, at rest or when cycling (60 W, 60 rpm). During the 30 min of the experiments, skin and rectal temperatures were continuously recorded. We hypothesized that mean body temperature should be maintained stable and the intensity of the radiant heat and the mean skin temperatures would be lower when cycling. In all conditions, mean body temperature was lower when facing winds of 3 m s(-1) than during the first 5 min, without wind. When facing winds, in all but the 26°C air, the radiant heat was statistically higher at rest than when exercising. In 26°C air mean skin temperature was lower at rest than when exercising. No other significant difference was observed. In all air temperatures, high correlation coefficients were observed between the air velocity and the radiant heat load. Other factors that we did not measure may have contributed to the constant overall thermal comfort status despite dropping mean skin and body temperatures. It is suggested that the allowance to behaviourally adjust the thermal environment increases the tolerance of cold discomfort.

  17. BOREAS RSS-17 Stem, Soil, and Air Temperature Data

    NASA Technical Reports Server (NTRS)

    Zimmerman, Reiner; McDonald, Kyle C.; Way, JoBea; Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS RSS-17 team collected several data sets in support of its research in monitoring and analyzing environmental and phenological states using radar data. This data set consists of tree bole and soil temperature measurements from various BOREAS flux tower sites. Temperatures were measured with thermistors implanted in the hydroconductive tissue of the trunks of several trees at each site and at various depths in the soil. Data were stored on a data logger at intervals of either 1 or 2 hours. The majority of the data were acquired between early 1994 and early 1995. The primary product of this data set is the diurnal stem temperature measurements acquired for selected trees at five BOREAS tower sites. The data are provided in tabular ASCII format. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  18. Description of data on the Nimbus 7 LIMS map archive tape: Temperature and geopotential height

    NASA Technical Reports Server (NTRS)

    Haggard, K. V.; Remsberg, E. E.; Grose, W. L.; Russell, J. M., III; Marshall, B. T.; Lingenfelser, G.

    1986-01-01

    The process by which the analysis of the Limb Infared Monitor of the Stratosphere (LIMS) experiment data were used to produce estimates of synoptic maps of temperature and geopotential height is described. In addition to a detailed description of the analysis procedure, several interesting features in the data are discussed and these features are used to demonstrate how the analysis procedure produced the final maps and how one can estimate the uncertainties in the maps. In addition, features in the analysis are noted that would influence how one might use, or interpret, the results. These include subjects such as smoothing and the interpretation of wave components. While some suggestions are made for an improved analysis of the data, it is shown that, in general, the maps are an excellent estimation of the synoptic fields.

  19. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    SciTech Connect

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue Fang, Jing

    2015-10-15

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  20. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue; Fang, Jing

    2015-10-01

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  1. Mapping real-time air pollution health risk for environmental management: Combining mobile and stationary air pollution monitoring with neural network models.

    PubMed

    Adams, Matthew D; Kanaroglou, Pavlos S

    2016-03-01

    Air pollution poses health concerns at the global scale. The challenge of managing air pollution is significant because of the many air pollutants, insufficient funds for monitoring and abatement programs, and political and social challenges in defining policy to limit emissions. Some governments provide citizens with air pollution health risk information to allow them to limit their exposure. However, many regions still have insufficient air pollution monitoring networks to provide real-time mapping. Where available, these risk mapping systems either provide absolute concentration data or the concentrations are used to derive an Air Quality Index, which provides the air pollution risk for a mix of air pollutants with a single value. When risk information is presented as a single value for an entire region it does not inform on the spatial variation within the region. Without an understanding of the local variation residents can only make a partially informed decision when choosing daily activities. The single value is typically provided because of a limited number of active monitoring units in the area. In our work, we overcome this issue by leveraging mobile air pollution monitoring techniques, meteorological information and land use information to map real-time air pollution health risks. We propose an approach that can provide improved health risk information to the public by applying neural network models within a framework that is inspired by land use regression. Mobile air pollution monitoring campaigns were conducted across Hamilton from 2005 to 2013. These mobile air pollution data were modelled with a number of predictor variables that included information on the surrounding land use characteristics, the meteorological conditions, air pollution concentrations from fixed location monitors, and traffic information during the time of collection. Fine particulate matter and nitrogen dioxide were both modelled. During the model fitting process we reserved

  2. Summertime Temperatures in Buildings Without Air-Conditioning.

    ERIC Educational Resources Information Center

    Loudon, A. G.

    Many modern buildings become uncomfortably warm during sunny spells in the summer, and until recently there was no simple, reliable method of assessing at the design stage whether a building would become overheated. This paper describes a method of calculating summertime temperatures which was developed at the Building Research Station, and gives…

  3. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    Johnson, R. K.

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  4. Estimation of daily mean air temperature from satellite derived radiometric data

    NASA Technical Reports Server (NTRS)

    Phinney, D.

    1976-01-01

    The Screwworm Eradication Data System (SEDS) at JSC utilizes satellite derived estimates of daily mean air temperature (DMAT) to monitor the effect of temperature on screwworm populations. The performance of the SEDS screwworm growth potential predictions depends in large part upon the accuracy of the DMAT estimates.

  5. [Verification of exhaled air temperature and heat flux in respiratory diseases as useful biomarker].

    PubMed

    Ito, Wataru; Chihara, Junichi

    2008-12-01

    Asthma, chronic obstructive pulmonary disease, and diffuse panbronchiolitis are syndromes associated with chronic airway inflammation. In the conventional definition of inflammation, local pyrexia at the site of inflammation should be observed. However, there are very few reports that have evaluated the "heat" in inflammatory respiratory diseases. We considered that the evaluation of allergic airway inflammation such as asthma might be possible by measuring the exhaled air temperature, and devised an original device that stabilizes the flow rate, which is a very important factor for the direct measurement of heat. Moreover, an expiratory heat flux meter, which can detect a change in air temperature more precisely and immediately, was also incorporated into our original device. As a result, we succeeded in the measurement and evaluation of the heat flux and air temperature in healthy subjects and asthmatic patients, and, further, the air temperature was straightforwardly evaluated by a portable spirometer including a temperature sensor. These findings suggest that the heat flux and temperature of exhaled air can be used to objectively monitor airway inflammation noninvasively, and assist in the diagnosis/monitoring of inflammatory respiratory diseases, including asthma.

  6. Effects of ambient room temperature on cold air cooling during laser hair removal.

    PubMed

    Ram, Ramin; Rosenbach, Alan

    2007-09-01

    Forced air cooling is a well-established technique that protects the epidermis during laser heating of deeper structures, thereby allowing for increased laser fluences. The goal of this prospective study was to identify whether an elevation in ambient room temperature influences the efficacy of forced air cooling. Skin surface temperatures were measured on 24 sites (12 subjects) during cold air exposure in examination rooms with ambient temperatures of 72 degrees F (22.2 degrees C) and 82 degrees F (27.8 degrees C), respectively. Before cooling, mean skin surface temperature was 9 degrees F (5 degrees C) higher in the warmer room (P < 0.01). Immediately after exposure to forced air cooling (within 1 s), the skin surface temperature remained considerably higher (10.75 degrees F, or 5.8 degrees C, P < 0.01) in the warmer room. We conclude that forced air cooling in a room with an ambient temperature of 82 degrees F (27.8 degrees C) is not as effective as in a room that is at 72 degrees F (22.2 degrees C).

  7. Natural and forced air temperature variability in the Labrador region of Canada during the past century

    NASA Astrophysics Data System (ADS)

    Way, Robert G.; Viau, Andre E.

    2015-08-01

    Evaluation of Labrador air temperatures over the past century (1881-2011) shows multi-scale climate variability and strong linkages with ocean-atmospheric modes of variability and external forcings. The Arctic Oscillation, Atlantic Multidecadal Oscillation, and El Nino Southern Oscillation are shown to be the dominant seasonal and interannual drivers of regional air temperature variability for most of the past century. Several global climate models show disagreement with observations on the rate of recent warming which suggests that models are currently unable to reproduce regional climate variability in Labrador air temperature. Using a combination of empirical statistical modeling and global climate models, we show that 33 % of the variability in annual Labrador air temperatures over the period 1881-2011 can be explained by natural factors alone; however, the inclusion of anthropogenic forcing increases the explained variance to 65 %. Rapid warming over the past 17 years is shown to be linked to both natural and anthropogenic factors with several anomalously warm years being primarily linked to recent anomalies in the Arctic Oscillation and North Atlantic sea surface temperatures. Evidence is also presented that both empirical statistical models and global climate models underestimate the regional air temperature response to ocean salinity anomalies and volcanic eruptions. These results provide important insight into the predictability of future regional climate impacts for the Labrador region.

  8. Prediction of air temperature for thermal comfort of people using sleeping bags: a review

    NASA Astrophysics Data System (ADS)

    Huang, Jianhua

    2008-11-01

    Six models for determining air temperatures for thermal comfort of people using sleeping bags were reviewed. These models were based on distinctive metabolic rates and mean skin temperatures. All model predictions of air temperatures are low when the insulation values of the sleeping bag are high. Nevertheless, prediction variations are greatest for the sleeping bags with high insulation values, and there is a high risk of hypothermia if an inappropriate sleeping bag is chosen for the intended conditions of use. There is, therefore, a pressing need to validate the models by wear trial and determine which one best reflects ordinary consumer needs.

  9. Noninvasive temperature mapping with MRI using chemical shift water-fat separation.

    PubMed

    Soher, Brian J; Wyatt, Cory; Reeder, Scott B; MacFall, James R

    2010-05-01

    Tissues containing both water and lipids, e.g., breast, confound standard MR proton reference frequency-shift methods for mapping temperatures due to the lack of temperature-induced frequency shift in lipid protons. Generalized Dixon chemical shift-based water-fat separation methods, such as GE's iterative decomposition of water and fat with echo asymmetry and least-squares estimation method, can result in complex water and fat images. Once separated, the phase change over time of the water signal can be used to map temperature. Phase change of the lipid signal can be used to correct for non-temperature-dependent phase changes, such as amplitude of static field drift. In this work, an image acquisition and postprocessing method, called water and fat thermal MRI, is demonstrated in phantoms containing 30:70, 50:50, and 70:30 water-to-fat by volume. Noninvasive heating was applied in an Off1-On-Off2 pattern over 50 min, using a miniannular phased radiofrequency array. Temperature changes were referenced to the first image acquisition. Four fiber optic temperature probes were placed inside the phantoms for temperature comparison. Region of interest (ROI) temperature values colocated with the probes showed excellent agreement (global mean +/- standard deviation: -0.09 +/- 0.34 degrees C) despite significant amplitude of static field drift during the experiments.

  10. Retrieval and Mapping of Soil Texture Based on Land Surface Diurnal Temperature Range Data from MODIS.

    PubMed

    Wang, De-Cai; Zhang, Gan-Lin; Zhao, Ming-Song; Pan, Xian-Zhang; Zhao, Yu-Guo; Li, De-Cheng; Macmillan, Bob

    2015-01-01

    Numerous studies have investigated the direct retrieval of soil properties, including soil texture, using remotely sensed images. However, few have considered how soil properties influence dynamic changes in remote images or how soil processes affect the characteristics of the spectrum. This study investigated a new method for mapping regional soil texture based on the hypothesis that the rate of change of land surface temperature is related to soil texture, given the assumption of similar starting soil moisture conditions. The study area was a typical flat area in the Yangtze-Huai River Plain, East China. We used the widely available land surface temperature product of MODIS as the main data source. We analyzed the relationships between the content of different particle soil size fractions at the soil surface and land surface day temperature, night temperature and diurnal temperature range (DTR) during three selected time periods. These periods occurred after rainfalls and between the previous harvest and the subsequent autumn sowing in 2004, 2007 and 2008. Then, linear regression models were developed between the land surface DTR and sand (> 0.05 mm), clay (< 0.001 mm) and physical clay (< 0.01 mm) contents. The models for each day were used to estimate soil texture. The spatial distribution of soil texture from the studied area was mapped based on the model with the minimum RMSE. A validation dataset produced error estimates for the predicted maps of sand, clay and physical clay, expressed as RMSE of 10.69%, 4.57%, and 12.99%, respectively. The absolute error of the predictions is largely influenced by variations in land cover. Additionally, the maps produced by the models illustrate the natural spatial continuity of soil texture. This study demonstrates the potential for digitally mapping regional soil texture variations in flat areas using readily available MODIS data.

  11. The temperature fields measurement of air in the car cabin by infrared camera

    NASA Astrophysics Data System (ADS)

    Pešek, M.

    2013-04-01

    The article deals with the temperature fields measurement of air using the Jenoptic Variocam infrared camera inside the car Škoda Octavia Combi II. The temperature fields with the use of auxiliary material with a high emissivity value were visualized. The measurements through the viewing window with a high transmissivity value were performed. The viewing windows on the side car door were placed. In the rear car area, the temperature fields of air on the spacious sheet of auxiliary material were visualized which is a suitable method for 2D airstreams. In the front car area, the temperature fields in the air were measured with the use of the measuring net which is suitable for 3D airstreams measuring.

  12. A temperature-mapping molecular sensor for polyurethane-based elastomers

    NASA Astrophysics Data System (ADS)

    Mason, B. P.; Whittaker, M.; Hemmer, J.; Arora, S.; Harper, A.; Alnemrat, S.; McEachen, A.; Helmy, S.; Read de Alaniz, J.; Hooper, J. P.

    2016-01-01

    We present a crosslinked polyurethane elastomer featuring a thermochromic molecular sensor for local temperature analysis. The thermochrome is a modified donor-acceptor Stenhouse adduct (DASA) that was dispersed homogeneously into the polymer blend in minuscule amounts. Rapid temperature jump measurements in a pyroprobe and impacts in a Hopkinson bar show that the DASA has suitable kinetics for detecting localized temperature increase following impact or rapid heating. The thermochrome retains a signature of the peak temperature in the elastomer, allowing post-mortem mapping of micron-scale temperature localization in materials such as explosive and propellant composites. We demonstrate the concept by using the kinetics of the DASA activation to determine peak temperatures reached during bullet perforation of the polyurethane.

  13. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  14. The upper explosion limit of lower alkanes and alkenes in air at elevated pressures and temperatures.

    PubMed

    Van den Schoor, F; Verplaetsen, F

    2006-01-16

    The upper explosion limit (UEL) of ethane-air, propane-air, n-butane-air, ethylene-air and propylene-air mixtures is determined experimentally at initial pressures up to 30 bar and temperatures up to 250 degrees C. The experiments are performed in a closed spherical vessel with an internal diameter of 200 mm. The mixtures are ignited by fusing a coiled tungsten wire, placed at the centre of the vessel, by electric current. Flame propagation is said to have taken place if there is a pressure rise of at least 1% of the initial pressure after ignition of the mixture. In the pressure-temperature range investigated, a linear dependence of UEL on temperature and a bilinear dependence on pressure are found except in the vicinity of the auto-ignition range. A comparison of the UEL data of the lower alkanes shows that the UEL expressed as equivalence ratio (the actual fuel/air ratio divided by the stoichiometric fuel/air ratio) increases with increasing carbon number in the homologous series of alkanes.

  15. Reproduction of surface air temperature over South Korea using dynamical downscaling and statistical correction

    NASA Astrophysics Data System (ADS)

    Ahn, J.; Lee, J.; Shim, K.; Kim, Y.

    2013-12-01

    In spite of dense meteorological observation conducting over South Korea (The average distance between stations: ~ 12.7km), the detailed topographical effect is not reflected properly due to its mountainous terrains and observation sites mostly situated on low altitudes. A model represents such a topographical effect well, but due to systematic biases in the model, the general temperature distribution is sometimes far different from actual observation. This study attempts to produce a detailed mean temperature distribution for South Korea through a method combining dynamical downscaling and statistical correction. For the dynamical downscaling, a multi-nesting technique is applied to obtain 3-km resolution data with a focus on the domain for the period of 10 years (1999-2008). For the correction of systematic biases, a perturbation method divided into the mean and the perturbation part was used with a different correction method being applied to each part. The mean was corrected by a weighting function while the perturbation was corrected by the self-organizing maps method. The results with correction agree well with the observed pattern compared to those without correction, improving the spatial and temporal correlations as well as the RMSE. In addition, they represented detailed spatial features of temperature including topographic signals, which cannot be expressed properly by gridded observation. Through comparison with in-situ observation with gridded values after objective analysis, it was found that the detailed structure correctly reflected topographically diverse signals that could not be derived from limited observation data. We expect that the correction method developed in this study can be effectively used for the analyses and projections of climate downscaled by using region climate models. Acknowledgements This work was carried out with the support of Korea Meteorological Administration Research and Development Program under Grant CATER 2012-3083 and

  16. Long-term patterns of air temperatures, daily temperature range, precipitation, grass-reference evapotranspiration and aridity index in the USA Great Plains: Part I. Spatial trends

    NASA Astrophysics Data System (ADS)

    Kukal, M.; Irmak, S.

    2016-11-01

    Due to their substantial spatio-temporal behavior, long-term quantification and analyses of important hydrological variables are essential for practical applications in water resources planning, evaluating the water use of agricultural crop production and quantifying crop evapotranspiration patterns and irrigation management vs. hydrologic balance relationships. Observed data at over 800 sites across the Great Plains of USA, comprising of 9 states and 2,307,410 km2 of surface area, which is about 30% of the terrestrial area of the USA, were used to quantify and map large-scale and long-term (1968-2013) spatial trends of air temperatures, daily temperature range (DTR), precipitation, grass-reference evapotranspiration (ETo) and aridity index (AI) at monthly, growing season and annual time steps. Air temperatures had a strong north to south increasing trend, with annual average varying from -1 to 24 °C, and growing season average temperature varying from 8 to 30 °C. DTR gradually decreased from western to eastern parts of the region, with a regional annual and growing season averages of 14.25 °C and 14.79 °C, respectively. Precipitation had a gradual shift towards higher magnitudes from west to east, with the average annual and growing season (May-September) precipitation ranging from 163 to 1486 mm and from 98 to 746 mm, respectively. ETo had a southwest-northeast decreasing trend, with regional annual and growing season averages of 1297 mm and 823 mm, respectively. AI increased from west to east, indicating higher humidity (less arid) towards the east, with regional annual and growing season averages of 0.49 and 0.44, respectively. The spatial datasets and maps for these important climate variables can serve as valuable background for climate change and hydrologic studies in the Great Plains region. Through identification of priority areas from the developed maps, efforts of the concerned personnel and agencies and resources can be diverted towards development

  17. Improving Forecast Skill by Assimilation of Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2009-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of cloud cleared radiances R(sub i). This approach allows for the generation of accurate values of R(sub i) and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel error estimates for R(sub i). These error estimates are used for Quality Control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of Quality Control using the NASA GEOS-5 data assimilation system. Assimilation of Quality Controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done operationally by ECMWF and NCEP. Forecast resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.

  18. Data Assimilation Experiments using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    SUsskind, Joel

    2008-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 pm C02 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 pm C02 observations are now used primarily in the generation of cloud cleared radiances Ri. This approach allows for the generation of accurate values of Ri and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by- channel error estimates for Ri. These error estimates are used for quality control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of quality control using the NASA GEOS-5 data assimilation system. Assimilation of quality controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done Operationally by ECMWF and NCEP. Forecasts resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.

  19. Interactive short-term effects of equivalent temperature and air pollution on human mortality in Berlin and Lisbon.

    PubMed

    Burkart, Katrin; Canário, Paulo; Breitner, Susanne; Schneider, Alexandra; Scherber, Katharina; Andrade, Henrique; Alcoforado, Maria João; Endlicher, Wilfried

    2013-12-01

    There is substantial evidence that both temperature and air pollution are predictors of mortality. Thus far, few studies have focused on the potential interactive effects between the thermal environment and different measures of air pollution. Such interactions, however, are biologically plausible, as (extreme) temperature or increased air pollution might make individuals more susceptible to the effects of each respective predictor. This study investigated the interactive effects between equivalent temperature and air pollution (ozone and particulate matter) in Berlin (Germany) and Lisbon (Portugal) using different types of Poisson regression models. The findings suggest that interactive effects exist between air pollutants and equivalent temperature. Bivariate response surface models and generalised additive models (GAMs) including interaction terms showed an increased risk of mortality during periods of elevated equivalent temperatures and air pollution. Cold effects were mostly unaffected by air pollution. The study underscores the importance of air pollution control in mitigating heat effects.

  20. Fault diagnosis and temperature sensor recovery for an air-handling unit

    SciTech Connect

    Lee, W.Y.; Shin, D.R.; House, J.M.

    1997-12-31

    The presence of faults and the influence they have on system operation is a real concern in the heating, ventilating, and air-conditioning (HVAC) community. A fault can be defined as an inadmissible or unacceptable property of a system or a component. Unless corrected, faults can lead to increased energy use, shorter equipment life, and uncomfortable and/or unhealthy conditions for building occupants. This paper describes the use of a two-stage artificial neural network for fault diagnosis in a simulated air-handling unit. The stage one neural network is trained to identify the subsystem in which a fault occurs. The stage two neural network is trained to diagnose the specific cause of a fault at the subsystem level. Regression equations for the supply and mixed-air temperatures are obtained from simulation data and are used to compute input parameters to the neutral networks. Simulation results are presented that demonstrate that, after a successful diagnosis of a supply air temperature sensor fault, the recovered estimate of the supply air temperature obtained from the regression equation can be used in a feedback control loop to bring the supply air temperature back to the setpoint value. Results are also presented that illustrate the evolution of the diagnosis of the two-stage artificial neural network from normal operation to various fault modes of operation.

  1. An ultrasonic air temperature measurement system with self-correction function for humidity

    NASA Astrophysics Data System (ADS)

    Tsai, Wen-Yuan; Chen, Hsin-Chieh; Liao, Teh-Lu

    2005-02-01

    This paper proposes an ultrasonic measurement system for air temperature with high accuracy and instant response. It can measure the average temperature of the environmental air by detecting the changes of the speed of the ultrasound in the air. The changes of speed of sound are computed from combining variations of time-of-flight (TOF) from a binary frequency shift-keyed (BFSK) ultrasonic signal and phase shift from continuous waves [11]. In addition, another proposed technique for the ultrasonic air temperature measurement is the self-correction functionality within a highly humid environment. It utilizes a relative humidity/water vapour sensor and applies the theory of how sound speed changes in a humid environment. The proposed new ultrasonic air temperature measurement has the capability of self-correction for the environment variable of humidity. Especially under the operational environment with high fluctuations of various humidity levels, the proposed system can accurately self-correct the errors on the conventional ultrasonic thermometer caused by the changing density of the vapours in the air. Including the high humidity effect, a proof-of-concept experiment demonstrates that in dry air (relative humidity, RH = 10%) without humidity correction, it is accurate to ±0.4 °C from 0 °C to 80 °C, while in highly humid air (relative humidity, RH = 90%) with self-correction functionality, it is accurate to ±0.3 °C from 0 °C to 80 °C with 0.05% resolution and temperature changes are instantly reflected within 100 ms.

  2. High-resolution mirror temperature mapping in GaN-based diode lasers by thermoreflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Pierścińska, Dorota; Marona, Łucja; Pierściński, Kamil; Wiśniewski, Przemysław; Perlin, Piotr; Bugajski, Maciej

    2017-02-01

    In this paper accurate measurements of temperature distribution on the facet of GaN-based diode lasers are presented as well as development of the instrumentation for high-resolution thermal imaging based on thermoreflectance. It is shown that thermoreflectance can be successfully applied to provide information on heat dissipation in these devices. We demonstrate the quantitative measurements of the temperature profiles and high-resolution temperature maps on the front facet of nitride lasers and prove that thermoreflectance spectroscopy can be considered as the accurate and fast nondestructive tool for investigation of thermally induced degradation modes of GaN lasers.

  3. Global circuit response to seasonal variations in global surface air temperature

    NASA Technical Reports Server (NTRS)

    Williams, Earle R.

    1994-01-01

    Comparisons are made between the seasonal behavior of the global electrical circuit and the surface air temperature for the Tropics and for the globe. Positive correlations between global circuit parameters and temperature are identified on both semiannual and annual timescales. Lightning is the global circuit quantity found most responsive to temperature, with a sensitivity of the order of 10% per 1 C. These findings lend further validity to the use of global circuit measurements as a diagnostic for global change.

  4. Identifying anthropogenic anomalies in air, surface and groundwater temperatures in Germany.

    PubMed

    Benz, Susanne A; Bayer, Peter; Blum, Philipp

    2017-04-15

    Human activity directly influences ambient air, surface and groundwater temperatures. The most prominent phenomenon is the urban heat island effect, which has been investigated particularly in large and densely populated cities. This study explores the anthropogenic impact on the thermal regime not only in selected urban areas, but on a countrywide scale for mean annual temperature datasets in Germany in three different compartments: measured surface air temperature, measured groundwater temperature, and satellite-derived land surface temperature. Taking nighttime lights as an indicator of rural areas, the anthropogenic heat intensity is introduced. It is applicable to each data set and provides the difference between measured local temperature and median rural background temperature. This concept is analogous to the well-established urban heat island intensity, but applicable to each measurement point or pixel of a large, even global, study area. For all three analyzed temperature datasets, anthropogenic heat intensity grows with increasing nighttime lights and declines with increasing vegetation, whereas population density has only minor effects. While surface anthropogenic heat intensity cannot be linked to specific land cover types in the studied resolution (1km×1km) and classification system, both air and groundwater show increased heat intensities for artificial surfaces. Overall, groundwater temperature appears most vulnerable to human activity, albeit the different compartments are partially influenced through unrelated processes; unlike land surface temperature and surface air temperature, groundwater temperatures are elevated in cultivated areas as well. At the surface of Germany, the highest anthropogenic heat intensity with 4.5K is found at an open-pit lignite mine near Jülich, followed by three large cities (Munich, Düsseldorf and Nuremberg) with annual mean anthropogenic heat intensities >4K. Overall, surface anthropogenic heat intensities >0K and

  5. Impact of Surface Air Temperature and Snow Cover Depth on the Upper Soil Temperature Variations in Russia

    NASA Astrophysics Data System (ADS)

    Sherstyukov, B. G.; Sherstyukov, A. B.; Groisman, P. Y.

    2008-12-01

    For the 1965-2004 period, data from all Russian meteorological stations with long-term soil temperature observations at depths 80, 160 and 320 cm were compiled and analyzed. It was found that the prevailing influence on soil temperature variations in the European part of Russia was surface air temperature and in the Asian part of Russia - snow cover depth. By preserving the heat accumulated in the warm season, an observed increase of the winter snow depth in the permafrost zone (cf., Bulygina et al. 2007) promotes annual soil temperature increase and therefore may foster the further permafrost degradation associated with ongoing regional warming. The impact of long-term changes in surface air temperatures on soil temperatures in the central regions of the permafrost zone is weak throughout the year. However, in the regions with intermittent permafrost, this impact is substantial. The impact of snow depth on soil temperatures is observed throughout the entire permafrost zone of Russia. Reference cited: Bulygina O.N., N.N. Korshunova, and V.N. Razuvaev, 2007: Variations in snow characteristics over the Russian territory in the recent decades. Transactions of RIHMI-WDC, 173, 41-46.

  6. Effect of green roofs on air temperature; measurement study of well-watered and dry conditions

    NASA Astrophysics Data System (ADS)

    Solcerova, Anna; van de Ven, Frans; Wang, Mengyu; van de Giesen, Nick

    2016-04-01

    Rapid urbanization and increasing number and duration of heat waves poses a need for understanding urban climate and ways to mitigate extremely high temperatures. One of repeatedly suggested and often investigated methods to moderate the so called urban heat island are green roofs. This study investigates several extensive green roofs in Utrecht (NL) and their effect on air temperature right above the roof surface. Air temperature was measured 15 and 30 cm above the roof surface and also in the substrate. We show that under normal condition is air above green roof, compared to white gravel roof, colder at night and warmer during day. This suggest that green roofs might help decrease air temperatures at night, when the urban heat island is strongest, but possibly contribute to high temperatures during daytime. We also measured situation when the green roofs wilted and dried out. Under such conditions green roof exhibits more similar behavior to conventional white gravel roof. Interestingly, pattern of soil temperature remains almost the same for both dry and well-prospering green roof, colder during day and warmer at night. As such, green roof works as a buffer of diurnal temperature changes.

  7. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity.

    PubMed

    Bugbee, B; Monje, O; Tanner, B

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  8. Ambient air pollution, temperature and out-of-hospital coronary deaths in Shanghai, China.

    PubMed

    Dai, Jinping; Chen, Renjie; Meng, Xia; Yang, Changyuan; Zhao, Zhuohui; Kan, Haidong

    2015-08-01

    Few studies have evaluated the effects of ambient air pollution and temperature in triggering out-of-hospital coronary deaths (OHCDs) in China. We evaluated the associations of air pollution and temperature with daily OHCDs in Shanghai, China from 2006 to 2011. We applied an over-dispersed generalized additive model and a distributed lag nonlinear model to analyze the effects of air pollution and temperature, respectively. A 10 μg/m(3) increase in the present-day PM10, PM2.5, SO2, NO2 and CO were associated with increases in OHCD mortality of 0.49%, 0.68%, 0.88%, 1.60% and 0.08%, respectively. A 1 °C decrease below the minimum-mortality temperature corresponded to a 3.81% increase in OHCD mortality on lags days 0-21, and a 1 °C increase above minimum-mortality temperature corresponded to a 4.61% increase over lag days 0-3. No effects were found for in-hospital coronary deaths. This analysis suggests that air pollution, low temperature and high temperature may increase the risk of OHCDs.

  9. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  10. Influence of metallic vapours on thermodynamic and transport properties of two-temperature air plasma

    NASA Astrophysics Data System (ADS)

    Zhong, Linlin; Wang, Xiaohua; Cressault, Yann; Teulet, Philippe; Rong, Mingzhe

    2016-09-01

    The metallic vapours (i.e., copper, iron, and silver in this paper) resulting from walls and/or electrode surfaces can significantly affect the characteristics of air plasma. Different from the previous works assuming local thermodynamic equilibrium, this paper investigates the influence of metallic vapours on two-temperature (2 T) air plasma. The 2 T compositions of air contaminated by Cu, Fe, and Ag are first determined based on Saha's and Guldberg-Waage's laws. The thermodynamic properties (including mass density, specific enthalpy, and specific heat) are then calculated according to their definitions. After determining the collision integrals for each pair of species in air-metal mixtures using the newly published methods and source data, the transport coefficients (including electrical conductivity, viscosity, and thermal conductivity) are calculated for air-Cu, air-Fe, and air-Ag plasmas with different non-equilibrium degree θ (Te/Th). The influences of metallic contamination as well as non-equilibrium degree are discussed. It is found that copper, iron, and silver exist mainly in the form of Cu2, FeO, and AgO at low temperatures. Generally, the metallic vapours increase mass density at most temperatures, reduce the specific enthalpy and specific heat in the whole temperature range, and affect the transport properties remarkably from 5000 K to 20 000 K. The effect arising from the type of metals is little except for silver at certain temperatures. Besides, the departure from thermal equilibrium results in the delay of dissociation and ionization reactions, leading to the shift of thermodynamic and transport properties towards a higher temperature.

  11. Measuring centimeter-resolution air temperature profiles above land and water using fiber-optic Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Sigmund, Armin; Pfister, Lena; Olesch, Johannes; Thomas, Christoph K.

    2016-04-01

    The precise determination of near-surface air temperature profiles is of special importance for the characterization of airflows (e.g. cold air) and the quantification of sensible heat fluxes according to the flux-gradient similarity approach. In contrast to conventional multi-sensor techniques, measuring temperature profiles using fiber-optic Distributed Temperature Sensing (DTS) provides thousands of measurements referenced to a single calibration standard at much reduced costs. The aim of this work was to enhance the vertical resolution of Raman scatter DTS measurements up to the centimeter-scale using a novel approach for atmospheric applications: the optical fiber was helically coiled around a meshed fabric. In addition to testing the new fiber geometry, we quantified the measurement uncertainty and demonstrated the benefits of the enhanced-resolution profiles. The fiber-optic cable was coiled around a hollow column consisting of white reinforcing fabric supported by plexiglass rings every meter. Data from two columns of this type were collected for 47 days to measure air temperature vertically over 3.0 and 5.1 m over a gently inclined meadow and over and in a small lake, respectively. Both profiles had a vertical resolution of 1 cm in the lower section near the surface and 5 cm in the upper section with an along-fiber instrument-specific averaging of 1.0 m and a temporal resolution of 30 s. Measurement uncertainties, especially from conduction between reinforcing fabric and fiber-optic cable, were estimated by modeling the fiber temperature via a detailed energy balance approach. Air temperature, wind velocity and radiation components were needed as input data and measured separately. The temperature profiles revealed valuable details, especially in the lowest 1 m above surface. This was best demonstrated for nighttime observations when artefacts due to solar heating did not occur. For example, the dynamics of a cold air layer was detected in a clear night

  12. Temperature sensing and real-time two-dimensional mapping at the micro-scale

    NASA Astrophysics Data System (ADS)

    Huo, Xiaoye; Li, Gang; Wang, Zhenhai; Mao, Xinyu; Xu, Shengyong

    To sense temperature at micro/nano scales and obtain its detailed distribution in space and in time remains a technical challenge in many cases. We observed an unexpected thermoelectric size effect, where the absolute Seebeck coefficient of metallic thin film stripes (e.g. Ni, Cr, Pd, W, Bi, Sc, etc.) decreased with the stripe width from 100 μm down to 100nm. This phenomenon was utilized in micro/nano-stripe-based thin film temperature sensors. By using an array of such sensors, two-dimensional temperature distribution at the micro-scale could be precisely mapped. Small temperature sensors with a total width less than 1 μm and a sensitivity of 0.5-2.2 μV/K were fabricated, showing a potential for monitoring temperatures at submicro-scales. By using a special multiplexer and software, nearly real-time 2D temperature mapping was performed, demonstrating 2D thermal history of target surface with a delay of less than one minute. These thin film sensors were also fabricated on flexible Parylene-C substrates for application in flexible electronic devices, temperature monitoring of cell culturing, and heat transfer between Au nanoparticles and metallic stripes due to plasmonic excitation under laser radiation.

  13. Assimilation of Quality Controlled AIRS Temperature Profiles using the NCEP GFS

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste; Iredell, Lena; Rosenberg, Robert

    2013-01-01

    We have previously conducted a number of data assimilation experiments using AIRS Version-5 quality controlled temperature profiles as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The data assimilation and forecast system we used was the Goddard Earth Observing System Model , Version-5 (GEOS-5) Data Assimilation System (DAS), which represents a combination of the NASA GEOS-5 forecast model with the National Centers for Environmental Prediction (NCEP) operational Grid Point Statistical Interpolation (GSI) global analysis scheme. All analyses and forecasts were run at a 0.5deg x 0.625deg spatial resolution. Data assimilation experiments were conducted in four different seasons, each in a different year. Three different sets of data assimilation experiments were run during each time period: Control; AIRS T(p); and AIRS Radiance. In the "Control" analysis, all the data used operationally by NCEP was assimilated, but no AIRS data was assimilated. Radiances from the Aqua AMSU-A instrument were also assimilated operationally by NCEP and are included in the "Control". The AIRS Radiance assimilation adds AIRS observed radiance observations for a select set of channels to the data set being assimilated, as done operationally by NCEP. In the AIRS T(p) assimilation, all information used in the Control was assimilated as well as Quality Controlled AIRS Version-5 temperature profiles, i.e., AIRS T(p) information was substituted for AIRS radiance information. The AIRS Version-5 temperature profiles were presented to the GSI analysis as rawinsonde profiles, assimilated down to a case-by-case appropriate pressure level p(sub best) determined using the Quality Control procedure. Version-5 also determines case-by-case, level-by-level error estimates of the temperature profiles, which were used as the uncertainty of each temperature measurement. These experiments using GEOS-5 have shown that forecasts

  14. The influence of snow depth and surface air temperature on satellite-derived microwave brightness temperature. [central Russian steppes, and high plains of Montana, North Dakota, and Canada

    NASA Technical Reports Server (NTRS)

    Foster, J. L.; Hall, D. K.; Chang, A. T. C.; Rango, A.; Allison, L. J.; Diesen, B. C., III

    1980-01-01

    Areas of the steppes of central Russia, the high plains of Montana and North Dakota, and the high plains of Canada were studied in an effort to determine the relationship between passive microwave satellite brightness temperature, surface air temperature, and snow depth. Significant regression relationships were developed in each of these homogeneous areas. Results show that sq R values obtained for air temperature versus snow depth and the ratio of microwave brightness temperature and air temperature versus snow depth were not as the sq R values obtained by simply plotting microwave brightness temperature versus snow depth. Multiple regression analysis provided only marginal improvement over the results obtained by using simple linear regression.

  15. Quantitative reconstruction of paleoclimate - Air and ground temperature tracking from Emigrant Pass Observatory

    NASA Astrophysics Data System (ADS)

    Chapman, D. S.; Bartlett, M. G.; Harris, R. N.

    2004-12-01

    Borehole temperature-depth profiles contain information about surface ground temperatures histories and provide a useful complement to proxy indicators of climate change. An inherent assumption in borehole temperature reconstructions is that air and ground temperatures are coupled through heat diffusion track each other at annual and longer periods. The Emigrant Pass Observatory (EPO), located in the Grouse Creek Mountains of northwestern Utah, is designed to test ground-air temperature tracking. Analyses of 10 years of observations at EPO demonstrate the following: 1) Ground temperatures track air temperatures at annual and longer periods exceptionally well at the site. Divergence between the observed temperatures at 1 m in the subsurface and air temperatures modeled as a boundary layer forcing is less than 0.04 K per annum. 2) Seasonal variations in incident solar radiation are ~200 Wm-2 leading to an average annual difference between ground and air temperatures, Δ Tg-a, of 2.55 K (±0.01) from 1993-2003. The temperature difference varies from -5 K to +10 K when averaged over a diurnal cycle, and from 2.50 K to 2.60 K over an annual cycle. However, inter-annual variations in insulation are less than 1 Wm-2; consequently, solar radiation is not observed to affect the inter-annual tracking at the site. 3) Model studies snow-ground thermal interactions at EPO demonstrate that seasonal snow cover can either warm or cool the ground relative to the annual mean air temperature and that the winter snow effect is an order of magnitude smaller than the summer radiation effect at the site. 4) Temperature observations at various depths within the granite and soils at the site allow us to make estimates of in-situ thermal diffusivity and its changes with time. The "apparent" thermal diffusivity of the upper meter of granite at EPO ranges from 0.88-0.98 x 10-6 m2s-1 while the soil varies from 0.57-0.68 x 10-6 m2s-1. The accumulation of data at EPO leads to a quantitative

  16. A model to approximate lake temperature from gridded daily air temperature records and its application in risk assessment for the establishment of fish diseases in the UK.

    PubMed

    Thrush, M A; Peeler, E J

    2013-10-01

    Ambient water temperature is a key factor controlling the distribution and impact of disease in fish populations, and optimum temperature ranges have been characterised for the establishment of a number important aquatic diseases exotic to the UK. This study presents a simple regression method to approximate daily average surface water temperature in lakes of 0.5-15 ha in size across the UK using 5 km(2) gridded daily average air temperatures provided by the UK Meteorological Office. A Geographic information system (GIS) is used to present thematic maps of relative risk scores established for each grid cell based on the mean number of days per year that water temperature satisfied optimal criteria for the establishment of two economically important pathogens of cyprinid fish (koi herpesvirus (KHV) and spring viraemia of carp virus (SVCV)) and the distribution and density of fish populations susceptible to these viruses. High-density susceptible populations broadly overlap the areas where the temperature profiles are optimal for KHV (central and south-east England); however, few fish populations occur in areas where temperature profiles are most likely to result in the establishment of spring viremia of carp (SVC) (namely northern England and Scotland). The highest grid-cell risk scores for KHV and SVC were 7 and 6, respectively, out of a maximum score of 14. The proportion of grid cells containing susceptible populations with risk scores of 5 or more was 37% and 5% for KHV and SVC, respectively. This work demonstrates a risk-based approach to inform surveillance for exotic pathogens in aquatic animal health management, allowing efficient use of resources directed towards higher risk animals and geographic areas for early disease detection. The methodology could be used to examine the change in distribution of high-risk areas for both exotic and endemic fish diseases under different climate change scenarios.

  17. Opportunities to Reduce Air-Conditioning Loads Through Lower Cabin Soak Temperatures

    SciTech Connect

    Farrington, R.; Cuddy, M.; Keyser, M.; Rugh, J.

    1999-07-12

    Air-conditioning loads can significantly reduce electric vehicle (EV) range and hybrid electric vehicle (HEV) fuel economy. In addition, a new U. S. emissions procedure, called the Supplemental Federal Test Procedure (SFTP), has provided the motivation for reducing the size of vehicle air-conditioning systems in the United States. The SFTP will measure tailpipe emissions with the air-conditioning system operating. If the size of the air-conditioning system is reduced, the cabin soak temperature must also be reduced, with no penalty in terms of passenger thermal comfort. This paper presents the impact of air-conditioning on EV range and HEV fuel economy, and compares the effectiveness of advanced glazing and cabin ventilation. Experimental and modeled results are presented.

  18. Air conditioner operation behaviour based on students' skin temperature in a classroom.

    PubMed

    Song, Gook-Sup; Lim, Jae-Han; Ahn, Tae-Kyung

    2012-01-01

    A total of 25 college students participated in a study to determine when they would use an air conditioner during a lecture in a university classroom. The ambient temperature and relative humidity were measured 75 cm above the floor every minute. Skin temperatures were measured every minute at seven points, according to the recommendation of Hardy and Dubois. The average clothing insulation value (CLO) of subjects was 0.53 ± 0.07 CLO. The mean air velocity in the classroom was 0.13 ± 0.028 m/s. When the subjects turned the air conditioner both on and off, the average ambient temperatures, relative humidity and mean skin temperatures were 27.4 and 23.7 °C (p = 0.000), 40.9 and 40.0% (p = 0.528) and 32.7 and 32.2 °C (p = 0.024), respectively. When the status of the air conditioner was changed, the differences of skin temperatures in core body parts (head, abdomen and thigh) were not statistically significant. However, in the extremities (mid-lower arm, hand, shin and instep), the differences were statistically significant. Subjects preferred a fluctuating environment to a constant temperature condition. We found that a changing environment does not affect classroom study.

  19. Spatial Temperature Mapping within Polymer Nanocomposites Undergoing Ultrafast Photothermal Heating via Gold Nanorods

    PubMed Central

    Maity, Somsubhra; Wu, Wei-Chen; Xu, Chao; Tracy, Joseph B.; Gundogdu, Kenan; Bochinski, Jason R.; Clarke, Laura I.

    2015-01-01

    Heat emanates from gold nanorods (GNRs) under ultrafast optical excitation of the localized surface plasmon resonance. The steady state nanoscale temperature distribution formed within a polymer matrix embedded with GNRs undergoing pulsed femtosecond photothermal heating is determined experimentally using two independent ensemble optical techniques. Physical rotation of the nanorods reveals the average local temperature of the polymer melt in the immediate spatial volume surrounding them while fluorescence of homogeneously-distributed perylene molecules monitors temperature over sample regions at larger distances from the GNRs. Polarization-sensitive fluorescence measurements of the perylene probes provide an estimate of the average size of the quasi-molten region surrounding each nanorod (that is, the boundary between softened polymer and solid material as the temperature decreases radially away from each particle) and distinguishes the steady state temperature in the solid and melt regions. Combining these separate methods enables nanoscale spatial mapping of the average steady state temperature distribution caused by ultrafast excitation of the GNRs. These observations definitively demonstrate the presence of a steady-state temperature gradient and indicate that localized heating via the photothermal effect within materials enables nanoscale thermal manipulations without significantly altering the bulk sample temperature in these systems. These quantitative results are further verified by reorienting nanorods within a solid polymer nanofiber without inducing any morphological changes to the highly temperature-sensitive nanofiber surface. Temperature differences of 70 – 90 °C were observed over a distances of ~100 nm. PMID:25379775

  20. Spatial temperature mapping within polymer nanocomposites undergoing ultrafast photothermal heating via gold nanorods.

    PubMed

    Maity, Somsubhra; Wu, Wei-Chen; Xu, Chao; Tracy, Joseph B; Gundogdu, Kenan; Bochinski, Jason R; Clarke, Laura I

    2014-12-21

    Heat emanates from gold nanorods (GNRs) under ultrafast optical excitation of the localized surface plasmon resonance. The steady state nanoscale temperature distribution formed within a polymer matrix embedded with GNRs undergoing pulsed femtosecond photothermal heating is determined experimentally using two independent ensemble optical techniques. Physical rotation of the nanorods reveals the average local temperature of the polymer melt in the immediate spatial volume surrounding each rod while fluorescence of homogeneously-distributed perylene molecules monitors temperature over sample regions at larger distances from the GNRs. Polarization-sensitive fluorescence measurements of the perylene probes provide an estimate of the average size of the quasi-molten region surrounding each nanorod (that is, the boundary between softened polymer and solid material as the temperature decreases radially away from each particle) and distinguishes the steady state temperature in the solid and melt regions. Combining these separate methods enables nanoscale spatial mapping of the average steady state temperature distribution caused by ultrafast excitation of the GNRs. These observations definitively demonstrate the presence of a steady-state temperature gradient and indicate that localized heating via the photothermal effect within materials enables nanoscale thermal manipulations without significantly altering the bulk sample temperature in these systems. These quantitative results are further verified by re-orienting nanorods within a solid polymer nanofiber without inducing any morphological changes to the highly temperature-sensitive nanofiber surface. Temperature differences of 70-90 °C were observed over a distances of ∼ 100 nm.

  1. The comparative performance of an aviation engine at normal and high inlet air temperatures

    NASA Technical Reports Server (NTRS)

    Gardiner, Arthur W; Schey, Oscar W

    1928-01-01

    This report presents some results obtained during an investigation to determine the effect of high inlet air temperature on the performance of a Liberty 12 aviation engine. The purpose of this investigation was to ascertain, for normal service carburetor adjustments and a fixed ignition advance, the relation between power and temperature for the range of carburetor air temperatures that may be encountered when supercharging to sea level pressure at altitudes of over 20,000 feet and without intercooling when using plain aviation gasoline and mixtures of benzol and gasoline. The results show that for the conditions of test, both the brake and indicated power decrease with increase in air temperature at a faster rate than given by the theoretical assumption that power varies inversely as the square root of the absolute temperature. On a brake basis, the order of the difference in power for a temperature difference of 120 degrees F. Is 3 to 5 per cent. The observed relation between power and temperature when using the 30-70 blend was found to be linear. But, although these differences are noted, the above theoretical assumption may be considered as generally applicable except where greater precision over a wide range of temperatures is desired, in which case it appears necessary to test the particular engine under the given conditions. (author)

  2. Photosynthesis of young apple trees in response to low sink demand under different air temperatures.

    PubMed

    Fan, Pei G; Li, Lian S; Duan, Wei; Li, Wei D; Li, Shao H

    2010-03-01

    Gas exchange, chlorophyll fluorescence, photosynthetic end products and related enzymes in source leaves in response to low sink demand after girdling to remove the root sink were assessed in young apple trees (Malus pumila) grown in two greenhouses with different air temperatures for 5 days. Compared with the non-girdled control in the low-temperature greenhouse (diurnal maximum air temperature <32 degrees C), low sink demand resulted in lower net photosynthetic rate (P(n)), stomatal conductance (g(s)) and transpiration rate (E) but higher leaf temperature on Day 5, while in the high-temperature greenhouse (diurnal maximum air temperature >36 degrees C), P(n), g(s) and E declined from Day 3 onwards. Moreover, gas exchange responded more to low sink demand in the high-temperature greenhouse than in the low-temperature greenhouse. Decreased P(n) at low sink demand was accompanied by lower intercellular CO(2) concentrations in the low-temperature greenhouse. However, decreased maximal photochemical efficiency, potential activity, efficiency of excitation capture, actual efficiency and photochemical quenching, with increased minimal fluorescence and non-photochemical quenching of photosystem II (PSII), were observed in low sink demand leaves only in the high-temperature greenhouse. In addition, low sink demand increased leaf starch and soluble carbohydrate content in both greenhouses but did not result in lower activity of enzymes involved in metabolism. Thus, decreased P(n) under low sink demand was independent of a direct effect of end-product feedback but rather depended on a high temperature threshold. The lower P(n) was likely due to stomatal limitation in the low-temperature greenhouse, but mainly due to non-stomatal limitation in the high-temperature greenhouse.

  3. Short-term effects of air temperature on mortality and effect modification by air pollution in three cities of Bavaria, Germany: A time-series analysis

    EPA Science Inventory

    Background: Air temperature has been shown to be associated with mortality; however, only very few studies have been conducted in Germany. This study examined the association between daily air temperature and cause-specific mortality in Bavaria, Southern Germany. Moreover, we inv...

  4. Prediction of air temperature for thermal comfort of people in outdoor environments

    NASA Astrophysics Data System (ADS)

    Huang, Jianhua

    2007-05-01

    Current thermal comfort indices do not take into account the effects of wind and body movement on the thermal resistance and vapor resistance of clothing. This may cause public health problem, e.g. cold-related mortality. Based on the energy balance equation and heat exchanges between a clothed body and the outdoor environment, a mathematical model was developed to determine the air temperature at which an average adult, wearing a specific outdoor clothing and engaging in a given activity, attains thermal comfort under outdoor environment condition. The results indicated low clothing insulation, less physical activity and high wind speed lead to high air temperature prediction for thermal comfort. More accurate air temperature prediction is able to prevent wearers from hypothermia under cold conditions.

  5. Local air temperature tolerance: a sensible basis for estimating climate variability

    NASA Astrophysics Data System (ADS)

    Kärner, Olavi; Post, Piia

    2016-11-01

    The customary representation of climate using sample moments is generally biased due to the noticeably nonstationary behaviour of many climate series. In this study, we introduce a moment-free climate representation based on a statistical model fitted to a long-term daily air temperature anomaly series. This model allows us to separate the climate and weather scale variability in the series. As a result, the climate scale can be characterized using the mean annual cycle of series and local air temperature tolerance, where the latter is computed using the fitted model. The representation of weather scale variability is specified using the frequency and the range of outliers based on the tolerance. The scheme is illustrated using five long-term air temperature records observed by different European meteorological stations.

  6. The effect of air temperature on the sappan wood extract drying

    NASA Astrophysics Data System (ADS)

    Djaeni, M.; Triyastuti, M. S.; Asiah, N.; Annisa, A. N.; Novita, D. A.

    2015-12-01

    The sappan wood extract contain natural colour called brazilin that can be used as a food colouring and antioxidant. The product is commonly found as a dry extract powder for consummer convenience. The spray dryer with air dehumidification can be an option to retain the colour and antioxidant agent. This paper discusses the effect of air temperature on sappan wood extract drying that was mixed with maltodextrin. As responses, the particle size, final moisture content, and extract solubility degradation were observed. In all cases, the process conducted in temperature ranging 90 - 110°C can retain the brazilin quality as seen in solubility and particle size. In addition, the sappan wood extract can be fully dried with moisture content below 2%. Moreover, with the increase of air temperature, the particle size of dry extract can be smaller.

  7. [Environment of high temperature or air particle matter pollution, and health promotion of exercise].

    PubMed

    Zhao, Jie-xiu; Xu, Min-xiao; Wu, Zhao-zhao

    2014-10-01

    It is important to keep human health in special environment, since the special environment has different effects on health. In this review, we focused on high temperature and air particle matter environment, and health promotion of exercise. Exercise and high temperature are the main non-pharmacological therapeutic interventions of insulin resistance (IR). PGC-1α is key regulatory factor in health promotion of exercise and high temperature. The novel hormone Irisin might be the important pathway through which heat and exercise could have positive function on IR. Air particle matter (PM) is associated with onset of many respiratory diseases and negative effects of exerciser performance. However, regular exercise plays an important role in improving health of respiratory system and lowering the risk induced by PM. Furthermore, free radicals and inflammatory pathways are included in the possible mechanisms of positive physiological effects induced by exercise in air particle matter environment.

  8. Design and Development of an air-cooled Temperature-Swing Adsorption Compressor for Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.

    2003-01-01

    The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. We have a developed a temperature-swing adsorption compressor (TSAC) for performing these tasks that is energy efficient, quiet, and has no wearing parts. This paper discusses the design features of a TSAC hardware that uses air as the cooling medium and has Space Station application.

  9. Temporal and spatial trend detection of maximum air temperature in Iran during 1960-2005

    NASA Astrophysics Data System (ADS)

    Kousari, Mohammad Reza; Ahani, Hossein; Hendi-zadeh, Razieh

    2013-12-01

    Trends of maximum air temperature (T max) were investigated in three time scales including annual, seasonal, and monthly time series in 32 synoptic stations in the whole of Iran during 1960-2005. First, nonparametric Mann-Kendall test after removal of the lag-1 serial correlation component from the T max time series was used for trend detection and spatial distribution of various trends was mapped. Second, Sen's slope estimator was used to determine the median slope of positive or negative T max trends. Third, 10-year moving average low-pass filter was applied to facilitate the trend analysis and the smoothed time series derived from the mentioned filter were clustered in three clusters for each time series and then were plotted to show their spatial distribution patterns in Iran. Results showed that there are considerable significant positive trends of T max in warm months including April, June, July, August and September and warm seasons. These trends can be found in an annual time scale which indicated almost 50% positive trends. However, cold months and seasons did not exhibit a remarkable significant trend. Although it was rather difficult to detect particular spatial distribution of significant trends, some parts in west, north-east and south-east and central regions of the country showed more positive trends. In an annual time scale, Kermanshah located in west regions indicates most change at (+) 0.41 °C per decade. On the one hand, many clusters of normalized and filtered T max time series revealed the increasing trend after 1970 which has dramatically risen after around 1990. It is in accordance with many other findings for temperature time series from different countries and therefore, it can be generated from simultaneous changes in a bigger scale than regional one. On the other hand, the concentration of increasing trends of T max in warm seasons and their accordance to plants growing season in Iran can raise the importance of the role of frequent

  10. Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Chunlin; Wu, Yi; Chen, Zhexin; Yang, Fei; Feng, Ying; Rong, Mingzhe; Zhang, Hantian

    2016-07-01

    Air plasma has been widely applied in industrial manufacture. In this paper, both dry and humid air plasmas' thermodynamic and transport properties are calculated in temperature 300-100000 K and pressure 0.1-100 atm. To build a more precise model of real air plasma, over 70 species are considered for composition. Two different methods, the Gibbs free energy minimization method and the mass action law method, are used to determinate the composition of the air plasma in a different temperature range. For the transport coefficients, the simplified Chapman-Enskog method developed by Devoto has been applied using the most recent collision integrals. It is found that the presence of CO2 has almost no effect on the properties of air plasma. The influence of H2O can be ignored except in low pressure air plasma, in which the saturated vapor pressure is relatively high. The results will serve as credible inputs for computational simulation of air plasma. supported by the National Key Basic Research Program of China (973 Program)(No. 2015CB251002), National Natural Science Foundation of China (Nos. 51521065, 51577145), the Science and Technology Project Funds of the Grid State Corporation (SGTYHT/13-JS-177), the Fundamental Research Funds for the Central Universities, and State Grid Corporation Project (GY71-14-004)

  11. Exploration of health risks related to air pollution and temperature in three Latin American cities.

    PubMed

    Romero-Lankao, Patricia; Qin, Hua; Borbor-Cordova, Mercy

    2013-04-01

    This paper explores whether the health risks related to air pollution and temperature extremes are spatially and socioeconomically differentiated within three Latin American cities: Bogota, Colombia, Mexico City, Mexico, and Santiago, Chile. Based on a theoretical review of three relevant approaches to risk analysis (risk society, environmental justice, and urban vulnerability as impact), we hypothesize that health risks from exposure to air pollution and temperature in these cities do not necessarily depend on socio-economic inequalities. To test this hypothesis, we gathered, validated, and analyzed temperature, air pollution, mortality and socioeconomic vulnerability data from the three study cities. Our results show the association between air pollution levels and socioeconomic vulnerabilities did not always correlate within the study cities. Furthermore, the spatial differences in socioeconomic vulnerabilities within cities do not necessarily correspond with the spatial distribution of health impacts. The present study improves our understanding of the multifaceted nature of health risks and vulnerabilities associated with global environmental change. The findings suggest that health risks from atmospheric conditions and pollutants exist without boundaries or social distinctions, even exhibiting characteristics of a boomerang effect (i.e., affecting rich and poor alike) on a smaller scale such as areas within urban regions. We used human mortality, a severe impact, to measure health risks from air pollution and extreme temperatures. Public health data of better quality (e.g., morbidity, hospital visits) are needed for future research to advance our understanding of the nature of health risks related to climate hazards.

  12. Exploration of health risks related to air pollution and temperature in three Latin American cities

    NASA Astrophysics Data System (ADS)

    Romero-Lankao, P.; Borbor Cordova, M.; Qin, H.

    2013-12-01

    We explore whether the health risks related to air pollution and temperature extremes are spatially and socioeconomically differentiated within three Latin American cities: Bogota, Colombia, Mexico City, Mexico, and Santiago, Chile. Based on a theoretical review of three relevant approaches to risk analysis (risk society, environmental justice, and urban vulnerability as impact), we hypothesize that health risks from exposure to air pollution and temperature in these cities do not necessarily depend on socio-economic inequalities. To test this hypothesis, we gathered, validated, and analyzed temperature, air pollution, mortality and socioeconomic vulnerability data from the three study cities. Our results show the association between air pollution levels and socioeconomic vulnerabilities did not always correlate within the study cities. Furthermore, the spatial differences in socioeconomic vulnerabilities within cities do not necessarily correspond with the spatial distribution of health impacts. The present study improves our understanding of the multifaceted nature of health risks and vulnerabilities associated with global environmental change. The findings suggest that health risks from atmospheric conditions and pollutants exist without boundaries or social distinctions, even exhibiting characteristics of a boomerang effect (i.e., affecting rich and poor alike) on a smaller scale such as areas within urban regions. We used human mortality, a severe impact, to measure health risks from air pollution and extreme temperatures. Public health data of better quality (e.g., morbidity, hospital visits) are needed for future research to advance our understanding of the nature of health risks related to climate hazards.

  13. Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America

    NASA Astrophysics Data System (ADS)

    Alvarez, Mariano S.; Vera, C. S.; Kiladis, G. N.; Liebmann, B.

    2016-01-01

    The regional influence of the Madden-Julian oscillation (MJO) on South America is described. Maps of probability of weekly-averaged rainfall exceeding the upper tercile were computed for all seasons and related statistically with the phase of the MJO as characterized by the Wheeler-Hendon real-time multivariate MJO (RMM) index and with the OLR MJO Index. The accompanying surface air temperature and circulation anomalies were also calculated. The influence of the MJO on regional scales along with their marked seasonal variations was documented. During December-February when the South American monsoon system is active, chances of enhanced rainfall are observed in southeastern South America (SESA) region mainly during RMM phases 3 and 4, accompanied by cold anomalies in the extratropics, while enhanced rainfall in the South Atlantic Convergence Zone (SACZ) region is observed in phases 8 and 1. The SESA (SACZ) signal is characterized by upper-level convergence (divergence) over tropical South America and a cyclonic (anticyclonic) anomaly near the southern tip of the continent. Impacts during March-May are similar, but attenuated in the extratropics. Conversely, in June-November, reduced rainfall and cold anomalies are observed near the coast of the SACZ region during phases 4 and 5, favored by upper-level convergence over tropical South America and an anticyclonic anomaly over southern South America. In September-November, enhanced rainfall and upper-level divergence are observed in the SACZ region during phases 7 and 8. These signals are generated primarily through the propagation of Rossby wave energy generated in the region of anomalous heating associated with the MJO.

  14. Impact of aerosol on air temperature in Kuwait

    NASA Astrophysics Data System (ADS)

    Sabbah, I.

    2010-08-01

    This work uses MODIS aerosol optical thickness (AOT) data observed over Kuwait during the 7-year interval 2000-2007. The values of AOT and the Ångström wavelength exponent ( α) show a clear annual cycle. These data are categorized into two catalogues in terms of the values of the AOT of the 870 nm channel ( τ870). One catalogue (71 days) includes days with high values of AOT ( τ870 ≥ 0.75). The most probable "modal" value of α for these days is 0.52. The other catalogue (1162 days) consists of the background days with a modal value ~ 1.1 for the exponent α. This analysis is extended to include water vapor content (WVC), surface wind speed (V), visibility (Vis) and the diurnal temperature range (DTR). Chree's method of superposed-epoch analysis is applied to these parameters in order to compare the variation in the daily averages during days with high AOT values with respect to background days. The high values of AOT during the 71 days are positively correlated with aerosol size, near-surface winds and poor visibility. This concludes that the aerosol particles during these days were mostly dust. The mean daily value of the DTR (Δ T) and visibility reduced significantly during these days. This reduction on DTR is a direct result of increasing the atmospheric opacity due to the presence of dust.

  15. Saturn's icy satellites investigated by Cassini-VIMS. IV. Daytime temperature maps

    NASA Astrophysics Data System (ADS)

    Filacchione, Gianrico; D'Aversa, Emiliano; Capaccioni, Fabrizio; Clark, Roger N.; Cruikshank, Dale P.; Ciarniello, Mauro; Cerroni, Priscilla; Bellucci, Giancarlo; Brown, Robert H.; Buratti, Bonnie J.; Nicholson, Phillip D.; Jaumann, Ralf; McCord, Thomas B.; Sotin, Christophe; Stephan, Katrin; Dalle Ore, Cristina M.

    2016-06-01

    The spectral position of the 3.6 μm continuum peak measured on Cassini-VIMS I/F spectra is used as a marker to infer the temperature of the regolith particles covering the surfaces of Saturn's icy satellites. This feature is characterizing the crystalline water ice spectrum which is the dominant compositional endmember of the satellites' surfaces. Laboratory measurements indicate that the position of the 3.6 μm peak of pure water ice is temperature-dependent, shifting towards shorter wavelengths when the sample is cooled, from about 3.65 μm at T=123 K to about 3.55 μm at T=88 K. A similar method was already applied to VIMS Saturn's rings mosaics to retrieve ring particles temperature (Filacchione, G., Ciarniello, M., Capaccioni, F., et al., 2014. Icarus, 241, 45-65). We report here about the daytime temperature variations observed on the icy satellites as derived from three different VIMS observation types: (a) a sample of 240 disk-integrated I/F observations of Saturn's regular satellites collected by VIMS during years 2004-2011 with solar phase in the 20°-40° range, corresponding to late morning-early afternoon local times. This dataset is suitable to exploit the temperature variations at hemispherical scale, resulting in average temperature T <88 K for Mimas, T ≪88 K for Enceladus, T <88 K for Tethys, T=98-118 K for Dione, T=108-128 K for Rhea, T=118-128 K for Hyperion, T=128-148 and T > 168 K for Iapetus' trailing and leading hemispheres, respectively. A typical ±5 K uncertainty is associated to the temperature retrieval. On Tethys and Dione, for which observations on both leading and trailing hemispheres are available, in average daytime temperatures higher of about 10 K on the trailing than on the leading hemisphere are inferred. (b) Satellites disk-resolved observations taken at 20-40 km pixel-1 resolution are suitable to map daytime temperature variations across surfaces' features, such as Enceladus' tiger stripes and Tethys' equatorial dark lens

  16. Near Decade Long Tropospheric Air Temperature and Specific Humidity Records from AIRS for CMIP5 Model Evaluation

    NASA Astrophysics Data System (ADS)

    Tian, B.; Fetzer, E.; Kahn, B. H.; Teixeira, J.; Manning, E.; Hearty, T. J.

    2012-12-01

    The peer-reviewed analyses of multi-model outputs from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) experiments will be the most important basis for the next Intergovernmental Panel on Climate Change (IPCC) Assessment Report (AR5). To increase the fidelity of the IPCC AR5, an Obs4MIPs project has been initiated to collect some well-established and well-documented datasets, to organize them according to the CMIP5 model output requirements, and makes them available to the science community for CMIP5 model evaluation. The NASA Atmospheric Infrared Sounder (AIRS) project has produced monthly mean tropospheric air temperature (ta, K) and specific humidity (hus, kg/kg) products as part of the Obs4MIPS project. In this paper, we first describe these two AIRS datasets in terms of data description, origin, validation and caveats for model-observation comparison. We then document the climatological mean features of these two AIRS datasets and compare them to those from NASA's Modern Era Retrospective analysis for Research and Applications (MERRA) for AIRS data validation and CMIP5 model simulations for CMIP5 model evaluation. As expected, the 9-year AIRS data show several well-known climatological features of tropospheric ta and hus, such as the strong meridional and vertical gradients of tropospheric ta and hus and strong zonal gradient of tropospheric hus. AIRS data also show the strong connections between the tropospheric hus, atmospheric circulation and deep convection. In comparison to MERRA, AIRS seems to be colder in the free troposphere but warmer in the boundary layer with differences typically less than 1 K. AIRS is wetter (~10%) in the tropical boundary layer but drier (around 30%) in the tropical free troposphere and the extratropical troposphere. In particular, the large AIRS-MERRA hus differences are mainly located in the cloudy regions, such as the Intertropical Convergence Zone (ITCZ), the South Pacific Convergence Zone (SPCZ) and the

  17. Multi-layer thermoelectric-temperature-mapping microbial incubator designed for geo-biochemistry applications.

    PubMed

    Wu, Jin-Gen; Liu, Man-Chi; Tsai, Ming-Fei; Yu, Wei-Shun; Chen, Jian-Zhang; Cheng, I-Chun; Lin, Pei-Chun

    2012-04-01

    We demonstrate a novel, vertical temperature-mapping incubator utilizing eight layers of thermoelectric (TE) modules mounted around a test tube. The temperature at each layer of the TE module is individually controlled to simulate the vertical temperature profile of geo-temperature variations with depth. Owing to the constraint of non-intrusion to the filled geo-samples, the temperature on the tube wall is adopted for measurement feedback. The design considerations for the incubator include spatial arrangement of the energy transfer mechanism, heating capacity of the TE modules, minimum required sample amount for follow-up instrumental or chemical analysis, and the constraint of non-intrusion to the geo-samples during incubation. The performance of the incubator is experimentally evaluated with two tube conditions and under four preset temperature profiles. Test tubes are either empty or filled with quartz sand, which has comparable thermal properties to the materials in the geo-environment. The applied temperature profiles include uniform, constant temperature gradient, monotonic-increasing parabolic, and parabolic. The temperature on the tube wall can be controlled between 20 °C and 90 °C with an averaged root mean squared error of 1 °C.

  18. Multispectral x-ray imaging for core temperature and density maps retrieval in direct drive implosions

    SciTech Connect

    Tommasini, Riccardo; Koch, Jeffrey A.; Izumi, Nobuhiko; Welser, Leslie A.; Mancini, Roberto C.; Delettrez, Jacques; Regan, Sean; Smalyuk, Vladimir

    2006-10-15

    We report on the experiments aimed at obtaining core temperature and density maps in direct drive implosions at the Omega laser facility using multimonochromatic x-ray imagers. These instruments use an array of pinholes and a flat multilayer mirror to provide unique multispectral images distributed over a wide spectral range. Using argon as a dopant in the direct-drive filled plastic shells produces emission images in the Ar He-{beta} and Ly-{beta} spectral regions. These images allow the retrieval of temperature and density maps of the plasma. We deployed three identical multimonochromatic x-ray imagers in a quasiorthogonal line-of-sight configuration to allow tomographic reconstruction of the structure of the imploding core.

  19. Multispectral X-ray Imagaing for Core Temperature and Density Maps Retrieval in Direct Drive Implosions

    SciTech Connect

    Tommasini, R; Koch, J A; Izumi, N; Welser, L A; Mancini, R C; Delettrez, J; Regan, S; Smalyuk, V

    2006-04-26

    We report on the experiments aimed at obtaining core temperature and density maps in direct drive implosions at the OMEGA Laser Facility using multi-monochromatic X-ray imagers. These instruments use an array of pinholes and a flat multilayer mirror to provide unique multi-spectral images distributed over a wide spectral range. Using Argon as a dopant in the DD-filled plastic shells produces emission images in the Ar He-b and Ly-b spectral regions. These images allow the retrieval of temperature and density maps of the plasma. We deployed three identical multi-monochromatic X-ray imagers in a quasi-orthogonal line-of-sight configuration to allow tomographic reconstruction of the structure of the imploding core.

  20. CO2 CH4 flux Air temperature Soil temperature and Soil moisture, Barrow, Alaska 2013 ver. 1

    DOE Data Explorer

    Margaret Torn

    2015-01-14

    This dataset consists of field measurements of CO2 and CH4 flux, as well as soil properties made during 2013 in Areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) measurements of CO2 and CH4 flux made from June to September (ii) Calculation of corresponding Gross Primary Productivity (GPP) and CH4 exchange (transparent minus opaque) between atmosphere and the ecosystem (ii) Measurements of Los Gatos Research (LGR) chamber air temperature made from June to September (ii) measurements of surface layer depth, type of surface layer, soil temperature and soil moisture from June to September.

  1. Temperature measurements behind reflected shock waves in air. [radiometric measurement of gas temperature in self-absorbing gas flow

    NASA Technical Reports Server (NTRS)

    Bader, J. B.; Nerem, R. M.; Dann, J. B.; Culp, M. A.

    1972-01-01

    A radiometric method for the measurement of gas temperature in self-absorbing gases has been applied in the study of shock tube generated flows. This method involves making two absolute intensity measurements at identical wavelengths, but for two different pathlengths in the same gas sample. Experimental results are presented for reflected shock waves in air at conditions corresponding to incident shock velocities from 7 to 10 km/s and an initial driven tube pressure of 1 torr. These results indicate that, with this technique, temperature measurements with an accuracy of + or - 5 percent can be carried out. The results also suggest certain facility related problems.

  2. Estimating daily air temperatures over the Tibetan Plateau by dynamically integrating MODIS LST data

    NASA Astrophysics Data System (ADS)

    Zhang, Hongbo; Zhang, Fan; Ye, Ming; Che, Tao; Zhang, Guoqing

    2016-10-01

    Recently, remotely sensed land surface temperature (LST) data have been used to estimate air temperatures because of the sparseness of station measurements in remote mountainous areas. Due to the availability and accuracy of Moderate Resolution Imaging Spectroradiometer (MODIS) LST data, the use of a single term or a fixed combination of terms (e.g., Terra/Aqua night and Terra/Aqua day), as used in previous estimation methods, provides only limited practical application. Furthermore, the estimation accuracy may be affected by different combinations and variable data quality among the MODIS LST terms and models. This study presents a method that dynamically integrates the available LST terms to estimate the daily mean air temperature and simultaneously considers model selection, data quality, and estimation accuracy. The results indicate that the differences in model performance are related to the combinations of LST terms and their data quality. The spatially averaged cloud cover of 14% for the developed product between 2003 and 2010 is much lower than the 35-54% for single LST terms. The average cross-validation root-mean-square difference values are approximately 2°C. This study identifies the best LST combinations and statistical models and provides an efficient method for daily air temperature estimation with low cloud blockage over the Tibetan Plateau (TP). The developed data set and the method proposed in this study can help alleviate the problem of sparse air temperature data over the TP.

  3. Development of a high-temperature air-blown gasification system.

    PubMed

    Pian, C C; Yoshikawa, K

    2001-09-01

    Current status of high-temperature air-blown gasification technology development is reviewed. This advanced gasification system utilizes preheated air to convert coal and waste-derived fuels into synthetic fuel gas and value-added byproducts. A series of demonstrated, independent technologies are combined to form the core of this gasification system. A high-temperature, rapid devolatilization process is used to enhance the volatile yields from the fuel and to improve the gasification efficiency. A high-temperature pebble bed filter is used to remove to the slag and particulates from the synthetic fuel gas. Finally, a novel regenerative heater is used to supply the high-temperature air for the gasifier. Component development tests have shown that higher gasification efficiencies can be obtained at more fuel-rich operating conditions when high-temperature air is used as the gasification agent. Test results also demonstrated the flex-fuel capabilities of the gasifier design. Potential uses of this technology range from large-scale integrated gasification power plants to small-scale waste-to-energy applications.

  4. Long-term air temperature variation in the Karkonosze mountains according to atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Migała, Krzysztof; Urban, Grzegorz; Tomczyński, Karol

    2016-07-01

    The results of meteorological measurements carried out continuously on Mt Śnieżka in Karkonosze mountains since 1880 well document the warming observed on a global scale. Data analysis indicates warming expressed by an increase in the mean annual air temperature of 0.8 °C/100 years. A much higher temperature increase was recorded in the last two decades at the turn of the twenty-first century. Mean decade air temperatures increased from -0.1 to 1.5 °C. It has been shown that there are relationships between air temperature at Mt Śnieżka and global mechanisms of atmospheric and oceanic circulation. Thermal conditions of the Karkonosze (Mt Śnieżka) accurately reflect global climate trends and impact of the North Atlantic Oscillation (NAO) index, macrotypes of atmospheric circulation in Europe (GWL) and Atlantic Multidecadal Oscillation (AMO). The increase in air temperature during the 1989-2012 solar magnetic cycle may reveal a synergy effect to which astrophysical effects and atmospheric and oceanic circulation effects contribute, modified by constantly increasing anthropogenic factors.

  5. Global Distribution and Variability of Surface Skin and Surface Air Temperatures as Depicted in the AIRS Version-6 Data Set

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2014-01-01

    In this presentation, we will briefly describe the significant improvements made in the AIRS Version-6 retrieval algorithm, especially as to how they affect retrieved surface skin and surface air temperatures. The global distribution of seasonal 1:30 AM and 1:30 PM local time 12 year climatologies of Ts,a will be presented for the first time. We will also present the spatial distribution of short term 12 year anomaly trends of Ts,a at 1:30 AM and 1:30 PM, as well as the spatial distribution of temporal correlations of Ts,a with the El Nino Index. It will be shown that there are significant differences between the behavior of 1:30 AM and 1:30 PM Ts,a anomalies in some arid land areas.

  6. Thermal Evolution of a Failed Flux Rope Eruption Revealed by Temperature Maps

    NASA Astrophysics Data System (ADS)

    Song, H.; Zhang, J.; CHEN, Y.

    2013-12-01

    Flux rope is generally considered to be the fundamental magnetic configuration of a coronal mass ejection (CME). Recent observations suggest that hot channel or blob structures during the eruptions be the direct observational manifestation of flux ropes. In this study, we report our analysis of thermal evolution of a failed solar eruption with an apparent flux rope embedded. The thermal structure of the eruption is revealed through differential emission measure (DEM) analysis technique, which shows detailed temperature maps in both high spatial resolution and high temperature resolution based on SDO/AIA observations. Our results show that the flux rope exists in the corona before the eruption, and its temperature can quickly rise to over 10 MK within one minute of the eruption. The correlation study between the flux rope temperature and the soft x-ray flux suggests that the flux rope should be heated through the direct thermal energy release of magnetic reconnection. Further, we study the kinematic evolution process of the flux rope, in an effort to find the physical mechanism that prevents the magnetic rope eruption to become a full coronal mass ejection. This kind of study using temperature maps might reveal where and when magnetic reconnection takes place during solar eruptions.

  7. Effects of a ceramic coating on metal temperatures of an air-cooled turbine vane

    NASA Astrophysics Data System (ADS)

    Gladden, H. J.; Liebert, C. H.

    1980-02-01

    The metal temperatures of air cooled turbine vanes both uncoated and coated with the NASA thermal barrier system were studied experimentally. Current and advanced gas turbine engine conditions were simulated at reduced temperatures and pressures. Airfoil metal temperatures were significantly reduced, both locally and on the average, by use of the the coating. However, at low gas Reynolds number, the ceramic coating tripped a laminar boundary layer on the suction surface, and the resulting higher heat flux increased the metal temperatures. Simulated coating loss was also investigated and shown to increase local metal temperatures. However, the metal temperatures in the leading edge region remained below those of the uncoated vane tested at similar conditions. Metal temperatures in the trailing edge region exceeded those of the uncoated vane.

  8. Effects of a ceramic coating on metal temperatures of an air-cooled turbine vane

    NASA Technical Reports Server (NTRS)

    Gladden, H. J.; Liebert, C. H.

    1980-01-01

    The metal temperatures of air cooled turbine vanes both uncoated and coated with the NASA thermal barrier system were studied experimentally. Current and advanced gas turbine engine conditions were simulated at reduced temperatures and pressures. Airfoil metal temperatures were significantly reduced, both locally and on the average, by use of the the coating. However, at low gas Reynolds number, the ceramic coating tripped a laminar boundary layer on the suction surface, and the resulting higher heat flux increased the metal temperatures. Simulated coating loss was also investigated and shown to increase local metal temperatures. However, the metal temperatures in the leading edge region remained below those of the uncoated vane tested at similar conditions. Metal temperatures in the trailing edge region exceeded those of the uncoated vane.

  9. An Experimental Investigation Into the Temperature Profile of a Compliant Foil Air Bearing

    NASA Technical Reports Server (NTRS)

    Radil, Kevin; Zeszotek, Michelle

    2004-01-01

    A series of tests was performed to determine the internal temperature profile in a compliant bump-type foil journal air bearing operating at room temperature under various speeds and load conditions. The temperature profile was collected by instrumenting a foil bearing with nine, type K thermocouples arranged in the center and along the bearing s edges in order to measure local temperatures and estimate thermal gradients in the axial and circumferential directions. To facilitate the measurement of maximum temperatures from viscous shearing in the air film, the thermocouples were tack welded to the backside of the bumps that were in direct contact with the top foil. The mating journal was coated with a high temperature solid lubricant that, together with the bearing, underwent high temperature start-stop cycles to produce a smooth, steady-state run-in surface. Tests were conducted at speeds from 20 to 50 krpm and loads ranging from 9 to 222 N. The results indicate that, over the conditions tested, both journal rotational speed and radial load are responsible for heat generation with speed playing a more significant role in the magnitude of the temperatures. The temperature distribution was nearly symmetric about the bearing center at 20 and 30 krpm but became slightly skewed toward one side at 40 and 50 krpm. Surprisingly, the maximum temperatures did not occur at the bearing edge where the minimum film thickness is expected but rather in the middle of the bearing where analytical investigations have predicted the air film to be much thicker. Thermal gradients were common during testing and were strongest in the axial direction from the middle of the bearing to its edges, reaching 3.78 8C/mm. The temperature profile indicated the circumferential thermal gradients were negligible.

  10. Retrieval of surface temperature by remote sensing. [of earth surface using brightness temperature of air pollutants

    NASA Technical Reports Server (NTRS)

    Gupta, S. K.; Tiwari, S. N.

    1976-01-01

    A simple procedure and computer program were developed for retrieving the surface temperature from the measurement of upwelling infrared radiance in a single spectral region in the atmosphere. The program evaluates the total upwelling radiance at any altitude in the region of the CO fundamental band (2070-2220 1/cm) for several values of surface temperature. Actual surface temperature is inferred by interpolation of the measured upwelling radiance between the computed values of radiance for the same altitude. Sensitivity calculations were made to determine the effect of uncertainty in various surface, atmospheric and experimental parameters on the inferred value of surface temperature. It is found that the uncertainties in water vapor concentration and surface emittance are the most important factors affecting the accuracy of the inferred value of surface temperature.

  11. SIRS: An Experiment to Measure the Free Air Temperature from a Satellite.

    PubMed

    Wark, D Q

    1970-08-01

    The Satellite Infrared Spectrometer (SIRS) on the Nimbus III satellite was designed to measure the earth's spectral radiances in the 15-microm band of carbon dioxide. From simultaneous measurements of spectral radiances it is possible to obtain the vertical temperature profile of the atmosphere. The measurements are approximated by the integral equation of radiative transfer, modified by one or two layers of clouds. A solution requires that the surface radiative temperature and the surface air temperature be known. By iteration, a solution based upon the statistical behavior of the atmosphere is obtained for the free air temperature and the cloud heights and amounts. Examples are presented, comparing the SIRS soundings with coincident radiosonde soundings. The results from this experiment indicate that the technique can be applied as a routine observing tool for meteorological use.

  12. A new approach for highly resolved air temperature measurements in urban areas

    NASA Astrophysics Data System (ADS)

    Buttstädt, M.; Sachsen, T.; Ketzler, G.; Merbitz, H.; Schneider, C.

    2011-02-01

    In different fields of applied local climate investigation, highly resolved data of air temperature are of great importance. As a part of the research programme entitled City2020+, which deals with future climate conditions in agglomerations, this study focuses on increasing the quantity of urban air temperature data intended for the analysis of their spatial distribution. A new measurement approach using local transport buses as "riding thermometers" is presented. By this means, temperature data with a very high temporal and spatial resolution could be collected during scheduled bus rides. The data obtained provide the basis for the identification of thermally affected areas and for the investigation of factors in urban structure which influence the thermal conditions. Initial results from the ongoing study, which show the temperature distribution along different traverses through the city of Aachen, are presented.

  13. Temperature mapping of laser-induced hyperthermia in an ocular phantom using magnetic resonance thermography.

    PubMed

    Maswadi, Saher M; Dodd, Stephen J; Gao, Jia-Hong; Glickman, Randolph D

    2004-01-01

    Laser-induced heating in an ocular phantom is measured with magnetic resonance thermography (MRT) using temperature-dependent phase changes in proton resonance frequency. The ocular phantom contains a layer of melanosomes isolated from bovine retinal pigment epithelium. The phantom is heated by the 806-nm output of a continuous wave diode laser with an irradiance of 2.4 to 21.6 W/cm2 in a beam radius of 0.8 or 2.4 mm, depending on the experiment. MRT is performed with a 2 T magnet, and a two-turn, 6-cm-diam, circular radio frequency coil. Two-dimensional temperature gradients are measured within the plane of the melanin layer, as well as normal to it, with a temperature resolution of 1 degrees C or better. The temperature gradients extending within the melanin layer are broader than those orthogonal to the layer, consistent with the higher optical absorption and consequent heating in the melanin. The temperature gradients in the phantom measured by MRT closely approximate the predictions of a classical heat diffusion model. Three-dimensional temperature maps with a spatial resolution of 0.25 mm in all directions are also made. Although the temporal resolution is limited in the prototype system (22.9 s for a single image "slice"), improvements in future implementations are likely. These results indicate that MRT has sufficient spatial and temperature resolution to monitor target tissue temperature during transpupillary thermotherapy in the human eye.

  14. Emissions of an AVCO Lycoming 0-320-DIAD air cooled light aircraft engine as a function of fuel-air ratio, timing, and air temperature and humidity

    NASA Technical Reports Server (NTRS)

    Meng, P. R.; Skorobatckyi, M.; Cosgrove, D. V.; Kempke, E. E., Jr.

    1976-01-01

    A carbureted aircraft engine was operated over a range of test conditions to establish the exhaust levels over the EPA seven-mode emissions cycle. Baseline (full rich production limit) exhaust emissions at an induction air temperature of 59 F and near zero relative humidity were 90 percent of the EPA standard for HC, 35 percent for NOx, and 161 percent for CO. Changes in ignition timing around the standard 25 deg BTDC from 30 deg BTDC to 20 deg BTDC had little effect on the exhaust emissions. Retarding the timing to 15 deg BTDC increased both the HC and CO emissions and decreased NOx emissions. HC and CO emissions decreased as the carburetor was leaned out, while NOx emissions increased. The EPA emission standards were marginally achieved at two leanout conditions. Variations in the quantity of cooling air flow over the engine had no effect on exhaust emissions. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased.

  15. Cool Roofs in Guangzhou, China: Outdoor Air Temperature Reductions during Heat Waves and Typical Summer Conditions.

    PubMed

    Cao, Meichun; Rosado, Pablo; Lin, Zhaohui; Levinson, Ronnen; Millstein, Dev

    2015-12-15

    In this paper, we simulate temperature reductions during heat-wave events and during typical summer conditions from the installation of highly reflective "cool" roofs in the Chinese megacity of Guangzhou. We simulate temperature reductions during six of the strongest historical heat-wave events over the past decade, finding average urban midday temperature reductions of 1.2 °C. In comparison, we simulate 25 typical summer weeks between 2004 and 2008, finding average urban midday temperature reductions of 0.8 °C, indicating that air temperature sensitivity to urban albedo in Guangzhou varies with meteorological conditions. We find that roughly three-fourths of the variance in air temperature reductions across all episodes can be accounted for by a linear regression, including only three basic properties related to the meteorological conditions: mean daytime temperature, humidity, and ventilation to the greater Guangzhou urban area. While these results highlight the potential for cool roofs to mitigate peak temperatures during heat waves, the temperature reductions reported here are based on the upper bound case, which increases albedos of all roofs (but does not modify road albedo or wall albedo).

  16. Equatorial range limits of an intertidal ectotherm are more linked to water than air temperature.

    PubMed

    Seabra, Rui; Wethey, David S; Santos, António M; Gomes, Filipa; Lima, Fernando P

    2016-10-01

    As climate change is expected to impose increasing thermal stress on intertidal organisms, understanding the mechanisms by which body temperatures translate into major biogeographic patterns is of paramount importance. We exposed individuals of the limpet Patella vulgata Linnaeus, 1758, to realistic experimental treatments aimed at disentangling the contribution of water and air temperature for the buildup of thermal stress. Treatments were designed based on temperature data collected at the microhabitat level, from 15 shores along the Atlantic European coast spanning nearly 20° of latitude. Cardiac activity data indicated that thermal stress levels in P. vulgata are directly linked to elevated water temperature, while high air temperature is only stressful if water temperature is also high. In addition, the analysis of the link between population densities and thermal regimes at the studied locations suggests that the occurrence of elevated water temperature may represent a threshold P. vulgata is unable to tolerate. By combining projected temperatures with the temperature threshold identified, we show that climate change will likely result in the westward expansion of the historical distribution gap in the Bay of Biscay (southwest France), and northward contraction of the southern range limit in south Portugal. These findings suggest that even a minor relaxing of the upwelling off northwest Iberia could lead to a dramatic increase in thermal stress, with major consequences for the structure and functioning of the intertidal communities along Iberian rocky shores.

  17. Spatial distribution of air temperature in Toruń (Central Poland) and its causes

    NASA Astrophysics Data System (ADS)

    Przybylak, Rajmund; Uscka-Kowalkowska, Joanna; Araźny, Andrzej; Kejna, Marek; Kunz, Mieczysław; Maszewski, Rafał

    2017-01-01

    In this article, the results of an investigation into the air temperature pattern and development (including the urban heat island (UHI)) in Toruń (central Poland) are presented. For the analysis, daily mean temperature (Ti) as well as daily maximum (Tmax) and minimum (Tmin) temperatures for 2012 gathered for 20 sites, evenly distributed in the area of city, have been taken as source data. Additionally, in order to provide more extensive characteristics of the diversity of the air temperature in the study area, the diurnal temperature range (DTR) and the number of the so-called characteristic days were calculated as well. The impact of weather conditions (cloudiness and wind speed), atmospheric circulation, urban morphological parameters and land cover on the UHI in the study area was investigated. In Toruń, according to the present study, the average UHI intensity in 2012 was equal to 1.0 °C. The rise of cloudiness and wind speed led to a decrease of the magnitude of the UHI. Generally, in most cases, anticyclonic situations favour increased thermal contrast between rural and city areas, particularly in summer. Warm western circulation types significantly reduced temperature differences in the western side of the city and enlarged them in the eastern side of the city. Eastern cold types also have a similar influence on air temperature differences. Positive and statistically significant correlations have been found between the percentage of built-up areas (sealing factor) and air temperature. Conversely, sky view factor (SVF) reveals negative correlations which are statistically significant only for Tmin.

  18. [Effects of sudden air temperature and pressure changes on mortality in the Czech Republic].

    PubMed

    Plavcová, E; Kyselý, J

    2009-04-01

    We have developed an algorithm for identifying sudden changes in air pressure and temperature over the Czech Republic. Such events were retrieved from the data covering in 1986-2005 and were matched with the daily numbers of all-cause deaths and deaths due to cardiovascular diseases from the national database, separately for the whole population and that aged 70 years and over. Excess daily mortality was determined by calculating deviations of the observed number of deaths from the expected number of deaths for each day in the respective groups. The relative deviation of the mortality the mean was calculated as the ratio of the excess mortality to the expected number of deaths. We used 3-hour air pressure data from 10 meteorological stations and hourly air temperature data from 9 stations representative of the Czech Republic. Pressure changes were evaluated on time scales of 3, 6 and 12 hours, separately for summer and winter time. Temperature changes were evaluated on a 24-hour time scale, separately for summer and winter season. Events characterized by pressure or temperature changes above the critical threshold and recorded within 24 hours at more than 50% of meteorological stations were retrieved. The critical thresholds were defined separately for each station using quantiles of distributions of air pressure and temperature changes. Relative mortality deviations for days D-2 (2 days before the change) to D+7 (7 days after the change) were averaged over the retrieved events. Statistical significance of the mean relative deviation was tested using the Monte Carlo method. Increased mortality followed large temperature increases and large pressure drops both in summer and winter months. Decreased mortality was observed after large pressure increases and large temperature drops in summer. Mortality variations are usually more pronounced in the population aged 70 years and over, and cardiovascular diseases account for most deaths after sudden temperature changes.

  19. GSOD Based Daily Global Mean Surface Temperature and Mean Sea Level Air Pressure (1982-2011)

    SciTech Connect

    Xuan Shi, Dali Wang

    2014-05-05

    This data product contains all the gridded data set at 1/4 degree resolution in ASCII format. Both mean temperature and mean sea level air pressure data are available. It also contains the GSOD data (1982-2011) from NOAA site, contains station number, location, temperature and pressures (sea level and station level). The data package also contains information related to the data processing methods

  20. Effects of light intensity light quality and air velocity on temperature in plant reproductive organs

    NASA Astrophysics Data System (ADS)

    Kitaya, Y.; Hirai, H.

    Excess temperature increase in plant reproductive organs such as anthers and stigmata could cause fertility impediments and thus produce sterile seeds under artificial lighting conditions in closed plant growth facilities There is a possibility that the aberration was caused by an excess increase in temperatures of reproductive organs in Bioregenerative Life Support Systems under microgravity conditions in space The fundamental study was conducted to know the thermal situation of the plant reproductive organs as affected by light intensity light quality and air velocity on the earth and to estimate the excess temperature increase in the reproductive organs in closed plant growth facilities in space Thermal images of reproductive organs of rice and strawberry were captured using infrared thermography at an air temperature of 10 r C The temperatures in flowers at 300 mu mol m -2 s -1 PPFD under the lights from red LEDs white LEDs blue LEDs fluorescent lamps and incandescent lamps increased by 1 4 1 7 1 9 6 0 and 25 3 r C respectively for rice and by 2 8 3 4 4 1 7 8 and 43 4 r C respectively for strawberry The flower temperatures increased with increasing PPFD levels The temperatures in petals anthers and stigmas of strawberry at 300 mu mol m -2 s -1 PPFD under incandescent lamps increased by 32 7 29 0 and 26 6 r C respectively at 0 1 m s -1 air velocity and by 20 6 18 5 and 15 9 r C respectively at 0 8 m s -1 air velocity The temperatures of reproductive organs decreased with increasing

  1. Heat Exchange with Air and Temperature Profile of a Moving Oversize Tire

    NASA Astrophysics Data System (ADS)

    Grinchuk, P. S.; Fisenko, S. P.

    2016-11-01

    A one-dimensional mathematical model of heat transfer in a tire with account for the deformation energy dissipation and heat exchange of a moving tire with air has been developed. The mean temperature profiles are calculated and transition to a stationary thermal regime is considered. The influence of the rate of energy dissipation and of effective thermal conductivity of rubber on the temperature field is investigated quantitatively.

  2. Elevation of nasal mucosal temperature increases the ability of the nose to warm and humidify air.

    PubMed

    Abbott, D J; Baroody, F M; Naureckas, E; Naclerio, R M

    2001-01-01

    The nose functions to warm and humidify inspired air. The factors that influence these functions have been studied to a limited degree. We have developed a method for measuring the temperature and relative humidity of the air before and after nasal conditioning to study nasal function. In this experiment we studied the effects of raising the mucosal surface temperature by immersion of the feet in warm water. Six subjects (avg. age = 27.0 years) were randomized to immersion of the feet in 30 degrees C and 40 degrees C water. The nasal mucosal temperature increased significantly from the 32.2+/-1.3 degrees C during immersion in the 30 degrees C water to the 33.1+/-1.2 degrees C during immersion in 40 degrees water (p < 0.05). No significant difference in nasal volume was noted between the 30 degrees (17.8+/-4.5 cc) and the 40 degrees (17.7+/-5.3 cc) immersions. There was a significant increase in the conditioning capacity of the nose (as measured by total water content of inspired air) in response to cold-air challenge during the 40 degrees immersion (1669+/-312 mg water) when compared to the 30 degrees immersion (1324+/-152 mg water). From these data we deduce that warming of the nasal mucosa improves the ability of the nose to condition inspired air without a significant change in the volume of the nasal cavity.

  3. Spatial temperature mapping of an atmospheric microdischarge using ultraviolet Rayleigh scatter imaging

    NASA Astrophysics Data System (ADS)

    Adams, S. F.; Caplinger, J. E.; Sommers, B. S.

    2015-04-01

    Spatially resolved temperature measurements within a microdischarge in atmospheric pressure air have been conducted using Rayleigh scattering of a pulsed ultraviolet laser. Rayleigh scatter images were used to generate highly resolved 1D and 2D profiles of translational temperature, with the analysis based on the ideal gas inverse relationship between temperature and gas density. The technique was shown to be practical to an upper gas temperature limit of approximately 2000 K. Rayleigh scattering results were compared to standard optical emission spectral analyses of {{\\text{N}}2}≤ft({{C}3}{{\\Pi}\\text{u}}\\to {{B}3}{{\\Pi}\\text{g}}\\right) bands, where the calculated rotational temperatures from emission agreed consistently with the peak translational temperatures within the microdischarge measured by Rayleigh laser scatter analyses. The results provide distinctive support of the assumption commonly applied for {{\\text{N}}2} discharges that the {{\\text{N}}2}≤ft({{C}3}{{\\Pi}\\text{u}}\\right) excited state has an identical rotational energy distribution as the {{\\text{N}}2}≤ft({{X}1}{Σ\\text{g}}\\right) ground state. The microdischarge investigated in this study was found to follow another common assumption for non-thermal discharges; that the translation and rotational temperatures are approximately equal to each other and the vibrational temperature is of a much higher value.

  4. Regional change in snow water equivalent-surface air temperature relationship over Eurasia during boreal spring

    NASA Astrophysics Data System (ADS)

    Wu, Renguang; Chen, Shangfeng

    2016-10-01

    Present study investigates local relationship between surface air temperature and snow water equivalent (SWE) change over mid- and high-latitudes of Eurasia during boreal spring. Positive correlation is generally observed around the periphery of snow covered region, indicative of an effect of snow on surface temperature change. In contrast, negative correlation is usually found over large snow amount area, implying a response of snow change to wind-induced surface temperature anomalies. With the seasonal retreat of snow covered region, region of positive correlation between SWE and surface air temperature shifts northeastward from March to May. A diagnosis of surface heat flux anomalies in April suggests that the snow impact on surface air temperature is dominant in east Europe and west Siberia through modulating surface shortwave radiation. In contrast, atmospheric effect on SWE is important in Siberia and Russia Far East through wind-induced surface sensible heat flux change. Further analysis reveals that atmospheric circulation anomalies in association with snowmelt over east Siberia may be partly attributed to sea surface temperature anomalies in the North Atlantic and the atmospheric circulation anomaly pattern associated with snowmelt over Russia Far East has a close association with the Arctic Oscillation.

  5. Computational Fluid Dynamics Analysis on Radiation Error of Surface Air Temperature Measurement

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Liu, Qing-Quan; Ding, Ren-Hui

    2017-01-01

    Due to solar radiation effect, current air temperature sensors inside a naturally ventilated radiation shield may produce a measurement error that is 0.8 K or higher. To improve air temperature observation accuracy and correct historical temperature of weather stations, a radiation error correction method is proposed. The correction method is based on a computational fluid dynamics (CFD) method and a genetic algorithm (GA) method. The CFD method is implemented to obtain the radiation error of the naturally ventilated radiation shield under various environmental conditions. Then, a radiation error correction equation is obtained by fitting the CFD results using the GA method. To verify the performance of the correction equation, the naturally ventilated radiation shield and an aspirated temperature measurement platform are characterized in the same environment to conduct the intercomparison. The aspirated temperature measurement platform serves as an air temperature reference. The mean radiation error given by the intercomparison experiments is 0.23 K, and the mean radiation error given by the correction equation is 0.2 K. This radiation error correction method allows the radiation error to be reduced by approximately 87 %. The mean absolute error and the root mean square error between the radiation errors given by the correction equation and the radiation errors given by the experiments are 0.036 K and 0.045 K, respectively.

  6. Mid-infrared mapping of Jupiter's temperatures, aerosol opacity and chemical distributions with IRTF/TEXES

    NASA Astrophysics Data System (ADS)

    Fletcher, Leigh N.; Greathouse, T. K.; Orton, G. S.; Sinclair, J. A.; Giles, R. S.; Irwin, P. G. J.; Encrenaz, T.

    2016-11-01

    Global maps of Jupiter's atmospheric temperatures, gaseous composition and aerosol opacity are derived from a programme of 5-20 μm mid-infrared spectroscopic observations using the Texas Echelon Cross Echelle Spectrograph (TEXES) on NASA's Infrared Telescope Facility (IRTF). Image cubes from December 2014 in eight spectral channels, with spectral resolutions of R ∼2000 - 12 , 000 and spatial resolutions of 2-4° latitude, are inverted to generate 3D maps of tropospheric and stratospheric temperatures, 2D maps of upper tropospheric aerosols, phosphine and ammonia, and 2D maps of stratospheric ethane and acetylene. The results are compared to a re-analysis of Cassini Composite Infrared Spectrometer (CIRS) observations acquired during Cassini's closest approach to Jupiter in December 2000, demonstrating that this new archive of ground-based mapping spectroscopy can match and surpass the quality of previous investigations, and will permit future studies of Jupiter's evolving atmosphere. The visibility of cool zones and warm belts varies from channel to channel, suggesting complex vertical variations from the radiatively-controlled upper troposphere to the convective mid-troposphere. We identify mid-infrared signatures of Jupiter's 5-μm hotspots via simultaneous M, N and Q-band observations, which are interpreted as temperature and ammonia variations in the northern Equatorial Zone and on the edge of the North Equatorial Belt (NEB). Equatorial plumes enriched in NH3 gas are located south-east of NH3-desiccated 'hotspots' on the edge of the NEB. Comparison of the hotspot locations in several channels across the 5-20 μm range indicate that these anomalous regions tilt westward with altitude. Aerosols and PH3 are both enriched at the equator but are not co-located with the NH3 plumes. The equatorial temperature minimum and PH3/aerosol maxima have varied in amplitude over time, possibly as a result of periodic equatorial brightenings and the fresh updrafts of

  7. Meristem temperature substantially deviates from air temperature even in moderate environments: is the magnitude of this deviation species-specific?

    PubMed

    Savvides, Andreas; van Ieperen, Wim; Dieleman, Janneke A; Marcelis, Leo F M

    2013-11-01

    Meristem temperature (Tmeristem ) drives plant development but is hardly ever quantified. Instead, air temperature (Tair ) is usually used as its approximation. Meristems are enclosed within apical buds. Bud structure and function may differ across species. Therefore, Tmeristem may deviate from Tair in a species-specific way. Environmental variables (air temperature, vapour pressure deficit, radiation, and wind speed) were systematically varied to quantify the response of Tmeristem . This response was related to observations of bud structure and transpiration. Tomato and cucumber plants were used as model plants as they are morphologically distinct and usually growing in similar environments. Tmeristem substantially deviated from Tair in a species-specific manner under moderate environments. This deviation ranged between -2.6 and 3.8 °C in tomato and between -4.1 and 3.0 °C in cucumber. The lower Tmeristem observed in cucumber was linked with the higher transpiration of the bud foliage sheltering the meristem when compared with tomato plants. We here indicate that for properly linking growth and development of plants to temperature in future applications, for instance in climate change scenarios studies, Tmeristem should be used instead of Tair , as a species-specific trait highly reliant on various environmental factors.

  8. Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature

    PubMed Central

    Wu, Chih-Da; Lung, Shih-Chun Candice

    2016-01-01

    The lack of appropriate methodologies and indicators to quantify three-dimensional (3-D) building constructions poses challenges to authorities and urban planners when formulating polices to reduce health risks due to heat stress. This study evaluated the applicability of an innovative three-dimensional Urbanization Index (3DUI), based on remote sensing database, with a 5 m spatial resolution of 3-D man-made constructions to representing intra-urban variability of air temperature by assessing correlation of 3DUI with air temperature from a 3-D perspective. The results showed robust high correlation coefficients, ranging from 0.83 to 0.85, obtained within the 1,000 m circular buffer around weather stations regardless of season, year, or spatial location. Our findings demonstrated not only the strength of 3DUI in representing intra-urban air-temperature variability, but also its great potential for heat stress assessment within cities. In view of the maximum correlation between building volumes within the 1,000 m circular buffer and ambient air temperature, urban planning should consider setting ceilings for man-made construction volume in each 2 × 2 km2 residential community for thermal environment regulation, especially in Asian metropolis with high population density in city centers. PMID:27079537

  9. Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature

    NASA Astrophysics Data System (ADS)

    Wu, Chih-Da; Lung, Shih-Chun Candice

    2016-04-01

    The lack of appropriate methodologies and indicators to quantify three-dimensional (3-D) building constructions poses challenges to authorities and urban planners when formulating polices to reduce health risks due to heat stress. This study evaluated the applicability of an innovative three-dimensional Urbanization Index (3DUI), based on remote sensing database, with a 5 m spatial resolution of 3-D man-made constructions to representing intra-urban variability of air temperature by assessing correlation of 3DUI with air temperature from a 3-D perspective. The results showed robust high correlation coefficients, ranging from 0.83 to 0.85, obtained within the 1,000 m circular buffer around weather stations regardless of season, year, or spatial location. Our findings demonstrated not only the strength of 3DUI in representing intra-urban air-temperature variability, but also its great potential for heat stress assessment within cities. In view of the maximum correlation between building volumes within the 1,000 m circular buffer and ambient air temperature, urban planning should consider setting ceilings for man-made construction volume in each 2 × 2 km2 residential community for thermal environment regulation, especially in Asian metropolis with high population density in city centers.

  10. Response of sugarcane to carbon dioxide enrichment and elevated air temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four sugarcane cultivars (CP 72-2086, CP 73-1547, CP 88-1508, and CP 80-1827) were grown in elongated temperature-gradient greenhouses (TGG) at ambient or elevated carbon dioxide (CO2) of 360 or 720 µmol CO2 mol-1 air (ppm, mole fraction basis), respectively. Elevated CO2 was maintained by injection...

  11. Room temperature, air crystallized perovskite film for high performance solar cells

    SciTech Connect

    Dubey, Ashish; Kantack, Nicholas; Adhikari, Nirmal; Reza, Khan Mamun; Venkatesan, Swaminathan; Kumar, Mukesh; Khatiwada, Devendra; Darling, Seth; Qiao, Qiquan

    2016-05-31

    For the first time, room temperature heating free growth and crystallization of perovskite films in ambient air without the use of thermal annealing is reported. Highly efficient perovskite nanorod-based solar cells were made using ITO/PEDOT:PSS/CH3NH3PbI3 nanorods/PC60BM/rhodamine/Ag. All the layers except PEDOT:PSS were processed at room temperature thereby eliminating the need for thermal treatment. Perovskite films were spin coated inside a N-2 filled glovebox and immediately were taken outside in air having 40% relative humidity (RH). Exposure to humid air was observed to promote the crystallization process in perovskite films even at room temperature. Perovskite films kept for 5 hours in ambient air showed nanorod-like morphology having high crystallinity, with devices exhibiting the highest PCE of 16.83%, which is much higher than the PCE of 11.94% for traditional thermally annealed perovskite film based devices. Finally, it was concluded that moisture plays an important role in room temperature crystallization of pure perovskite nanorods, showing improved optical and charge transport properties, which resulted in high performance solar cells.

  12. Room temperature, air crystallized perovskite film for high performance solar cells

    DOE PAGES

    Dubey, Ashish; Kantack, Nicholas; Adhikari, Nirmal; ...

    2016-05-31

    For the first time, room temperature heating free growth and crystallization of perovskite films in ambient air without the use of thermal annealing is reported. Highly efficient perovskite nanorod-based solar cells were made using ITO/PEDOT:PSS/CH3NH3PbI3 nanorods/PC60BM/rhodamine/Ag. All the layers except PEDOT:PSS were processed at room temperature thereby eliminating the need for thermal treatment. Perovskite films were spin coated inside a N-2 filled glovebox and immediately were taken outside in air having 40% relative humidity (RH). Exposure to humid air was observed to promote the crystallization process in perovskite films even at room temperature. Perovskite films kept for 5 hours inmore » ambient air showed nanorod-like morphology having high crystallinity, with devices exhibiting the highest PCE of 16.83%, which is much higher than the PCE of 11.94% for traditional thermally annealed perovskite film based devices. Finally, it was concluded that moisture plays an important role in room temperature crystallization of pure perovskite nanorods, showing improved optical and charge transport properties, which resulted in high performance solar cells.« less

  13. Cloud-induced uncertainties in AIRS and ECMWF temperature and specific humidity

    NASA Astrophysics Data System (ADS)

    Wong, Sun; Fetzer, Eric J.; Schreier, Mathias; Manipon, Gerald; Fishbein, Evan F.; Kahn, Brian H.; Yue, Qing; Irion, Fredrick W.

    2015-03-01

    The uncertainties of the Atmospheric Infrared Sounder (AIRS) Level 2 version 6 specific humidity (q) and temperature (T) retrievals are quantified as functions of cloud types by comparison against Integrated Global Radiosonde Archive radiosonde measurements. The cloud types contained in an AIRS/Advanced Microwave Sounding Unit footprint are identified by collocated Moderate Resolution Imaging Spectroradiometer retrieved cloud optical depth (COD) and cloud top pressure. We also report results of similar validation of q and T from European Centre for Medium-Range Weather Forecasts (ECMWF) forecasts (EC) and retrievals from the AIRS Neural Network (NNW), which are used as the initial state for AIRS V6 physical retrievals. Differences caused by the variation in the measurement locations and times are estimated using EC, and all the comparisons of data sets against radiosonde measurements are corrected by these estimated differences. We report in detail the validation results for AIRS GOOD quality control, which is used for the AIRS Level 3 climate products. AIRS GOOD quality q reduces the dry biases inherited from the NNW in the middle troposphere under thin clouds but enhances dry biases in thick clouds throughout the troposphere (reaching -30% at 850 hPa near deep convective clouds), likely because the information contained in AIRS retrievals is obtained in cloud-cleared areas or above clouds within the field of regard. EC has small moist biases (~5-10%), which are within the uncertainty of radiosonde measurements, in thin and high clouds. Temperature biases of all data are within ±1 K at altitudes above the 700 hPa level but increase with decreasing altitude. Cloud-cleared retrievals lead to large AIRS cold biases (reaching about -2 K) in the lower troposphere for large COD, enhancing the cold biases inherited from the NNW. Consequently, AIRS GOOD quality T root-mean-squared errors (RMSEs) are slightly smaller than the NNW errors in thin clouds (1.5-2.5 K) but

  14. Using Satellite-Based Spatiotemporal Resolved Air Temperature Exposure to Study the Association between Ambient Air Temperature and Birth Outcomes in Massachusetts

    PubMed Central

    Melly, Steven J.; Coull, Brent A.; Nordio, Francesco; Schwartz, Joel D.

    2015-01-01

    Background Studies looking at air temperature (Ta) and birth outcomes are rare. Objectives We investigated the association between birth outcomes and daily Ta during various prenatal exposure periods in Massachusetts (USA) using both traditional Ta stations and modeled addresses. Methods We evaluated birth outcomes and average daily Ta during various prenatal exposure periods in Massachusetts (USA) using both traditional Ta stations and modeled address Ta. We used linear and logistic mixed models and accelerated failure time models to estimate associations between Ta and the following outcomes among live births > 22 weeks: term birth weight (≥ 37 weeks), low birth weight (LBW; < 2,500 g at term), gestational age, and preterm delivery (PT; < 37 weeks). Models were adjusted for individual-level socioeconomic status, traffic density, particulate matter ≤ 2.5 μm (PM2.5), random intercept for census tract, and mother’s health. Results Predicted Ta during multiple time windows before birth was negatively associated with birth weight: Average birth weight was 16.7 g lower (95% CI: –29.7, –3.7) in association with an interquartile range increase (8.4°C) in Ta during the last trimester. Ta over the entire pregnancy was positively associated with PT [odds ratio (OR) = 1.02; 95% CI: 1.00, 1.05] and LBW (OR = 1.04; 95% CI: 0.96, 1.13). Conclusions Ta during pregnancy was associated with lower birth weight and shorter gestational age in our study population. Citation Kloog I, Melly SJ, Coull BA, Nordio F, Schwartz JD. 2015. Using satellite-based spatiotemporal resolved air temperature exposure to study the association between ambient air temperature and birth outcomes in Massachusetts. Environ Health Perspect 123:1053–1058; http://dx.doi.org/10.1289/ehp.1308075 PMID:25850104

  15. A qualitative tool combining an interaction matrix and a GIS to map vulnerability to traffic induced air pollution.

    PubMed

    Mavroulidou, Maria; Hughes, Susan J; Hellawell, Emma E

    2004-04-01

    Local authorities and transport planners need fast and straightforward tools to perform their preliminary air quality assessments. Such tools are required to provide an initial impression of the local air quality and to highlight areas requiring a more rigorous investigation. This paper presents a technique to develop such a tool, for performing an initial assessment of air quality due to traffic in an urban area. The technique combines an interaction matrix methodology as developed for rock engineering systems, with Geographical Information System (GIS) map overlaying. This interaction matrix methodology incorporates a total system approach, which identifies the main parameters and quantifies the interactions between them. Weighting values for these parameters are obtained either through parametric studies, using numerical modelling, or from engineering judgement. These weightings are applied to spatial datasets for a study area using a GIS. The GIS results are presented in the form of a vulnerability map, which highlights the areas susceptible to poor air quality. This visual interpretation of the results is ideal for local authorities, who have to report to a wide range of non-specialists in the field, for example, planners, councillors and the public. The vulnerability map compares favourably with pollutant concentration patterns, obtained from an advanced dispersion model.

  16. Temperature differences in the air layer close to a road surface

    NASA Astrophysics Data System (ADS)

    Bogren, Jörgen; Gustavsson, Torbjörn; Karlsson, Maria

    2001-12-01

    In this study, profiles of temperature and humidity (<250 cm above the road and 5 m into the surroundings) have been used to examine the development of temperature differences in the air layer close to the road. Temperature, humidity and wind profiles were measured, together with net radiation and observations of road surface state, at a test site at Road 45, Surte, Sweden. Measured temperature differences were compared with present weather, preceding weather, surface status, wind direction and other parameters thought to be important for the development of temperature differences. The results showed that large temperature differences (1-3 °C between 250 cm and 10 cm above the road) occurred when there was a high risk of slipperiness caused by hoarfrost, snow or ice on the road. The temperature differences between different levels were associated with the exchange of humidity and temperature between the air layer and the road surface. The 10 cm level reflected the surface processes well. Higher levels were influenced by the surroundings because of turbulence and advection. This study emphasises the need for measurements to be taken at a height and place that reflects the processes at the road surface.

  17. Laminar Flame Velocity and Temperature Exponent of Diluted DME-Air Mixture

    NASA Astrophysics Data System (ADS)

    Naseer Mohammed, Abdul; Anwar, Muzammil; Juhany, Khalid A.; Mohammad, Akram

    2017-03-01

    In this paper, the laminar flame velocity and temperature exponent diluted dimethyl ether (DME) air mixtures are reported. Laminar premixed mixture of DME-air with volumetric dilutions of carbon dioxides (CO2) and nitrogen (N2) are considered. Experiments were conducted using a preheated mesoscale high aspect-ratio diverging channel with inlet dimensions of 25 mm × 2 mm. In this method, flame velocities are extracted from planar flames that were stabilized near adiabatic conditions inside the channel. The flame velocities are then plotted against the ratio of mixture temperature and the initial reference temperature. A non-linear power law regression is observed suitable. This regression analysis gives the laminar flame velocity at the initial reference temperature and temperature exponent. Decrease in the laminar flame velocity and increase in temperature exponent is observed for CO2 and N2 diluted mixtures. The addition of CO2 has profound influence when compared to N2 addition on both flame velocity and temperature exponent. Numerical prediction of the similar mixture using a detailed reaction mechanism is obtained. The computational mechanism predicts higher magnitudes for laminar flame velocity and smaller magnitudes of temperature exponent compared to experimental data.

  18. Advances in Fast-response Acoustically Derived Air-temperature Measurements

    NASA Astrophysics Data System (ADS)

    Bogoev, I.; Jacobsen, L.; Horst, T. W.; Conrad, B.

    2015-12-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity.The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  19. Spatial temperature mapping within polymer nanocomposites undergoing ultrafast photothermal heating via gold nanorods

    NASA Astrophysics Data System (ADS)

    Maity, Somsubhra; Wu, Wei-Chen; Xu, Chao; Tracy, Joseph B.; Gundogdu, Kenan; Bochinski, Jason R.; Clarke, Laura I.

    2014-11-01

    Heat emanates from gold nanorods (GNRs) under ultrafast optical excitation of the localized surface plasmon resonance. The steady state nanoscale temperature distribution formed within a polymer matrix embedded with GNRs undergoing pulsed femtosecond photothermal heating is determined experimentally using two independent ensemble optical techniques. Physical rotation of the nanorods reveals the average local temperature of the polymer melt in the immediate spatial volume surrounding each rod while fluorescence of homogeneously-distributed perylene molecules monitors temperature over sample regions at larger distances from the GNRs. Polarization-sensitive fluorescence measurements of the perylene probes provide an estimate of the average size of the quasi-molten region surrounding each nanorod (that is, the boundary between softened polymer and solid material as the temperature decreases radially away from each particle) and distinguishes the steady state temperature in the solid and melt regions. Combining these separate methods enables nanoscale spatial mapping of the average steady state temperature distribution caused by ultrafast excitation of the GNRs. These observations definitively demonstrate the presence of a steady-state temperature gradient and indicate that localized heating via the photothermal effect within materials enables nanoscale thermal manipulations without significantly altering the bulk sample temperature in these systems. These quantitative results are further verified by re-orienting nanorods within a solid polymer nanofiber without inducing any morphological changes to the highly temperature-sensitive nanofiber surface. Temperature differences of 70-90 °C were observed over a distances of ~100 nm.Heat emanates from gold nanorods (GNRs) under ultrafast optical excitation of the localized surface plasmon resonance. The steady state nanoscale temperature distribution formed within a polymer matrix embedded with GNRs undergoing pulsed

  20. Comparison of four magnetic resonance methods for mapping small temperature changes.

    PubMed

    Wlodarczyk, W; Hentschel, M; Wust, P; Noeske, R; Hosten, N; Rinneberg, H; Felix, R

    1999-02-01

    Non-invasive detection of small temperature changes (< 1 degree C) is pivotal to the further advance of regional hyperthermia as a treatment modality for deep-seated tumours. Magnetic resonance (MR) thermography methods are considered to be a promising approach. Four methods exploiting temperature-dependent parameters were evaluated in phantom experiments. The investigated temperature indicators were spin-lattice relaxation time T1, diffusion coefficient D, shift of water proton resonance frequency (water PRF) and resonance frequency shift of the methoxy group of the praseodymium complex (Pr probe). The respective pulse sequences employed to detect temperature-dependent signal changes were the multiple readout single inversion recovery (T One by Multiple Read Out Pulses; TOMROP), the pulsed gradient spin echo (PGSE), the fast low-angle shot (FLASH) with phase difference reconstruction, and the classical chemical shift imaging (CSI). Applying these sequences, experiments were performed in two separate and consecutive steps. In the first step, calibration curves were recorded for all four methods. In the second step, applying these calibration data, maps of temperature changes were generated and verified. With the equal total acquisition time of approximately 4 min for all four methods, the uncertainties of temperature changes derived from the calibration curves were less than 1 degree C (Pr probe 0.11 degrees C, water PRF 0.22 degrees C, D 0.48 degrees C and T1 0.93 degrees C). The corresponding maps of temperature changes exhibited slightly higher errors but still in the range or less than 1 degree C (0.97 degrees C, 0.41 degrees C, 0.70 degrees C, 1.06 degrees C respectively). The calibration results indicate the Pr probe method to be most sensitive and accurate. However, this advantage could only be partially transferred to the thermographic maps because of the coarse 16 x 16 matrix of the classical CSI sequence. Therefore, at present the water PRF method appears

  1. Effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding.

    PubMed

    Secilmis, Asli; Bulbul, Mehmet; Sari, Tugrul; Usumez, Aslihan

    2013-01-01

    The neodymium/yttrium-aluminum-garnet (Nd/YAG) laser has been suggested to repair broken prostheses in the mouth. This study investigated the effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding. Three intact human maxillary molars were prepared for full-veneer crown. For each tooth, dentin thicknesses in mesiobuccal cusp was 2, 3, or 4 mm. Twenty dies were duplicated from each of the prepared teeth. For metal copings with 0.5-mm thickness, wax patterns were prepared with dip wax technique directly onto each of dies. All patterns were sprued and invested. The castings were made using a nickel-chromium alloy (Nicromed Premium, Neodontics). A hole with 0.5-mm diameter was prepared on the mesiobuccal cusp of each crown. The Nd/YAG laser (9.85 W; 1 Hz repetition rate; fluence, 1.230 J/cm(2); Fidelis Plus 3, Fotona) was used for welding with or without air cooling (n = 10). The temperature rise was measured in pulpal chamber with a J-type thermocouple wire that was connected to a data logger. Differences between start and highest temperature reading were taken, and temperature rise values were compared using two-way analysis of variance and Tukey's honestly significant difference tests (α = .05). Pulpal temperature rise varied significantly depending on the dentin thickness and air cooling (p < 0.05). The non-air cooling group induced significantly the highest temperature increases. There were no significant differences between 2- and 3-mm dentin thicknesses groups (p > 0.05); however, pulpal temperature rise was the lowest for 4-mm dentin thickness group (p < 0.05). The highest values of thermal increase were found in the pulp chamber (6.8°C) when no air cooling was used in 2-mm dentin thickness group. Laser welding on base metal castings with Nd/YAG laser can be applied with air cooling to avoid temperature rises known to adversely affect pulpal health when dentin thickness is 2 or 3 mm.

  2. Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization

    USGS Publications Warehouse

    Bouligand, C.; Glen, J.M.G.; Blakely, R.J.

    2009-01-01

    We have revisited the problem of mapping depth to the Curie temperature isotherm from magnetic anomalies in an attempt to provide a measure of crustal temperatures in the western United States. Such methods are based on the estimation of the depth to the bottom of magnetic sources, which is assumed to correspond to the temperature at which rocks lose their spontaneous magnetization. In this study, we test and apply a method based on the spectral analysis of magnetic anomalies. Early spectral analysis methods assumed that crustal magnetization is a completely uncorrelated function of position. Our method incorporates a more realistic representation where magnetization has a fractal distribution defined by three independent parameters: the depths to the top and bottom of magnetic sources and a fractal parameter related to the geology. The predictions of this model are compatible with radial power spectra obtained from aeromagnetic data in the western United States. Model parameters are mapped by estimating their value within a sliding window swept over the study area. The method works well on synthetic data sets when one of the three parameters is specified in advance. The application of this method to western United States magnetic compilations, assuming a constant fractal parameter, allowed us to detect robust long-wavelength variations in the depth to the bottom of magnetic sources. Depending on the geologic and geophysical context, these features may result from variations in depth to the Curie temperature isotherm, depth to the mantle, depth to the base of volcanic rocks, or geologic settings that affect the value of the fractal parameter. Depth to the bottom of magnetic sources shows several features correlated with prominent heat flow anomalies. It also shows some features absent in the map of heat flow. Independent geophysical and geologic data sets are examined to determine their origin, thereby providing new insights on the thermal and geologic crustal

  3. Mapping seasonal trends of electron temperature in the topside ionosphere based on DEMETER data

    NASA Astrophysics Data System (ADS)

    Slominska, Ewa; Rothkaehl, Hanna

    2013-07-01

    The diurnal, seasonal and latitudinal variations of the electron temperature in the Earth's topside ionosphere during relatively low solar activity period of 2005 - 2008 are investigated. In order to examine seasonal variations and morphology of the topside ionospheric plasma temperature, CNES micro-satellite DEMETER ISL data are used. Presented study is oriented on the dataset gathered in 2005 and 2008. Within conducted analysis, global maps of electron temperature for months of equinoxes and solstices have been developed. Furthermore, simultaneous studies on two-dimensional time series based on DEMETER measurements and predictions obtained with the IRI-2012 model supply examination of the topside ionosphere during recent deep solar minimum. Comparison with the IRI-2012 model reveals discrepancies between data and prediction, that are especially prominent during the periods of very low solar activity.

  4. Influence of probe-sample temperature difference on thermal mapping contrast in scanning thermal microscopy imaging

    NASA Astrophysics Data System (ADS)

    Kaźmierczak-Bałata, Anna; Juszczyk, Justyna; Trefon-Radziejewska, Dominika; Bodzenta, Jerzy

    2017-03-01

    The purpose of this work is to investigate the influence of a temperature difference through a probe-sample contact on thermal contrast in Scanning Thermal Microscopy imaging. A variety of combinations of temperature differences in the probe-sample system were first analyzed based on an electro-thermal finite element model. The numerical analysis included cooling the sample, as well as heating the sample and the probe. Due to the simplicity in the implementation, experimental verification involved modifying the standard imaging technique by heating the sample. Experiments were carried out in the temperature range between 298 K and 328 K. Contrast in thermal mapping was improved for a low probe current with a heated sample.

  5. STUDY ON AIR INGRESS MITIGATION METHODS IN THE VERY HIGH TEMPERATURE GAS COOLED REACTOR (VHTR)

    SciTech Connect

    Chang H. Oh

    2011-03-01

    An air-ingress accident followed by a pipe break is considered as a critical event for a very high temperature gas-cooled reactor (VHTR). Following helium depressurization, it is anticipated that unless countermeasures are taken, air will enter the core through the break leading to oxidation of the in-core graphite structure. Thus, without mitigation features, this accident might lead to severe exothermic chemical reactions of graphite and oxygen. Under extreme circumstances, a loss of core structural integrity may occur along with excessive release of radiological inventory. Idaho National Laboratory under the auspices of the U.S. Department of Energy is performing research and development (R&D) that focuses on key phenomena important during challenging scenarios that may occur in the VHTR. Phenomena Identification and Ranking Table (PIRT) studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Oh et al. 2006, Schultz et al. 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) requirements are part of the experimental validation plan. This paper discusses about various air-ingress mitigation concepts applicable for the VHTRs. The study begins with identifying important factors (or phenomena) associated with the air-ingress accident by using a root-cause analysis. By preventing main causes of the important events identified in the root-cause diagram, the basic air-ingress mitigation ideas can be conceptually derived. The main concepts include (1) preventing structural degradation of graphite supporters; (2) preventing local stress concentration in the supporter; (3) preventing graphite oxidation; (4) preventing air ingress; (5) preventing density gradient driven flow; (4) preventing fluid density gradient; (5) preventing fluid temperature gradient; (6) preventing high temperature. Based on the basic concepts listed above, various air

  6. Temperature measurements in hypersonic air flows using laser-induced O2 fluorescence

    NASA Technical Reports Server (NTRS)

    Laufer, Gabriel; Mckenzie, Robert L.

    1988-01-01

    An investigation is reported of the use of laser-induced fluorescence on oxygen for the measurement of air temperature and its fluctuations owing to turbulence in hypersonic wind tunnel flows. The results show that for temperatures higher than 60 K and densities higher than 0.01 amagat, the uncertainty in the temperature measurement can be less than 2 percent if it is limited by photon-statistical noise. The measurement is unaffected by collisional quenching and, if the laser fluence is kept below 1.5 J/sq cm, it is also unaffected by nonlinear effects which are associated with depletion of the absorbing states.

  7. Neutral air density and temperature measurements by the TOTAL instrument aboard the ROSE payloads

    NASA Astrophysics Data System (ADS)

    Friker, A.; Luebken, F.-J.

    1992-06-01

    Four ROSE payloads, launched from November 1988 to February 1989 from northern Scandinavia, carried ionization gauges ('TOTAL' instruments) for neutral air density measurements in the altitude range 90-105 km. Temperature profiles are derived by integrating the number density profiles. Density and temperature data are presented. The limitations of the measurement technique as well as instrumental errors are discussed. In one of the flights (F1) a significant temperature enhancement was observed at an altitude where plasma instabilities were detected by independent measurements.

  8. Measurement of temperature and velocity fields in a convective fluid flow in air using schlieren images.

    PubMed

    Martínez-González, A; Moreno-Hernández, D; Guerrero-Viramontes, J A

    2013-08-01

    A convective fluid flow in air could be regulated if the physical process were better understood. Temperature and velocity measurements are required in order to obtain a proper characterization of a convective fluid flow. In this study, we show that a classical schlieren system can be used for simultaneous measurements of temperature and velocity in a convective fluid flow in air. The schlieren technique allows measurement of the average fluid temperature and velocity integrated in the direction of the test beam. Therefore, in our experiments we considered surfaces with isothermal conditions. Temperature measurements are made by relating the intensity level of each pixel in a schlieren image to the corresponding knife-edge position measured at the exit focal plane of the schlieren system. The same schlieren images were also used to measure the velocity of the fluid flow by using optical flow techniques. The algorithm implemented analyzes motion between consecutive schlieren frames to obtain a tracked sequence and finally velocity fields. The proposed technique was applied to measure the temperature and velocity fields in natural convection of air due to unconfined and confined heated rectangular plates.

  9. Air - water temperature relationships in the trout streams of southeastern Minnesota’s carbonate - sandstone landscape

    USGS Publications Warehouse

    Krider, Lori A.; Magner, Joseph A.; Perry, Jim; Vondracek, Bruce C.; Ferrington, Leonard C.

    2013-01-01

    Carbonate-sandstone geology in southeastern Minnesota creates a heterogeneous landscape of springs, seeps, and sinkholes that supply groundwater into streams. Air temperatures are effective predictors of water temperature in surface-water dominated streams. However, no published work investigates the relationship between air and water temperatures in groundwater-fed streams (GWFS) across watersheds. We used simple linear regressions to examine weekly air-water temperature relationships for 40 GWFS in southeastern Minnesota. A 40-stream, composite linear regression model has a slope of 0.38, an intercept of 6.63, and R2 of 0.83. The regression models for GWFS have lower slopes and higher intercepts in comparison to surface-water dominated streams. Regression models for streams with high R2 values offer promise for use as predictive tools for future climate conditions. Climate change is expected to alter the thermal regime of groundwater-fed systems, but will do so at a slower rate than surface-water dominated systems. A regression model of intercept vs. slope can be used to identify streams for which water temperatures are more meteorologically than groundwater controlled, and thus more vulnerable to climate change. Such relationships can be used to guide restoration vs. management strategies to protect trout streams.

  10. Effects of light intensity and air velocity on air temperature, water vapor pressure, and CO2 concentration inside a plant canopy under an artificial lighting condition.

    PubMed

    Kitaya, Y; Shibuya, T; Kozai, T; Kubota, C

    1998-01-01

    In order to characterize environmental variables inside a plant canopy under artificial lighting in the CELSS, we investigated the effects of light intensity and air velocity on air temperature, water vapor pressure, and CO2 concentration inside a plant canopy. Under a PPF of 500 micromoles m-2 s-1, air temperature was 2-3 degrees C higher, water vapor pressure was 0.6 kPa higher, and CO2 concentration was 25-35 micromoles mol-1 lower at heights ranging from 0 to 30 mm below the canopy than at a height 60 mm above the canopy. Increasing the PPF increased air temperature and water vapor pressure and decreased CO2 concentration inside the canopy. The air temperature was lower and the CO2 concentration was higher inside the canopy at an air velocity of 0.3 m s-1 than at an air velocity of 0.1 m s-1. The environmental variables inside the canopy under a high light intensity were characterized by higher air temperature, higher vapor pressure, and lower CO2 concentration than those outside the canopy.

  11. INVESTIGATION OF A NOVEL AIR BRAZING COMPOSITION FOR HIGH-TEMPERATURE, OXIDATION-RESISTANT CERAMIC JOINING

    SciTech Connect

    Weil, K. Scott; Hardy, John S.; Darsell, Jens T.

    2004-01-30

    One of the challenges in developing a useful ceramic joining technique is in producing a joint that offers good strength under high temperature and highly oxidizing operating conditions. Unfortunately many of the commercially available active metal ceramic brazing alloys exhibit oxidation behaviors which are unacceptable for use in a high temperature application. We have developed a new approach to ceramic brazing, referred to as air brazing, that employs an oxide wetting agent dissolved in a molten noble metal solvent, in this case CuO in Ag, such that acceptable wetting behavior occurs on a number of ceramic substrates. In an effort to explore how to increase the operating temperature of this type of braze, we have investigated the effect of ternary palladium additions on the wetting characteristics of our standard Ag-CuO air braze composition

  12. Improving 7-Day Forecast Skill by Assimilation of Retrieved AIRS Temperature Profiles

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Rosenberg, Bob

    2016-01-01

    We conducted a new set of Data Assimilation Experiments covering the period January 1 to February 29, 2016 using the GEOS-5 DAS. Our experiments assimilate all data used operationally by GMAO (Control) with some modifications. Significant improvement in Global and Southern Hemisphere Extra-tropical 7-day forecast skill was obtained when: We assimilated AIRS Quality Controlled temperature profiles in place of observed AIRS radiances, and also did not assimilate CrISATMS radiances, nor did we assimilate radiosonde temperature profiles or aircraft temperatures. This new methodology did not improve or degrade 7-day Northern Hemispheric Extra-tropical forecast skill. We are conducting experiments aimed at further improving of Northern Hemisphere Extra-tropical forecast skill.

  13. Precipitation and Air Temperature Impact on Seasonal Variations of Groundwater Levels

    NASA Astrophysics Data System (ADS)

    Vitola, Ilva; Vircavs, Valdis; Abramenko, Kaspars; Lauva, Didzis; Veinbergs, Arturs

    2012-12-01

    The aim of this study is to clarify seasonal effects of precipitation and temperature on groundwater level changes in monitoring stations of the Latvia University of Agriculture - Mellupīte, Bērze and Auce. Groundwater regime and level fluctuations depend on climatic conditions such as precipitation intensity, evapotranspiration, surface runoff and drainage, as well as other hydrological factors. The relationship between precipitation, air temperature and groundwater level fluctuations could also lead and give different perspective of possible changes in groundwater quality. Using mathematical statistics and graphic-analytic methods it is concluded that autumn and winter precipitation has the dominant impact on groundwater level fluctuations, whereas spring and summer season fluctuations are more dependent on the air temperature.

  14. Impact of air velocity, temperature, humidity, and air on long-term voc emissions from building products

    NASA Astrophysics Data System (ADS)

    Wolkoff, Peder

    The emissions of two volatile organic compounds (VOCs) of concern from five building products (BPs) were measured in the field and laboratory emission cell (FLEC) up to 250 d. The BPs (VOCs selected on the basis of abundance and low human odor thresholds) were: nylon carpet with latex backing (2-ethylhexanol, 4-phenylcyclohexene), PVC flooring (2-ethylhexanol, phenol), floor varnish on pretreated beechwood parquet (butyl acetate, N-methylpyrrolidone), sealant (hexane, dimethyloctanols), and waterborne wall paint on gypsum board (1,2-propandiol, Texanol). Ten different climate conditions were tested: four different air velocities from ca. 1 cm s -1 to ca. 9 cm s -1, three different temperatures (23, 35, and 60°C), two different relative humidities (0% and 50% RH), and pure nitrogen instead of clean air supply. Additionally, two sample specimen and two different batches were compared for repeatability and homogeneity. The VOCs were sampled on Tenax TA and determined by thermal desorption and gas chromatography (FID). Quantification was carried out by individual calibration of each VOC of concern. Concentration/time profiles of the selected VOCs (i.e. their concentration decay curves over time) in a standard room were used for comparison. Primary source emissions were not affected by the air velocity after a few days to any great extent. Both the temperature and relative humidity affected the emission rates, but depended strongly on the type of BP and type of VOC. Secondary (oxidative) source emissions were only observed for the PVC and for dimethyloctanols from the sealant. The time to reach a given concentration (emission rate) appears to be a good approach for future interlaboratory comparisons of BP's VOC emissions.

  15. Influence of Air Temperature Difference on the Snow Melting Simulation of SWAT Model

    NASA Astrophysics Data System (ADS)

    YAN, Y.; Onishi, T.

    2013-12-01

    The temperature-index models are commonly used to simulate the snowmelt process in mountain areas because of its good performance, low data requirements, and computational simplicity. Widely used distributed hydrological model: Soil and Water Assessment Tool (SWAT) model is also using a temperature-index module. However, the lack of monitoring air temperature data still involves uncertainties and errors in its simulation performance especially in data sparse area. Thus, to evaluate the different air temperature data influence on the snow melt of the SWAT model, five different air temperature data are applied in two different Russia basins (Birobidjan basin and Malinovka basin). The data include the monitoring air temperature data (TM), NCEP reanalysis data (TNCEP), the dataset created by inverse distance weighted interpolation (IDW) method (TIDW), the dataset created by improved IDW method considering the elevation influence (TIDWEle), and the dataset created by using linear regression and MODIS Land Surface Temperature (LST) data (TLST). Among these data, the TLST , the TIDW and TIDWEle data have the higher spatial density, while the TNCEP and TM DATA have the most valid monitoring value for daily scale. The daily simulation results during the snow melting seasons (March, April and May) showed reasonable results in both test basins for all air temperature data. While R2 and NSE in Birobidjan basin are around 0.6, these values in Malinovka basin are over 0.75. Two methods: Generalized Likelihood Uncertainty Estimation (GLUE) and Sequential Uncertainty Fitting, version. 2 (SUFI-2) were used for model calibration and uncertainty analysis. The evolution index is p-factor which means the percentage of measured data bracketed by the 95% Prediction Uncertainty (95PPU). The TLST dataset always obtained the best results in both basins compared with other datasets. On the other hand, the two IDW based method get the worst results among all the scenarios. Totally, the

  16. POWER ASYMMETRY IN WMAP AND PLANCK TEMPERATURE SKY MAPS AS MEASURED BY A LOCAL VARIANCE ESTIMATOR

    SciTech Connect

    Akrami, Y.; Fantaye, Y.; Eriksen, H. K.; Hansen, F. K.; Shafieloo, A.; Banday, A. J.; Górski, K. M. E-mail: y.t.fantaye@astro.uio.no

    2014-04-01

    We revisit the question of hemispherical power asymmetry in the WMAP and Planck temperature sky maps by measuring the local variance over the sky and on disks of various sizes. For the 2013 Planck sky map we find that none of the 1000 available isotropic Planck ''Full Focal Plane'' simulations have a larger variance asymmetry than that estimated from the data, suggesting the presence of an anisotropic signature formally significant at least at the 3.3σ level. For the WMAP 9 year data we find that 5 out of 1000 simulations have a larger asymmetry. The preferred direction for the asymmetry from the Planck data is (l, b) = (212°, –13°), in good agreement with previous reports of the same hemispherical power asymmetry.

  17. Data Assimilation Experiments using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2008-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AlRS data. Version 5 contains accurate case-by-case error estimates for most derived products, which are also used for quality control. We have conducted forecast impact experiments assimilating AlRS quality controlled temperature profiles using the NASA GEOS-5 data assimilation system, consisting of the NCEP GSI analysis coupled with the NASA FVGCM. Assimilation of quality controlled temperature profiles resulted in significantly improved forecast skill in both the Northern Hemisphere and Southern Hemisphere Extra-Tropics, compared to that obtained from analyses obtained when all data used operationally by NCEP except for AlRS data is assimilated. Experiments using different Quality Control thresholds for assimilation of AlRS temperature retrievals showed that a medium quality control threshold performed better than a tighter threshold, which provided better overall sounding accuracy; or a looser threshold, which provided better spatial coverage of accepted soundings. We are conducting more experiments to further optimize this balance of spatial coverage and sounding accuracy from the data assimilation perspective. In all cases, temperature soundings were assimilated well below cloud level in partially cloudy cases. The positive impact of assimilating AlRS derived atmospheric temperatures all but vanished when only AIRS stratospheric temperatures were assimilated. Forecast skill resulting from assimilation of AlRS radiances uncontaminated by clouds, instead of AlRS temperature soundings, was only slightly better than that resulting from assimilation of only stratospheric AlRS temperatures. This reduction in forecast skill is most likely the result of significant loss of tropospheric information when only AIRS radiances unaffected by clouds are used in the data assimilation process.

  18. Air temperature evolution during dry spells and its relation to prevailing soil moisture regimes

    NASA Astrophysics Data System (ADS)

    Schwingshackl, Clemens; Hirschi, Martin; Seneviratne, Sonia I.

    2015-04-01

    The complex interplay between land and atmosphere makes accurate climate predictions very challenging, in particular with respect to extreme events. More detailed investigations of the underlying dynamics, such as the identification of the drivers regulating the energy exchange at the land surface and the quantification of fluxes between soil and atmosphere over different land types, are thus necessary. The recently started DROUGHT-HEAT project (funded by the European Research Council) aims to provide better understanding of the processes governing the land-atmosphere exchange. In the first phase of the project, different datasets and methods are used to investigate major drivers of land-atmosphere dynamics leading to droughts and heatwaves. In the second phase, these findings will be used for reducing uncertainties and biases in earth system models. Finally, the third part of the project will focus on the application of the previous findings and use them for the attribution of extreme events to land processes and possible mitigation through land geoengineering. One of the major questions in land-atmosphere exchange is the relationship between air temperature and soil moisture. Different studies show that especially during dry spells soil moisture has a strong impact on air temperature and the amplification of hot extremes. Whereas in dry and wet soil moisture regimes variations in latent heat flux during rain-free periods are expected to be small, this is not the case in transitional soil moisture regimes: Due to decreasing soil moisture content latent heat flux reduces with time, which causes in turn an increase in sensible heat flux and, subsequently, higher air temperatures. The investigation of air temperature evolution during dry spells can thus help to detect different soil moisture regimes and to provide insights on the effect of different soil moisture levels on air temperature. Here we assess the underlying relationships using different observational and

  19. Surface mapping of field-induced piezoelectric strain at elevated temperature employing full-field interferometry.

    PubMed

    Stevenson, Tim; Quast, Tatjana; Bartl, Guido; Schmitz-Kempen, Thorsten; Weaver, Paul M

    2015-01-01

    Piezoelectric actuators and sensors are widely used for flow control valves, including diesel injectors, ultrasound generation, optical positioning, printing, pumps, and locks. Degradation and failure of material and electrical properties at high temperature typically limits these applications to operating temperatures below 200°C, based on the ubiquitous Pb(Zr,Ti)O3 ceramic. There are, however, many applications in sectors such as automotive, aerospace, energy and process control, and oil and gas, where the ability to operate at higher temperatures would open up new markets for piezoelectric actuation. Presented here is a review of recent progress and initial results toward a European effort to develop measurement techniques to characterize high-temperature materials. Full-field, multi-wavelength absolute length interferometry has, for the first time, been used to map the electric-field-induced piezoelectric strain across the surface of a PZT ceramic. The recorded variation as a function of temperature has been evaluated against a newly developed commercial single-beam system. Conventional interferometry allows measurement of the converse piezoelectric effect with high precision and resolution, but is often limited to a single point, average measurement and to limited sample environments because of optical aberrations in varying atmospheres. Here, the full-field technique allows the entire surface to be analyzed for strain and, in a bespoke sample chamber, for elevated temperatures.

  20. Dynamic Stiffness and Damping Characteristics of a High-Temperature Air Foil Journal Bearing

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; DellaCorte, Christopher; Valco, Mark J.; Prahl, Joseph M.; Heshmat, Hooshang

    2001-01-01

    Using a high-temperature optically based displacement measurement system, a foil air bearing's stiffness and damping characteristics were experimentally determined. Results were obtained over a range of modified Sommerfeld Number from 1.5E6 to 1.5E7, and at temperatures from 25 to 538 C. An Experimental procedure was developed comparing the error in two curve fitting functions to reveal different modes of physical behavior throughout the operating domain. The maximum change in dimensionless stiffness was 3.0E-2 to 6.5E-2 over the Sommerfeld Number range tested. Stiffness decreased with temperature by as much as a factor of two from 25 to 538 C. Dimensionless damping was a stronger function of Sommerfeld Number ranging from 20 to 300. The temperature effect on damping being more qualitative, showed the damping mechanism shifted from viscous type damping to frictional type as temperature increased.

  1. Impacts of rainfall and air temperature variations due to climate change upon hydrological characteristics: a case study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rainfall and air temperature variations resulting from climate change are important driving forces to alter hydrologic processes in watershed ecosystems. This study investigated impacts of past and potential future rainfall and air temperature variations upon water discharge, water outflow (from th...

  2. Short-term Effects of Air Temperature on Blood Markers of Coagulation and Inflammation in Potentially Susceptible Individuals

    EPA Science Inventory

    Objectives: Changes in air temperature are associated with an increase in cardiovascular events, but the role of pro-coagulant and pro-inflammatory blood markers is still poorly understood. We investigated the association between air temperature and fibrinogen, plasminogen act...

  3. Effects of Temperature, Humidity and Air Flow on Fungal Growth Rate on Loaded Ventilation Filters.

    PubMed

    Tang, W; Kuehn, T H; Simcik, Matt F

    2015-01-01

    This study compares the fungal growth ratio on loaded ventilation filters under various temperature, relative humidity (RH), and air flow conditions in a controlled laboratory setting. A new full-size commercial building ventilation filter was loaded with malt extract nutrients and conidia of Cladosporium sphaerospermum in an ASHRAE Standard 52.2 filter test facility. Small sections cut from this filter were incubated under the following conditions: constant room temperature and a high RH of 97%; sinusoidal temperature (with an amplitude of 10°C, an average of 23°C, and a period of 24 hr) and a mean RH of 97%; room temperature and step changes between 97% and 75% RH, 97% and 43% RH, and 97% and 11% RH every 12 hr. The biomass on the filter sections was measured using both an elution-culture method and by ergosterol assay immediately after loading and every 2 days up to 10 days after loading. Fungal growth was detected earlier using ergosterol content than with the elution-culture method. A student's t-test indicated that Cladosporium sphaerospermum grew better at the constant room temperature condition than at the sinusoidal temperature condition. By part-time exposure to dry environments, the fungal growth was reduced (75% and 43% RH) or even inhibited (11% RH). Additional loaded filters were installed in the wind tunnel at room temperature and an RH greater than 95% under one of two air flow test conditions: continuous air flow or air flow only 9 hr/day with a flow rate of 0.7 m(3)/s (filter media velocity 0.15 m/s). Swab tests and a tease mount method were used to detect fungal growth on the filters at day 0, 5, and 10. Fungal growth was detected for both test conditions, which indicates that when temperature and relative humidity are optimum, controlling the air flow alone cannot prevent fungal growth. In real applications where nutrients are less sufficient than in this laboratory study, fungal growth rate may be reduced under the same operating conditions.

  4. Air pollution, lagged effects of temperature, and mortality: The Netherlands 1979-87.

    PubMed Central

    Mackenbach, J P; Looman, C W; Kunst, A E

    1993-01-01

    OBJECTIVE--To explore whether the apparent low threshold for the mortality effects of air pollution could be the result of confounding. DESIGN--The associations between mortality and sulphur dioxide (SO2) were analysed taking into account potential confounding factors. SETTING--The Netherlands, 1979-87. MEASUREMENTS AND MAIN RESULTS--The number of deaths listed by the day on which the death occurred and by the cause of death were obtained from the Netherlands Central Bureau of Statistics. Mortality from all causes and mortality from four large groups of causes (neoplasms, cardiovascular diseases, respiratory diseases, and external causes) were related to the daily levels of SO2 air pollution and potential confounders (available from various sources) using log-linear regression analysis. Variables considered as potential confounders were: average temperature; difference between maximum and minimum temperatures; amount of precipitation; air humidity; wind speed; influenza incidence; and calendar year, month, and weekday. Both lagged and unlagged effects of the meteorological and influenza variables were considered. Average temperature was represented by two variables--'cold', temperatures below 16.5 degrees C, and 'warm', those above 16.5 degrees C--to allow for the V shaped relation between temperature and mortality. The positive regression coefficient for the univariate effect of SO2 density on mortality from all causes dwindles to close to zero when all potential confounding variables are taken into account. The most important of these represents the lagged (one to five days) effect of low temperatures. Low temperatures have strong lagged effects on mortality, and often precede relatively high SO2 densities in the Netherlands. Results were similar for separate causes of death. While univariate associations suggest an effect of air pollution on mortality in all four cause of death groups, multivariate analyses show these effects, including that on mortality from

  5. On The Suitability of Air Temperature as a Predictive Tool for Lake Surface Temperature in a Changing Climate: A Case Study for Lake Tahoe, USA

    NASA Astrophysics Data System (ADS)

    Healey, N.; Piccolroaz, S.; Hook, S. J.; Toffolon, M.; Lenters, J. D.; Schladow, G.

    2015-12-01

    The ability to predict surface water temperature is essential toward understanding how future climate scenarios will impact inland water bodies such as lakes. Numerous predictive models have been developed to perform this task although many require inputs whose future model prediction is usually associated with large uncertainties, such as e.g., precipitation, cloudiness, wind and radiative fluxes. Conversely, air temperature is one of the most widely available variables in projections from Global Climate Models (GCMs). The predictive model air2water relies solely on air temperature data to predict lake surface temperature. The objective of this study is to demonstrate that air2water can be used as a predictive tool for climate change scenarios through a case study focused on Lake Tahoe, CA/NV, USA. Lake Tahoe has been selected due to extensive historical in-situ measurements that have been collected at that location since 1967 which we utilize to calibrate and validate air2water, and evaluate its performance. For model runs, we utilize different sources of air temperature data (buoys, land-based weather stations, GCMs) to establish how robustly air2water performs. We employ air temperature data from a combination of global gridded datasets including Climate Research Unit (CRU) TS3.21 (historical), and GCM output from the Coupled Model Intercomparison Project, Phase 5 (CMIP5) Community Climate System Model, version 4 (CCSM4) model (future) with representative concentration pathways of 4.5 and 8.5. Here, we present results from air2water predictions of the relationship between air and water temperature that demonstrate how this model is able to replicate trends on seasonal and interannual timescales. This finding shows promise toward understanding the impacts of future climate change on lakes and to expanding our study to lake surface temperatures globally.

  6. Rapid fluctuations of the air and surface temperature in the city of Bucharest (Romania)

    NASA Astrophysics Data System (ADS)

    Cheval, Sorin; Dumitrescu, Alexandru; Hustiu, Mihaita-Cristinel

    2016-04-01

    Urban areas derive significant changes of the ambient temperature generating specific challenges for society and infrastructure. Extreme temperature events, heat and cold waves affect the human comfort, increase the health risk, and require specific building regulations and emergency preparedness, strongly related to the magnitude and frequency of the thermal hazards. Rapid changes of the temperature put a particular stress for the urban settlements, and the topic has been approached constantly in the scientific literature. Due to its geographical position in a plain area with a temperate climate and noticeable continental influence, the city of Bucharest (Romania) deals with high seasonal and daily temperature variations. However, rapid fluctuations also occur at sub-daily scale caused by cold or warm air advections or by very local effects (e.g. radiative heat exchange, local precipitation). For example, in the area of Bucharest, the cold fronts of the warm season may trigger temperature decreasing up to 10-15 centigrades / hour, while warm advections lead to increasing of 1-2 centigrades / hour. This study focuses on the hourly and sub-hourly temperature variations over the period November 2014 - February 2016, using air temperature data collected from urban sensors and meteorological stations of the national network, and land surface temperature data obtained from satellite remote sensing. The analysis returns different statistics, such as magnitude, intensity, frequency, simultaneous occurrence and areal coverage of the rapid temperature fluctuations. Furthermore, the generating factors for each case study are assessed, and the results are used to define some preliminary patterns and enhance the urban temperature forecast at fine scale. The study was funded by the Romanian Programme Partnership in Priority Domains, PN - II - PCCA - 2013 - 4 - 0509 - Reducing UHI effects to improve urban comfort and balance energy consumption in Bucharest (REDBHI).

  7. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags

    PubMed Central

    Hocking, Daniel J.; O’Neil, Kyle; Whiteley, Andrew R.; Nislow, Keith H.; O’Donnell, Matthew J.

    2016-01-01

    Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59°C), identified a clear warming trend (0.63 °C decade−1) and a widening of the synchronized period (29 d decade−1). We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (∼0.05% average drop in RMSE with 10% fewer days with data). Missing all data for a year decreased performance (∼0.6 °C jump in RMSE), but this decrease was moderated when data were available from other streams in the network. PMID:26966662

  8. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags.

    PubMed

    Letcher, Benjamin H; Hocking, Daniel J; O'Neil, Kyle; Whiteley, Andrew R; Nislow, Keith H; O'Donnell, Matthew J

    2016-01-01

    Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59°C), identified a clear warming trend (0.63 °C decade(-1)) and a widening of the synchronized period (29 d decade(-1)). We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (∼0.05% average drop in RMSE with 10% fewer days with data). Missing all data for a year decreased performance (∼0.6 °C jump in RMSE), but this decrease was moderated when data were available from other streams in the network.

  9. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags

    USGS Publications Warehouse

    Letcher, Benjamin; Hocking, Daniel; O'Neil, Kyle; Whiteley, Andrew R.; Nislow, Keith H.; O'Donnell, Matthew

    2016-01-01

    Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59°C), identified a clear warming trend (0.63 °C decade−1) and a widening of the synchronized period (29 d decade−1). We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (∼0.05% average drop in RMSE with 10% fewer days with data). Missing all data for a year decreased performance (∼0.6 °C jump in RMSE), but this decrease was moderated when data were available from other streams in the network.

  10. Variable air temperature response of gas-phase atmospheric polychlorinated biphenyls near a former manufacturing facility.

    PubMed

    Hermanson, Mark H; Scholten, Cheryl A; Compher, Kevin

    2003-09-15

    Many investigations of gas-phase atmospheric PCB show a strong relationship between concentration and air temperature, especially near PCB sources. Comparative gas-phase atmospheric PCB trends during an annual temperature regime at two sites near a former PCB manufacturing plant and nearby PCB landfills in Anniston, AL, indicate a departure from this trend. The Mars Hill sampling site, located closest to the plant and landfills, shows an annual average sigmaPCB concentration of 27 ng m(-3) (ranging from 8.7 to 82 ng m(-3)) three times the average at Carter, 1.5 km away (9 ng m(-3), ranging from 1.1 to 39). However, total PCB and congener concentrations vary more with air temperature at Carter where PCB are evaporating from surfaces during warmer weather. The slopes of the Clausius-Clapeyron plots of 18 of the most concentrated congeners representing dichloro- through heptachlorobiphenyl homologues are significantly higher at the Carter site. While some of the atmospheric PCB at Mars Hill is derived from ground surface evaporation, the source of much of it apparently is the material buried in the landfills, which has different thermal properties than surface materials and is not in equilibrium with air temperature.

  11. An improved method for correction of air temperature measured using different radiation shields

    NASA Astrophysics Data System (ADS)

    Cheng, Xinghong; Su, Debin; Li, Deping; Chen, Lu; Xu, Wenjing; Yang, Meilin; Li, Yongcheng; Yue, Zhizhong; Wang, Zijing

    2014-11-01

    The variation of air temperature measurement errors using two different radiation shields (DTR502B Vaisala, Finland, and HYTFZ01, Huayun Tongda Satcom, China) was studied. Datasets were collected in the field at the Daxing weather station in Beijing from June 2011 to May 2012. Most air temperature values obtained with these two commonly used radiation shields were lower than the reference records obtained with the new Fiber Reinforced Polymers (FRP) Stevenson screen. In most cases, the air temperature errors when using the two devices were smaller on overcast and rainy days than on sunny days; and smaller when using the imported rather than the Chinese shield. The measured errors changed sharply at sunrise and sunset, and reached maxima at noon. Their diurnal variation characteristics were, naturally, related to changes in solar radiation. The relationships between the record errors, global radiation, and wind speed were nonlinear. An improved correction method was proposed based on the approach described by Nakamura and Mahrt (2005) (NM05), in which the impact of the solar zenith angle (SZA) on the temperature error is considered and extreme errors due to changes in SZA can be corrected effectively. Measurement errors were reduced significantly after correction by either method for both shields. The error reduction rate using the improved correction method for the Chinese and imported shields were 3.3% and 40.4% higher than those using the NM05 method, respectively.

  12. Contribution of Modis Satellite Image to Estimate the Daily Air Temperature in the Casablanca City, Morocco

    NASA Astrophysics Data System (ADS)

    Bahi, Hicham; Rhinane, Hassan; Bensalmia, Ahmed

    2016-10-01

    Air temperature is considered to be an essential variable for the study and analysis of meteorological regimes and chronics. However, the implementation of a daily monitoring of this variable is very difficult to achieve. It requires sufficient of measurements stations density, meteorological parks and favourable logistics. The present work aims to establish relationship between day and night land surface temperatures from MODIS data and the daily measurements of air temperature acquired between [2011-20112] and provided by the Department of National Meteorology [DMN] of Casablanca, Morocco. The results of the statistical analysis show significant interdependence during night observations with correlation coefficient of R2=0.921 and Root Mean Square Error RMSE=1.503 for Tmin while the physical magnitude estimated from daytime MODIS observation shows a relatively coarse error with R2=0.775 and RMSE=2.037 for Tmax. A method based on Gaussian process regression was applied to compute the spatial distribution of air temperature from MODIS throughout the city of Casablanca.

  13. Detecting and adjusting temporal inhomogeneity in Chinese mean surface air temperature data

    NASA Astrophysics Data System (ADS)

    Li, Qingxiang; Liu, Xiaoning; Zhang, Hongzheng; Thomas C., Peterson; David R., Easterling

    2004-04-01

    Adopting the Easterling-Peterson (EP) techniques and considering the reality of Chinese meteorological observations, this paper designed several tests and tested for inhomogeneities in all Chinese historical surface air temperature series from 1951 to 2001. The result shows that the time series have been widely impacted by inhomogeneities resulting from the relocation of stations and changes in local environment such as urbanization or some other factors. Among these factors, station relocations caused the largest magnitude of abrupt changes in the time series, and other factors also resulted in inhomogeneities to some extent. According to the amplitude of change of the difference series and the monthly distribution features of surface air temperatures, discontinuities identified by applying both the E-P technique and supported by China’s station history records, or by comparison with other approaches, have been adjusted. Based on the above processing, the most significant temporal inhomogeneities were eliminated, and China’s most homogeneous surface air temperature series has thus been created. Results show that the inhomogeneity testing captured well the most important change of the stations, and the adjusted dataset is more reliable than ever. This suggests that the adjusted temperature dataset has great value of decreasing the uncertaities in the study of observed climate change in China.

  14. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.

    PubMed

    Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin

    2015-04-28

    We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks.

  15. Trend analysis of air temperature and precipitation time series over Greece: 1955-2010

    NASA Astrophysics Data System (ADS)

    Marougianni, G.; Melas, D.; Kioutsioukis, I.; Feidas, H.; Zanis, P.; Anandranistakis, E.

    2012-04-01

    In this study, a database of air temperature and precipitation time series from the network of Hellenic National Meteorological Service has been developed in the framework of the project GEOCLIMA, co-financed by the European Union and Greek national funds through the Operational Program "Competitiveness and Entrepreneurship" of the Research Funding Program COOPERATION 2009. Initially, a quality test was applied to the raw data and then missing observations have been imputed with a regularized, spatial-temporal expectation - maximization algorithm to complete the climatic record. Next, a quantile - matching algorithm was applied in order to verify the homogeneity of the data. The processed time series were used for the calculation of temporal annual and seasonal trends of air temperature and precipitation. Monthly maximum and minimum surface air temperature and precipitation means at all available stations in Greece were analyzed for temporal trends and spatial variation patterns for the longest common time period of homogenous data (1955 - 2010), applying the Mann-Kendall test. The majority of the examined stations showed a significant increase in the summer maximum and minimum temperatures; this could be possibly physically linked to the Etesian winds, because of the less frequent expansion of the low over the southeastern Mediterranean. Summer minimum temperatures have been increasing at a faster rate than that of summer maximum temperatures, reflecting an asymmetric change of extreme temperature distributions. Total annual precipitation has been significantly decreased at the stations located in western Greece, as well as in the southeast, while the remaining areas exhibit a non-significant negative trend. This reduction is very likely linked to the positive phase of the NAO that resulted in an increase in the frequency and persistence of anticyclones over the Mediterranean.

  16. Organic–Inorganic Eu3+/Tb3+ codoped hybrid films for temperature mapping in integrated circuits

    PubMed Central

    Brites, Carlos D. S.; Lima, Patrícia P.; Silva, Nuno J. O.; Millán, Angel; Amaral, Vitor S.; Palacio, Fernando; Carlos, Luís D.

    2013-01-01

    The continuous decrease on the geometric size of electronic devices and integrated circuits generates higher local power densities and localized heating problems that cannot be characterized by conventional thermographic techniques. Here, a self-referencing intensity-based molecular thermometer involving a di-ureasil organic-inorganic hybrid thin film co-doped with Eu3+ and Tb3+ tris (β-diketonate) chelates is used to obtain the temperature map of a FR4 printed wiring board with spatio-temporal resolutions of 0.42 μm/4.8 ms. PMID:24790938

  17. Incorporating Community Knowledge to Lahar Hazard Maps: Canton Buenos Aires Case Study, at Santa Ana (Ilamatepec) Volcano

    NASA Astrophysics Data System (ADS)

    Bajo, J. V.; Martinez-Hackert, B.; Polio, C.; Gutierrez, E.

    2015-12-01

    Santa Ana (Ilamatepec) Volcano is an active composite volcano located in the Apaneca Volcanic Field located in western part of El Salvador, Central America. The volcano is surrounded by rural communities in its proximal areas and the second (Santa Ana, 13 km) and fourth (Sonsosante, 15 km) largest cities of the country. On October 1st, 2005, the volcano erupted after months of increased activity. Following the eruption, volcanic mitigation projects were conducted in the region, but the communities had little or no input on them. This project consisted in the creation of lahar volcanic hazard map for the Canton Buanos Aires on the northern part of the volcano by incorporating the community's knowledge from prior events to model parameters and results. The work with the community consisted in several meetings where the community members recounted past events. They were asked to map the outcomes of those events using either a topographic map of the area, a Google Earth image, or a blank paper poster size. These maps have been used to identify hazard and vulnerable areas, and for model validation. These maps were presented to the communities and they accepted their results and the maps.

  18. Nanosensors as Reservoir Engineering Tools to Map Insitu Temperature Distributions in Geothermal Reservoirs

    SciTech Connect

    Morgan Ames

    2011-06-15

    The feasibility of using nanosensors to measure temperature distribution and predict thermal breakthrough in geothermal reservoirs is addressed in this report. Four candidate sensors were identified: melting tin-bismuth alloy nanoparticles, silica nanoparticles with covalently-attached dye, hollow silica nanoparticles with encapsulated dye and impermeable melting shells, and dye-polymer composite time-temperature indicators. Four main challenges associated with the successful implementation of temperature nanosensors were identified: nanoparticle mobility in porous and fractured media, the collection and detection of nanoparticles at the production well, engineering temperature sensing mechanisms that are both detectable and irreversible, and inferring the spatial geolocation of temperature measurements in order to map temperature distribution. Initial experiments were carried out to investigate each of these challenges. It was demonstrated in a slim-tube injection experiment that it is possible to transport silica nanoparticles over large distances through porous media. The feasibility of magnetic collection of nanoparticles from produced fluid was evaluated experimentally, and it was estimated that 3% of the injected nanoparticles were recovered in a prototype magnetic collection device. An analysis technique was tailored to nanosensors with a dye-release mechanism to estimate temperature measurement geolocation by analyzing the return curve of the released dye. This technique was used in a hypothetical example problem, and good estimates of geolocation were achieved. Tin-bismuth alloy nanoparticles were synthesized using a sonochemical method, and a bench heating experiment was performed using these nanoparticles. Particle growth due to melting was observed, indicating that tin-bismuth nanoparticles have potential as temperature nanosensors

  19. The EUSTACE break-detection algorithm for a global air temperature dataset

    NASA Astrophysics Data System (ADS)

    Brugnara, Yuri; Auchmann, Renate; Brönnimann, Stefan

    2016-04-01

    EUSTACE (EU Surface Temperature for All Corners of Earth) is an EU-funded project that has started in 2015; its goal is to produce daily estimates of surface air temperature since 1850 across the globe for the first time by combining surface and satellite data using novel statistical techniques. For land surface data (LSAT), we assembled a global dataset of ca. 35000 stations where daily maximum and minimum air temperature observations are available, taking advantage of the most recent data rescue initiatives. Beside quantity, data quality also plays an important role for the success of the project; in particular, the assessment of the homogeneity of the temperature series is crucial in order to obtain a product suitable for the study of climate change. This poster describes a fully automatic state-of-the-art break-detection algorithm that we developed for the global LSAT dataset. We evaluate the performance of the method using artificial benchmarks and present various statistics related to frequency and amplitude of the inhomogeneities detected in the real data. We show in particular that long-term temperature trends calculated from raw data are more often underestimated than overestimated and that this behaviour is mostly related to inhomogeneities affecting maximum temperatures.

  20. The impact of humidity on evaporative cooling in small desert birds exposed to high air temperatures.

    PubMed

    Gerson, Alexander R; Smith, Eric Krabbe; Smit, Ben; McKechnie, Andrew E; Wolf, Blair O

    2014-01-01

    Environmental temperatures that exceed body temperature (Tb) force endothermic animals to rely solely on evaporative cooling to dissipate heat. However, evaporative heat dissipation can be drastically reduced by environmental humidity, imposing a thermoregulatory challenge. The goal of this study was to investigate the effects of humidity on the thermoregulation of desert birds and to compare the sensitivity of cutaneous and respiratory evaporation to reduced vapor density gradients. Rates of evaporative water loss, metabolic rate, and Tb were measured in birds exposed to humidities ranging from ∼2 to 30 g H2O m(-3) (0%-100% relative humidity at 30°C) at air temperatures between 44° and 56°C. In sociable weavers, a species that dissipates heat primarily through panting, rates of evaporative water loss were inhibited by as much as 36% by high humidity at 48°C, and these birds showed a high degree of hyperthermia. At lower temperatures (40°-44°C), evaporative water loss was largely unaffected by humidity in this species. In Namaqua doves, which primarily use cutaneous evaporation, increasing humidity reduced rates of evaporative water loss, but overall rates of water loss were lower than those observed in sociable weavers. Our data suggest that cutaneous evaporation is more efficient than panting, requiring less water to maintain Tb at a given temperature, but panting appears less sensitive to humidity over the air temperature range investigated here.

  1. Temperature and pressure influence on explosion pressures of closed vessel propane-air deflagrations.

    PubMed

    Razus, Domnina; Brinzea, Venera; Mitu, Maria; Oancea, Dumitru

    2010-02-15

    An experimental study on pressure evolution during closed vessel explosions of propane-air mixtures was performed, for systems with various initial concentrations and pressures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.2 bar). The explosion pressures and explosion times were measured in a spherical vessel (Phi=10 cm), at various initial temperatures (T(0)=298-423 K) and in a cylindrical vessel (Phi=10 cm; h=15 cm), at ambient initial temperature. The experimental values of explosion pressures are examined against literature values and compared to adiabatic explosion pressures, computed by assuming chemical equilibrium within the flame front. The influence of initial pressure, initial temperature and fuel concentration on explosion pressures and explosion times are discussed. At constant temperature and fuel/oxygen ratio, the explosion pressures are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, both the measured and calculated (adiabatic) explosion pressures are linear functions of reciprocal value of initial temperature. Such correlations are extremely useful for predicting the explosion pressures of flammable mixtures at elevated temperatures and/or pressures, when direct measurements are not available.

  2. Effect of posture on body temperature of young men in cold air.

    PubMed

    Donaldson, G C; Scarborough, M; Mridha, K; Whelan, L; Caunce, M; Keatinge, W R

    1996-01-01

    We studied eight young adult men to see whether a supine posture caused a fall in body core temperature in the cold, as it does in thermoneutral conditions. In air at 31 degrees C (thermoneutral), a supine posture for 3 h reduced mean aural, gastric, oesophageal and rectal temperatures by 0.2-0.4 degree C, compared to upright and increased femoral artery blood flow from 278 (SEM 42)ml.min-1 whilst upright to 437 (SEM 42) ml.min-1 whilst supine. In cold air (8 degrees C) the supine posture failed to reduce these temperatures [corrected] significantly, or to increase femoral blood flow: it reduced heart rate, and increased arterial systolic and pulse pressures adjusted to carotid sinus level, less than in thermoneutral conditions. However, the behaviour of core temperature at the four sites was significantly nonuniform between the two postures in the cold, mainly because the supine posture tended to reduce rectal temperature. It may have done so by reducing heat production in the muscles of the pelvis, since it reduced overall metabolic rate from 105 (SEM 8) to 87 (SEM 4) W.m-2 in the cold. In other respects the results indicated that posture ceased to have an important effect on body core temperatures during cold stress.

  3. Temperature Mapping of 3D Printed Polymer Plates: Experimental and Numerical Study

    PubMed Central

    Kousiatza, Charoula; Chatzidai, Nikoleta; Karalekas, Dimitris

    2017-01-01

    In Fused Deposition Modeling (FDM), which is a common thermoplastic Additive Manufacturing (AM) method, the polymer model material that is in the form of a flexible filament is heated above its glass transition temperature (Tg) to a semi-molten state in the head’s liquefier. The heated material is extruded in a rastering configuration onto the building platform where it rapidly cools and solidifies with the adjoining material. The heating and rapid cooling cycles of the work materials exhibited during the FDM process provoke non-uniform thermal gradients and cause stress build-up that consequently result in part distortions, dimensional inaccuracy and even possible part fabrication failure. Within the purpose of optimizing the FDM technique by eliminating the presence of such undesirable effects, real-time monitoring is essential for the evaluation and control of the final parts’ quality. The present work investigates the temperature distributions developed during the FDM building process of multilayered thin plates and on this basis a numerical study is also presented. The recordings of temperature changes were achieved by embedding temperature measuring sensors at various locations into the middle-plane of the printed structures. The experimental results, mapping the temperature variations within the samples, were compared to the corresponding ones obtained by finite element modeling, exhibiting good correlation. PMID:28245557

  4. Precise Temperature Mapping of GaN-Based LEDs by Quantitative Infrared Micro-Thermography

    PubMed Central

    Chang, Ki Soo; Yang, Sun Choel; Kim, Jae-Young; Kook, Myung Ho; Ryu, Seon Young; Choi, Hae Young; Kim, Geon Hee

    2012-01-01

    A method of measuring the precise temperature distribution of GaN-based light-emitting diodes (LEDs) by quantitative infrared micro-thermography is reported. To reduce the calibration error, the same measuring conditions were used for both calibration and thermal imaging; calibration was conducted on a highly emissive black-painted area on a dummy sapphire wafer loaded near the LED wafer on a thermoelectric cooler mount. We used infrared thermal radiation images of the black-painted area on the dummy wafer and an unbiased LED wafer at two different temperatures to determine the factors that degrade the accuracy of temperature measurement, i.e., the non-uniform response of the instrument, superimposed offset radiation, reflected radiation, and emissivity map of the LED surface. By correcting these factors from the measured infrared thermal radiation images of biased LEDs, we determined a precise absolute temperature image. Consequently, we could observe from where the local self-heat emerges and how it distributes on the emitting area of the LEDs. The experimental results demonstrated that highly localized self-heating and a remarkable temperature gradient, which are detrimental to LED performance and reliability, arise near the p-contact edge of the LED surface at high injection levels owing to the current crowding effect. PMID:22666050

  5. Temperature Mapping of 3D Printed Polymer Plates: Experimental and Numerical Study.

    PubMed

    Kousiatza, Charoula; Chatzidai, Nikoleta; Karalekas, Dimitris

    2017-02-24

    In Fused Deposition Modeling (FDM), which is a common thermoplastic Additive Manufacturing (AM) method, the polymer model material that is in the form of a flexible filament is heated above its glass transition temperature (Tg) to a semi-molten state in the head's liquefier. The heated material is extruded in a rastering configuration onto the building platform where it rapidly cools and solidifies with the adjoining material. The heating and rapid cooling cycles of the work materials exhibited during the FDM process provoke non-uniform thermal gradients and cause stress build-up that consequently result in part distortions, dimensional inaccuracy and even possible part fabrication failure. Within the purpose of optimizing the FDM technique by eliminating the presence of such undesirable effects, real-time monitoring is essential for the evaluation and control of the final parts' quality. The present work investigates the temperature distributions developed during the FDM building process of multilayered thin plates and on this basis a numerical study is also presented. The recordings of temperature changes were achieved by embedding temperature measuring sensors at various locations into the middle-plane of the printed structures. The experimental results, mapping the temperature variations within the samples, were compared to the corresponding ones obtained by finite element modeling, exhibiting good correlation.

  6. The spatial and temporal behavior of brightness temperature in Tel-Aviv and its application to air temperature monitoring

    PubMed Central

    Pelta, Ran; Chudnovsky, A. Alexandra; Schwarts, Joel

    2016-01-01

    This study applies remote sensing technology to assess and examine the spatial and temporal Brightness Temperature (BT) profile in the city of Tel-Aviv, Israel over the last 30 years using Landsat imagery. The location of warmest and coldest zones are constant over the studied period. Distinct diurnal and temporal BT behavior divide the city into four different segments. As an example of future application, we applied mixed regression models with daily random slopes to correlate Landsat BT data with monitored air temperature (Tair) measurements using 14 images for 1989–2014. Our preliminary results show a good model performance with R2 = 0.81. Furthermore, based on the model’s results, we analyzed the spatial profile of Tair within the study domain for representative days. PMID:26499933

  7. Fiber Optic Distributed Sensors for High-resolution Temperature Field Mapping.

    PubMed

    Lomperski, Stephen; Gerardi, Craig; Lisowski, Darius

    2016-11-07

    The reliability of computational fluid dynamics (CFD) codes is checked by comparing simulations with experimental data. A typical data set consists chiefly of velocity and temperature readings, both ideally having high spatial and temporal resolution to facilitate rigorous code validation. While high resolution velocity data is readily obtained through optical measurement techniques such as particle image velocimetry, it has proven difficult to obtain temperature data with similar resolution. Traditional sensors such as thermocouples cannot fill this role, but the recent development of distributed sensing based on Rayleigh scattering and swept-wave interferometry offers resolution suitable for CFD code validation work. Thousands of temperature measurements can be generated along a single thin optical fiber at hundreds of Hertz. Sensors function over large temperature ranges and within opaque fluids where optical techniques are unsuitable. But this type of sensor is sensitive to strain and humidity as well as temperature and so accuracy is affected by handling, vibration, and shifts in relative humidity. Such behavior is quite unlike traditional sensors and so unconventional installation and operating procedures are necessary to ensure accurate measurements. This paper demonstrates implementation of a Rayleigh scattering-type distributed temperature sensor in a thermal mixing experiment involving two air jets at 25 and 45 °C. We present criteria to guide selection of optical fiber for the sensor and describe installation setup for a jet mixing experiment. We illustrate sensor baselining, which links readings to an absolute temperature standard, and discuss practical issues such as errors due to flow-induced vibration. This material can aid those interested in temperature measurements having high data density and bandwidth for fluid dynamics experiments and similar applications. We highlight pitfalls specific to these sensors for consideration in experiment design

  8. Fiber Optic Distributed Sensors for High-resolution Temperature Field Mapping

    PubMed Central

    Lomperski, Stephen; Gerardi, Craig; Lisowski, Darius

    2016-01-01

    The reliability of computational fluid dynamics (CFD) codes is checked by comparing simulations with experimental data. A typical data set consists chiefly of velocity and temperature readings, both ideally having high spatial and temporal resolution to facilitate rigorous code validation. While high resolution velocity data is readily obtained through optical measurement techniques such as particle image velocimetry, it has proven difficult to obtain temperature data with similar resolution. Traditional sensors such as thermocouples cannot fill this role, but the recent development of distributed sensing based on Rayleigh scattering and swept-wave interferometry offers resolution suitable for CFD code validation work. Thousands of temperature measurements can be generated along a single thin optical fiber at hundreds of Hertz. Sensors function over large temperature ranges and within opaque fluids where optical techniques are unsuitable. But this type of sensor is sensitive to strain and humidity as well as temperature and so accuracy is affected by handling, vibration, and shifts in relative humidity. Such behavior is quite unlike traditional sensors and so unconventional installation and operating procedures are necessary to ensure accurate measurements. This paper demonstrates implementation of a Rayleigh scattering-type distributed temperature sensor in a thermal mixing experiment involving two air jets at 25 and 45 °C. We present criteria to guide selection of optical fiber for the sensor and describe installation setup for a jet mixing experiment. We illustrate sensor baselining, which links readings to an absolute temperature standard, and discuss practical issues such as errors due to flow-induced vibration. This material can aid those interested in temperature measurements having high data density and bandwidth for fluid dynamics experiments and similar applications. We highlight pitfalls specific to these sensors for consideration in experiment design

  9. Dynamics of Air Temperature, Velocity and Ammonia Emissions in Enclosed and Conventional Pig Housing Systems

    PubMed Central

    Song, J. I.; Park, K.-H.; Jeon, J. H.; Choi, H. L.; Barroga, A. J.

    2013-01-01

    This study aimed to compare the dynamics of air temperature and velocity under two different ventilation and housing systems during summer and winter in Korea. The NH3 concentration of both housing systems was also investigated in relation to the pig’s growth. The ventilation systems used were; negative pressure type for the enclosed pig house (EPH) and natural airflow for the conventional pig house (CPH). Against a highly fluctuating outdoor temperature, the EPH was able to maintain a stable temperature at 24.8 to 29.1°C during summer and 17.9 to 23.1°C during winter whilst the CPH had a wider temperature variance during summer at 24.7 to 32.3°C. However, the temperature fluctuation of the CPH during winter was almost the same with that of EPH at 14.5 to 18.2°C. The NH3 levels in the CPH ranged from 9.31 to 16.9 mg/L during summer and 5.1 to 19.7 mg/L during winter whilst that of the EPH pig house was 7.9 to 16.1 mg/L and 3.7 to 9.6 mg/L during summer and winter, respectively. These values were less than the critical ammonia level for pigs with the EPH maintaining a lower level than the CPH in both winter and summer. The air velocity at pig nose level in the EPH during summer was 0.23 m/s, enough to provide comfort because of the unique design of the inlet feature. However, no air movement was observed in almost all the lower portions of the CPH during winter because of the absence of an inlet feature. There was a significant improvement in weight gain and feed intake of pigs reared in the EPH compared to the CPH (p<0.05). These findings proved that despite the difference in the housing systems, a stable indoor temperature was necessary to minimize the impact of an avoidable and highly fluctuating outdoor temperature. The EPH consistently maintained an effective indoor airspeed irrespective of season; however the CPH had defective and stagnant air at pig nose level during winter. Characteristics of airflow direction and pattern were consistent relative to

  10. [Temperature differences of air-rice plant under different irrigated water depths at spiking stage].

    PubMed

    Zhang, Bin; Zheng, Jian-chu; Huang, Shan; Tian, Yun-lu; Peng, Lan; Bian, Xin-min; Zhang, Wei-jian

    2008-01-01

    With rice cultivars Yangdao 6, Yangjing 9538 and Wuxiangjing 14 as test materials, field experiment was conducted to study the effects of 3 irrigated water depths (0 cm, 2-4 cm, and > 10 cm) on the temperature of different parts of rice plant at spiking stage. The results showed that from 10:30 to 15:00 on sunny days, irrigated water depth on paddy field had significant effects on the temperature of field surface, middle part of rice plant, and rice spike. The higher the water depth on field surface, the lower the temperature of rice plant and rice spike. At the water level > 10 cm, the average temperature differences between air and the rice spike, middle part of rice plant and field surface of these three cultivars were 1.37, 2.98 and 4.12 degrees C higher than those at the water depth of 0 cm, and 0.67, 1.59 and 2.17 degrees C higher than those at the water depth of 2-4 cm, respectively. In addition, the temperature differences were 0.71, 1.39 and 1.95 degrees C higher at the water depth of 2-4 cm than those at the water depth of 0 cm, respectively. Obvious temperature differences of air-rice plant were also observed among the three rice varieties under different irrigated water depths. The analysis of the characteristics of temperature transfer among field surface, middle part of plant and rice spike indicated that the temperature transfer patterns under all test water management regimes accorded with the principles of energy transfer, suggesting that keeping proper water depth on the field surface at rice spiking stage contributed great to the decrease of rice spike temperature and the alleviation of rice heat injury.

  11. Kinetic mechanism of molecular energy transfer and chemical reactions in low-temperature air-fuel plasmas.

    PubMed

    Adamovich, Igor V; Li, Ting; Lempert, Walter R

    2015-08-13

    This work describes the kinetic mechanism of coupled molecular energy transfer and chemical reactions in low-temperature air, H2-air and hydrocarbon-air plasmas sustained by nanosecond pulse discharges (single-pulse or repetitive pulse burst). The model incorporates electron impact processes, state-specific N(2) vibrational energy transfer, reactions of excited electronic species of N(2), O(2), N and O, and 'conventional' chemical reactions (Konnov mechanism). Effects of diffusion and conduction heat transfer, energy coupled to the cathode layer and gasdynamic compression/expansion are incorporated as quasi-zero-dimensional corrections. The model is exercised using a combination of freeware (Bolsig+) and commercial software (ChemKin-Pro). The model predictions are validated using time-resolved measurements of temperature and N(2) vibrational level populations in nanosecond pulse discharges in air in plane-to-plane and sphere-to-sphere geometry; temperature and OH number density after nanosecond pulse burst discharges in lean H(2)-air, CH(4)-air and C(2)H(4)-air mixtures; and temperature after the nanosecond pulse discharge burst during plasma-assisted ignition of lean H2-mixtures, showing good agreement with the data. The model predictions for OH number density in lean C(3)H(8)-air mixtures differ from the experimental results, over-predicting its absolute value and failing to predict transient OH rise and decay after the discharge burst. The agreement with the data for C(3)H(8)-air is improved considerably if a different conventional hydrocarbon chemistry reaction set (LLNL methane-n-butane flame mechanism) is used. The results of mechanism validation demonstrate its applicability for analysis of plasma chemical oxidation and ignition of low-temperature H(2)-air, CH(4)-air and C(2)H(4)-air mixtures using nanosecond pulse discharges. Kinetic modelling of low-temperature plasma excited propane-air mixtures demonstrates the need for development of a more accurate

  12. Magnetic Resonance Flow Velocity and Temperature Mapping of a Shape Memory Polymer Foam Device

    SciTech Connect

    Small IV, W; Gjersing, E; Herberg, J L; Wilson, T S; Maitland, D J

    2008-10-29

    Interventional medical devices based on thermally responsive shape memory polymer (SMP) are under development to treat stroke victims. The goals of these catheter-delivered devices include re-establishing blood flow in occluded arteries and preventing aneurysm rupture. Because these devices alter the hemodynamics and dissipate thermal energy during the therapeutic procedure, a first step in the device development process is to investigate fluid velocity and temperature changes following device deployment. A laser-heated SMP foam device was deployed in a simplified in vitro vascular model. Magnetic resonance imaging (MRI) techniques were used to assess the fluid dynamics and thermal changes associated with device deployment. Spatial maps of the steady-state fluid velocity and temperature change inside and outside the laser-heated SMP foam device were acquired. Though non-physiological conditions were used in this initial study, the utility of MRI in the development of a thermally-activated SMP foam device has been demonstrated.

  13. Tularosa Basin Play Fairway Analysis: Weights of Evidence; Mineralogy, and Temperature Anomaly Maps

    SciTech Connect

    Adam Brandt

    2015-11-15

    This submission has two shapefiles and a tiff image. The weights of evidence analysis was applied to data representing heat of the earth and fracture permeability using training sites around the Southwest; this is shown in the tiff image. A shapefile of surface temperature anomalies was derived from the statistical analysis of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared data which had been converted to surface temperatures; these anomalies have not been field checked. The second shapefile shows outcrop mineralogy which originally mapped by the New Mexico Bureau of Geology and Mineral Resources, and supplemented with mineralogic information related to rock fracability risk for EGS. Further metadata can be found within each file.

  14. Surface temperature variations as measured by the Heat Capacity Mapping Mission

    NASA Technical Reports Server (NTRS)

    Price, J. C.

    1979-01-01

    The AEM-1 satellite, the Heat Capacity Mapping Mission, has acquired high-quality thermal infrared data at times of day especially suited for studying the earth's surface and the exchange of heat and moisture with the atmosphere. Selected imagery illustrates the considerable variability of surface temperature in and around cities, in the dry southwestern United States, in the Appalachian Mountains, and in agricultural areas. Through simplifying assumptions, an analytic experience is derived that relates day/night temperature differences to the near-surface layer (thermal inertia) and to meteorological factors. Analysis of the result suggests that, in arid regions, estimates of relative thermal inertia may be inferred, whereas, in agricultural areas, a hydrologic interpretation is possible.

  15. Effect of temperature on the visualization by digital color mapping of latent fingerprint deposits on metal.

    PubMed

    Peel, Alicia; Bond, John W

    2014-03-01

    Visualization of fingerprint deposits by digital color mapping of light reflected from the surface of heated brass, copper, aluminum, and tin has been investigated using Adobe® Photoshop®. Metals were heated to a range of temperatures (T) between 50°C and 500°C in 50°C intervals with enhancement being optimal when the metals are heated to 250°C, 350°C, 50°C, and 300°C, respectively, and the hue values adjusted to 247°, 245°, 5°, and 34°, respectively. Fingerprint visualization after color mapping was not degraded by subsequent washing of the metals and color mapping did not compromise the visibility of the fingerprint for all values of T. The optimum value of T for fingerprint visibility is significantly dependent of the standard reduction potential of the metal with Kendall’s Tau (τ) = 0.953 (p < 0.001). For brass, this correlation is obtained when considering the standard reduction potential of zinc rather than copper.

  16. Effect of temperature on subsite map of Bacillus licheniformis alpha-amylase.

    PubMed

    Kandra, Lili; Remenyik, Judit; Gyémánt, Gyöngyi; Lipták, A

    2006-09-01

    To elucidate how temperature effects subsite mapping of a thermostable alpha-amylase from Bacillus licheniformis (BLA), a comparative study was performed by using 2-chloro-4-nitrophenyl (CNP) beta-maltooligosides with degree of polymerisation (DP) 4-10 as model substrates. Action patterns, cleavage frequencies and subsite binding energies were determined at 50 degrees C, 80 degrees C and 100 degrees C. Subsite map at 80 degrees C indicates more favourable bindings compared to the hydrolysis at 50 degrees C. Hydrolysis at 100 degrees C resulted in a clear shift in the product pattern and suggests significant differences in the active site architecture. Two preferred cleavage modes were seen for all substrates in which subsite (+2) and (+3) were dominant, but CNP-G1 was never formed. In the preferred binding mode of shorter oligomers, CNP-G2 serves as the leaving group (79%, 50%, 59% and 62% from CNP-G4, CNP-G5, CNP-G6 and CNP-G7, respectively), while CNP-G3 is the dominant hydrolysis product from CNP-G8, CNP-G9, and CNP-Gl0 (62%, 68% and 64%, respectively). The high binding energy value (-17.5 kJ/mol) found at subsite (+2) is consistent with the significant formation of CNP-G2. Subsite mapping at 80 degrees C and 100 degrees C confirms that there are no further binding sites despite the presence of longer products.

  17. Comparative evaluation of air cell and eggshell temperature measurement methodologies used in broiler hatching eggs during late incubation.

    PubMed

    Peebles, E D; Zhai, W; Gerard, P D

    2012-07-01

    The current study was conducted to compare and contrast the uses of 2 devices (temperature transponder or infrared thermometer) and their locations (inner air cell membrane or outer eggshell surface) in Ross × Ross 708 broiler hatching eggs. The air cells of 14 embryonated and 10 nonembryonated eggs were implanted with temperature transponders on d 13.5 of incubation. Likewise, for these same eggs, eggshell surface temperature was detected with the use of transponders and an infrared thermometer. Temperatures were recorded every 12 h between 14.5 and 18 d of incubation, and graphs and corresponding regression values were used to track the temperatures over these time periods. The temperature readings using all methods in embryonated and nonembryonated eggs were positively correlated. In nonembryonated eggs, temperatures in the air cell and on the eggshell surface using transponders were higher than those on the eggshell surface using an infrared thermometer. Mean air cell temperature readings of embryonated eggs using transponders were higher than those of the eggshell, as determined with the use of transponders or an infrared thermometer. Furthermore, the differences in air cell temperature using transponders and eggshell temperature using an infrared thermometer in embryonated eggs increased with embryonic age. These readings confirmed increased embryo heat production during the incubational period examined. It was further concluded that when compared with actual embryo body temperatures determined in previous studies, the use of transponders in the air cells of broiler hatching eggs detected a higher and closer temperature than eggshell surface temperature. It is suggested that the air cell transponders in embryonated eggs circumvented the confounding effects of the thermal barrier properties of the eggshell and the flow of air across its surface.

  18. The EUSTACE project: combining different components of the observing system to deliver global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Rayner, Nick

    2016-04-01

    Day-to-day variations in surface air temperature affect society in many ways and are fundamental information for many climate services; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, we must develop an understanding of the relationships between traditional surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we reflect on our experience so far within the Horizon 2020 project EUSTACE of using satellite skin temperature retrievals to help us to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types and developing new statistical models of how surface air temperature varies in a connected way from place to place. We will present plans and progress along this road in the EUSTACE project (2015-June 2018): - providing new, consistent, multi-component estimation of uncertainty in surface skin temperature retrievals from satellites; - identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; - estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; - using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  19. The First Air-Temperature Measurements for the Purposes of Battlefield Operations?.

    NASA Astrophysics Data System (ADS)

    Lindgré, S.; Neumann, J.

    1986-03-01

    Close to the end of the severe winter 1808/09, a Russian force crossed the ice-bound Gulf of Bothnia from Finland to Sweden with the purpose of forcing Sweden to desist from taking sides with Great Britain against Napoléon. General major von Berg, one of the commanders of the force, took meteorological observations, including air-temperature measurements, during the crossing, a record of which he left behind in a journal. These air-temperature measurements appear to be the first of their kind in the history of land-based military forces.In the discussion of the meteorological conditions of the above-mentioned harsh winter, use is made of unpublished meteorological measurements at Umcaå, Sweden, and at Ylitomio (Över-Torneå), Finland. The latter were conducted by Johan Portin, a pioneer of meteorological observations near the Arctic Circle.

  20. Instructions for observing air temperature, humidity, and direction and force of wind

    USGS Publications Warehouse

    ,

    1892-01-01

    Description of instruments.-The temperature and humidity of the air are obtained from the simultaneous observation of a pair of mercurial thermometers termed the dry and the wet bulb. The air temperature is given by the dry-bulb thermometer, and the humidity is obtained from the combined readings of both. The wet-bulb thermometer differs from the dry-bulb thermometer only in having its bulb covered with thin muslin, which is wetted in pure water at each observation.The two thermometers are fastened in a light metal 'or wooden frame. To this frame is to be attached a stout cord for the whirling of the thermometers, which is an essential part of every observation.