Science.gov

Sample records for air temperature sea

  1. Air-sea interactions in sea surface temperature frontal region

    NASA Astrophysics Data System (ADS)

    Pianezze, Joris; Redelsperger, Jean-Luc; Ardhuin, Fabrice; Reynaud, Thierry; Marié, Louis; Bouin, Marie-Noelle; Garnier, Valerie

    2015-04-01

    Representation of air-sea exchanges in coastal, regional and global models represent a challenge firstly due to the small scale of acting turbulent processes comparatively to the resolved scales of these models. Beyond this subgrid parameterization issue, a comprehensive understanding of air-sea interactions at the turbulent process scales is still lacking. Many successful efforts are dedicated to measure the energy and mass exchanges between atmosphere and ocean, including the effect of surface waves. In comparison less efforts are brought to understand the interactions between the atmospheric boundary layer and the oceanic mixing layer. In this regard, we are developing research mainly based on ideal and realistic numerical simulations which resolve very small scales (horizontal resolutions from 1 to 100 meters) in using grid nesting technics and coupled ocean-wave-atmosphere models. As a first step, the impact of marked gradients in sea surface temperatures (SST) on air-sea exchanges has been explored through realistic numerical simulations at 100m horizontal resolution. Results from simulations of a case observed during the FROMVAR experiment will be shown. The talk will mainly focus on the marked impact of SST front on the atmospheric boundary layer (stability and winds), the air-sea exchanges and surface parameters (rugosity, drag coefficient) Results will be also shown on the strong impact on the simulated atmosphere of small scale variability of SST field.

  2. AIRS Sea Surface Temperature and Pacific Decadal Oscillation

    NASA Astrophysics Data System (ADS)

    Chen, L. L.

    2015-12-01

    Atmospheric Infrared Sounder (AIRS) has been providing necessary measurements for long term atmospheric and surface processes aboard NASA' s Aqua polar orbiter since May 2002. Here, we use time series of AIRS sea surface temperature (SST) anomalies to show the time evolution of Pacific Decadal Oscillation (PDO) in the Gulf of Alaska (lon:-144.5, lat:54.5) from 2003 to 2014. PDO is connected to the first mode of North Pacific SST variability and is tele-connected to ENSO in the tropics. Further analysis of AIRS data can provide clarification of Pacific climate variability.

  3. Antarctic Sea ice variations and seasonal air temperature relationships

    NASA Technical Reports Server (NTRS)

    Weatherly, John W.; Walsh, John E.; Zwally, H. J.

    1991-01-01

    Data through 1987 are used to determine the regional and seasonal dependencies of recent trends of Antarctic temperature and sea ice. Lead-lag relationships involving regional sea ice and air temperature are systematically evaluated, with an eye toward the ice-temperature feedbacks that may influence climatic change. Over the 1958-1087 period the temperature trends are positive in all seasons. For the 15 years (l973-l987) for which ice data are available, the trends are predominantly positive only in winter and summer, and are most strongly positive over the Antarctic Peninsula. The spatially aggregated trend of temperature for this latter period is small but positive, while the corresponding trend of ice coverage is small but negative. Lag correlations between seasonal anomalies of the two variables are generally stronger with ice lagging the summer temperatures and with ice leading the winter temperatures. The implication is that summer temperatures predispose the near-surface waters to above-or below-normal ice coverage in the following fall and winter.

  4. Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes

    NASA Technical Reports Server (NTRS)

    Frankignoul, C.

    1985-01-01

    Current analytical models for large-scale air-sea interactions in the middle latitudes are reviewed in terms of known sea-surface temperature (SST) anomalies. The scales and strength of different atmospheric forcing mechanisms are discussed, along with the damping and feedback processes controlling the evolution of the SST. Difficulties with effective SST modeling are described in terms of the techniques and results of case studies, numerical simulations of mixed-layer variability and statistical modeling. The relationship between SST and diabatic heating anomalies is considered and a linear model is developed for the response of the stationary atmosphere to the air-sea feedback. The results obtained with linear wave models are compared with the linear model results. Finally, sample data are presented from experiments with general circulation models into which specific SST anomaly data for the middle latitudes were introduced.

  5. Air-sea fluxes and surface layer turbulence around a sea surface temperature front

    NASA Technical Reports Server (NTRS)

    Friehe, C. A.; Shaw, W. J.; Davidson, K. L.; Rogers, D. P.; Large, W. G.; Stage, S. A.; Crescenti, G. H.; Khalsa, S. J. S.; Greenhut, G. K.; Li, F.

    1991-01-01

    The observed effects of sharp changes in sea surface temperature (SST) on the air-sea fluxes, surface roughness, and the turbulence structure in the surface layer and the marine atmospheric boundary layer are discussed. In situ flux and turbulence observations were carried out from three aircraft and two ships within the FASINEX framework. Three other aircraft used remote sensors to measure waves, microwave backscatter, and lidar signatures of cloud tops. Descriptions of the techniques, intercomparison of aircraft and ship flux data, and use of different methods for analyzing the fluxes from the aircraft data are described. Changing synoptic weather on three successive days yielded cases of wind direction both approximately parallel and perpendicular to a surface temperature front. For the wind perpendicular to the front, wind over both cold-to-warm and warm-to-cold surface temperatures occurred. Model results consistent with the observations suggest that an internal boundary layer forms at the SST.

  6. South Atlantic sea surface temperature anomalies and air-sea interactions: stochastic models

    NASA Astrophysics Data System (ADS)

    Dobrovolski, S. G.

    1994-09-01

    Data on the South Atlantic monthly sea surface temperature anomalies (SSTA) are analysed using the maximum-entropy method. It is shown that the Markov first-order process can describe, to a first approximation, SSTA series. The region of maximum SSTA values coincides with the zone of maximum residual white noise values (sub-Antarctic hydrological front). The theory of dynamic-stochastic climate models is applied to estimate the variability of South Atlantic SSTA and air-sea interactions. The Adem model is used as a deterministic block of the dynamic-stochastic model. Experiments show satisfactorily the SSTA intensification in the sub-Antarctic front zone, with appropriate standard deviations, and demonstrate the leading role of the abnormal drift currents in these processes.

  7. Impact of Atlantic sea surface temperatures on the warmest global surface air temperature of 1998

    NASA Astrophysics Data System (ADS)

    Lu, Riyu

    2005-03-01

    The year 1998 is the warmest year in the record of instrumental measurements. In this study, an atmospheric general circulation model is used to investigate the role of sea surface temperatures (SSTs) in this warmth, with a focus on the role of the Atlantic Ocean. The model forced with the observed global SSTs captures the main features of land surface air temperature anomalies in 1998. A sensitivity experiment shows that in comparison with the global SST anomalies, the Atlantic SST anomalies can explain 35% of the global mean surface air temperature (GMAT) anomaly, and 57% of the land surface air temperature anomaly in 1998. The mechanisms through which the Atlantic Ocean influences the GMAT are likely different from season to season. Possible detailed mechanisms involve the impact of SST anomalies on local convection in the tropical Atlantic region, the consequent excitation of a Rossby wave response that propagates into the North Atlantic and the Eurasian continent in winter and spring, and the consequent changes in tropical Walker circulation in summer and autumn that induce changes in convection over the tropical Pacific. This in turn affects climate in Asia and Australia. The important role of the Atlantic Ocean suggests that attention should be paid not only to the tropical Pacific Ocean, but also to the tropical Atlantic Ocean in understanding the GMAT variability and its predictability.

  8. GSOD Based Daily Global Mean Surface Temperature and Mean Sea Level Air Pressure (1982-2011)

    SciTech Connect

    Xuan Shi, Dali Wang

    2014-05-05

    This data product contains all the gridded data set at 1/4 degree resolution in ASCII format. Both mean temperature and mean sea level air pressure data are available. It also contains the GSOD data (1982-2011) from NOAA site, contains station number, location, temperature and pressures (sea level and station level). The data package also contains information related to the data processing methods

  9. Recent variations of sea ice and air temperature in high latitudes

    SciTech Connect

    Chapman, W.L.; Walsh, J.E. )

    1993-01-01

    Feedbacks resulting from the retreat of sea ice and snow contribute to the polar amplification of the greenhouse warming projected by global climate models. A gridded sea-ice database, for which the record length is now approaching four decades for the Arctic and two decades for the Antarctic, is summarized here. The sea-ice fluctuations derived from the data set are characterized by (1) temporal scales of several seasons to several years and (2) spatial scales of 30[degrees]-180[degrees] of longitude. The ice data are examined in conjunction with air temperature data for evidence of recent climate change in the polar regions. The arctic sea-ice variations over the past several decades are compatible with the corresponding air temperatures, which show a distinct warming that is strongest over northern land areas during the winter and spring. The temperature trends over the sub arctic seas are smaller and even negative in the southern Greenland region. Statistically significant decreases of the summer extent of arctic ice are apparent in the sea-ice data, and new summer minima have been achieved three times in the past 15 years. There is no significant trend of ice extent in the Arctic during winter or in the Antarctic during any season. The seasonal and geographical changes of sea-ice coverage are consistent with the more recent greenhouse experiments performed with coupled atmosphere-ocean models.

  10. Impact of autumn SST in the Japan Sea on winter rainfall and air temperature in Northeast China

    NASA Astrophysics Data System (ADS)

    Shi, Xiaomeng; Sun, Jilin; Wu, Dexing; Yi, Li; Wei, Dongni

    2015-08-01

    We studied the impact of sea surface temperature anomaly (SSTA) in the Japan Sea and the sea area east of Japan on the winter rainfall and air temperature in Northeast (NE) China using the singular value decomposition (SVD) and empirical orthogonal function (EOF). The monthly-mean rainfall data observed at 160 stations in China, monthly-mean sea surface temperature (SST) of the Hadley Center for Climate Prediction and Research and monthly-mean air temperature from the NCEP reanalysis during 1960-2011 were used. Correlation analysis indicates that the SSTAs in the Japan Sea in September may last for three or four months and are an important index for forecasting the winter rainfall and air temperature in NE China. Positive SSTAs in the central Japan Sea and in the sea area east of Tokyo correspond to positive rainfall anomaly and negative air temperature anomaly in NE China. With the rise of SST in the Japan Sea, a weak cyclone appears over the Japan Sea. The northeasterly wind transports water vapor from the Okhotsk to NE China, resulting in more rainfall and lower air temperature. Negative SSTA years are accompanied by warmer air temperature and less snow in NE China. The 1000 hPa geopotential height anomaly and wind anomaly fields are simulated by IAP-9L model, which supports the analysis results.

  11. Greenland coastal air temperatures linked to Baffin Bay and Greenland Sea ice conditions during autumn through regional blocking patterns

    NASA Astrophysics Data System (ADS)

    Ballinger, Thomas J.; Hanna, Edward; Hall, Richard J.; Miller, Jeffrey; Ribergaard, Mads H.; Høyer, Jacob L.

    2017-03-01

    Variations in sea ice freeze onset and regional sea surface temperatures (SSTs) in Baffin Bay and Greenland Sea are linked to autumn surface air temperatures (SATs) around coastal Greenland through 500 hPa blocking patterns, 1979-2014. We find strong, statistically significant correlations between Baffin Bay freeze onset and SSTs and SATs across the western and southernmost coastal areas, while weaker and fewer significant correlations are found between eastern SATs, SSTs, and freeze periods observed in the neighboring Greenland Sea. Autumn Greenland Blocking Index values and the incidence of meridional circulation patterns have increased over the modern sea ice monitoring era. Increased anticyclonic blocking patterns promote poleward transport of warm air from lower latitudes and local warm air advection onshore from ocean-atmosphere sensible heat exchange through ice-free or thin ice-covered seas bordering the coastal stations. Temperature composites by years of extreme late freeze conditions, occurring since 2006 in Baffin Bay, reveal positive monthly SAT departures that often exceed 1 standard deviation from the 1981-2010 climate normal over coastal areas that exhibit a similar spatial pattern as the peak correlations.

  12. Sensitivity of Global Sea-Air CO2 Flux to Gas Transfer Algorithms, Climatological Wind Speeds, and Variability of Sea Surface Temperature and Salinity

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Signorini, Sergio

    2002-01-01

    Sensitivity analyses of sea-air CO2 flux to gas transfer algorithms, climatological wind speeds, sea surface temperatures (SST) and salinity (SSS) were conducted for the global oceans and selected regional domains. Large uncertainties in the global sea-air flux estimates are identified due to different gas transfer algorithms, global climatological wind speeds, and seasonal SST and SSS data. The global sea-air flux ranges from -0.57 to -2.27 Gt/yr, depending on the combination of gas transfer algorithms and global climatological wind speeds used. Different combinations of SST and SSS global fields resulted in changes as large as 35% on the oceans global sea-air flux. An error as small as plus or minus 0.2 in SSS translates into a plus or minus 43% deviation on the mean global CO2 flux. This result emphasizes the need for highly accurate satellite SSS observations for the development of remote sensing sea-air flux algorithms.

  13. Relationships Between the Bulk-Skin Sea Surface Temperature Difference, Wind, and Net Air-Sea Heat Flux

    NASA Technical Reports Server (NTRS)

    Emery, William J.; Castro, Sandra L.; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    The primary purpose of this project was to evaluate and improve models for the bulk-skin temperature difference to the point where they could accurately and reliably apply under a wide variety of environmental conditions. To accomplish this goal, work was conducted in three primary areas. These included production of an archive of available data sets containing measurements of the skin and bulk temperatures and associated environmental conditions, evaluation of existing skin layer models using the compiled data archive, and additional theoretical work on the development of an improved model using the data collected under diverse environmental conditions. In this work we set the basis for a new physical model of renewal type, and propose a parameterization for the temperature difference across the cool skin of the ocean in which the effects of thermal buoyancy, wind stress, and microscale breaking are all integrated by means of the appropriate renewal time scales. Ideally, we seek to obtain a model that will accurately apply under a wide variety of environmental conditions. A summary of the work in each of these areas is included in this report. A large amount of work was accomplished under the support of this grant. The grant supported the graduate studies of Sandra Castro and the preparation of her thesis which will be completed later this year. This work led to poster presentations at the 1999 American Geophysical Union Fall Meeting and 2000 IGARSS meeting. Additional work will be presented in a talk at this year's American Meteorological Society Air-Sea Interaction Meeting this May. The grant also supported Sandra Castro during a two week experiment aboard the R/P Flip (led by Dr. Andrew Jessup of the Applied Physics Laboratory) to help obtain additional shared data sets and to provide Sandra with a fundamental understanding of the physical processes needed in the models. In a related area, the funding also partially supported Dr. William Emery and Daniel

  14. Assessing recent air-sea freshwater flux changes using a surface temperature-salinity space framework

    NASA Astrophysics Data System (ADS)

    Grist, Jeremy P.; Josey, Simon A.; Zika, Jan D.; Evans, Dafydd Gwyn; Skliris, Nikolaos

    2016-12-01

    A novel assessment of recent changes in air-sea freshwater fluxes has been conducted using a surface temperature-salinity framework applied to four atmospheric reanalyses. Viewed in the T-S space of the ocean surface, the complex pattern of the longitude-latitude space mean global Precipitation minus Evaporation (PME) reduces to three distinct regions. The analysis is conducted for the period 1979-2007 for which there is most evidence for a broadening of the (atmospheric) tropical belt. All four of the reanalyses display an increase in strength of the water cycle. The range of increase is between 2% and 30% over the period analyzed, with an average of 14%. Considering the average across the reanalyses, the water cycle changes are dominated by changes in tropical as opposed to mid-high latitude precipitation. The increases in the water cycle strength, are consistent in sign, but larger than in a 1% greenhouse gas run of the HadGEM3 climate model. In the model a shift of the precipitation/evaporation cells to higher temperatures is more evident, due to the much stronger global warming signal. The observed changes in freshwater fluxes appear to be reflected in changes in the T-S distribution of the Global Ocean. Specifically, across the diverse range of atmospheric reanalyses considered here, there was an acceleration of the hydrological cycle during 1979-2007 which led to a broadening of the ocean's salinity distribution. Finally, although the reanalyses indicate that the warm temperature tropical precipitation dominated water cycle change, ocean observations suggest that ocean processes redistributed the freshening to lower ocean temperatures.

  15. Low-frequency variability of surface air temperature over the Barents Sea: causes and mechanisms

    NASA Astrophysics Data System (ADS)

    van der Linden, Eveline C.; Bintanja, Richard; Hazeleger, Wilco; Graversen, Rune G.

    2016-08-01

    The predominant decadal to multidecadal variability in the Arctic region is a feature that is not yet well-understood. It is shown that the Barents Sea is a key region for Arctic-wide variability. This is an important topic because low-frequency changes in the ocean might lead to large variations in the sea-ice cover, which then cause massive changes in the ocean-atmosphere heat exchanges. Here we describe the mechanism driving surface temperatures and heat fluxes in the Barents Sea based primarily on analyzes of one global coupled climate model. It is found that the ocean drives the low-frequency changes in surface temperature, whereas the atmosphere compensates the oceanic transport anomalies. The seasonal dependence and the role of individual components of the ocean-atmosphere energy budget are analyzed in detail, showing that seasonally-varying climate mechanisms play an important role. Herein, sea ice is governing the seasonal response, by acting as a lid that opens and closes during warm and cold periods, respectively, thereby modulating the surface heat fluxes.

  16. Coral Sr/Ca-based sea surface temperature and air temperature variability from the inshore and offshore corals in the Seribu Islands, Indonesia.

    PubMed

    Cahyarini, Sri Yudawati; Zinke, Jens; Troelstra, Simon; Suharsono; Aldrian, Edvin; Hoeksema, B W

    2016-09-30

    The ability of massive Porites corals to faithfully record temperature is assessed. Porites corals from Kepulauan Seribu were sampled from one inshore and one offshore site and analyzed for their Sr/Ca variation. The results show that Sr/Ca of the offshore coral tracked SST, while Sr/Ca variation of the inshore coral tracked ambient air temperature. In particular, the inshore SST variation is related to air temperature anomalies of the urban center of Jakarta. The latter we relate to air-sea interactions modifying inshore SST associated with the land-sea breeze mechanism and/or monsoonal circulation. The correlation pattern of monthly coral Sr/Ca with the Niño3.4 index and SEIO-SST reveals that corals in the Seribu islands region respond differently to remote forcing. An opposite response is observed for inshore and offshore corals in response to El Niño onset, yet similar to El Niño mature phase (December to February). SEIO SSTs co-vary strongly with SST and air temperature variability across the Seribu island reef complex. The results of this study clearly indicate that locations of coral proxy record in Indonesia need to be chosen carefully in order to identify the seasonal climate response to local and remote climate and anthropogenic forcing.

  17. Determination of temperature dependent Henry's law constants of polychlorinated naphthalenes: Application to air-sea exchange in Izmir Bay, Turkey

    NASA Astrophysics Data System (ADS)

    Odabasi, Mustafa; Adali, Mutlu

    2016-12-01

    The Henry's law constant (H) is a crucial variable to investigate the air-water exchange of persistent organic pollutants. H values for 32 polychlorinated naphthalene (PCN) congeners were measured using an inert gas-stripping technique at five temperatures ranging between 5 and 35 °C. H values in deionized water (at 25 °C) varied between 0.28 ± 0.08 Pa m3 mol-1 (PCN-73) and 18.01 ± 0.69 Pa m3 mol-1 (PCN-42). The agreement between the measured and estimated H values from the octanol-water and octanol-air partition coefficients was good (measured/estimated ratio = 1.00 ± 0.41, average ± SD). The calculated phase change enthalpies (ΔHH) were within the interval previously determined for other several semivolatile organic compounds (42.0-106.4 kJ mol-1). Measured H values, paired atmospheric and aqueous concentrations and meteorological variables were also used to reveal the level and direction of air-sea exchange fluxes of PCNs at the coast of Izmir Bay, Turkey. The net PCN air-sea exchange flux varied from -0.55 (volatilization, PCN-24/14) to 2.05 (deposition, PCN-23) ng m-2 day-1. PCN-19, PCN-24/14, PCN-42, and PCN-33/34/37 were mainly volatilized from seawater while the remaining congeners were mainly deposited. The overall number of the cases showing deposition was higher (67.9%) compared to volatilization (21.4%) and near equilibrium (10.7%).

  18. Stress induced by hooking, net towing, elevated sea water temperature and air in sablefish: Lack of concordance between mortality and physiological measures of stress

    USGS Publications Warehouse

    Davis, M.W.; Olla, B.L.; Schreck, C.B.

    2001-01-01

    In a series of laboratory studies designed to simulate bycatch processes, sablefish Anoplopoma fimbria were either hooked for up to 24 h or towed in a net for 4 h and then subjected to an abrupt transfer to elevated sea water temperature and air. Mortality did not result from hooking or net towing followed by exposure to air, but increased for both capture methods as fish were exposed to elevated temperatures, reflecting the magnifying effect of elevated temperature on mortality. Hooking and exposure to air resulted in increased plasma cortisol and lactate concentrations, while the combination of hooking and exposure to elevated temperature and air resulted in increased lactate and potassium concentrations. In fish that were towed in a net and exposed to air, cortisol, lactate, potassium and sodium concentrations increased, but when subjected to elevated temperature and air, no further increases occurred above the concentrations induced by net towing and air, suggesting a possible maximum of the physiological stress response. The results suggest that caution should be exercised when using physiological measures to quantify stress induced by capture and exposure to elevated temperature and air, that ultimately result in mortality, since the connections between physiological stress and mortality in bycatch processes remain to be fully understood.

  19. MODIS Global Sea Surface Temperature

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Every day the Moderate-resolution Imaging Spectroradiometer (MODIS) measures sea surface temperature over the entire globe with high accuracy. This false-color image shows a one-month composite for May 2001. Red and yellow indicates warmer temperatures, green is an intermediate value, while blues and then purples are progressively colder values. The new MODIS sea surface temperature product will be particularly useful in studies of temperature anomalies, such as El Nino, as well as research into how air-sea interactions drive changes in weather and climate patterns. In the high resolution image, notice the amazing detail in some of the regional current patterns. For instance, notice the cold water currents that move from Antarctica northward along South America's west coast. These cold, deep waters upwell along an equatorial swath around and to the west of the Galapagos Islands. Note the warm, wide currents of the Gulf Stream moving up the United States' east coast, carrying Caribbean warmth toward Newfoundland and across the Atlantic toward Western Europe. Note the warm tongue of water extending from Africa's east coast to well south of the Cape of Good Hope. MODIS was launched in December 1999 aboard NASA's Terra satellite. For more details on this and other MODIS data products, please see NASA Unveils Spectacular Suite of New Global Data Products from MODIS. Image courtesy MODIS Ocean Group, NASA GSFC, and the University of Miami

  20. Error estimations of dry deposition velocities of air pollutants using bulk sea surface temperature under common assumptions

    NASA Astrophysics Data System (ADS)

    Lan, Yung-Yao; Tsuang, Ben-Jei; Keenlyside, Noel; Wang, Shu-Lun; Arthur Chen, Chen-Tung; Wang, Bin-Jye; Liu, Tsun-Hsien

    2010-07-01

    It is well known that skin sea surface temperature (SSST) is different from bulk sea surface temperature (BSST) by a few tenths of a degree Celsius. However, the extent of the error associated with dry deposition (or uptake) estimation by using BSST is not well known. This study tries to conduct such an evaluation using the on-board observation data over the South China Sea in the summers of 2004 and 2006. It was found that when a warm layer occurred, the deposition velocities using BSST were underestimated within the range of 0.8-4.3%, and the absorbed sea surface heat flux was overestimated by 21 W m -2. In contrast, under cool skin only conditions, the deposition velocities using BSST were overestimated within the range of 0.5-2.0%, varying with pollutants and the absorbed sea surface heat flux was underestimated also by 21 W m -2. Scale analysis shows that for a slightly soluble gas (e.g., NO 2, NO and CO), the error in the solubility estimation using BSST is the major source of the error in dry deposition estimation. For a highly soluble gas (e.g., SO 2), the error in the estimation of turbulent heat fluxes and, consequently, aerodynamic resistance and gas-phase film resistance using BSST is the major source of the total error. In contrast, for a medium soluble gas (e.g., O 3 and CO 2) both the errors from the estimations of the solubility and aerodynamic resistance are important. In addition, deposition estimations using various assumptions are discussed. The largest uncertainty is from the parameterizations for chemical enhancement factors. Other important areas of uncertainty include: (1) various parameterizations for gas-transfer velocity; (2) neutral-atmosphere assumption; (3) using BSST as SST, and (4) constant pH value assumption.

  1. Annual sea ice. An air-sea gas exchange moderator

    SciTech Connect

    Gosink, T.A.; Kelley, J.J.

    1982-01-01

    Arctic annual sea ice, particularly when it is relatively warm (> -15/sup 0/C) permits significant gas exchange between the sea and air throughout the entire year. Sea ice, particularly annual sea ice, differs from freshwater ice with respect to its permeability to gases. The presence of brine allows for significant air-sea-ice exchange of CO/sub 2/ throughout the winter, which may significantly affect the global carbon dioxide balance. Other trace gases are also noted to be enriched in sea ice, but less is known about their importance to air-sea-interactions at this time. Both physical and biological factors cause and modify evolution of gases from the surface of sea ice. Quantitative and qualitative descriptions of the nature and physical behavior of sea ice with respect to brine and gases are discussed.

  2. The annual temperature cycle in shelf seas

    NASA Astrophysics Data System (ADS)

    Prandle, D.; Lane, A.

    1995-05-01

    A generalized theory is developed to describe the annual temperature cycle in shelf seas. A sinusoidal approximation to the annual solar heating component, S, is assumed and the surface loss term is expressed as a constant k times the air-sea temperature difference ( T a - T s). In well-mixed seas, analytical solutions show that in shallow water the sea temperature follows closely that of the ambient air temperature with limited separate effect of solar heating. Conversely in deep water, the sea surface temperature variations will be reduced relative to that of the ambient air. Providing such deep water remains mixed vertically, the annual variation will be inversely proportional to depth and maximum temperatures will occur up to 3 months after the maximum of solar heating. Generally, the magnitude of the inter-annual variability of sea surface temperatures will be less than corresponding variability in either the effective solar heating, S, (reduced by cloud cover) or the surface loss coefficient, k, (increased by stronger winds). The annual-mean sea temperature will exceed the annual mean air temperature by the annual mean of S divided by k. The above results can be extended to partially-stratified waters so long as autumnal overturning does not occur. For such conditions, an analytical expression is derived for the annual cycle of depth-varying temperatures for mixing associated with a vertical eddy dispersion coefficient E (constant in depth and time). The time taken for solar heating to be equalized throughout the water depth, D, is given by Tv = D 2/E , for a tidal current amplitude of 20 cm s -1. Tv ranges from 3.6 days for D = 50m to231days forD = 400m. To simulate the effect of gravitational instability that produces autumnal overturning, a numerical model is used that represents the effect of daily surface heat exchanges by a series expansion. Results from this model are used to indicate the effects of stratification over a range of values of both depth

  3. Interannual fluctuations of sea-air CO2 fluxes and carbon transport between 1950 and 2000: Biological and temperature effects deduced from OBCMSs

    NASA Astrophysics Data System (ADS)

    Winguth, A.; Dobbel, M.; Maier-Reimer, E.; Wentzel, P.

    2003-04-01

    Factors controlling the interannual variability of air-sea CO2 in response to the changes in temperature, circulation, and phytoplankton or zooplankton are not well known and controversially discussed. A recent analysis of pCO2 data by Takahasi et al. (2002) show the importance of high-latitude northern and southern oceans as a sink for atmospheric CO2. These areas are source areas for deep an intermediate water masses and hence represents a direct connection between the atmosphere and the deep oceans. We are using two coupled ocean general circulation - marine ecosystem models with different resolution, the NPZD-type HAMOCC4 coupled to the LSG and the C-HOPE, to explore how biology, temperature, and circulation changes can explain some of the agreements and discrepancies between the data and the model in these regions. These exploratory sensitivity experiments are designed to be a first step towards a currently developed inverse ecosystem model to quantify large-scale interannual-to-decadal fluctuations of the marine carbon cycle and to provide more accurate predictions of the climate system.

  4. Ocean Surface Temperature Response to Atmosphere-Ocean Interaction of the MJO: A Component of Coupled Air-Wave-Sea Processes in the Subtropics Department Research Initiative

    DTIC Science & Technology

    2012-09-30

    rawinsonde launches in addition to turbulent air-sea fluxes from the ship during the IOP. Further, we expect to have interactions with the many PIs...International Geoscience and Remote Sensing Symposium in Munich, Germany in July 2012. We also participated in the ONR LASP / DYNAMO DRI Meeting at the Hilton

  5. Linking phytoplankton community size composition with temperature, plankton food web structure and sea-air CO 2 flux

    NASA Astrophysics Data System (ADS)

    Hilligsøe, Karen Marie; Richardson, Katherine; Bendtsen, Jørgen; Sørensen, Lise-Lotte; Nielsen, Torkel Gissel; Lyngsgaard, Maren Moltke

    2011-08-01

    Data collected at open water stations (depth>400 m) in all major ocean basins in 2006-2008 are used to examine the relationship between the size structure of the phytoplankton community (determined by size fractionated chlorophyll filtration), temperature and inorganic nutrient availability. A significant relationship ( p<0.0005) was found between community size structure and temperature, with the importance of large cells in the community decreasing with increase in temperature. Although weaker than the temperature relationship, significant relationships were also noted between community cell size and DIN (nitrate, nitrite and ammonium: p=0.034) and phosphate ( p=0.031) concentrations. When the data were divided into two groups of equal size, representing the samples with the highest and lowest DIN/phosphate concentrations, respectively, no difference could be identified between the slopes of the lines representing the relationship between size structure and temperature. There was, however, a difference in the intercepts between the two groups. If the relationship between size and temperature was only a response to nutrient availability, we would expect that the response would be the strongest in the groups with the lowest nutrient concentrations. These results suggest that, in addition to a nutrient effect, temperature may also directly influence the size structure of phytoplankton communities. The size structure of the phytoplankton community in this study correlated to the magnitude of primary production, export production (determined after Laws et al., 2000) and integrated water column chlorophyll. Significant relationships were also found between mesozooplankton production (determined using the proxy of calanoid+cyclopoid nauplii abundance as a percentage of the total number of these copepods) and both temperature and phytoplankton size, with production being the lowest in the warmest waters where phytoplankton were the smallest. In the North Atlantic, export

  6. Atlantic Air-Sea Interaction Revisited

    NASA Astrophysics Data System (ADS)

    Rodwell, M. J.

    INTRODUCTION DATA AND MODELS THE ANALYSIS METHOD ATMOSPHERIC FORCING OF NORTH ATLANTIC SEA SURFACE TEMPERATURES NORTH ATLANTIC SEA SURFACE TEMPERATURE FORCING OF THE ATMOSPHERE Observational Evidence Model Results POTENTIAL SEASONAL PREDICTABILITY BASED ON THE ATMOSPHERE GENERAL - CIRCULATION MODEL CONCLUSIONS AND DISCUSSION REFERENCES

  7. Air-sea interactions during strong winter extratropical storms

    USGS Publications Warehouse

    Nelson, Jill; He, Ruoying; Warner, John C.; Bane, John

    2014-01-01

    A high-resolution, regional coupled atmosphere–ocean model is used to investigate strong air–sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air–sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air–sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere–ocean modeling framework.

  8. Ocean Surface Temperature Response to Atmosphere-Ocean Interaction of the MJO. A Component of Coupled Air-Wave-Sea Processes in the Subtropics Departmental Research Initiative

    DTIC Science & Technology

    2013-09-30

    LASP/ DYNAMO : • fast response, infrared (IR) imagery to characterize SST signatures including upper-ocean convection, freshwater lenses due to rain...campaign in LASP/ DYNAMO are to address the basic science questions/hypotheses regarding air-sea interaction and tropical convection with its unique...the R/V Revelle for the 2nd, 3rd and 4th legs. DYNAMO Composite Rain Event, All Events 2 u 2..... 0 ..... "iii ·2 ~ -4 -4 -2 0 2 4 6 8 0.5

  9. Changes in Sea Surface Temperature and North Atlantic Hurricane Activities

    NASA Astrophysics Data System (ADS)

    Nazari, R.; Mahani, S.; Khanbilvardi, R.

    2006-05-01

    People of United States from Maine to Texas in the years 1995 to 2005 experienced the highest level of North Atlantic hurricane activity in the reliable collected data and reports in compare with the generally low activity of the previous two decays (1970 to 1994). The greater activity might be a consequence of instantaneous changes in North Atlantic Sea Surface Temperature (SST) and air temperature. This thermal energy of increased Sea Surface Temperature (warm water) is known as tropical cyclone heat potential (TCHP) partly powers a hurricane and has been called hurricane fuel. In primary steps of this research we are trying to examine the association of variation of Sea Surface Temperature (SST), Sea Surface Height (SSH) and air temperature in the past decades with changes in hurricane number, duration and intensity. Preliminary analysis demonstrated that there is correlation between global warming and the occurrence of hurricanes because of the anticipated enhancement of energy available to the storms due to higher sea surface temperatures. The goal is to characterize and specify significant factors on tropical storms to improve the capability of predicting a hurricane and its damages to human lives and the economy. This information can be used to advise strategies for warning and also minimizing the magnitude of hurricane destruction, damages, and life losses.

  10. Global sea-air CO 2 flux based on climatological surface ocean pCO 2, and seasonal biological and temperature effects

    NASA Astrophysics Data System (ADS)

    Takahashi, Taro; Sutherland, Stewart C.; Sweeney, Colm; Poisson, Alain; Metzl, Nicolas; Tilbrook, Bronte; Bates, Nicolas; Wanninkhof, Rik; Feely, Richard A.; Sabine, Christopher; Olafsson, Jon; Nojiri, Yukihiro

    Based on about 940,000 measurements of surface-water pCO 2 obtained since the International Geophysical Year of 1956-59, the climatological, monthly distribution of pCO 2 in the global surface waters representing mean non-El Niño conditions has been obtained with a spatial resolution of 4°×5° for a reference year 1995. The monthly and annual net sea-air CO 2 flux has been computed using the NCEP/NCAR 41-year mean monthly wind speeds. An annual net uptake flux of CO 2 by the global oceans has been estimated to be 2.2 (+22% or -19%) Pg C yr -1 using the (wind speed) 2 dependence of the CO 2 gas transfer velocity of Wanninkhof (J. Geophys. Res. 97 (1992) 7373). The errors associated with the wind-speed variation have been estimated using one standard deviation (about±2 m s -1) from the mean monthly wind speed observed over each 4°×5° pixel area of the global oceans. The new global uptake flux obtained with the Wanninkhof (wind speed) 2 dependence is compared with those obtained previously using a smaller number of measurements, about 250,000 and 550,000, respectively, and are found to be consistent within±0.2 Pg C yr -1. This estimate for the global ocean uptake flux is consistent with the values of 2.0±0.6 Pg C yr -1 estimated on the basis of the observed changes in the atmospheric CO 2 and oxygen concentrations during the 1990s (Nature 381 (1996) 218; Science 287 (2000) 2467). However, if the (wind speed) 3 dependence of Wanninkhof and McGillis (Res. Lett. 26 (1999) 1889) is used instead, the annual ocean uptake as well as the sensitivity to wind-speed variability is increased by about 70%. A zone between 40° and 60° latitudes in both the northern and southern hemispheres is found to be a major sink for atmospheric CO 2. In these areas, poleward-flowing warm waters meet and mix with the cold subpolar waters rich in nutrients. The pCO 2 in the surface water is decreased by the cooling effect on warm waters and by the biological drawdown of pCO 2 in

  11. Temperature Impacts on Deep-Sea Biodiversity

    NASA Astrophysics Data System (ADS)

    Yasuhara, M.; Danovaro, R.

    2015-12-01

    Temperature is considered to be a fundamental factor controlling biodiversity in marine ecosystems, but precisely what role temperature plays in modulating diversity is still not clear. The deep ocean, lacking light and in situ photosynthetic primary production, is an ideal model system to test the effects of temperature changes on biodiversity. Here we synthesize current knowledge on temperature-diversity relationships in the deep sea. Our results from both present and past deep-sea assemblages suggest that, when a wide range of deep-sea bottom-water temperatures is considered, a unimodal relationship exists between temperature and diversity (that may be right skewed). It is possible that temperature is important only when at relatively high and low levels but does not play a major role in the intermediate temperature range. Possible mechanisms explaining the temperature-biodiversity relationship include the physiological-tolerance hypothesis, the metabolic hypothesis, island biogeography theory, or some combination of these. The possible unimodal relationship discussed here may allow us to identify tipping points at which on-going global change and deep-water warming may increase or decrease deep-sea biodiversity. Predicted changes in deep-sea temperatures due to human-induced climate change may have more adverse consequences than expected considering the sensitivity of deep-sea ecosystems to temperature changes.

  12. Temperature impacts on deep-sea biodiversity.

    PubMed

    Yasuhara, Moriaki; Danovaro, Roberto

    2016-05-01

    Temperature is considered to be a fundamental factor controlling biodiversity in marine ecosystems, but precisely what role temperature plays in modulating diversity is still not clear. The deep ocean, lacking light and in situ photosynthetic primary production, is an ideal model system to test the effects of temperature changes on biodiversity. Here we synthesize current knowledge on temperature-diversity relationships in the deep sea. Our results from both present and past deep-sea assemblages suggest that, when a wide range of deep-sea bottom-water temperatures is considered, a unimodal relationship exists between temperature and diversity (that may be right skewed). It is possible that temperature is important only when at relatively high and low levels but does not play a major role in the intermediate temperature range. Possible mechanisms explaining the temperature-biodiversity relationship include the physiological-tolerance hypothesis, the metabolic hypothesis, island biogeography theory, or some combination of these. The possible unimodal relationship discussed here may allow us to identify tipping points at which on-going global change and deep-water warming may increase or decrease deep-sea biodiversity. Predicted changes in deep-sea temperatures due to human-induced climate change may have more adverse consequences than expected considering the sensitivity of deep-sea ecosystems to temperature changes.

  13. Historical Air Temperatures Across the Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Kagawa-Viviani, A.; Giambelluca, T. W.

    2015-12-01

    This study focuses on an analysis of daily temperature from over 290 ground-based stations across the Hawaiian Islands from 1905-2015. Data from multiple stations were used to model environmental lapse rates by fitting linear regressions of mean daily Tmax and Tmin on altitude; piecewise regressions were also used to model the discontinuity introduced by the trade wind inversion near 2150m. Resulting time series of both model coefficients and lapse rates indicate increasing air temperatures near sea level (Tmax: 0.09°C·decade-1 and Tmin: 0.23°C·decade-1 over the most recent 65 years). Evaluation of lapse rates during this period suggest Tmax lapse rates (~0.6°C·100m-1) are decreasing by 0.006°C·100m-1decade-1 due to rapid high elevation warming while Tmin lapse rates (~0.8°C·100m-1) are increasing by 0.002°C·100m-1decade-1 due to the stronger increase in Tmin at sea level versus at high elevation. Over the 110 year period, temperatures tend to vary coherently with the PDO index. Our analysis verifies warming trends and temperature variability identified earlier by analysis of selected index stations. This method also provides temperature time series we propose are more robust to station inhomogeneities.

  14. Analysis of sea level and sea surface temperature changes in the Black Sea

    NASA Astrophysics Data System (ADS)

    Betul Avsar, Nevin; Jin, Shuanggen; Kutoglu, Hakan; Erol, Bihter

    2016-07-01

    The Black Sea is a nearly closed sea with limited interaction with the Mediterranean Sea through the Turkish Straits. Measurement of sea level change will provide constraints on the water mass balance and thermal expansion of seawaters in response to climate change. In this paper, sea level changes in the Black Sea are investigated between January 1993 and December 2014 using multi-mission satellite altimetry data and sea surface temperature (SST) data. Here, the daily Maps of Sea Level Anomaly (MSLA) gridded with a 1/8°x1/8° spatial resolution from AVISO and the NOAA 1/4° daily Optimum Interpolation Sea Surface Temperature (OISST) Anomaly data set are used. The annual cycles of sea level and sea surface temperature changes reach the maximum values in November and January, respectively. The trend is 3.16±0.77 mm/yr for sea level change and -0.06±0.01°C/yr for sea surface temperature during the same 22-year period. The observed sea level rise is highly correlated with sea surface warming for the same time periods. In addition, the geographical distribution of the rates of the Black Sea level and SST changes between January 1993 and December 2014 are further analyzed, showing a good agreement in the eastern Black Sea. The rates of sea level rise and sea surface warming are larger in the eastern part than in the western part except in the northwestern Black Sea. Finally, the temporal correlation between sea level and SST time series are presented based on the Empirical Orthogonal Function (EOF) analysis.

  15. Modeling of Wind Direction Signals in Polarimetric Sea Surface Brightness Temperatures

    NASA Technical Reports Server (NTRS)

    Yueh, S. H.

    1995-01-01

    Sea surface brightness temperatures are the radiometric power measure of blackbody radiation from sea water. This radiation is the electromagnetic waves excited by the random thermal motion of charged particles in the sea water. The energy transmitted through the air- water interface produces a scattering of electromagnetic waves into the atmosphere. Polarimetric microwave emissions are investigated.

  16. Seasonal variability of the Caspian Sea three-dimensional circulation, sea level and air-sea interaction

    NASA Astrophysics Data System (ADS)

    Ibrayev, R. A.; Özsoy, E.; Schrum, C.; Sur, H. I.

    2010-03-01

    A three-dimensional primitive equation model including sea ice thermodynamics and air-sea interaction is used to study seasonal circulation and water mass variability in the Caspian Sea under the influence of realistic mass, momentum and heat fluxes. River discharges, precipitation, radiation and wind stress are seasonally specified in the model, based on available data sets. The evaporation rate, sensible and latent heat fluxes at the sea surface are computed interactively through an atmospheric boundary layer sub-model, using the ECMWF-ERA15 re-analysis atmospheric data and model generated sea surface temperature. The model successfully simulates sea-level changes and baroclinic circulation/mixing features with forcing specified for a selected year. The results suggest that the seasonal cycle of wind stress is crucial in producing basin circulation. Seasonal cycle of sea surface currents presents three types: cyclonic gyres in December-January; Eckman south-, south-westward drift in February-July embedded by western and eastern southward coastal currents and transition type in August-November. Western and eastern northward sub-surface coastal currents being a result of coastal local dynamics at the same time play an important role in meridional redistribution of water masses. An important part of the work is the simulation of sea surface topography, yielding verifiable results in terms of sea level. The model successfully reproduces sea level variability for four coastal points, where the observed data are available. Analyses of heat and water budgets confirm climatologic estimates of heat and moisture fluxes at the sea surface. Experiments performed with variations in external forcing suggest a sensitive response of the circulation and the water budget to atmospheric and river forcing.

  17. Seasonal variability of the Caspian Sea three-dimensional circulation, sea level and air-sea interaction

    NASA Astrophysics Data System (ADS)

    Ibrayev, R. A.; Özsoy, E.; Schrum, C.; Sur, H. İ.

    2009-09-01

    A three-dimensional primitive equation model including sea ice thermodynamics and air-sea interaction is used to study seasonal circulation and water mass variability in the Caspian Sea under the influence of realistic mass, momentum and heat fluxes. River discharges, precipitation, radiation and wind stress are seasonally specified in the model, based on available data sets. The evaporation rate, sensible and latent heat fluxes at the sea surface are computed interactively through an atmospheric boundary layer sub-model, using the ECMWF-ERA15 re-analysis atmospheric data and model generated sea surface temperature. The model successfully simulates sea-level changes and baroclinic circulation/mixing features with forcing specified for a selected year. The results suggest that the seasonal cycle of wind stress is crucial in producing basin circulation. Seasonal cycle of sea surface currents presents three types: cyclonic gyres in December-January; Eckman south-, south-westward drift in February-July embedded by western and eastern southward coastal currents and transition type in August-November. Western and eastern northward sub-surface coastal currents being a result of coastal local dynamics at the same time play an important role in meridional redistribution of water masses. An important part of the work is the simulation of sea surface topography, yielding verifiable results in terms of sea level. Model successfully reproduces sea level variability for four coastal points, where the observed data are available. Analyses of heat and water budgets confirm climatologic estimates of heat and moisture fluxes at the sea surface. Experiments performed with variations in external forcing suggest a sensitive response of the circulation and the water budget to atmospheric and river forcing.

  18. High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to

  19. Air-Sea Interactions in CLIMODE: In-Situ Observations

    NASA Astrophysics Data System (ADS)

    Bigorre, S.; Weller, R.

    2006-12-01

    The subtropical mode water of the North Atlantic or Eighteen Degree Water (EDW) is an important component of the oceanic circulation. Its formation and evolution are linked to fundamental aspects of the oceanic climate. A central formation process involves the subduction of surface water through air-sea interactions. Conditions for this are ideal in the Gulf Stream region when warm water interacts with cold air above, sinks and is trapped in the late winter, thereby ventilating the interior. The study program CLIvar MOde Water Dynamic Experiment (CLIMODE), sponsored by NSF, is designed to quantify and understand which processes lead to the formation and dissipation of EDW. A key component to this goal is the knowledge of buoyancy fluxes in the region of EDW formation. The Upper Ocean Processes (UOP) group deployed a 3-m discus buoy anchored in the Gulf Stream (64W, 38N) in November 2005. Oceanographic instruments collect data along the mooring line while meteorological and surface sensors are placed on the buoy and collect data every minute. Since the deployment, hourly averages of the meteorological data were transmitted through the Argos satellite system. These data were plugged in the TOGA-COARE bulk algorithm to estimate air-sea fluxes. These preliminary results are presented, while the full dataset will be analyzed after recovery of the buoy in November 2006. Heat fluxes estimates indicate high heat loss events. In December 2005, regular losses larger than 1000W/m2 occurred. These heat loss events are associated with cold air outbreaks. When the air-sea temperature gradient increases, winds also tend to increase indicating a destabilization of the boundary layer and production of turbulence, enhancing further the heat transfer. As the air-sea temperature gradient decreases in the late winter, heat loss also decreases. The SST signal is seen to modulate the heat fluxes on lower frequencies than air temperature changes. This kind of signal tends therefore to be

  20. Global sea level linked to global temperature

    PubMed Central

    Vermeer, Martin; Rahmstorf, Stefan

    2009-01-01

    We propose a simple relationship linking global sea-level variations on time scales of decades to centuries to global mean temperature. This relationship is tested on synthetic data from a global climate model for the past millennium and the next century. When applied to observed data of sea level and temperature for 1880–2000, and taking into account known anthropogenic hydrologic contributions to sea level, the correlation is >0.99, explaining 98% of the variance. For future global temperature scenarios of the Intergovernmental Panel on Climate Change's Fourth Assessment Report, the relationship projects a sea-level rise ranging from 75 to 190 cm for the period 1990–2100. PMID:19995972

  1. Long-term changes in sea surface temperatures

    SciTech Connect

    Parker, D.E.

    1994-12-31

    Historical observations of sea surface temperature since 1856 have been improved by applying corrections to compensate for the predominant use of uninsulated or partly insulated buckets until the Second World War. There are large gaps in coverage in the late nineteenth century and around the two world wars, but a range of statistical techniques suggest that these gaps do not severely prejudice estimates of global and regional climatic change. Nonetheless, to improve the analysis on smaller scales, many unused historical data are to be digitized and incorporated. For recent years, satellite-based sea surface temperatures have improved the coverage, after adjustments for their biases relative to in situ data. An initial version of a nominally globally complete sea ice and interpolated sea surface temperature data set, beginning in 1871, has been created for use in numerical simulations of recent climate. Long time series of corrected regional, hemispheric, and global sea surface temperatures are mostly consistent with corresponding night marine air temperature series, and confirm the regionally specific climatic changes portrayed in the Scientific Assessments of the intergovernmental Panel on Climate Change. The observations also show an El Nino-like oscillation on bidecadal and longer time scales.

  2. A stability dependent theory for air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Erickson, David J.

    1993-05-01

    The influence of thermal stability at the air-sea interface on computed values of the transfer velocities of trace gases is examined. The novel "whitecap" model for air-sea gas exchange of Monahan and Spillane (1984), extended here to include thermal stability effects, is linked with an atmospheric general circulation model to compute global transfer velocity patterns of a climate reactive gas, CO2. The important terms in the model equations such as the whitecap coverage, friction velocity, neutral and local drag coefficients and the stability parameter ψm(Z/L) are discussed and analyzed. The atmospheric surface level air temperature, relative humidity, wind speed and sea surface temperature, obtained from the National Center for Atmospheric Research Community Climate Model 1 (CCM1) are used to drive algorithms describing the air-sea transfer velocity of trace gases. The transfer velocity for CO2 (kCO2) is then computed for each 2.8° × 2.8° latitudinal-longitudinal area every 24 hours for 5 years of the seasonal-hydro runs of the CCM1. The new model results are compared to previously proposed formulations using the identical CCM1 forcing terms. Air-sea thermal stability effects on the transfer velocity for CO2 are most important at mid-high wind speeds. Where cold air from continental interiors is transported over relatively warm oceanic waters, the transfer velocities are enhanced over neutral stability values. The depression of computed kCO2 values when warm air resides over cold water is especially important, due to asymmetry in the stability dependence of the drag coefficient. The stability influence is 20% to 50% of kCO2 for modest air-sea temperature differences and up to 100% for extreme cases of stability or instability. The stability dependent "whitecap" model, using the transfer velocity coefficients for whitecap and nonwhitecap areas suggested by Monahan and Spillane (1984), produces CO2 transfer velocities that range from 13 to 50 cm h-1 for a

  3. Joint Air Sea Interaction (JASIN) experiment, Northwest coast of Scotland

    NASA Technical Reports Server (NTRS)

    Businger, J. A.

    1981-01-01

    The joint air sea interaction (JASIN) experiment took place off the Northwest coast of Scotland. Sea surface and boundary layer parameters were measured. The JASIN data was used as ground truth for various sensors on the SEASAT satellite.

  4. Surface Temperature variability from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Dang, V. T.; Aumann, H. H.

    2015-12-01

    To address the existence and possible causes of the climate hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014for the day and night conditions. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We compare the satellite data with the new surface data produced by Karl et al. (2015) who denies the reality of the climate hiatus. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The day-night difference is an indicator of the anthropogenic trend. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  5. Skin Temperature Processes in the Presence of Sea Ice

    NASA Astrophysics Data System (ADS)

    Brumer, S. E.; Zappa, C. J.; Brown, S.; McGillis, W. R.; Loose, B.

    2013-12-01

    Monitoring the sea-ice margins of polar oceans and understanding the physical processes at play at the ice-ocean-air interface is essential in the perspective of a changing climate in which we face an accelerated decline of ice caps and sea ice. Remote sensing and in particular InfraRed (IR) imaging offer a unique opportunity not only to observe physical processes at sea-ice margins, but also to measure air-sea exchanges near ice. It permits monitoring ice and ocean temperature variability, and can be used for derivation of surface flow field allowing investigating turbulence and shearing at the ice-ocean interface as well as ocean-atmosphere gas transfer. Here we present experiments conducted with the aim of gaining an insight on how the presence of sea ice affects the momentum exchange between the atmosphere and ocean and investigate turbulence production in the interplay of ice-water shear, convection, waves and wind. A set of over 200 high resolution IR imagery records was taken at the US Army Cold Regions Research and Engineering Laboratory (CRREL, Hanover NH) under varying ice coverage, fan and pump settings. In situ instruments provided air and water temperature, salinity, subsurface currents and wave height. Air side profiling provided environmental parameters such as wind speed, humidity and heat fluxes. The study aims to investigate what can be gained from small-scale high-resolution IR imaging of the ice-ocean-air interface; in particular how sea ice modulates local physics and gas transfer. The relationship between water and ice temperatures with current and wind will be addressed looking at the ocean and ice temperature variance. Various skin temperature and gas transfer parameterizations will be evaluated at ice margins under varying environmental conditions. Furthermore the accuracy of various techniques used to determine surface flow will be assessed from which turbulence statistics will be determined. This will give an insight on how ice presence

  6. Wintertime boundary-layer structure and air sea interaction over the Japan/East Sea

    NASA Astrophysics Data System (ADS)

    Khelif, Djamal; Friehe, Carl A.; Jonsson, Haflidi; Wang, Qing; Rados, Konstantinos

    2005-06-01

    The wintertime meteorology over the Japan/East Sea (JES) is characterized by episodic strong northwesterly winds known as "cold-air outbreaks" resulting from the incursion of dry and cold air masses from the Eurasian continent. These were found by previous studies (mostly based on indirect methods) to greatly enhance the air-sea interaction and, in particular an area about 150 km in diameter off Vladivostok was identified as the Flux Center. Aircraft in situ measurements of turbulent fluxes and mean meteorological variables were made during the winter 2000. The existence and location of the Flux Center were confirmed although the turbulent sensible and latent-heat fluxes were not as high as previously found due to the air temperature being several degrees warmer. However, the stress was found to be significantly larger as a result of higher wind speeds. The internal boundary layer was found to grow linearly with the square root of offshore fetch, with a growth rate of 2.49m for an intense cold-air outbreak and 2.06m for a moderate one. A persistent initial decrease in the inversion height was observed at 41.86∘N,132.6∘E and may be attributable to the fanning out of the jet flow out of the Vladivostok gap as it expands onto the open ocean. The radiometric skin sea-surface temperature in the Flux Center exhibited large variability in the 0-4 °C range and was positively correlated with the total turbulent (latent+sensible) heat loss. Meteorological variables and surface fluxes results from Naval Research Laboratory Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) model compared reasonably, while the predictions of the internal boundary layer height were markedly lower than the observations.

  7. 1994 Technology report: Land, sea & air

    SciTech Connect

    1994-12-31

    The IGTI 1994 Technology Report, Land, Sea & Air, is compiled, edited, published and distributed by the International Gas Turbine Institute in Atlanta, Georgia. The report represents the best industrial accomplishments and brightest technological advances in the gas turbine and aeroengine industry this year. The report consists of a compilation of submittals from companies, governmental agencies and organizations, universities, IGTI Committee chairs, and other individuals involved in gas turbine technology worldwide. This year`s edition features over 200 reports from twenty-six countries around the globe. In accordance with IGTI policy, these reports are new contributions to the gas turbine industry. No reports have been repeated from previous IGTI publications. There are 25 new contributors to the report including submissions from Hungary, Korea, Sweden and Turkey to this year`s edition. It demonstrates IGTI`s commitment to fostering cooperation and building partnerships on a truly international basis.

  8. Arctic temperature amplification and sea-ice melt

    NASA Astrophysics Data System (ADS)

    Graversen, R. G.; Kapsch, M.; Mauritzen, T.; Tjernström, M.

    2012-04-01

    In recent decades, Arctic temperatures increase more than the global average - this has become known as Arctic temperature amplification. At the same time, Arctic sea-ice extent is shrinking with a pace being largest in summer. Reanalysis data show Arctic temperature amplification in the free troposphere above the boundary layer. In summer this warming aloft cannot be attributed to surface processes. This is because the surface-air temperature trends are modest in the Arctic during summer, since the ice-melt keeps the temperatures close to the melting point. Rather the warming in the free troposphere could be due to changes of the heat advection into the Arctic and changes of the cloudiness. The warming aloft induces an increase of the energy flux towards the surface in terms of longwave radiation and turbulent fluxes, which contributes to the sea-ice melt during summer. When the ice melts, surface-based processes start acting, among them the surface-albedo feedback where the sea-ice reduction leads to an increase of absorption of solar radiation. During summer, the excess of energy at the surface is stored in the ocean, both internally as heat, and latently due to the ice melt. This energy is released during the following autumn and winter causing positive surface-air temperature in these seasons. The extreme ice melt in 2007 is an example of this chain of processes. During the summer of 2007 the Arctic sea ice shrank to the lowest extent ever observed. Using the state-of-the-art ERA-Interim reanalysis data, the role of the atmospheric energy transport in this extreme melt event is explored.

  9. Air--Sea CO2 Cycling in the Southeastern Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Else, Brent Gordon Thomas

    During the fourth International Polar Year, an interdisciplinary study was conducted to examine the couplings between sea ice, ocean, atmosphere, and ecosystem in the southeastern Beaufort Sea. This thesis examines components of the system that control the air-sea exchange of carbon dioxide. Using eddy covariance measurements, we found enhanced CO2 exchange associated with new ice formation in winter flaw leads. This exchange was typically directed towards the surface, although we also measured one instance of outgassing. Sea surface dissolved CO2 measurements (pCO 2sw) in Amundsen Gulf showed significant undersaturation with respect to the atmosphere at freeze-up, followed by a slow increase over the winter until spring phytoplankton blooms caused strong undersaturation at break-up. Over the summer, pCO2sw increased until becoming slightly supersaturated due to surface warming. Along the southern margins of Amundsen Gulf and on the Mackenzie Shelf we found pCO2sw supersaturations in the fall due to wind-driven coastal upwelling. In the spring, this upwelling occurred along the landfast ice edges of Amundsen Gulf. By combining observations of enhanced winter gas exchange with observations of pCO 2sw in Amundsen Gulf, we derived an annual budget of air-sea CO2 exchange for the region. This exercise showed that uptake through the winter season was as important as the open water season, making the overall annual uptake of CO2 about double what had previously been calculated. Prior to this work, the prevailing paradigm of airsea CO2 cycling in Arctic polynya regions posited that strong CO2 absorption occurs in the open water seasons, and that a potential outgassing during the winter is inhibited by the sea ice cover. As a new paradigm, we propose that the spatial and temporal variability of many processes---including phytoplankton blooms, sea surface temperature and salinity changes, upwelling, river input, continental shelf processes, and the potential for high rates

  10. The potential role of sea spray droplets in facilitating air-sea gas transfer

    NASA Astrophysics Data System (ADS)

    Andreas, E. L.; Vlahos, P.; Monahan, E. C.

    2016-05-01

    For over 30 years, air-sea interaction specialists have been evaluating and parameterizing the role of whitecap bubbles in air-sea gas exchange. To our knowledge, no one, however, has studied the mirror image process of whether sea spray droplets can facilitate air-sea gas exchange. We are therefore using theory, data analysis, and numerical modeling to quantify the role of spray on air-sea gas transfer. In this, our first formal work on this subject, we seek the rate-limiting step in spray-mediated gas transfer by evaluating the three time scales that govern the exchange: τ air , which quantifies the rate of transfer between the atmospheric gas reservoir and the surface of the droplet; τ int , which quantifies the exchange rate across the air-droplet interface; and τ aq , which quantifies gas mixing within the aqueous solution droplet.

  11. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James C. R.; Leijnse, Hidde; Steeneveld, Gert-Jan; Horn, Berthold K. P.; Uijlenhoet, Remko

    2014-05-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. It has been shown that a straightforward heat transfer model can be employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. The methodology has been applied to Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree

  12. The Relationship Between Air Temperature and Stream Temperature

    NASA Astrophysics Data System (ADS)

    Morrill, J. C.; Bales, R. C.; Conklin, M. H.

    2001-05-01

    This study examined the relationship, both linear and non-linear, between air temperature and stream temperature in order to determine if air temperature can be used as an accurate predictor of stream temperature, if general relationships could be developed that apply to a large number of streams, and how changes in stream temperature associated with climate variability or climate warming might affect the dissolved oxygen level, and thus the quality of life, in some of these streams. Understanding the relationship between air temperature and water temperature is important if we want to predict how stream temperatures are likely to respond to the increase in surface air temperature that is occurring. Data from over 50 streams in 13 countries, mostly gathered by K-12 students in the GLOBE program (Global Learning and Observations to Benefit the Environment), are examined. Only a few streams display a linear 1:1 air/water temperature trend. The majority of streams instead show an increase in water temperature of about 0.6 to 0.8 degrees for every 1-degree increase in air temperature. At some of these sites, where dissolved oxygen content is already low, an increase in summer stream temperatures of 2-3 degrees could cause the dissolved oxygen levels to fall into a critically low range. At some locations, such as near the source of a stream, water temperature does not change much despite wide ranges in air temperatures. The temperatures at these sites are likely to be least affected by surface warming. More data are needed in warmer climates, where the water temperature already gets above 25oC, in order to better examine the air/water temperature relationship under warmer conditions. Global average surface air temperature is expected to increase by 3-5oC by the middle of this century. Surface water temperature in streams, lakes and wetlands will likely increase as air temperature increases, although the change in water temperature may not be as large as the change in

  13. Sea-air boundary meteorological sensor

    NASA Astrophysics Data System (ADS)

    Barbosa, Jose G.

    2015-05-01

    The atmospheric environment can significantly affect radio frequency and optical propagation. In the RF spectrum refraction and ducting can degrade or enhance communications and radar coverage. Platforms in or beneath refractive boundaries can exploit the benefits or suffer the effects of the atmospheric boundary layers. Evaporative ducts and surface-base ducts are of most concern for ocean surface platforms and evaporative ducts are almost always present along the sea-air interface. The atmospheric environment also degrades electro-optical systems resolution and visibility. The atmospheric environment has been proven not to be uniform and under heterogeneous conditions substantial propagation errors may be present for large distances from homogeneous models. An accurate and portable atmospheric sensor to profile the vertical index of refraction is needed for mission planning, post analysis, and in-situ performance assessment. The meteorological instrument used in conjunction with a radio frequency and electro-optical propagation prediction tactical decision aid tool would give military platforms, in real time, the ability to make assessments on communication systems propagation ranges, radar detection and vulnerability ranges, satellite communications vulnerability, laser range finder performance, and imaging system performance predictions. Raman lidar has been shown to be capable of measuring the required atmospheric parameters needed to profile the atmospheric environment. The atmospheric profile could then be used as input to a tactical decision aid tool to make propagation predictions.

  14. Homogenization methods for the Sea Surface Temperature Data over the South China Seas

    NASA Astrophysics Data System (ADS)

    Wang, G. S.; Hou, M.; Li, Y.; Wang, H.; Fan, W. J.; Liu, K. X.; Gao, J.; Li, C.

    2017-01-01

    Based on the metadata, Monthly Sea Surface Temperature (SST) series from nine marine stations over the South China Sea (SCS) are homogeneity detection and correction by Penalized Maximum T Test (PMT) method. The reference stations are developed using surrounding meteorological stations. Correction results show that: (1) The homogeneity detection and correction of marine observation stations should be based on the metadata, meanwhile, fully consider the influence of regional climate change factors. (2) Correlation analysis found that, the air temperature series from the surrounding meteorological stations is currently the optimal reference series. (3) The marine stations has 1∼2 change points average, among them, changes of instrumentation and changes of location environment has great impact on the discontinuities. (4) The trend of the SST over SCS have a more pronounced warming trend during the past 52 years. Correction results indicate that the homogenization research in the SCS has an important meaning for the study of the SCS coast SST changes and climate change.

  15. Analysis of characteristics in the sea surface temperature variability in the East/Japan Sea

    NASA Astrophysics Data System (ADS)

    Yeh, Sang-Wook; Park, Young-Gyu; Min, HongSik; Kim, Cheol-Ho; Lee, Jae-Hak

    2010-06-01

    We examine the characteristics of sea surface temperature (SST) variability in the East/Japan Sea (EJS) for the period of 1891-2005 using 1°×1° latitude and longitude resolution datasets from the Japan Meteorological Agency and the Hadley Centre. A significant warming trend that manifests itself more strongly over the southern part of the sea is observed. In addition, it is found in the EJS that warming during the boreal winter is more significant than that during the summer. The EJS SST index, obtained from the time series of monthly SST anomaly averaged over the western half of the EJS, where large SST anomaly standard deviation is observed, has a primary spectral density at a frequency longer than a decade and a secondary peak at the annual frequency band. The variability of the low-frequency EJS SST, which is mostly explained by that during winter, is characterized by significant warming from the early 1940s to the late 1940s and from the mid-1980s to the present. Between the two warming periods, the EJS SST variability is dominated by decadal fluctuations. Finally, we discuss possible mechanisms of the low frequency EJS SST variability in conjunction with atmospheric variability. When the northwesterly winter monsoon becomes weaker (stronger), less (greater) amount of cold air is advected to the EJS. Sensible heat loss from the sea to the air becomes smaller (greater) producing a warm (cold) SST anomaly.

  16. PRISM3 Pliocene Sea surface Temperature Reconstruction

    NASA Astrophysics Data System (ADS)

    Dowsett, H.; Robinson, M.; Foley, K.; Caballero, R.

    2008-12-01

    The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) Project provides a conceptual model and synoptic view of the earth during a considerably warmer than modern (2-3°C warmer global mean annual temperature) interval (mid-Piacenzian Age, Pliocene Epoch; ~3.3 to 3.0 Ma) through reconstruction of sea-surface temperature (SST) and other paleoenvironmental parameters. The PRISM3 SST fields include new equatorial Pacific and subpolar - polar North Atlantic components based upon multiproxy (faunal, alkenone and Mg/Ca) temperature analyses from new sites. These data are presented in 12 interpolated global fields with 2° spatial resolution representing monthly SST estimates. Results show a reduced longitudinal temperature gradient across the equatorial Pacific and extension of warm North Atlantic surface conditions into the eastern regions of the Arctic Ocean near Spitzbergen. These data are part of the PRISM3 paleoenvironmental reconstruction designed in part to provide climate modeling groups with new SST and alternative land cover reconstructions, 3-dimensional deep ocean temperature, topography and sea level. The PRISM3 reconstruction is the primary data source for the new Pliocene Climate Model Intercomparison Project (PlioMIP).

  17. Air-Sea Exchange and Atmospheric Cycling of Mercury in South China Sea

    NASA Astrophysics Data System (ADS)

    Tseng, C. M.; Liu, C. S.; Lamborg, C. H.

    2014-12-01

    Limited knowledge exists concerning the role of the low-latitude marginal seas in mercury (Hg) emissions on a global scale, especially tropical-subtropical and monsoon-dominated marginal seas in East Asia. To assess this potential mobilization of Hg through air-sea gas exchange, we have determined the dissolved elemental Hg (DEM) and gaseous elemental Hg (GEM) concentrations in surface seawater and atmosphere, respectively, during seasonal oceanographic cruises to the SouthEast Asian Time-series Study (SEATS) station (18 oN, 116 oE) from 2003 to 2007. The sampling and analysis of GEM and DEM were performed on board ship by using an on-line mercury analyzer (GEMA). Over the SCS, the GEM concentrations are elevated 2-3 times above global background values, with higher enhancements in the winter when the northeast monsoon draws air from China. The impact of long-range transport, as controlled by seasonal monsoons, has on the Hg atmospheric distribution and cycling in the SCS. The DEM concentration varied seasonally, with a high in summer and a low in winter and showed a positive correlation with sea surface temperature (SST). The elevated DEM concentration in summer appears mainly abiologically driven. In winter, the SCS acts as a sink of atmosphere Hg0 as a result of low SST and high wind of the year, enhanced vertical mixing and elevated atmospheric gaseous elemental mercury. Annually, the SCS serves as a source of Hg0 to the atmosphere of 300±50 pmol m-2 d-1 (390±60 kmol Hg y-1, ~2.6% of global emission in ~1% of global ocean area), suggesting high regional Hg pollution impacts from the surrounding Mainland (mostly China).

  18. Variability patterns of the general circulation and sea water temperature in the North Sea

    NASA Astrophysics Data System (ADS)

    Mathis, M.; Elizalde, A.; Mikolajewicz, U.; Pohlmann, T.

    2015-06-01

    This study investigates patterns of spatio-temporal variability in the North Sea and their major driving mechanisms. Leading variability modes of the general circulation and sea water temperature are extracted from model results by means of Empirical Orthogonal Functions (EOF) analysis. The model results originate from an uncoupled simulation with the global ocean model MPIOM, forced with ERA40 reanalysis data at the air-sea interface. For this regional model study, MPIOM has been run with a stretched grid configuration enabling higher horizontal resolution in the Northwest European Shelf and North Atlantic ocean. The analysis is applied to interannual variabilities of winter and summer separately. The results indicate that on seasonal scales the leading variability mode of the general circulation affects the entire North Sea, accompanied by significant inflow anomalies through the Fair-Isle Passage. Correlations of the corresponding Principal Component (PC) with wind density functions reveal the circulation anomalies to coincide with westerly and south-westerly wind anomalies. The second mode describes circulation anomalies along the Norwegian Trench and English Channel, which correlate with north-westerly wind anomalies caused by variations in large-scale atmospheric pressure areas centered over the British Isles. For sea water temperature, distinct variability patterns are induced by variable surface heat fluxes, vertical mixing, and variable advective heat fluxes. The first mode of both the general circulation and water temperature in winter mainly represents the response to atmospheric variations in the North Atlantic Oscillation (NAO). However, the higher modes account for such variabilities that cannot be explained by the NAO. As a consequence of the integrated effects of the different variability modes on the circulation system and heat content, local correlations of the NAO with volume transports and water temperature are weakened in the regions of

  19. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, A.; Robinson, J. C. R.; Leijnse, H.; Steeneveld, G. J.; Horn, B. K. P.; Uijlenhoet, R.

    2013-08-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. A straightforward heat transfer model is employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas.

  20. Interannual Trends in Southern Ocean Sea Surface Temperatures and Sea Level from Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Lebedev, S. A.

    As is shown in last years researches climate changes in Antarctic result in interannual increase trend of surface air temperature and decrease of ice thickness These tendencies are must try in the Southern Ocean hydrological regime For that next remote sensing data AVHRR MCSST data and satellite altimetry data merged data of mission ERS TOPEX Poseidon Jason-1 ENVISAT GFO-1 are used to this task which give information about sea surface temperature SST and sea level anomaly SLA correspondingly According to obtained results SST has positive trend more 0 01 oC yr for 23-yr record 1982-2005 within 300-1000 km northward Antarctic coast However on average for the Southern Ocean SST have negative trend about -0 018 -0 035 oC yr In area of Pacific-Antarctic Ridge and of southern part of Mid Atlantic Ridge decrease rate is more than -0 075 oC yr SLA increases in all area of the Southern Ocean and has average rate about 0 024 -0 026 cm yr for 12-yr record 1993-2005 Around Antarctic SST rate good correspond with the trend analysis of surface air temperature of 8722 0 042 - 0 067oC yr inferred from the satellite 20-yr record Comiso 2000 Nevertheless the observed cooling is intriguing especially since it is compatible with the observed trend in the sea ice cover In the sea ice regions the northernmost positions of the ice edge are shown to be influenced by alternating warm and cold anomalies around the continent This work was partly supported by the Russian Fund of Basic Research Grant 06-05-65061

  1. Controlled-Temperature Hot-Air Gun

    NASA Technical Reports Server (NTRS)

    Munoz, M. C.

    1986-01-01

    Materials that find applications in wind tunnels first tested in laboratory. Hot-Air Gun differs from commercial units in that flow rate and temperature monitored and controlled. With typical compressed-airsupply pressure of 25 to 38 psi (170 to 260 kPa), flow rate and maximum temperature are 34 stdft3/min (0.96 stdm3/min) and 1,090 degrees F (590 degrees C), respectively. Resembling elaborate but carefully regulated hot-air gun, setup used to apply blasts of air temperatures above 1,500 degrees F (815 degrees C) to test specimens.

  2. The sea bottom temperature offshore southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Chiang, H.; Shyu, C.; Peng, Y.; Chang, H.; Chen, S.; Chung, S.; Wang, Y.

    2012-12-01

    The sea bottom temperature (SBT) is important to apply to the heat flow estimation by BSR. Also the SBT may response the fluid migration near subsurface. Here we present 150 measurements of SBT offshore southwestern Taiwan where abundant gas hydrates has been evaluated. The SBT data were acquired by the heat probe with high resolution up to 0.0001°C. Thermal gradients were determined from several temperature sensors installed in different depth in the heat probe and then the SBT could be calculated by extrapolation. The results show that the SBT are between 2.23 and 10.14°C in water depth within the range of 409 to 3248 meters. Basically, the SBT is inversely hyperbolic proportional to the water depth for those 132 measurements the water depth are shallower than 2650 meters. The product of SBT and water depth has an average of 4419 m-°C and a standard deviation of 402 m-°C. However the SBT of others 18 measurements in the deep water region are scattered without any significant trend. Some measurements near mud diapirs in the shallow water have high anomaly SBT. It is suggested that the fluid from deep underground may migrate along the fractures or faults related to the movements of the mud volume.; The sea bottom temperature offshore southwestern Taiwan

  3. A global monthly sea surface temperature climatology

    NASA Technical Reports Server (NTRS)

    Shea, Dennis J.; Trenberth, Kevin E.; Reynolds, Richard W.

    1992-01-01

    The paper presents a new global 2 deg x 2 deg monthly sea surface temperature (SST) climatology, referred here to as the Shea-Trenberth-Reynolds (STR) climatology, which was derived by modifying a 1950-1979-based SST climatology from the Climate Analysis Center (CAC), by using data from the Comprehensive Ocean-Atmosphere Data Set to improve the SST estimates in the regions of the Kuroshio and the Gulf Stream. A comparison of the STR climatology with the Alexander and Mobley SST climatology showed that the STR climatology is warmer in the Northern Hemisphere, and colder poleward of 45 deg S.

  4. Sea Surface Temperature and Vegetation Index

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a composite MODIS image showing the 'green wave' of spring in North America and sea surface temperature in the ocean, collected over an 8-day period during the first week in April 2000. On land, the darker green pixels show where the most green foliage is being produced due to photosynthetic activity. Yellows on land show where there is little or no productivity and red is a boundary zone. In the ocean, orange and yellows show warmer waters and blues show colder values.

  5. Bayesian Hierarchical Air-Sea Interaction Modeling: Application to the Labrador Sea

    NASA Technical Reports Server (NTRS)

    Niiler, Pearn P.

    2002-01-01

    The objectives are to: 1) Organize data from 26 MINIMET drifters in the Labrador Sea, including sensor calibration and error checking of ARGOS transmissions. 2) Produce wind direction, barometer, and sea surface temperature time series. In addition, provide data from historical file of 150 SHARP drifters in the Labrador Sea. 3) Work with data interpretation and data-modeling assimilation issues.

  6. Air separation with temperature and pressure swing

    DOEpatents

    Cassano, Anthony A.

    1986-01-01

    A chemical absorbent air separation process is set forth which uses a temperature swing absorption-desorption cycle in combination with a pressure swing wherein the pressure is elevated in the desorption stage of the process.

  7. Air Temperature in the Undulator Hall

    SciTech Connect

    Not Available

    2010-12-07

    Various analyses have been performed recently to estimate the performance of the air conditioning (HVAC) system planned for the Undulator Hall. This reports summarizes the results and provides an upgrade plan to be used if new requirements are needed in the future. The estimates predict that with the planned loads the tunnel air temperature will be well within the allowed tolerance during normal operation.

  8. Air-sea transfer of gas phase controlled compounds

    NASA Astrophysics Data System (ADS)

    Yang, M.; Bell, T. G.; Blomquist, B. W.; Fairall, C. W.; Brooks, I. M.; Nightingale, P. D.

    2016-05-01

    Gases in the atmosphere/ocean have solubility that spans several orders of magnitude. Resistance in the molecular sublayer on the waterside limits the air-sea exchange of sparingly soluble gases such as SF6 and CO2. In contrast, both aerodynamic and molecular diffusive resistances on the airside limit the exchange of highly soluble gases (as well as heat). Here we present direct measurements of air-sea methanol and acetone transfer from two open cruises: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The transfer of the highly soluble methanol is essentially completely airside controlled, while the less soluble acetone is subject to both airside and waterside resistances. Both compounds were measured concurrently using a proton-transfer-reaction mass spectrometer, with their fluxes quantified by the eddy covariance method. Up to a wind speed of 15 m s-1, observed air-sea transfer velocities of these two gases are largely consistent with the expected near linear wind speed dependence. Measured acetone transfer velocity is ∼30% lower than that of methanol, which is primarily due to the lower solubility of acetone. From this difference we estimate the “zero bubble” waterside transfer velocity, which agrees fairly well with interfacial gas transfer velocities predicted by the COARE model. At wind speeds above 15 m s-1, the transfer velocities of both compounds are lower than expected in the mean. Air-sea transfer of sensible heat (also airside controlled) also appears to be reduced at wind speeds over 20 m s-1. During these conditions, large waves and abundant whitecaps generate large amounts of sea spray, which is predicted to alter heat transfer and could also affect the air-sea exchange of soluble trace gases. We make an order of magnitude estimate for the impacts of sea spray on air-sea methanol transfer.

  9. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts.

    PubMed

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-07-20

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change.

  10. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts

    NASA Astrophysics Data System (ADS)

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-07-01

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change.

  11. Developments in Airborne Oceanography and Air-Sea Interaction

    NASA Astrophysics Data System (ADS)

    Melville, W. K.

    2014-12-01

    , just as aircraft carriers "project force". Now we can measure winds, waves, temperatures, currents, radiative transfer, images and air-sea fluxes from aircraft over the ocean.I will review some of the history of airborne oceanography and present examples of how it can extend our knowledge and understanding of air-sea interaction.

  12. Unstable Air-Sea Interaction in the Extratropical North Atlantic

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa

    1999-01-01

    The possibility of coupled modes in the extratropical North Atlantic has fascinated the climate community since 1960's. A significant aspect of such modes is an unstable air-sea interaction, also called positive feedback, where disturbances between the atmosphere and ocean grow unbound. If a delayed response exists before the negative feedback takes effect, an oscillatory behaviour will develop. Here we explore the relationship between heat flux (positive upward) and sea surface temperature (SST). Positive feedback is characterized by a cross-correlation between the two where correlation maintains a negative sign whether SST or heat flux leads. We use model results and observations to argue that in the North Atlantic there exist regions with positive feedback. The two main locations coincide with the well-known north-south SST dipole where anomalies of opposite sign occupy areas east of Florida and north-east of Newfoundland. We show that oceanic dynamics, wave propagation and advection, give rise to oceanic anomalies in these regions. Subsequently these anomalies are amplified by atmosphere- ocean interaction: thus a positive feedback.

  13. Air-sea coupling in the Hawaiian Archipelago

    NASA Astrophysics Data System (ADS)

    Souza, J. M.; Powell, B.; Mattheus, D.

    2014-12-01

    A coupled numerical model is used to investigate the ocean-atmosphere interaction in the lee of the Hawaiian archipelago. The wind curl generated by the island blocking of the trade winds is known to give rise to ocean eddies; however, the impact of the sea surface temperature (SST) and velocity fronts associated with these eddies on the atmosphere is less understood. The main coupling mechanisms are: (i) changes in the near-surface stability and surface stress, (ii) vertical transfer of momentum from higher atmospheric levels to the ocean surface due to an increase of the turbulence in the boundary layer, (iii) secondary circulations associated with perturbations in the surface atmospheric pressure over the SST fronts, and (iv) the impact of the oceanic eddy currents on the net momentum transferred between the atmosphere and the ocean. To assess the relative contribution from each process, a coupled simulation between the Regional Ocean Modeling System (ROMS) and the Weather Research and Forecasting (WRF) models is conducted for the main Hawaiian Islands. The impact of the coupling, the perturbation of the mean wind pattern, and the different spatial scales involved in the air-sea exchanges of momentum and heat are explored.

  14. Modern average global sea-surface temperature

    USGS Publications Warehouse

    Schweitzer, Peter N.

    1993-01-01

    The data contained in this data set are derived from the NOAA Advanced Very High Resolution Radiometer Multichannel Sea Surface Temperature data (AVHRR MCSST), which are obtainable from the Distributed Active Archive Center at the Jet Propulsion Laboratory (JPL) in Pasadena, Calif. The JPL tapes contain weekly images of SST from October 1981 through December 1990 in nine regions of the world ocean: North Atlantic, Eastern North Atlantic, South Atlantic, Agulhas, Indian, Southeast Pacific, Southwest Pacific, Northeast Pacific, and Northwest Pacific. This data set represents the results of calculations carried out on the NOAA data and also contains the source code of the programs that made the calculations. The objective was to derive the average sea-surface temperature of each month and week throughout the whole 10-year series, meaning, for example, that data from January of each year would be averaged together. The result is 12 monthly and 52 weekly images for each of the oceanic regions. Averaging the images in this way tends to reduce the number of grid cells that lack valid data and to suppress interannual variability.

  15. Stratospheric Impact of Varying Sea Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Nielsen, Jon E.; Waugh, Darryn; Pawson, Steven

    2004-01-01

    The Finite-Volume General Circulation Model (FVGCM) has been run in 50 year simulations with the: 1) 1949-1999 Hadley Centre sea surface temperatures (SST), and 2) a fixed annual cycle of SSTs. In this presentation we first show that the 1949-1999 FVGCM simulation produces a very credible stratosphere in comparison to an NCEP/NCAR reanalysis climatology. In particular, the northern hemisphere has numerous major and minor stratospheric warming, while the southern hemisphere has only a few over the 50-year simulation. During the northern hemisphere winter, temperatures are both warmer in the lower stratosphere and the polar vortex is weaker than is found in the mid-winter southern hemisphere. Mean temperature differences in the lower stratosphere are shown to be small (less than 2 K), and planetary wave forcing is found to be very consistent with the climatology. We then will show the differences between our varying SST simulation and the fixed SST simulation in both the dynamics and in two parameterized trace gases (ozone and methane). In general, differences are found to be small, with subtle changes in planetary wave forcing that lead to reduced temperatures in the SH and increased temperatures in the NH.

  16. Nowcasting daily minimum air and grass temperature.

    PubMed

    Savage, M J

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient (b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  17. Nowcasting daily minimum air and grass temperature

    NASA Astrophysics Data System (ADS)

    Savage, M. J.

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient ( b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  18. Improving Forecast Skill by Assimilation of AIRS Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The AIRS Version 5 retrieval algorithm, is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates delta T(p) for retrieved quantities and the use of these error estimates for Quality Control. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 deg. latitude X 0.67 deg longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates delta (p) were used as the uncertainty for each measurement in the data assimilation process. We compared forecasts analyses generated from the analyses done by assimilation of AIRS temperature profiles with three different sets of thresholds; Standard, Medium, and Tight. Assimilation of Quality Controlled AIRS temperature profiles significantly improve 5-7 day forecast skill compared to that obtained without the benefit of AIRS data in all of the cases studied. In addition, assimilation of Quality Controlled AIRS temperature soundings performs better than assimilation of AIRS observed radiances. Based on the experiments shown, Tight Quality Control of AIRS temperature profile performs best

  19. Wintertime air-sea interaction processes across the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Bane, John M.; Osgood, Kenric E.

    1989-08-01

    Aircraft, buoy and satellite measurements have been used to study the wintertime air-sea interaction processes across the Gulf Stream during January 25-30, 1986. The turbulent flux regime in the marine atmospheric boundary layer exhibited considerable spatial and temporal variability during this 6-day period, which was related to both the evolution of the synoptic scale atmospheric conditions and the sea surface temperature (SST) field. During the pre-storm conditions prior to January 25, the spatial structure of the SST field played an important role in generating a shallow atmospheric frontal zone along the Gulf Stream front by causing differential heating of the marine atmospheric boundary layer over the stream versus over the cooler shelf waters. As this front moved shoreward on January 25, the warm, moist, maritime air flowing northwestward behind the front induced moderate ocean-to-atmosphere heat fluxes (˜300 W m-2 total heat flux measured over the core of the Gulf Stream). The subsequent outbreak of eastward flowing cold, dry, continental air over the ocean on January 27 and 28 generated high total heat fluxes (˜1060 W m-2 over the core of the Stream), as did a second, somewhat weaker outbreak which followed on January 30 (˜680 W2 over the core of the Stream). During each of these outbreaks, with air flowing from land out over the continental shelf, Gulf Stream and Sargasso Sea waters, the SST field again affected the spatial structure of the flux fields. The near-surface fluxes of both sensible and latent heat were found to be relatively low over the cool continental shelf waters, while higher fluxes were seen over the Gulf Stream and Sargasso Sea. Similar spatial structure was seen in the near-surface momentum flux values, but relative changes were typically smaller from one location to another on a particular day. The most noticeable responses of the Gulf Stream to these surface fluxes were the deepening of its mixed layer and a loss of upper layer

  20. Correlation of air temperature above water-air sections with the forecasted low level clouds

    NASA Astrophysics Data System (ADS)

    Huseynov, N. Sh.; Malikov, B. M.

    2009-04-01

    As a case study approach the development of low clouds forecasting methods in correlation with air temperature transformational variations on the sections "water-air" is surveyed. It was evident, that transformational variations of air temperature mainly depend on peculiarities and value of advective variations of temperature. DT is the differences of initial temperature on section water-air in started area, from contrast temperature of water surface along a trajectory of movement of air masses and from the temperature above water surface in a final point of a trajectory. Main values of transformational variations of air temperature at advection of a cold masses is 0.530C•h, and at advection of warm masses is -0.370C•h. There was dimensionless quantity K determined and implemented into practice which was characterized with difference of water temperature in forecasting point and air temperature in an initial point in the ratio of dew-points deficiency at the forecasting area. It follows, that the appropriate increasing or decreasing of K under conditions of cold and warm air masses advection, contributes decreasing of low clouds level. References: Abramovich K.G.: Conditions of development and forecasting of low level clouds. vol. #78, 124 pp., Hydrometcenter USSR 1973. Abramovich K.G.: Variations of low clouds level // Meteorology and Hydrology, vol. # 5, 30-41, Moscow, 1968. Budiko M.I.: Empirical assessment of climatic changes toward the end of XX century // Meteorology and Hydrology, vol. #12, 5-13, Moscow, 1999. Buykov M.V.: Computational modeling of daily evolutions of boundary layer of atmosphere at the presence of clouds and fog // Meteorology and Hydrology, vol. # 4, 35-44, Moscow, 1981. Huseynov N.Sh. Transformational variations of air temperature above Caspian Sea / Proceedings of Conference On Climate And Protection of Environment, 118-120, Baku, 1999. Huseynov N.Sh.: Consideration of advective and transformational variations of air temperature in

  1. Temperature Tunable Air-Gap Etalon Filter

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Stephen, Mark A.; Lunt, David L.

    1998-01-01

    We report on experimental measurements of a temperature tuned air-gap etalon filter. The filter exhibits temperature dependent wavelength tuning of 54 pm/C. It has a nominal center wavelength of 532 nm. The etalon filter has a 27 pm optical bandpass and 600 pm free spectral range (finesse approximately 22). The experimental results are in close agreement with etalon theory.

  2. Effect of air-sea coupling on the frequency distribution of intense tropical cyclones over the northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Ogata, Tomomichi; Mizuta, Ryo; Adachi, Yukimasa; Murakami, Hiroyuki; Ose, Tomoaki

    2015-12-01

    Effect of air-sea coupling on the frequency distribution of intense tropical cyclones (TCs) over the northwestern Pacific (NWP) region is investigated using an atmosphere and ocean coupled general circulation model (AOGCM). Monthly varying flux adjustment enables AOGCM to simulate both subseasonal air-sea interaction and realistic seasonal to interannual sea surface temperature (SST) variability. The maximum of intense TC distribution around 20-30°N in the AGCM shifts equatorward in the AOGCM due to the air-sea coupling. Hence, AOGCM reduces northward intense TC distribution bias seen in AGCM. Over the NWP, AOGCM-simulated SST variability is large around 20-30°N where the warm mixed layer becomes shallower rapidly. Active entrainment from subsurface water over this region causes stronger SST cooling, and hence, TC intensity decreases. These results suggest that air-sea coupling characterized by subsurface oceanic condition causes more realistic distribution of intense TCs over the NWP.

  3. Air-Sea Interaction Measurements from R/P FLIP

    NASA Astrophysics Data System (ADS)

    Friehe, C. A.

    2002-12-01

    Soon after its inception, R/P FLIP was used to study the interaction of the atmosphere and ocean due to its unique stability and low flow distortion. A number of campaigns have been conducted to measure the surface fluxes of heat, water vapor and horizontal momentum of the wind with instrumentation as used over land, supported by the Office of Naval Research and the National Science Foundation. The size of FLIP allows for simultaneous ocean wave and mixed-layer measurements as well. Air-sea interaction was a prime component of BOMEX in 1968, where FLIP transited the Panama Canal. The methods used were similar to the over-land "Kansas" experiment of AFCRL in 1968. BOMEX was followed by many experiments in the north Pacific off San Diego, northern California, and Hawaii. Diverse results from FLIP include identification of the mechanism that causes erroneous fluctuating temperature measurements in the salt-aerosol-laden marine atmosphere, the role of humidity on optical refractive index fluctuations, and identification of Miles' critical layer in the air flow over waves.

  4. A multispectral method of determining sea surface temperatures

    NASA Technical Reports Server (NTRS)

    Shenk, W. E.

    1972-01-01

    A multispectral method for determining sea surface temperatures is discussed. The specifications of the equipment and the atmospheric conditions required for successful multispectral data acquisition are described. Examples of data obtained in the North Atlantic Ocean are presented. The differences between the actual sea surface temperatures and the equivalent blackbody temperatures as determined by a radiometer are plotted.

  5. Assessing the potential for dimethylsulfide enrichment at the sea surface and its influence on air-sea flux

    NASA Astrophysics Data System (ADS)

    Walker, Carolyn F.; Harvey, Mike J.; Smith, Murray J.; Bell, Thomas G.; Saltzman, Eric S.; Marriner, Andrew S.; McGregor, John A.; Law, Cliff S.

    2016-09-01

    The flux of dimethylsulfide (DMS) to the atmosphere is generally inferred using water sampled at or below 2 m depth, thereby excluding any concentration anomalies at the air-sea interface. Two independent techniques were used to assess the potential for near-surface DMS enrichment to influence DMS emissions and also identify the factors influencing enrichment. DMS measurements in productive frontal waters over the Chatham Rise, east of New Zealand, did not identify any significant gradients between 0.01 and 6 m in sub-surface seawater, whereas DMS enrichment in the sea-surface microlayer was variable, with a mean enrichment factor (EF; the concentration ratio between DMS in the sea-surface microlayer and in sub-surface water) of 1.7. Physical and biological factors influenced sea-surface microlayer DMS concentration, with high enrichment (EF > 1.3) only recorded in a dinoflagellate-dominated bloom, and associated with low to medium wind speeds and near-surface temperature gradients. On occasion, high DMS enrichment preceded periods when the air-sea DMS flux, measured by eddy covariance, exceeded the flux calculated using National Oceanic and Atmospheric Administration (NOAA) Coupled-Ocean Atmospheric Response Experiment (COARE) parameterized gas transfer velocities and measured sub-surface seawater DMS concentrations. The results of these two independent approaches suggest that air-sea emissions may be influenced by near-surface DMS production under certain conditions, and highlight the need for further study to constrain the magnitude and mechanisms of DMS production in the sea-surface microlayer.

  6. Development of Unmanned Airborne System (UAS) instrumentation for air-sea-ice interaction research

    NASA Astrophysics Data System (ADS)

    Reineman, B. D.; Lenain, L.; Melville, W. K.

    2011-12-01

    We have developed Unmanned Airborne System (UAS) instrumentation packages to directly measure air-sea momentum transfer, as well as latent, sensible, and radiative heat fluxes, topography, and surface wave kinematics. Two UAS (BAE Manta C1s) flying in vertical formation over the ocean will allow the direct measurement of air-sea fluxes within the marine atmospheric boundary layer, and, with onboard high-resolution video and laser altimetry, simultaneous observation of sea surface kinematics and sea-ice topography. The low altitude required for accurate air-sea or air-ice flux measurements is below the typical safety limit of manned research aircraft; however, with advancements in laser altimeters, small-aircraft flight control, and real-time Differential GPS, it now is within the capability of the UAS platform. Fast response turbulence, hygrometer, and temperature probes in the lower UAS permit surface layer flux measurements, and short and long wave radiometers in the upper UAS allow the determination of net radiation, surface temperature, and albedo. Engineering test flights of the two UAS over land were performed in January 2011 at Camp Roberts, CA. The tests demonstrated the capability of the systems to measure vertical profiles of georeferenced wind, temperature, and moisture content, as well as momentum flux and sensible, latent, and radiative heat fluxes. UAS-derived fluxes from low-altitude (20 -- 30 m) flights are in agreement with fluxes measured by a nearby tower-mounted sonic anemometer-based eddy covariance system. We present a description of the instrumentation, a summary of results from flight tests, and discuss potential applications of these instrumented platforms for air-sea-ice interaction studies.

  7. Satellite Sensed Skin Sea Surface Temperature

    NASA Technical Reports Server (NTRS)

    Donlon, Craig

    1997-01-01

    Quantitative predictions of spatial and temporal changes the global climate rely heavily on the use of computer models. Unfortunately, such models cannot provide the basis for climate prediction because key physical processes are inadequately treated. Consequently, fine tuning procedures are often used to optimize the fit between model output and observational data and the validation of climate models using observations is essential if model based predictions of climate change are to be treated with any degree of confidence. Satellite Sea Surface Temperature (SST) observations provide high spatial and temporal resolution data which is extremely well suited to the initialization, definition of boundary conditions and, validation of climate models. In the case of coupled ocean-atmosphere models, the SST (or more correctly the 'Skin' SST (SSST)) is a fundamental diagnostic variable to consider in the validation process. Daily global SST maps derived from satellite sensors also provide adequate data for the detection of global patterns of change which, unlike any other SST data set, repeatedly extend into the southern hemisphere extra-tropical regions. Such data are essential to the success of the spatial 'fingerprint' technique, which seeks to establish a north-south asymmetry where warming is suppressed in the high latitude Southern Ocean. Some estimates suggest that there is a greater than 80% chance of directly detecting significant change (97.5 % confidence level) after 10-12 years of consistent global observations of mean sea surface temperature. However, these latter statements should be qualified with the assumption that a negligible drift in the observing system exists and that biases between individual instruments required to derive a long term data set are small. Given that current estimates for the magnitude of global warming of 0.015 K yr(sup -1) - 0.025 K yr(sup -1), satellite SST data sets need to be both accurate and stable if such a warming trend is to

  8. Undulator Hall Air Temperature Fault Scenarios

    SciTech Connect

    Sevilla, J.; Welch, J.; /SLAC

    2010-11-17

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  9. Modeling monthly mean air temperature for Brazil

    NASA Astrophysics Data System (ADS)

    Alvares, Clayton Alcarde; Stape, José Luiz; Sentelhas, Paulo Cesar; de Moraes Gonçalves, José Leonardo

    2013-08-01

    Air temperature is one of the main weather variables influencing agriculture around the world. Its availability, however, is a concern, mainly in Brazil where the weather stations are more concentrated on the coastal regions of the country. Therefore, the present study had as an objective to develop models for estimating monthly and annual mean air temperature for the Brazilian territory using multiple regression and geographic information system techniques. Temperature data from 2,400 stations distributed across the Brazilian territory were used, 1,800 to develop the equations and 600 for validating them, as well as their geographical coordinates and altitude as independent variables for the models. A total of 39 models were developed, relating the dependent variables maximum, mean, and minimum air temperatures (monthly and annual) to the independent variables latitude, longitude, altitude, and their combinations. All regression models were statistically significant ( α ≤ 0.01). The monthly and annual temperature models presented determination coefficients between 0.54 and 0.96. We obtained an overall spatial correlation higher than 0.9 between the models proposed and the 16 major models already published for some Brazilian regions, considering a total of 3.67 × 108 pixels evaluated. Our national temperature models are recommended to predict air temperature in all Brazilian territories.

  10. Air-Sea Interaction Measurements from the Controlled Towed Vehicle

    NASA Astrophysics Data System (ADS)

    Khelif, D.; Bluth, R. T.; Jonsson, H.; Barge, J.

    2014-12-01

    The Controlled Towed Vehicle (CTV) uses improved towed drone technology to actively maintain via a radar altimeter and controllable wing a user-set height that can be as low as the canonical reference height of 10 m above the sea surface. After take-off, the drone is released from the tow aircraft on a ~700-m stainless steel cable. We have instrumented the 0.23 m diameter and 2.13 m long drone with high fidelity instruments to measure the means and turbulent fluctuations of 3-D wind vector, temperature, humidity, pressure, CO2 and IR sea surface temperature. Data are recorded internally at 40 Hz and simultaneously transmitted to the tow aircraft via dedicated wireless Ethernet link. The CTV accommodates 40 kg of instrument payload and provides it with 250 W of continuous power through a ram air propeller-driven generator. Therefore its endurance is only limited by that of the tow aircraft.We will discuss the CTV development, the engineering challenges and solutions that have been successfully implemented to overcome them. We present results from recent flights as low as 9 m over the coastal ocean and comparisons of profiles and turbulent fluxes from the CTV and the tow aircraft. Manned aircraft operation at low-level boundary-layer flights is very limited. Dropsondes and UAS (Unmanned Aerial Systems) and UAS are alternates for measurements near the ocean surface. However, dropsondes have limited sensor capability and do not measure fluxes, and most present UAS vehicles do not have the payload and power capacity nor the low-flying ability in high winds over the oceans. The CTV therefore, fills a needed gap between the dropsondes, in situ aircraft, and UAS. The payload, capacity and power of the CTV makes it suitable for a variety of atmospheric research measurements. Other sensors to measure aerosol, chemistry, radiation, etc., could be readily accommodated in the CTV.

  11. Modeling of global surface air temperature

    NASA Astrophysics Data System (ADS)

    Gusakova, M. A.; Karlin, L. N.

    2012-04-01

    A model to assess a number of factors, such as total solar irradiance, albedo, greenhouse gases and water vapor, affecting climate change has been developed on the basis of Earth's radiation balance principle. To develop the model solar energy transformation in the atmosphere was investigated. It's a common knowledge, that part of the incoming radiation is reflected into space from the atmosphere, land and water surfaces, and another part is absorbed by the Earth's surface. Some part of outdoing terrestrial radiation is retained in the atmosphere by greenhouse gases (carbon dioxide, methane, nitrous oxide) and water vapor. Making use of the regression analysis a correlation between concentration of greenhouse gases, water vapor and global surface air temperature was obtained which, it is turn, made it possible to develop the proposed model. The model showed that even smallest fluctuations of total solar irradiance intensify both positive and negative feedback which give rise to considerable changes in global surface air temperature. The model was used both to reconstruct the global surface air temperature for the 1981-2005 period and to predict global surface air temperature until 2030. The reconstructions of global surface air temperature for 1981-2005 showed the models validity. The model makes it possible to assess contribution of the factors listed above in climate change.

  12. The SOLAS air-sea gas exchange experiment (SAGE) 2004

    NASA Astrophysics Data System (ADS)

    Harvey, Mike J.; Law, Cliff S.; Smith, Murray J.; Hall, Julie A.; Abraham, Edward R.; Stevens, Craig L.; Hadfield, Mark G.; Ho, David T.; Ward, Brian; Archer, Stephen D.; Cainey, Jill M.; Currie, Kim I.; Devries, Dawn; Ellwood, Michael J.; Hill, Peter; Jones, Graham B.; Katz, Dave; Kuparinen, Jorma; Macaskill, Burns; Main, William; Marriner, Andrew; McGregor, John; McNeil, Craig; Minnett, Peter J.; Nodder, Scott D.; Peloquin, Jill; Pickmere, Stuart; Pinkerton, Matthew H.; Safi, Karl A.; Thompson, Rona; Walkington, Matthew; Wright, Simon W.; Ziolkowski, Lori A.

    2011-03-01

    The SOLAS air-sea gas exchange experiment (SAGE) was a multiple-objective study investigating gas-transfer processes and the influence of iron fertilisation on biologically driven gas exchange in high-nitrate low-silicic acid low-chlorophyll (HNLSiLC) Sub-Antarctic waters characteristic of the expansive subpolar zone of the southern oceans. This paper provides a general introduction and summary of the main experimental findings. The release site was selected from a pre-voyage desktop study of environmental parameters to be in the south-west Bounty Trough (46.5°S 172.5°E) to the south-east of New Zealand and the experiment was conducted between mid-March and mid-April 2004. In common with other mesoscale iron addition experiments (FeAX's), SAGE was designed as a Lagrangian study, quantifying key biological and physical drivers influencing the air-sea gas exchange processes of CO 2, DMS and other biogenic gases associated with an iron-induced phytoplankton bloom. A dual tracer SF 6/ 3He release enabled quantification of both the lateral evolution of a labelled volume (patch) of ocean and the air-sea tracer exchange at tenths of kilometer scale, in conjunction with the iron fertilisation. Estimates from the dual-tracer experiment found a quadratic dependency of the gas exchange coefficient on windspeed that is widely applicable and describe air-sea gas exchange in strong wind regimes. Within the patch, local and micrometeorological gas exchange process studies (100 m scale) and physical variables such as near-surface turbulence, temperature microstructure at the interface, wave properties and windspeed were quantified to further assist the development of gas exchange models for high-wind environments. There was a significant increase in the photosynthetic competence ( Fv/ Fm) of resident phytoplankton within the first day following iron addition, but in contrast to other FeAX's, rates of net primary production and column-integrated chlorophyll a concentrations had

  13. Middle Pliocene sea surface temperature variability

    USGS Publications Warehouse

    Dowsett, H.J.; Chandler, M.A.; Cronin, T. M.; Dwyer, G.S.

    2005-01-01

    Estimates of sea surface temperature (SST) based upon foraminifer, diatom, and ostracod assemblages from ocean cores reveal a warm phase of the Pliocene between about 3.3 and 3.0 Ma. Pollen records and plant megafossils, although not as well dated, show evidence for a warmer climate at about the same time. Increased greenhouse forcing and altered ocean heat transport are the leading candidates for the underlying cause of Pliocene global warmth. Despite being a period of global warmth, this interval encompasses considerable variability. Two new SST reconstructions are presented that are designed to provide a climatological error bar for warm peak phases of the Pliocene and to document the spatial distribution and magnitude of SST variability within the mid-Pliocene warm period. These data suggest long-term stability of low-latitude SST and document greater variability in regions of maximum warming. Copyright 2005 by the American Geophysical Union.

  14. Sea surface temperatures from VAS MSI data

    NASA Technical Reports Server (NTRS)

    Bates, J. J.

    1984-01-01

    A procedure is developed for estimating sea surface temperatures from multispectral image data acquired from the VISSR atmospheric sounder on the geostationary GOES satellites. Theoretical regression equations for two and three infrared window channels are empirically tuned using clear field of view satellite radiances matched with reports of SST from NOAA fixed environmental buoys. The empirical regression equations are then used to produce daily regional analyses of SST. Monthly mean SST's for the western North Atlantic and the eastern equatorial Pacific during March and July 1982 were produced for use in the SST Intercomparison Workshop Series. Workshop results showed VAS SST's have a scatter of 0.8-1.0 C and a slight warm bias with respect to the other measurements of SST. The VAS SST's show no discernible bias in the region of El Chichon volcanic aerosol cloud.

  15. AIRS Retrieved Temperature Isotherms over Southern Europe

    NASA Technical Reports Server (NTRS)

    2002-01-01

    AIRS Retrieved Temperature Isotherms over Southern Europe viewed from the west, September 8, 2002. The isotherms in this map made from AIRS data show regions of the same temperature in the atmosphere.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  16. Sea Surface Temperature from EUMETSAT Including Sentinel-3 SLSTR

    NASA Astrophysics Data System (ADS)

    O'Carroll, Anne; Bonekamp, Hans; Montagner, Francois; Santacesaria, Vincenzo; Tomazic, Igor

    2015-12-01

    The paper gives an overview of sea surface temperature (SST) activities at EUMETSAT including information on SST planned from the Sea and Land Surface Temperature Radiometer (SLSTR). Operational oceanography activities within the Marine Applications group at EUMETSAT continue with a focus on SST, sea surface winds, sea-ice products, radiative fluxes, significant wave height and sea surface topography. These are achieved through the mandatory, optional and third-party programmes, and for some products with the EUMETSAT Ocean and Sea-Ice Satellite Application Facility (OSI SAF). Progress towards products from sea-ice surface temperature, ocean colour products, turbidity and aerosol optical depth over water continue. Information on oceanography products from EUMETSAT can be found through the product navigator (http://navigator.eumetsat.int). EUMETSAT have been collaborating with ESA for a number of years on the development of SST for SLSTR.

  17. Effects of rising temperature on the viability of an important sea turtle rookery

    NASA Astrophysics Data System (ADS)

    Laloë, Jacques-Olivier; Cozens, Jacquie; Renom, Berta; Taxonera, Albert; Hays, Graeme C.

    2014-06-01

    A warming world poses challenges for species with temperature-dependent sex determination, including sea turtles, for which warmer incubation temperatures produce female hatchlings. We combined in situ sand temperature measurements with air temperature records since 1850 and predicted warming scenarios from the Intergovernmental Panel on Climate Change to derive 250-year time series of incubation temperatures, hatchling sex ratios, and operational sex ratios for one of the largest sea turtles rookeries globally (Cape Verde Islands, Atlantic). We estimate that light-coloured beaches currently produce 70.10% females whereas dark-coloured beaches produce 93.46% females. Despite increasingly female skewed sex ratios, entire feminization of this population is not imminent. Rising temperatures increase the number of breeding females and hence the natural rate of population growth. Predicting climate warming impacts across hatchlings, male-female breeding ratios and nesting numbers provides a holistic approach to assessing the conservation concerns for sea turtles in a warming world.

  18. Air-sea heat exchange, an element of the water cycle

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.

    1984-01-01

    The distribution and variation of water vapor, clouds and precipitation are examined. Principal driving forces for these distributions are energy exchange and evaporation at the air-sea interface, which are also important elements of air-sea interaction studies. The overall aim of air-sea interaction studies is to quantitatively determine mass, momentum and energy fluxes, with the goal of understanding the mechanisms controlling them. The results of general circulation simulations indicate that the atmosphere in mid-latitudes responds to changes in the oceanic surface conditions in the tropics. This correlation reflects the strong interaction between tropical and mid-latitude conditions caused by the transport of heat and momentum from the tropics. Studies of air-sea exchanges involve a large number of physica, chemical and dynamical processes including heat flux, radiation, sea-surface temperature, precipitation, winds and ocean currents. The fluxes of latent heat are studied and the potential use of satellite data in determining them evaluated. Alternative ways of inferring heat fluxes will be considered.

  19. Air-Sea Interaction Spar Buoy Systems

    DTIC Science & Technology

    2009-01-01

    properties and local slope and pressure above the waves are key to understanding the wave generation problem on the ocean. Ocean Turbulence: Hot wire ...staff wires in storm-forced sea states. APPROACH We are building on the previous success of the ASIS buoy and better state-of-the-art...film anemometry has a special place in fluid dynamics research, but they cannot be easily deployed in open ocean conditions. On the other hand

  20. Estimating the Ocean Flow Field from Combined Sea Surface Temperature and Sea Surface Height Data

    NASA Technical Reports Server (NTRS)

    Stammer, Detlef; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    This project was part of a previous grant at MIT that was moved over to the Scripps Institution of Oceanography (SIO) together with the principal investigator. The final report provided here is concerned only with the work performed at SIO since January 2000. The primary focus of this project was the study of the three-dimensional, absolute and time-evolving general circulation of the global ocean from a combined analysis of remotely sensed fields of sea surface temperature (SST) and sea surface height (SSH). The synthesis of those two fields was performed with other relevant physical data, and appropriate dynamical ocean models with emphasis on constraining ocean general circulation models by a combination of both SST and SSH data. The central goal of the project was to improve our understanding and modeling of the relationship between the SST and its variability to internal ocean dynamics, and the overlying atmosphere, and to explore the relative roles of air-sea fluxes and internal ocean dynamics in establishing anomalies in SST on annual and longer time scales. An understanding of those problems will feed into the general discussion on how SST anomalies vary with time and the extend to which they interact with the atmosphere.

  1. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  2. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  3. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  4. Air-sea CO 2 fluxes in the Caribbean Sea from 2002-2004

    NASA Astrophysics Data System (ADS)

    Wanninkhof, Rik; Olsen, Are; Triñanes, Joaquin

    2007-06-01

    Air-sea fluxes in the Caribbean Sea are presented based on measurements of partial pressure of CO 2 in surface seawater, pCO 2sw, from an automated system onboard the cruise ship Explorer of the Seas for 2002 through 2004. The pCO 2sw values are used to develop algorithms of pCO 2sw based on sea surface temperature (SST) and position. The algorithms are applied to assimilated SST data and remotely sensed winds on a 1° by 1° grid to estimate the fluxes on weekly timescales in the region. The positive relationship between pCO 2sw and SST is lower than the isochemical trend suggesting counteracting effects from biological processes. The relationship varies systematically with location with a stronger dependence further south. Furthermore, the southern area shows significantly lower pCO 2sw in the fall compared to the spring at the same SST, which is attributed to differences in salinity. The annual algorithms for the entire region show a slight trend between 2002 and 2004 suggesting an increase of pCO 2sw over time. This is in accord with the increasing pCO 2sw due the invasion of anthropogenic CO 2. The annual fluxes of CO 2 yield a net invasion of CO 2 to the ocean that ranges from - 0.04 to - 1.2 mol m - 2 year - 1 over the 3 years. There is a seasonal reversal in the direction of the flux with CO 2 entering into the ocean during the winter and an evasion during the summer. Year-to-year differences in flux are primarily caused by temperature anomalies in the late winter and spring period resulting in changes in invasion during these seasons. An analysis of pCO 2sw before and after hurricane Frances (September 4-6, 2004), and wind records during the storm suggest a large local enhancement of the flux but minimal influence on annual fluxes in the region.

  5. Temporal variability of remotely sensed suspended sediment and sea surface temperature patterns in Mobile Bay, Alabama

    USGS Publications Warehouse

    Rucker, J.B.; Stumpf, R.P.; Schroeder, W.W.

    1990-01-01

    Distribution patterns of suspended sediments and sea surface temperatures in, Mobile Bay were derived from algorithms using digital data from the visible, near infrared, and infrared channels of the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-TIROS-N satellite. Closely spaced AVHRR scenes for January 20, 24, and 29, 1982, were compared with available environmental information taken during the same period. A complex interaction between river discharge, winds, and astronomical tides controlled the distribution patterns of suspended sediments. These same variables, coupled with air temperatures, also governed the distribution patterns of sea surface temperatures. ?? 1990 Estuarine Research Federation.

  6. Effects of the Sea Ice Floe Size Distribution on Polar Ocean Properties and Air-Sea Exchange

    NASA Astrophysics Data System (ADS)

    Horvat, C.; Tziperman, E.

    2014-12-01

    Recent scientific studies have demonstrated that sub-mesoscale ocean eddies, motions characterized by Rossby and Richardson numbers around 1, are important in determining the vertical density structure of the ocean, particularly in the mixed layer. Instabilities excited at the sub-mesoscale have timescales of days and length scales of less than 10 kilometers, and enhance ocean restratification by slumping lateral density gradients. In the polar oceans, a unique mechanism exists that may generate motions on these scales. Individual floes of sea ice may create lateral gradients in the ocean surface heat flux and wind stress curl, acting as an insulator and physical barrier between the ocean and the atmospheric processes that destabilize it. The "floe size distribution" describes the fraction of the ocean surface area covered by sea ice floes, as a function of the sea ice floe size, and determines the length scales over which gradients in atmospheric forcing are transmitted to the ocean. It may therefore play a significant role in exciting or inhibiting sub-mesoscale eddies, and consequently in restratification and air-sea exchange. Current GCMs simulate ice cover using grid-scale ice fraction alone, and lack information about the floe size distribution and of ice length scales that may be important in setting the larger-scale statistics of these motions. An important factor in determining the properties of the upper polar oceans might therefore be missing from modern GCMs. We consider this possibility by examining sub-mesoscale resolving ocean GCM experiments coupled to an energy-balanced atmosphere and idealized model of floes of sea ice. Varying the floe size distribution with a fixed sea ice fraction, we find that the length scales of individual floes and the floe size distribution itself play an important role in setting the steady-state ocean stratification, temperature, and air-sea exchange.

  7. Snowflake Impact on the Air-Sea Interface

    NASA Astrophysics Data System (ADS)

    Murphy, David

    2016-11-01

    The air-sea interface is the site of globally important exchanges of mass, momentum, and heat between the sea and atmosphere. These climate-driving exchanges occur through small-scale processes such as bubble entrainment and bursting, raindrop impact, and wind-wave creation. The physics of snowflakes falling on the sea surface has not been previously considered. High speed imaging of natural snowflakes of characteristic size up to 6.5 mm falling at a mean speed of 1 m/s into an aquarium of chilled seawater reveals a complex multiphase flow. Snowflakes impacting and crossing the air-seawater interface appear to entrain a thin air film which forms micro-bubbles as the snowflake melts. Large, morphologically complex snowflakes may entrain hundreds of micro-bubbles which are up to 0.15 mm in diameter. Large snowflakes melt milliseconds after entry and subsequently form a downward-moving vortex ring of freshwater, evident from the motion of the bubbles it contains, which may penetrate up to 16 mm below the surface. Buoyant freshwater and bubbles then rise, with larger bubbles escaping from the downward flow more quickly than the smaller bubbles. The dissolution and popping of these bubbles represent previously unrecognized sources of air-sea gas transfer and marine aerosol droplet creation, respectively.

  8. Operationalizing Air-Sea Battle in the Pacific

    DTIC Science & Technology

    2015-02-01

    systems. 35. Chris Anderson, " Agricultural Drones ,• MIT ’Technology Review 117, no. 3 (May/June 2014): 58. 36. Van Thl et al., AirSea Battle: A Point...communications are re- established. These systems are vulnerable to antiair weapons; how- ever, 11relatively cheap drones with advanced sensors and

  9. Atmospheric organochlorine pollutants and air-sea exchange of hexachlorocyclohexane in the Bering and Chukchi Seas

    USGS Publications Warehouse

    Hinckley, D.A.; Bidleman, T.F.; Rice, C.P.

    1991-01-01

    Organochlorine pesticides have been found in Arctic fish, marine mammals, birds, and plankton for some time. The lack of local sources and remoteness of the region imply long-range transport and deposition of contaminants into the Arctic from sources to the south. While on the third Soviet-American Joint Ecological Expedition to the Bering and Chukchi Seas (August 1988), high-volume air samples were taken and analyzed for organochlorine pesticides. Hexachlorocyclohexane (HCH), hexachlorobenzene, polychlorinated camphenes, and chlordane (listed in order of abundance, highest to lowest) were quantified. The air-sea gas exchange of HCH was estimated at 18 stations during the cruise. Average alpha-HCH concentrations in concurrent atmosphere and surface water samples were 250 pg m-3 and 2.4 ng L-1, respectively, and average gamma-HCH concentrations were 68 pg m-3 in the atmosphere and 0.6 ng L-1 in surface water. Calculations based on experimentally derived Henry's law constants showed that the surface water was undersaturated with respect to the atmosphere at most stations (alpha-HCH, average 79% saturation; gamma-HCH, average 28% saturation). The flux for alpha-HCH ranged from -47 ng m-2 day-1 (sea to air) to 122 ng m-2 d-1 (air to sea) and averaged 25 ng m-2 d-1 air to sea. All fluxes of gamma-HCH were from air to sea, ranged from 17 to 54 ng m-2 d-1, and averaged 31 ng m-2 d-1.

  10. Atmospheric organochlorine pollutants and air-sea exchange of hexachlorocyclohexane in the Bering and Chukchi Seas

    SciTech Connect

    Hinckley, D.A.; Bidleman, T.F. ); Rice, C.P. )

    1991-04-15

    Organochlorine pesticides have been found in Arctic fish, marine mammals, birds, and plankton for some time. The lack of local sources and remoteness of the region imply long-range transport and deposition of contaminants into the Arctic from sources to the south. While on the third Soviet-American Joint Ecological Expedition to the Bering and Chukchi Seas (August 1988), high-volume air samples were taken and analyzed for organochlorine pesticides. Hexachlorocyclohexane (HCH), hexachlorobenzene, polychlorinated camphenes, and chlordane (listed in order of abundance, highest to lowest) were quantified. The air-sea gas exchange of HCH was estimated at 18 stations during the cruise. Average {alpha}-HCH concentrations in concurrent atmosphere and surface water samples were 250 pg/m{sup 3} and 2.4 ng/l, respectively, and average {gamma}-HCH concentrations were 68 pg/m{sup 3} in the atmosphere and 0.6 ng/l in surface water. Calculations based on experimentally derived Henry's law constants showed that the surface water was undersaturated with respect to the atmosphere at most stations ({alpha}-HCH, average 79% saturation; {gamma}-HCH, average 28% saturation). The flux for {alpha}-HCH ranged from {minus}47 ng/m{sup 2} day (sea to air) to 122 ng/m{sup 2} day (air to sea) and averaged 25 ng/m{sup 2} day air to sea. All fluxes of {gamma}-HCH were from air to sea, ranged from 17 to 54 ng/m{sup 2} day, and averaged 31 ng/m{sup 2} day.

  11. Air-Sea-Aerosol-Cloud Interactions

    DTIC Science & Technology

    2009-09-30

    hygrometer by mounting its source and detector tubes inside the housing of the obsolete AIR Lyman-alpha hygrometer . This fast responding sensor is...top is shown in Fig. 3. The path of the krypton hygrometer was set for optimum performance on the higher humidity range for the estimation of...path of the krypton hygrometer was set for optimum performance in the higher humidity range for the estimation of surface fluxes this is why its

  12. Influence of surface kinematics on air-sea heat flux

    NASA Astrophysics Data System (ADS)

    Veron, Fabrice; Melville, Ken

    2004-11-01

    The top few meters of the oceanic boundary layer play a critical role in the transfers of momentum, gas, mass and heat between the atmosphere and the ocean. These exchanges must necessarily transfer through the surface, and presumably, the rates at which they do are influence by the dynamics of the surface layer. Heat flux in particular is regulated by the thin surface thermal layer which, at most, is only a few millimeter thick. We are specifically interested in the influence of small coherent structures of the surface turbulence on the heat flux. Using active and passive infrared imaging, we measured the evolution the surface velocity and temperature fields over small areas of a few square meters. High-resolution surface Eulerian velocity fields using cross-correlation techniques (PIV) are obtained. Using active marking of the surface with an infrared CO2 laser, we have not only shown that it is possible to directly recover the Langrangian surface velocity, but also, by marking appropriate patterns on the surface we have been able to measure the shear strain, vorticity, and surface divergence. With the penetration depth of infrared radiation at these wavelengths being a few microns, these techniques appear to be quite apt for direct measurements of ocean surface turbulence. We have also found that the flux of heat through the surface appears to be influenced by the surface wave field. We will discuss the results in the context of air sea heat flux and ocean surface turbulence.

  13. Distribution and air-sea fluxes of carbon dioxide on the Chukchi Sea shelf

    NASA Astrophysics Data System (ADS)

    Pipko, I. I.; Pugach, S. P.; Repina, I. A.; Dudarev, O. V.; Charkin, A. N.; Semiletov, I. P.

    2015-12-01

    This article presents the results of long-term studies of the dynamics of carbonate parameters and air-sea carbon dioxide fluxes on the Chukchi Sea shelf during the summer. As a result of the interaction of physical and biological factors, the surface waters on the west of Chukchi Sea were undersaturated with carbon dioxide when compared with atmospheric air; the partial pressure of CO2 varied in the range from 134 to 359 μatm. The average value of CO2 flux in the Chukchi Sea per unit area varied in the range from-2.4 to-22.0 mmol /(m2 day), which is significantly higher than the average value of CO2 flux in the World Ocean. It has been estimated that the minimal mass of C absorbed by the surface of Chukchi Sea from the atmosphere during ice-free season is 13 × 1012 g; a great part of this carbon is transported to the deeper layers of sea and isolated from the atmosphere for a long period of time. The studies of the carbonate system of the Chukchi Sea, especially of its western part, will provide some new data on the fluxes of carbon dioxide in the Arctic Ocean and their changes. Our analysis can be used for an interpretation of the satellite assessment of CO2 fluxes and dissolved CO2 distribution in the upper layers of the ocean.

  14. Linking air-sea energy exchanges and European anchovy potential spawning ground

    NASA Astrophysics Data System (ADS)

    Grammauta, R.; Molteni, D.; Basilone, G.; Guisande, C.; Bonanno, A.; Aronica, S.; Giacalone, G.; Fontana, I.; Zora, M.; Patti, B.; Cuttitta, A.; Buscaino, G.; Sorgente, R.; Mazzola, S.

    2008-10-01

    The physical and chemical processes of the sea greatly affect the reproductive biology of fishes, mainly influencing both the numbers of spawned eggs and the survivorship of early stages up to the recruitment period. In the central Mediterranean, the European anchovy constitutes one of the most important fishery resource. Because of its short living nature and of its recruitment variability, associated to high environmental variability, this small pelagic species undergo high interannual fluctuation in the biomass levels. Despite several efforts were addressed to characterize fishes spawning habitat from the oceanographic point of view, very few studies analyze the air-sea exchanges effects. To characterize the spawning habitat of these resources a specific technique (quotient rule analysis) was applied on air-sea heat fluxes, wind stress, sea surface temperature and turbulence data, collected in three oceanographic surveys during the summer period of 2004, 2005 and 2006. The results showed the existence of preferred values in the examined physical variables, associated to anchovy spawning areas. Namely, for heat fluxes the values were around -40 W/m2, for wind stress 0.04-0.11 N/m2, for SST 23°C, and 300 - 500 m3s-3 for wind mixing. Despite the obtained results are preliminary, this is the first relevant analysis on the air-sea exchanges and their relationship with the fish biology of pelagic species.

  15. Modeling air temperature changes in Northern Asia

    NASA Astrophysics Data System (ADS)

    Onuchin, A.; Korets, M.; Shvidenko, A.; Burenina, T.; Musokhranova, A.

    2014-11-01

    Based on time series (1950-2005) of monthly temperatures from 73 weather stations in Northern Asia (limited by 70-180° EL and 48-75° NL), it is shown that there are statistically significant spatial differences in character and intensity of the monthly and yearly temperature trends. These differences are defined by geomorphological and geographical parameters of the area including exposure of the territory to Arctic and Pacific air mass, geographic coordinates, elevation, and distances to Arctic and Pacific oceans. Study area has been divided into six domains with unique groupings of the temperature trends based on cluster analysis. An original methodology for mapping of temperature trends has been developed and applied to the region. The assessment of spatial patterns of temperature trends at the regional level requires consideration of specific regional features in the complex of factors operating in the atmosphere-hydrosphere-lithosphere-biosphere system.

  16. Effects of air-sea coupling over the North Sea and the Baltic Sea on simulated summer precipitation over Central Europe

    NASA Astrophysics Data System (ADS)

    Ho-Hagemann, Ha Thi Minh; Gröger, Matthias; Rockel, Burkhardt; Zahn, Matthias; Geyer, Beate; Meier, H. E. Markus

    2017-03-01

    . However, the COSTRICE simulations are generally more accurate than the atmosphere-only CCLM simulations if extreme precipitation is considered, particularly under Northerly Circulation conditions, in which the airflow from the North Atlantic Ocean passes the North Sea in the coupling domain. The air-sea feedback (e.g., wind, evaporation and sea surface temperature) and land-sea interactions are better reproduced with the COSTRICE model system than the atmosphere-only CCLM and lead to an improved simulation of large-scale moisture convergence from the sea to land and, consequently, increased heavy precipitation over Central Europe.

  17. Controls on air-sea CO2 flux in the Southern Ocean east of Australia

    NASA Astrophysics Data System (ADS)

    Ayers, J.; Strutton, P. G.

    2014-12-01

    The temperate latitudes of the world oceans (~30-50° north and south) are strong sinks for atmospheric CO2 on a mean annual basis. Due to sparse data, the Southern Ocean is the least understood of these CO2 sink regions, with estimates of the annual air-sea CO2 flux varying by as much as 100%, depending upon the calculation method. This work investigates processes regulating air-sea CO2 flux in the Southern Ocean, with a focus on the Pacific sector east of Australia. We quantify the effects of temperature, biological drawdown, and the large-scale general circulation on seawater pCO2 on seasonal and annual timescales, and discuss the balance of these forcings. We expressly consider the impact of the general circulation on the air-sea CO2 flux, which we showed in a previous study to determine the location of the North Pacific carbon sink region. Worldwide, the regions of strong atmospheric CO2 uptake are all located in deep western boundary currents and their extensions, suggesting a larger role for the general circulation in forcing these sinks than is currently acknowledged or understood. Understanding the processes regulating air-sea CO2 flux in the Southern Ocean is critical for predicting how this gas exchange will change in the future.

  18. Air-borne sound generated by sea waves.

    PubMed

    Bolin, Karl; Åbom, Mats

    2010-05-01

    This paper describes a semi-empiric model and measurements of air-borne sound generated by breaking sea waves. Measurements have been performed at the Baltic Sea. Shores with different slopes and sediment types have been investigated. Results showed that the sound pressure level increased from 60 dB at 0.4 m wave height to 78 dB at 2.0 m wave height. The 1/3 octave spectrum was dependent on the surf type. A scaling model based on the dissipated wave power and a surf similarity parameter is proposed and compared to measurements. The predictions show satisfactory agreement to the measurements.

  19. The influence of coastal shape on winter mesoscale air-sea interaction

    NASA Technical Reports Server (NTRS)

    Atlas, D.; Chou, S.-H.; Byerly, W. P.

    1983-01-01

    In cold air outbreaks, the combination of coastal shape and sea surface isotherms has a profound effect in the establishment of mesoscale atmospheric circulation, due to differential heating resulting from both overwater path length and underlying sea surface temperature (SST) variations. Where coastal effects are dominant, a mesoscale front forms downstream of the point which marks the major bend in the coastline's orientation. The strength of the induced mesoscale circulation depends on the original contrast between the land air temperature and the SST. It is noted that where the coastline and the isotherm pattern are approximately normal to the mean boundary layer flow, and thermal contrast is sufficiently large, the cloud streets formed downstream will be convective in nature, and oriented with the axis of roll vortices along the wind direction.

  20. A model of the tropical Pacific sea surface temperature climatology

    NASA Technical Reports Server (NTRS)

    Seager, Richard; Zebiak, Stephen E.; Cane, Mark A.

    1988-01-01

    A model for the climatological mean sea surface temperature (SST) of the tropical Pacific Ocean is developed. The upper ocean response is computed using a time dependent, linear, reduced gravity model, with the addition of a constant depth frictional surface layer. The full three-dimensional temperature equation and a surface heat flux parameterization that requires specification of only wind speed and total cloud cover are used to evaluate the SST. Specification of atmospheric parameters, such as air temperature and humidity, over which the ocean has direct influence, is avoided. The model simulates the major features of the observed tropical Pacific SST. The seasonal evolution of these features is generally captured by the model. Analysis of the results demonstrates the control the ocean has over the surface heat flux from ocean to atmosphere and the crucial role that dynamics play in determining the mean SST in the equatorial Pacific. The sensitivity of the model to perturbations in the surface heat flux, cloud cover specification, diffusivity, and mixed layer depth is discussed.

  1. A Numerical Study of the Role of Air-Sea Fluxes in Extratropical Cyclogenesis.

    DTIC Science & Technology

    1981-09-01

    Extratropical Cyclogenesis; Air-sea Fluxes; Surface Fluxes; Ocean Cyclogenesis; Polar Low;KDiabatic Processes 20. \\#@SYrNACY (Coie. on Po~wes li It nRaea@inF...parameterization scheme and the Randall version of the Deardorff planetary boundary layer parameterization. Idealized initial conditions are speci- fied ...hydo- static equation. The reference geopotential profile is speci- fied at 300S (spring regime) in the balance routine to match the temperature field

  2. Indirect air-sea interactions simulated with a coupled turbulence-resolving model

    NASA Astrophysics Data System (ADS)

    Esau, Igor

    2014-05-01

    A turbulence-resolving parallelized atmospheric large-eddy simulation model (PALM) has been applied to study turbulent interactions between the humid atmospheric boundary layer (ABL) and the salt water oceanic mixed layer (OML). The most energetic three-dimensional turbulent eddies in the ABL-OML system (convective cells) were explicitly resolved in these simulations. This study considers a case of shear-free convection in the coupled ABL-OML system. The ABL-OML coupling scheme used the turbulent fluxes at the bottom of the ABL as upper boundary conditions for the OML and the sea surface temperature at the top of the OML as lower boundary conditions for the ABL. The analysis of the numerical experiment confirms that the ABL-OML interactions involve both the traditional direct coupling mechanism and much less studied indirect coupling mechanism (Garrett Dyn Atmos Ocean 23:19-34, 1996). The direct coupling refers to a common flux-gradient representation of the air-sea exchange, which is controlled by the temperature difference across the air-water interface. The indirect coupling refers to thermal instability of the Rayleigh-Benard convection, which is controlled by the temperature difference across the entire mixed layer through formation of the large convective eddies or cells. The indirect coupling mechanism in these simulations explained up to 45 % of the ABL-OML co-variability on the turbulent scales. Despite relatively small amplitude of the sea surface temperature fluctuations, persistence of the OML cells organizes the ABL convective cells. Water downdrafts in the OML cells tend to be collocated with air updrafts in the ABL cells. The study concludes that the convective structures in the ABL and the OML are co-organized. The OML convection controls the air-sea turbulent exchange in the quasi-equilibrium convective ABL-OML system.

  3. Parameterization of air sea gas fluxes at extreme wind speeds

    NASA Astrophysics Data System (ADS)

    McNeil, Craig; D'Asaro, Eric

    2007-06-01

    Air-sea flux measurements of O 2 and N 2 obtained during Hurricane Frances in September 2004 [D'Asaro, E. A. and McNeil, C. L., 2006. Measurements of air-sea gas exchange at extreme wind speeds. Journal Marine Systems, this edition.] using air-deployed neutrally buoyant floats reveal the first evidence of a new regime of air-sea gas transfer occurring at wind speeds in excess of 35 m s - 1 . In this regime, plumes of bubbles 1 mm and smaller in size are transported down from near the surface of the ocean to greater depths by vertical turbulent currents with speeds up to 20-30 cm s - 1 . These bubble plumes mostly dissolve before reaching a depth of approximately 20 m as a result of hydrostatic compression. Injection of air into the ocean by this mechanism results in the invasion of gases in proportion to their tropospheric molar gas ratios, and further supersaturation of less soluble gases. A new formulation for air-sea fluxes of weakly soluble gases as a function of wind speed is proposed to extend existing formulations [Woolf, D.K, 1997. Bubbles and their role in gas exchange. In: Liss, P.S., and Duce, R.A., (Eds.), The Sea Surface and Global Change. Cambridge University Press, Cambridge, UK, pp. 173-205.] to span the entire natural range of wind speeds over the open ocean, which includes hurricanes. The new formulation has separate contributions to air-sea gas flux from: 1) non-supersaturating near-surface equilibration processes, which include direct transfer associated with the air-sea interface and ventilation associated with surface wave breaking; 2) partial dissolution of bubbles smaller than 1 mm that mix into the ocean via turbulence; and 3) complete dissolution of bubbles of up to 1 mm in size via subduction of bubble plumes. The model can be simplified by combining "surface equilibration" terms that allow exchange of gases into and out of the ocean, and "gas injection" terms that only allow gas to enter the ocean. The model was tested against the

  4. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts

    PubMed Central

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-01-01

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change. PMID:27435531

  5. Global surface air temperatures - Update through 1987

    NASA Technical Reports Server (NTRS)

    Hansen, James; Lebedeff, Sergej

    1988-01-01

    Data from meteorological stations show that surface air temperatures in the 1980s are the warmest in the history of instrumental records. The four warmest years on record are all in the 1980s, with the warmest years in the analysis being 1981 and 1987. The rate of warming between the mid-1960s and the present is higher than that which occurrred in the previous period of rapid warming between the 1880s and 1940.

  6. Global trends of measured surface air temperature

    NASA Technical Reports Server (NTRS)

    Hansen, James; Lebedeff, Sergej

    1987-01-01

    The paper presents the results of surface air temperature measurements from available meteorological stations for the period of 1880-1985. It is shown that the network of meteorological stations is sufficient to yield reliable long-term, decadal, and interannual temperature changes for both the Northern Hemisphere and the Southern Hemisphere, despite the fact that most stations are located on the continents. The results indicate a global warming of about 0.5-0.7 C in the past century, with warming of similar magnitude in both hemispheres. A strong warming trend between 1965 and 1980 raised the global mean temperature in 1980 and 1981 to the highest level in the period of instrumental records. Selected graphs of the temperature change in each of the eight latitude zones are included.

  7. Balloons and Bottles: Activities on Air-Sea Heat Exchange.

    ERIC Educational Resources Information Center

    Murphree, Tom

    1998-01-01

    Presents an activity designed to demonstrate how heating and cooling an air mass affects its temperature, volume, density, and pressure. Illustrates how thermal energy can cause atmospheric motion such as expansion, contraction, and winds. (Author/WRM)

  8. Persistent organochlorine pesticides and polychlorinated biphenyls in air of the North Sea region and air-sea exchange.

    PubMed

    Mai, Carolin; Theobald, Norbert; Hühnerfuss, Heinrich; Lammel, Gerhard

    2016-12-01

    Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were studied to determine occurrence, levels and spatial distribution in the marine atmosphere and surface seawater during cruises in the German Bight and the wider North Sea in spring and summer 2009-2010. In general, the concentrations found in air are similar to, or below, the levels at coastal or near-coastal sites in Europe. Hexachlorobenzene and α-hexachlorocyclohexane (α-HCH) were close to phase equilibrium, whereas net atmospheric deposition was observed for γ-HCH. The results suggest that declining trends of HCH in seawater have been continuing for γ-HCH but have somewhat levelled off for α-HCH. Dieldrin displayed a close to phase equilibrium in nearly all the sampling sites, except in the central southwestern part of the North Sea. Here atmospheric deposition dominates the air-sea exchange. This region, close to the English coast, showed remarkably increased surface seawater concentrations. This observation depended neither on riverine input nor on the elevated abundances of dieldrin in the air masses of central England. A net depositional flux of p,p'-DDE into the North Sea was indicated by both its abundance in the marine atmosphere and the changes in metabolite pattern observed in the surface water from the coast towards the open sea. The long-term trends show that the atmospheric concentrations of DDT and its metabolites are not declining. Riverine input is a major source of PCBs in the German Bight and the wider North Sea. Atmospheric deposition of the lower molecular weight PCBs (PCB28 and PCB52) was indicated as a major source for surface seawater pollution.

  9. Temperature Dependence of Lithium Reactions with Air

    NASA Astrophysics Data System (ADS)

    Sherrod, Roman; Skinner, C. H.; Koel, Bruce

    2016-10-01

    Liquid lithium plasma facing components (PFCs) are being developed to handle long pulse, high heat loads in tokamaks. Wetting by lithium of its container is essential for this application, but can be hindered by lithium oxidation by residual gases or during tokamak maintenance. Lithium PFCs will experience elevated temperatures due to plasma heat flux. This work presents measurements of lithium reactions at elevated temperatures (298-373 K) when exposed to natural air. Cylindrical TZM wells 300 microns deep with 1 cm2 surface area were filled with metallic lithium in a glovebox containing argon with less than 1.6 ppm H20, O2, and N2. The wells were transferred to a hot plate in air, and then removed periodically for mass gain measurements. Changes in the surface topography were recorded with a microscope. The mass gain of the samples at elevated temperatures followed a markedly different behavior to that at room temperature. One sample at 373 K began turning red indicative of lithium nitride, while a second turned white indicative of lithium carbonate formation. Data on the mass gain vs. temperature and associated topographic changes of the surface will be presented. Science Undergraduate Laboratory Internship funded by Department of Energy.

  10. A Microwave Technique for Mapping Ice Temperature in the Arctic Seasonal Sea Ice Zone

    NASA Technical Reports Server (NTRS)

    St.Germain, Karen M.; Cavalieri, Donald J.

    1997-01-01

    A technique for deriving ice temperature in the Arctic seasonal sea ice zone from passive microwave radiances has been developed. The algorithm operates on brightness temperatures derived from the Special Sensor Microwave/Imager (SSM/I) and uses ice concentration and type from a previously developed thin ice algorithm to estimate the surface emissivity. Comparisons of the microwave derived temperatures with estimates derived from infrared imagery of the Bering Strait yield a correlation coefficient of 0.93 and an RMS difference of 2.1 K when coastal and cloud contaminated pixels are removed. SSM/I temperatures were also compared with a time series of air temperature observations from Gambell on St. Lawrence Island and from Point Barrow, AK weather stations. These comparisons indicate that the relationship between the air temperature and the ice temperature depends on ice type.

  11. Measurements of mixing layer height variability during the Ligurian air-sea interaction experiment (LASIE '07)

    NASA Astrophysics Data System (ADS)

    Förster, J.

    2009-09-01

    Air-sea interaction processes play a dominant role with respect to detection ranges of shipborne radar and infrared sensor systems. Especially in the littoral most often temperature and humidity gradients affect propagation paths and are the reason for abnormal phenomena such as ducting or mirage. Besides refractivity, spray and aerosols ejected from the sea surface can further degrade the quality of shipborne surveillance systems. Thus environmental effects might seriously hamper ship self defense. During the Ligurian Air-Sea Interaction Experiment (LASIE '07 - 16.06.-26.06.2007) the Federal Armed Forces Underwater Acoustics and Marine Geophysics Research Institute (FWG) carried out simultaneous in-situ measurements of meteorological and oceanographic parameters to study air-sea interaction processes with respect to littoral boundary layer variability. The characterization of the environment included both, in-situ measurements of atmospheric and sea surface parameters. Investigations were carried out on board RV PLANET, RV URANIA and at the ODAS-Italy1 buoy of the Italian National Council of Research (CNR). On board RV PLANET the sea surface and meteorological conditions were analyzed by two multi-sensor buoys, ship sensors and radiosondes. Emphasis was given to the vertical structure of the Marine Boundary Layer (MBL) and its variability. It was analyzed by a one lense lidar ceilometer CL31, a tethersonde system TT12 and radiosondes RS92 (Vaisala). The latter were launched every three hours. The TT12 consisted of three radiosondes, which could be adapted to separate altitudes of special interest. The experiment was characterized by changing meteorological conditions resulting in offshore and onshore blowing winds. In the first case the air temperature TAir was higher than the sea surface temperature TWater leading to a very stable surface layer. This situation was associated with a strong temperature inversion and a very clear atmosphere with a visibility of

  12. Trends in Surface Temperature from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Aumann, H. H.

    2014-12-01

    To address possible causes of the current hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We find a monotonic positive trend for the land temperature but not for the ocean temperature. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The results are compared with the model studies. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  13. Predictability of winter temperature in China from previous autumn Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Zuo, Jinqing; Ren, Hong-Li; Wu, Bingyi; Li, Weijing

    2016-10-01

    The potential predictability of winter temperature in China from autumn Arctic sea ice anomalies is studied by examining and statistically modeling the large-scale interannual covariability between them on the basis of singular value decomposition analysis. It is demonstrated that an intimate relationship exists between September and October sea ice anomalies in the Eurasian Arctic and following winter temperature anomalies in China, except in the Tibetan Plateau. When the autumn sea ice anomalies decline in the Eurasian Arctic, above-normal pressure anomalies appear to prevail over the region from the Eurasian Arctic to Eastern Europe and Mongolia, and below-normal anomalies prevail over the mid-latitudes of Asia and Northwestern Pacific in the following winter. Consequently, the winter Siberian High and East Asian trough are both strengthened, favoring the southward invasion of high-latitude cold air masses and thus cold temperature anomalies in China. It is found that the Siberian High plays a crucial role in delivering effects of the autumn Arctic sea ice anomalies on winter temperature variability in China. Based on this evidence, a statistical model is established to examine the potential predictability of winter temperature anomalies in China by taking the autumn Arctic sea ice signals as a predictor. Validation shows considerable skill in predicting winter temperature anomalies over a large part of China, indicating a significant potential for improving winter climate prediction in China.

  14. Gulf of Mexico Air/Sea Interaction: Measurements and Initial Data Characterization

    NASA Astrophysics Data System (ADS)

    MacDonald, C.; Huang, C. H.; Roberts, P. T.; Bariteau, L.; Fairall, C. W.; Gibson, W.; Ray, A.

    2011-12-01

    Corporate, government, and university researchers collaborated to develop an atmospheric boundary layer environmental observations program on an offshore platform in the Gulf of Mexico. The primary goals of this project were to provide data to (1) improve our understanding of boundary layer processes and air-sea interaction over the Gulf of Mexico; (2) improve regional-scale meteorological and air quality modeling; and (3) provide a framework for advanced offshore measurements to support future needs such as emergency response, exploration and lease decisions, wind energy research and development, and meteorological and air quality forecasting. In October 2010, meteorological and oceanographic sensors were deployed for an extended period (approximately 12 months) on a Chevron service platform (ST 52B, 90.5W, 29N) to collect boundary layer and sea surface data sufficient to support these objectives. This project has significant importance given the large industrial presence in the Gulf, sizeable regional population nearby, and the recognized need for precise and timely pollutant forecasts. Observations from this project include surface meteorology; sodar marine boundary layer winds; microwave radiometer profiles of temperature, relative humidity, and liquid water; ceilometer cloud base heights; water temperature and current profiles; sea surface temperature; wave height statistics; downwelling solar and infrared radiation; and air-sea turbulent momentum and heat fluxes. This project resulted in the collection of an unprecedented set of boundary layer measurements over the Gulf of Mexico that capture the range of meteorological and oceanographic interactions and processes that occur over an entire year. This presentation will provide insight into the logistical and scientific issues associated with the deployment and operations of unique measurements in offshore areas and provide results from an initial data analysis of boundary layer processes over the Gulf of

  15. Impact of sea spray on upper ocean temperature during typhoon passage: simulation with a 1-D turbulent model

    NASA Astrophysics Data System (ADS)

    Zhang, Lianxin; Zhang, Xuefeng; Han, Guijun; Wu, Xinrong; Cui, Xiaojian; Shao, Caixia; Sun, Chunjian; Zhang, Xiaoshuang; Wang, Xidong; Fu, Hongli

    2015-09-01

    At the interface between the lower atmosphere and sea surface, sea spray might significantly influence air-sea heat fluxes and subsequently, modulate upper ocean temperature during a typhoon passage. The effects of sea spray were introduced into the parameterization of sea surface roughness in a 1-D turbulent model, to investigate the effects of sea spray on upper ocean temperature in the Kuroshio Extension area, for the cases of two real typhoons from 2006, Yagi and Soulik. Model output was compared with data from the Kuroshio Extension Observatory (KEO), and Reynolds and AMSRE satellite remote sensing sea surface temperatures. The results indicate drag coefficients that include the spray effect are closer to observations than those without, and that sea spray can enhance the heat fluxes (especially latent heat flux) considerably during a typhoon passage. Consequently, the model results with heat fluxes enhanced by sea spray simulate better the cooling process of the SST and upper-layer temperature profiles. Additionally, results from the simulation of the passage of typhoon Soulik (that passed KEO quickly), which included the sea spray effect, were better than for the simulated passage of typhoon Yagi (that crossed KEO slowly). These promising 1-D results could provide insight into the application of sea spray in general circulation models for typhoon studies.

  16. Is Air Temperature Enough to Predict Lake Surface Temperature?

    NASA Astrophysics Data System (ADS)

    Piccolroaz, S.; Toffolon, M.; Majone, B.

    2014-12-01

    Lake surface water (LST) is a key factor that controls most of the physical and ecological processes occurring in lakes. Reliable estimates are especially important in the light of recent studies, which revealed that inland water bodies are highly sensitive to climate, and are rapidly warming throughout the world. However, an accurate estimation of LST usually requires a significant amount of information that is not always available. In this work, we present an application of air2water, a lumped model that simulates LST as a function of air temperature only. In addition, air2water allows for a qualitative evaluation of the depth of the epilimnion during the annual stratification cycle. The model consists in a simplification of the complete heat budget of the well-mixed surface layer, and has a few parameters (from 4 to 8 depending on the version) that summarize the role of the different heat flux components. Model calibration requires only air and water temperature data, possibly covering sufficiently long historical periods in order to capture inter-annual variability and long-term trends. During the calibration procedure, the information included in input data is retrieved to directly inform model parameters, which can be used to classify the thermal behavior of the lake. In order to investigate how thermal dynamics are related to morphological features, the model has been applied to 14 temperate lakes characterized by different morphological and hydrological conditions, by different sources of temperature data (buoys, satellite), and by variable frequency of acquisition. A good agreement between observed and simulated LST has been achieved, with a RMSE in the order of 1°C, which is fully comparable to the performances of more complex process-based models. This application allowed for a deeper understanding of the thermal response of lakes as a function of their morphology, as well as for specific analyses as for example the investigation of the exceptional

  17. The PRISM palaeoclimate reconstruction and Pliocene sea-surface temperature

    USGS Publications Warehouse

    Dowsett, H.J.; ,

    2007-01-01

    In this paper, I present a summary of the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) palaeoenvironmental reconstruction, with emphasis on its historical development and range of boundary condition datasets. Sea-surface temperature (SST), sea level, sea ice, land cover (vegetation and ice) and topography are discussed as well as many of the assumptions required to create an integrated global-scale reconstruction. New multiproxy research shows good general agreement on the magnitude of mid-Pliocene SST warming. Future directions, including maximum and minimum SST analyses and deep ocean temperature estimates aimed at a full three-dimensional reconstruction, are presented. ?? The Micropalaeontological Society 2007.

  18. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  19. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  20. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  1. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  2. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  3. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  4. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  5. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  6. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  7. Uncertainties of satellite-derived surface skin temperatures in the polar oceans: MODIS, AIRS/AMSU, and AIRS only

    NASA Astrophysics Data System (ADS)

    Kang, H.-J.; Yoo, J.-M.; Jeong, M.-J.; Won, Y.-I.

    2015-05-01

    Uncertainties in the satellite-derived Surface Skin Temperature (SST) data in the polar oceans during two periods (16-24 April and 15-23 September) of 2003-2014 were investigated and the three datasets were intercompared as follows: MODerate Resolution Imaging Spectroradiometer Ice Surface Temperature (MODIS IST), the SST of the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A (AIRS/AMSU), and AIRS only. AIRS only algorithm was developed in preparation for the degradation of the AMSU-A. MODIS IST was systematically up to 1.65 K warmer at the sea ice boundary and up to 2.04 K colder in the polar sea ice regions of both the Arctic and Antarctic than that of the AIRS/AMSU. This difference in the results could have been caused by the surface classification method. The spatial correlation coefficient of the AIRS only to the AIRS/AMSU (0.992-0.999) method was greater than that of the MODIS IST to the AIRS/AMSU (0.968-0.994). The SST of the AIRS only compared to that of the AIRS/AMSU had a bias of 0.168 K with a RMSE of 0.590 K over the Northern Hemisphere high latitudes and a bias of -0.109 K with a RMSE of 0.852 K over the Southern Hemisphere high latitudes. There was a systematic disagreement between the AIRS retrievals at the boundary of the sea ice, because the AIRS only algorithm utilized a~less accurate GCM forecast over the seasonally-varying frozen oceans than the microwave data. The three datasets (MODIS, AIRS/AMSU and AIRS only) showed significant warming rates (2.3 ± 1.7 ~2.8 ± 1.9 K decade-1) in the northern high latitude regions (70-80° N) as expected from the ice-albedo feedback. The systematic temperature disagreement associated with surface type classification had an impact on the resulting temperature trends.

  8. Uncertainties of satellite-derived surface skin temperatures in the polar oceans: MODIS, AIRS/AMSU, and AIRS only

    NASA Astrophysics Data System (ADS)

    Kang, H.-J.; Yoo, J.-M.; Jeong, M.-J.; Won, Y.-I.

    2015-10-01

    Uncertainties in the satellite-derived surface skin temperature (SST) data in the polar oceans during two periods (16-24 April and 15-23 September) 2003-2014 were investigated and the three data sets were intercompared as follows: MODerate Resolution Imaging Spectroradiometer Ice Surface Temperature (MODIS IST), the SST of the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A (AIRS/AMSU), and AIRS only. The AIRS only algorithm was developed in preparation for the degradation of the AMSU-A. MODIS IST was systematically warmer up to 1.65 K at the sea ice boundary and colder down to -2.04 K in the polar sea ice regions of both the Arctic and Antarctic than that of the AIRS/AMSU. This difference in the results could have been caused by the surface classification method. The spatial correlation coefficient of the AIRS only to the AIRS/AMSU (0.992-0.999) method was greater than that of the MODIS IST to the AIRS/AMSU (0.968-0.994). The SST of the AIRS only compared to that of the AIRS/AMSU had a bias of 0.168 K with a RMSE of 0.590 K over the Northern Hemisphere high latitudes and a bias of -0.109 K with a RMSE of 0.852 K over the Southern Hemisphere high latitudes. There was a systematic disagreement between the AIRS retrievals at the boundary of the sea ice, because the AIRS only algorithm utilized a less accurate GCM forecast over the seasonally varying frozen oceans than the microwave data. The three data sets (MODIS, AIRS/AMSU and AIRS only) showed significant warming rates (2.3 ± 1.7 ~ 2.8 ± 1.9 K decade-1) in the northern high regions (70-80° N) as expected from the ice-albedo feedback. The systematic temperature disagreement associated with surface type classification had an impact on the resulting temperature trends.

  9. Air-sea interaction measurements in the west Mediterranean Sea during the Tyrrhenian Eddy Multi-Platform Observations Experiment

    SciTech Connect

    Schiano, M.E.; Santoleri, R.; Bignami, F.; Leonardi, R.M. ); Marullo, S. ); Boehm, E. )

    1993-02-15

    Measurements of radiative fluxes were carried out in the Tyrrhenian Sea in fall and winter as part of the Tyrrhenian Eddy Multi-Platform Observations Experiment (TEMPO). These measurements have supplied the first experimental radiation data set over this basin. Seasonal variation of the different components of the budget are investigated. Since data collection was carried out in an area in which a quasi-permanent eddy is present, the behavior of the radiation parameters across the frontal zone is analyzed. The most interesting result of the air-sea interaction in proximity of a marine front consists in the covariation of sea surface temperature and downwelling long-wave radiation. Contemporaneous satellite data show a clear correlation between sea surface structure and horizontal distribution of columnar atmospheric water content. Therefore this inhomogeneity clearly is one of the main factors responsible for the variation of the downwelling radiation across the front. A comparison between experimental data and results of some of the most widely used bulk formulae is carried out for both short- and long-wave radiation. The mean differnece between measured and empirical solar radiation values is less than 3%, while in the case of the net long-wave radiation budge, poor agreement is found. Indeed, a 30 W/m[sup 2] bias results from the comparison. This discrepancy is consistent with the imbalance between previous bulk calculations of total heat budget at the surface and corresponding hydrographical observations of heat exchange at Gibraltar. 30 refs., 6 figs., 9 tabs.

  10. Three-Dimensional Modeling of Air-Sea Interaction

    NASA Astrophysics Data System (ADS)

    Regis, J. L.; Slinn, D. N.

    2004-12-01

    Deep-water wave breaking is crucial in the transfer of heat, gases, and momentum between the ocean and the atmosphere. Observations of these events have provided qualitative support to this end, and yet accurate quantification of momentum transfer for strong winds and nonlinear waves has remained a challenge. In recent years, advances have been made in the development of numerous algorithms to capture and describe air-sea interaction. Most, however, are idealized and only capable of modeling fluid flow within the two-dimensional approximation. Thus, many important characteristics of the flow composition and breaking process are ignored, oversimplified, or remain unknown. We employ a three-dimensional, time-dependent, finite difference, volume of fluid model, including both the flow of air and water, entitled TRUCHAS, to address the issue of deep-water breaking waves. Our model utilizes the multidimensional piecewise linear interface calculation method to assess the volume fraction of each fluid material in every mesh cell. The model solves conservation equations for mass and momentum for multiple fluids within the domain and tracks the interfaces between them. A great many details of the flow development are available for analysis from the model output. These include wind and water velocities, pressure gradients in both the air and sea around a breaking wave, the development and evolution of wind-generated waves, and the corresponding transfer of momentum from the atmosphere to the ocean. Our results are correlated with laboratory experiments conducted at the University of Miami's Air-Sea Interaction Salt-water Tank that possesses both wind and wave generating capabilities. Preliminary model results show good qualitative agreement to laboratory data.

  11. Modeling of Air-Sea Interaction and Ocean Processes for the Northern Arabian Sea Circulation Autonomous Research Project

    DTIC Science & Technology

    2015-09-30

    and space-time variability in the Northwestern Indian Ocean and Arabian Sea on time scales from days up to several seasonal cycles . OBJECTIVES...determine the mechanisms causing vertical mixing in the Arabian Sea: wind mixing, role of air- sea interaction and surface heat and fresh water ...equatorial region and the East African Coastal current, a source of low-salinity water for the Arabian Sea. APPROACH The fast-flowing Somali

  12. The central role of diminishing sea ice in recent Arctic temperature amplification.

    PubMed

    Screen, James A; Simmonds, Ian

    2010-04-29

    The rise in Arctic near-surface air temperatures has been almost twice as large as the global average in recent decades-a feature known as 'Arctic amplification'. Increased concentrations of atmospheric greenhouse gases have driven Arctic and global average warming; however, the underlying causes of Arctic amplification remain uncertain. The roles of reductions in snow and sea ice cover and changes in atmospheric and oceanic circulation, cloud cover and water vapour are still matters of debate. A better understanding of the processes responsible for the recent amplified warming is essential for assessing the likelihood, and impacts, of future rapid Arctic warming and sea ice loss. Here we show that the Arctic warming is strongest at the surface during most of the year and is primarily consistent with reductions in sea ice cover. Changes in cloud cover, in contrast, have not contributed strongly to recent warming. Increases in atmospheric water vapour content, partly in response to reduced sea ice cover, may have enhanced warming in the lower part of the atmosphere during summer and early autumn. We conclude that diminishing sea ice has had a leading role in recent Arctic temperature amplification. The findings reinforce suggestions that strong positive ice-temperature feedbacks have emerged in the Arctic, increasing the chances of further rapid warming and sea ice loss, and will probably affect polar ecosystems, ice-sheet mass balance and human activities in the Arctic.

  13. Effect of sea sprays on air-sea momentum exchange at severe wind conditions

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yu.; Ezhova, E.; Semenova, A.; Soustova, I.

    2012-04-01

    Wind-wave interaction at extreme wind speed is of special interest now in connection with the problem of explanation of the sea surface drag saturation at the wind speed exceeding 30 m/s. The idea on saturation (and even reduction) of the coefficient of aerodynamic resistance of the sea surface at hurricane wind speed was first suggested in [1] on the basis of theoretical analysis of sensitivity of maximum wind speed in a hurricane to the ratio of the enthalpy and momentum exchange coefficients. Both field [2-4] and laboratory [5] experiments confirmed that at hurricane wind speed the sea surface drag coefficient is significantly reduced in comparison with the parameterization obtained at moderate to strong wind conditions. Two groups of possible theoretical mechanisms for explanation of the effect of the sea surface drag reduction can be specified. In the first group of models developed in [6,7], the sea surface drag reduction is explained by peculiarities of the air flow over breaking waves. Another approach more appropriate for the conditions of developed sea exploits the effect of sea drops and sprays on the wind-wave momentum exchange. Papers[8,9] focused on the effect of the sea drops on stratification of the air-sea boundary layer similar to the model of turbulent boundary layer with the suspended particles [10], while papers [11-13] estimated the momentum exchange of sea drops and air-flow. A mandatory element of the spray induced momentum flux is a parameterization of the momentum exchange between droplets and air flow, which determines the "source function" in the momentum balance equation. In this paper a model describing the motion of a spume droplet, the wind tear away from the crest of a steep surface wave, and then falling into the water. We consider two models for the injection of droplets into the air flow. The first one assumes that the drop starts from the surface at the orbital velocity of the wave. In the second model we consider droplets from

  14. Updating Sea Spray Aerosol Emissions in the Community Multiscale Air Quality Model

    NASA Astrophysics Data System (ADS)

    Gantt, B.; Bash, J. O.; Kelly, J.

    2014-12-01

    Sea spray aerosols (SSA) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. In this study, the Community Multiscale Air Quality (CMAQ) model is updated to enhance fine mode SSA emissions, include sea surface temperature (SST) dependency, and revise surf zone emissions. Based on evaluation with several regional and national observational datasets in the continental U.S., the updated emissions generally improve surface concentrations predictions of primary aerosols composed of sea-salt and secondary aerosols affected by sea-salt chemistry in coastal and near-coastal sites. Specifically, the updated emissions lead to better predictions of the magnitude and coastal-to-inland gradient of sodium, chloride, and nitrate concentrations at Bay Regional Atmospheric Chemistry Experiment (BRACE) sites near Tampa, FL. Including SST-dependency to the SSA emission parameterization leads to increased sodium concentrations in the southeast U.S. and decreased concentrations along the Pacific coast and northeastern U.S., bringing predictions into closer agreement with observations at most Interagency Monitoring of Protected Visual Environments (IMPROVE) and Chemical Speciation Network (CSN) sites. Model comparison with California Research at the Nexus of Air Quality and Climate Change (CalNex) observations will also be discussed, with particular focus on the South Coast Air Basin where clean marine air mixes with anthropogenic pollution in a complex environment. These SSA emission updates enable more realistic simulation of chemical processes in coastal environments, both in clean marine air masses and mixtures of clean marine and polluted conditions.

  15. Coming up for air: thermal dependence of dive behaviours and metabolism in sea snakes.

    PubMed

    Udyawer, Vinay; Simpfendorfer, Colin A; Heupel, Michelle R; Clark, Timothy D

    2016-11-01

    Cutaneous gas exchange allows some air-breathing diving ectotherms to supplement their pulmonary oxygen uptake, which may allow prolongation of dives and an increased capacity to withstand anthropogenic and natural threatening processes that increase submergence times. However, little is known of the interplay between metabolism, bimodal oxygen uptake and activity levels across thermal environments in diving ectotherms. Here, we show in two species of sea snake (spine-bellied sea snake, Hydrophis curtus; and elegant sea snake, Hydrophis elegans) that increasing temperature elevates surfacing rate, increases total oxygen consumption and decreases dive duration. The majority of dives observed in both species remained within estimated maximal aerobic limits. While cutaneous gas exchange accounted for a substantial proportion of total oxygen consumption (up to 23%), unexpectedly it was independent of water temperature and activity levels, suggesting a diffusion-limited mechanism. Our findings demonstrate that rising water temperature and a limited capability to up-regulate cutaneous oxygen uptake may compromise the proficiency with which sea snakes perform prolonged dives. This may hinder their capacity to withstand ongoing anthropogenic activities like trawl fishing, and increase their susceptibility to surface predation as their natural environments continue to warm.

  16. Transfer Processes at the Air--Sea Interface

    NASA Astrophysics Data System (ADS)

    Guymer, T. H.; Businger, J. A.; Katsaros, K. B.; Shaw, W. J.; Taylor, P. K.; Large, W. G.; Payne, R. E.

    1983-02-01

    Near-surface data from ships, buoys, aircraft and a microwave remote-sensing satellite have been used to estimate the fluxes of momentum, heat and water vapour at the sea surface over a 200 km × 200 km area during the Joint Air--Sea Interaction Experiment of 1978. In particular, daily means of the surface heat balance and the wind stress are presented. Generally, the sensible heat flux was found to be less than 25% of the latent heat flux. Over periods of a day the total upward heat flux was about a third of the net radiation, implying that a significant proportion of the available energy went into heating the ocean. The Ekman pumping accounted for most of the divergence in the atmospheric boundary layer but only 10% at most of that in the upper ocean. Some case studies of the horizontal variation of the fluxes in relation to larger scales are also discussed and it is suggested that the fluxes are modulated by mesoscale patterns in sea-surface temperature. Surface turbulent fluxes and SST have been examined on scales from several kilometres to 200 km and for days to weeks by using a combination of ships, buoys, aircraft and microwave remote sensing. The net radiative flux had been obtained at the corners of the 200 km meteorological triangle either by direct measurements of the shortwave and longwave components or by parametrization techniques. This has enabled the surface heat budget to be examined on a daily basis. About 70% of the net flux (typically 100 W m-2 in phase 1 and 70 W m-2 in phase 2) is available for heating the ocean and, of the remainder, over 75% goes into the atmosphere as latent heat. In these near-neutral conditions the mean surface wind speed across the triangle was 77% of the geostrophic wind speed and the cross-isobar flow angle was 11 degrees (down-gradient). Significant variations in the thermodynamic fluxes across the area were found, associated partly with the SST distribution and also with the fact that the coldest and driest air was

  17. Wave-Phase-Resolved Air-Sea Interaction

    DTIC Science & Technology

    2014-09-30

    to become an important asset in air-sea interaction research (Figure 3). Data from a scan-beam ADCP on FLIP was consistent with surface signatures...near-surface current velocity measured using a fan-beam ADCP mounted on FLIP’s hull. The bottom panel is a (contrast enhanced) image taken by the...video camera mounted on FLIP’s crows nest showing streak structures at the surface. The regions of convergence in the ADCP data are thought to correspond to the streak structures seen in the visible imagery.

  18. Air-Sea Interaction Studies of the Indian and Pacific Oceans

    DTIC Science & Technology

    2014-09-30

    tasks: Task 1: Air- Sea Interactions Impacting the North Arabian Sea Circulation Task 2: Satellite Observations of Flow Encountering Abrupt...resolution SAR data will allow monitoring of ocean processes in the North Arabian Sea circulation region due to current and/or meteorological forcing at a...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Air- Sea Interaction Studies of the Indian and Pacific

  19. Hurricane Frances as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS) and SeaWinds

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image shows Hurricane Frances as captured by instruments onboard two different satellites: the AIRS infrared instrument onboard Aqua, and the SeaWinds scatterometer onboard QuikSCAT. Both are JPL-managed instruments. AIRS data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction over the ocean.

    The red vectors in the image show Frances' surface winds as measured by SeaWinds on QuikSCAT. The background colors show the temperature of clouds and surface as viewed in the infrared by AIRS, with cooler areas pushing to purple and warmer areas are pushing to red. The color scale on the right gives the temperatures in degrees Kelvin. (The top of the scale, 320 degrees Kelvin, corresponds to 117 degrees Fahrenheit, and the bottom, 180 degrees K is -135 degrees F.) The powerful circulation of this storm is evident from the combined data as well as the development of a clearly-defined central 'eye'. The infrared signal does not penetrate through clouds, so the light blue areas reveal the cold clouds tops associated with strong thunderstorms embedded within the storm. In cloud-free areas the infrared signal comes from Earth's surface, revealing warmer temperatures.

    The power of the SeaWinds scatterometer data set lies in its ability to generate global maps of wind speed and direction, giving us a snapshot of how the atmosphere is circulating. Weather prediction centers, including the Tropical Prediction Center - a branch of NOAA that monitors the creation of ocean-born storms, use scatterometer data to help it 'see' where these storms are brewing so that warnings can be issued and the storms, with often erratic motions, can be tracked.

    While the SeaWinds instrument isn't designed to gather hurricane data, having difficulty seeing the surface in heavy rain, it's data can be used in combination with other data sets to give us an insight into these storms. In

  20. Sea Ice Surface Temperature Product from the Moderate Resolution Imaging Spectroradiometer (MODIS)

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Key, Jeffrey R.; Casey, Kimberly A.; Riggs, George A.; Cavalieri, Donald J.

    2003-01-01

    Global sea ice products are produced from the Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) on board both the Terra and Aqua satellites. Daily sea ice extent and ice-surface temperature (IST) products are available at 1- and 4-km resolution. Validation activities have been undertaken to assess the accuracy of the MODIS IST product at the South Pole station in Antarctica and in the Arctic Ocean using near-surface air-temperature data from a meteorological station and drifting buoys. Results from the study areas show that under clear skies, the MODIS ISTs are very close to those of the near-surface air temperatures with a bias of -1.1 and -1.2 K, and an uncertainty of 1.6 and 1.7 K, respectively. It is shown that the uncertainties would be reduced if the actual temperature of the ice surface were reported instead of the near-surface air temperature. It is not possible to get an accurate IST from MODIS in the presence of even very thin clouds or fog, however using both the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and the MODIS on the Aqua satellite, it may be possible to develop a relationship between MODIS-derived IST and ice temperature derived from the AMSR-E. Since the AMSR-E measurements are generally unaffected by cloud cover, they may be used to complement the MODIS IST measurements.

  1. Air-sea exchange over Black Sea estimated from high resolution regional climate simulations

    NASA Astrophysics Data System (ADS)

    Velea, Liliana; Bojariu, Roxana; Cica, Roxana

    2013-04-01

    Black Sea is an important influencing factor for the climate of bordering countries, showing cyclogenetic activity (Trigo et al, 1999) and influencing Mediterranean cyclones passing over. As for other seas, standard observations of the atmosphere are limited in time and space and available observation-based estimations of air-sea exchange terms present quite large ranges of uncertainty. The reanalysis datasets (e.g. ERA produced by ECMWF) provide promising validation estimates of climatic characteristics against the ones in available climatic data (Schrum et al, 2001), while cannot reproduce some local features due to relatively coarse horizontal resolution. Detailed and realistic information on smaller-scale processes are foreseen to be provided by regional climate models, due to continuous improvements of physical parameterizations and numerical solutions and thus affording simulations at high spatial resolution. The aim of the study is to assess the potential of three regional climate models in reproducing known climatological characteristics of air-sea exchange over Black Sea, as well as to explore the added value of the model compared to the input (reanalysis) data. We employ results of long-term (1961-2000) simulations performed within ENSEMBLE project (http://ensemblesrt3.dmi.dk/) using models ETHZ-CLM, CNRM-ALADIN, METO-HadCM, for which the integration domain covers the whole area of interest. The analysis is performed for the entire basin for several variables entering the heat and water budget terms and available as direct output from the models, at seasonal and annual scale. A comparison with independent data (ERA-INTERIM) and findings from other studies (e.g. Schrum et al, 2001) is also presented. References: Schrum, C., Staneva, J., Stanev, E. and Ozsoy, E., 2001: Air-sea exchange in the Black Sea estimated from atmospheric analysis for the period 1979-1993, J. Marine Systems, 31, 3-19 Trigo, I. F., T. D. Davies, and G. R. Bigg (1999): Objective

  2. Behavioral responses of Atlantic cod to sea temperature changes.

    PubMed

    Freitas, Carla; Olsen, Esben Moland; Moland, Even; Ciannelli, Lorenzo; Knutsen, Halvor

    2015-05-01

    Understanding responses of marine species to temperature variability is essential to predict impacts of future climate change in the oceans. Most ectotherms are expected to adjust their behavior to avoid extreme temperatures and minimize acute changes in body temperature. However, measuring such behavioral plasticity in the wild is challenging. Combining 4 years of telemetry-derived behavioral data on juvenile and adult (30-80 cm) Atlantic cod (Gadus morhua), and in situ ocean temperature measurements, we found a significant effect of sea temperature on cod depth use and activity level in coastal Skagerrak. During summer, cod were found in deeper waters when sea surface temperature increased. Further, this effect of temperature was stronger on larger cod. Diel vertical migration, which consists in a nighttime rise to shallow feeding habitats, was stronger among smaller cod. As surface temperature increased beyond ∼15°C, their vertical migration was limited to deeper waters. In addition to larger diel vertical migrations, smaller cod were more active and travelled larger distances compared to larger specimens. Cold temperatures during winter tended, however, to reduce the magnitude of diel vertical migrations, as well as the activity level and distance moved by those smaller individuals. Our findings suggest that future and ongoing rises in sea surface temperature may increasingly deprive cod in this region from shallow feeding areas during summer, which may be detrimental for local populations of the species.

  3. Holocene hydrological and sea surface temperature changes in the northern coast of the South China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Mong-Sin; Zong, Yongqiang; Mok, Ka-Man; Cheung, Ka-Ming; Xiong, Haixian; Huang, Guangqing

    2017-03-01

    In order to reconstruct the Holocene environmental history of a coastal site in the northern South China Sea, this study analysed the organic carbon isotope ratios (δ13Corg) and alkenone unsaturation ratios (UK‧37) from a 36.5 m-long sediment core drilled at seabed in the mouth region of the Pearl River estuary and generated a coupled hydrological and temperature record. This record reveals changes of monsoon-induced sediment discharge and sea surface temperature of the Holocene in four stages. In Stage I, the site was under fluvial conditions prior to postglacial marine transgression. Stage II saw an increase of sea surface temperature from c. 23.0 °C to 27.0 °C, associated with a strengthened summer monsoon from c. 10,350 to 8900 cal. years BP. This was also a period of rapid sea-level rise and marine transgression, during which the sea inundated the palaeo-incised channel, i.e. the lower part of the T-shape accommodation space created by the rising sea. In these 1500 years, fluvial discharge was strong and concentrated within the channel, and the high sedimentation rate (11.8 mm/year) was very close to the rate of sea-level rise. In the subsequent 2000 years (Stage III) sea level continued to rise and the sea flooded the broad seabed above the palaeo-incised channel, resulted in fluvial discharge spreading thinly across the wide accommodation space and a much reduced sedimentation rate (1.8 mm/year). Sea surface temperature in this stage reached 27.3 °C initially, but dropped sharply to 26.1 °C towards c. 8200 cal. years BP. The final stage covers the last 7000 years, and the site was under a stable sea level. Sedimentation in this stage varied a little, but averaged at 1.8 mm/year. Whilst fluvial discharge and sea surface temperature didn't change much, two short periods of hydrological and temperature change were observed, which are related to the climatic cooling events of c. 4200 cal. years ago and the Little Ice Age.

  4. Variation in the urban vegetation, surface temperature, air temperature nexus.

    PubMed

    Shiflett, Sheri A; Liang, Liyin L; Crum, Steven M; Feyisa, Gudina L; Wang, Jun; Jenerette, G Darrel

    2017-02-01

    Our study examines the urban vegetation - air temperature (Ta) - land surface temperature (LST) nexus at micro- and regional-scales to better understand urban climate dynamics and the uncertainty in using satellite-based LST for characterizing Ta. While vegetated cooling has been repeatedly linked to reductions in urban LST, the effects of vegetation on Ta, the quantity often used to characterize urban heat islands and global warming, and on the interactions between LST and Ta are less well characterized. To address this need we quantified summer temporal and spatial variation in Ta through a network of 300 air temperature sensors in three sub-regions of greater Los Angeles, CA, which spans a coastal to desert climate gradient. Additional sensors were placed within the inland sub-region at two heights (0.1m and 2m) within three groundcover types: bare soil, irrigated grass, and underneath citrus canopy. For the entire study region, we acquired new imagery data, which allowed calculation of the normalized difference vegetation index (NDVI) and LST. At the microscale, daytime Ta measured along a vertical gradient, ranged from 6 to 3°C cooler at 0.1 and 2m, underneath tall canopy compared to bare ground respectively. At the regional scale NDVI and LST were negatively correlated (p<0.001). Relationships between diel variation in Ta and daytime LST at the regional scale were progressively weaker moving away from the coast and were generally limited to evening and nighttime hours. Relationships between NDVI and Ta were stronger during nighttime hours, yet effectiveness of mid-day vegetated cooling increased substantially at the most arid region. The effectiveness of vegetated Ta cooling increased during heat waves throughout the region. Our findings suggest an important but complex role of vegetation on LST and Ta and that vegetation may provide a negative feedback to urban climate warming.

  5. Measurements of the Air-Sea Interface from an Instrumented Small Buoy

    DTIC Science & Technology

    2011-09-01

    xiv THIS PAGE INTENTIONALLY LEFT BLANK xv LIST OF ACRONYMS AND ABBREVIATIONS ASIT Air Sea Interaction Tower ASIS Air-sea Interaction Spar...or the Air-sea Interaction Tower (ASIT, Edson et al. 2007). Research buoys are an alternative to the stabilized platforms. One such buoy is the...instrument suite was deployed on the R/V Sproul in both 2009 and 2010. The basic instruments included one or two flux measurement towers , a

  6. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  7. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  8. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  9. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  10. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  11. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  12. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  13. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  14. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  15. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  16. Air temperature variation across the seed cotton dryer mixpoint

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eighteen tests were conducted in six gins in the fall of 2008 to measure air temperature variation within various heated air seed cotton drying systems with the purpose of: checking validation of recommendations by a professional engineering society and measuring air temperature variation across the...

  17. AIR TEMPERATURE DISTRIBUTION IN SEED COTTON DRYING SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ten tests were conducted in the fall of 2007 to measure air temperature variation within various heated air seed cotton drying systems with the purpose of: checking validation of recommendations by a professional engineering society and measuring air temperature variation across the airflow ductwork...

  18. Possible Economies in Air-Conditioning by Accepting Temperature Swings.

    ERIC Educational Resources Information Center

    Loudon, A. G.; Petherbridge, P.

    Public building air conditioning systems, which use constant and varying heat and cooling loads, are compared and investigated. Experiments indicated that constant temperature controls based on outside air temperature alone were inefficient. Ventilating a building with outside air and the methods of doing so are cited as being the most economical…

  19. Understanding and predicting changes in North Atlantic Sea Surface Temperature

    NASA Astrophysics Data System (ADS)

    Yeager, S. G.

    The mechanisms associated with sea surface temperature variability in the North Atlantic are explored using observation-based reconstructions of the historical surface states of the atmosphere and ocean as well as simulations run with the Community Earth System Model, version 1 (CESM1). The relationship between air-sea heat flux and SST between 1948 and 2009 yields evidence of a positive heat flux feedback at work in the subpolar gyre region on quasi-decadal timescales. Warming of the high latitude Atlantic precedes an atmospheric response which resembles a negative NAO state. The historical flux data set is used to estimate temporal variations in North Atlantic deep water formation which suggest that NAO variations drove strong decadal changes in thermohaline circulation strength in the last half century. Model simulations corroborate the observation-based inferences that substantial changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC) ensued as a result of NAO-driven water mass perturbations, and that changes in the large-scale ocean circulation played a significant role in modulating North Atlantic SST. Surface forcing perturbation experiments show that the simulated low-frequency AMOC variability is mainly driven by turbulent buoyancy forcing over the Labrador Sea region, and that the decadal ocean variability, in uncoupled experiments, derives from low-frequency variability in the overlying atmospheric state. Surface momentum forcing accounts for most of the interannual variability in AMOC at all latitudes, and also most of the decadal AMOC variability south of the Equator. We show that the latter relates to the trend in wind stress forcing of the Southern Ocean, but that Southern Ocean forcing explains very little of the North Atlantic signal. The sea surface height in the Labrador Sea is identified as a strongly buoyancy-forced observable which supports its use as a monitor of AMOC strength. The dynamics which characterize the

  20. Air-Sea Interaction Patterns in the Equatorial Pacific

    DTIC Science & Technology

    1993-12-01

    Acquisition System (ATLAS) buoys and Equatorial Pacific Ocean Climate Studies ( EPOCS ) buoys. The ATLAS buoys used in this study are located at longitudes 156...8217E, 165°E, 170W, 169°W, 155°W, 140W, 1250W, I 10°W. The EPOCS buoys used in this study are located on the equator at 165°E, 140’W, and I 10°W. Fig. 3...sea surface temperature (SST), and subsurface temperatures. The EPOCS buoys measure surface wind, AT, SST, and currents. For both types of buoys, wind

  1. Unravelling air-sea interactions driven by photochemistry in the sea-surface microlayer

    NASA Astrophysics Data System (ADS)

    George, Christian; Alpert, Peter; Tinel, Liselotte; Rossignol, Stéphanie; Perrier, Sébastien; Bernard, Francois; Ciuraru, Raluca; Hayeck, Nathalie

    2016-04-01

    Interfaces are ubiquitous in the environment, and in addition many atmospheric key processes, such as gas deposition, aerosol and cloud formation are, at one stage or the other, strongly impacted by physical- and chemical processes occurring at interfaces. Unfortunately, these processes have only been suggested and discussed but never fully addressed because they were beyond reach. We suggest now that photochemistry or photosensitized reactions exist at interfaces, and we will present and discuss their possible atmospheric implications. Obviously, one of the largest interface is the sea-surface microlayer (SML), which is a region lying at the uppermost tens to hundreds of micrometres of the water surface, with physical, chemical and biological properties that differ from those of the underlying sub-surface water. Organic film formation at the sea surface is made possible in the presence of an excess of surface-active material. Hydrophobic surfactant films are typically believed to play the role of a physical barrier to air-sea exchanges, especially at low wind speed. We will show that dissolved organic matter (DOM) can trigger photochemistry at the air-sea interface, releasing unsaturated, functionalized volatile organic compounds (VOCs), including isoprene,... acting as precursors for the formation of organic aerosols, that were thought, up to now, to be solely of biological origin! In addition, we suggest that when arranged at an air/water interface, hydrophobic surfactant can have weak chemical interactions among them, which can trigger the absorption of sunlight and can consequently induce photochemistry at such interfaces. A major question arises from such observations, namely: can the existence of such weak intra- or intermolecular interactions and the subsequent photochemistry be generalized to many other atmospheric objects such as aerosols? This topic will be presented and discussed.

  2. The two-fold sea surface temperature change associated with interannual cyclone activities in the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Chang, C.

    2013-05-01

    Concurrent with most large El Nino events, cold Sea Surface Temperature anomalies are observed over the western Pacific region. Composite of 14 El Nino events during 1955-2003 reveals that there are two stage development of sea surface temperature cooling during the El Nino year: the first peak of cooling appears in August-September of Nino(0) year, while the second peak in January-February of Nino(1) year. A few findings suggested that the local air-sea interaction feedback is potent in this region (Wang et al., 2001; Hsu et al., 2001). It is proposed that the increase in evaporation cooling associated with the presence of the anomalous atmospheric anticyclone during the El Nino winter leads to cold sea surface temperature anomalies in the Philippine Sea, in turn the oceanic anomalies feedback on the overlying atmospheric circulation. The wind-evaporation-sea surface temperature (WES) feedback (Xie and Philander, 1994) seems to be the major mechanism for the sea surface temperature cooling during the second peak when the atmospheric anticyclone anomaly straddling the Philippine Sea and South China Sea appears, causing warming(cooling) in the South China Sea(Philippine Sea) (Wang et al., 2003). However, the formation of the cooling in August and September (the first cooling peak) is not clear. The impact of cyclone activities on the regional sea surface temperature change during the first peak is investigated. The time scale of the sea surface temperature restoring time following tropical cyclones is approximately 30-35 days for a tropical storm to 50-60 days for a category 3-5 hurricane, with significant storm-specific and basin-specific variability (Hart et al., 2007). It is also known that there is a tendency in El Niño years toward tropical cyclones that are both more intense and longer-lived than in La Niña years (Carmargo et al., 2004). The long-lasting of cyclones' self-induced ocean cooling would reflect onto the monthly average; in a sense that for the

  3. The Role of the U.S. Army in Air Sea Battle

    DTIC Science & Technology

    2013-04-01

    national power to the Asia -Pacific region. The military contribution to this new national security strategy is termed “ Air Sea Battle.” Air Sea Battle...Asian focus under our new national security strategy. The military contribution to this new national security strategy is currently termed “ Air Sea...against a foe with anti-access and area-denial capabilities. As a concept, Air Sea Battle is not new . In one form or another, it has been around as a

  4. Remote sensing of the Dead Sea surface temperature

    NASA Astrophysics Data System (ADS)

    Nehorai, R.; Lensky, I. M.; Lensky, N. G.; Shiff, S.

    2009-05-01

    The Dead Sea is a unique terminal lake located at the lowest place on Earth's surface. It has the highest surface temperature, salinity, and density among Earth's large water bodies, and its level is currently dropping at a rate of ˜1 m/a. Knowledge of the Dead Sea thermal and saline structure is based on meteorological and hydrological measurements from a single site at a time. In this study, we used satellite and in situ data to characterize the spatial and temporal variations of the Dead Sea sea surface temperature (SST) and to explore the causes for these variations. Sequences of almost continuous individual satellite images were transformed into a time series of parameters representing the spatial distribution of SST. Also used were in situ measured bulk SST, wind speed, solar radiation, and water temperature profiles with depth. Analysis of this data set shows strong diurnal and seasonal variations of the surface and vertical temperature field and the meteorological forcing. The temperature field is heterogeneous after noon, when radiation is high and wind speed is low and thermal layering develops. The temperature field is homogeneous during the nighttime, when solar radiation is absent and the high wind speed vertically mixes the upper layer.

  5. Covariation of Mesoscale Ocean Color and Sea-Surface Temperature Patterns in the Sargasso Sea

    NASA Technical Reports Server (NTRS)

    McGillicuddy, Dennis J., Jr.; Kosnyrev, V. K.; Ryan, J. P.; Yoder, J. A.

    2001-01-01

    During the lifetime of the Coastal Zone Color Scanner, there were 21 instances in which both satellite-derived ocean color and sea-surface temperature are simultaneously available over large areas of the Sargasso Sea. These images reveal close correspondence between mesoscale structures observed in temperature and pigment fields. In general, higher (lower) pigment biomass occurs in mesoscale features consisting of cold (warm) temperature anomalies. This relationship is consistent with the idea that upward displacement of isopycnals at the base of the euphotic zone by mesoscale eddies is an important mechanism of nutrient supply in the region.

  6. Research in Observations of Oceanic Air/Sea Interaction

    NASA Technical Reports Server (NTRS)

    Long, David G.; Arnold, David V.

    1995-01-01

    The primary purpose of this research has been: (1) to develop an innovative research radar scatterometer system capable of directly measuring both the radar backscatter and the small-scale and large-scale ocean wave field simultaneously and (2) deploy this instrument to collect data to support studies of air/sea interaction. The instrument has been successfully completed and deployed. The system deployment lasted for six months during 1995. Results to date suggest that the data is remarkably useful in air/sea interaction studies. While the data analysis is continuing, two journal and fifteen conference papers have been published. Six papers are currently in review with two additional journal papers scheduled for publication. Three Master's theses on this research have been completed. A Ph.D. student is currently finalizing his dissertation which should be completed by the end of the calendar year. We have received additional 'mainstream' funding from the NASA oceans branch to continue data analysis and instrument operations. We are actively pursuing results from the data expect additional publications to follow. This final report briefly describes the instrument system we developed and results to-date from the deployment. Additional detail is contained in the attached papers selected from the bibliography.

  7. The EUSTACE project: delivering global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Morice, C. P.; Rayner, N. A.; Auchmann, R.; Bessembinder, J.; Bronnimann, S.; Brugnara, Y.; Conway, E. A.; Ghent, D.; Good, E.; Herring, K.; Kennedy, J.; Lindgren, F.; Madsen, K. S.; Merchant, C. J.; van der Schrier, G.; Stephens, A.; Tonboe, R. T.; Waterfall, A. M.; Mitchelson, J.; Woolway, I.

    2015-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, we must develop an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. These relationships can be derived either empirically or with the help of a physical model.Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals would be used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. As the data volumes involved are considerable, such work needs to include development of new "Big Data" analysis methods.We will present plans and progress along this road in the EUSTACE project (2015-June 2018), i.e.: • providing new, consistent, multi-component estimates of uncertainty in surface skin temperature retrievals from satellites; • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras.Information will also be given on how interested users can become

  8. Model-based estimation of changes in air temperature seasonality

    NASA Astrophysics Data System (ADS)

    Barbosa, Susana; Trigo, Ricardo

    2010-05-01

    , 2008. Changing seasonality in North Atlantic coastal sea level from the analysis of long tide gauge records. Tellus, 60A, 165-177. Barbosa, SM, 2009. Changing seasonality in Europe's air temperature. European Physical Journal - Special Topics, 174, 81-89. Compo,G.P., J.S. Whitaker, and P.D. Sardeshmukh, 2006: Feasibility of a 100 year reanalysis using only surface pressure data. Bull. Amer. Met. Soc., 87, 175-190.

  9. The validation of ATSR measurements with in situ sea temperatures

    SciTech Connect

    Minnett, P.J.; Stansfield, K.L.

    1993-10-08

    The largest source of uncertainty in the retrieval of SST (sea-surface) temperature from space-borne infrared radiometric measurements is in the correction for the effects of the intervening atmosphere. During a research cruise of the R/V Alliance measurements of sea surface temperature, surface meteorological variables and surface infrared radiances were taken. SST fields were generated from the ATSR data using pre-launch algorithims derived by the ATSR Instrument Team (A.M. Zavody, personal communication), and the initial comparison between ATSR measurements and SST taken along the ship`s track indicate that the dual-angle atmospheric correction is accurate in mid-latitude conditions.

  10. Tropical Cyclone Induced Air-Sea Interactions Over Oceanic Fronts

    NASA Astrophysics Data System (ADS)

    Shay, L. K.

    2012-12-01

    Recent severe tropical cyclones underscore the inherent importance of warm background ocean fronts and their interactions with the atmospheric boundary layer. Central to the question of heat and moisture fluxes, the amount of heat available to the tropical cyclone is predicated by the initial mixed layer depth and strength of the stratification that essentially set the level of entrainment mixing at the base of the mixed layer. In oceanic regimes where the ocean mixed layers are thin, shear-induced mixing tends to cool the upper ocean to form cold wakes which reduces the air-sea fluxes. This is an example of negative feedback. By contrast, in regimes where the ocean mixed layers are deep (usually along the western part of the gyres), warm water advection by the nearly steady currents reduces the levels of turbulent mixing by shear instabilities. As these strong near-inertial shears are arrested, more heat and moisture transfers are available through the enthalpy fluxes (typically 1 to 1.5 kW m-2) into the hurricane boundary layer. When tropical cyclones move into favorable or neutral atmospheric conditions, tropical cyclones have a tendency to rapidly intensify as observed over the Gulf of Mexico during Isidore and Lili in 2002, Katrina, Rita and Wilma in 2005, Dean and Felix in 2007 in the Caribbean Sea, and Earl in 2010 just north of the Caribbean Islands. To predict these tropical cyclone deepening (as well as weakening) cycles, coupled models must have ocean models with realistic ocean conditions and accurate air-sea and vertical mixing parameterizations. Thus, to constrain these models, having complete 3-D ocean profiles juxtaposed with atmospheric profiler measurements prior, during and subsequent to passage is an absolute necessity framed within regional scale satellite derived fields.

  11. Air-Sea Interactions over Lakes on Titan

    NASA Astrophysics Data System (ADS)

    Soto, Alejandro; Rafkin, Scot C. R.

    2016-10-01

    The exchange of methane between the atmosphere and surface liquid reservoirs dominates the short time-scale methanological cycle. In this study, previous two-dimensional simulations of the exchange of methane vapor, sensible heat and momentum between the atmosphere and lakes are updated with the inclusion of radiative forcing, three dimensions, and realistic coastlines. Titan's air-sea exchange in two dimensions indicated that the exchange process was self-limiting. Evaporation from lakes produced a shallow but extremely stable marine layer that suppressed turbulent exchange. Furthermore, the circulation associated with the higher buoyancy of methane-rich atmosphere over the lake was offset by the oppositely directed thermal sea breeze circulation, which muted the mean wind. Two major weaknesses of this previous work were the lack of radiative forcing and the imposition of two dimensionality, which limited the full range of dynamical solutions. Based on early theoretical studies, it was thought that magnitude of turbulent energy flux exchanges would be much larger than radiative fluxes, thereby justifying the neglect of radiation, but the two-dimensional simulations indicated that this was not a valid assumption. The dynamical limitations of two-dimensional simulations are well known. Vorticity stretching (i.e., circulation intensification through vertical motion) is not possible and it is also not possible to produce dynamically balanced gradient wind-type circulations. As well, the irregular shape of a realistic coastline cannot be expressed in two dimensions, and these realistic structures will generally induce complex convergence and divergence circulations in the atmosphere. The impact of radiative forcing and the addition of the third dimension on the air-sea exchange are presented.

  12. Effect of the accumulation of polycyclic aromatic hydrocarbons in the sea surface microlayer on their coastal air-sea exchanges

    NASA Astrophysics Data System (ADS)

    Guitart, C.; García-Flor, N.; Miquel, J. C.; Fowler, S. W.; Albaigés, J.

    2010-01-01

    Several measurements of polycyclic aromatic hydrocarbons (PAHs) in coastal marine compartments (viz. atmosphere, sea surface microlayer, subsurface seawater, sinking particles and sediments), made nearly simultaneously at two stations in the north-eastern Mediterranean, were used to estimate the transport fluxes of individual and total PAHs through the air-seawater-sediment system. Diffusive air-sea exchange fluxes were estimated using both subsurface water (SSW) and sea surface microlayer (SML) concentrations. The air-SML fluxes ranged from 411 to 12,292 ng m - 2 d - 1 (absorption) and from - 506 to -13,746 ng m - 2 d - 1 (volatilisation) for total PAHs (Σ15). Air-seawater column transport of particle-associated PAHs was estimated from the analysis of particulate atmospheric and sediment interceptor trap materials. Air-sea particle deposition fluxes of total PAHs ranged from 13 to 114 ng m - 2 d - 1 and seawater particle settling fluxes (upper 5 m water column) ranged from 184 to 323 ng m - 2 d - 1 . The results of this study indicate that both the magnitude and the direction of the calculated air-sea diffusive fluxes change when PAH concentrations in the SML are considered. As a result, PAHs accumulation in the SML could produce the so-called "flux capping effect". However, the high variability in the coastal air-sea PAHs flux estimations, mainly due to the parameters uncertainty, requires further experimental approaches, including improvement of parameterisations.

  13. The interannual oscillation of sea surface temperature in the South China Sea

    SciTech Connect

    Zhou Faxiu; Yu Shenyu; Fu Gang; Wang Dongxiao

    1994-12-31

    The South China Sea (SCS) is located in the area of the Asia monsoons and is a quasi-closed deep basin near the tropical western Pacific. The sea surface temperature anomalies (SSTA) in the South China Sea have an influence on the precipitation in flood season in the South China. The anomalies of the Asia monsoons have great effect on SST in the SCS. This paper aims at finding the features of the interannual oscillation of SST and discussing the mechanism of the SST oscillation in the SCS.

  14. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  15. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  16. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  17. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  18. Distribution and sea-to-air fluxes of volatile halocarbons in the Bohai Sea and North Yellow Sea during spring.

    PubMed

    He, Zhen; Liu, Qiu-Lin; Zhang, Ying-Jie; Yang, Gui-Peng

    2017-01-26

    Concentrations of volatile halocarbons (VHCs), such as CHBr2Cl, CHBr3, C2HCl3, and C2Cl4, in the Bohai Sea (BS) and North Yellow Sea (NYS) were measured during the spring of 2014. The VHC concentrations varied widely and decreased with distance from the coast in the investigated area, with low values observed in the open sea. Depth profiles of the VHCs were characterized by the highest concentration generally found in the upper water column. The distributions of the VHCs in the BS and NYS were clearly influenced by the combined effects of biological production, anthropogenic activities, and riverine input. The sea-to-air fluxes of CHBr2Cl, CHBr3, C2HCl3, and C2Cl4 in the study area were estimated to be 47.17, 56.63, 162.56, and 104.37nmolm(-2)d(-1), respectively, indicating that the investigated area may be a source of atmospheric CHBr2Cl, CHBr3, C2HCl3, and C2Cl4 in spring.

  19. The statistical relation of sea-level and temperature revisited

    NASA Astrophysics Data System (ADS)

    Grassi, Stefano; Hillebrand, Eric; Ventosa-Santaulària, Daniel

    2013-11-01

    We propose a semi-empirical model for the relation between global mean surface temperature and global sea-levels. In contradistinction to earlier approaches to this problem, the model allows for valid statistical inference and joint estimation of trend components and interaction term of temperature and sea-level. Estimation of the model on the data set used in Rahmstorf (2007) yields a proportionality coefficient of 4.6 mm/year per °C at a one-sided significance level of 7.6 percent or higher. Long-term simulations of the model result in a two-sided 90-percent confidence interval for the sea-level rise in the year 2100 of [15 cm, 150 cm] above the 1990 level. This is a wider margin of error than was reported in the previous literature, and it reflects the substantial uncertainty in relating two trending time series.

  20. Sea ice concentration temporal variability over the Weddell Sea and its relationship with tropical sea surface temperature

    USGS Publications Warehouse

    Barreira, S.; Compagnucci, R.

    2007-01-01

    Principal Components Analysis (PCA) in S-Mode (correlation between temporal series) was performed on sea ice monthly anomalies, in order to investigate which are the main temporal patterns, where are the homogenous areas located and how are they related to the sea surface temperature (SST). This analysis provides 9 patterns (4 in the Amundsen and Bellingshausen Seas and 5 in the Weddell Sea) that represent the most important temporal features that dominated sea ice concentration anomalies (SICA) variability in the Weddell, Amundsen and Bellingshausen Seas over the 1979-2000 period. Monthly Polar Gridded Sea Ice Concentrations data set derived from satellite information generated by NASA Team algorithm and acquired from the National Snow and Ice Data Center (NSIDC) were used. Monthly means SST are provided by the National Center for Environmental Prediction reanalysis. The first temporal pattern series obtained by PCA has its homogeneous area located at the external region of the Weddell and Bellingshausen Seas and Drake Passage, mostly north of 60°S. The second region is centered in 30°W and located at the southeast of the Weddell. The third area is localized east of 30°W and north of 60°S. South of the first area, the fourth PC series has its homogenous region, between 30° and 60°W. The last area is centered at 0° W and south of 60°S. Correlation charts between the five Principal Components series and SST were performed. Positive correlations over the Tropical Pacific Ocean were found for the five PCs when SST series preceded SICA PC series. The sign of the correlation could relate the occurrence of an El Niño/Southern Oscillation (ENSO) warm (cold) event with posterior positive (negative) anomalies of sea ice concentration over the Weddell Sea.

  1. Concerns--High Sea Levels and Temperatures Seen Next Century.

    ERIC Educational Resources Information Center

    Ryan, Paul R.

    1984-01-01

    A National Research Council committee recently concluded that atmospheric carbon dioxide levels will "most likely" double by late in the next century, causing an increase in the earth's average temperature. Effects of the increase on sea levels, global climate, and other parameters are discussed. (JN)

  2. Laser measure of sea salinity, temperature and turbidity in depth

    NASA Technical Reports Server (NTRS)

    Hirschberg, J. G.; Wouters, A. W.; Byrne, J. D.

    1974-01-01

    A method is described in which a pulsed laser is used to probe the sea. Backscattered light is analyzed in time, intensity and wavelength. Tyndall, Raman and Brillouin scattering are used to obtain the backscatter turbidity, sound velocity, salinity, and the temperature as a function of depth.

  3. Japanese Whaling Ships' Sea Surface Temperatures 1946-84.

    NASA Astrophysics Data System (ADS)

    Mierzejewska, Anna W.; Wu, Zhongxiang; Newell, Reginald E.; Miyashita, Tomio

    1997-03-01

    Japanese whaling ship data, a homogeneous dataset mainly covering the southern high-latitude oceans, may be used to fill in gaps in recent sea surface temperature datasets, contributing a fair number of additional observations in this area. The Japanese whaling ship data are treated separately here for the period 1946-84, and they show no significant temperature changes during this period in the main fishing region of 60°-70°S or in the west Pacific warm pool.

  4. Labrador Sea surface temperature control on the summer weather in the Eastern Europe

    NASA Astrophysics Data System (ADS)

    Gnatiuk, Natalia; Vihma, Timo; Bobylev, Leonid

    2016-04-01

    Many studies have addressed the linkages between the Arctic Amplification and mid-latitude weather patterns. Most of them have focused on the effects of changes in sea ice, terrestrial snow or open ocean SST on the air temperature in selected mid-latitude areas. However, when analysing such potential linkages, one should be aware that from the point of view of the atmosphere it is almost the same whether the thermal forcing originates from the sea ice melt, snowmelt, or changes in SST. Most important is to quantify how the atmosphere responds to anomalies in the surface temperature and then affects weather patterns in remote areas. For this purpose, we studied the hemispheric-scale relationships between anomalies in the Northern Hemisphere Earth surface temperature (Ts) and 2-m air temperature (T2m) in mid-latitudes (Central and Eastern Europe). Using regression analyses based on the ERA-Interim reanalysis data, we assessed the said temperature relationships with focus on the lagged monthly and inter-seasonal linkages. Technically we divided the Northern Hemisphere in equal areas with a size of 15x10 degrees and calculated correlation coefficients for the monthly mean temperatures between all defined regions from one side and the Central/East European study regions from another side over the period 1979-2014. Using this approach, we found that the strongest links in the considered kind of relationships take place between spring sea surface temperature in the Labrador Sea and summer air (T2m) temperature in the Eastern Europe. In order to confirm the correlation results obtained, to identify thermal forcing factors and to assess their relative importance, we analysed the multiyear averages and anomalies of various meteorological parameters for 10 coldest and 10 warmest springs and summers in the period 1979-2014: surface pressure, total precipitation, sea-ice and total cloud cover, wind components, surface solar radiation downwards, surface heat fluxes and air

  5. Resilience of a High Latitude Red Sea Frining Corals Exposed to Extreme Temperatures

    NASA Astrophysics Data System (ADS)

    Moustafa, M.; Moustafa, M. S.; Moustafa, S.; Moustafa, Z. D.

    2013-05-01

    Since 2004, multi-year study set out to establish linkages between fringing coral reefs in the northern Gulf of Suez, Red Sea, and local weather. Insight into local meteorological processes may provide a better understanding of the direct influence weather has on a fringing coral reef. To establish trends, seawater temperature and meteorological record were collected at a small fringing coral reef (Zaki's Reef), located near Ein Sokhna, Egypt (29.5oN & 32.4oE). Monitoring air and water temperature provides evidence of seasonality and interannual variability and may reveal correlations between reef health and climate conditions in this region. Prior to this study, there were no known long-term studies investigating coral reefs in this region. Approximately 35 coral taxa are known to survive the extreme temperature and salinity regime found here, yet only six corals compose 94% of coral cover on Zaki's Reef. Dominant corals include: Acropora humilis, A. microclados, A. hemprichii, Litophyton arboretum, Stylophora pistillata, Porites columna, and P. plantulata. Seawater temperatures were collected at 30 minutes intervals at 5 locations. Seawater temperature data indicate that corals experience 4-6.5oC daily temperature variations and seasonal variations that exceed 29oC. Air temperatures were collected just landward of the reef were compared to Hurghada and Ismailia 400 and 200 km south and north of the study site, respectively. Time series analysis results indicate that air temperature dominant frequencies are half-daily, daily, and yearly cycles, while water temperatures show yearly cycles. A comparison of air temperature with neighboring locations indicates that air temperatures at Ein Sokhna ranged between near 0o C to an excess of 55o C, yet, daily means for Ein Sokhna and Hurghada were very similar (24.2o C and. 25.2o C, respectively). Maximum daily air temperatures at the study site exceeded maximum air temperature at Hurghada (400 km south) by almost 7o C

  6. Impacts of Air-Sea Interaction on Tropical Cyclone Track and Intensity

    NASA Technical Reports Server (NTRS)

    Wu, Liguang; Wang, Bin; Braun, Scott A.

    2004-01-01

    The influence of hurricane-ocean coupling on intensity and track of tropical cyclones (TCs) is investigated through idealized numerical experiments using a coupled hurricane-ocean model. The focus is placed on how air-sea interaction affects TC tracks and intensity. It is found that the symmetric sea surface temperature (SST) cooling is primarily responsible for the TC weakening in the coupled experiments because the induced asymmetric circulation associated with the asymmetric SST anomalies is weak and shallow. The track difference between the coupled and fixed SST experiments is generally small because of the competing processes. One is associated with the modified TC asymmetries. The asymmetric SST anomalies - weaken the surface fluxes in the rear and enhance the fluxes in the front. As a result, the enhanced diabatic heating is located on the southern side for a westward-moving TC, tending to shift the TC southward. The symmetric SST anomalies weakens the TC intensity and thus the dymmetrization process, leading to more prominent TC asymmetries. The other is associated with the weakening of the beta drift resulting from the weakening of the TC outer strength. In the coupled experiment, the weakening of the beta drift leads to a more northward shift. By adjusting the vortex outer strength of the initial vortices, the beta drift can vary while the effect of air-sea interaction changes little. Two types of track differences simulated in the previous numerical studies are obtained.

  7. Tidal mixing signatures in the Indonesian seas from high-resolution sea surface temperature data

    NASA Astrophysics Data System (ADS)

    Ray, Richard D.; Susanto, R. Dwi

    2016-08-01

    The presence of significant tidal mixing in the Indonesian seas is well established from both observations and numerical modeling. One indicator is a clear spring-neap cycle in satellite sea surface temperature (SST) measurements, as first shown by Ffield and Gordon. Their early results are here updated with SST data of considerably higher spatial and temporal resolution. The largest fortnightly signals are found to be localized to relatively small straits, channels, and sills, while the deep basin of the Banda Sea displays little significant signal. A broader region of somewhat enhanced signal surrounds the Seram Sea. The high resolution of the modern SST data is especially critical for mapping the complex fortnightly signals that arise in, and especially south of, the major straits of the Lesser Sunda Island chain.

  8. Changes in sea-ice cover and temperature in the Western Ross Sea during the Holocene

    NASA Astrophysics Data System (ADS)

    Fleury, Sophie; Kim, Jung-Hyun; Gal, Jong-Ku; Mezgec, Karin; Belt, Simon; Smik, Lukas; Stenni, Barbara; Melis, Romana; Crosta, Xavier; Shin, Kyung-Hoon

    2016-04-01

    Although changes in sea-ice cover contribute to global climatic variations, they are poorly constrained for periods earlier than the last decades. More records are especially required around Antarctica, where the formation of Antarctic Bottom Waters participates to global thermohaline circulation. However, this region provided only a few marine sediment cores spanning the entire Holocene, especially because of generally low sedimentation rates. This study focuses on marine sediment core ANTA99-CJ5 (73°49'S; 175°39'E), located in the open sea ice zone (OSIZ) of the western Ross Sea. We analyzed several lipid biomarkers: highly branched isoprenoids (HBIs), sterols, diols and GDGTs. The combination of several biomarkers and the comparison of these results with a diatom record previously published on the same core enabled us to trace past changes in temperatures as well as in sea-ice condition over the last 11,600 years.

  9. Prediction of sea surface temperatures in the western Mediterranean Sea by neural networks using satellite observations

    NASA Astrophysics Data System (ADS)

    Garcia-Gorriz, Elisa; Garcia-Sanchez, Joan

    2007-06-01

    We use artificial neural networks (ANNs) to predict sea surface temperatures (SSTs) in the western Mediterranean Sea. The ANNs are trained with meteorological variables as input and concurrent satellite-derived SSTs as target. The trained ANNs predict well both the seasonal and the interannual variability of SST in that region. We also reproduce the impact of the heat wave that occurred during the summer of 2003 on the SSTs of the western Mediterranean Sea. The ANN technique allows us to predict SST maps in the western Alboran Sea for time coordinates before SST satellite availability. The presence and later partial collapse of the western Alboran gyre throughout 1980 is detected with good agreement by both the ANN predictions and the concurrent results from a 3-D circulation model. The same methodology is used to reconstruct incomplete SST satellite images.

  10. Sea surface temperature modelling in the Sea of Iroise: assessment of boundary conditions

    NASA Astrophysics Data System (ADS)

    Guillou, Nicolas; Chapalain, Georges; Duvieilbourg, Eric

    2013-07-01

    The present study investigates the sensitivity of the COupled Hydrodynamical-Ecological model for REgioNal and Shelf seas (COHERENS) to predict sea surface temperature (SST) patterns in the Sea of Iroise (western end of French Brittany) in relation to the spatial and temporal resolutions of open boundary conditions (OBCs). Two sources of daily operational OBCs of temperature are considered, derived from (1) the Mercator Global Ocean and (2) the Iberian Biscay Irish analysis and forecasting systems delivering predictions at spatial resolutions of 1/12° and 1/36°, respectively. Coastal model performance is evaluated by comparing SST predictions with recently available field data collected (1) along the route of a vessel travelling between the coast and the isle of Ushant and (2) at two offshore stations. The comparison is extended to SST spatial distribution derived from remote-sensing observations. The influence of OBC spatial resolution is exhibited in the north-eastern area of the Sea of Iroise in relation to the intrusion of cold surface waters. OBC temporal resolution is found to have a lower impact advocating for the implementation of climatological temperature forcings to predict major SST patterns in the Sea of Iroise.

  11. Sea surface temperature of the coastal zones of France

    NASA Technical Reports Server (NTRS)

    Deschamps, P. Y.; Crepon, M.; Monget, J. M.; Verger, F. (Principal Investigator); Frouin, R.; Cassanet, J.; Wald, L.

    1982-01-01

    Thermal gradients in French coastal zones for the period of one year were mapped in order to enable a coherent study of certain oceanic features detectable by the variations in the sea surface temperature field and their evolution in time. The phenomena examined were mesoscale thermal features in the English Channel, the Bay of Biscay, and the northwestern Mediterranean; thermal gradients generated by French estuary systems; and diurnal heating in the sea surface layer. The investigation was based on Heat Capacity Mapping Mission imagery.

  12. An Arctic Sea Surface Temperature Climate Data Record

    NASA Astrophysics Data System (ADS)

    Høyer, Jacob L.; Howe, Eva; Tonboe, Rasmus; Dybkjaer, Gorm

    2013-12-01

    Daily fields of gap-free sea surface temperature observations from 1982 to 2010 have been constructed using the DMI_OI processing method, satellite SST observations from the ARC and Pathfinder projects, together with OSI-SAF sea ice reanalysis and ICOADS 2.5 observations. A thorough validation of the data set shows the overall performance with biases within 0.1 oC and standard deviations about 0.6oC. The spatial and temporal validation shows small biases, with no apparent structures, except within the Marginal Ice Zone. Examples on regional SST time series are given, where the decadal warming is evident.

  13. Atmospheric response to variations in sea surface temperature

    NASA Technical Reports Server (NTRS)

    Spar, J.; Atlas, R.

    1974-01-01

    An extended range prediction experiment was performed with the GISS atmospheric model on a global data to test the sensitivity of the model to sea surface temperature (SST) variation over a two-week forecast period. The use of an initial observed SST field in place of the climatological monthly mean sea temperatures for surface flux calculations in the model was found to have a significant effect on the predicted precipitation over the ocean, with enhanced convection computed over areas where moderately large warm SST anomalies are found. However, there was no detectable positive effect of the SST anomaly field on forecast quality. The influence of the SST anomalies on the daily predicted fields of pressure and geopotential is relatively insignificant up to about one week compared with the growth of prediction error, and is no greater over a two-week period than that resulting from random errors in the initial meteorological state. The 14-day average fields of sea level pressure and 500-mb height predicted by the model, appear to be similarly insensitive to anomalies of sea surface temperature.

  14. Honeybee flight metabolic rate: does it depend upon air temperature?

    PubMed

    Woods, William A; Heinrich, Bernd; Stevenson, Robert D

    2005-03-01

    Differing conclusions have been reached as to how or whether varying heat production has a thermoregulatory function in flying honeybees Apis mellifera. We investigated the effects of air temperature on flight metabolic rate, water loss, wingbeat frequency, body segment temperatures and behavior of honeybees flying in transparent containment outdoors. For periods of voluntary, uninterrupted, self-sustaining flight, metabolic rate was independent of air temperature between 19 and 37 degrees C. Thorax temperatures (T(th)) were very stable, with a slope of thorax temperature on air temperature of 0.18. Evaporative heat loss increased from 51 mW g(-1) at 25 degrees C to 158 mW g(-1) at 37 degrees C and appeared to account for head and abdomen temperature excess falling sharply over the same air temperature range. As air temperature increased from 19 to 37 degrees C, wingbeat frequency showed a slight but significant increase, and metabolic expenditure per wingbeat showed a corresponding slight but significant decrease. Bees spent an average of 52% of the measurement period in flight, with 19 of 78 bees sustaining uninterrupted voluntary flight for periods of >1 min. The fraction of time spent flying declined as air temperature increased. As the fraction of time spent flying decreased, the slope of metabolic rate on air temperature became more steeply negative, and was significant for bees flying less than 80% of the time. In a separate experiment, there was a significant inverse relationship of metabolic rate and air temperature for bees requiring frequent or constant agitation to remain airborne, but no dependence for bees that flew with little or no agitation; bees were less likely to require agitation during outdoor than indoor measurements. A recent hypothesis explaining differences between studies in the slope of flight metabolic rate on air temperature in terms of differences in metabolic capacity and thorax temperature is supported for honeybees in voluntary

  15. Ciguatera fish poisoning and sea surface temperatures in the Caribbean Sea and the West Indies.

    PubMed

    Tester, Patricia A; Feldman, Rebecca L; Nau, Amy W; Kibler, Steven R; Wayne Litaker, R

    2010-10-01

    Ciguatera fish poisoning (CFP) is a circumtropical disease caused by ingestion of a variety of reef fish that bioaccumulate algal toxins. Distribution and abundance of the organisms that produce these toxins, chiefly dinoflagellates of the genus Gambierdiscus, are reported to correlate positively with water temperature. Consequently, there is growing concern that increasing temperatures associated with climate change could increase the incidence of CFP. This concern prompted experiments on the growth rates of six Gambierdiscus species at temperatures between 18 degrees C and 33 degrees C and the examination of sea surface temperatures in the Caribbean and West Indies for areas that could sustain rapid Gambierdiscus growth rates year-round. The thermal optimum for five of six Gambierdiscus species tested was >/=29 degrees C. Long-term SST data from the southern Gulf of Mexico indicate the number of days with sea surface temperatures >/=29 degrees C has nearly doubled (44 to 86) in the last three decades. To determine how the sea surface temperatures and Gambierdiscus growth data correlate with CFP incidences in the Caribbean, a literature review and a uniform, region-wide survey (1996-2006) of CFP cases were conducted. The highest CFP incidence rates were in the eastern Caribbean where water temperatures are warmest and least variable.

  16. Air-sea carbon dioxide exchange in the Southern Ocean and Antarctic Sea ice zone

    NASA Astrophysics Data System (ADS)

    Butterworth, Brian J.

    The Southern Ocean is an important part of the global carbon cycle, responsible for roughly half of the carbon dioxide (CO2) absorbed by the global ocean. The air-sea CO2 flux (Fc) can be expressed as the product of the water-air CO2 partial pressure difference (DeltapCO2) and the gas transfer velocity ( k), an exchange coefficient which represents the efficiency of gas exchange. Generally, Fc is negative (a sink) throughout the Southern Ocean and Antarctic sea ice zone (SIZ), but uncertainty in k has made it difficult to develop an accurate regional carbon budget. Constraining the functional dependence of k on wind speed in open water environments, and quantifying the effect of sea ice on k, will reduce uncertainty in the estimated contribution of the Southern Ocean and Antarctic SIZ to the global carbon cycle. To investigate Fc in the Southern Ocean, a ruggedized, unattended, closed-path eddy covariance (EC) system was deployed on the Antarctic research vessel Nathaniel B. Palmer for nine cruises during 18 months from January 2013 to June 2014 in the Southern Ocean and coastal Antarctica. The methods are described and results are shown for two cruises chosen for their latitudinal range, inclusion of open water and sea ice cover, and large DeltapCO2. The results indicated that ship-based unattended EC measurements in high latitudes are feasible, and recommendations for deployments in such environments were provided. Measurements of Fc and DeltapCO2 were used to compute k. The open water data showed a quadratic relationship between k (cm hr-1) and the neutral 10-m wind speed (U10n, m s -1), k=0.245 U10n 2+1.3, in close agreement with tracer-based results and much lower than previous EC studies. In the SIZ, it was found that k decreased in proportion to sea ice cover. This contrasted findings of enhanced Fc in the SIZ by previous open-path EC campaigns. Using the NBP results a net annual Southern Ocean (ocean south of 30°S) carbon flux of -1.1 PgC yr-1 was

  17. Multi-Satellite Characterization of Interannual Variation in Primary Production and Air-Sea CO2 Flux in the Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Arrigo, K. R.

    2005-12-01

    The Ross Sea is the most productive sector of the Southern Ocean, the largest of the three iron limited HNLC regions. This productivity supports a rich upper trophic level community, including large numbers of penguins, seals, and whales. It also represents a large sink for atmospheric CO2. Since the advent of ocean color remote sensing using satellites such as CZCS, SeaWiFS, and MODIS, it has become increasingly clear that productivity in the Ross Sea is also characterized by a great deal of interannual variability. Passive microwave data from the Special Sensor Microwave/Imager show that distributions of sea ice within the Ross Sea vary markedly from year to year, with some years experiencing nearly ice-free springtime conditions while others remain nearly ice covered. This extreme variability in sea ice cover is due to changes in climate state as well as some unusual events specific to the Ross Sea, such as the calving of two enormous icebergs, one in 2000 and the other in 2002. Variation in ice cover during austral spring and summer impacts the growth of the phytoplankton community, whose cumulative rate of annual primary production ranges widely, from <10 Tg C in 2002-03 to almost 40 Tg C in 1999-00. When these satellite data are used in conjunction with a three-dimensional ocean ecosystem model of the Ross Sea, the calculated air-sea fluxes of CO2 are even more variable, varying over 50-fold between 1997 and 2004. Not surprisingly, the lowest atmospheric flux of CO2 into the surface waters of the Ross Sea (0.10 Tg C) is associated with the year having the lowest primary production and highest sea ice cover. The extreme sensitivity of rates of primary production and particularly air-sea CO2 fluxes to changes in sea ice distribution in the Southern Ocean suggest that this region may undergo dramatic changes if global temperatures continue to rise, as they have in the vicinity of the Antarctic Peninsula.

  18. Sea-air carbon dioxide fluxes along 35°S in the South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Lencina-Avila, J. M.; Ito, R. G.; Garcia, C. A. E.; Tavano, V. M.

    2016-09-01

    The oceans play an important role in absorbing a significant fraction of the atmospheric CO2 surplus, but there are still uncertainties concerning several open ocean regions, such as the under-sampled South Atlantic Ocean. This study assessed the net sea-air CO2 fluxes and distribution of sea-surface CO2 fugacity (f C O2sw) along the 35°S latitude in the South Atlantic, during 2011 spring and early summer periods. Underway CO2 molar fraction, temperature, salinity and dissolved oxygen measurements were taken continuously from South American to South African continental shelves. Values of both satellite and discrete in situ chlorophyll-a concentration along the ship's track were used as ancillary data. Both f C O2sw and difference in sea-air fugacity (ΔfCO2) showed high variability along the cruise track, with higher values found on the continental shelf and slope regions. All ΔfCO2 values were negative, implying that a sinking process was occurring during the cruise period, with an average net CO2 flux of -3.1±2.2 mmol CO2 m-2 day-1 (using Wanninkhof, 1992). Physical variables were the main drivers of f C O2sw variability in South American continental shelf and open ocean regions, while the biological factor dominated the South African continental shelf. Algorithms for estimating fCO2 and temperature-normalized fCO2 were developed and applied separately to the three defined sub-regions: the South American shelf, the open ocean and the South African continental shelf, with the regional temperature-normalized fCO2 models showing better results.

  19. Sea-level and deep-sea-temperature variability over the past 5.3 million years.

    PubMed

    Rohling, E J; Foster, G L; Grant, K M; Marino, G; Roberts, A P; Tamisiea, M E; Williams, F

    2014-04-24

    Ice volume (and hence sea level) and deep-sea temperature are key measures of global climate change. Sea level has been documented using several independent methods over the past 0.5 million years (Myr). Older periods, however, lack such independent validation; all existing records are related to deep-sea oxygen isotope (δ(18)O) data that are influenced by processes unrelated to sea level. For deep-sea temperature, only one continuous high-resolution (Mg/Ca-based) record exists, with related sea-level estimates, spanning the past 1.5 Myr. Here we present a novel sea-level reconstruction, with associated estimates of deep-sea temperature, which independently validates the previous 0-1.5 Myr reconstruction and extends it back to 5.3 Myr ago. We find that deep-sea temperature and sea level generally decreased through time, but distinctly out of synchrony, which is remarkable given the importance of ice-albedo feedbacks on the radiative forcing of climate. In particular, we observe a large temporal offset during the onset of Plio-Pleistocene ice ages, between a marked cooling step at 2.73 Myr ago and the first major glaciation at 2.15 Myr ago. Last, we tentatively infer that ice sheets may have grown largest during glacials with more modest reductions in deep-sea temperature.

  20. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

  1. On model differences and skill in predicting sea surface temperature in the Nordic and Barents Seas

    NASA Astrophysics Data System (ADS)

    Langehaug, H. R.; Matei, D.; Eldevik, T.; Lohmann, K.; Gao, Y.

    2017-02-01

    The Nordic Seas and the Barents Sea is the Atlantic Ocean's gateway to the Arctic Ocean, and the Gulf Stream's northern extension brings large amounts of heat into this region and modulates climate in northwestern Europe. We have investigated the predictive skill of initialized hindcast simulations performed with three state-of-the-art climate prediction models within the CMIP5-framework, focusing on sea surface temperature (SST) in the Nordic Seas and Barents Sea, but also on sea ice extent, and the subpolar North Atlantic upstream. The hindcasts are compared with observation-based SST for the period 1961-2010. All models have significant predictive skill in specific regions at certain lead times. However, among the three models there is little consistency concerning which regions that display predictive skill and at what lead times. For instance, in the eastern Nordic Seas, only one model has significant skill in predicting observed SST variability at longer lead times (7-10 years). This region is of particular promise in terms of predictability, as observed thermohaline anomalies progress from the subpolar North Atlantic to the Fram Strait within the time frame of a couple of years. In the same model, predictive skill appears to move northward along a similar route as forecast time progresses. We attribute this to the northward advection of SST anomalies, contributing to skill at longer lead times in the eastern Nordic Seas. The skill at these lead times in particular beats that of persistence forecast, again indicating the potential role of ocean circulation as a source for skill. Furthermore, we discuss possible explanations for the difference in skill among models, such as different model resolutions, initialization techniques, and model climatologies and variance.

  2. Imaging air volume fraction in sea ice using non-destructive X-ray tomography

    NASA Astrophysics Data System (ADS)

    Crabeck, O.; Galley, R. J.; Delille, B.; Else, B. G. T.; Geilfus, N.-X.; Lemes, M.; Des Roches, M.; Francus, P.; Tison, J.-L.; Rysgaard, S.

    2015-09-01

    Although the presence of a gas phase in sea ice creates the potential for gas exchange with the atmosphere, the distribution of gas bubbles and transport of gases within the sea ice are still poorly understood. Currently no straightforward technique exists to measure the vertical distribution of air volume fraction in sea ice. Here, we present a new fast and non-destructive X-ray computed tomography technique to quantify the air volume fraction and produce separate 3-D images of air-volume inclusions in sea ice. The technique was performed on relatively thin (4-22 cm) sea ice collected from an experimental ice tank. While most of the internal layers showed air-volume fractions < 2 %, the ice-air interface (top 2 cm) systematically showed values up to 5 %. We suggest that the air volume fraction is a function of both the bulk ice gas saturation factor and the size of the brine channel. We differentiate micro bubbles (∅ < 1 mm), large bubbles (1 < ∅ < 5 mm) and macro bubbles (∅ > 5 mm). While micro bubbles were the most abundant type of air inclusions, most of the air porosity observed resulted from the presence of large and macro bubbles. The ice microstructure (granular and columnar) as well as the permeability state of ice are important factors controlling the air volume fraction. The technique developed is suited for studies related to gas transport and bubble migration and can help considerably improving parameterization of these processes in sea ice biogeochemical models.

  3. Natural and forced air temperature variability in the Labrador region of Canada during the past century

    NASA Astrophysics Data System (ADS)

    Way, Robert G.; Viau, Andre E.

    2015-08-01

    Evaluation of Labrador air temperatures over the past century (1881-2011) shows multi-scale climate variability and strong linkages with ocean-atmospheric modes of variability and external forcings. The Arctic Oscillation, Atlantic Multidecadal Oscillation, and El Nino Southern Oscillation are shown to be the dominant seasonal and interannual drivers of regional air temperature variability for most of the past century. Several global climate models show disagreement with observations on the rate of recent warming which suggests that models are currently unable to reproduce regional climate variability in Labrador air temperature. Using a combination of empirical statistical modeling and global climate models, we show that 33 % of the variability in annual Labrador air temperatures over the period 1881-2011 can be explained by natural factors alone; however, the inclusion of anthropogenic forcing increases the explained variance to 65 %. Rapid warming over the past 17 years is shown to be linked to both natural and anthropogenic factors with several anomalously warm years being primarily linked to recent anomalies in the Arctic Oscillation and North Atlantic sea surface temperatures. Evidence is also presented that both empirical statistical models and global climate models underestimate the regional air temperature response to ocean salinity anomalies and volcanic eruptions. These results provide important insight into the predictability of future regional climate impacts for the Labrador region.

  4. Annual and seasonal fCO2 and air-sea CO2 fluxes in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Lauvset, S. K.; Chierici, M.; Counillon, F.; Omar, A.; Nondal, G.; Johannessen, T.; Olsen, A.

    2013-03-01

    The Barents Sea is the strongest CO2 sink in the Arctic region, yet estimates of the air-sea CO2 flux in this area show a large span reflecting uncertainty as well as significant variability both seasonally and regionally. Here we use a previously unpublished data set of seawater CO2 fugacity (fCO2), and map these data over the western Barents Sea through multivariable linear regressions with SeaWiFS/MODIS remote sensing and TOPAZ model data fields. We find that two algorithms are necessary in order to cover the full seasonal cycle, mainly because not all proxy variables are available for the entire year, and because variability in fCO2 is driven by different mechanisms in summer and winter. A comprehensive skill assessment indicates that there is a good overall correspondence between observations and predictions. The algorithms are also validated using two independent data sets, with good results. The gridded fCO2 fields reveal tight links between water mass distribution and fCO2 in all months, and particularly in winter. The seasonal cycle show peaks in the total air-sea CO2 influx in May and September, caused by respectively biological drawdown of CO2 and low sea ice concentration leaving a large open water area. For 2007 the annual average air-sea CO2 flux is - 48 ± 5 gC m- 2, which is comparable to previous estimates.

  5. Sea surface carbon dioxide at the Georgia time series site (2006-2007): Air-sea flux and controlling processes

    NASA Astrophysics Data System (ADS)

    Xue, Liang; Cai, Wei-Jun; Hu, Xinping; Sabine, Christopher; Jones, Stacy; Sutton, Adrienne J.; Jiang, Li-Qing; Reimer, Janet J.

    2016-01-01

    Carbon dioxide partial pressure (pCO2) in surface seawater was continuously recorded every three hours from 18 July 2006 through 31 October 2007 using a moored autonomous pCO2 (MAPCO2) system deployed on the Gray's Reef buoy off the coast of Georgia, USA. Surface water pCO2 (average 373 ± 52 μatm) showed a clear seasonal pattern, undersaturated with respect to the atmosphere in cold months and generally oversaturated in warm months. High temporal resolution observations revealed important events not captured in previous ship-based observations, such as sporadically occurring biological CO2 uptake during April-June 2007. In addition to a qualitative analysis of the primary drivers of pCO2 variability based on property regressions, we quantified contributions of temperature, air-sea exchange, mixing, and biological processes to monthly pCO2 variations using a 1-D mass budget model. Although temperature played a dominant role in the annual cycle of pCO2, river inputs especially in the wet season, biological respiration in peak summer, and biological production during April-June 2007 also substantially influenced seawater pCO2. Furthermore, sea surface pCO2 was higher in September-October 2007 than in September-October 2006, associated with increased river inputs in fall 2007. On an annual basis this site was a moderate atmospheric CO2 sink, and was autotrophic as revealed by monthly mean net community production (NCP) in the mixed layer. If the sporadic short productive events during April-May 2007 were missed by the sampling schedule, one would conclude erroneously that the site is heterotrophic. While previous ship-based pCO2 data collected around this buoy site agreed with the buoy CO2 data on seasonal scales, high resolution buoy observations revealed that the cruise-based surveys undersampled temporal variability in coastal waters, which could greatly bias the estimates of air-sea CO2 fluxes or annual NCP, and even produce contradictory results.

  6. Satellite-Derived Sea Surface Temperature: Workshop 1

    NASA Technical Reports Server (NTRS)

    Njoku, E. G.

    1983-01-01

    Satellite measurements of sea surface temperature are now possible using a variety of sensors. The present accuracies of these methods are in the range of 0.5 to 2.0 C. This makes them potentially useful for synoptic studies of ocean currents and for global monitoring of climatological anomalies. To improve confidence in the satellite data, objective evaluations of sensor accuracies are necessary, and the conditions under which these accuracies degrade need to be understood. The Scanning Multichannel Microwave Radiometer (SMMR) on the Nimbus-7 satellite was studied. Sea surface temperatures, derived from November 1979 SMMR data, were compared globally against ship measurements and climatology, using facilities of the JPL Pilot Ocean Data System. Methods for improved data analysis and plans for additional workshops to incorporate data from other sensors were discussed.

  7. Satellite-Derived Sea Surface Temperature: Workshop-2

    NASA Technical Reports Server (NTRS)

    Njoku, E. G.

    1984-01-01

    Global accuracies and error characteristics of presently orbiting satellite sensors are examined. The workshops are intended to lead to a better understanding of present capabilities for sea surface temperature measurement and to improve measurement concepts for the future. Data from the Advanced Very High Resolution Radiometer AVHRR and Scanning Multichannel Microwave Radiometer is emphasized. Some data from the High Resolution Infrared Sounder HIRS and AVHRR are also examined. Comparisons of satellite data with ship and eXpendable BathyThermograph XBT measurement show standard deviations in the range 0.5 to 1.3 C with biases of less than 0.4 C, depending on the sensor, ocean region, and spatial/temporal averaging. The Sea Surface Temperature SST anomaly maps show good agreement in some cases, but a number of sensor related problems are identified.

  8. Multiyear predictability of Northern Hemisphere surface air temperature in the Kiel Climate Model

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Latif, M.; Park, W.

    2016-08-01

    The multiyear predictability of Northern Hemisphere surface air temperature (SAT) is examined in a multi-millennial control integration of the Kiel Climate Model, a coupled ocean-atmosphere-sea ice general circulation model. A statistical method maximizing average predictability time (APT) is used to identify the most predictable SAT patterns in the model. The two leading APT modes are much localized and the physics are discussed that give rise to the enhanced predictability of SAT in these limited regions. Multiyear SAT predictability exists near the sea ice margin in the North Atlantic and mid-latitude North Pacific sector. Enhanced predictability in the North Atlantic is linked to the Atlantic Multidecadal Oscillation and to the sea ice changes. In the North Pacific, the most predictable SAT pattern is characterized by a zonal band in the western and central mid-latitude Pacific. This pattern is linked to the Pacific Decadal Oscillation, which drives sea surface temperature anomalies. The temperature anomalies subduct into deeper ocean layers and re-emerge at the sea surface during the following winters, providing multiyear memory. Results obtained from the Coupled Model Intercomparison Project Phase 5 ensemble yield similar APT modes. Overall, the results stress the importance of ocean dynamics in enhancing predictability in the atmosphere.

  9. Sea-surface temperature and salinity mapping from remote microwave radiometric measurements of brightness temperature

    NASA Technical Reports Server (NTRS)

    Hans-Juergen, C. B.; Kendall, B. M.; Fedors, J. C.

    1977-01-01

    A technique to measure remotely sea surface temperature and salinity was demonstrated with a dual frequency microwave radiometer system. Accuracies in temperature of 1 C and in salinity of part thousand for salinity greater than 5 parts per thousand were attained after correcting for the influence of extraterrestrial background radiation, atmospheric radiation and attenuation, sea-surface roughness, and antenna beamwidth. The radiometers, operating at 1.43 and 2.65 GHz, comprise a third-generation system using null balancing and feedback noise injection. Flight measurements from an aircraft at an altitude of 1.4 km over the lower Chesapeake Bay and coastal areas of the Atlantic Ocean resulted in contour maps of sea-surface temperature and salinity with a spatial resolution of 0.5 km.

  10. Assimilation of sea surface temperature, sea ice concentration and sea ice drift in a model of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Barth, Alexander; Canter, Martin; Van Schaeybroeck, Bert; Vannitsem, Stéphane; Massonnet, François; Zunz, Violette; Mathiot, Pierre; Alvera-Azcárate, Aida; Beckers, Jean-Marie

    2015-09-01

    Current ocean models have relatively large errors and biases in the Southern Ocean. The aim of this study is to provide a reanalysis from 1985 to 2006 assimilating sea surface temperature, sea ice concentration and sea ice drift. In the following it is also shown how surface winds in the Southern Ocean can be improved using sea ice drift estimated from infrared radiometers. Such satellite observations are available since the late seventies and have the potential to improve the wind forcing before more direct measurements of winds over the ocean are available using scatterometry in the late nineties. The model results are compared to the assimilated data and to independent measurements (the World Ocean Database 2009 and the mean dynamic topography based on observations). The overall improvement of the assimilation is quantified, in particular the impact of the assimilation on the representation of the polar front is discussed. Finally a method to identify model errors in the Antarctic sea ice area is proposed based on Model Output Statistics techniques using a series of potential predictors. This approach provides new directions for model improvements.

  11. Assimilation of sea surface temperature, sea ice concentration and sea ice drift in a model of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Barth, Alexander; Canter, Martin; Van Schaeybroeck, Bert; Vannitsem, Stéphane; Massonnet, François; Zunz, Violette; Mathiot, Pierre; Alvera-Azcárate, Aida; Beckers, Jean-Marie

    2015-04-01

    Current ocean models have relatively large errors and biases in the Southern Ocean. The aim of this study is to provide a reanalysis from 1985 to 2006 assimilating sea surface temperature, sea ice concentration and sea ice drift. In the following it is also shown how surface winds in the Southern Ocean can be improved using sea ice drift estimated from infrared radiometers. Such satellite observations are available since the late seventies and have the potential to improve the wind forcing before more direct measurements of winds over the ocean are available using scatterometry in the late nineties. The model results are compared to the assimilated data and to independent measurements (the World Ocean Database 2009 and the mean dynamic topography based on observations). The overall improvement of the assimilation is quantified, in particular the impact of the assimilation on the representation of the polar front is discussed. Finally a method to identify model errors in the Antarctic sea ice area is proposed based on Model Output Statistics techniques using a series of potential predictors. This approach provides new directions for model improvements.

  12. The role of sea spray in cleansing air pollution over ocean via cloud processes.

    PubMed

    Rosenfeld, Daniel; Lahav, Ronen; Khain, Alexander; Pinsky, Mark

    2002-09-06

    Particulate air pollution has been shown to strongly suppress precipitation from convective clouds over land. New observations show that precipitation from similar polluted clouds over oceans is much less affected, because large sea salt nuclei override the precipitation suppression effect of the large number of small pollution nuclei. Raindrops initiated by the sea salt grow by collecting small cloud droplets that form on the pollution particles, thereby cleansing the air. Therefore, sea salt helps cleanse the atmosphere of the air pollution via cloud processes. This implies that over oceans, the climatic aerosol indirect effects are significantly smaller than current estimates.

  13. Improvement of the GEOS-5 AGCM upon Updating the Air-Sea Roughness Parameterization

    NASA Technical Reports Server (NTRS)

    Garfinkel, C. I.; Molod, A.; Oman, L. D.; Song, I.-S.

    2011-01-01

    The impact of an air-sea roughness parameterization over the ocean that more closely matches recent observations of air-sea exchange is examined in the NASA Goddard Earth Observing System, version 5 (GEOS-5) atmospheric general circulation model. Surface wind biases in the GEOS-5 AGCM are decreased by up to 1.2m/s. The new parameterization also has implications aloft as improvements extend into the stratosphere. Many other GCMs (both for operational weather forecasting and climate) use a similar class of parameterization for their air-sea roughness scheme. We therefore expect that results from GEOS-5 are relevant to other models as well.

  14. Sea surface temperature and salinity seasonal changes in the western Solomon and Bismarck Seas

    NASA Astrophysics Data System (ADS)

    Delcroix, Thierry; Radenac, Marie-Hélène; Cravatte, Sophie; Alory, Gaël.; Gourdeau, Lionel; Léger, Fabien; Singh, Awnesh; Varillon, David

    2014-04-01

    We analyze mean and seasonal change of Sea Surface Temperature (SST) and Salinity (SSS) in the Solomon and Bismarck Seas, using 1977-2009 in situ data collected from Voluntary Observing Ships. Covariability of these two variables with surface wind, altimeter-derived and model-derived horizontal currents, precipitation, and Sepik River discharge are examined. SST and SSS show large annual oscillations in the Solomon Sea, with the coldest and saltiest waters occurring in July/August mainly due to horizontal advection. In contrast, they show large semiannual oscillations in the Bismarck Sea. There, the coldest and saltiest waters happen in January/February, when the northwest monsoon winds drive coastal upwelling, and in July/August, when the New Guinea Coastal Current advects cold and high-salinity waters from the Solomon Sea through Vitiaz Strait. The low SSS values observed in April/May, stuck between the January/February and July/August SSS maxima, are further enhanced by the Sepik River discharge annual maximum. A high-resolution model strengthens the conclusions we derive from observations. The impacts of ENSO on SST and SSS are also discussed with, for instance, saltier-than-average and fresher-than-average waters during the 2002-2003 El Niño and 2007-2008 La Niña, respectively.

  15. Sea-cave temperature measurements and amino acid geochronology of British Late Pleistocene Sea stands

    USGS Publications Warehouse

    Hollin, John T.; Smith, Franklin L.; Renouf, John T.; Jenkins, D. Graham

    1993-01-01

    ‘Calibrating’ amino acid ratios with uranium-series dates requires an accurate knowledge of current mean annual temperatures (CMATs) over the region studied. To measure these, test-tube sized ‘diffusion sensors’ were emplaced for 1 year (in 1984, 1985 and 1986), both outside and inside Minchin Hole sea-cave in South Wales and Belle Hougue sea-cave in Jersey, both of which have yielded Oxygen Isotope Substage 5e uranium-series ages on speleothems. Our outside temperatures agreed with meteorological ones. Our inside temperatures were over 1°C lower. To allow for this, a mean of ‘empirical’, ‘linear’ and ‘parabolic’ epimerisation calculations suggests that ratios from molluscs inside the caves should be multiplied by over 1.1 for comparison with outside ratios. This raises Bowen et al.'s ‘Pennard’ stage ratios from inside Minchin (and Bacon) Hole up towards the ‘Unnamed’ stage ratios outside, and suggests that the Unnamed sites are also from Oxygen Isotope Substage 5e, as proposed by Proctor and Smart. The same conclusion is reached more strongly by comparisons with the ratios and temperatures inside Belle Hougue to the south, and at Eemian (assumed 5e) sites in The Netherlands, Germany and Denmark to the east. The Pennard ratios from outside sites may provide further evidence for global sea stands close to the present level later in Oxygen Isotope Stage 5.

  16. Comparison of MODIS Land Surface Temperature and Air Temperature over the Continental USA Meteorological Stations

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Bounoua, Lahouari; Imhoff, Marc L.; Wolfe, Robert E.; Thome, Kurtis

    2014-01-01

    The National Land Cover Database (NLCD) Impervious Surface Area (ISA) and MODIS Land Surface Temperature (LST) are used in a spatial analysis to assess the surface-temperature-based urban heat island's (UHIS) signature on LST amplitude over the continental USA and to make comparisons to local air temperatures. Air-temperature-based UHIs (UHIA), calculated using the Global Historical Climatology Network (GHCN) daily air temperatures, are compared with UHIS for urban areas in different biomes during different seasons. NLCD ISA is used to define urban and rural temperatures and to stratify the sampling for LST and air temperatures. We find that the MODIS LST agrees well with observed air temperature during the nighttime, but tends to overestimate it during the daytime, especially during summer and in nonforested areas. The minimum air temperature analyses show that UHIs in forests have an average UHIA of 1 C during the summer. The UHIS, calculated from nighttime LST, has similar magnitude of 1-2 C. By contrast, the LSTs show a midday summer UHIS of 3-4 C for cities in forests, whereas the average summer UHIA calculated from maximum air temperature is close to 0 C. In addition, the LSTs and air temperatures difference between 2006 and 2011 are in agreement, albeit with different magnitude.

  17. Radar Remote Sensing of Ice and Sea State and Air-Sea Interaction in the Marginal Ice Zone

    DTIC Science & Technology

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radar Remote Sensing of Ice and Sea State and Air-Sea...Interaction in the Marginal Ice Zone Hans C. Graber RSMAS – Department of Ocean Sciences Center for Southeastern Tropical Advanced Remote Sensing...scattering and attenuation process of ocean waves interacting with ice . A nautical X-band radar on a vessel dedicated to science would be used to follow the

  18. Evaluation of the swell effect on the air-sea gas transfer in the coastal zone

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Loza, Lucía; Ocampo-Torres, Francisco J.

    2016-04-01

    Air-sea gas transfer processes are one of the most important factors regarding global climate and long-term global climate changes. Despite its importance, there is still a huge uncertainty on how to better parametrize these processes in order to include them on the global climate models. This uncertainty exposes the need to increase our knowledge on gas transfer controlling mechanisms. In the coastal regions, breaking waves become a key factor to take into account when estimating gas fluxes, however, there is still a lack of information and the influence of the ocean surface waves on the air-sea interaction and gas flux behavior must be validated. In this study, as part of the "Sea Surface Roughness as Air-Sea Interaction Control" project, we evaluate the effect of the ocean surface waves on the gas exchange in the coastal zone. Direct estimates of the flux of CO2 (FCO2) and water vapor (FH2O) through eddy covariance, were carried out from May 2014 to April 2015 in a coastal station located at the Northwest of Todos Santos Bay, Baja California, México. For the same period, ocean surface waves are recorded using an Acoustic Doppler Current Profiler (Workhorse Sentinel, Teledyne RD Instruments) with a sampling rate of 2 Hz and located at 10 m depth about 350 m away from the tower. We found the study area to be a weak sink of CO2 under moderate wind and wave conditions with a mean flux of -1.32 μmol/m2s. The correlation between the wind speed and FCO2 was found to be weak, suggesting that other physical processes besides wind may be important factors for the gas exchange modulation at coastal waters. The results of the quantile regression analysis computed between FCO2 and (1) wind speed, (2) significant wave height, (3) wave steepness and (4) water temperature, show that the significant wave height is the most correlated parameter with FCO2; Nevertheless, the behavior of their relation varies along the probability distribution of FCO2, with the linear regression

  19. The influence of global sea surface temperature variability on the large-scale land surface temperature

    NASA Astrophysics Data System (ADS)

    Tyrrell, Nicholas L.; Dommenget, Dietmar; Frauen, Claudia; Wales, Scott; Rezny, Mike

    2015-04-01

    In global warming scenarios, global land surface temperatures () warm with greater amplitude than sea surface temperatures (SSTs), leading to a land/sea warming contrast even in equilibrium. Similarly, the interannual variability of is larger than the covariant interannual SST variability, leading to a land/sea contrast in natural variability. This work investigates the land/sea contrast in natural variability based on global observations, coupled general circulation model simulations and idealised atmospheric general circulation model simulations with different SST forcings. The land/sea temperature contrast in interannual variability is found to exist in observations and models to a varying extent in global, tropical and extra-tropical bands. There is agreement between models and observations in the tropics but not the extra-tropics. Causality in the land-sea relationship is explored with modelling experiments forced with prescribed SSTs, where an amplification of the imposed SST variability is seen over land. The amplification of to tropical SST anomalies is due to the enhanced upper level atmospheric warming that corresponds with tropical moist convection over oceans leading to upper level temperature variations that are larger in amplitude than the source SST anomalies. This mechanism is similar to that proposed for explaining the equilibrium global warming land/sea warming contrast. The link of the to the dominant mode of tropical and global interannual climate variability, the El Niño Southern Oscillation (ENSO), is found to be an indirect and delayed connection. ENSO SST variability affects the oceans outside the tropical Pacific, which in turn leads to a further, amplified and delayed response of.

  20. Retrieval of air temperatures from crowd-sourced battery temperatures of cell phones

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James; Leijnse, Hidde; Uijlenhoet, Remko; Steeneveld, Gert-Jan; Horn, Berthold K. P.

    2013-04-01

    Accurate air temperature observations are important for urban meteorology, for example to study the urban heat island and adverse effects of high temperatures on human health. The number of available temperature observations is often relatively limited. A new development is presented to derive temperature information for the urban canopy from an alternative source: cell phones. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. Results are presented for Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree Celsius. This shows that monitoring air temperatures employing an Android application holds great promise. Since 75% of the world's population has a cell phone, 20% of the land surface of the earth has cellular telephone coverage, and 500 million devices use the Android operating system, there is a huge potential for measuring air temperatures employing cell phones. This could eventually lead to real-time world-wide temperature maps.

  1. Flight crew fatigue III: North Sea helicopter air transport operations.

    PubMed

    Gander, P H; Barnes, R M; Gregory, K B; Graeber, R C; Connell, L J; Rosekind, M R

    1998-09-01

    We studied 32 helicopter pilots before, during, and after 4-5 d trips from Aberdeen, Scotland, to service North Sea oil rigs. On duty days, subjects awoke 1.5 h earlier than pretrip or posttrip, after having slept nearly an hour less. Subjective fatigue was greater posttrip than pretrip. By the end of trip days, fatigue was greater and mood more negative than by the end of pretrip days. During trips, daily caffeine consumption increased 42%, reports of headache doubled, reports of back pain increased 12-fold, and reports of burning eyes quadrupled. In the cockpits studied, thermal discomfort and high vibration levels were common. Subjective workload during preflight, taxi, climb, and cruise was related to the crewmembers' ratings of the quality of the aircraft systems. During descent and approach, workload was affected by weather at the landing site. During landing, it was influenced by the quality of the landing site and air traffic control. Beginning duty later, and greater attention to aircraft comfort and maintenance, should reduce fatigue in these operations.

  2. Air pollutant transport in a coastal environment. Part 1: Two-dimensional simulations of sea-breeze and mountain effects

    NASA Technical Reports Server (NTRS)

    Lu, Rong; Turco, Richard P.

    1994-01-01

    Over the southern California coastal region, observations of the vertical distributions of pollutants show that maximum concentrations can occur within temperature inversion layers well above the surface. A mesoscale model is used to study the dynamical phenomena that cause such layers, including sea breezes and mountain flows, and to study the characteristics of air pollutant transport in a coastal environment capped by a temperature inversion. The mathematical and physical structure of the model is described. Two-dimensional simulations corresponding to four configurations of coastal plains and mountains are discussed. The simulations reveal that pollutant transport over a coastal plain is strongly influenced by the topographic configuration, including the height of coastal mountains and their distance from the coastline. Sea breezes induced by land-sea thermal contrasts, as well as upslope winds induced along mountain flanks, both create vertical transport that can lead to the formation of elevated pollution layers. The sea-breeze circulation generates pollution layers by undercutting the mixed layer and lofting pollutants into the stable layer. Heating of mountain slopes acts to vent pollutants above the mountain ridge during the day; during the evening, pollutants can be injected directly into the inversion layer from the decaying upslope flows. In a land-sea configuration with mountains close to the coastline, the sea breeze and heated-mountain flow are strongly coupled. In the afternoon, this interaction can produce upslope flow from which polluted air is detrained into the inversion layer as a return circulation. When the mountains lie farther inland, however, pollutants may be trapped aloft when the mixed layer stabilizes in the late afternoon. As the nocturnal boundary layer forms over the coast in the evening, polluted mixed-layer air is effectively left behind in the inversion layer. In the Los Angeles Basin, the formation mechanism for elevated

  3. A Sensitivity Analysis of the Impact of Rain on Regional and Global Sea-Air Fluxes of CO2

    PubMed Central

    Shutler, J. D.; Land, P. E.; Woolf, D. K.; Quartly, G. D.

    2016-01-01

    The global oceans are considered a major sink of atmospheric carbon dioxide (CO2). Rain is known to alter the physical and chemical conditions at the sea surface, and thus influence the transfer of CO2 between the ocean and atmosphere. It can influence gas exchange through enhanced gas transfer velocity, the direct export of carbon from the atmosphere to the ocean, by altering the sea skin temperature, and through surface layer dilution. However, to date, very few studies quantifying these effects on global net sea-air fluxes exist. Here, we include terms for the enhanced gas transfer velocity and the direct export of carbon in calculations of the global net sea-air fluxes, using a 7-year time series of monthly global climate quality satellite remote sensing observations, model and in-situ data. The use of a non-linear relationship between the effects of rain and wind significantly reduces the estimated impact of rain-induced surface turbulence on the rate of sea-air gas transfer, when compared to a linear relationship. Nevertheless, globally, the rain enhanced gas transfer and rain induced direct export increase the estimated annual oceanic integrated net sink of CO2 by up to 6%. Regionally, the variations can be larger, with rain increasing the estimated annual net sink in the Pacific Ocean by up to 15% and altering monthly net flux by > ± 50%. Based on these analyses, the impacts of rain should be included in the uncertainty analysis of studies that estimate net sea-air fluxes of CO2 as the rain can have a considerable impact, dependent upon the region and timescale. PMID:27673683

  4. A Sensitivity Analysis of the Impact of Rain on Regional and Global Sea-Air Fluxes of CO2.

    PubMed

    Ashton, I G; Shutler, J D; Land, P E; Woolf, D K; Quartly, G D

    The global oceans are considered a major sink of atmospheric carbon dioxide (CO2). Rain is known to alter the physical and chemical conditions at the sea surface, and thus influence the transfer of CO2 between the ocean and atmosphere. It can influence gas exchange through enhanced gas transfer velocity, the direct export of carbon from the atmosphere to the ocean, by altering the sea skin temperature, and through surface layer dilution. However, to date, very few studies quantifying these effects on global net sea-air fluxes exist. Here, we include terms for the enhanced gas transfer velocity and the direct export of carbon in calculations of the global net sea-air fluxes, using a 7-year time series of monthly global climate quality satellite remote sensing observations, model and in-situ data. The use of a non-linear relationship between the effects of rain and wind significantly reduces the estimated impact of rain-induced surface turbulence on the rate of sea-air gas transfer, when compared to a linear relationship. Nevertheless, globally, the rain enhanced gas transfer and rain induced direct export increase the estimated annual oceanic integrated net sink of CO2 by up to 6%. Regionally, the variations can be larger, with rain increasing the estimated annual net sink in the Pacific Ocean by up to 15% and altering monthly net flux by > ± 50%. Based on these analyses, the impacts of rain should be included in the uncertainty analysis of studies that estimate net sea-air fluxes of CO2 as the rain can have a considerable impact, dependent upon the region and timescale.

  5. An airborne C-band scatterometer for remote sensing the air-sea interface

    NASA Technical Reports Server (NTRS)

    Mclaughlin, D. J.; Pazmany, A. L.; Boltniew, E.; Hevizi, L. G.; Mcintosh, R. E.

    1989-01-01

    An airborne C-band scatterometer system (C-Scat) has been developed for remote sensing of the air-sea interface. The sensor has been designed to fly on a number of research aircraft, beginning with the NASA Ames Research Center's C-130B, on which test flights were conducted in August of 1988. The scatterometer utilizes a 10-W solid-state power amplifier and a frequency-steered microstrip array antenna which is installed beneath the fuselage of the airplane. The antenna is electrically scanned in elevation from 20 to 50 deg off nadir, and it is mechanically rotated 360 deg in azimuth. The system is fully computer controlled and is capable of accurately measuring ocean-surface normalized radar cross section (NRCS) from altitudes as high as 25,000 feet. It has been developed to study the relationship between NRCS and ocean-surface roughness influences such as wind speed and direction, wave height and slope, and air-sea temperature difference.

  6. Solar Eclipse Effect on Shelter Air Temperature

    NASA Technical Reports Server (NTRS)

    Segal, M.; Turner, R. W.; Prusa, J.; Bitzer, R. J.; Finley, S. V.

    1996-01-01

    Decreases in shelter temperature during eclipse events were quantified on the basis of observations, numerical model simulations, and complementary conceptual evaluations. Observations for the annular eclipse on 10 May 1994 over the United States are presented, and these provide insights into the temporal and spatial changes in the shelter temperature. The observations indicated near-surface temperature drops of as much as 6 C. Numerical model simulations for this eclipse event, which provide a complementary evaluation of the spatial and temporal patterns of the temperature drops, predict similar decreases. Interrelationships between the temperature drop, degree of solar irradiance reduction, and timing of the peak eclipse are also evaluated for late spring, summer, and winter sun conditions. These simulations suggest that for total eclipses the drops in shelter temperature in midlatitudes can be as high as 7 C for a spring morning eclipse.

  7. Monitored summer peak attic air temperatures in Florida residences

    SciTech Connect

    Parker, D.S.; Sherwin, J.R.

    1998-12-31

    The Florida Solar Energy Center (FSEC) has analyzed measured summer attic air temperature data taken for some 21 houses (three with two different roof configurations) over the last several years. The analysis is in support of the calculation within ASHRAE Special Project 152P, which will be used to estimate duct system conductance gains that are exposed to the attic space. Knowledge of prevailing attic thermal conditions are critical to the duct heat transfer calculations for estimation of impacts on residential cooling system sizing. The field data were from a variety of residential monitoring projects that were classified according to intrinsic differences in roofing configurations and characteristics. The sites were occupied homes spread around the state of Florida. There were a variety of different roofing construction types, roof colors, and ventilation configurations. Data at each site were obtained from June 1 to September 30 according to the ASHRAE definition of summer. The attic air temperature and ambient air temperature were used for the data analysis. The attic air temperature was measured with a shielded type-T thermocouple at mid-attic height, halfway between the decking and insulation surface. The ambient air temperature was obtained at each site by thermocouples located inside a shielded exterior enclosure at a 3 to 4 m (10--12 ft) height. The summer 15-minute data from each site were sorted by the average ambient air temperature into the top 2.5% of the observations of the highest temperature. Within this limited group of observations, the average outside air temperature, attic air temperature, and coincident difference were reported.

  8. Solar activity influence on air temperature regimes in caves

    NASA Astrophysics Data System (ADS)

    Stoeva, Penka; Mikhalev, Alexander; Stoev, Alexey

    Cave atmospheres are generally included in the processes that happen in the external atmosphere as circulation of the cave air is connected with the most general circulation of the air in the earth’s atmosphere. Such isolated volumes as the air of caves are also influenced by the variations of solar activity. We discuss cave air temperature response to climate and solar and geomagnetic activity for four show caves in Bulgaria studied for a period of 46 years (1968 - 2013). Everyday noon measurements in Ledenika, Saeva dupka, Snezhanka and Uhlovitsa cave have been used. Temperatures of the air in the zone of constant temperatures (ZCT) are compared with surface temperatures recorded at meteorological stations situated near about the caves - in the towns of Vratsa, Lovech, Peshtera and Smolyan, respectively. For comparison, The Hansen cave, Middle cave and Timpanogos cave from the Timpanogos Cave National Monument, Utah, USA situated nearly at the same latitude have also been examined. Our study shows that the correlation between cave air temperature time series and sunspot number is better than that between the cave air temperature and Apmax indices; that t°ZCT is rather connected with the first peak in geomagnetic activity, which is associated with transient solar activity (CMEs) than with the second one, which is higher and connected with the recurrent high speed streams from coronal holes. Air temperatures of all examined show caves, except the Ledenika cave, which is ice cave show decreasing trends. On the contrary, measurements at the meteorological stations show increasing trends in the surface air temperatures. The trend is decreasing for the Timpanogos cave system, USA. The conclusion is that surface temperature trends depend on the climatic zone, in which the cave is situated, and there is no apparent relation between temperatures inside and outside the caves. We consider possible mechanism of solar cosmic rays influence on the air temperatures in caves

  9. Simulated Madden-Julian Oscillation structure and sea-surface temperature dependence within an aquaplanet model

    NASA Astrophysics Data System (ADS)

    Colon, Edward

    The response of simulated Madden-Julian Oscillations to changes in sea surface temperature climatologies, turbulent surface flux parameterizations, moisture time tendency parameterizations, and air-sea couplings is examined with the use of an aquaplanet model. The intent of this study is to determine the contribution of individual proposed mechanisms to the generation of variability at intraseasonal (30--60 days) timescales. Among the theoretical frameworks tested are Conditional Instability of the Second Kind (CISK) which is a class of scale interaction invoking a feedback between large-scale circulation and cumulus-scale convection, Wind Induced Surface Heat Exchange (WISHE) which asserts that condensational heating and adiabatic cooling in the atmosphere always balance which nullifies CISK so that the primary forcing for the Madden-Julian Oscillation is evaporative moisture fluxes induced by perturbations in easterly surface winds preceding the bulk of convection, and Air-Sea Convective Intraseasonal Interactions (ASCII) which consider the interactive couplings between surface wind magnitude and direction, ocean mixing layer depth, surface latent heat flux anomalies, and cloud shielding effects to create a zonally asymmetric boundary layer water vapor distribution induced by elevated sea surface temperatures to the east of the propagating convective mode and enhanced evaporative fluxes to the west which act to hinder rapid forward progression of the wave. A series of numerical experiments were conducted in which one or more of the model representations of these mechanism were suppressed and the resulting behavior of the simulated Madden Julian Oscillation was evaluated relative to its spatial and temporal structure. It was found that the suppression of WISHE lowered the variability of the simulated Madden Julian Oscillation by a factor of ˜80 while the suppression of the moisture feedback which is driven by difference in surface layer water vapor content had

  10. Effects of a sea breeze discontinuity on air quality in an industrial coastal environment of the North Sea

    NASA Astrophysics Data System (ADS)

    Augustin, Patrick; Sokolov, Anton; Talbot, Charles; Fourmentin, Marc; Willart, Véronique; Delbarre, Hervé

    2010-05-01

    The effects of interaction between the sea breeze and synoptic wind on air pollutants have been studied in an industrial coastal environment of the North Sea. These effects have been investigated, during one day, using ground-based remote sensing systems and surface station data alongside with mesoscale modelling outputs. During a campaign in the North of France, continuous lidar measurements documented the structure and the evolution of the lower troposphere. The combination of lidar, sodar and surface station observations showed that the atmospheric boundary layer is well stratified during the night, with a stable double layer structure which slows the growing process of the mixing layer, in the morning and before the sea-breeze onset. During the day, we observed discontinuity in meteorological measurements due to the sea-breeze occurrences. We have found that these sudden changes were well correlated with high concentrations of sulphur dioxide at ground level (up to 400 ?g/m3). The first sea breeze puff generates a change of the structure of the lower troposphere with a coupling between the residual layer and the convective boundary layer. The discontinuity of the sea-breeze gravity current is well observed by lidar signals and sodar echo. The analysis revealed that the impacts of the sea-breeze discontinuity have significant implications on the local and the regional pollution above industrialized areas. This phenomenon triggers important changes on the local and regional air quality, more particularly in urban and industrial coastal localities.

  11. The comparative performance of an aviation engine at normal and high inlet air temperatures

    NASA Technical Reports Server (NTRS)

    Gardiner, Arthur W; Schey, Oscar W

    1928-01-01

    This report presents some results obtained during an investigation to determine the effect of high inlet air temperature on the performance of a Liberty 12 aviation engine. The purpose of this investigation was to ascertain, for normal service carburetor adjustments and a fixed ignition advance, the relation between power and temperature for the range of carburetor air temperatures that may be encountered when supercharging to sea level pressure at altitudes of over 20,000 feet and without intercooling when using plain aviation gasoline and mixtures of benzol and gasoline. The results show that for the conditions of test, both the brake and indicated power decrease with increase in air temperature at a faster rate than given by the theoretical assumption that power varies inversely as the square root of the absolute temperature. On a brake basis, the order of the difference in power for a temperature difference of 120 degrees F. Is 3 to 5 per cent. The observed relation between power and temperature when using the 30-70 blend was found to be linear. But, although these differences are noted, the above theoretical assumption may be considered as generally applicable except where greater precision over a wide range of temperatures is desired, in which case it appears necessary to test the particular engine under the given conditions. (author)

  12. Associations of endothelial function and air temperature in diabetic subjects

    EPA Science Inventory

    Background and Objective: Epidemiological studies consistently show that air temperature is associated with changes in cardiovascular morbidity and mortality. However, the biological mechanisms underlying the association remain largely unknown. As one index of endothelial functio...

  13. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... must be made within 100 cm of the air-intake of the engine. The measurement location must be either in... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test...

  14. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... must be made within 100 cm of the air-intake of the engine. The measurement location must be either in... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test...

  15. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... location must be within 10 cm of the engine intake system (i.e., the air cleaner, for most engines.) (b... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19...

  16. Air and seawater pollution and air-sea gas exchange of persistent toxic substances in the Aegean Sea: spatial trends of PAHs, PCBs, OCPs and PBDEs.

    PubMed

    Lammel, Gerhard; Audy, Ondřej; Besis, Athanasios; Efstathiou, Christos; Eleftheriadis, Kostas; Kohoutek, Jiři; Kukučka, Petr; Mulder, Marie D; Přibylová, Petra; Prokeš, Roman; Rusina, Tatsiana P; Samara, Constantini; Sofuoglu, Aysun; Sofuoglu, Sait C; Taşdemir, Yücel; Vassilatou, Vassiliki; Voutsa, Dimitra; Vrana, Branislav

    2015-08-01

    Near-ground air (26 substances) and surface seawater (55 substances) concentrations of persistent toxic substances (PTS) were determined in July 2012 in a coordinated and coherent way around the Aegean Sea based on passive air (10 sites in 5 areas) and water (4 sites in 2 areas) sampling. The direction of air-sea exchange was determined for 18 PTS. Identical samplers were deployed at all sites and were analysed at one laboratory. hexachlorobenzene (HCB), hexachlorocyclohexanes (HCHs) as well as dichlorodiphenyltrichloroethane (DDT) and its degradation products are evenly distributed in the air of the whole region. Air concentrations of p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and o,p'-DDT and seawater concentrations of p,p'-DDE and p,p'-DDD were elevated in Thermaikos Gulf, northwestern Aegean Sea. The polychlorinated biphenyl (PCB) congener pattern in air is identical throughout the region, while polybrominated diphenylether (PBDE)patterns are obviously dissimilar between Greece and Turkey. Various pollutants, polycyclic aromatic hydrocarbons (PAHs), PCBs, DDE, and penta- and hexachlorobenzene are found close to phase equilibrium or net-volatilisational (upward flux), similarly at a remote site (on Crete) and in the more polluted Thermaikos Gulf. The results suggest that effective passive air sampling volumes may not be representative across sites when PAHs significantly partitioning to the particulate phase are included.

  17. Albatrosses as Ocean Samplers of Sea Surface Temperature

    NASA Astrophysics Data System (ADS)

    Shaffer, S. A.; Kappes, M.; Tremblay, Y.; Costa, D. P.; Weber, R.; Weimerskirch, H.

    2006-12-01

    Albatrosses are unique ocean voyagers because they range so widely and travel at speeds exceeding 90 km per hour. Because they can integrate vast areas of open-ocean, albatrosses are ideal ocean samplers. Between 2003 and 2005 breeding seasons, 21 Laysan and 15 black-footed albatrosses (body mass 2.5 to 3.5 kg) were equipped with 6 g leg-mounted geolocation archival data loggers at Tern Island, French Frigate Shoals, Northwest Hawaiian Islands. The tags sampled environmental temperatures every 480 or 540 s and provided a single location per day for the duration of deployment. Whenever an albatross landed on the sea surface to feed or rest, the tag sampled sea surface temperature (SST). After nearly one year of deployment, 31 albatrosses were recaptured and 29 tags provided complete records. A total of 377,455 SST readings were obtained over 7,360 bird-days at sea. Given the location errors in the geolocation methodology (200 km) and the lack of temporal resolution (1 location per day), the SST measurements can only be used to characterize broad-scale correlates between albatross distribution and the ocean environment. However, in February 2006, we deployed 45 g GPS data loggers on 10 breeding albatrosses for 2-4 day deployments. The GPS loggers were attached to feathers on the albatrosses backs, they sampled every 10 s, and were accurate to within 10 m. One albatross was also equipped with the same leg-mounted archival tag that sampled SST every 8 s. This albatross collected 6,289 SST measurements with complementary GPS quality locations in 3 days at sea. These results highlight the efficacy of albatrosses as ocean samplers. Given that Laysan and black- footed albatrosses range throughout the North Pacific Ocean, it is conceivable that these seabirds could someday become sentinels of changing oceanic conditions. Moreover, these technologies provide exciting new information about the oceanic habitats of North Pacific albatrosses.

  18. Microwave Imager Measures Sea Surface Temperature Through Clouds

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image was acquired over Tropical Atlantic and U.S. East Coast regions on Aug. 22 - Sept. 23, 1998. Cloud data were collected by the Geostationary Operational Environmental Satellite (GOES). Sea Surface Temperature (SST) data were collected aboard the NASA/NASDA Tropical Rainfall Measuring Mission (TRMM) satellite by The TRMM Microwave Imager (TMI). TMI is the first satellite microwave sensor capable of accurately measuring sea surface temperature through clouds, as shown in this scene. For years scientists have known there is a strong correlation between sea surface temperature and the intensity of hurricanes. But one of the major stumbling blocks for forecasters has been the precise measurement of those temperatures when a storm begins to form. In this scene, clouds have been made translucent to allow an unobstructed view of the surface. Notice Hurricane Bonnie approaching the Carolina Coast (upper left) and Hurricane Danielle following roughly in its path (lower right). The ocean surface has been falsely colored to show a map of water temperature--dark blues are around 75oF, light blues are about 80oF, greens are about 85oF, and yellows are roughly 90oF. A hurricane gathers energy from warm waters found at tropical latitudes. In this image we see Hurricane Bonnie cross the Atlantic, leaving a cooler trail of water in its wake. As Hurricane Danielle followed in Bonnie's path, the wind speed of the second storm dropped markedly, as available energy to fuel the storm dropped off. But when Danielle left Bonnie's wake, wind speeds increased due to temperature increases in surface water around the storm. As a hurricane churns up the ocean, it's central vortex draws surface heat and water into the storm. That suction at the surface causes an upwelling of deep water. At depth, tropical ocean waters are significantly colder than water found near the surface. As they're pulled up to meet the storm, those colder waters essentially leave a footprint in the storm's wake

  19. Imaging air volume fraction in sea ice using non-destructive X-ray tomography

    NASA Astrophysics Data System (ADS)

    Crabeck, Odile; Galley, Ryan; Delille, Bruno; Else, Brent; Geilfus, Nicolas-Xavier; Lemes, Marcos; Des Roches, Mathieu; Francus, Pierre; Tison, Jean-Louis; Rysgaard, Søren

    2016-05-01

    Although the presence of a gas phase in sea ice creates the potential for gas exchange with the atmosphere, the distribution of gas bubbles and transport of gases within the sea ice are still poorly understood. Currently no straightforward technique exists to measure the vertical distribution of air volume fraction in sea ice. Here, we present a new fast and non-destructive X-ray computed tomography technique to quantify the air volume fraction and produce separate images of air volume inclusions in sea ice. The technique was performed on relatively thin (4-22 cm) sea ice collected from an experimental ice tank. While most of the internal layers showed air volume fractions < 2 %, the ice-air interface (top 2 cm) systematically showed values up to 5 %. We suggest that the air volume fraction is a function of both the bulk ice gas saturation factor and the brine volume fraction. We differentiate micro bubbles (Ø < 1 mm), large bubbles (1 mm < Ø < 5 mm) and macro bubbles (Ø > 5 mm). While micro bubbles were the most abundant type of gas bubbles, most of the air porosity observed resulted from the presence of large and macro bubbles. The ice texture (granular and columnar) as well as the permeability state of ice are important factors controlling the air volume fraction. The technique developed is suited for studies related to gas transport and bubble migration.

  20. Long-term temperature variation of the Southern Yellow Sea Cold Water Mass from 1976 to 2006

    NASA Astrophysics Data System (ADS)

    Li, Ang; Yu, Fei; Si, Guangcheng; Wei, Chuanjie

    2016-10-01

    This paper discusses the long-term temperature variation of the Southern Yellow Sea Cold Water Mass (SYSCWM) and examines those factors that influence the SYSCWM, based on hydrographic datasets of the China National Standard Section and the Korea Oceanographic Data Center. Surface air temperature, meridional wind speed, and sea surface temperature data are used to describe the seasonal changes. Mean temperature of the two centers of the SYSCWM had different long-term trends. The temperature of the center in the west of the SYSCWM was rising whereas that of the center in the east was falling. Mean temperature of the western center was related to warm water intrusion of the Yellow Sea Warm Current, the winter meridional wind, and the winter air temperature. Summer process played a primary role in the cooling trend of temperature in the eastern center. A decreasing trend of salinity in the eastern half of the SYSCWM showed that warm water intrusion from the south might weaken, as could the SYSCWM circulation. Weakened circulation provided less horizontal heat input to the eastern half of the SYSCWM. Less lateral heat input may have led to the decreasing trend in temperature of the eastern center of the SYSCWM. Further, warmer sea surface temperatures and less heat input in the deep layers intensified the thermocline of the eastern SYSCWM. A stronger thermocline had less heat flux input from upper layers to this half of the SYSCWM. Stronger thermocline and weakened heat input can be seen as two main causes of the cooling temperature trend of the eastern center of the SYSCWM.

  1. Impacts of coastal upwelling off east Vietnam on the regional winds system: An air-sea-land interaction

    NASA Astrophysics Data System (ADS)

    Zheng, Zhe-Wen; Zheng, Quanan; Kuo, Yi-Chun; Gopalakrishnan, Ganesh; Lee, Chia-Ying; Ho, Chung-Ru; Kuo, Nan-Jung; Huang, Shih-Jen

    2016-12-01

    In this study, we analyze the influence of coastal upwelling off southeast Vietnam (CUEV) on local wind field using numerical simulations based on atmospheric model of Weather Research and Forecasting (WRF). Several scenarios are simulated by forcing identical model configurations with different SST fields. Based on simulation results, the relationship between CUEV and reduction of wind forcing is numerically evidenced. With the influence of a typical cold patch with a temperature drop of 3-5 °C, the local wind speeds can drop to less than 70% of original level. We find that the mechanism of response of the wind reduction to CUEV is enhancement of sea-breeze induced wind modulation. Onshore sea-breeze will enhance, while the contrast between land and sea is even more striking due to the contribution of a distinct coastal upwelling. This implies that air-sea-land interaction dominates the process of local wind system modulation in response to transient CUEV. This result sheds a new light on the air-sea interaction process within the SCS basin.

  2. Late Cretaceous (late Campanian-Maastrichtian) sea-surface temperature record of the Boreal Chalk Sea

    NASA Astrophysics Data System (ADS)

    Thibault, Nicolas; Harlou, Rikke; Schovsbo, Niels H.; Stemmerik, Lars; Surlyk, Finn

    2016-02-01

    The last 8 Myr of the Cretaceous greenhouse interval were characterized by a progressive global cooling with superimposed cool/warm fluctuations. The mechanisms responsible for these climatic fluctuations remain a source of debate that can only be resolved through multi-disciplinary studies and better time constraints. For the first time, we present a record of very high-resolution (ca. 4.5 kyr) sea-surface temperature (SST) changes from the Boreal epicontinental Chalk Sea (Stevns-1 core, Denmark), tied to an astronomical timescale of the late Campanian-Maastrichtian (74 to 66 Ma). Well-preserved bulk stable isotope trends and calcareous nannofossil palaeoecological patterns from the fully cored Stevns-1 borehole show marked changes in SSTs. These variations correlate with deep-water records of climate change from the tropical South Atlantic and Pacific oceans but differ greatly from the climate variations of the North Atlantic. We demonstrate that the onset and end of the early Maastrichtian cooling and of the large negative Campanian-Maastrichtian boundary carbon isotope excursion are coincident in the Chalk Sea. The direct link between SSTs and δ13C variations in the Chalk Sea reassesses long-term glacio-eustasy as the potential driver of carbon isotope and climatic variations in the Maastrichtian.

  3. Late Cretaceous (Late Campanian-Maastrichtian) sea surface temperature record of the Boreal Chalk Sea

    NASA Astrophysics Data System (ADS)

    Thibault, N.; Harlou, R.; Schovsbo, N. H.; Stemmerik, L.; Surlyk, F.

    2015-11-01

    The last 8 Myr of the Cretaceous greenhouse interval were characterized by a progressive global cooling with superimposed cool/warm fluctuations. The mechanisms responsible for these climatic fluctuations remain a source of debate that can only be resolved through multi-disciplinary studies and better time constraints. For the first time, we present a record of very high-resolution (ca. 4.5 kyr) sea-surface temperature (SST) changes from the Boreal epicontinental Chalk Sea (Stevns-1 core, Denmark), tied to an astronomical time scale of the late Campanian-Maastrichtian (74 to 66 Myr). Well-preserved bulk stable isotope trends and calcareous nannofossil palaeoecological patterns from the fully cored Stevns-1 borehole show marked changes in SSTs. These variations correlate with deep-water records of climate change from the tropical South Atlantic and Pacific oceans but differ greatly from the climate variations of the North Atlantic. We demonstrate that the onset and end of the early Maastrichtian cooling and of the large negative Campanian-Maastrichtian boundary carbon isotope excursion are coincident in the Chalk Sea. The direct link between SSTs and δ13C variations in the Chalk Sea reassesses long-term glacio-eustasy as the potential driver of carbon isotope and climatic variations in the Maastrichtian.

  4. Mesoscale modulation of air-sea CO2 flux in Drake Passage

    NASA Astrophysics Data System (ADS)

    Song, Hajoon; Marshall, John; Munro, David R.; Dutkiewicz, Stephanie; Sweeney, Colm; McGillicuddy, D. J.; Hausmann, Ute

    2016-09-01

    We investigate the role of mesoscale eddies in modulating air-sea CO2 flux and associated biogeochemical fields in Drake Passage using in situ observations and an eddy-resolving numerical model. Both observations and model show a negative correlation between temperature and partial pressure of CO2 (pCO2) anomalies at the sea surface in austral summer, indicating that warm/cold anticyclonic/cyclonic eddies take up more/less CO2. In austral winter, in contrast, relationships are reversed: warm/cold anticyclonic/cyclonic eddies are characterized by a positive/negative pCO2 anomaly and more/less CO2 outgassing. It is argued that DIC-driven effects on pCO2 are greater than temperature effects in austral summer, leading to a negative correlation. In austral winter, however, the reverse is true. An eddy-centric analysis of the model solution reveals that nitrate and iron respond differently to the same vertical mixing: vertical mixing has a greater impact on iron because its normalized vertical gradient at the base of the surface mixed layer is an order of magnitude greater than that of nitrate.

  5. Mechanisms controlling the SST air-sea heat flux feedback and its dependence on spatial scale

    NASA Astrophysics Data System (ADS)

    Hausmann, Ute; Czaja, Arnaud; Marshall, John

    2017-02-01

    The turbulent air-sea heat flux feedback (α, in {W m}^{-2} { K}^{-1}) is a major contributor to setting the damping timescale of sea surface temperature (SST) anomalies. In this study we compare the spatial distribution and magnitude of α in the North Atlantic and the Southern Ocean, as estimated from the ERA-Interim reanalysis dataset. The comparison is rationalized in terms of an upper bound on the heat flux feedback, associated with "fast" atmospheric export of temperature and moisture anomalies away from the marine boundary layer, and a lower bound associated with "slow" export. It is found that regions of cold surface waters (≤10 ° C) are best described as approaching the slow export limit. This conclusion is not only valid at the synoptic scale resolved by the reanalysis data, but also on basin scales. In particular, it applies to the heat flux feedback acting as circumpolar SST anomaly scales are approached in the Southern Ocean, with feedbacks of ≤10 {W m}^{-2} { K}^{-1}. In contrast, the magnitude of the heat flux feedback is close to that expected from the fast export limit over the Gulf Stream and its recirculation with values on the order of ≈40 {W m}^{-2} { K}^{-1}. Further analysis suggests that this high value reflects a compensation between a moderate thermodynamic adjustment of the boundary layer, which tends to weaken the heat flux feedback, and an enhancement of the surface winds over warm SST anomalies, which tend to enhance the feedback.

  6. Emerita analoga recruit populations and correlations with sea surface temperature

    NASA Astrophysics Data System (ADS)

    Pettway, J.; Quan, H.; Juarez, F.; Vicencio, M.; Ng, N.; Careers in Science Intern Program

    2010-12-01

    The Careers in Science program at the California Academy of Sciences is a science internship for students from groups traditionally under-represented in the sciences. Starting in 2003, interns have participated in the Farallones Marine Sanctuary Association's LiMPETS Sandy Beach Monitoring program, assessing populations of Emerita analoga, the Pacific mole crab. E. analoga, an inhabitant of intertidal swash zones along the coast from Alaska to Baja California, is an important species in the sandy beach intertidal food web. Weekly, during the months of June, July and August, a group of interns go to stairwell 18 of San Francisco’s Ocean Beach in Golden Gate National Recreational Area to systematically collect live E. analoga samples and data. Along a 50 meter sampling area, five transects with ten samples in the swash zone are taken and recorded. Collected E. analoga are sexed (male, female, female w/eggs, and recruit) and measured for carapace size. Newly settled E. analoga (recruit) populations have declined in recent years. However, beginning in 2009, recruit populations began to increase in number, particularly in 2010. Our group hypothesized that this increase in recruitment is correlated with increased sea surface temperature. It has been reported that some planktonic animals become more abundant in warmer waters after a major temperature shift. After examining the data, we did not find a correlation between sea surface temperature and recruit populations, leading us to further questions on the cause of this increase in E. analoga recruits.

  7. Sea surface and remotely sensed temperatures off Cape Mendocino, California

    NASA Technical Reports Server (NTRS)

    Breaker, L. C.; Arvesen, J. C.; Frydenlund, D.; Myers, J. S.; Short, K.

    1985-01-01

    During September 3 to 5, 1979, a multisensor oceanographic experiment was conducted off Cape Mendocino, California. The purpose of this experiment was to validate the use of remote sensing techniques over an area along the U.S. west coast where coasted upwelling is known to be intense. Remotely sensed mutlispectral data, including thermal infrared imagery, were collected above an upwelling feature off Cape Mendocino. Data were acquired from the TIRNOS-N and NOAA-6 polar orbiting satellites, the NASA Ames Research Center's high altitude U-2 aircraft, and a U.S. Coast Guard C-130 aircraft. Supporting surface truth data over the same feature were collected aboard the National Oceanic and Atmospheric Administration (NOAA) ship, OCEANOGRAPHER. Atmospheric soundings were also taken aboard the ship. The results indicate that shipboard measurements of sea surface temperatures can be reproduction within 1 C or better through remote observation of absolute infrared radiance values (whether measured aboard the NOAA polar orbiting satellite, the U-2 aircraft, or the Coast Guard aircraft) by using appropriate atmospheric corrections. Also, the patterns of sea surface temperature which were derived independently from the various remote platforms provide a consistent interpretation of the surface temperature field.

  8. Reevaluation of mid-Pliocene North Atlantic sea surface temperatures

    USGS Publications Warehouse

    Robinson, Marci M.; Dowsett, Harry J.; Dwyer, Gary S.; Lawrence, Kira T.

    2008-01-01

    Multiproxy temperature estimation requires careful attention to biological, chemical, physical, temporal, and calibration differences of each proxy and paleothermometry method. We evaluated mid-Pliocene sea surface temperature (SST) estimates from multiple proxies at Deep Sea Drilling Project Holes 552A, 609B, 607, and 606, transecting the North Atlantic Drift. SST estimates derived from faunal assemblages, foraminifer Mg/Ca, and alkenone unsaturation indices showed strong agreement at Holes 552A, 607, and 606 once differences in calibration, depth, and seasonality were addressed. Abundant extinct species and/or an unrecognized productivity signal in the faunal assemblage at Hole 609B resulted in exaggerated faunal-based SST estimates but did not affect alkenone-derived or Mg/Ca–derived estimates. Multiproxy mid-Pliocene North Atlantic SST estimates corroborate previous studies documenting high-latitude mid-Pliocene warmth and refine previous faunal-based estimates affected by environmental factors other than temperature. Multiproxy investigations will aid SST estimation in high-latitude areas sensitive to climate change and currently underrepresented in SST reconstructions.

  9. Joint variability of global runoff and global sea surface temperatures

    USGS Publications Warehouse

    McCabe, G.J.; Wolock, D.M.

    2008-01-01

    Global land surface runoff and sea surface temperatures (SST) are analyzed to identify the primary modes of variability of these hydroclimatic data for the period 1905-2002. A monthly water-balance model first is used with global monthly temperature and precipitation data to compute time series of annual gridded runoff for the analysis period. The annual runoff time series data are combined with gridded annual sea surface temperature data, and the combined dataset is subjected to a principal components analysis (PCA) to identify the primary modes of variability. The first three components from the PCA explain 29% of the total variability in the combined runoff/SST dataset. The first component explains 15% of the total variance and primarily represents long-term trends in the data. The long-term trends in SSTs are evident as warming in all of the oceans. The associated long-term trends in runoff suggest increasing flows for parts of North America, South America, Eurasia, and Australia; decreasing runoff is most notable in western Africa. The second principal component explains 9% of the total variance and reflects variability of the El Ni??o-Southern Oscillation (ENSO) and its associated influence on global annual runoff patterns. The third component explains 5% of the total variance and indicates a response of global annual runoff to variability in North Aflantic SSTs. The association between runoff and North Atlantic SSTs may explain an apparent steplike change in runoff that occurred around 1970 for a number of continental regions.

  10. Comparisons between Patterns of Sea-Surface Temperature and Sub-Surface Parameters in the Western Tasman Sea.

    DTIC Science & Technology

    1982-07-01

    EXTERNAL) No. 5/82 COMPARISONS BETWEEN PATTERNS OF SEA -SURFACE TEMPERATURE AND SUB-SURFACE PARAMETERS IN THE WESTERN TASMAN SEA (U) BY DTIC P. J. Ep~~3...PARAMETERS IN THE WESTERN TASMAN SEA (U) P.J.NULHARNAccession For P.J MLHERNNTIS GRA&I L and DTIC TAB L.J. HAMILTON Unannou ed QJustification...emperature, temperature at 250m, mixed-layer depth and dynamic height f the western Tasman Sea . Data are from ship cruises and aerial su a. It is shown by

  11. The effects of sea surface temperature gradients on surface turbulent fluxes

    NASA Astrophysics Data System (ADS)

    Steffen, John

    A positive correlation between sea surface temperature (SST) and wind stress perturbation near strong SST gradients (DeltaSST) has been observed in different parts of the world ocean, such as the Gulf Stream in the North Atlantic and the Kuroshio Extension east of Japan. These changes in winds and SSTs can modify near-surface stability, surface stress, and latent and sensible heat fluxes. In general, these small scale processes are poorly modeled in Numerical Weather Prediction (NWP) and climate models. Failure to account for these air--sea interactions produces inaccurate values of turbulent fluxes, and therefore a misrepresentation of the energy, moisture, and momentum budgets. Our goal is to determine the change in these surface turbulent fluxes due to overlooking the correlated variability in winds, SSTs, and related variables. To model these air--sea interactions, a flux model was forced with and without SST--induced changes to the surface wind fields. The SST modification to the wind fields is based on a baroclinic argument as implemented by the University of Washington Planetary Boundary-Layer (UWPBL) model. Other input parameters include 2-m air temperature, 2-m dew point temperature, surface pressure (all from ERA--interim), and Reynolds Daily Optimum Interpolation Sea Surface Temperature (OISST). Flux model runs are performed every 6 hours starting in December 2002 and ending in November 2003. From these model outputs, seasonal, monthly, and daily means of the difference between DeltaSST and no DeltaSST effects on sensible heat flux (SHF), latent heat flux (LHF), and surface stress are calculated. Since the greatest impacts occur during the winter season, six additional December-January-February (DJF) seasons were analyzed for 1987--1990 and 1999--2002. The greatest differences in surface turbulent fluxes are concentrated near strong SST fronts associated with the Gulf Stream and Kuroshio Extension. On average, 2002---2003 DJF seasonal differences in SHF

  12. Sea Surface Temperature and Vegetation Index from MODIS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a composite MODIS image showing the 'green wave' of spring in North America and sea surface temperature in the ocean, collected over an 8-day period during the first week in April 2000. On land, the darker green pixels show where the most green foliage is being produced due to photosynthetic activity. Yellows on land show where there is little or no productivity and red is a boundary zone. In the ocean, orange and yellows show warmer waters and blues show colder values. (MODIS Data Type: MODIS-PFM)

  13. Estimating the Ocean Flow Field From Combined Sea Surface Temperature and Sea Surface Height Data

    NASA Technical Reports Server (NTRS)

    Stammer, Detlef

    2000-01-01

    The primary focus of this project was on the estimation of the three-dimensional, absolute and time-evolving general circulation of the global ocean from a combined analysis of remotely sensed fields of sea surface temperature (SST) and sea surface height (SSH). The synthesis of those two fields was performed with other relevant physical data, and appropriate dynamical ocean models with emphasis on constraining ocean general circulation models by a combination of both SST and SSH data. This effort is directly related to an attempt to describe the mechanisms which give rise to observed SST and its variability on seasonal and inter-annual timescales, its relation to ocean-atmosphere interaction, and the dynamical coupling between the ocean mixed layer and the deep interior ocean. This is one of the fundamental climate related questions being pursued currently under the CLIVAR Program. Because of the strong turbulent mixing associated with atmospheric fluxes of momentum, heat and freshwater through the sea surface, the ocean forms a shallow surface boundary layer, the mixed layer which is largely homogeneous in its constituents. The relation between the temperature of the remotely sensed "skin" and the bulk of the mixed layer is largely understood (Reynolds and Smith 1994; Emery et al., 1995). However, because the surface mixed layer is effectively decoupled from the underlying ocean dynamics, an interpretation of satellite SST observations in isolation and in direct use for dynamical studies is very difficult. As a result, the impact of SST data on the understanding of ocean variability.

  14. A climatology of air-sea interactions at the Mediterranean LION and AZUR buoys

    NASA Astrophysics Data System (ADS)

    Caniaux, Guy; Prieur, Louis; Bouin, Marie-Noëlle; Giordani, Hervé

    2014-05-01

    The LION and AZUR buoys (respectively at 42.1°N 4.7°E and 43.4°N 7.8°E) provide an extended data set since respectively 1999 and 2001 to present for studying air-sea interactions in the northwestern Mediterranean basin. The two buoys are located where high wind events occur (resp. north western and north easterly gale winds), that force and condition deep oceanic winter convection in that region. A short-term climatology (resp. 13 and 11 years) of air-sea interactions has been developed, which includes classical meteo-oceanic parameters, but also waves period and significant wave heights and radiative fluxes. Moreover turbulent surface fluxes have been estimated from various bulk parameterizations, in order to estimate uncertainties on fluxes. An important dispersion of turbulent fluxes is found at high wind speeds according to the parameterization used, larger than taking into account the second order effects of cool skin, warm layer and waves. An important annual cycle affects air temperatures (ATs), SSTs and turbulent fluxes at the two buoys. The annual cycle of ATs and SSTs can be well reconstructed from the first two annual harmonics, while for the turbulent heat fluxes the erratic occurrence of high and low flux events, well correlated with high/dry and low windy periods, strongly affect their annual and interannual cycles. The frequency of high surface heat fluxes and high wind stress is found highest during the autumn and winter months, despite the fact that north-westerly gale winds occur all year long at LION buoy. During calm weather period, ATs and SSTs experience an important diurnal cycle (on average 1 and 0.5°C respectively), that affect latent and sensible heat fluxes. Finally, an estimate of the interannual variability of the turbulent fluxes in Autumn and Winter is discussed, in order to characterize their potential role on deep ocean convection.

  15. Air-sea interaction in the tropical Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Allison, L. J.; Steranka, J.; Holub, R. J.; Hansen, J.; Godshall, F. A.; Prabhakara, C.

    1972-01-01

    Charts of 3-month sea surface temperature (SST) anomalies in the eastern tropical Pacific Ocean were produced for the period 1949 to 1970. The anomalies along the United States and South American west coasts and in the eastern tropical Pacific appeared to be oscillating in phase during this period. Similarly, the satellite-derived cloudiness for each of four quadrants of the Pacific Ocean (130 deg E to 100 deg W, 30 deg N to 25 deg S) appeared to be oscillating in phase. In addition, a global tropical cloudiness oscillation from 30 deg N to 30 deg S was noted from 1965 to 1970, by using monthly satellite television nephanalyses. The SST anomalies were found to have a good degree of correlation both positive and negative with the following monthly geophysical parameters: (1) satellite-derived cloudiness, (2) strength of the North and South Pacific semipermanent anticyclones, (3) tropical Pacific island rainfall, and (4) Darwin surface pressure. Several strong direct local and crossequatorial relationships were noted. In particular, the high degree of correlation between the tropical island rainfall and the SST anomalies (r = +0.93) permitted the derivation of SST's for the tropical Pacific back to 1905. The close occurrence of cold tropical SST and North Pacific 700-mb positive height anomalies with central United States drought conditions was noted.

  16. Sea ice, winter convection, and the temperature minimum layer in the Southern Ocean

    SciTech Connect

    Toole, J.M.

    1981-09-20

    The structure of the near surface waters in the Southern Ocean, poleward of the Antarctic Polar Front but away from continental margins, is investigated with a three-dimensional time-dependent numerical model which resolves the annual sea ice cycle. The growth and decay of the ice field is predicted, using one of Semtner's (1976) thermodynamic ice models, in terms of specified atmospheric data and computed thermohaline characteristics of the ocean layers. The ice field is found to be sensitive to the lateral advection of heat by the oceanic circulation as well as vertical heat transports due to deep winter convection. The model treats the temperature minimum layer in the Southern Ocean as the remnant of a deep winter mixed layer which becomes capped by surface heating and precipitation in summer. The predicted thermohaline characteristics of the temperature minimum layer and the surface mixed layer are in good agreement with observations. Finally, the annual air-sea heat exchange predicted by the model is discussed. The model's predicted area averaged heat loss experienced by the ocean south of the Atlantic Polar Front is much smaller than was previously estimated. This is attributed to errors in the southern region of the model domain. It is suggested that models, which include the interactions between sea ice and surface, deep, and bottom waters along the continental margins, are needed to investigate this region.

  17. Sea surface temperature anomalies driven by oceanic local forcing in the Brazil-Malvinas Confluence

    NASA Astrophysics Data System (ADS)

    da Silveira, Isabel Porto; Pezzi, Luciano Ponzi

    2014-03-01

    Sea surface temperature (SST) anomaly events in the Brazil-Malvinas Confluence (BMC) were investigated through wavelet analysis and numerical modeling. Wavelet analysis was applied to recognize the main spectral signals of SST anomaly events in the BMC and in the Drake Passage as a first attempt to link middle and high latitudes. The numerical modeling approach was used to clarify the local oceanic dynamics that drive these anomalies. Wavelet analysis pointed to the 8-12-year band as the most energetic band representing remote forcing between high to middle latitudes. Other frequencies observed in the BMC wavelet analysis indicate that part of its variability could also be forced by low-latitude events, such as El Niño. Numerical experiments carried out for the years of 1964 and 1992 (cold and warm El Niño-Southern Oscillation (ENSO) phases) revealed two distinct behaviors that produced negative and positive sea surface temperature anomalies on the BMC region. The first behavior is caused by northward cold flow, Río de la Plata runoff, and upwelling processes. The second behavior is driven by a southward excursion of the Brazil Current (BC) front, alterations in Río de la Plata discharge rates, and most likely by air-sea interactions. Both episodes are characterized by uncoupled behavior between the surface and deeper layers.

  18. Ambient air temperature effects on the temperature of sewage sludge composting process.

    PubMed

    Huang, Qi-fei; Chen, Tong-bin; Gao, Ding; Huang, Ze-chun

    2005-01-01

    Using data obtained with a full-scale sewage sludge composting facility, this paper studied the effects of ambient air temperature on the composting temperature with varying volume ratios of sewage sludge and recycled compost to bulking agent. Two volume ratios were examined experimentally, 1: 0: 1 and 3: 1: 2. The results show that composting temperature was influenced by ambient air temperature and the influence was more significant when composting was in the temperature rising process: composting temperature changed 2.4-6.5 degrees C when ambient air temperature changed 13 degrees C. On the other hand, the influence was not significant when composting was in the high-temperature and/or temperature falling process: composting temperature changed 0.75-1.3 degrees C when ambient air temperature changed 8-15 degrees C. Hysteresis effect was observed in composting temperature's responses to ambient air temperature. When the ventilation capability of pile was excellent (at a volume ratio of 1:0:1), the hysteresis time was short and ranging 1.1-1.2 h. On the contrary, when the proportion of added bulking agent was low, therefore less porosity in the substrate (at a volume ratio of 3:1:2), the hysteresis time was long and ranging 1.9-3.1 h.

  19. Surface wave effects on water temperature in the Baltic Sea: simulations with the coupled NEMO-WAM model

    NASA Astrophysics Data System (ADS)

    Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter

    2016-08-01

    Coupled circulation (NEMO) and wave model (WAM) system was used to study the effects of surface ocean waves on water temperature distribution and heat exchange at regional scale (the Baltic Sea). Four scenarios—including Stokes-Coriolis force, sea-state dependent energy flux (additional turbulent kinetic energy due to breaking waves), sea-state dependent momentum flux and the combination these forcings—were simulated to test the impact of different terms on simulated temperature distribution. The scenario simulations were compared to a control simulation, which included a constant wave-breaking coefficient, but otherwise was without any wave effects. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwelling's. Overall, when all three wave effects were accounted for, did the estimates of temperature improve compared to control simulation. During the summer, the wave-induced water temperature changes were up to 1 °C. In northern parts of the Baltic Sea, a warming of the surface layer occurs in the wave included simulations in summer months. This in turn reduces the cold bias between simulated and measured data, e.g. the control simulation was too cold compared to measurements. The warming is related to sea-state dependent energy flux. This implies that a spatio-temporally varying wave-breaking coefficient is necessary, because it depends on actual sea state. Wave-induced cooling is mostly observed in near-coastal areas and is the result of intensified upwelling in the scenario, when Stokes-Coriolis forcing is accounted for. Accounting for sea-state dependent momentum flux results in modified heat exchange at the water-air boundary which consequently leads to warming of surface water compared to control simulation.

  20. Effect of Initial Mixture Temperature on Flame Speed of Methane-Air, Propane-Air, and Ethylene-Air Mixtures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L

    1952-01-01

    Flame speeds based on the outer edge of the shadow cast by the laminar Bunsen cone were determined as functions of composition for methane-air mixtures at initial mixture temperatures ranging from -132 degrees to 342 degrees c and for propane-air and ethylene-air mixtures at initial mixture temperatures ranging from -73 degrees to 344 degrees c. The data showed that maximum flame speed increased with temperature at an increasing rate. The percentage change in flame speed with change in initial temperature for the three fuels followed the decreasing order, methane, propane, and ethylene. Empirical equations were determined for maximum flame speed as a function of initial temperature over the temperature range covered for each fuel. The observed effect of temperature on flame speed for each of the fuels was reasonably well predicted by either the thermal theory as presented by Semenov or the square-root law of Tanford and Pease.

  1. Assessing Air-Sea Interaction in the Evolving NASA GEOS Model

    NASA Technical Reports Server (NTRS)

    Clayson, Carol Anne; Roberts, J. Brent

    2015-01-01

    In order to understand how the climate responds to variations in forcing, one necessary component is to understand the full distribution of variability of exchanges of heat and moisture between the atmosphere and ocean. Surface heat and moisture fluxes are critical to the generation and decay of many coupled air-sea phenomena. These mechanisms operate across a number of scales and contain contributions from interactions between the anomalous (i.e. non-mean), often extreme-valued, flux components. Satellite-derived estimates of the surface turbulent and radiative heat fluxes provide an opportunity to assess results from modeling systems. Evaluation of only time mean and variability statistics, however only provides limited traceability to processes controlling what are often regime-dependent errors. This work will present an approach to evaluate the representation of the turbulent fluxes at the air-sea interface in the current and evolving Goddard Earth Observing System (GEOS) model. A temperature and moisture vertical profile-based clustering technique is used to identify robust weather regimes, and subsequently intercompare the turbulent fluxes and near-surface parameters within these regimes in both satellite estimates and GEOS-driven data sets. Both model reanalysis (MERRA) and seasonal-to-interannual coupled GEOS model simulations will be evaluated. Particular emphasis is placed on understanding the distribution of the fluxes including extremes, and the representation of near-surface forcing variables directly related to their estimation. Results from these analyses will help identify the existence and source of regime-dependent biases in the GEOS model ocean surface turbulent fluxes. The use of the temperature and moisture profiles for weather-state clustering will be highlighted for its potential broad application to 3-D output typical of model simulations.

  2. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... temperature measurement must be made within 122 cm of the engine. The measurement location must be made either... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES...

  3. Simulations of The Extreme Precipitation Event Enhanced by Sea Surface Temperature Anomaly over the Black Sea

    NASA Astrophysics Data System (ADS)

    Hakan Doǧan, Onur; Önol, Barış

    2016-04-01

    Istanbul Technical University, Aeronautics and Astronautics Faculty, Meteorological Engineering, Istanbul, Turkey In this study, we examined the extreme precipitation case over the Eastern Black Sea region of Turkey by using regional climate model, RegCM4. The flood caused by excessive rain in August 26, 2010 killed 12 people and the landslides in Rize province have damaged many buildings. The station based two days total precipitation exceeds 200 mm. One of the usual suspects for this extreme event is positive anomaly of sea surface temperature (SST) over the Black Sea where the significant warming trend is clear in the last three decades. In August 2010, the monthly mean SST is higher than 3 °C with respect to the period of 1981-2010. We designed three sensitivity simulations with RegCM4 to define the effects of the Black Sea as a moisture source. The simulation domain with 10-km horizontal resolution covers all the countries bordering the Black Sea and simulation period is defined for entire August 2010. It is also noted that the spatial variability of the precipitation produced by the reference simulation (Sim-0) is consistent with the TRMM data. In terms of analysis of the sensitivity to SST, we forced the simulations by subtracting 1 °C (Sim-1), 2 °C (Sim-2) and 3 °C (Sim-3) from the ERA-Interim 6-hourly SST data (considering only the Black Sea). The sensitivity simulations indicate that daily total precipitation for all these simulations gradually decreased based on the reference simulation (Sim-0). 3-hourly maximum precipitation rates for Sim-0, Sim-1, Sim-2 and Sim-3 are 32, 25, 13 and 10.5 mm respectively over the hotspot region. Despite the fact that the simulations signal points out the same direction, degradation of the precipitation intensity does not indicate the same magnitude for all simulations. It is revealed that 2 °C (Sim-2) threshold is critical for SST sensitivity. We also calculated the humidity differences from the simulation and these

  4. Sea-air of CO2 in the North Pacific using shipboard and satellite data

    NASA Technical Reports Server (NTRS)

    Stephens, Mark P.; Samuels, Geoffrey; Olson, Donald B.; Fine, Rana A.; Takahashi, Taro

    1995-01-01

    A method has been developed to produce high-resolution maps of pCO2 in surface water for the North Pacific using satellite sea surface temperature (SST) data and statistical relationships between measured pCO2 and temperature. In the subtropical North Pacific the pCO in seawater is controlled primarily by temperature. Accordingly, pCO2 values that are calculated from the satellite SST data have good agreement with the measured values (rms deviation of +/- microatm). In the northwestern subpolar region the pCO2 is controlled not only by temperature, but also by significant seasonal changes in the total CO2 concentration, which are caused by seasonal changes in primary production, mixing with subsurface waters and sea-air exchange. Consequently, the parameterization of oceanic p CO2 based on SST data alone is not totally successful in the northwestern region (rms deviation of +/- 40 microatm). The use of additional satellite products, such as wind and ocean color data, as planned for a future study, is considered necessary to account for the pCO2 variability caused by seasonal changes in the total CO2 concentration. The net CO2 flux for the area of the North Pacific included in this study (north of 10 deg N) has been calculated using the monthly pCO2 distributions computed, and monthly wind speeds from the European Centre for Medium-Range Weather Forecasts. The region is found to be a net source to the atmosphere of 1.9 x 10(exp 12) to 5.8 x 10(exp 12) moles of CO2 per year (or 0.02-0.07 Gt C/yr), most of the outflux occurring in the subtropics.

  5. Sensitivity of tropical cyclone intensity to sea surface temperature

    SciTech Connect

    Evans, J.L. )

    1993-06-01

    Increased occurrence of more intense tropical storms intruding further poleward has been foreshadowed as one of the potential consequences of global warming. This scenario is based almost entirely on the general circulation model predictions of warmer sea surface temperature (SST) with increasing levels of atmospheric CO[sub 2] and some theories of tropical cyclone intensification that support the notion of more intense systems with warmer SST. Whether storms are able to achieve this theoretically determined more intense state depends on whether the temperature of the underlying water is the dominant factor in tropical cyclone intensification. An examination of the historical data record in a number of ocean basins is used to identify the relative importance of SST in the tropical cyclone intensification process. The results reveal that SST alone is an inadequate predictor of tropical cyclone intensity. Other factors known to affect tropical cyclone frequency and intensity are discussed. 16 refs., 6 figs., 3 tabs.

  6. Temperature distribution of air source heat pump barn with different air flow

    NASA Astrophysics Data System (ADS)

    He, X.; Li, J. C.; Zhao, G. Q.

    2016-08-01

    There are two type of airflow form in tobacco barn, one is air rising, the other is air falling. They are different in the structure layout and working principle, which affect the tobacco barn in the distribution of temperature field and velocity distribution. In order to compare the temperature and air distribution of the two, thereby obtain a tobacco barn whose temperature field and velocity distribution are more uniform. Taking the air source heat pump tobacco barn as the investigated subject and establishing relevant mathematical model, the thermodynamics of the two type of curing barn was analysed and compared based on Fluent. Provide a reasonable evidence for chamber arrangement and selection of outlet for air source heat pump tobacco barn.

  7. Assessing recent warming using instrumentally homogeneous sea surface temperature records

    PubMed Central

    Hausfather, Zeke; Cowtan, Kevin; Clarke, David C.; Jacobs, Peter; Richardson, Mark; Rohde, Robert

    2017-01-01

    Sea surface temperature (SST) records are subject to potential biases due to changing instrumentation and measurement practices. Significant differences exist between commonly used composite SST reconstructions from the National Oceanic and Atmospheric Administration’s Extended Reconstruction Sea Surface Temperature (ERSST), the Hadley Centre SST data set (HadSST3), and the Japanese Meteorological Agency’s Centennial Observation-Based Estimates of SSTs (COBE-SST) from 2003 to the present. The update from ERSST version 3b to version 4 resulted in an increase in the operational SST trend estimate during the last 19 years from 0.07° to 0.12°C per decade, indicating a higher rate of warming in recent years. We show that ERSST version 4 trends generally agree with largely independent, near-global, and instrumentally homogeneous SST measurements from floating buoys, Argo floats, and radiometer-based satellite measurements that have been developed and deployed during the past two decades. We find a large cooling bias in ERSST version 3b and smaller but significant cooling biases in HadSST3 and COBE-SST from 2003 to the present, with respect to most series examined. These results suggest that reported rates of SST warming in recent years have been underestimated in these three data sets. PMID:28070556

  8. Calibration plan for the sea and land surface temperature radiometer

    NASA Astrophysics Data System (ADS)

    Smith, David L.; Nightingale, Tim J.; Mortimer, Hugh; Middleton, Kevin; Edeson, Ruben; Cox, Caroline V.; Mutlow, Chris T.; Maddison, Brian J.

    2013-10-01

    The Sea and Land Surface Temperature Radiometer (SLSTR) to be flown on ESA's Sentinel-3 mission is a multichannel scanning radiometer that will continue the 21-year datasets of the Along Track Scanning Radiometer (ATSR) series. As its name implies, measurements from SLSTR will be used to retrieve global sea surface temperatures to an uncertainty of <0.3K traced to international standards. To achieve these low uncertainties requires an end to end instrument calibration strategy that includes pre-launch calibration at subsystem and instrument level, on-board calibration systems and sustained post launch activities. The authors describe the preparations for the pre-launch calibration activities including the spectral response, instrument level alignment tests, solar and infrared radiometric calibration. A purpose built calibration rig has been designed and built at RAL space that will accommodate the SLSTR instrument, infrared calibration sources and alignment equipment. The calibration rig has been commissioned and results of these tests will be presented. Finally the authors will present the planning for the on-orbit monitoring and calibration activities to ensure that calibration is maintained. These activities include vicarious calibration techniques that have been developed through previous missions, and the deployment of ship-borne radiometers.

  9. Survival of high latitude fringing corals in extreme temperatures: Red Sea oceanography

    NASA Astrophysics Data System (ADS)

    Moustafa, M. Z.; Moustafa, M. S.; Moustafa, Z. D.; Moustafa, S. E.

    2014-04-01

    This multi-year study set out to establish a comprehensive knowledgebase for a fringing coral reef in the Gulf of Suez, while also investigating the link between coral reef survivability and the extreme environmental conditions present in the region. The Gulf of Suez is a narrow branch of the northern Red Sea for which all forms of environmental and scientific data are severely lacking. Monitoring oceanographic and meteorological data provides evidence of both seasonal variability and interannual variability in this region, and may reveal correlations between reef health and prevailing climate conditions. Specifically, this research sought to document the environmental conditions under which Zaki's Reef, a small fringing coral reef (29.5°N and 32.4°E) that lies at the northernmost limit of tropical reefs worldwide, is able to survive, in order to determine how extreme the conditions are. Results of observed seawater temperature revealed that coral species at Zaki's Reef regularly experience 2-4 °C and 10-15 °C daily and seasonal temperature variations, respectively. Seawater temperature monthly means reached a minimum of 14 °C in February and a maximum of 33 °C in August. Monthly mean sea surface temperature climatology obtained from satellite measurements was comparable to observed seawater temperatures, while annual air and seawater temperature means were identical at 22 °C. Observed seawater temperatures exceeded established coral bleaching thresholds for extended periods of time, suggesting that coral species at this location may have developed a mechanism to cope with such extreme temperatures. Further scrutiny of these species and the mechanisms by which they are able to thrive is recommended.

  10. Regional change in snow water equivalent-surface air temperature relationship over Eurasia during boreal spring

    NASA Astrophysics Data System (ADS)

    Wu, Renguang; Chen, Shangfeng

    2016-10-01

    Present study investigates local relationship between surface air temperature and snow water equivalent (SWE) change over mid- and high-latitudes of Eurasia during boreal spring. Positive correlation is generally observed around the periphery of snow covered region, indicative of an effect of snow on surface temperature change. In contrast, negative correlation is usually found over large snow amount area, implying a response of snow change to wind-induced surface temperature anomalies. With the seasonal retreat of snow covered region, region of positive correlation between SWE and surface air temperature shifts northeastward from March to May. A diagnosis of surface heat flux anomalies in April suggests that the snow impact on surface air temperature is dominant in east Europe and west Siberia through modulating surface shortwave radiation. In contrast, atmospheric effect on SWE is important in Siberia and Russia Far East through wind-induced surface sensible heat flux change. Further analysis reveals that atmospheric circulation anomalies in association with snowmelt over east Siberia may be partly attributed to sea surface temperature anomalies in the North Atlantic and the atmospheric circulation anomaly pattern associated with snowmelt over Russia Far East has a close association with the Arctic Oscillation.

  11. Influence of wet conditions on snow temperature diurnal variations: An East Antarctic sea-ice case study

    NASA Astrophysics Data System (ADS)

    Lecomte, O.; Toyota, T.

    2016-09-01

    A one-dimensional snow-sea-ice model is used to simulate the evolution of temperature profiles in dry and wet snow over a diurnal cycle, at locations where associated observations collected during the Sea Ice Physics and Ecosystem eXperiment (SIPEX-II) are available. The model is used at two sites, corresponding to two of the field campaign's sea-ice stations (2 and 6), and under two configurations: dry and wet snow conditions. In the wet snow model setups, liquid water may refreeze internally into the snow. At station 6, this releases latent heat to the snow and results in temperature changes at the base of the snow pack of a magnitude comparing to the model-observation difference (1 - 2 ° C). As the temperature gradient across the snow is in turn weakened, the associated conductive heat flux through snow decreases. At station 2, internal refreezing also occurs but colder air temperatures and the competing process of strengthened heat conduction in snow concurrent to snow densification maintain a steady temperature profile. However, both situations share a common feature and show that the conductive heat flux through the snow may significantly be affected (by 10-20% in our simulations) as a result of the liquid water refreezing in snow, either through thermal conductivity enhancement or direct temperature gradient alteration. This ultimately gives motivation for further investigating the impacts of these processes on the sea-ice mass balance in the framework of global scale model simulations.

  12. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  13. A multiproxy reconstruction of Hebridean Shelf Sea spring sea surface temperatures from 1805-2010 (Invited)

    NASA Astrophysics Data System (ADS)

    Reynolds, D.; Butler, P.; Williams, S.; Scourse, J. D.; Richardson, C.; Wanamaker, A. D.; Austin, W.; Cage, A.; Sayer, M.

    2013-12-01

    We present a multiproxy reconstruction of Hebridean shelf sea (Tiree Passage; NW Scotland) spring sea surface temperatures (SSTs) for the period AD 1805-2010. The reconstruction is based on growth increment series from the first absolutely dated annually-resolved multi-centennial Glycymeris glycymeris bivalve mollusc sclerochronology and is coupled with previously published stable oxygen isotopes (δ18O) from benthic foraminifera sampled from a dated sediment core from nearby Loch Sunart. The independent series contain significant correlations with SSTs across complementary frequency domains. The low frequency component of the sedimentary archive was combined with the mid and high frequency components of the G. glycymeris chronology indices to create a single multiproxy series. Split calibration-verification statistics (reduction of error, RE, coefficient of efficiency, CE, and R2) indicate that the multiproxy record, calibrated to local instrumental sea surface temperatures, contains significant precision and skill at reconstructing spring SSTs (RE=0.59, CE=0.26, R2=0.54). These data demonstrate that bivalve sclerochronologies, when combined with low frequency proxies such as sediment archives, can facilitate statistically robust reconstructions of palaeoceanographic variability over the late Holocene for hydrographically-significant regions of the temperate marine system previously void of annually-resolved archives. The reconstructed SSTs contain a general warming trend of 0.60 ×0.14oC per century. Only four years in the reconstructed period (1999, 2000, 2002 and 2003) exceed temperatures greater than two standard deviations higher than the reconstructed mean SST (9.03oC), whilst just three years in the first half of the 19th century (1835, 1838 and 1840) fall more than 2σ below the reconstructed mean (6.80oC).

  14. Temperature effect on titanium nitride nanometer thin film in air

    NASA Astrophysics Data System (ADS)

    Cen, Z. H.; Xu, B. X.; Hu, J. F.; Ji, R.; Toh, Y. T.; Ye, K. D.; Hu, Y. F.

    2017-02-01

    Titanium nitride (TiN) is a promising alternative plasmonic material to conventional novel metals. For practical plasmonic applications under the influence of air, the temperature-dependent optical properties of TiN thin films in air and its volume variation are essential. Ellipsometric characterizations on a TiN thin film at different increasing temperatures in ambient air were conducted, and optical constants along with film thickness were retrieved. Below 200 °C, the optical properties varied linearly with temperature, in good agreement with other temperature dependent studies of TiN films in vacuum. The thermal expansion coefficient of the TiN thin film was determined to be 10.27  ×  10‑6 °C‑1. At higher temperatures, the TiN thin film gradually loses its metallic characteristics and has weaker optical absorption, impairing its plasmonic performance. In addition, a sharp increase in film thickness was observed at the same time. Changes in the optical properties and film thickness with temperatures above 200 °C were revealed to result from TiN oxidation in air. For the stability of TiN-based plasmonic devices, operation temperatures of lower than 200 °C, or measures to prevent oxidation, are required. The present study is important to fundamental physics and technological applications of TiN thin films.

  15. Numerical Simulation of Air Mass Modification Over the East China Sea during the Winter Season

    NASA Astrophysics Data System (ADS)

    Hsu, Wu-Ron

    Air mass modification over the East China Sea during cold air outbreaks in the winter season was simulated by utilizing a high-resolution numerical model. The model includes most of the major physical processes, such as, surface exchange of heat and moisture between water and air; condensation and evaporation; and vertical turbulent transfer of heat, moisture, and momentum. The simulated convective boundary layer (CBL) consists of a surface layer, a subcloud layer, and a cloud layer. It is capped by an inversion with strong temperature and moisture gradients. Mesoscale cellular convection (MCC) embedded within the convective layer moves along with the mean wind. The average aspect ratio of the cells is 17.5, which agrees with observed aspect ratios for convective cells over the East China Sea. The upward convective motion correlates very well with the appearance of clouds, higher temperature, and higher moisture content in the CBL. The effects of diabatic heating were found to be very important in driving the thermal convection. Without the release of latent heat, the convective layer would be very shallow, and the convective motion would be greatly suppressed. Even though the formulation and dissipation of a cloud is associated with the movement of the resolvable scale MCC, the vertical transport of heat and moisture is achieved mainly by the unresolvable turbulent eddies. The distribution of specific humidity during the passage of the surface front reveals the moisture being pushed upward along the frontal surface as observed. The cold and dry air behind the cold front is quickly modified by strong convection over the warm water surface, especially over the Kuroshio Current. A cloud-free region exists near the coast where the CBL is too shallow for clouds to develop. A layer of stratocumulus forms downstream from the cloud-free region. The depth of the CBL increases toward the Kuroshio Current due to strong heat and moisture fluxes from the water surface. The CBL

  16. The impact of sea breeze under different synoptic patterns on air pollution within Athens basin.

    PubMed

    Mavrakou, Thaleia; Philippopoulos, Kostas; Deligiorgi, Despina

    2012-09-01

    Air quality in densely populated urban coastal areas is directly related to the coupling of the synoptic and the local scale flows. The dispersion conditions within Athens basin, under the influence of different meteorological forcings, lead to distinct spatio-temporal air pollution patterns. The aim of the current observational research is to identify and examine the effect of sea breeze under different atmospheric circulation patterns on air pollution levels for a one-year study period (2007). The study employs surface pressure maps, routine meteorological observations at two coastal sites and nitrogen monoxide (NO), nitrogen dioxide (NO(2)) and ozone (O(3)) concentrations from a network of four air quality stations within the Athens basin. A three-step methodology is applied that incorporates a set of criteria for classifying atmospheric circulation and identifying sea breeze events under each circulation pattern. Two types of sea breeze development are identified (pure sea breeze-PSB and modified sea breeze-MSB) with distinct characteristics. Sea breeze is found to develop more frequently under offshore compared to onshore and parallel to the shoreline background flows. Poor dispersion conditions (high nitrogen oxides-NO(x) and O(3) concentrations) are connected to the pure sea breeze cases and to those cases where sea breeze interacts with a moderate northerly flow during the warm period. The levels of NO(x) and O(3) for the northern Athens basin area are found to be significantly higher during the sea breeze days compared to the Etesian days. Regarding the diurnal variation of ozone for the sea breeze days, peak concentrations and higher intra-daily ranges are observed. Day-to-day pollution accumulation (build-up effect) is measured for O(3) at the northern stations in the Athens basin.

  17. The EUSTACE project: combining different components of the observing system to deliver global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Rayner, Nick

    2016-04-01

    Day-to-day variations in surface air temperature affect society in many ways and are fundamental information for many climate services; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, we must develop an understanding of the relationships between traditional surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we reflect on our experience so far within the Horizon 2020 project EUSTACE of using satellite skin temperature retrievals to help us to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types and developing new statistical models of how surface air temperature varies in a connected way from place to place. We will present plans and progress along this road in the EUSTACE project (2015-June 2018): - providing new, consistent, multi-component estimation of uncertainty in surface skin temperature retrievals from satellites; - identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; - estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; - using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  18. Soil temperature prediction from air temperature for alluvial soils in lower Indo-Gangetic plain

    NASA Astrophysics Data System (ADS)

    Barman, D.; Kundu, D. K.; Pal, Soumen; Pal, Susanto; Chakraborty, A. K.; Jha, A. K.; Mazumdar, S. P.; Saha, R.; Bhattacharyya, P.

    2017-01-01

    Soil temperature is an important factor in biogeochemical processes. On-site monitoring of soil temperature is limited in spatiotemporal scale as compared to air temperature data inventories due to various management difficulties. Therefore, empirical models were developed by taking 30-year long-term (1985-2014) air and soil temperature data for prediction of soil temperatures at three depths (5, 15, 30 cm) in morning (0636 Indian standard time) and afternoon (1336 Indian standard time) for alluvial soils in lower Indo-Gangetic plain. At 5 cm depth, power and exponential regression models were best fitted for daily data in morning and afternoon, respectively, but it was reverse at 15 cm. However, at 30 cm, exponential models were best fitted for both the times. Regression analysis revealed that in morning for all three depths and in afternoon for 30 cm depth, soil temperatures (daily, weekly, and monthly) could be predicted more efficiently with the help of corresponding mean air temperature than that of maximum and minimum. However, in afternoon, prediction of soil temperature at 5 and 15 cm depths were more precised for all the time intervals when maximum air temperature was used, except for weekly soil temperature at 15 cm, where the use of mean air temperature gave better prediction.

  19. Spatio-temporal variability in sea surface temperatures for the Yellow Sea based on MODIS dataset

    NASA Astrophysics Data System (ADS)

    Liu, Chunli; Sun, Qiwei; Xing, Qianguo; Liang, Zhenlin; Deng, Yue; Zhu, Lixin

    2017-02-01

    The spatio-temporal variabilities in sea surface temperature (SST) were analyzed using a time series of MODIS datasets for four separate regions in the Yellow Sea (YS) that were located along a north-south axis. The space variant temporal anomaly was further decomposed using an empirical orthogonal function (EOF) for estimating spatially distributed SST. The monthly SSTs showed similar temporal patterns in each region, which ranged from 2.4°C to 28.4°C in the study years 2011 to 2013, with seasonal cycles being stronger at the higher latitudes and weaker at the lower latitudes. Spatially, although there were no significant differences among the four regions (p < 0.05) in any year, the geographical distribution of SST was characterized by an obvious gradient whereby SST decreased along the north-south axis. The monthly thermal difference among regions was largest in winter since the SST in the southeast was mainly affected by the Yellow Sea Warm Currents. The EOF1 mode accounted for 56% of the total spatial variance and exhibited a warming signal during the study period. The EOF2 mode accounted for 8% of the total variance and indicated the warm current features in the YS. The EOF3 mode accounted for 6% of the total variance and indicated the topographical features. The methodology used in this study demonstrated the spatio-temporal variabilities in the YS.

  20. Spatio-temporal variability in sea surface temperatures for the Yellow Sea based on MODIS dataset

    NASA Astrophysics Data System (ADS)

    Liu, Chunli; Sun, Qiwei; Xing, Qianguo; Liang, Zhenlin; Deng, Yue; Zhu, Lixin

    2017-03-01

    The spatio-temporal variabilities in sea surface temperature (SST) were analyzed using a time series of MODIS datasets for four separate regions in the Yellow Sea (YS) that were located along a north-south axis. The space variant temporal anomaly was further decomposed using an empirical orthogonal function (EOF) for estimating spatially distributed SST. The monthly SSTs showed similar temporal patterns in each region, which ranged from 2.4°C to 28.4°C in the study years 2011 to 2013, with seasonal cycles being stronger at the higher latitudes and weaker at the lower latitudes. Spatially, although there were no significant differences among the four regions ( p < 0.05) in any year, the geographical distribution of SST was characterized by an obvious gradient whereby SST decreased along the north-south axis. The monthly thermal difference among regions was largest in winter since the SST in the southeast was mainly affected by the Yellow Sea Warm Currents. The EOF1 mode accounted for 56% of the total spatial variance and exhibited a warming signal during the study period. The EOF2 mode accounted for 8% of the total variance and indicated the warm current features in the YS. The EOF3 mode accounted for 6% of the total variance and indicated the topographical features. The methodology used in this study demonstrated the spatio-temporal variabilities in the YS.

  1. A pheromone outweighs temperature in influencing migration of sea lamprey

    PubMed Central

    Brant, Cory O.; Li, Ke; Johnson, Nicholas S.; Li, Weiming

    2015-01-01

    Organisms continuously acquire and process information from surrounding cues. While some cues complement one another in delivering more reliable information, others may provide conflicting information. How organisms extract and use reliable information from a multitude of cues is largely unknown. We examined movement decisions of sea lampreys (Petromyzon marinus L.) exposed to a conspecific and an environmental cue during pre-spawning migration. Specifically, we predicted that the mature male-released sex pheromone 3-keto petromyzonol sulfate (3kPZS) will outweigh the locomotor inhibiting effects of cold stream temperature (less than 15°C). Using large-scale stream bioassays, we found that 3kPZS elicits an increase (more than 40%) in upstream movement of pre-spawning lampreys when the water temperatures were below 15°C. Both warming temperatures and conspecific cues increase upstream movement when the water temperature rose above 15°C. These patterns define an interaction between abiotic and conspecific cues in modulating animal decision-making, providing an example of the hierarchy of contradictory information. PMID:26064660

  2. A pheromone outweighs temperature in influencing migration of sea lamprey

    USGS Publications Warehouse

    Brant, Cory O.; Li, Ke; Johnson, Nicholas S.; Li, Weiming

    2015-01-01

    Organisms continuously acquire and process information from surrounding cues. While some cues complement one another in delivering more reliable information, others may provide conflicting information. How organisms extract and use reliable information from a multitude of cues is largely unknown. We examined movement decisions of sea lampreys (Petromyzon marinus L.) exposed to a conspecific and an environmental cue during pre-spawning migration. Specifically, we predicted that the mature male-released sex pheromone 3-keto petromyzonol sulfate (3kPZS) will outweigh the locomotor inhibiting effects of cold stream temperature (less than 15°C). Using large-scale stream bioassays, we found that 3kPZS elicits an increase (more than 40%) in upstream movement of pre-spawning lampreys when the water temperatures were below 15°C. Both warming temperatures and conspecific cues increase upstream movement when the water temperature rose above 15°C. These patterns define an interaction between abiotic and conspecific cues in modulating animal decision-making, providing an example of the hierarchy of contradictory information.

  3. Tropical Intraseasonal Air-Sea Exchanges during the 1997 Pacific Warming

    NASA Technical Reports Server (NTRS)

    Sui, C.-H.; Lau, K.-M.; Chou, S.-H.; Wang, Zihou

    1999-01-01

    The Madden Julian Oscillations (MJO) and associated westerly wind (WW) events account for much of the tropical intraseasonal variability (TISV). The TISV has been suggested as an important stochastic forcing that may be one of the underlying causes for the observed irregularities of the El Nino-Southern Oscillation (ENSO). Recent observational studies and theories of interannual to interdecadal-scale variability suggest that ENSO may arise from different mechanisms depending on the basic states. The Pacific warming event of 1997, being associated with a period of strong MJO and WW events, serves as a natural experiment for studying the possible role of TISV in triggering an ENSO event. We have performed a combined statistical and composite analysis of surface WW events based on the assimilated surface wind and sea level pressure for the period of 1980-1993, the SSM/I wind for the period of 1988-1997, and OLR. Results indicates that extratropical forcing contribute significantly to the evolution of MJO and establishment of WW events over the Pacific warm pool. Following the major WW events, there appeared an eastward extension of equatorial warm SST anomalies from the western Pacific warm pool. Such tropical-extratropical interaction is particularly clear in the winter of 96-97 that leads to the recent warming event in 1997/98. From the above discussion, our current study on this subject is based on the hypothesis that 1) there is an enhanced air-sea interaction associated with TISV and the northerly surges from the extratropics in the initial phase of the 97/98 warming event, and 2) the relevant mechanisms are functions of the basic state of the coupled system (in terms of SST distribution and atmospheric mean circulation) that varies at the interannual and interdecadal time scale. We are analyzing the space-time structure of the northerly surges, their association with air-sea fluxes and upper ocean responses during the period of September 1996 to June 1997. The

  4. Heat tolerance of higher plants cenosis to damaging air temperatures

    NASA Astrophysics Data System (ADS)

    Ushakova, Sofya; Shklavtsova, Ekaterina

    Designing sustained biological-technical life support systems (BTLSS) including higher plants as a part of a photosynthesizing unit, it is important to foresee the multi species cenosis reaction on either stress-factors. Air temperature changing in BTLSS (because of failure of a thermoregulation system) up to the values leading to irreversible damages of photosynthetic processes is one of those factors. However, it is possible to increase, within the certain limits, the plant cenosis tolerance to the unfavorable temperatures’ effect due to the choice of the higher plants possessing resistance both to elevated and to lowered air temperatures. Besides, the plants heat tolerance can be increased when subjecting them during their growing to the hardening off temperatures’ effect. Thus, we have come to the conclusion that it is possible to increase heat tolerance of multi species cenosis under the damaging effect of air temperature of 45 (°) СC.

  5. Air-Sea Fluxes in Hurricanes From GPS Dropsondes and a Fully Coupled Model

    NASA Astrophysics Data System (ADS)

    Desflots, M.; Chen, S.; Zhao, W.; Bao, J.

    2006-12-01

    The importance of the surface fluxes for tropical cyclone (TC) intensity has long been recognized. However, accurate surface fluxes under extreme high-wind conditions are difficult to determine due to the lack of direct observations. The physical processes controlling the air-sea fluxes and the exchange coefficients for the enthalpy and momentum fluxes are not well understood. Furthermore, a large amount of sea spray produced by the breaking waves in high winds further complicates the processes at the air-sea interface. To understand the behaviour of the surface fluxes and the atmospheric and upper ocean boundary layers in a hurricane, we use a high-resolution (1-2 km grid spacing), fully coupled atmosphere-wave-ocean model. The components of the coupled model system are the 5th generation Pennsylvania State University/ National Center for Atmospheric Research non-hydrostatic Mesoscale Model (MM5), WAVEWATCH III (WW3), and the Woods Hole Oceanographic Institution three-dimensional upper ocean model (WHOI 3DPWP). The coupled model used in this study includes the CBLAST wind-wave coupling parameterization and a sea spray parameterization that include the effects of the surface waves. The sea spray parameterization was initially developed by Fairall et al. (1994) and modified by Bao et al. (2000). The model simulated air-sea fluxes and atmospheric profiles from several numerical experiments of a 5-day simulation of Hurricane Frances (2004) are compared with the Global Positioning System (GPS) dropsonde data. The coupled model simulations of Frances reproduce the observed storm track and intensity quite well. The observed cold wake at the ocean surface and the asymmetry in the air-sea fluxes are also evident in the model simulations. More detailed analysis is currently underway to better understand the physical processes affecting air-sea fluxes in hurricanes as well as their contribution to the storm structure and intensity.

  6. Passive radiative cooling below ambient air temperature under direct sunlight.

    PubMed

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day.

  7. Tropical cyclone rainfall area controlled by relative sea surface temperature

    PubMed Central

    Lin, Yanluan; Zhao, Ming; Zhang, Minghua

    2015-01-01

    Tropical cyclone rainfall rates have been projected to increase in a warmer climate. The area coverage of tropical cyclones influences their impact on human lives, yet little is known about how tropical cyclone rainfall area will change in the future. Here, using satellite data and global atmospheric model simulations, we show that tropical cyclone rainfall area is controlled primarily by its environmental sea surface temperature (SST) relative to the tropical mean SST (that is, the relative SST), while rainfall rate increases with increasing absolute SST. Our result is consistent with previous numerical simulations that indicated tight relationships between tropical cyclone size and mid-tropospheric relative humidity. Global statistics of tropical cyclone rainfall area are not expected to change markedly under a warmer climate provided that SST change is relatively uniform, implying that increases in total rainfall will be confined to similar size domains with higher rainfall rates. PMID:25761457

  8. Satellite-Derived Sea Surface Temperature: Workshop 3

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This is the third of a series of three workshops, sponsored by the National Aeronautics and Space Administration, to investigate the state of the art in global sea surface temperature measurements from space. Three workshops were necessary to process and analyze sufficient data from which to draw conclusions on the accuracy and reliability of the satellite measurements. In this workshop, the final two (out of a total of four) months of satellite and in situ data chosen for study were processed and evaluated. Results from the AVHRR, HIRS, SMMR, and VAS sensors, in comparison with in situ data from ships, XBTs, and buoys, confirmed satellite rms accuracies in the 0.5 to 1.0 C range, but with variable biases. These accuracies may degrade under adverse conditions for specific sensors. A variety of color maps, plots, and statistical tables are provided for detailed study of the individual sensor SST measurements.

  9. Sea-surface temperature chart enhancement in frontal zones

    NASA Astrophysics Data System (ADS)

    Aleksanin, A. I.; Kim, V.

    2016-12-01

    Infrared and microwave satellite images used for sea-surface temperature (SST) retrieval often have distortions such as noise and blurring of thermal front lines that decrease the quality of SST charts. In order to solve this problem, it is proposed to use an approach based on the Mumford-Shah model that approximates an image with a piecewise smooth function. In order to combine the advantages of the proposed approach and conventional methods for noise filtering and image restoration it is proposed to divide images into flat and frontal zones and process them separately. The SST quality is enhanced by the use of edge-preserving noise filtering and restoration algorithms. The latter use the features of radiometers and different stages of the SST construction procedure to improve their accuracy. The images obtained using the MTSAT/VISSR, METEOR-M/MSU-MR, and AQUA/AMSR-E radiometers are used for testing the developed approach.

  10. Change point detection of the Persian Gulf sea surface temperature

    NASA Astrophysics Data System (ADS)

    Shirvani, A.

    2017-01-01

    In this study, the Student's t parametric and Mann-Whitney nonparametric change point models (CPMs) were applied to detect change point in the annual Persian Gulf sea surface temperature anomalies (PGSSTA) time series for the period 1951-2013. The PGSSTA time series, which were serially correlated, were transformed to produce an uncorrelated pre-whitened time series. The pre-whitened PGSSTA time series were utilized as the input file of change point models. Both the applied parametric and nonparametric CPMs estimated the change point in the PGSSTA in 1992. The PGSSTA follow the normal distribution up to 1992 and thereafter, but with a different mean value after year 1992. The estimated slope of linear trend in PGSSTA time series for the period 1951-1992 was negative; however, that was positive after the detected change point. Unlike the PGSSTA, the applied CPMs suggested no change point in the Niño3.4SSTA time series.

  11. Biofilm-like properties of the sea surface and predicted effects on air-sea CO2 exchange

    NASA Astrophysics Data System (ADS)

    Wurl, Oliver; Stolle, Christian; Van Thuoc, Chu; The Thu, Pham; Mari, Xavier

    2016-05-01

    Because the sea surface controls various interactions between the ocean and the atmosphere, it has a profound function for marine biogeochemistry and climate regulation. The sea surface is the gateway for the exchange of climate-relevant gases, heat and particles. Thus, in order to determine how the ocean and the atmosphere interact and respond to environmental changes on a global scale, the characterization and understanding of the sea surface are essential. The uppermost part of the water column is defined as the sea-surface microlayer and experiences strong spatial and temporal dynamics, mainly due to meteorological forcing. Wave-damped areas at the sea surface are caused by the accumulation of surface-active organic material and are defined as slicks. Natural slicks are observed frequently but their biogeochemical properties are poorly understood. In the present study, we found up to 40 times more transparent exopolymer particles (TEP), the foundation of any biofilm, in slicks compared to the underlying bulk water at multiple stations in the North Pacific, South China Sea, and Baltic Sea. We found a significant lower enrichment of TEP (up to 6) in non-slick sea surfaces compared to its underlying bulk water. Moreover, slicks were characterized by a large microbial biomass, another shared feature with conventional biofilms on solid surfaces. Compared to non-slick samples (avg. pairwise similarity of 70%), the community composition of bacteria in slicks was increasingly (avg. pairwise similarity of 45%) different from bulk water communities, indicating that the TEP-matrix creates specific environments for its inhabitants. We, therefore, conclude that slicks can feature biofilm-like properties with the excessive accumulation of particles and microbes. We also assessed the potential distribution and frequency of slick-formation in coastal and oceanic regions, and their effect on air-sea CO2 exchange based on literature data. We estimate that slicks can reduce CO2

  12. Reconciling Glacial Snow Lines With Tropical Sea Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Lorenz, S. J.; Lohmann, G.

    Reconstructions of tropical snow lines during the last glacial maximum (LGM) 21,000 years ago are incompatible with the sea surface temperature (SST) reconstructions of the CLIMAP project, when assuming present day atmospheric lapse rates (e.g. Pe- teet and Rind 1985). Since proxy data for the vertical structure of the atmosphere during glacial times do not exist, numerical experiments with an atmospheric gen- eral circulation model for glacial and interglacial climates have been performed. Our model experiments reveal that slightly cooler tropical SSTs relative to the ones by CLIMAP (1981) are sufficient to simulate proper glacial freezing temperature levels. The depression of tropical snow lines in our LGM experiment can be attributed to two effects: Less moisture content provides an increased environmental lapse rate in the free atmosphere. This effect is strongest in the tropical middle troposphere where we observe an additional two degrees cooling. Secondly, the surface temperature near tropical glaciers is further cooled by a longer duration of snow cover. Our model result provides a consistent view of the last glacial maximum climate with much colder tem- peratures than today in the tropical mountains in concordance with moderate lowering of tropical SSTs.

  13. Variability of Winter Air Temperature in Mid-Latitude Europe

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Ardizzone, J.; Atlas, R.; Bungato, D.; Cierniewski, J.; Jusem, J. C.; Przybylak, R.; Schubert, S.; Starr, D.; Walczewski, J.

    2002-01-01

    The aim of this paper is to report extreme winter/early-spring air temperature (hereinafter temperature) anomalies in mid-latitude Europe, and to discuss the underlying forcing to these interannual fluctuations. Warm advection from the North Atlantic in late winter controls the surface-air temperature, as indicated by the substantial correlation between the speed of the surface southwesterlies over the eastern North Atlantic (quantified by a specific Index Ina) and the 2-meter level air temperatures (hereinafter Ts) over Europe, 45-60 deg N, in winter. In mid-March and subsequently, the correlation drops drastically (quite often it is negative). This change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature: absorption of insolation replaces the warm advection as the dominant control. This forcing by maritime-air advection in winter was demonstrated in a previous publication, and is re-examined here in conjunction with extreme fluctuations of temperatures in Europe. We analyze here the interannual variability at its extreme by comparing warm-winter/early-spring of 1989/90 with the opposite scenario in 1995/96. For these two December-to-March periods the differences in the monthly mean temperature in Warsaw and Torun, Poland, range above 10 C. Short-term (shorter than a month) fluctuations of the temperature are likewise very strong. We conduct pentad-by-pentad analysis of the surface-maximum air temperature (hereinafter Tmax), in a selected location, examining the dependence on Ina. The increased cloudiness and higher amounts of total precipitable water, corollary effects to the warm low-level advection. in the 1989/90 winter, enhance the positive temperature anomalies. The analysis of the ocean surface winds is based on the Special Sensor Microwave/Imager (SSM/I) dataset; ascent rates, and over land wind data are from the European Centre for Medium-Range Weather Forecasts (ECMWF); maps of 2-m temperature, cloud

  14. Investigation of Sea Surface Temperature (SST) anomalies over Cyprus area

    NASA Astrophysics Data System (ADS)

    Georgiou, Andreas; Akçit, Nuhcan

    2016-08-01

    The temperature of the sea surface has been identified as an important parameter of the natural environment, governing processes that occur in the upper ocean. This paper focuses on the analysis of the Sea Surface Temperature (SST) anomalies at the greater area of Cyprus. For that, SST data derived from MODerate-resolution Imaging Spectroradiometer (MODIS) instrument on board both Aqua and Terra sun synchronous satellites were used. A four year period was chosen as a first approach to address and describe this phenomenon. Geographical Information Systems (GIS) has been used as an integrated platform of analysis and presentation in addition of the support of MATLAB®. The methodology consists of five steps: (i) Collection of MODIS SST imagery, (ii) Development of the digital geo-database; (iii) Model and run the methodology in GIS as a script; (iv) Calculation of SST anomalies; and (v) Visualization of the results. The SST anomaly values have presented a symmetric distribution over the study area with an increase trend through the years of analysis. The calculated monthly and annual average SST anomalies (ASST) make more obvious this trend, with negative and positive SST changes to be distributed over the study area. In terms of seasons, the same increase trend presented during spring, summer, autumn and winter with 2013 to be the year with maximum ASST observed values. Innovative aspects comprise of straightforward integration and modeling of available tools, providing a versatile platform of analysis and semi-automation of the operation. In addition, the fine resolution maps that extracted from the analysis with a wide spatial coverage, allows the detail representation of SST and ASST respectively in the region.

  15. High-resolution simulations of heavy precipitation events: role of the Adriatic SST and air-sea interactions

    NASA Astrophysics Data System (ADS)

    Davolio, Silvio; Stocchi, Paolo

    2016-04-01

    Strong Bora and Sirocco winds over the Adriatic Sea favour intense air-sea interactions and are often associated with heavy rainfall that affects the mountainous areas surrounding the basin. A convection-permitting model (MOLOCH) has been implemented at high resolution (2 km) in order to analyse several precipitation events over northern Italy, occurred during different seasons of the year and presenting different rainfall characteristics (stratiform, convective, orographic), and to possibly identify the relevant physical mechanisms involved. With the aim of assessing the impact of the sea surface temperature (SST) and surface fluxes on the intensity and location of the rainfall, sensitivity experiments have been performed taking into account the possible variability of SST analysis for model initialization. The model has been validated and specific diagnostic tools have been developed and applied to evaluate the vertically integrated moisture fluxes feeding the precipitating system or to compute a water balance in the atmosphere over the sea. The results show that the Adriatic Sea plays a role in determining the boundary layer characteristics through exchange of heat and moisture thus modifying the low-level flow dynamics and its interaction with the orography. This in turn impacts on the rainfall. Although the results vary among the analysed events, the precise definition of the SST and its evolution can be relevant for accurate precipitation forecasting.

  16. Pulsed positive streamer discharges in air at high temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Kamakura, Taku

    2016-08-01

    Atmospheric-pressure air pulsed positive streamer discharges are generated in a 13 mm point-plane gap in the temperature range of 293 K-1136 K, and the effect of temperature on the streamer discharges is studied. When the temperature is increased, the product of applied voltage and temperature VT proportional to the reduced electric field can be used as a primary parameter that determines some discharge parameters regardless of temperature. For a given VT, the transferred charge per pulse, streamer diameter, product of discharge energy and temperature, and length of secondary streamer are almost constant regardless of T, whereas the streamer velocity decreases with increasing T and the decay rate of the discharge current is proportional to 1/T. The N2(C) emission intensity is approximately determined by the discharge energy independent of T. These results are useful to predict the streamer discharge and its reactive species production when the ambient temperature is increased.

  17. Seasonal sea surface temperature anomaly prediction for coastal ecosystems

    NASA Astrophysics Data System (ADS)

    Stock, Charles A.; Pegion, Kathy; Vecchi, Gabriel A.; Alexander, Michael A.; Tommasi, Desiree; Bond, Nicholas A.; Fratantoni, Paula S.; Gudgel, Richard G.; Kristiansen, Trond; O'Brien, Todd D.; Xue, Yan; Yang, Xiasong

    2015-09-01

    Sea surface temperature (SST) anomalies are often both leading indicators and important drivers of marine resource fluctuations. Assessment of the skill of SST anomaly forecasts within coastal ecosystems accounting for the majority of global fish yields, however, has been minimal. This reflects coarse global forecast system resolution and past emphasis on the predictability of ocean basin-scale SST variations. This paper assesses monthly to inter-annual SST anomaly predictions in coastal "Large Marine Ecosystems" (LMEs). We begin with an analysis of 7 well-observed LMEs adjacent to the United States and then examine how mechanisms responsible for prediction skill in these systems are reflected in predictions for LMEs globally. Historical SST anomaly estimates from the 1/4° daily Optimal Interpolation Sea Surface Temperature reanalysis (OISST.v2) were first found to be highly consistent with in-situ measurements for 6 of the 7 U.S. LMEs. Thirty years of retrospective forecasts from climate forecast systems developed at NOAA's Geophysical Fluid Dynamics Laboratory (CM2.5-FLOR) and the National Center for Environmental Prediction (CFSv2) were then assessed against OISST.v2. Forecast skill varied widely by LME, initialization month, and lead but there were many cases of high skill that also exceeded that of a persistence forecast, some at leads greater than 6 months. Mechanisms underlying skill above persistence included accurate simulation of (a) seasonal transitions between less predictable locally generated and more predictable basin-scale SST variability; (b) seasonal transitions between different basin-scale influences; (c) propagation of SST anomalies across seasons through sea ice; and (d) re-emergence of previous anomalies upon the breakdown of summer stratification. Globally, significant skill above persistence across many tropical systems arises via mechanisms (a) and (b). Combinations of all four mechanisms contribute to less prevalent but nonetheless

  18. Effects of air flow directions on composting process temperature profile

    SciTech Connect

    Kulcu, Recep; Yaldiz, Osman

    2008-07-01

    In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO{sub 2} and O{sub 2} ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperature distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2.

  19. Modeling daily average stream temperature from air temperature and watershed area

    NASA Astrophysics Data System (ADS)

    Butler, N. L.; Hunt, J. R.

    2012-12-01

    Habitat restoration efforts within watersheds require spatial and temporal estimates of water temperature for aquatic species especially species that migrate within watersheds at different life stages. Monitoring programs are not able to fully sample all aquatic environments within watersheds under the extreme conditions that determine long-term habitat viability. Under these circumstances a combination of selective monitoring and modeling are required for predicting future geospatial and temporal conditions. This study describes a model that is broadly applicable to different watersheds while using readily available regional air temperature data. Daily water temperature data from thirty-eight gauges with drainage areas from 2 km2 to 2000 km2 in the Sonoma Valley, Napa Valley, and Russian River Valley in California were used to develop, calibrate, and test a stream temperature model. Air temperature data from seven NOAA gauges provided the daily maximum and minimum air temperatures. The model was developed and calibrated using five years of data from the Sonoma Valley at ten water temperature gauges and a NOAA air temperature gauge. The daily average stream temperatures within this watershed were bounded by the preceding maximum and minimum air temperatures with smaller upstream watersheds being more dependent on the minimum air temperature than maximum air temperature. The model assumed a linear dependence on maximum and minimum air temperature with a weighting factor dependent on upstream area determined by error minimization using observed data. Fitted minimum air temperature weighting factors were consistent over all five years of data for each gauge, and they ranged from 0.75 for upstream drainage areas less than 2 km2 to 0.45 for upstream drainage areas greater than 100 km2. For the calibration data sets within the Sonoma Valley, the average error between the model estimated daily water temperature and the observed water temperature data ranged from 0.7

  20. Impact of sea surface temperature on satellite retrieval of sea surface salinity

    NASA Astrophysics Data System (ADS)

    Jin, Xuchen; Zhu, Qiankun; He, Xianqiang; Chen, Peng; Wang, Difeng; Hao, Zengzhou; Huang, Haiqing

    2016-10-01

    Currently, global sea surface salinity (SSS) can be retrieved by the satellite microwave radiometer onboard the satellite, such as the Soil Moisture and Ocean Salinity(SMOS) and the Aqurius. SMOS is an Earth Explorer Opportunity Mission from the European Space Agency(ESA). It was launched at a sun-synchronous orbit in 2009 and one of the payloads is called MIRAS(Microwave Imaging Radiometer using Aperture Synthesis), which is the first interferometric microwave radiometer designed for observing SSS at L-band(1.41 GHz).The foundation of the salinity retrieval by microwave radiometer is that the sea surface radiance at L-band has the most suitable sensitivity with the variation of the salinity. It is well known that the sensitivity of brightness temperatures(TB) to SSS depends on the sea surface temperature (SST), but the quantitative impact of the SST on the satellite retrieval of the SSS is still poorly known. In this study, we investigate the impact of the SST on the accuracy of salinity retrieval from the SMOS. First of all, The dielectric constant model proposed by Klein and Swift has been used to estimate the vertically and horizontally polarized brightness temperatures(TV and TH) of a smooth sea water surface at L-band and derive the derivatives of TV and TH as a function of SSS to show the relative sensitivity at 45° incident angle. Then, we use the GAM(generalized additive model) method to evaluate the association between the satellite-measured brightness temperature and in-situ SSS at different SST. Moreover, the satellite-derived SSS from the SMOS is validated using the ARGO data to assess the RMSE(root mean squared error). We compare the SMOS SSS and ARGO SSS over two regions of Pacific ocean far from land and ice under different SST. The RMSE of retrieved SSS at different SST have been estimated. Our results showed that SST is one of the most significant factors affecting the accuracy of SSS retrieval. The satellite-measured brightness temperature has a

  1. Western Pacific Air-Sea Interaction Study (W-PASS), Introduction and Highlights (Invited)

    NASA Astrophysics Data System (ADS)

    Tsuda, A.

    2010-12-01

    Western Pacific Air-Sea Interaction Study (W-PASS), Introduction and Highlights Atsushi Tsuda Atmosphere and Ocean Research Institute, The University of Tokyo In the western Pacific (WESTPAC) region, dust originating from Asian and Australian arid regions to the North and South Pacific, biomass burning emissions from the Southeast Asia to sub-tropical Pacific, and other anthropogenic substances are transported regionally and globally to affect cloud and rainfall patterns, air quality, and radiative budgets downwind. Deposition of these compounds into the Asian marginal seas and onto the Pacific Ocean influence surface primary productivity and species composition. In the WESTPAC region, subarctic, subtropical oceans and marginal seas are located relatively narrow latitudinal range and these areas are influenced by the dust and anthropogenic inputs. Moreover, anthropogenic emission areas are located between the arid region and the oceans. The W-PASS (Western Pacific Air-Sea interaction Study) project has been funded for 5 years as a part of SOLAS-Japan activity in the summer of 2006. We aim to resolve air-sea interaction through field observation studies mainly using research vessels and island observatories over the western Pacific. We have carried out 5 cruises to the western North Pacific focusing on air-sea interactions. Also, an intensive marine atmospheric observation including direct atmospheric deposition measurement was accomplished by a dozen W-PASS research groups at the NIES Atmospheric and Aerosol Monitoring Station of Cape Hedo in the northernmost tip of the Okinawa main Island facing the East China Sea in the spring 2008. A few weak Kosa (dust) events, anthropogenic air outflows, typical local air and occupation of marine background air were identified during the campaign period. The W-PASS has four research groups mainly focusing on VOC emissions, air-sea gas exchange processes, biogeochemical responses to dust depositions and its modeling. We also

  2. An Optimization Approach to Analyzing the Effect of Supply Water and Air Temperatures in Planning an Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Karino, Naoki; Shiba, Takashi; Yokoyama, Ryohei; Ito, Koichi

    In planning an air conditioning system, supply water and air temperatures are important factors from the viewpoint of cost reduction. For example, lower temperature supply water and air reduce the coefficient of performance of a refrigeration machine, and increase the thickness of heat insulation material. However, they enable larger temperature differences, and reduce equipment sizes and power demand. The purposes of this paper are to propose an optimal planning method for a cold air distribution system, and to analyze the effect of supply water and air temperatures on the long-term economics through a numerical study for an office building. As a result, it is shown that the proposed method effectively determines supply water and air temperatures for a cold air distribution system, and that the influence of supply air temperature is larger than that of supply water temperature on the long-term economics.

  3. Air-sea interactions a techno-political history and future challenges

    NASA Astrophysics Data System (ADS)

    Geernaert, G.

    2003-04-01

    Air-sea interaction research has its origins in early inquiry into wave suppression and fisheries. These led to efforts designed to model current systems, predict risks and threats to commercial and exploit fisheries for economic benefit. A new set of national goals emerged about a century ago: exploit the physics of air-sea interactions for military superiority; to be followed a half century later with efforts to understand air-sea interactions to address water quality, offshore energy and climate challenges. In most part, sociopolitical events precipitated new scientific discoveries, through agency financed networks and targeted research programs. There are also examples of science driving the agency process. In this presentation, a brief history of political and scientific challenges will be given, to be followed by a summary of our greatest upcoming challenges.

  4. Fine-Resolution Satellite-Based Daily Sea Surface Temperatures over the Global Ocean

    DTIC Science & Technology

    2007-05-01

    MODAS with latitudinal extent limited to ±80. Note that only the RTG product includes SST in the Caspian Sea and the Sea of Azov . The plot masks SST...Fine-resolution satellite-based daily sea surface temperatures over the global ocean A. B. Kara1 and C. N. Barron1 Received 18 November 2006; revised...13 February 2007; accepted 27 February 2007; published 22 May 2007. [1] The accuracy and relative merits of two sets of daily global sea surface

  5. MP3 - A Meteorology and Physical Properties Package to explore Air:Sea interaction on Titan

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2012-04-01

    The exchange of mass, heat and momentum at the air:sea interface are profound influences on our environment. Titan presents us with an opportunity to study these processes in a novel physical context. The MP3 instrument, under development for the proposed Discovery mission TiME (Titan Mare Explorer) is an integrated suite of small, simple sensors that combines the a traditional meteorology package with liquid physical properties and depth-sounding. In TiME's 6-Titan-day (96-day) nominal mission, MP3 will have an extended measurement opportunity in one of the most evocative environments in the solar system. The mission and instrument benefit from APL's expertise and experience in marine as well as space systems. The topside meteorology sensors (METH, WIND, PRES, TEMP) will yield the first long-duration in-situ data to constrain Global Circulation Models. The sea sensors (TEMP, TURB, DIEL, SOSO) allow high cadence bulk composition measurements to detect heterogeneities as the TiME capsule drifts across Ligeia, while a depth sounder (SONR) will measure the bottom profile. The combination of these sensors (and vehicle dynamics, ACCL) will characterize air:sea exchange. In addition to surface data, a measurement subset (ACCL, PRES, METH, TEMP) is made during descent to characterize the structure of the polar troposphere and marine boundary layer. A single electronics box inside the vehicle performs supervising and data handling functions and is connected to the sensors on the exterior via a wire and fiber optic harness. ACCL: MEMS accelerometers and angular rate sensors measure the vehicle motion during descent and on the surface, to recover wave amplitude and period and to correct wind measurements for vehicle motion. TEMP: Precision sensors are installed at several locations above and below the 'waterline' to measure air and sea temperatures. Installation of topside sensors at several locations ensures that at least one is on the upwind side of the vehicle. PRES: The

  6. Decadal trends in air-sea CO2 exchange in the Ross Sea (Antarctica)

    NASA Astrophysics Data System (ADS)

    Tagliabue, Alessandro; Arrigo, Kevin R.

    2016-05-01

    Highly productive Antarctic shelf systems, like the Ross Sea, play important roles in regional carbon budgets, but the drivers of local variations are poorly quantified. We assess the variability in the Ross Sea carbon cycle using a regional physical-biogeochemical model. Regionally, total partial pressure of CO2 (pCO2) increases are largely controlled by the biological pump and broadly similar to those in the offshore Southern Ocean. However, this masks substantial local variability within the Ross Sea, where interannual fluctuations in total pCO2 are driven by the biological pump and alkalinity, whereas those for anthropogenic pCO2 are related to physical processes. Overall, the high degree of spatial variability in the Ross Sea carbon cycle causes extremes in aragonite saturation that can be as large as long-term trends. Therefore, Antarctic shelf polynya systems like the Ross Sea will be strongly affected by local processes in addition to larger-scale phenomena.

  7. Air-sea CO2 flux pattern along the southern Bay of Bengal waters

    NASA Astrophysics Data System (ADS)

    Shanthi, R.; Poornima, D.; Naveen, M.; Thangaradjou, T.; Choudhury, S. B.; Rao, K. H.; Dadhwal, V. K.

    2016-12-01

    Physico-chemical observations made from January 2013 to March 2015 in coastal waters of the southwest Bay of Bengal show pronounced seasonal variation in physico-chemical parameters including total alkalinity (TA: 1927.390-4088.642 μmol kg-1), chlorophyll (0.13-19.41 μg l-1) and also calculated dissolved inorganic carbon (DIC: 1574.219-3790.954 μmol kg-1), partial pressure of carbon dioxide (pCO2: 155.520-1488.607 μatm) and air-sea CO2 flux (FCO2: -4.808 to 11.255 mmol Cm-2 d-1). Most of the physical parameters are at their maximum during summer due to the increased solar radiation at cloud free conditions, less or no riverine inputs, and lack of vertical mixing of water column which leads to the lowest nutrients concentration, dissolved oxygen (DO), biological production, pCO2 and negative flux of CO2 to the atmosphere. Chlorophyll and DO concentrations enhanced due to increased nutrients during premonsoon and monsoon season due to the vertical mixing of water column driven by the strong winds and external inputs at respective seasons. The constant positive loading of nutrients, TA, DIC, chlorophyll, pCO2 and FCO2 against atmospheric temperature (AT), lux, sea surface temperature (SST), pH and salinity observed in principal component analysis (PCA) suggested that physical and biological parameters play vital role in the seasonal distribution of pCO2 along the southwest Bay of Bengal. The annual variability of CO2 flux clearly depicted that the southwest Bay of Bengal switch from sink (2013) to source status in the recent years (2014 and 2015) and it act as significant source of CO2 to the atmosphere with a mean flux of 0.204 ± 1.449 mmol Cm-2 d-1.

  8. Arctic air may become cleaner as temperatures rise

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2011-10-01

    The air in the Arctic is cleaner during summer than during winter. Previous studies have shown that for light-scattering pollutants, this seasonal cycle is due mainly to summer precipitation removing pollutants from the air during atmospheric transport from midlatitude industrial and agricultural sources. With new measurements from Barrow, Alaska, and Alert, Nunavut, Canada, Garrett et al. extended previous research to show that light-absorbing aerosols such as black carbon are also efficiently removed by seasonal precipitation. Precipitation removes these particles from the air most efficiently at high humidities and relatively warm temperatures, suggesting that as the Arctic gets warmer and wetter in the future, the air and snow might also become cleaner.

  9. The Predictive Skill of Tropical Sea Surface Temperatures, Eurasian Snow Cover and Arctic Sea Ice on Mid-High Latitude Winter Weather

    NASA Astrophysics Data System (ADS)

    Cohen, J. L.; Furtado, J. C.; Tziperman, E.

    2015-12-01

    The Northern Hemisphere (NH) polar jet stream, or eddy-driven jet, represents both the boundary between colder polar air and warmer lower-latitude air and the primary storm track for extratropical cyclones. Therefore, any vacillations in the jet stream can alter weather regimes regionally and hemispherically. The most active period for the NH polar jet stream is during boreal winter, when the jet is at its seasonal maximum because of the steepened meridional temperature gradient. Forecasting the position and strength of the jet stream is critical for accurate temperature and precipitation forecasts for the high to middle latitudes. One major mode that describes the movements of the jet stream is the North Atlantic Oscillation or Arctic Oscillation (N/AO). Short-term and seasonal weather forecasters alike seek methods and mechanisms to extend predictability of an otherwise internal mode of variability in order to better prepare society for significant changes in precipitation and temperature during the winter. These changes may include short-lived but high-impact extreme weather events (e.g., cold air outbreaks, snowstorms) or season-long anomalies that can affect society for subsequent seasons (e.g., floods and droughts). Both snow cover and sea ice have been proposed as potentially modifying the N/AO model of variability. I will present some recent observational and modeling results on the hemispheric atmospheric response to snow cover and sea ice variability and the potential predictive skill of these high latitude boundary forcings. The expectation is that by the end of 2015 one of the strongest El Niño's in the observational record will be in full swing. Therefore I will also present some observational and modeling results on the possible influence of ENSO on extratropical climate variability for comparison with results from snow cover and sea ice.

  10. Spatial variation of sea surface temperature and flux-related parameters measured from aircraft in the JASIN experiment

    NASA Technical Reports Server (NTRS)

    Liu, W. T.; Katsaros, K. B.

    1984-01-01

    Spatial variation of some parameters measured on two aircraft flying 100-km box and 200-km triangular patterns at low levels in the atmospheric boundary layer during the Joint Air Sea Interaction Experiment in the North Atlantic was studied. The variation should be representative of summer conditions in mid-latitude oceans. The variance density of remotely sensed sea surface temperature, corrected for sky reflection, is found to depend on the one-dimensional wave number raised to the power of approximately -5/3. Nonuniform clouds add low-frequency variance to observations of a downward looking radiometer and result in steeper slope of the spectra of uncorrected sea surface temperature. Turbulent fluxes of momentum, sensible heat, and moisture were determined with the bulk formulae from the parameters (wind speed, temperature, specific humidity, and sea surface temperature) measured from the aircraft. The averages of these fluxes over each flight leg were compared with the fluxes determined from the parameters averaged over the same leg. The difference is negligible, showing that spatially averaged observations, such as those from spaceborne sensors, can be used in the bulk formulae to evaluate the fluxes.

  11. Evidence For The Role of Deep Sea Temperature In Glacial Climate and Carbon Cycles

    NASA Astrophysics Data System (ADS)

    Martin, P.; Archer, D.; Lea, D. W.

    Measurements of benthic foraminiferal Mg/Ca from the deep tropical Pacific (cores TR163-31P and 20B, 3.2 km water depth) provide a baseline for evaluating changes in deep sea temperature during the last glacial period. Mg/Ca variations of >50% (1.3 to 0.6 mmol/mol) imply temperature changes of ~4 deg. C. The most extreme and prolonged cold period was at the start of the last glacial (~80,000 BP), with near freezing bottom water temperatures marking the onset of continental glaciation. A second brief but pronounced cooling near ~35,000 BP coincides with the beginning of a second phase of glaciation. Millennial-scale variability in benthic Mg/Ca in the 20,000 year period between the two major episodes of ice growth is direct evidence for millennial-scale oscillations in deep water temperature. Over the last 90,000 years, oscillations in deep sea temperature show a clear correlation with Antarctic air temper- atures and atmospheric CO2. Throughout 5ky-long oscillations evident in Stage III, the paleodata show a relationship between CO2 and deep ocean T of~10 ppm/deg. C, consistent with new ocean GCM CO2 solubility results. However, to explain the full glacial-interglacial CO2 change, we still require external forcing (changes in ocean biology or pH, for example), or alternatively a mechanism to enhance the solubility sensitivity to global mean T in the ocean.

  12. Forecasting decadal changes in sea surface temperatures and coral bleaching within a Caribbean coral reef

    NASA Astrophysics Data System (ADS)

    Li, Angang; Reidenbach, Matthew A.

    2014-09-01

    Elevated sea surface temperature (SST) caused by global warming is one of the major threats to coral reefs. While increased SST has been shown to negatively affect the health of coral reefs by increasing rates of coral bleaching, how changes to atmospheric heating impact SST distributions, modified by local flow environments, has been less understood. This study aimed to simulate future water flow patterns and water surface heating in response to increased air temperature within a coral reef system in Bocas del Toro, Panama, located within the Caribbean Sea. Water flow and SST were modeled using the Delft3D-FLOWcomputer simulation package. Locally measured physical parameters, including bathymetry, astronomic tidal forcing, and coral habitat distribution were input into the model and water flow, and SST was simulated over a four-month period under present day, as well as projected warming scenarios in 2020s, 2050s, and 2080s. Changes in SST, and hence the thermal stress to corals, were quantified by degree heating weeks. Results showed that present-day reported bleaching sites were consistent with localized regions of continuous high SST. Regions with highest SST were located within shallow coastal sites adjacent to the mainland or within the interior of the bay, and characterized by low currents with high water retention times. Under projected increases in SSTs, shallow reef areas in low flow regions were found to be hot spots for future bleaching.

  13. Flame Speeds of Methane-Air, Propane-Air, and Ethylene-Air Mixtures at Low Initial Temperatures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L; Heimel, Sheldon

    1952-01-01

    Flame speeds were determined for methane-air, propane-air, and ethylene-air mixtures at -73 C and for methane-air mixtures at -132 C. The data extend the curves of maximum flame speed against initial mixture temperature previously established for the range from room temperature to 344 C. Empirical equations for maximum flame speed u(cm/ sec) as a function of initial mixture temperature T(sub O) were determined to be as follows: for methane, for T(sub O) from 141 to 615 K, u = 8 + 0.000160 T(sub O)(exp 2.11); for propane, for T(sub O) from 200 to 616 K, u = 10 + 0.000342 T(sub O)(exp 2.00); for ethylene, for T(sub O) from 200 to 617 K, u = 10 + 0.00259 T(sub O)(exp 1.74). Relative flame speeds at low initial temperatures were predicted within approximately 20 percent by either the thermal theory as presented by Semenov or by the diffusion theory of Tanford and Pease. The same order was found previously for high initial temperatures. The low-temperature data were also found to extend the linear correlations between maximum flame speed and calculated equilibrium active-radical concentrations, which were established by the previously reported high-temperature data.

  14. Distribution and sea-to-air flux of isoprene in the East China Sea and the South Yellow Sea during summer.

    PubMed

    Li, Jian-Long; Zhang, Hong-Hai; Yang, Gui-Peng

    2017-07-01

    Spatial distribution and sea-to-air flux of isoprene in the East China Sea and the South Yellow Sea in July 2013 were investigated. This study is the first to report the concentrations of isoprene in the China marginal seas. Isoprene concentrations in the surface seawater during summer ranged from 32.46 to 173.5 pM, with an average of 83.62 ± 29.22 pM. Distribution of isoprene in the study area was influenced by the diluted water from the Yangtze River, which stimulated higher in-situ phytoplankton production of isoprene rather than direct freshwater input. Variations in isoprene concentrations were found to be diurnal, with high values observed during daytime. A significant correlation was observed between isoprene and chlorophyll a in the study area. Relatively higher isoprene concentrations were recorded at stations where the phytoplankton biomass was dominated by Chaetoceros, Skeletonema, Pennate-nitzschia, and Thalassiosira. Positive correlation was observed between isoprene and methyl iodide. In addition, sea-to-air fluxes of isoprene approximately ranged from 22.17 nmol m(-2) d(-1)-537.2 nmol m(-2) d(-1), with an average of 161.5 ± 133.3 nmol m(-2) d(-1). These results indicate that the coastal and shelf areas may be important sources of atmospheric isoprene.

  15. Advances in Fast Response Acoustically Derived Air Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Bogoev, Ivan; Jacobsen, Larry; Horst, Thomas; Conrad, Benjamin

    2016-04-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity. The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  16. The Effect of Ocean Currents on Sea Surface Temperature Anomalies

    NASA Technical Reports Server (NTRS)

    Stammer, Detlef; Leeuwenburgh, Olwijn

    2000-01-01

    We investigate regional and global-scale correlations between observed anomalies in sea surface temperature and height. A strong agreement between the two fields is found over a broad range of latitudes for different ocean basins. Both time-longitude plots and wavenumber-frequency spectra suggest an advective forcing of SST anomalies by a first-mode baroclinic wave field on spatial scales down to 400 km and time scales as short as 1 month. Even though the magnitude of the mean background temperature gradient is determining for the effectiveness of the forcing, there is no obvious seasonality that can be detected in the amplitudes of SST anomalies. Instead, individual wave signatures in the SST can in some cases be followed over periods of two years. The phase relationship between SST and SSH anomalies is dependent upon frequency and wavenumber and displays a clear decrease of the phase lag toward higher latitudes where the two fields come into phase at low frequencies. Estimates of the damping coefficient are larger than generally obtained for a purely atmospheric feedback. From a global frequency spectrum a damping time scale of 2-3 month was found. Regionally results are very variable and range from 1 month near strong currents to 10 month at low latitudes and in the sub-polar North Atlantic. Strong agreement is found between the first global EOF modes of 10 day averaged and spatially smoothed SST and SSH grids. The accompanying time series display low frequency oscillations in both fields.

  17. Long-Range Correlations of Global Sea Surface Temperature

    PubMed Central

    Jiang, Lei; Zhao, Xia; Wang, Lu

    2016-01-01

    Scaling behaviors of the global monthly sea surface temperature (SST) derived from 1870–2009 average monthly data sets of Hadley Centre Sea Ice and SST (HadISST) are investigated employing detrended fluctuation analysis (DFA). The global SST fluctuations are found to be strong positively long-range correlated at all pertinent time-intervals. The value of scaling exponent is larger in the tropics than those in the intermediate latitudes of the northern and southern hemispheres. DFA leads to the scaling exponent α = 0.87 over the globe (60°S~60°N), northern hemisphere (0°N~60°N), and southern hemisphere (0°S~60°S), α = 0.84 over the intermediate latitude of southern hemisphere (30°S~60°S), α = 0.81 over the intermediate latitude of northern hemisphere (30°N~60°N) and α = 0.90 over the tropics 30°S~30°N [fluctuation F(s) ~ sα], which the fluctuations of monthly SST anomaly display long-term correlated behaviors. Furthermore, the larger the standard deviation is, the smaller long-range correlations (LRCs) of SST in the corresponding regions, especially in three distinct upwelling areas. After the standard deviation is taken into account, an index χ = α * σ is introduced to obtain the spatial distributions of χ. There exists an obvious change of global SST in central east and northern Pacific and the northwest Atlantic. This may be as a clue on predictability of climate and ocean variabilities. PMID:27100397

  18. Long-Range Correlations of Global Sea Surface Temperature.

    PubMed

    Jiang, Lei; Zhao, Xia; Wang, Lu

    2016-01-01

    Scaling behaviors of the global monthly sea surface temperature (SST) derived from 1870-2009 average monthly data sets of Hadley Centre Sea Ice and SST (HadISST) are investigated employing detrended fluctuation analysis (DFA). The global SST fluctuations are found to be strong positively long-range correlated at all pertinent time-intervals. The value of scaling exponent is larger in the tropics than those in the intermediate latitudes of the northern and southern hemispheres. DFA leads to the scaling exponent α = 0.87 over the globe (60°S~60°N), northern hemisphere (0°N~60°N), and southern hemisphere (0°S~60°S), α = 0.84 over the intermediate latitude of southern hemisphere (30°S~60°S), α = 0.81 over the intermediate latitude of northern hemisphere (30°N~60°N) and α = 0.90 over the tropics 30°S~30°N [fluctuation F(s) ~ sα], which the fluctuations of monthly SST anomaly display long-term correlated behaviors. Furthermore, the larger the standard deviation is, the smaller long-range correlations (LRCs) of SST in the corresponding regions, especially in three distinct upwelling areas. After the standard deviation is taken into account, an index χ = α * σ is introduced to obtain the spatial distributions of χ. There exists an obvious change of global SST in central east and northern Pacific and the northwest Atlantic. This may be as a clue on predictability of climate and ocean variabilities.

  19. A Climatology of Monthly Mean Sea Surface Temperatures for the Gulf of Mexico,

    DTIC Science & Technology

    1978-01-01

    This report presents monthly mean sea surface temperatures for the Gulf of Mexico in one degree quadrangles. It also includes a short discussion of the temperature data and the ocean currents in the Gulf of Mexico .

  20. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  1. Discovery about temperature fluctuations in turbulent air flows

    NASA Astrophysics Data System (ADS)

    1985-02-01

    The law of spatial fluctuations of temperature in a turbulent flow in the atmosphere was studied. The turbulent movement of air in the atmosphere manifests itself in random changes in wind velocity and in the dispersal of smoke. If a miniature thermometer with sufficient sensitivity and speed of response were placed in a air flow, its readings would fluctuate chaotically against the background of average temperature. This is Characteristic of practically every point of the flow. The temperature field forms as a result of the mixing of the air. A method using the relation of the mean square of the difference in temperatures of two points to the distance between these points as the structural characteristic of this field was proposed. It was found that the dissipation of energy in a flow and the equalization of temperatures are connected with the breaking up of eddies in a turbulent flow into smaller ones. Their energy in turn is converted into heat due to the viscosity of the medium. The law that has been discovered makes for a much broader field of application of physical methods of analyzing atmospheric phenomena.

  2. Assessment of two-temperature kinetic model for ionizing air

    NASA Technical Reports Server (NTRS)

    Park, Chul

    1987-01-01

    A two-temperature chemical-kinetic model for air is assessed by comparing theoretical results with existing experimental data obtained in shock-tubes, ballistic ranges, and flight experiments. In the model, named the TTv model, one temperature (T) is assumed to characterize the heavy-particle translational and molecular rotational energies, and another temperature (Tv) to characterize the molecular vibrational, electron translational, and electronic excitation energies. The theoretical results for nonequilibrium air flow in shock tubes are obtained using the computer code STRAP (Shock-Tube Radiation Program), and for flow along the stagnation streamline in the shock layer over spherical bodies using the newly developed code STRAP (Stagnation-Point Radiation Program). Substantial agreement is shown between the theoretical and experimental results for relaxation times and radiative heat fluxes. At very high temperatures the spectral calculations need further improvement. The present agreement provides strong evidence that the two-temperature model characterizes principal features of nonequilibrium air flow. New theoretical results using the model are presented for the radiative heat fluxes at the stagnation point of a 6-m-radius sphere, representing an aeroassisted orbital transfer vehicle, over a range of free-stream conditions. Assumptions, approximations, and limitations of the model are discussed.

  3. The mass and speed dependence of meteor air plasma temperatures.

    PubMed

    Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  4. Can air temperature be used to project influences of climate change on stream temperature?

    USGS Publications Warehouse

    Arismendi, Ivan; Safeeq, Mohammad; Dunham, Jason B.; Johnson, Sherri L.

    2014-01-01

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To address this knowledge gap, we examined the performance of two widely used linear and nonlinear regression models that predict stream temperatures based on air temperatures. We evaluated model performance and temporal stability of model parameters in a suite of regulated and unregulated streams with 11–44 years of stream temperature data. Although such models may have validity when predicting stream temperatures within the span of time that corresponds to the data used to develop them, model predictions did not transfer well to other time periods. Validation of model predictions of most recent stream temperatures, based on air temperature–stream temperature relationships from previous time periods often showed poor performance when compared with observed stream temperatures. Overall, model predictions were less robust in regulated streams and they frequently failed in detecting the coldest and warmest temperatures within all sites. In many cases, the magnitude of errors in these predictions falls within a range that equals or exceeds the magnitude of future projections of climate-related changes in stream temperatures reported for the region we studied (between 0.5 and 3.0 °C by 2080). The limited ability of regression-based statistical models to accurately project stream temperatures over time likely stems from the fact that underlying processes at play, namely the heat budgets of air and water, are distinctive in each medium and vary among localities and through time.

  5. Microwave temperature profiler for clear air turbulence prediction

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    1992-01-01

    A method is disclosed for determining Richardson Number, Ri, or its reciprocal, RRi, for clear air prediction using measured potential temperature and determining the vertical gradient of potential temperature, d(theta)/dz. Wind vector from the aircraft instrumentation versus potential temperature, dW/D(theta), is determined and multiplies by d(theta)/dz to obtain dW/dz. Richardson number or its reciprocal is then determined from the relationship Ri = K(d theta)/dz divided by (dW/dz squared) for use in detecting a trend toward a threshold value for the purpose of predicting clear air turbulence. Other equations for this basic relationship are disclosed together with the combination of other atmospheric observables using multiple regression techniques.

  6. CARS Temperature and Species Measurements For Air Vehicle Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Gord, James R.; Grisch, Frederic; Klimenko, Dmitry; Clauss, Walter

    2005-01-01

    The coherent anti-Stokes Raman spectroscopy (CARS) method has recently been used in the United States and Europe to probe several different types of propulsion systems for air vehicles. At NASA Langley Research Center in the United States, CARS has been used to simultaneously measure temperature and the mole fractions of N2, O2 and H2 in a supersonic combustor, representative of a scramjet engine. At Wright- Patterson Air Force Base in the United States, CARS has been used to simultaneously measure temperature and mole fractions of N2, O2 and CO2, in the exhaust stream of a liquid-fueled, gas-turbine combustor. At ONERA in France and the DLR in Germany researchers have used CARS to measure temperature and species concentrations in cryogenic LOX-H2 rocket combustion chambers. The primary aim of these measurements has been to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.

  7. Impacts of Lowered Urban Air Temperatures on Precursor Emission and Ozone Air Quality.

    PubMed

    Taha, Haider; Konopacki, Steven; Akbari, Hashem

    1998-09-01

    Meteorological, photochemical, building-energy, and power plant simulations were performed to assess the possible precursor emission and ozone air quality impacts of decreased air temperatures that could result from implementing the "cool communities" concept in California's South Coast Air Basin (SoCAB). Two pathways are considered. In the direct pathway, a reduction in cooling energy use translates into reduced demand for generation capacity and, thus, reduced precursor emissions from electric utility power plants. In the indirect pathway, reduced air temperatures can slow the atmospheric production of ozone as well as precursor emission from anthropogenic and biogenic sources. The simulations suggest small impacts on emissions following implementation of cool communities in the SoCAB. In summer, for example, there can be reductions of up to 3% in NOx emissions from in-basin power plants. The photochemical simulations suggest that the air quality impacts of these direct emission reductions are small. However, the indirect atmospheric effects of cool communities can be significant. For example, ozone peak concentrations can decrease by up to 11% in summer and population-weighted exceedance exposure to ozone above the California and National Ambient Air Quality Standards can decrease by up to 11 and 17%, respectively. The modeling suggests that if these strategies are combined with others, such as mobile-source emission control, the improvements in ozone air quality can be substantial.

  8. Forecasting Fire Season Severity in South America Using Sea Surface Temperature Anomalies

    NASA Technical Reports Server (NTRS)

    Chen, Yang; Randerson, James T.; Morton, Douglas C.; DeFries, Ruth S.; Collatz, G. James; Kasibhatla, Prasad S.; Giglio, Louis; Jin, Yufang; Marlier, Miriam E.

    2011-01-01

    Fires in South America cause forest degradation and contribute to carbon emissions associated with land use change. We investigated the relationship between year-to-year changes in fire activity in South America and sea surface temperatures. We found that the Oceanic Ni o Index was correlated with interannual fire activity in the eastern Amazon, whereas the Atlantic Multidecadal Oscillation index was more closely linked with fires in the southern and southwestern Amazon. Combining these two climate indices, we developed an empirical model to forecast regional fire season severity with lead times of 3 to 5 months. Our approach may contribute to the development of an early warning system for anticipating the vulnerability of Amazon forests to fires, thus enabling more effective management with benefits for climate and air quality.

  9. Predicting Fire Season Severity in South America Using Sea Surface Temperature Anomalies

    NASA Technical Reports Server (NTRS)

    Chen, Yang; Randerson, James T.; Morton, Douglas C.; Jin, Yufang; DeFries, Ruth S.; Collatz, George J.; Kasibhatla, Prasad S.; Giglio, Louis; Jin, Yufang; Marlier, Miriam

    2011-01-01

    Fires in South America cause forest degradation and contribute to carbon emissions associated with land use change. Here we investigated the relationship between year-to-year changes in satellite-derived estimates of fire activity in South America and sea surface temperature (SST) anomalies. We found that the Oceanic Ni o Index (ONI) was correlated with interannual fire activity in the eastern Amazon whereas the Atlantic Multidecadal Oscillation (AMO) index was more closely linked with fires in the southern and southwestern Amazon. Combining these two climate indices, we developed an empirical model that predicted regional annual fire season severity (FSS) with 3-5 month lead times. Our approach provides the foundation for an early warning system for forecasting the vulnerability of Amazon forests to fires, thus enabling more effective management with benefits for mitigation of greenhouse gas and air pollutant emissions.

  10. A Climate Data Record of Near-Surface Over-Ocean Parameters and Air-Sea Fluxes

    NASA Astrophysics Data System (ADS)

    Clayson, C. A.; Brown, J.

    2015-12-01

    In this climate data record, we have derived surface and near-surface parameters of wind speed, temperature, and humidity from a combination of satellite observations, with a focus on the use of these variables towards determination of the air-sea turbulent heat fluxes. The dataset is a follow-on to the CDR SeaFlux v 1 dataset, which currently covers the time period of 1988 through 2008, and the variables of sea surface temperature and 10-m temperature, wind speed, and specific humidity at a 3-hourly, 0.25º resolution over the global oceans. These products have been developed for the specific focus of accurate determination of the surface turbulent fluxes. The current dataset is brought forward to short latency (roughly three months) by adding in SSMIS data. This talk will discuss the additional issues associated with including the much-noisier SSMIS data, comparisons of uncertainties from the time period of the SSMIS as compared to the SSMI era, and an analysis of interannual variability over the time period from 1988 through 2015, including the recent ENSO variability.

  11. The Effects of Air Pollution and Temperature on COPD

    PubMed Central

    Hansel, Nadia N.; McCormack, Meredith C.; Kim, Victor

    2016-01-01

    Chronic Obstructive Pulmonary Disease (COPD) affects 12–16 million people in the United States and is the third-leading cause of death. In developed countries, smoking is the greatest risk factor for the development of COPD, but other exposures also contribute to the development and progression of the disease. Several studies suggest, though are not definitive, that outdoor air pollution exposure is linked to the prevalence and incidence of COPD. Among individuals with COPD, outdoor air pollutants are associated with loss of lung function and increased respiratory symptoms. In addition, outdoor air pollutants are also associated with COPD exacerbations and mortality. There is much less evidence for the impact of indoor air on COPD, especially in developed countries in residences without biomass exposure. The limited existing data suggests that indoor particulate matter and nitrogen dioxide concentrations are linked to increased respiratory symptoms among patients with COPD. In addition, with the projected increases in temperature and extreme weather events in the context of climate change there has been increased attention to the effects of heat exposure. Extremes of temperature—both heat and cold—have been associated with increased respiratory morbidity in COPD. Some studies also suggest that temperature may modify the effect of pollution exposure and though results are not conclusive, understanding factors that may modify susceptibility to air pollution in patients with COPD is of utmost importance. PMID:26683097

  12. A case study of sea breeze blocking regulated by sea surface temperature along the English south coast

    NASA Astrophysics Data System (ADS)

    Sweeney, J. K.; Chagnon, J. M.; Gray, S. L.

    2013-09-01

    The sensitivity of sea breeze structure to sea surface temperature (SST) and coastal orography is investigated in convection-permitting Met Office Unified Model simulations of a case study along the south coast of England. Changes in SST of 1 K are shown to significantly modify the structure of the sea breeze. On the day of the case study the sea breeze was partially blocked by coastal orography, particularly within Lyme Bay. The extent to which the flow is blocked depends strongly on the static stability of the marine boundary layer. In experiments with colder SST, the marine boundary layer is more stable, and the degree of blocking is more pronounced. The implications of prescribing fixed SST from climatology in numerical weather prediction model forecasts of the sea breeze are discussed.

  13. AIRS satellite observations of meridional temperature gradient over Indian summer monsoon region

    NASA Astrophysics Data System (ADS)

    Dhaka, S. K.; Gupta, A.; Panwar, V.; Bhatnagar, R.

    2011-12-01

    To investigate temperature changes in the upper troposphere over Indian region covering from Arabian Sea (AS) to Bay of Bengal (BOB), analysis is carried out during both summer (May-June-July-August) and winter (November-December-January-February) using AIRS data at a high spatial (1×1 lat long) resolution over sea and land spanned over 2005-2010. This is done to examine the similarities and differences in the meridional temperature gradient during Asian summer monsoon and winter. During May, there is an increase in temperature latitudinal from 3oN to 20oN by ~ 2.5 K in the all the years, however, temperature is decreased gradually (~ 0.15 K per deg latitude) by ~3 K during June-July-Aug (JJA). Thus, there is a contrast behavior observed in the meridional variation of temperature during May with that of JJA. The study further suggests the latitudinal change in temperature occurs due to low OLR (convection) and its northward progression during summer. Similar analysis for the winter months (NDJF) shows the existence of latitudinal variation in temperature which has an increasing tendency from 3oN to 20oN. The change in temperature is larger (~4-5K) for winter months as compared to the summer months, the apparent change is caused by the presence of monsoon during summer months (high humidity and water vapors). During winter, the variability in temperature for Nov and Dec is found larger as compared to Jan and Feb because of increased convection (low OLR) at low latitudes (3-10oN) in the former months and latter being the dry months with no convection.

  14. Experimental sea slicks: Their practical applications and utilization for basic studies of air-sea interactions

    NASA Astrophysics Data System (ADS)

    Hühnerfuss, Heinrich; Garrett, W. D.

    1981-01-01

    Practical applications of organic surface films added to the sea surface date back to ancient times. Aristotle, Plutarch, and Pliny the Elder describe the seaman's practice of calming waves in a storm by pouring oil onto the sea [Scott, 1977]. It was also noted that divers released oil beneath the water surface so that it could rise and spread over the sea surface, thereby suppressing the irritating flicker associated with the passage of light through a rippled surface. From a scientific point of view, Benjamin Franklin was the first to perform experiments with oils on natural waters. His experiment with a `teaspoonful of oil' on Clapham pond in 1773 inspired many investigators to consider sea surface phenomena or to conduct experiments with oil films. This early research has been reviewed by Giles [1969], Giles and Forrester [1970], and Scott [1977]. Franklin's studies with experimental slicks can be regarded as the beginning of surface film chemistry. His speculations on the wave damping influence of oil induced him to perform the first qualitative experiment with artificial sea slicks at Portsmouth (England) in October of 1773. Although the sea was calmed and very few white caps appeared in the oil-covered area, the swell continued through the oiled area to Franklin's great disappointment.

  15. Requirements for high-temperature air-cooled central receivers

    NASA Astrophysics Data System (ADS)

    Wright, J. D.; Copeland, R. J.

    1983-12-01

    The design of solar thermal central receivers will be shaped by the end user's need for energy. This paper identifies the requirements for receivers supplying heat for industrial processes or electric power generation in the temperature range 540 to 1000(0)C and evaluates the effects of the requirements on air cooled central receivers. Potential IPH applications are identified as large baseload users that are located some distance from the receiver. In the electric power application, the receiver must supply heat to a pressurized gas power cycle. The difficulty in providing cost effective thermal transport and thermal storage for air cooled receivers is a critical problem.

  16. Sea ice edge position impact on the atmospheric boundary layer temperature structure

    NASA Astrophysics Data System (ADS)

    Khavina, Elena; Repina, Irina

    2016-04-01

    Processes happening in the Arctic region nowadays strongly influence global climate system; the polar amplification effect can be considered one of the main indicators of ongoing changes. Dramatic increase in amount of ice-free areas in the Arctic Ocean, which took place in 2000s, is one of the most significant examples of climate system dynamic in polar region. High amplitude of changes in Arctic climate, both observed and predicted, and existing inaccuracies of climate and weather forecasting models, enforce the development of a more accurate one. It is essential to understand the physics of the interaction between atmosphere and ocean in the Northern Polar area (particularly in boundary layer of the atmosphere) to improve the models. Ice conditions have a great influence on the atmospheric boundary layer in the Arctic. Sea ice inhibits the heat exchange between atmosphere and ocean water during the polar winter, while the heat exchange above the ice-free areas increases rapidly. Due to those significant temperature fluctuations, turbulence of heat fluxes grows greatly. The most intensive interaction takes place at marginal ice zones, especially in case of the cold outbreak - intrusion of cooled air mass from the ice to free water area. Still, thermal structure and dynamic of the atmosphere boundary layer are not researched and described thoroughly enough. Single radio sounding observations from the planes being done, bur they do not provide high-resolution data which is necessary for study. This research is based on continuous atmosphere boundary layer temperature and sea ice observation collected in the Arctic Ocean during the two NABOS expeditions in August and September in 2013 and 2015, as well as on ice conditions satellite data (NASA TEAM 2 and VASIA 2 data processing). Atmosphere temperature data has been obtained with Meteorological Temperature Profiler MTP-5 (ATTEX, Russia). It is a passive radiometer, which provides continuous data of atmospheric

  17. Climate change and river temperature sensitivity to warmer nighttime vs. warmer daytime air temperatures

    NASA Astrophysics Data System (ADS)

    Diabat, M.; Haggerty, R.; Wondzell, S. M.

    2011-12-01

    We investigated the July river temperature response to atmospheric warming over the diurnal cycle in a 36 km reach of the upper Middle Fork John Day River of Oregon, USA. The physical model Heat Source was calibrated and used to run 3 different cases of increased air temperature during July: 1) uniform increase over the whole day ("delta method"), 2) warmer daytime, and 3) warmer nighttime. All 3 cases had the same mean daily air temperatures - a 4 °C increase relative to 2002. Results show that the timing of air temperature increases has a significant effect on the magnitude, timing and duration of changes in water temperatures relative to current conditions. In all cases, river temperatures in the lower reach increased by at least 1.1 °C . For the delta case, water temperature increases never exceeded 2.3 °C. In contrast, under the warmer daytime case, water temperature increases exceeded 2.3 °C for 6.6 hours/day on average, with the largest increases occurring during mid-day. In the warmer night case the river temperature increases exceeded 2.3 °C for 4.3 hours/day on average with the largest increases occurring around midnight. In addition, an average increase of 4 °C in air temperature under the delta case increased the water temperature by an average of 1.9 °C uniformly during daytime and nighttime. Still, an average increase of 4 °C in air temperature under the warmer daytime case increased water temperature by an average of at least 1.6 °C during the daytime and by an average of up to 2.5 °C during the nighttime, while an average increase of 4 °C in air temperature under the warmer nighttime case increased the water temperature by an average of at least 1.4 °C during the nighttime and by an average of up to 2.4 °C during the daytime. The spatial response of temperature was different for each case. The lower 13 rkm warmed by at least 1.1 °C with the delta case, while only the lower 6 rkm warmed by at least 1.1 °C with the warmer daytime case

  18. Forced and Unforced Changes of Indian Ocean Temperature and Land-Sea Temperature Gradient

    NASA Astrophysics Data System (ADS)

    Achutarao, K. M.; Thanigachalam, A.

    2015-12-01

    Sea surface temperature (SST) over the Indian Ocean is directly connected with circulation, winds, precipitation, humidity, etc. over India. Increased SSTs are a major consequence of climate change driven largely by anthropogenic factors. Recent literature points to weakening of the Indian Summer Monsoon possibly because of decreased land-sea temperature gradient due to faster rate of warming of the oceans compared to land regions. We examine changes in the SST over the Indian Ocean using two observational datasets; HadISST (v1.1) and ERSST (v3b). Based on trend differences between two time periods (1979-2009 and 1948-1978) we identify four regions in the Indian Ocean with different signatures of change - Bay of Bengal (BOB), Arabian Sea (AS), Southwest Indian Ocean (SWIO), and Southeast Indian Ocean (SEIO). We first quantify the extent to which the SST trends over multiple time-scales (20, 30, 50 and 100-years) are outside of the range expected from internal variability of the climate system. We make use of output data from long control run simulations from the Coupled Model Intercomparison Project Phase-5 (CMIP5) database in order to estimate the contribution of external forcings to the observed trends. Using optimal fingerprint Detection and Attribution methods we quantify the contributions of various natural and anthropogenic forcings by making use of the suite of experiments (piControl, historical, historicalNat, historicalAnt, historicalGHG, and historicalAA) from CMIP5 are used in this study. We will also address the question of what drives the observed weakening of land-ocean temperature gradients.

  19. Measurements of regional-scale aerosol impacts on cloud microphysics over the East China Sea: Possible influences of warm sea surface temperature over the Kuroshio ocean current

    NASA Astrophysics Data System (ADS)

    Koike, M.; Takegawa, N.; Moteki, N.; Kondo, Y.; Nakamura, H.; Kita, K.; Matsui, H.; Oshima, N.; Kajino, M.; Nakajima, T. Y.

    2012-09-01

    Cloud microphysical properties and aerosol concentrations were measured aboard an aircraft over the East China Sea and Yellow Sea in April 2009 during the Aerosol Radiative Forcing in East Asia (A-FORCE) experiment. We sampled stratocumulus and shallow cumulus clouds over the ocean in 9 cases during 7 flights 500-900 km off the east coast of Mainland China. In this study we report aerosol impacts on cloud microphysical properties by focusing on regional characteristics of two key parameters, namely updraft velocity and aerosol size distribution. First, we show that the cloud droplet number concentration (highest 5%, Nc_max) correlates well with the accumulation-mode aerosol number concentration (Na) below the clouds. We then show that Nc_maxcorrelates partly with near-surface stratification evaluated as the difference between the sea surface temperature (SST) and 950-hPa temperature (SST - T950). Cold air advection from China to the East China Sea was found to bring not only a large number of aerosols but also a dry and cold air mass that destabilized the atmospheric boundary layer, especially over the warm Kuroshio ocean current. Over this high-SST region, greater updraft velocities and hence greater Nc_maxlikely resulted. We hypothesize that the low-level static stability determined by SST and regional-scale airflow modulates both the cloud microphysics (aerosol impact on clouds) and macro-structure of clouds (cloud base and top altitudes, hence cloud liquid water path). Second, we show that not only higher aerosol loading in terms of total aerosol number concentration (NCN, D > 10 nm) but also larger aerosol mode diameters likely contributed to high Ncduring A-FORCE. The mean Nc of 650 ± 240 cm-3was more than a factor of 2 larger than the global average for clouds influenced by continental sources. A crude estimate of the aerosol-induced cloud albedo radiative forcing is also given.

  20. Sedation and anesthesia of hatchling leatherback sea turtles (Dermochelys coriacea) for auditory evoked potential measurement in air and in water.

    PubMed

    Harms, Craig A; Piniak, Wendy E D; Eckert, Scott A; Stringer, Elizabeth M

    2014-03-01

    Sedation or anesthesia of hatchling leatherback sea turtles was employed to acquire auditory evoked potential (AEP) measurements in air and in water to assess their hearing sensitivity in relation to potential consequences from anthropogenic noise. To reduce artifacts in AEP collection caused by muscle movement, hatchlings were sedated with midazolam 2 or 3 mg/kg i.v. for in-air (n = 7) or in-water (n = 11) AEP measurements; hatchlings (n = 5) were anesthetized with ketamine 6 mg/kg and dexmedetomidine 30 microg/kg i.v. reversed with atipamezole 300 microg/kg, half i.m. and half i.v. for in-air AEP measurements. Midazolam-sedated turtles were also physically restrained with a light elastic wrap. For in-water AEP measurements, sedated turtles were brought to the surface every 45-60 sec, or whenever they showed intention signs for breathing, and not submerged again until they took a breath. Postprocedure temperature-corrected venous blood pH, pCO2, pO2, and HCO3- did not differ among groups, although for the midazolam-sedated in-water group, pCO2 trended lower, and in the ketamine-dexmedetomidine anesthetized group there was one turtle considered clinically acidotic (temperature-corrected pH = 7.117). Venous blood lactate was greater for hatchlings recently emerged from the nest than for turtles sedated with midazolam in air, with the other two groups falling intermediate between, but not differing significantly from the high and low lactate groups. Disruptive movements were less frequent with anesthesia than with sedation in the in-air group. Both sedation with midazolam and anesthesia with ketamine-dexmedetomidine were successful for allowing AEP measurements in hatchling leatherback sea turtles. Sedation allowed the turtle to protect its airway voluntarily while limiting flipper movement. Midazolam or ketamine-dexmedetomidine (and reversal with atipamezole) would be useful for other procedures requiring minor or major restraint in leatherback sea turtle hatchlings

  1. Impacts of South East Biomass Burning on local air quality in South China Sea

    NASA Astrophysics Data System (ADS)

    Wai-man Yeung, Irene; Fat Lam, Yun; Eniolu Morakinyo, Tobi

    2016-04-01

    Biomass burning is a significant source of carbon monoxide and particulate matter, which is not only contribute to the local air pollution, but also regional air pollution. This study investigated the impacts of biomass burning emissions from Southeast Asia (SEA) as well as its contribution to the local air pollution in East and South China Sea, including Hong Kong and Taiwan. Three years (2012 - 2014) of the Hybrid Single Particle Lagrangian-Integrated Trajectory (HYSPLIT) with particles dispersion analyses using NCEP (Final) Operational Global Analysis data (FNL) data (2012 - 2014) were analyzed to track down all possible long-range transport from SEA with a sinking motion that worsened the surface air quality (tropospheric downwash from the free troposphere). The major sources of SEA biomass burning emissions were first identified using high fire emissions from the Global Fire Emission Database (GFED), followed by the HYSPLIT backward trajectory dispersion modeling analysis. The analyses were compared with the local observation data from Tai Mo Shan (1,000 msl) and Tap Mun (60 msl) in Hong Kong, as well as the data from Lulin mountain (2,600 msl) in Taiwan, to assess the possible impacts of SEA biomass burning on local air quality. The correlation between long-range transport events from the particles dispersion results and locally observed air quality data indicated that the background concentrations of ozone, PM2.5 and PM10 at the surface stations were enhanced by 12 μg/m3, 4 μg/m3 and 7 μg/m3, respectively, while the long-range transport contributed to enhancements of 4 μg/m3, 4 μg/m3 and 8 μg/m3 for O3, PM2.5 and PM10, respectively at the lower free atmosphere.

  2. Extreme subseasonal tropical air-sea interactions and their relation to ocean thermal stratification

    NASA Astrophysics Data System (ADS)

    Lloyd, Ian D.

    2011-12-01

    This thesis is concerned with extreme, rapid timescale tropical air-sea interactions and the influence of large-scale oceanic conditions on these interactions. The focus is on two types of extreme events: equatorial Indian Ocean cooling events and tropical cyclones. Cooling events occur on timescales of a few days to several weeks, in which atmospheric forcing causes Sea Surface Temperature (SST) cooling in the range of 1--5K, in both observational and coupled climate models. Cooling events are driven by changes in air-sea enthalpy fluxes and Ekman upwelling. Because the cooling due to Ekman upwelling depends on thermocline depth, large-scale oceanic conditions influence SST cooling. La Nina and negative Indian Ocean Dipole conditions are conducive to a shallower southwest equatorial thermocline, resulting in greater intraseasonal SST cooling during these interannual events; El Nino and positive Indian Ocean Dipole conditions lead to a deeper thermocline and reduced SST cooling. Results indicate that cooling events are related to the eastward propagation of convective patterns that resemble the Madden-Julian Oscillation. For tropical cyclones, the response of intensity to cyclone-induced SST cooling was explored over 10-years of observational data. For slow moving (V/ f < 100km) tropical cyclones, it was found that the SST cooling response increases along with storm intensity from category 0--2 on the Saffir-Simpson scale. However, from category 2--5 the magnitude of SST cooling decreases. This result confirms model predictions indicating a prominent role for oceanic feedback controlling tropical cyclone intensity. Thus, only storms that develop in regions containing deep mixed layer and thermocline can achieve high intensity, and entrainment cooling is weaker for these storms. The SST-intensity response in observations was compared to the GFDL Hurricane Forecast Model (GHM) for the periods 2005 and 2006--2009. The GHM was modified in 2006 to include a

  3. Evaluating CMIP5 models using AIRS tropospheric air temperature and specific humidity climatology

    NASA Astrophysics Data System (ADS)

    Tian, Baijun; Fetzer, Eric J.; Kahn, Brian H.; Teixeira, Joao; Manning, Evan; Hearty, Thomas

    2013-01-01

    This paper documents the climatological mean features of the Atmospheric Infrared Sounder (AIRS) monthly mean tropospheric air temperature (ta, K) and specific humidity (hus, kg/kg) products as part of the Obs4MIPs project and compares them to those from NASA's Modern Era Retrospective analysis for Research and Applications (MERRA) for validation and 16 models from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) for CMIP5 model evaluation. MERRA is warmer than AIRS in the free troposphere but colder in the boundary layer with differences typically less than 1 K. MERRA is also drier (~10%) than AIRS in the tropical boundary layer but wetter (~30%) in the tropical free troposphere and the extratropical troposphere. In particular, the large MERRA-AIRS specific humidity differences are mainly located in the deep convective cloudy regions indicating that the low sampling of AIRS in the cloudy regions may be the main reason for these differences. In comparison to AIRS and MERRA, the sixteen CMIP5 models can generally reproduce the climatological features of tropospheric air temperature and specific humidity well, but several noticeable biases exist. The models have a tropospheric cold bias (around 2 K), especially in the extratropical upper troposphere, and a double-ITCZ problem in the troposphere from 1000 hPa to 300 hPa, especially in the tropical Pacific. The upper-tropospheric cold bias exists in the most (13 of 16) models, and the double-ITCZ bias is found in all 16 CMIP5 models. Both biases are independent of the reference dataset used (AIRS or MERRA).

  4. Record low surface air temperature at Vostok station, Antarctica

    NASA Astrophysics Data System (ADS)

    Turner, John; Anderson, Phil; Lachlan-Cope, Tom; Colwell, Steve; Phillips, Tony; Kirchgaessner, AméLie; Marshall, Gareth J.; King, John C.; Bracegirdle, Tom; Vaughan, David G.; Lagun, Victor; Orr, Andrew

    2009-12-01

    The lowest recorded air temperature at the surface of the Earth was a measurement of -89.2°C made at Vostok station, Antarctica, at 0245 UT on 21 July 1983. Here we present the first detailed analysis of this event using meteorological reanalysis fields, in situ observations and satellite imagery. Surface temperatures at Vostok station in winter are highly variable on daily to interannual timescales as a result of the great sensitivity to intrusions of maritime air masses as Rossby wave activity changes around the continent. The record low temperature was measured following a near-linear cooling of over 30 K over a 10 day period from close to mean July temperatures. The event occurred because of five specific conditions that arose: (1) the temperature at the core of the midtropospheric vortex was at a near-record low value; (2) the center of the vortex moved close to the station; (3) an almost circular flow regime persisted around the station for a week resulting in very little warm air advection from lower latitudes; (4) surface wind speeds were low for the location; and (5) no cloud or diamond dust was reported above the station for a week, promoting the loss of heat to space via the emission of longwave radiation. We estimate that should a longer period of isolation occur the surface temperature at Vostok could drop to around -96°C. The higher site of Dome Argus is typically 5-6 K colder than Vostok so has the potential to record an even lower temperature.

  5. Decreased Temperature Facilitates Short-Term Sea Star Wasting Disease Survival in the Keystone Intertidal Sea Star Pisaster ochraceus

    PubMed Central

    Kohl, Warren T.; McClure, Timothy I.; Miner, Benjamin G.

    2016-01-01

    An extensive 2013 mass mortality event along the West Coast of North America due to Sea Star Wasting Disease (SSWD) has affected at least 20 species of sea stars. Among environmental factors potentially contributing to the timing of the current outbreak, increased coastal water temperatures are hypothesized to have contributed to previous and current outbreaks of SSWD. With a laboratory experiment, we tested whether cooler temperatures, similar to average winter temperatures, compared to average summer temperatures could slow the progression of morbidity or prevent SSWD mortality entirely in Pisaster ochraceus. Sea stars housed in cooler water progressed through SSWD states more slowly than sea stars housed at summer temperatures. However, the cooler temperature did not prevent SSWD mortality, and all stars died of the disease. Our data are consistent with experimental studies and field observations during previous and current outbreaks, and support the hypothesis that changes in coastal water temperatures have influenced one of the largest disease related mass mortality events in our oceans. PMID:27128673

  6. Occurrence and air-sea exchange of phthalates in the Arctic.

    PubMed

    Xie, Zhiyong; Ebinghaus, Ralf; Temme, Christian; Lohmann, Rainer; Caba, Armando; Ruck, Wolfgang

    2007-07-01

    Air and seawater samples were taken simultaneously to investigate the distribution and air-sea gas exchange of phthalates in the Arctic onboard the German Research Ship FS Polarstern. Samples were collected on expeditions ARK XX1&2 from the North Sea to the high Arctic (60 degrees N-85 degrees N) in the summer of 2004. The concentration of sigma6 phthalates (dimethyl phthalate (DMP), diethyl phthalate (DEP), di-i-butyl phthalate (DiBP), di-n-butyl phthalate (DnBP), butylbenzyl phthalate (BBP), and diethylhexyl phthalate (DEHP)) ranged from 30 to 5030 pg L(-1) in the aqueous dissolved phase and from 1110 to 3090 pg m(-3) in the atmospheric gas phase. A decreasing latitudinal trend was present in the seawater and to a lesser degree in the atmosphere from the Norwegian coast to the high Arctic. Overall, deposition dominated the air-sea gas exchange for DEHP, while volatilization from seawater took place in the near-coast environment. The estimated net gas deposition of DEHP was 5, 30, and 190 t year(-1) for the Norwegian Sea, the Greenland Sea, and the Arctic, respectively. This suggests that atmospheric transport and deposition of phthalates is a significant process for their occurrence in the remote Atlantic and Arctic Ocean.

  7. Holocene seasonal sea-surface temperature variations in the southern Adriatic Sea inferred from a multiproxy approach

    NASA Astrophysics Data System (ADS)

    Sangiorgi, Francesca; Capotondi, Lucilla; Combourieu Nebout, Nathalie; Vigliotti, Luigi; Brinkhuis, Henk; Giunta, Simona; Lotter, Andrè F.; Morigi, Caterina; Negri, Alessandra; Reichart, Gert-Jan

    2003-12-01

    Holocene cooling events have been reconstructed for the southern Adriatic Sea (central Mediterranean) by means of analyses of organic walled dinoflagellate cysts, planktonic foraminifera, oxygen isotopes, calcareous nanoplankton, alkenones and pollen from a sediment core. Two cooling events have been detected, during which sea-surface temperatures (SSTs) were ca. 2°C lower. Unravelling the SST signal into dominant seasonal components suggests maximum winter cooling of 2°C at around 6.0 ka, whereas the cooling at ca. 3.0 ka might be the result of a spring temperature cooling of 2-3°C. The events, lasting several hundred years, are apparently synchronous with those in the Aegean Sea, where they have been related to known cooling events from the Greenland ice-core record. A distinct interruption in Adriatic Sea sapropel S1 is not clearly accompanied by a local drop in winter temperatures, but seems to be forced by ventilation, which probably occurred earlier in the Aegean Sea and was subsequently transmitted to the Adriatic Sea. Copyright

  8. The organic sea surface microlayer in the upwelling region off Peru and implications for air-sea exchange processes

    NASA Astrophysics Data System (ADS)

    Engel, A.; Galgani, L.

    2015-07-01

    The sea surface microlayer (SML) is at the very surface of the ocean, linking the hydrosphere with the atmosphere, and central to a range of global biogeochemical and climate-related processes. The presence and enrichment of organic compounds in the SML have been suggested to influence air-sea gas exchange processes as well as the emission of primary organic aerosols. Among these organic compounds, primarily of plankton origin, are dissolved exopolymers, specifically polysaccharides and proteins, and gel particles, such as Transparent Exopolymer Particles (TEP) and Coomassie Stainable Particles (CSP). These organic substances often accumulate in the surface ocean when plankton productivity is high. Here, we report results obtained in December 2012 during the SOPRAN Meteor 91 cruise to the highly productive, coastal upwelling regime off Peru. Samples were collected from the SML and from ~ 20 cm below, and were analyzed for polysaccharidic and proteinaceous compounds, gel particles, total and dissolved organic carbon, bacterial and phytoplankton abundance. Our study provides insight to the physical and biological control of organic matter enrichment in the SML, and discusses the potential role of organic matter in the SML for air-sea exchange processes.

  9. Analysis of variability of tropical Pacific sea surface temperatures

    NASA Astrophysics Data System (ADS)

    Davies, Georgina; Cressie, Noel

    2016-11-01

    Sea surface temperature (SST) in the Pacific Ocean is a key component of many global climate models and the El Niño-Southern Oscillation (ENSO) phenomenon. We shall analyse SST for the period November 1981-December 2014. To study the temporal variability of the ENSO phenomenon, we have selected a subregion of the tropical Pacific Ocean, namely the Niño 3.4 region, as it is thought to be the area where SST anomalies indicate most clearly ENSO's influence on the global atmosphere. SST anomalies, obtained by subtracting the appropriate monthly averages from the data, are the focus of the majority of previous analyses of the Pacific and other oceans' SSTs. Preliminary data analysis showed that not only Niño 3.4 spatial means but also Niño 3.4 spatial variances varied with month of the year. In this article, we conduct an analysis of the raw SST data and introduce diagnostic plots (here, plots of variability vs. central tendency). These plots show strong negative dependence between the spatial standard deviation and the spatial mean. Outliers are present, so we consider robust regression to obtain intercept and slope estimates for the 12 individual months and for all-months-combined. Based on this mean-standard deviation relationship, we define a variance-stabilizing transformation. On the transformed scale, we describe the Niño 3.4 SST time series with a statistical model that is linear, heteroskedastic, and dynamical.

  10. Indian Ocean Sea Surface Temperatures during the mid-Piacenzian

    NASA Astrophysics Data System (ADS)

    Stoll, D. K.; Robinson, M. M.; Dowsett, H. J.

    2010-12-01

    Mid-Pliocene (~3.3 to 3.0 Ma) climate is being reconstructed as part of the U.S. Geological Survey’s Pliocene Research, Interpretation, and Synoptic Mapping (PRISM) Project. The Pliocene sea surface temperature (SST) dataset is an integral piece of PRISM’s climate reconstruction and continually evolves over time as additional data are added and refined. The Indian Ocean has in the past been a region lacking PRISM SST data coverage, while it is also a region marked with interesting climate phenomena (e.g., the Indian Ocean Dipole). Questions over the existence of these modern oceanographic elements during the mid-Piacenzian have led to increased interest in the Indian Ocean. New data analyzed by PRISM provides insight on what Indian Ocean circulation and SST may have been like ~3 million years ago. Using planktic foraminifera sampled and analyzed from Indian Ocean ODP Sites 709, 716, 754, 758, and 763, PRISM is developing new mid-Pliocene SST estimates to better understand this region’s paleoceanography.

  11. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model

    EPA Science Inventory

    Sea spray aerosols (SSA) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. In this study, the Community Multiscale Air Quality (CMAQ) model is updated to enhance fine mode SSA emissions,...

  12. Narrowing the spread in CMIP5 model projections of air-sea CO2 fluxes

    PubMed Central

    Wang, Lei; Huang, Jianbin; Luo, Yong; Zhao, Zongci

    2016-01-01

    Large spread appears in the projection of air-sea CO2 fluxes using the latest simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Here, two methods are applied to narrow this spread in 13 CMIP5 models. One method involves model selection based on the ability of models to reproduce the observed air-sea CO2 fluxes from 1980 to 2005. The other method involves constrained estimation based on the strong relationship between the historical and future air-sea CO2 fluxes. The estimated spread of the projected air-sea CO2 fluxes is effectively reduced by using these two approaches. These two approaches also show great agreement in the global ocean and three regional oceans of the equatorial Pacific Ocean, the North Atlantic Ocean and the Southern Ocean, including the average state and evolution characteristics. Based on the projections of the two approaches, the global ocean carbon uptake will increase in the first half of the 21st century then remain relatively stable and is projected to be 3.68–4.57 PgC/yr at the end of 21st century. The projections indicate that the increase in the CO2 uptake by the oceans will cease at the year of approximately 2070. PMID:27892473

  13. Temperature and Transpiration Resistances of Xanthium Leaves as Affected by Air Temperature, Humidity, and Wind Speed 1

    PubMed Central

    Drake, B. G.; Raschke, K.; Salisbury, F. B.

    1970-01-01

    Transpiration and temperatures of single, attached leaves of Xanthium strumarium L. were measured in high intensity white light (1.2 calories per square centimeter per minute on a surface normal to the radiation), with abundant water supply, at wind speeds of 90, 225, and 450 centimeters per second, and during exposure to moist and dry air. Partitioning of absorbed radiation between transpiration and convection was determined, and transpiration resistances were computed. Leaf resistances decreased with increasing temperature (down to a minimum of 0.36 seconds per centimeter). Silicone rubber replicas of leaf surfaces proved that the decrease was due to increased stomatal apertures. At constant air temperature, leaf resistances were higher in dry than in moist air with the result that transpiration varied less than would have been predicted on the basis of the water-vapor pressure difference between leaf and air. The dependence of stomatal conductance on temperature and moisture content of the air caused the following effects. At air temperatures below 35 C, average leaf temperatures were above air temperature by an amount dependent on wind velocity; increasing wind diminished transpiration. At air temperatures above 35 C, leaf temperatures were below air temperatures, and increasing wind markedly increased transpiration. Leaf temperatures equaled air temperature near 35 C at all wind speeds and in moist as well as in dry air. PMID:16657458

  14. Regulation of CO2 Air Sea Fluxes by Sediments in the North Sea

    NASA Astrophysics Data System (ADS)

    Burt, William; Thomas, Helmuth; Hagens, Mathilde; Brenner, Heiko; Pätsch, Johannes; Clargo, Nicola; Salt, Lesley

    2016-04-01

    A multi-tracer approach is applied to assess the impact of boundary fluxes (e.g. benthic input from sediments or lateral inputs from the coastline) on the acid-base buffering capacity, and overall biogeochemistry, of the North Sea. Analyses of both basin-wide observations in the North Sea and transects through tidal basins at the North-Frisian coastline, reveal that surface distributions of the δ13C signature of dissolved inorganic carbon (DIC) are predominantly controlled by a balance between biological production and respiration. In particular, variability in metabolic DIC throughout stations in the well-mixed southern North Sea indicates the presence of an external carbon source, which is traced to the European continental coastline using naturally-occurring radium isotopes (224Ra and 228Ra). 228Ra is also shown to be a highly effective tracer of North Sea total alkalinity (AT) compared to the more conventional use of salinity. Coastal inputs of metabolic DIC and AT are calculated on a basin-wide scale, and ratios of these inputs suggest denitrification as a primary metabolic pathway for their formation. The AT input paralleling the metabolic DIC release prevents a significant decline in pH as compared to aerobic (i.e. unbuffered) release of metabolic DIC. Finally, long-term pH trends mimic those of riverine nitrate loading, highlighting the importance of coastal AT production via denitrification in regulating pH in the southern North Sea.

  15. Observed air-sea interactions in tropical cyclone Isaac over Loop Current mesoscale eddy features

    NASA Astrophysics Data System (ADS)

    Jaimes, Benjamin; Shay, Lynn K.; Brewster, Jodi K.

    2016-12-01

    Air-sea interactions during the intensification of tropical storm Isaac (2012) into a hurricane, over warm oceanic mesoscale eddy features, are investigated using airborne oceanographic and atmospheric profilers. Understanding these complex interactions is critical to correctly evaluating and predicting storm effects on marine and coastal facilities in the Gulf of Mexico, wind-driven mixing and transport of suspended matter throughout the water column, and oceanic feedbacks on storm intensity. Isaac strengthened as it moved over a Loop Current warm-core eddy (WCE) where sea surface warming (positive feedback mechanism) of ∼0.5 °C was measured over a 12-h interval. Enhanced bulk enthalpy fluxes were estimated during this intensification stage due to an increase in moisture disequilibrium between the ocean and atmosphere. These results support the hypothesis that enhanced buoyant forcing from the ocean is an important intensification mechanism in tropical cyclones over warm oceanic mesoscale eddy features. Larger values in equivalent potential temperature (θE = 365   ∘K) were measured inside the hurricane boundary layer (HBL) over the WCE, where the vertical shear in horizontal currents (δV) remained stable and the ensuing cooling vertical mixing was negligible; smaller values in θE (355   ∘K) were measured over an oceanic frontal cyclone, where vertical mixing and upper-ocean cooling were more intense due to instability development in δV . Thus, correctly representing oceanic mesoscale eddy features in coupled numerical models is important to accurately reproduce oceanic responses to tropical cyclone forcing, as well as the contrasting thermodynamic forcing of the HBL that often causes storm intensity fluctuations over these warm oceanic regimes.

  16. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect

    Waye, S.; Musselman, M.; King, C.

    2014-09-01

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  17. Temperature Variations Recorded During Interinstitutional Air Shipments of Laboratory Mice

    PubMed Central

    Syversen, Eric; Pineda, Fernando J; Watson, Julie

    2008-01-01

    Despite extensive guidelines and regulations that govern most aspects of rodent shipping, few data are available on the physical environment experienced by rodents during shipment. To document the thermal environment experienced by mice during air shipments, we recorded temperatures at 1-min intervals throughout 103 routine interinstitutional shipments originating at our institution. We found that 49.5% of shipments were exposed to high temperatures (greater than 29.4 °C), 14.6% to low temperatures (less than 7.2 °C), and 61% to temperature variations of 11 °C or more. International shipments were more likely than domestic shipments to experience temperature extremes and large variations in temperature. Freight forwarders using passenger airlines rather than their own airplanes were more likely to have shipments that experienced temperature extremes or variations. Temperature variations were most common during stopovers. Some airlines were more likely than others to experience inflight temperature extremes or swings. Most domestic shipments lasted at least 24 h, whereas international shipments lasted 48 to 72 h. Despite exposure to high and low temperatures, animals in all but 1 shipment arrived alive. We suggest that simple measures, such as shipping at night during hot weather, provision of nesting material in shipping crates, and specifying aircraft cargo-hold temperatures that are suitable for rodents, could reduce temperature-induced stress. Measures such as additional training for airport ground crews, as previously recommended by the American Veterinary Medical Association, could further reduce exposure of rodents to extreme ambient temperatures during airport stopovers. PMID:18210996

  18. Fine-Resolution Satellite-Based Sea Surface Temperatures over the Global Ocean

    DTIC Science & Technology

    2007-05-22

    sea -ice the Sea of Azov . The plot masks SST in the Great Lakes that coverage. may otherwise included in RTG. [7] These differences between MODAS and...and relative merits of two sets of daily global sea surface temperature (SST) analyses are examined and compared. The 1/81 Modular Ocean Data Analysis...10.1029/2006JC004021, 2007 ore FuN Awtle Fine-resolution satellite-based daily sea surface f!Tr7 1 UTION STATENT-T!T A temperatures over the global

  19. Global surface air temperature variations: 1851-1984

    SciTech Connect

    Jones, P.D.; Raper, S.C.B.; Kelly, P.M.

    1986-11-01

    Many attempts have been made to combine station surface air temperature data into an average for the Northern Hemisphere. Fewer attempts have been made for the Southern Hemisphere because of the unavailability of data from the Antarctic mainland before the 1950s and the uncertainty of making a hemispheric estimate based solely on land-based analyses for a hemisphere that is 80% ocean. Past estimates have been based largely on data from the World Weather Records (Smithsonian Institution, 1927, 1935, 1947, and U.S. Weather Bureau, 1959-82) and have been made without considerable effort to detect and correct station inhomogeneities. Better estimates for the Southern Hemisphere are now possible because of the availability of 30 years of climatological data from Antarctica. The mean monthly surface air temperature anomalies presented in this package for the than those previously published because of the incorporation of data previously hidden away in archives and the analysis of station homogeneity before estimation.

  20. Air-sea Forcing and Thermohaline Changes In The Ross Sea.

    NASA Astrophysics Data System (ADS)

    Fusco, G.; Budillon, G.

    Heat exchanges between sea and atmosphere from 1986 to 2000 in the Ross Sea (Antarctica) were computed from climatological data obtained from the European Centre for Medium Range Weather Forecasts. They have been related with the thermo- haline changes observed during 5 hydrological surveys performed between the austral summer 1994-1995 and 2000-2001 in the western sector of the Ross Sea. The esti- mated heat fluxes show extremely strong spatial and temporal variability over all the Ross Sea. As can be expected the largest heat losses occur between May and August, while during the period November-February the heat budget becomes positive. In the first six years of the investigated period the heat loss is very strong with its maximum about 166 Wm-2; while during the period 1992-2000 the yearly heat losses are the lowest. Thermohaline changes in the surface layer (upper pycnocline) of the western Ross Sea follow the expected seasonal pattern of warming and freshening from the be- ginning to the end of the austral summer. The heating changes are substantially lower than the estimated heat supplied by the atmosphere during the summer, which under- lines the importance in this season of the advective component carried by the currents in the total heat budget of this area. The year to year differences are about one or two orders of magnitude smaller than the seasonal changes in the surface layer. In the in- termediate and deep layers, the summer heat and salt variability is of the same order as or one order higher than from one summer to the next. Moreover a freshening of the near bottom layer has been observed, it is consistent with the High Salinity Shelf Water salinity decrease recently detected in the Ross Sea.

  1. Evidence of Lunar Phase Influence on Global Surface Air Temperatures

    NASA Technical Reports Server (NTRS)

    Anyamba, Ebby; Susskind, Joel

    2000-01-01

    Intraseasonal oscillations appearing in a newly available 20-year record of satellite-derived surface air temperature are composited with respect to the lunar phase. Polar regions exhibit strong lunar phase modulation with higher temperatures occurs near full moon and lower temperatures at new moon, in agreement with previous studies. The polar response to the apparent lunar forcing is shown to be most robust in the winter months when solar influence is minimum. In addition, the response appears to be influenced by ENSO events. The highest mean temperature range between full moon and new moon in the polar region between 60 deg and 90 deg latitude was recorded in 1983, 1986/87, and 1990/91. Although the largest lunar phase signal is in the polar regions, there is a tendency for meridional equatorward progression of anomalies in both hemispheres so that the warning in the tropics occurs at the time of the new moon.

  2. Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical Western Pacific

    SciTech Connect

    Webster, P.J.; Clayson, C.A.; Curry, J.A.

    1996-04-01

    In the tropical Western Pacific (TWP) Ocean, the clouds and the cloud-radiation feedback can only be understood in the context of air/sea interactions and the ocean mixed layer. Considerable interest has been shown in attempting to explain why sea surface temperature (SST) rarely rises above 30{degrees}C, and gradients of the SST. For the most part, observational studies that address this issue have been conducted using monthly cloud and SST data, and the focus has been on intraseasonal and interannual time scales. For the unstable tropical atmosphere, using monthly averaged data misses a key feedback between clouds and SST that occurs on the cloud-SST coupling time scale, which was estimated to be 3-6 days for the unstable tropical atmosphere. This time scale is the time needed for a change in cloud properties, due to the change of ocean surface evaporation caused by SST variation, to feed back to the SST variation, to feed back to the SST through its effect on the surface heat flux. This paper addresses the relationship between clouds, surface radiation flux and SST of the TWP ocean over the diurnal cycle.

  3. The influence of air-sea exchange on the isotropic composition of oceanic carbon: Observations and modeling

    SciTech Connect

    Lynch-Stieglitz, J.; Broecker, W.S.; Fairbanks, R.G.

    1995-12-01

    Although the carbon isotropic composition of ocean waters after they leave the surface ocean is determined by biological cycling, air-sea exchange affects the carbon isotopic composition of surface waters in two ways. The equilibrium fractionation between oceanic and atmospheric carbon increases with decreasing temperature. In Southern Ocean Surface Waters this isotopic equilibrium enriches {delta}{sup 13}C relative to the {delta}{sup 13}C expected from uptake and release of carbon by biological processes alone. Similarly, surface waters in the subtropical gyres are depleted in {delta}{sup 13}C due to extensive air-sea exchange at warm temperatures. Countering the tendency toward isotopic equilibration with the atmosphere (a relatively slow process), are the effects of the equilibration of CO{sub 2} itself (a much faster process). In regions where there is a net transfer of isotopically light CO{sub 2} from the ocean to the atmosphere (e.g., the equator) surface waters become enriched in {sup 13}C, whereas in regions where isotopically light CO{sub 2} is entering the ocean (e.g., the North Atlantic) surface waters become depleted in {sup 13}C. A compilation of high quality oceanic {delta}{sup 13}C measurements along with experiments performed using a zonally averaged three-basin dynamic ocean model are used to explore these processes. 40 refs., 14 figs., 1 tab.

  4. Large Scale Variability of Phytoplankton Blooms in the Arctic and Peripheral Seas: Relationships with Sea Ice, Temperature, Clouds, and Wind

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Cota, Glenn F.

    2004-01-01

    Spatially detailed satellite data of mean color, sea ice concentration, surface temperature, clouds, and wind have been analyzed to quantify and study the large scale regional and temporal variability of phytoplankton blooms in the Arctic and peripheral seas from 1998 to 2002. In the Arctic basin, phytoplankton chlorophyll displays a large symmetry with the Eastern Arctic having about fivefold higher concentrations than those of the Western Arctic. Large monthly and yearly variability is also observed in the peripheral seas with the largest blooms occurring in the Bering Sea, Sea of Okhotsk, and the Barents Sea during spring. There is large interannual and seasonal variability in biomass with average chlorophyll concentrations in 2002 and 2001 being higher than earlier years in spring and summer. The seasonality in the latitudinal distribution of blooms is also very different such that the North Atlantic is usually most expansive in spring while the North Pacific is more extensive in autumn. Environmental factors that influence phytoplankton growth were examined, and results show relatively high negative correlation with sea ice retreat and strong positive correlation with temperature in early spring. Plankton growth, as indicated by biomass accumulation, in the Arctic and subarctic increases up to a threshold surface temperature of about 276-277 degree K (3-4 degree C) beyond which the concentrations start to decrease suggesting an optimal temperature or nutrient depletion. The correlation with clouds is significant in some areas but negligible in other areas, while the correlations with wind speed and its components are generally weak. The effects of clouds and winds are less predictable with weekly climatologies because of unknown effects of averaging variable and intermittent physical forcing (e.g. over storm event scales with mixing and upwelling of nutrients) and the time scales of acclimation by the phytoplankton.

  5. Air sea gas exchange at extreme wind speeds measured by autonomous oceanographic floats

    NASA Astrophysics Data System (ADS)

    D'Asaro, Eric; McNeil, Craig

    2007-06-01

    Measurements of the air-sea fluxes of N 2 and O 2 were made in winds of 15-57 m s - 1 beneath Hurricane Frances using two types of air-deployed neutrally buoyant and profiling underwater floats. Two "Lagrangian floats" measured O 2 and total gas tension (GT) in pre-storm and post-storm profiles and in the actively turbulent mixed layer during the storm. A single "EM-APEX float" profiled continuously from 30 to 200 m before, during and after the storm. All floats measured temperature and salinity. N 2 concentrations were computed from GT and O 2 after correcting for instrumental effects. Gas fluxes were computed by three methods. First, a one-dimensional mixed layer budget diagnosed the changes in mixed layer concentrations given the pre-storm profile and a time varying mixed layer depth. This model was calibrated using temperature and salinity data. The difference between the predicted mixed layer concentrations of O 2 and N 2 and those measured was attributed to air-sea gas fluxes FBO and FBN. Second, the covariance flux FCO( z) = < wO 2'>( z) was computed, where w is the vertical motion of the water-following Lagrangian floats, O 2' is a high-pass filtered O 2 concentration and <>( z) is an average over covariance pairs as a function of depth. The profile FCO( z) was extrapolated to the surface to yield the surface O 2 flux FCO(0). Third, a deficit of O 2 was found in the upper few meters of the ocean at the height of the storm. A flux FSO, moving O 2 out of the ocean, was calculated by dividing this deficit by the residence time of the water in this layer, inferred from the Lagrangian floats. The three methods gave generally consistent results. At the highest winds, gas transfer is dominated by bubbles created by surface wave breaking, injected into the ocean by large-scale turbulent eddies and dissolving near 10-m depth. This conclusion is supported by observations of fluxes into the ocean despite its supersaturation; by the molar flux ratio FBO/ FBN, which is

  6. Air sea gas exchange at extreme wind speeds measured by autonomous oceanographic floats

    NASA Astrophysics Data System (ADS)

    D'Asaro, Eric; McNeil, Craig

    2008-11-01

    Measurements of the air-sea fluxes of N 2 and O 2 were made in winds of 15-57 m s - 1 beneath Hurricane Frances using two types of air-deployed neutrally buoyant and profiling underwater floats. Two "Lagrangian floats" measured O 2 and total gas tension (GT) in pre-storm and post-storm profiles and in the actively turbulent mixed layer during the storm. A single "EM-APEX float" profiled continuously from 30 to 200 m before, during and after the storm. All floats measured temperature and salinity. N 2 concentrations were computed from GT and O 2 after correcting for instrumental effects. Gas fluxes were computed by three methods. First, a one-dimensional mixed layer budget diagnosed the changes in mixed layer concentrations given the pre-storm profile and a time varying mixed layer depth. This model was calibrated using temperature and salinity data. The difference between the predicted mixed layer concentrations of O 2 and N 2 and those measured was attributed to air-sea gas fluxes FBO and FBN. Second, the covariance flux FCO( z) = < wO 2'>( z) was computed, where w is the vertical motion of the water-following Lagrangian floats, O 2' is a high-pass filtered O 2 concentration and <>( z) is an average over covariance pairs as a function of depth. The profile FCO( z) was extrapolated to the surface to yield the surface O 2 flux FCO(0). Third, a deficit of O 2 was found in the upper few meters of the ocean at the height of the storm. A flux FSO, moving O 2 out of the ocean, was calculated by dividing this deficit by the residence time of the water in this layer, inferred from the Lagrangian floats. The three methods gave generally consistent results. At the highest winds, gas transfer is dominated by bubbles created by surface wave breaking, injected into the ocean by large-scale turbulent eddies and dissolving near 10-m depth. This conclusion is supported by observations of fluxes into the ocean despite its supersaturation; by the molar flux ratio FBO/ FBN, which is

  7. Scattering properties of a stratified air/snow/sea ice medium. Small slope approximation

    NASA Astrophysics Data System (ADS)

    Dusséaux, Richard; Afifi, Saddek; Dechambre, Monique

    2016-11-01

    The sea-ice thickness, a key parameter in Arctic studies, is derived from radar altimeter height measurements of the freeboard, taking into account not only snow load, but also the penetration depth of the electromagnetic waves inside the snow-this is the not generally the case. Within the framework of the small slope approximation method, we study in Ku-band (f = 13 GHz, λ = 2.31 cm in the air) the electromagnetic signature of an air/snow/sea ice rough layered medium. The snow is inhomogeneous and is represented as a stack of several layers with different relative permittivities. We show that the electromagnetic response is very sensitive to the isotropy factor of the air/snow interface and to the cross-correlation parameters of interfaces. xml:lang="fr"

  8. Millennial-scale Atlantic/East Pacific sea surface temperature linkages during the last 100,000 years

    NASA Astrophysics Data System (ADS)

    Dubois, Nathalie; Kienast, Markus; Kienast, Stephanie S.; Timmermann, Axel

    2014-06-01

    Amplifying both internally generated variability and remote climate signals from the Atlantic Ocean via coupled air-sea instabilities, the eastern tropical Pacific (ETP) is well situated to detect past climate changes and variations in Central American wind systems that dynamically link the Atlantic and the Pacific. Here we compare new and previously published alkenone-based sea surface temperature (SST) reconstructions from diverse environments within the ETP, i.e. the Eastern Pacific Warm Pool (EPWP), the equatorial and the northern Peruvian Upwelling regions over the past 100,000 yr. Over this time period, a fairly constant meridional temperature gradient across the region is observed, indicating similar hydrographic conditions during glacial and interglacial periods. The data further reveal that millennial-scale cold events associated with massive iceberg surges in the North Atlantic (Heinrich events) generate cooling in the ETP from ∼8°N to ∼2°S. Data from Heinrich event 1, however, indicate that the response changes sign south of 2°S. These millennial-scale alterations of the SST pattern across diverse environments of the ETP support previous climate modeling experiments that suggested an Atlantic-Pacific connection caused by the intensification of the Central American gap winds, enhanced upwelling and mixing north of the equator and supported by positive air-sea feedbacks in the eastern tropical Pacific.

  9. Air-Sea Fluxes in Terra Nova Bay, Antarctica from In Situ Aircraft Measurements

    NASA Astrophysics Data System (ADS)

    Knuth, S. L.; Cassano, J. J.

    2011-12-01

    In September 2009, the first unmanned aerial vehicles (UAVs) were flown over Terra Nova Bay, Antarctica to collect information regarding air-sea interactions over a wintertime coastal polynya. The UAVs measured wind, temperature, pressure, and relative humidity in flights parallel to the downslope wind flow over the polynya, and in a series of vertical profiles at varying distances from the coast. During three flights on three different days, sufficient measurements were collected to calculate sensible heat, latent heat, and momentum fluxes over varying oceanic surface states, including frazil, pancake, and rafted ice, with background winds greater than 15 ms-1. During the three flights, sensible heat fluxes upwards of 600 Wm-2 were estimated near the coast, with maximum latent heat fluxes near 160 Wm-2 just downwind of the coast. The calculated accelerations due to the momentum flux divergence were on the order of 10-3 ms-2. In addition to the fluxes, changes in the overall momentum budget, including the horizontal pressure gradient force, were also calculated during the three flights. This presentation will summarize the methodology for calculating the fluxes from the UAV data, present the first ever in situ estimates of sensible heat, latent heat, and momentum fluxes and overall momentum budget estimates over Terra Nova Bay, and compare the UAV flux calculations to flux measurements taken during other field campaigns in other regions of the Antarctic, as well as to model estimates over Terra Nova Bay.

  10. A C-band scatterometer for remote sensing the air-sea interface

    NASA Technical Reports Server (NTRS)

    Mclaughlin, David J.; Mcintosh, Robert E.; Pazmany, Andrew; Hevizi, Laszlo; Boltniew, Eugene

    1991-01-01

    An airborne C-band scatterometer system (C-Scat) has been developed to remotely sense ocean surface winds and improve upon the present understanding of the relationship between normalized radar cross section (NRCS) and ocean surface roughness influences such as wind speed and direction, wave height and slope, and the air-sea temperature difference. The scatterometer utilizes a unique frequency-steered microstrip array antenna that is installed beneath the fuselage of an airplane. The antenna is electronically scanned in elevation, from 20 deg to 50 deg off-nadir, and mechanically spins in azimuth. The system is capable of measuring ocean surface NRCS from altitudes as high as 25,000 ft. The transmitter and receiver operate from 4.98 to 5.7 GHz. System parameters such as transmitter pulse width, pulse repetition frequency, output power level, and receiver bandwidth are programmable. Received signals can be averaged and displayed in real time and are stored on a Winchester disk drive for post-flight analysis. Preliminary flight data that demonstrates the instrument's performance is presented.

  11. Daily Air Temperature and Electricity Load in Spain.

    NASA Astrophysics Data System (ADS)

    Valor, Enric; Meneu, Vicente; Caselles, Vicente

    2001-08-01

    Weather has a significant impact on different sectors of the economy. One of the most sensitive is the electricity market, because power demand is linked to several weather variables, mainly the air temperature. This work analyzes the relationship between electricity load and daily air temperature in Spain, using a population-weighted temperature index. The electricity demand shows a significant trend due to socioeconomic factors, in addition to daily and monthly seasonal effects that have been taken into account to isolate the weather influence on electricity load. The results indicate that the relationship is nonlinear, showing a `comfort interval' of ±3°C around 18°C and two saturation points beyond which the electricity load no longer increases. The analysis has also revealed that the sensitivity of electricity load to daily air temperature has increased along time, in a higher degree for summer than for winter, although the sensitivity in the cold season is always more significant than in the warm season. Two different temperature-derived variables that allow a better characterization of the observed relationship have been used: the heating and cooling degree-days. The regression of electricity data on them defines the heating and cooling demand functions, which show correlation coefficients of 0.79 and 0.87, and predicts electricity load with standard errors of estimate of ±4% and ±2%, respectively. The maximum elasticity of electricity demand is observed at 7 cooling degree-days and 9 heating degree-days, and the saturation points are reached at 11 cooling degree-days and 13 heating degree-days, respectively. These results are helpful in modeling electricity load behavior for predictive purposes.

  12. A case study of sea breeze blocking regulated by sea surface temperature along the English south coast

    NASA Astrophysics Data System (ADS)

    Sweeney, J. K.; Chagnon, J. M.; Gray, S. L.

    2014-05-01

    The sensitivity of sea breeze structure to sea surface temperature (SST) and coastal orography is investigated in convection-permitting Met Office Unified Model simulations of a case study along the south coast of England. Changes in SST of 1 K are shown to significantly modify the structure of the sea breeze immediately offshore. On the day of the case study, the sea breeze was partially blocked by coastal orography, particularly within Lyme Bay. The extent to which the flow is blocked depends strongly on the static stability of the marine boundary layer. In experiments with colder SST, the marine boundary layer is more stable, and the degree of blocking is more pronounced. Although a colder SST would also imply a larger land-sea temperature contrast and hence a stronger onshore wind - an effect which alone would discourage blocking - the increased static stability exerts a dominant control over whether blocking takes place. The implications of prescribing fixed SST from climatology in numerical weather prediction model forecasts of the sea breeze are discussed.

  13. Impacts of air-sea exchange coefficients on snowfall events over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Kang, Jung-Yoon; Kwon, Young Cheol

    2016-08-01

    Snowfall over the Korean Peninsula is mainly associated with air mass transformation by the fluxes across the air-sea interface during cold-air outbreaks over the warm Yellow Sea. The heat and momentum exchange coefficients in the surface flux parameterization are key parameters of flux calculations across the air-sea interface. This study investigates the effects of the air-sea exchange coefficients on the simulations of snowfall events over the Korean Peninsula using the Weather Research and Forecasting (WRF) model. Two snowfall cases are selected for this study. One is a heavy snowfall event that took place on January 4, 2010, and the other is a light snowfall event that occurred on December 23-24, 2011. Several sensitivity tests are carried out with increased and decreased heat and momentum exchange coefficients. The domain-averaged precipitation is increased (decreased) with increased (decreased) heat exchange coefficient because the increased (decreased) surface heat flux leads to more (less) moist conditions in the low level of the atmosphere. On the other hand, the domain-averaged precipitation is decreased (increased) with increased (decreased) momentum exchange coefficient because the increased (decreased) momentum coefficient causes reduction (increase) of wind speed and heat flux. The variation of precipitation in the heat exchange coefficient experiments is much larger than that in the momentum exchange coefficient experiments because the change of heat flux has a more direct impact on moisture flux and snowfall amount, while the change of momentum flux has a rather indirect impact via wind speed changes. The low-pressure system is intensified and moves toward North when the heat exchange coefficient is increased because warming and moistening of the lower atmosphere contributes to destabilize the air mass, resulting in the change of precipitation pattern over the Korean Peninsula in the heat exchange coefficient experiments.

  14. The effect of monomolecular surface films on the microwave brightness temperature of the sea surface

    NASA Technical Reports Server (NTRS)

    Alpers, W.; Blume, H.-J. C.; Garrett, W. D.; Huehnerfuss, H.

    1982-01-01

    It is pointed out that monomolecular surface films of biological origin are often encountered on the ocean surface, especially in coastal regions. The thicknesses of the monomolecular films are of the order of 3 x 10 to the -9th m. Huehnerfuss et al. (1978, 1981) have shown that monomolecular surface films damp surface waves quite strongly in the centimeter to decimeter wavelength regime. Other effects caused by films are related to the reduction of the gas exchange at the air-sea interface and the decrease of the wind stress. The present investigation is concerned with experiments which reveal an unexpectedly large response of the microwave brightness temperature to a monomolecular oleyl alcohol slick at 1.43 GHz. Brightness temperature is a function of the complex dielectric constant of thy upper layer of the ocean. During six overflights over an ocean area covered with an artificial monomolecular alcohol film, a large decrease of the brightness temperature at the L-band was measured, while at the S-band almost no decrease was observed.

  15. Black sea surface temperature anomaly on 5th August 1998 and the ozone layer thickness

    NASA Astrophysics Data System (ADS)

    Manev, A.; Palazov, K.; Raykov, St.; Ivanov, V.

    2003-04-01

    BLACK SEA SURFACE TEMPERATURE ANOMALY ON 5th AUGUST 1998 AND THE OZONE LAYER THICKNESS A. Manev , K. Palazov , St. Raykov, V. Ivanov Solar Terrestrial Influences Laboratory, Bulgarian Academy of Sciences amanev@abv.bg This paper focuses on the peculiarities of the Black Sea surface temperature anomaly on 05.08.1998. Researching the daily temperature changes in a number of control fields in the course of 8-10 years, we have found hidden correlations and anomalous deviations in the sea surface temperatures on a global scale. Research proves the statistical reliability of the temperature anomaly on the entire Black Sea surface registered on 04.-05.08.1998. In the course of six days around these dates the temperatures are up to 2°C higher than the maximum temperatures in this period in the other seven years. A more detailed analysis of the dynamics of the anomaly required the investigation of five Black Sea surface characteristic zones of 75x75 km. The analysis covers the period 20 days - 10 days before and 10 days after the anomaly. Investigations aimed at interpreting the reasons for the anomalous heating of the surface waters. We have tried to analyze the correlation between sea surface temperature and the global ozone above the Black Sea by using simultaneously data from the two satellite systems NOAA and TOMS. Methods of processing and comparing the data from the two satellite systems are described. The correlation coefficients values for the five characteristic zones are very high and close, which proves that the character of the correlation ozone - sea surface temperature is the same for the entire Black Sea surface. Despite the high correlation coefficient, we have proved that causality between the two phenomena at the time of the anomaly does not exit.

  16. North Atlantic sea surface temperature, solar activity and the climate of Northern Fennoscandia

    NASA Astrophysics Data System (ADS)

    Ogurtsov, M.; Lindholm, M.; Jalkanen, R.; Veretenenko, S. V.

    2017-02-01

    Seven proxies of summer temperature in Northern Fennoscandia, sea surface temperature in the North Atlantic and solar activity were analyzed over AD 1567-1986. A stable and significant positive correlation between summer temperatures in Northern Fennoscandia and sea surface temperature in the North Atlantic is shown to exist during the entire time interval. In addition, a significant correlation between solar activity and (a) summer temperature in Northern Fennoscandia as well as (b) surface temperature in the North Atlantic was found during AD 1715-1986. Throughout 1567-1715 correlation is less significant and has an opposite sign. Thus we show that the variation of sea surface temperature in the North Atlantic could be a physical agent, which transferred solar influence on Northern Fennoscandian temperature at least during AD 1715-1986.

  17. Sensitivity of New England Stream Temperatures to Air Temperature and Precipitation Under Projected Climate

    NASA Astrophysics Data System (ADS)

    Huang, T.; Samal, N. R.; Wollheim, W. M.; Stewart, R. J.; Zuidema, S.; Prousevitch, A.; Glidden, S.

    2015-12-01

    The thermal response of streams and rivers to changing climate will influence aquatic habitat. This study examines the impact that changing climate has on stream temperatures in the Merrimack River, NH/MA USA using the Framework for Aquatic Modeling in the Earth System (FrAMES), a spatially distributed river network model driven by air temperature, air humidity, wind speed, precipitation, and solar radiation. Streamflow and water temperatures are simulated at a 45-second (latitude x longitude) river grid resolution for 135 years under historical and projected climate variability. Contemporary streamflow (Nash-Sutcliffe Coefficient = 0.77) and river temperatures (Nash-Sutcliffe Coefficient = 0.89) matched at downstream USGS gauge data well. A suite of model runs were made in combination with uniformly increased daily summer air temperatures by 2oC, 4 oC and 6 oC as well as adjusted precipitation by -40%, -30%, -20%, -10% and +10% as a sensitivity analysis to explore a broad range of potential future climates. We analyzed the summer stream temperatures and the percent of river length unsuitable for cold to warm water fish habitats. Impacts are greatest in large rivers due to the accumulation of river temperature warming throughout the entire river network. Cold water fish (i.e. brook trout) are most strongly affected while, warm water fish (i.e. largemouth bass) aren't expected to be impacted. The changes in stream temperatures under various potential climate scenarios will provide a better understanding of the specific impact that air temperature and precipitation have on aquatic thermal regimes and habitat.

  18. Relationship between the Arctic oscillation and surface air temperature in multi-decadal time-scale

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroshi L.; Tamura, Mina

    2016-09-01

    In this study, a simple energy balance model (EBM) was integrated in time, considering a hypothetical long-term variability in ice-albedo feedback mimicking the observed multi-decadal temperature variability. A natural variability was superimposed on a linear warming trend due to the increasing radiative forcing of CO2. The result demonstrates that the superposition of the natural variability and the background linear trend can offset with each other to show the warming hiatus for some period. It is also stressed that the rapid warming during 1970-2000 can be explained by the superposition of the natural variability and the background linear trend at least within the simple model. The key process of the fluctuating planetary albedo in multi-decadal time scale is investigated using the JRA-55 reanalysis data. It is found that the planetary albedo increased for 1958-1970, decreased for 1970-2000, and increased for 2000-2012, as expected by the simple EBM experiments. The multi-decadal variability in the planetary albedo is compared with the time series of the AO mode and Barents Sea mode of surface air temperature. It is shown that the recent AO negative pattern showing warm Arctic and cold mid-latitudes is in good agreement with planetary albedo change indicating negative anomaly in high latitudes and positive anomaly in mid-latitudes. Moreover, the Barents Sea mode with the warm Barents Sea and cold mid-latitudes shows long-term variability similar to planetary albedo change. Although further studies are needed, the natural variabilities of both the AO mode and Barents Sea mode indicate some possible link to the planetary albedo as suggested by the simple EBM to cause the warming hiatus in recent years.

  19. Prediction of daily sea surface temperature using efficient neural networks

    NASA Astrophysics Data System (ADS)

    Patil, Kalpesh; Deo, Makaranad Chintamani

    2017-02-01

    Short-term prediction of sea surface temperature (SST) is commonly achieved through numerical models. Numerical approaches are more suitable for use over a large spatial domain than in a specific site because of the difficulties involved in resolving various physical sub-processes at local levels. Therefore, for a given location, a data-driven approach such as neural networks may provide a better alternative. The application of neural networks, however, needs a large experimentation in their architecture, training methods, and formation of appropriate input-output pairs. A network trained in this manner can provide more attractive results if the advances in network architecture are additionally considered. With this in mind, we propose the use of wavelet neural networks (WNNs) for prediction of daily SST values. The prediction of daily SST values was carried out using WNN over 5 days into the future at six different locations in the Indian Ocean. First, the accuracy of site-specific SST values predicted by a numerical model, ROMS, was assessed against the in situ records. The result pointed out the necessity for alternative approaches. First, traditional networks were tried and after noticing their poor performance, WNN was used. This approach produced attractive forecasts when judged through various error statistics. When all locations were viewed together, the mean absolute error was within 0.18 to 0.32 °C for a 5-day-ahead forecast. The WNN approach was thus found to add value to the numerical method of SST prediction when location-specific information is desired.

  20. Sahel Precipitation Variability and Global Sea Surface Temperature Forcing

    NASA Astrophysics Data System (ADS)

    Bach, D. E.; Kushnir, Y.; Seager, R.; Goddard, L.; Giannini, A.

    2003-12-01

    In the last 50 years or so, the Sahel region in sub-Saharan Africa has experienced two multi-decadal wet and dry periods separated by a relatively sharp transition. The onset of the dry episode in the Sahel is associated with the start of a significant warming trend in Southern Hemisphere sea surface temperatures (SST) that persisted well into the late 1990's. It has been stipulated, based on general circulation model (GCM) experiments, that the SST rise in the southern ocean basins is the predominant driver of rainfall patterns over the Sahel. Here we support this notion by comparing the observed rate of change in Southern Hemisphere SST with that of Sahel summertime rainfall. We examine the variations in each ocean basin separately and find that the drought pattern is most prominently associated with SST changes in the Indian Ocean, which display maximum warming rates simultaneously with the wet to dry shift in the Sahel. We provide further support to the role of the Indian Ocean using results from GCM integrations forced with observed Indian Ocean SST values and climatological values elsewhere, which effectively recreate the dry Sahel rainfall pattern. While the variations in equatorial Pacific SST associated with El Ni¤o have been found to have an effect on Sahel rainfall during the summer months, their influence does not appear to be significantly connected with the prolonged drought episode. The dry period was accentuated by two severe droughts in the early 1970's and 1980s, which generated very different repercussions for the Sahelian people. The first drought resulted in widespread famine and death while the second more severe drought in 1983-84 generated very few casualties. The political and socioeconomic assessment of these episodes suggests that the extensive loss of life was due to inefficient transportation of supplies to the starving populations. International aid organizations initiated famine protection programs following the 1970's drought that

  1. Sea surface temperature associations with the Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Terray, P.; Delecluse, P.; Labattu, S.; Terray, L.

    2003-04-01

    This paper uses recent gridded data and Atmospheric General Circulation Model (AGCM) simulations in order to assess the relationships between interannual variability of the Indian Summer Monsoon (ISM) and Sea Surface Temperature (SST) anomaly patterns over the Indian and Pacific oceans. Interannual variability of ISM rainfall and dynamical indices for the traditional summer monsoon season (June-September) are strongly influenced by rainfall and circulation anomalies observed during August and September, or the Late Indian Summer Monsoon (LISM). Southern Indian Ocean SST acts as a major boundary forcing for the LISM system. Strong (weak) LISMs are preceded by significant positive (negative) SST anomalies in the southeastern subtropical Indian Ocean, off Australia. These SST anomalies are highly persistent and affect the northwestward translation of the Mascarene high from austral to boreal summer. The southeastward (northwestward) shift of this subtropical high associated with cold (warm) SST anomalies off Australia causes a weakening (strengthening) of the whole monsoon circulation through a modulation of the local Hadley cell during the LISM. Furthermore, it is suggested that the Mascarene high interacts with the underlying SST anomalies through a positive dynamical feedback mechanism, maintaining its anomalous position during the LISM. Southeastern Indian Ocean SST anomalies during boreal winter are mainly linked to subtropical Indian Ocean dipole events, studied by Behera and Yamagata (2001), and to the El Niño-Southern Oscillation phenomenon. An El Niño event and the associated warm SST anomalies over the southeastern Indian Ocean during boreal winter may play a key role in the development of a strong ISM by strengthening the local Hadley circulation during the LISM. On the other hand, a developing La Niña event in boreal summer may also enhance the east-west Walker circulation and the monsoon.

  2. Sampling Errors in Satellite-derived Infrared Sea Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Minnett, P. J.

    2014-12-01

    Sea Surface Temperature (SST) measured from satellites has been playing a crucial role in understanding geophysical phenomena. Generating SST Climate Data Records (CDRs) is considered to be the one that imposes the most stringent requirements on data accuracy. For infrared SSTs, sampling uncertainties caused by cloud presence and persistence generate errors. In addition, for sensors with narrow swaths, the swath gap will act as another sampling error source. This study is concerned with quantifying and understanding such sampling errors, which are important for SST CDR generation and for a wide range of satellite SST users. In order to quantify these errors, a reference Level 4 SST field (Multi-scale Ultra-high Resolution SST) is sampled by using realistic swath and cloud masks of Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Along Track Scanning Radiometer (AATSR). Global and regional SST uncertainties are studied by assessing the sampling error at different temporal and spatial resolutions (7 spatial resolutions from 4 kilometers to 5.0° at the equator and 5 temporal resolutions from daily to monthly). Global annual and seasonal mean sampling errors are large in the high latitude regions, especially the Arctic, and have geographical distributions that are most likely related to stratus clouds occurrence and persistence. The region between 30°N and 30°S has smaller errors compared to higher latitudes, except for the Tropical Instability Wave area, where persistent negative errors are found. Important differences in sampling errors are also found between the broad and narrow swath scan patterns and between day and night fields. This is the first time that realistic magnitudes of the sampling errors are quantified. Future improvement in the accuracy of SST products will benefit from this quantification.

  3. Data-Model Comparison of Pliocene Sea Surface Temperature

    NASA Astrophysics Data System (ADS)

    Dowsett, H. J.; Foley, K.; Robinson, M. M.; Bloemers, J. T.

    2013-12-01

    The mid-Piacenzian (late Pliocene) climate represents the most geologically recent interval of long-term average warmth and shares similarities with the climate projected for the end of the 21st century. As such, its fossil and sedimentary record represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. We present the first systematic comparison of Pliocene sea surface temperatures (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) and the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional (mid- to high latitude North Atlantic and tropics) and dynamic (upwelling) situations where there is discord between reconstructed SST and the PlioMIP simulations. These differences can lead to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction. Scatter plot of multi-model-mean anomalies (squares) and PRISM3 data anomalies (large blue circles) by latitude. Vertical bars on data anomalies represent the variability of warm climate phase within the time-slab at each locality. Small colored circles represent individual model anomalies and show the spread of model estimates about the multi-model-mean. While not directly comparable in terms of the development of the means nor the meaning of variability, this plot provides a first order comparison of the anomalies. Encircled areas are a, PRISM low latitude sites outside of upwelling areas; b, North Atlantic coastal sequences and Mediterranean sites; c, large anomaly PRISM sites from the northern hemisphere. Numbers identify Ocean Drilling Program sites.

  4. Eliminating bias in satellite retrievals of sea surface temperature

    NASA Astrophysics Data System (ADS)

    Merchant, Christopher John

    Sea surface temperature (SST) is a critical parameter for climate research, and needs to be measured with an absolute accuracy of ~0.3 K (average over ~100 km scale on a weekly to monthly time scale) and with a long term stability of 0.1 K per decade. These stringent requirements present a formidable challenge to satellite based SST measurement. The most promising satellite radiometer is the ATSR (and successors), but bias and spurious trends have arisen in the ATSR SST retrieval process. Eliminating such retrieval bias is the focus of this thesis. SSTs derived from the ATSR using the prelaunch retrieval scheme are biased by up to -1.5 K by stratospheric aerosol from the eruption of Mount Pinatubo shortly before launch. An "aerosol-robust" retrieval scheme is derived which has no detectable aerosol- related bias. Another bias of up to 0.5 K arising from a deficiency of the radiative transfer model used to develop the prelaunch retrieval scheme is resolved by implementing an updated parameterisation of water vapour continuum absorption. The new SSTs are shown to have an accuracy better than 0.3 K (error in a single retrieval over a -20 km spatial scale) and to be robust to aerosol effects, by a validation exercise against buoys measuring SST in situ. The validation data consist of 620 satellite-buoy coincidences in the tropical Pacific between September 1991 and May 1992, a region and period associated with high loadings of stratospheric aerosol and tropospheric water vapour. This is the first validation exercise to correct for the effects of the difference between bulk SSTs (measured by buoys) and skin SSTs (measured radiometrically). The factor now limiting accuracy is residual cloud contamination. The new retrieval scheme has been adopted for the reprocessing of all archived ATSR data to SST.

  5. Evaluating drivers of Pleistocene eastern tropical Pacific sea surface temperature

    NASA Astrophysics Data System (ADS)

    Dyez, K. A.; Ravelo, A. C.; Mix, A. C.

    2016-08-01

    Sea surface temperature (SST) of the eastern equatorial Pacific is a key component of tropical oceanic and atmospheric circulation with global teleconnections. Forcing factors such as local and high-latitude insolation changes, ice sheet size and albedo feedbacks, and greenhouse gas radiation have been proposed as controls of long-term eastern tropical Pacific SST, though the precise role each mechanism plays is not fully known on glacial-interglacial or longer timescales. Here proposed mechanisms are evaluated by comparing orbital-scale records of eastern Pacific SST with forcing variability over the past 1.5 Ma. The primary SST records are a compilation of new and existing data from Ocean Drilling Program Site 1239 at the northeastern margin of the modern eastern Pacific cold tongue and Site 846 SST within the cold tongue. Using time series analysis, we test previously proposed mechanisms for control of long-term tropical SST change and SST gradients in the eastern Pacific. We find that within statistical uncertainties, in the precession band eastern Pacific SST is consistent with direct forcing by equatorial radiation changes in the tropical cold season (summer-fall) rather than inversely correlated as previously suggested. In the obliquity band high-latitude solar forcing leads or is in phase with eastern equatorial Pacific SST, while in the eccentricity band atmospheric greenhouse gas concentrations are closely associated with cold tongue SST. Pleistocene eastern Pacific SST gradients indicate that the gradient on the northern margin of the cold tongue strengthened through the mid-Pleistocene transition, a result compatible with the cold tongue becoming more focused at ~900-650 ka.

  6. Air-sea CO2 exchange process in the southern Yellow Sea in April of 2011, and June, July, October of 2012

    NASA Astrophysics Data System (ADS)

    Qu, Baoxiao; Song, Jinming; Yuan, Huamao; Li, Xuegang; Li, Ning

    2014-06-01

    The partial pressure of CO2 (pCO2) and air-sea CO2 exchange flux (FCO2) in the southern Yellow Sea (SYS, 120-125°E, 31.5-37°N) were investigated basing on the field surveys conducted in April of 2011, and June, July, October of 2012. With significant spatial variations, surface pCO2 ranged from 243 to 574 μatm, 206 to 620 μatm, 102 to 655 μatm and 328 to 557 μatm in April, June, July and October, respectively. Nearshore area of Shandong Peninsula and Jiangsu Shallow (depth<50 m) were pCO2-supersaturated (pCO2=400-600 μatm), as the result of intensive water mixing which brought the bottom CO2-rich water to the surface layer. Conversely, offshore area of SYS center (depth>50 m) was pCO2-undersaturated (pCO2<390 μatm) in April, June and October, but supersaturated in July. Phytoplankton production sustained by abundant nutrient and suitable hydrodynamic conditions was of great importance for this undersaturated pCO2. Moreover, extreme low pCO2 (pCO2<300 μatm) was observed in the Changjiang plume (32.5-33.5°N, 123-125°E) in July, which was also related with the biological uptake of CO2. Average air-sea CO2 exchange flux of the SYS in April, June, July and October was -3.16±0.40 mmol m-2 d-1, -4.56±0.34 mmol m-2 d-1, -0.36±0.51 mmol m-2 d-1, and 6.67±0.57 mmol m-2 d-1, respectively. As a whole, the SYS behaved as a weak CO2 sink during April to October, with an average flux for about -0.35 mmol m-2 d-1. As for the controlling factors for pCO2 variation, temperature played the dominant role in October, whereas the non-temperature factors, such as vertical mixing, Changjiang plume and biological activity, were considered as the primary controlling factors in June and July. Spatially, the control of temperature on pCO2 was predominant in the offshore SYS; the non-temperature factors were predominant in the shallow nearshore area, especially in coast of Shandong Peninsula and the Jiangsu Shallow.

  7. Terrestrial basking sea turtles are responding to spatio-temporal sea surface temperature patterns.

    PubMed

    Van Houtan, Kyle S; Halley, John M; Marks, Wendy

    2015-01-01

    Naturalists as early as Darwin observed terrestrial basking in green turtles (Chelonia mydas), but the distribution and environmental influences of this behaviour are poorly understood. Here, we examined 6 years of daily basking surveys in Hawaii and compared them with the phenology of local sea surface temperatures (SST). Data and models indicated basking peaks when SST is coolest, and we found this timeline consistent with bone stress markings. Next, we assessed the decadal SST profiles for the 11 global green turtle populations. Basking generally occurs when winter SST falls below 23°C. From 1990 to 2014, the SST for these populations warmed an average 0.04°C yr(-1) (range 0.01-0.09°C yr(-1)); roughly three times the observed global average over this period. Owing to projected future warming at basking sites, we estimated terrestrial basking in green turtles may cease globally by 2100. To predict and manage for future climate change, we encourage a more detailed understanding for how climate influences organismal biology.

  8. Terrestrial basking sea turtles are responding to spatio-temporal sea surface temperature patterns

    PubMed Central

    Van Houtan, Kyle S.; Halley, John M.; Marks, Wendy

    2015-01-01

    Naturalists as early as Darwin observed terrestrial basking in green turtles (Chelonia mydas), but the distribution and environmental influences of this behaviour are poorly understood. Here, we examined 6 years of daily basking surveys in Hawaii and compared them with the phenology of local sea surface temperatures (SST). Data and models indicated basking peaks when SST is coolest, and we found this timeline consistent with bone stress markings. Next, we assessed the decadal SST profiles for the 11 global green turtle populations. Basking generally occurs when winter SST falls below 23°C. From 1990 to 2014, the SST for these populations warmed an average 0.04°C yr−1 (range 0.01–0.09°C yr−1); roughly three times the observed global average over this period. Owing to projected future warming at basking sites, we estimated terrestrial basking in green turtles may cease globally by 2100. To predict and manage for future climate change, we encourage a more detailed understanding for how climate influences organismal biology. PMID:25589483

  9. On the use of a coupled ocean-atmosphere-wave model during an extreme cold air outbreak over the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Ricchi, Antonio; Miglietta, Mario Marcello; Falco, Pier Paolo; Benetazzo, Alvise; Bonaldo, Davide; Bergamasco, Andrea; Sclavo, Mauro; Carniel, Sandro

    2016-05-01

    An intense cold air outbreak affected the northern Adriatic Sea during winter 2012, determining an exceptional persistence of northeasterly Bora wind over the basin, which lasted for about 3 weeks. The cold air coming from the Balkans produced icing in the Venice lagoon and very intense snowfall in the Apennines Mountains and even near the coasts. In order to understand the importance and role of air-sea interactions for the evolution of the atmospheric fields, simulations with the Weather Research and Forecasting (WRF) model encompassing the whole period have been performed using sea surface temperature (SST) fields with an increasing level of complexity. Starting from a large-scale static sea temperature, the SST in the initial and boundary conditions has been progressively made more realistic. First, a more refined field, retrieved from a satellite radiometer was used; then, the same field was updated every 6 h. Next, the effect of including a simplified 1D ocean model reproducing the Oceanic Mixed Layer (OML) evolution has been tested. Finally, the potential improvements coming from a coupled description of atmosphere-ocean and atmosphere-ocean-waves interactions have been explored within the Coupled Ocean-Atmosphere-Wave Sediment Transport (COAWST) modeling system. Results highlight that the energy exchange between air and sea does not significantly impact the atmospheric fields, in particular 10 m wind and 2 m temperature, also because of the geography of the basin and the predominance of synoptic-scale flow in intense events of Bora, in the northern Adriatic. However, when sensible and latent heat fluxes, which are dependent on atmospheric and oceanic variables, are analyzed, the more realistic representation of SST drastically improves the model performances.

  10. Air-sea interaction with SSM/I and altimeter

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A number of important developments in satellite remote sensing techniques have occurred recently which offer the possibility of studying over vast areas of the ocean the temporally evolving energy exchange between the ocean and the atmosphere. Commencing in spring of 1985, passive and active microwave sensors that can provide valuable data for scientific utilization will start to become operational on Department of Defense (DOD) missions. The passive microwave radiometer can be used to estimate surface wind speed, total air column humidity, and rain rate. The active radar, or altimeter, senses surface gravity wave height and surface wind speed.

  11. Air-Sea Spray Airborne Radar Profiler Characterizes Energy Fluxes in Hurricanes

    NASA Technical Reports Server (NTRS)

    Durden, Stephen L.; Esteban-Fermandez, D.

    2010-01-01

    A report discusses ASAP (Air-sea Spray Airborne Profiler), a dual-wavelength radar profiler that provides measurement information about the droplet size distribution (DSD) of sea-spray, which can be used to estimate heat and moisture fluxes for hurricane research. Researchers have recently determined that sea spray can have a large effect on the magnitude and distribution of the air-sea energy flux at hurricane -force wind speeds. To obtain information about the DSD, two parameters of the DSD are required; for example, overall DSD amplitude and DSD mean diameter. This requires two measurements. Two frequencies are used, with a large enough separation that the differential frequency provides size information. One frequency is 94 GHz; the other is 220 GHz. These correspond to the Rayleigh and Mie regions. Above a surface wind speed of 10 m/ s, production of sea spray grows exponentially. Both the number of large droplets and the altitude they reach are a function of the surface wind speed.

  12. Climatic variability of river outflow in the Pantanal region and the influence of sea surface temperature

    NASA Astrophysics Data System (ADS)

    Silva, Carlos Batista; Silva, Maria Elisa Siqueira; Ambrizzi, Tércio

    2016-03-01

    This paper investigates possible linear relationships between climate, hydrology, and oceanic surface variability in the Pantanal region (in South America's central area), over interannual and interdecadal time ranges. In order to verify the mentioned relations, lagged correlation analysis and linear adjustment between river discharge at the Pantanal region and sea surface temperature were used. Composite analysis for atmospheric fields, air humidity flux divergence, and atmospheric circulation at low and high levels, for the period between 1970 and 2003, was analyzed. Results suggest that the river discharge in the Pantanal region is linearly associated with interdecadal and interannual oscillations in the Pacific and Atlantic oceans, making them good predictors to continental hydrological variables. Considering oceanic areas, 51 % of the annual discharge in the Pantanal region can be linearly explained by mean sea surface temperature (SST) in the Subtropical North Pacific, Tropical North Pacific, Extratropical South Pacific, and Extratropical North Atlantic over the period. Considering a forecast approach in seasonal scale, 66 % of the monthly discharge variance in Pantanal, 3 months ahead of SST, is explained by the oceanic variables, providing accuracy around 65 %. Annual discharge values in the Pantanal region are strongly related to the Pacific Decadal Oscillation (PDO) variability (with 52 % of linear correlation), making it possible to consider an interdecadal variability and a consequent subdivision of the whole period in three parts: 1st (1970-1977), 2nd (1978-1996), and 3rd (1997-2003) subperiods. The three subperiods coincide with distinct PDO phases: negative, positive, and negative, respectively. Convergence of humidity flux at low levels and the circulation pattern at high levels help to explain the drier and wetter subperiods. During the wetter 2nd subperiod, the air humidity convergence at low levels is much more evident than during the other two

  13. Influence of cirrus clouds on the VISSR atmospheric sounder-derived sea surface temperature determinations.

    PubMed

    Xu, L; Sun, B

    1991-04-20

    Using a more realistic cirrus cloud model, the characteristics of transmittance, emittance, and optical thickness and their relationships to cirrus in a diverse set of cases are studied by solving the equation of transfer of IR radiation. The doubling method is employed in the multiple scattering calculation. The satellite-observed brightness temperatures for different cases are computed, and stepwise regression analyses are performed to yield retrieval equations for sea surface temperature (SST). It is shown that the radiative properties of cirrus depend strongly on particle concentration, thus on the optical thickness of clouds. For clear atmospheres, channel 8 (11.2 microm) is more transparent than other channels. For cirrus clouds only, when the optical thickness of cirrus tau(c) is <0.10, channel 8 is still more transparent, while, with tau(c) increasing from 0.2 to between 4 and 8, channel 12 (4 microm) becomes the most transparent. When tau(c) >/= 8, the transparency of channel 12 decreases and those of other channels increase. For a very large r, the transparency of VAS channels will become almost equal. In addition, the IR absorption emittance of cirrus and the brightness temperatures also have sensitivities to different cloud optical thicknesses. The general retrieval equation for the determinations of SST, which is suitable for the clear air model as well as for the cirrus cloud atmospheres (with our definition of cirrus), is obtained through a combination of channels 12, 8, 6 (4.5 microm), and 5 (13.3 microm).The retrieval error is <1.0 K. The error analyses indicate that the clear air retrieval equations should not be used for SST determination in cirrus conditions.

  14. Mapping of the air-sea CO2 flux in the Arctic Ocean and its adjacent seas: Basin-wide distribution and seasonal to interannual variability

    NASA Astrophysics Data System (ADS)

    Yasunaka, Sayaka; Murata, Akihiko; Watanabe, Eiji; Chierici, Melissa; Fransson, Agneta; van Heuven, Steven; Hoppema, Mario; Ishii, Masao; Johannessen, Truls; Kosugi, Naohiro; Lauvset, Siv K.; Mathis, Jeremy T.; Nishino, Shigeto; Omar, Abdirahman M.; Olsen, Are; Sasano, Daisuke; Takahashi, Taro; Wanninkhof, Rik

    2016-09-01

    We produced 204 monthly maps of the air-sea CO2 flux in the Arctic north of 60°N, including the Arctic Ocean and its adjacent seas, from January 1997 to December 2013 by using a self-organizing map technique. The partial pressure of CO2 (pCO2) in surface water data were obtained by shipboard underway measurements or calculated from alkalinity and total inorganic carbon of surface water samples. Subsequently, we investigated the basin-wide distribution and seasonal to interannual variability of the CO2 fluxes. The 17-year annual mean CO2 flux shows that all areas of the Arctic Ocean and its adjacent seas were net CO2 sinks. The estimated annual CO2 uptake by the Arctic Ocean was 180 TgC yr-1. The CO2 influx was strongest in winter in the Greenland/Norwegian Seas (>15 mmol m-2 day-1) and the Barents Sea (>12 mmol m-2 day-1) because of strong winds, and strongest in summer in the Chukchi Sea (∼10 mmol m-2 day-1) because of the sea-ice retreat. In recent years, the CO2 uptake has increased in the Greenland/Norwegian Sea and decreased in the southern Barents Sea, owing to increased and decreased air-sea pCO2 differences, respectively.

  15. Deglacial Sea-Surface Temperatures off New Zealand

    NASA Astrophysics Data System (ADS)

    Sachs, J. P.; Manighetti, B.

    2002-12-01

    Glacial geologic and geochronologic data from New Zealand indicate a re-advance of mountain glaciers synchronous with the Younger Dryas (YD) Chron. Yet pollen studies do not support any appreciable cooling at this time, suggesting that the glacial advances may have resulted from enhanced precipitation rather than decreased temperature. A paucity of detailed marine climate records from the region leave an uncertain picture of deglacial climate change in the vicinity of New Zealand. The question remains open whether abrupt deglacial climate changes so prominent in the North Atlantic region involved the southwest Pacific Ocean. Here we present a detailed record of deglacial and Holocene sea-surface temperatures (SSTs) off the north island of New Zealand using the alkenone paleotemperature technique and show evidence for cooling synchronous with the Younger Dryas Chron. Core MD97-2121 was recovered in 2314 m of water at 40°S, 178°E, southeast of Hawke Bay, New Zealand. The 35-m core contains a continuous record of sedimentation spanning the last 136 kyr. Age control for the deglacial period and the Holocene is provided by 26 radiocarbon dates on planktonic foraminifera and tephra layers. Exceptional rates of sedimentation averaging 36 cm/kyr during the last 25 kyr are maintained by large fluxes of terrigenous detritus from New Zealand resulting from pronounced seismicity, volcanism and continental weathering. Presently the site is under the influence of the southward-flowing East Cape Current, which transports 10-25 Sv of warm, salty, subtropical water. The northward flowing Wairarapa Coastal Current flows just west of the core site and transports 1.6 Sv of cool, low-salinity water derived from Australasian Subantarctic Water via the Southland Current. Although a relatively minor influence today, this cool, fresh current system may have influenced SSTs over the core site at times in the past. Late Holocene alkenone-derived SSTs of 17 deg C are consistent with atlas

  16. On extreme rainfall intensity increases with air temperature

    NASA Astrophysics Data System (ADS)

    Molnar, Peter; Fatichi, Simone; Paschalis, Athanasios; Gaal, Ladislav; Szolgay, Jan; Burlando, Paolo

    2016-04-01

    The water vapour holding capacity of air increases at about 7% per degree C according to the Clausius-Clapeyron (CC) relation. This is one of the arguments why a warmer future atmosphere, being able to hold more moisture, will generate higher extreme precipitation intensities. However, several empirical studies have recently demonstrated an increase in extreme rain intensities with air temperature above CC rates, in the range 7-14% per degree C worldwide (called super-CC rates). This was observed especially for shorter duration rainfall, i.e. in hourly and finer resolution data (e.g. review in Westra et al., 2014). The super-CC rate was attributed to positive feedbacks between water vapour and the updraft dynamics in convective clouds and lateral supply (convergence) of moisture. In addition, mixing of storm types was shown to be potentially responsible for super-CC rates in empirical studies. Assuming that convective events are accompanied by lightning, we will show on a large rainfall dataset in Switzerland (30 year records of 10-min and 1-hr data from 59 stations) that while the average rate of increase in extreme rainfall intensity (95th percentile) is 6-7% in no-lightning events and 8-9% in lightning events, it is 11-13% per degree C when all events are combined (Molnar et al., 2015). These results are relevant for climate change studies which predict shifts in storm types in a warmer climate in some parts of the world. The observation that extreme rain intensity and air temperature are positively correlated has consequences for the stochastic modelling of rainfall. Most current stochastic models do not explicitly include a direct rain intensity-air temperature dependency beyond applying factors of change predicted by climate models to basic statistics of precipitation. Including this dependency explicitly in stochastic models will allow, for example in the nested modelling approach of Paschalis et al. (2014), the random cascade disaggregation routine to be

  17. Observations of Cooling Summer Daytime Temperatures (1948-2005) in Growing Urban Coastal California Air Basins

    NASA Astrophysics Data System (ADS)

    Bornstein, R.; Lebassi, B.; Gonzalez, J.

    2008-12-01

    The study evaluated long-term (1948-2005) air temperatures in California (CA) during summer (June- August). The aggregate CA results showed asymmetric warming, as daily minimum temperatures increased faster than daily maximum temperatures. The spatial distributions of daily maximum temperatures in the heavily urbanized South Coast and San Francisco Bay Area air basins, however, exhibited a complex pattern, with cooling at low-elevation (mainly urban) coastal-areas and warming at (mainly rural) inland areas. Previous studies have suggested that cooling summer max temperatures in CA were due to increased irrigation, coastal upwelling, or cloud cover. The current hypothesis, however, is that this temperature pattern arises from a 'reverse-reaction' to greenhouse gas (GHG) induced global-warming. In this hypothesis, the global warming of inland areas resulted in an increased (cooling) sea breeze activity in coastal areas. The coastal cooling thus resulted as urban heat island (UHI) warming was weaker than the reverse-reaction cooling; if there was no UHI effect, then the cooling would be even stronger. The cooling or warming trends at several pairs of nearby urban and non- urban sites were compared in an effort to separate out the urban heat island (UHI) and global warming components of the trend. Average temperatures from global circulation models show warming that decreases from inland areas of California to its coastal areas. Such large scale models, however, cannot resolve these smaller scale topographic and coastal effects. Meso-scale modeling on a 4 km grid is thus being carried out to evaluate the contributions from GHG global-warming and land-use changes, including UHI development, to the observed trends. Significant societal impacts may result from this observed reverse-reaction to GHG- warming; possible beneficial effects include decreased maximum: O3 levels, human thermal-stress, and per- capita energy requirements for cooling.

  18. Sea surface temperature of the coastal zones of France

    NASA Technical Reports Server (NTRS)

    Deschamps, P. Y.; Crepon, M.; Monget, J. M.; Verger, F. (Principal Investigator); Frouin, R.; Cassanet, J.; Wald, L.

    1980-01-01

    The various thermal gradients in the coastal zones of France were mapped with regard to natural phenomena and man made thermal effluents. The mesoscale thermal features of the English Channel, the Bay of Biscay, and the northwestern Mediterranean Sea were also studied. The evolution of the thermal gradients generated by the main estuaries of the French coastal zones was investigated along with the modeling of diurnal heating of the sea surface and its influence on the oceanic surface layers.

  19. Predicting the Turbulent Air-Sea Surface Fluxes, Including Spray Effects, from Weak to Strong Winds

    DTIC Science & Technology

    2012-09-30

    from Moon et al. (2007) and Mueller and Veron (2009) are not much different from our main straight-line result (6) for UN10 above 20 m/s...model the air-sea drag as a consequence of just wind-wave coupling. That is, Moon et al. (2007) and Mueller and Veron (2009) modeled the surface stress... Veron evidently realized that they were predicting u* to be a linear function of UN10 in high winds.) In other words, exotic processes like sea

  20. Seasonal and spatial heterogeneity of recent sea surface temperature trends in the Caribbean Sea and southeast Gulf of Mexico.

    PubMed

    Chollett, Iliana; Müller-Karger, Frank E; Heron, Scott F; Skirving, William; Mumby, Peter J

    2012-05-01

    Recent changes in ocean temperature have impacted marine ecosystem function globally. Nevertheless, the responses have depended upon the rate of change of temperature and the season when the changes occur, which are spatially variable. A rigorous statistical analysis of sea surface temperature observations over 25 years was used to examine spatial variability in overall and seasonal temperature trends within the wider Caribbean. The basin has experienced high spatial variability in rates of change of temperature. Most of the warming has been due to increases in summer rather than winter temperatures. However, warming was faster in winter in the Loop Current area and the south-eastern Caribbean, where the annual temperature ranges have contracted. Waters off Florida, Cuba and the Bahamas had a tendency towards cooling in winter, increasing the amplitude of annual temperature ranges. These detailed patterns can be used to elucidate ecological responses to climatic change in the region.

  1. Air breathing in the Arctic: influence of temperature, hypoxia, activity and restricted air access on respiratory physiology of the Alaska blackfish Dallia pectoralis

    PubMed Central

    Lefevre, Sjannie; Damsgaard, Christian; Pascale, Desirae R.; Nilsson, Göran E.; Stecyk, Jonathan A. W.

    2014-01-01

    The Alaska blackfish (Dallia pectoralis) is an air-breathing fish native to Alaska and the Bering Sea islands, where it inhabits lakes that are ice-covered in the winter, but enters warm and hypoxic waters in the summer to forage and reproduce. To understand the respiratory physiology of this species under these conditions and the selective pressures that maintain the ability to breathe air, we acclimated fish to 5°C and 15°C and used respirometry to measure: standard oxygen uptake () in normoxia (19.8 kPa PO2) and hypoxia (2.5 kPa), with and without access to air; partitioning of standard in normoxia and hypoxia; maximum and partitioning after exercise; and critical oxygen tension (Pcrit). Additionally, the effects of temperature acclimation on haematocrit, haemoglobin oxygen affinity and gill morphology were assessed. Standard was higher, but air breathing was not increased, at 15°C or after exercise at both temperatures. Fish acclimated to 5°C or 15°C increased air breathing to compensate and fully maintain standard in hypoxia. Fish were able to maintain through aquatic respiration when air was denied in normoxia, but when air was denied in hypoxia, standard was reduced by ∼30–50%. Pcrit was relatively high (5 kPa) and there were no differences in Pcrit, gill morphology, haematocrit or haemoglobin oxygen affinity at the two temperatures. Therefore, Alaska blackfish depends on air breathing in hypoxia and additional mechanisms must thus be utilised to survive hypoxic submergence during the winter, such as hypoxia-induced enhancement in the capacities for carrying and binding blood oxygen, behavioural avoidance of hypoxia and suppression of metabolic rate. PMID:25394628

  2. Air breathing in the Arctic: influence of temperature, hypoxia, activity and restricted air access on respiratory physiology of the Alaska blackfish Dallia pectoralis.

    PubMed

    Lefevre, Sjannie; Damsgaard, Christian; Pascale, Desirae R; Nilsson, Göran E; Stecyk, Jonathan A W

    2014-12-15

    The Alaska blackfish (Dallia pectoralis) is an air-breathing fish native to Alaska and the Bering Sea islands, where it inhabits lakes that are ice-covered in the winter, but enters warm and hypoxic waters in the summer to forage and reproduce. To understand the respiratory physiology of this species under these conditions and the selective pressures that maintain the ability to breathe air, we acclimated fish to 5°C and 15°C and used respirometry to measure: standard oxygen uptake (Ṁ(O₂)) in normoxia (19.8 kPa P(O₂)) and hypoxia (2.5 kPa), with and without access to air; partitioning of standard Ṁ(O₂) in normoxia and hypoxia; maximum Ṁ(O₂) and partitioning after exercise; and critical oxygen tension (P(crit)). Additionally, the effects of temperature acclimation on haematocrit, haemoglobin oxygen affinity and gill morphology were assessed. Standard Ṁ(O₂) was higher, but air breathing was not increased, at 15°C or after exercise at both temperatures. Fish acclimated to 5°C or 15°C increased air breathing to compensate and fully maintain standard Ṁ(O₂) in hypoxia. Fish were able to maintain Ṁ(O₂) through aquatic respiration when air was denied in normoxia, but when air was denied in hypoxia, standard Ṁ(O₂) was reduced by ∼30-50%. P(crit) was relatively high (5 kPa) and there were no differences in P(crit), gill morphology, haematocrit or haemoglobin oxygen affinity at the two temperatures. Therefore, Alaska blackfish depends on air breathing in hypoxia and additional mechanisms must thus be utilised to survive hypoxic submergence during the winter, such as hypoxia-induced enhancement in the capacities for carrying and binding blood oxygen, behavioural avoidance of hypoxia and suppression of metabolic rate.

  3. Observed and simulated air-sea feedbacks associated with ENSO and monsoon

    NASA Astrophysics Data System (ADS)

    Xiang, Baoqiang

    Associated with the double ITCZ (Inter-tropical convergence zone) problem, a dipole SST bias pattern (cold in the equatorial central Pacific and warm in the southeast tropical Pacific) remains a common problem in current coupled models. Based on a newly-developed model, we demonstrated that a serious consequence of this SST bias is to suppress the thermocline feedback in El Nino/Southern Oscillation (ENSO) simulation. Firstly, the excessive cold tongue extension pushes the anomalous convection far westward, diminishing the convection-low level wind feedback and thus the air-sea coupling strength. Secondly, the equatorial surface wind anomaly exhibits weak meridional gradient, leading to a weakened wind-thermocline feedback. Thirdly, the equatorial cold SST bias induces a weakened upper-ocean stratification, yielding the underestimation of the thermocline-subsurface temperature feedback. Finally, the dipole SST bias underestimates the mean upwelling through both dynamic and thermodynamic effects. In recent decades, El Nino events have occurred more frequently over the equatorial central Pacific (CP Warming, CPW). Here, we ascribe this predominance of the CPW to a dramatic decadal change in the Pacific mean state and annual cycle. The mean state change characterized by a decadal La Nina-like pattern tends to anchor convection and surface zonal wind anomalies to the vicinity of the dateline, facilitating surface warming to occur in the CP. The annual cycle change, with the trade winds intensifying during boreal winter and spring, prevents the warming development but helps the warming decay in the EP. More CPW events are expected in the coming decade if the La-Nina-like pattern persists. The western North Pacific (WNP) Subtropical High (SH) has profound impacts on Asian summer monsoon, North Pacific storms. The cause of the interannual variability of WNPSH, however, remains controversial. Here we show that the anomalous WNPSH is primarily determined by a remote cooling

  4. Generation of low-temperature air plasma for food processing

    NASA Astrophysics Data System (ADS)

    Stepanova, Olga; Demidova, Maria; Astafiev, Alexander; Pinchuk, Mikhail; Balkir, Pinar; Turantas, Fulya

    2015-11-01

    The project is aimed at developing a physical and technical foundation of generating plasma with low gas temperature at atmospheric pressure for food industry needs. As known, plasma has an antimicrobial effect on the numerous types of microorganisms, including those that cause food spoilage. In this work an original experimental setup has been developed for the treatment of different foods. It is based on initiating corona or dielectric-barrier discharge in a chamber filled with ambient air in combination with a certain helium admixture. The experimental setup provides various conditions of discharge generation (including discharge gap geometry, supply voltage, velocity of gas flow, content of helium admixture in air and working pressure) and allows for the measurement of the electrical discharge parameters. Some recommendations on choosing optimal conditions of discharge generation for experiments on plasma food processing are developed.

  5. Sea Surface Temperature Influence on Terrestrial Gross Primary Production along the Southern California Current.

    PubMed

    Reimer, Janet J; Vargas, Rodrigo; Rivas, David; Gaxiola-Castro, Gilberto; Hernandez-Ayon, J Martin; Lara-Lara, Ruben

    2015-01-01

    Some land and ocean processes are related through connections (and synoptic-scale teleconnections) to the atmosphere. Synoptic-scale atmospheric (El Niño/Southern Oscillation [ENSO], Pacific Decadal Oscillation [PDO], and North Atlantic Oscillation [NAO]) decadal cycles are known to influence the global terrestrial carbon cycle. Potentially, smaller scale land-ocean connections influenced by coastal upwelling (changes in sea surface temperature) may be important for local-to-regional water-limited ecosystems where plants may benefit from air moisture transported from the ocean to terrestrial ecosystems. Here we use satellite-derived observations to test potential connections between changes in sea surface temperature (SST) in regions with strong coastal upwelling and terrestrial gross primary production (GPP) across the Baja California Peninsula. This region is characterized by an arid/semiarid climate along the southern California Current. We found that SST was correlated with the fraction of photosynthetic active radiation (fPAR; as a proxy for GPP) with lags ranging from 0 to 5 months. In contrast ENSO was not as strongly related with fPAR as SST in these coastal ecosystems. Our results show the importance of local-scale changes in SST during upwelling events, to explain the variability in GPP in coastal, water-limited ecosystems. The response of GPP to SST was spatially-dependent: colder SST in the northern areas increased GPP (likely by influencing fog formation), while warmer SST at the southern areas was associated to higher GPP (as SST is in phase with precipitation patterns). Interannual trends in fPAR are also spatially variable along the Baja California Peninsula with increasing secular trends in subtropical regions, decreasing trends in the most arid region, and no trend in the semi-arid regions. These findings suggest that studies and ecosystem process based models should consider the lateral influence of local-scale ocean processes that could

  6. Sea Surface Temperature Influence on Terrestrial Gross Primary Production along the Southern California Current

    PubMed Central

    Reimer, Janet J.; Vargas, Rodrigo; Rivas, David; Gaxiola-Castro, Gilberto; Hernandez-Ayon, J. Martin; Lara-Lara, Ruben

    2015-01-01

    Some land and ocean processes are related through connections (and synoptic-scale teleconnections) to the atmosphere. Synoptic-scale atmospheric (El Niño/Southern Oscillation [ENSO], Pacific Decadal Oscillation [PDO], and North Atlantic Oscillation [NAO]) decadal cycles are known to influence the global terrestrial carbon cycle. Potentially, smaller scale land-ocean connections influenced by coastal upwelling (changes in sea surface temperature) may be important for local-to-regional water-limited ecosystems where plants may benefit from air moisture transported from the ocean to terrestrial ecosystems. Here we use satellite-derived observations to test potential connections between changes in sea surface temperature (SST) in regions with strong coastal upwelling and terrestrial gross primary production (GPP) across the Baja California Peninsula. This region is characterized by an arid/semiarid climate along the southern California Current. We found that SST was correlated with the fraction of photosynthetic active radiation (fPAR; as a proxy for GPP) with lags ranging from 0 to 5 months. In contrast ENSO was not as strongly related with fPAR as SST in these coastal ecosystems. Our results show the importance of local-scale changes in SST during upwelling events, to explain the variability in GPP in coastal, water-limited ecosystems. The response of GPP to SST was spatially-dependent: colder SST in the northern areas increased GPP (likely by influencing fog formation), while warmer SST at the southern areas was associated to higher GPP (as SST is in phase with precipitation patterns). Interannual trends in fPAR are also spatially variable along the Baja California Peninsula with increasing secular trends in subtropical regions, decreasing trends in the most arid region, and no trend in the semi-arid regions. These findings suggest that studies and ecosystem process based models should consider the lateral influence of local-scale ocean processes that could

  7. Reconstructing Variations of Global Sea-Surface Temperature during the Last Interglaciation

    NASA Astrophysics Data System (ADS)

    Hoffman, J. S.; Clark, P. U.; He, F.; Parnell, A. C.

    2015-12-01

    The last interglaciation (LIG; ~130-116 ka) was the most recent period in Earth history with higher-than-present global sea level (≥6 m) under similar-to-preindustrial concentrations of atmospheric CO2, suggesting additional feedbacks related to albedo, insolation, and ocean circulation in generating the apparent climatic differences between the LIG and present Holocene. However, our understanding of how much warmer the LIG sea surface was relative to the present interglaciation remains uncertain, with current estimates suggesting from 0°C to 2°C warmer than late-20thcentury average global temperatures. Moreover, the timing, spatial expression, and amplitude of regional and global sea surface temperature variability related to other climate forcing during the LIG are poorly constrained, largely due to uncertainties in age control and proxy temperature reconstructions. An accurate characterization of global and regional temperature change during the LIG can serve as a benchmark for paleoclimate modeling intercomparison projects and help improve understanding of sea-level sensitivity to temperature change. We will present a global compilation (~100 published records) of sea surface temperature (SST) and other climate reconstructions spanning the LIG. Using a Monte Carlo-enabled cross-correlation maximization algorithm to climatostratigraphically align proxy records and then account for both the resulting chronologic and proxy calibration uncertainties with Bayesian statistical inference, our results quantify the spatial timing, amplitude, and uncertainty in estimates of global and regional sea surface temperature change during the LIG and its relation to potential forcings.

  8. Surfactant control of air-sea gas exchange across contrasting biogeochemical regimes

    NASA Astrophysics Data System (ADS)

    Pereira, Ryan; Schneider-Zapp, Klaus; Upstill-Goddard, Robert

    2014-05-01

    Air-sea gas exchange is important to the global partitioning of CO2.Exchange fluxes are products of an air-sea gas concentration difference, ΔC, and a gas transfer velocity, kw. The latter is controlled by the rate of turbulent diffusion at the air-sea interface but it cannot be directly measured and has a high uncertainty that is now considered one of the greatest challenges to quantifying net global air-sea CO2 exchange ...(Takahashi et al., 2009). One important control on kw is exerted by sea surface surfactants that arise both naturally from biological processes and through anthropogenic activity. They influence gas exchange in two fundamental ways: as a monolayer physical barrier and through modifying sea surface hydrodynamics and hence turbulent energy transfer. These effects have been demonstrated in the laboratory with artificial surfactants ...(Bock et al., 1999; Goldman et al., 1988) and through purposeful surfactant releases in coastal waters .(.).........().(Brockmann et al., 1982) and in the open ocean (Salter et al., 2011). Suppression of kwin these field experiments was ~5-55%. While changes in both total surfactant concentration and the composition of the natural surfactant pool might be expected to impact kw, the required in-situ studies are lacking. New data collected from the coastal North Sea in 2012-2013 shows significant spatio-temporal variability in the surfactant activity of organic matter within the sea surface microlayer that ranges from 0.07-0.94 mg/L T-X-100 (AC voltammetry). The surfactant activities show a strong winter/summer seasonal bias and general decrease in concentration with increasing distance from the coastline possibly associated with changing terrestrial vs. phytoplankton sources. Gas exchange experiments of this seawater using a novel laboratory tank and gas tracers (CH4 and SF6) demonstrate a 12-45% reduction in kw compared to surfactant-free water. Seasonally there is higher gas exchange suppression in the summer

  9. The Air-Sea Interface and Surface Stress under Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander; Lukas, Roger; Donelan, Mark; Ginis, Isaac

    2013-04-01

    Air-sea interaction dramatically changes from moderate to very high wind speed conditions (Donelan et al. 2004). Unresolved physics of the air-sea interface are one of the weakest components in tropical cyclone prediction models. Rapid disruption of the air-water interface under very high wind speed conditions was reported in laboratory experiments (Koga 1981) and numerical simulations (Soloviev et al. 2012), which resembled the Kelvin-Helmholtz instability at an interface with very large density difference. Kelly (1965) demonstrated that the KH instability at the air-sea interface can develop through parametric amplification of waves. Farrell and Ioannou (2008) showed that gustiness results in the parametric KH instability of the air-sea interface, while the gusts are due to interacting waves and turbulence. The stochastic forcing enters multiplicatively in this theory and produces an exponential wave growth, augmenting the growth from the Miles (1959) theory as the turbulence level increases. Here we complement this concept by adding the effect of the two-phase environment near the mean interface, which introduces additional viscosity in the system (turning it into a rheological system). The two-phase environment includes air-bubbles and re-entering spray (spume), which eliminates a portion of the wind-wave wavenumber spectrum that is responsible for a substantial part of the air sea drag coefficient. The previously developed KH-type interfacial parameterization (Soloviev and Lukas 2010) is unified with two versions of the wave growth model. The unified parameterization in both cases exhibits the increase of the drag coefficient with wind speed until approximately 30 m/s. Above this wind speed threshold, the drag coefficient either nearly levels off or even slightly drops (for the wave growth model that accounts for the shear) and then starts again increasing above approximately 65 m/s wind speed. Remarkably, the unified parameterization reveals a local minimum

  10. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  11. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  12. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  13. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  14. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  15. Moderate-resolution sea surface temperature data for the Arctic Ocean Ecoregions

    EPA Science Inventory

    Sea surface temperature (SST) is an important environmental characteristic in determining the suitability and sustainability of habitats for marine organisms. Of particular interest is the fate of the Arctic Ocean, which provides critical habitat to commercially important fish (M...

  16. Moderate-Resolution Sea Surface Temperature Data for the Nearshore North Pacific

    EPA Science Inventory

    Coastal sea surface temperature (SST) is an important environmental characteristic defining habitat suitability for nearshore marine and estuarine organisms. The purpose of this publication is to provide access to an easy-to-use coastal SST dataset for ecologists, biogeographers...

  17. Subpolar gyre and radiative forcings moderate sea surface temperatures of the Norwegian Sea during the mid-Piacenzian

    NASA Astrophysics Data System (ADS)

    Bachem, Paul; Risebrobakken, Bjørg; McClymont, Erin

    2016-04-01

    The mid-Piacenzian age (ca. 3.3-3.0 Ma) of the Pliocene epoch has been proposed as a possible reference for future warm climate states. We have developed a new set of orbital-resolution alkenone-based sea surface temperature (SST) and ice rafted debris (IRD) records from the Norwegian Sea. SSTs in the Norwegian Sea were 2-3°C warmer in the mid-Piacenzian compared to the Holocene average. There is notable orbital-scale SST variability with a range of 4°C. The most likely cause of the average long-term warmth is a higher atmospheric CO2 concentration. A correlation of SST variability with the presence of Greenland-sourced IRD suggests a common climate forcing acting across the Nordic Seas region. The orbital-scale variability was in part caused by interplay of obliquity and precession, as low SSTs coincide with times of low northern summer insolation. Changes of the SST gradient between the Norwegian Sea and North Atlantic sites suggest that the subpolar gyre was at least of comparable strength as during the Holocene. The North Atlantic Current (NAC) influence on the Norwegian Sea SSTs does not appear to have been stronger than during the Holocene.

  18. Variations in Surface Air Temperature Observations in the Arctic, 1979-97.

    NASA Astrophysics Data System (ADS)

    Rigor, Ignatius G.; Colony, Roger L.; Martin, Seelye

    2000-03-01

    The statistics of surface air temperature observations obtained from buoys, manned drifting stations, and meteorological land stations in the Arctic during 1979-97 are analyzed. Although the basic statistics agree with what has been published in various climatologies, the seasonal correlation length scales between the observations are shorter than the annual correlation length scales, especially during summer when the inhomogeneity between the ice-covered ocean and the land is most apparent. During autumn, winter, and spring, the monthly mean correlation length scales are approximately constant at about 1000 km; during summer, the length scales are much shorter, that is, as low as 300 km. These revised scales are particularly important in the optimal interpolation of data on surface air temperature (SAT) and are used in the analysis of an improved SAT dataset called International Arctic Buoy Programme/Polar Exchange at the Sea Surface (IABP/POLES). Compared to observations from land stations and the Russian North Pole drift stations, the IABP/POLES dataset has higher correlations and lower rms errors than previous SAT fields and provides better temperature estimates, especially during summer in the marginal ice zones. In addition, the revised correlation length scales allow data taken at interior land stations to be included in the optimal interpretation analysis without introducing land biases to grid points over the ocean. The new analysis provides 12-h fields of air temperatures on a 100-km rectangular grid for all land and ocean areas of the Arctic region for the years 1979-97.The IABP/POLES dataset is then used to study spatial and temporal variations in SAT. This dataset shows that on average melt begins in the marginal seas by the first week of June and advances rapidly over the Arctic Ocean, reaching the pole by 19 June, 2 weeks later. Freeze begins at the pole on 16 August, and the freeze isotherm advances more slowly than the melt isotherm. Freeze returns

  19. Pd-modified Reactive Air Braze for Increased Melting Temperature

    SciTech Connect

    Hardy, John S.; Weil, K. Scott; Kim, Jin Yong Y.; Darsell, Jens T.

    2005-03-01

    Complex high temperature devices such as planar solid oxide fuel cell (pSOFC) stacks often require a two-step sealing process. For example, in pSOFC stacks the oxide ceramic fuel cell plates might be sealed into metallic support frames in one step. Then the frames with the fuel plates sealed to them would be joined together in a separate sealing step to form the fuel cell stack. In this case, the initial seal should have a sufficiently high solidus temperature that it will not begin to remelt at the sealing temperature of the material used for the subsequent sealing step. Previous experience has indicated that, when heated at a rate of 10°C/min, Ag-CuO reactive air braze (RAB) compositions have solidus and liquidus temperatures in the approximate range of 925 to 955°C. Therefore, compositionally modifying the original Ag-CuO braze with Pd-additions such that the solidus temperature of the new braze is between 1025 and 1050°C would provide two RAB compositions with a difference in melting points large enough to allow reactive air brazing of both sets of seals in the fuel cell stack. This study determines the appropriate ratio of Pd to Ag in RAB required to achieve a solidus in the desired range and discusses the wettability of the resulting Pd-Ag-CuO brazes on YSZ substrates. The interfacial microstructures and flexural strengths of Pd-Ag-CuO joints in YSZ will also be presented.

  20. Improving Streamflow Forecasts Using Predefined Sea Surface Temperature

    NASA Astrophysics Data System (ADS)

    Kalra, A.; Ahmad, S.

    2011-12-01

    With the increasing evidence of climate variability, water resources managers in the western United States are faced with greater challenges of developing long range streamflow forecast. This is further aggravated by the increases in climate extremes such as floods and drought caused by climate variability. Over the years, climatologists have identified several modes of climatic variability and their relationship with streamflow. These climate modes have the potential of being used as predictor in models for improving the streamflow lead time. With this as the motivation, the current research focuses on increasing the streamflow lead time using predefine climate indices. A data driven model i.e. Support Vector Machine (SVM) based on the statistical learning theory is used to predict annual streamflow volume 3-year in advance. The SVM model is a learning system that uses a hypothesis space of linear functions in a Kernel induced higher dimensional feature space, and is trained with a learning algorithm from the optimization theory. Annual oceanic-atmospheric indices, comprising of Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO), El Niño-Southern Oscillations (ENSO), and a new Sea Surface Temperature (SST) data set of "Hondo" Region for a period of 1906-2005 are used to generate annual streamflow volumes. The SVM model is applied to three gages i.e. Cisco, Green River, and Lees Ferry in the Upper Colorado River Basin in the western United States. Based on the performance measures the model shows very good forecasts, and the forecast are in good agreement with measured streamflow volumes. Previous research has identified NAO and ENSO as main drivers for extending streamflow forecast lead-time in the UCRB. Inclusion of "Hondo Region" SST information further improve the model's forecasting ability. The overall results of this study revealed that the annual streamflow of the UCRB is significantly influenced by

  1. Sea Surface Temperature Forcing of the Late Indian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Terray, P.; Delecluse, P.; Labattu, S.; Terray, L.; Cassou, C.

    2002-12-01

    This paper uses recent historical data and Atmospheric General Circulation Model (AGCM) simulations in order to assess the relationships between interannual variability of the Indian Summer Monsoon (ISM) and Sea Surface Temperature (SST) anomaly patterns over the Indian and Pacific oceans. The focus is on the predictability of ISM rainfall and circulation, and its links to local (Indian Ocean) and remote (Pacific Ocean) SST forcing. Interannual variability of ISM rainfall and dynamical indices for the traditional summer monsoon season (June-September) are strongly influenced by rainfall and circulation anomalies observed during August and September, or the Late Indian Summer Monsoon (LISM). Anomalous monsoons are linked to well-defined LISM rainfall and large-scale circulation anomalies. The whole three-dimensional monsoon circulation, i.e., the east-west Walker and local Hadley circulations, fluctuates during the LISM of anomalous ISM years. LISM circulation is weakened and shifted eastward during weak ISM years. Therefore, we focus on the predictability of the LISM in this study. It is found that southern Indian Ocean SST acts as a major boundary forcing for the LISM system. Strong (weak) LISMs are preceded by significant positive (negative) SST anomalies in the southeastern subtropical Indian Ocean, off Australia. These SST anomalies are highly persistent and affect the northwestward translation of the Mascarene high from austral to boreal summer. The southeastward (northwestward) shift of this subtropical high associated with cold (warm) SST anomalies off Australia causes a weakening (strengthening) of the whole monsoon circulation through a modulation of the local Hadley cell during the LISM. Furthermore, it is suggested that the Mascarene high interacts with the underlying SST anomalies through a positive dynamical feedback mechanism, maintaining its anomalous position during the LISM. Southeastern Indian Ocean SST anomalies during boreal winter are mainly

  2. Dynamic Effects of Airborne Water Droplets on Air-Sea Interactions: Sea-Spray and Rain

    DTIC Science & Technology

    2007-09-30

    SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10 . SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY...In order to assure a sufficiently long residence time to obtain statistical properties for this test case, the droplet was released at 10 meters...velocity is approximately 85% of the 10 -m wind speed. It should be noted that this effect also exist with sea spray, albeit to a lesser extent

  3. Solar Cycle and Anthropogenic Forcing of Surface-Air Temperature at Armagh Observatory, Northern Ireland

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2010-01-01

    A comparison of 10-yr moving average (yma) values of Armagh Observatory (Northern Ireland) surface-air temperatures with selected solar cycle indices (sunspot number (SSN) and the Aa geomagnetic index (Aa)), sea-surface temperatures in the Nino 3.4 region, and Mauna Loa carbon dioxide (CO2) (MLCO2) atmospheric concentration measurements reveals a strong correlation (r = 0.686) between the Armagh temperatures and Aa, especially, prior to about 1980 (r = 0.762 over the interval of 1873-1980). For the more recent interval 1963-2003, the strongest correlation (r = 0.877) is between Armagh temperatures and MLCO2 measurements. A bivariate fit using both Aa and Mauna Loa values results in a very strong fit (r = 0.948) for the interval 1963-2003, and a trivariate fit using Aa, SSN, and Mauna Loa values results in a slightly stronger fit (r = 0.952). Atmospheric CO2 concentration now appears to be the stronger driver of Armagh surface-air temperatures. An increase of 2 C above the long-term mean (9.2 C) at Armagh seems inevitable unless unabated increases in anthropogenic atmospheric gases can be curtailed. The present growth in 10-yma Armagh temperatures is about 0.05 C per yr since 1982. The present growth in MLCO2 is about 0.002 ppmv, based on an exponential fit using 10-yma values, although the growth appears to be steepening, thus, increasing the likelihood of deleterious effects attributed to global warming.

  4. The doubled CO2 climate - Impact of the sea surface temperature gradient

    NASA Technical Reports Server (NTRS)

    Rind, David

    1987-01-01

    The Goddard Institute for Space Studies (GISS) GCM of Hansen et al. (1983) was run, with 4 deg x 5 deg resolution, with doubled CO2 and two sets of sea surface temperature gradient distributions. One set was derived from the equilibrium doubled CO2 run of the 8 deg x 10 deg GISS GCM, with minimal high latitude amplification. The other set resembled closely the GFDL model results, with greater amplification. Both experiments had the same global mean surface air temperature change. The two experiments were often found to produce substantially different climate characteristics. With reduced high latitude amplification (set one), and thus, more equatorial warming, there was a greater increase in specific humidity and the greenhouse capacity of the atmosphere, resulting in a warmer atmosphere in general. Features such as the low-latitude precipitation, Hadley cell intensity, jet stream magnitude, and atmospheric energy transports all increased in comparison with the control run. In contrast, these features all decreased in the experiment with greater high latitude amplification (set two).

  5. The effect of aerosols and sea surface temperature on China's climate over the late twentieth century

    NASA Astrophysics Data System (ADS)

    Folini, Doris; Wild, Martin

    2015-04-01

    Focusing on China in the second half of the twentieth century, we examine the relative role of aerosols and prescribed, observation based sea surface temperatures (SSTs) for the evolution of surface solar radiation (SSR), surface air temperature (SAT), and precipitation in ensembles of transient (1870 - 2005) sensitivity experiments with the global climate model ECHAM5-HAM. Observations and simulations with transient SSTs and aerosol emissions agree reasonably well in eastern China in terms of SSR dimming (-6 +/- 2 W/m2/decade, 1960 - 2000), statistically non-significant JJA SAT trend (1950 - 2000), and drying in JJA from 1950 to 1990 (-2.5% to -3.5% per decade, essentially via reduction of convective precipitation). Other major observed features are not reproduce by the model, e.g. precipitation increase in the 1990s in the Yangtze valley, the strong warming in winter in northern parts of China and Mongolia, or SSR dimming in western China. For the model results, SO2 emissions are more relevant than emissions of black and organic carbon. Aerosol effects are less pronounced at higher model resolution. Transient SSTs are found to be crucial for decadal scale SAT variability over land, especially the strong warming in the 1990s, and, via SST forced reduction of cloud cover, for the ceasing of SSR dimming around the year 2000. Unforced cloud variability leads to relevant scatter (up to +/- 2 W/m2/decade) of modeled SSR trends at individual observation sites.

  6. Shrubs tracing sea surface temperature--Calluna vulgaris on the Faroe Islands.

    PubMed

    Beil, Ilka; Buras, Allan; Hallinger, Martin; Smiljanić, Marko; Wilmking, Martin

    2015-11-01

    The climate of Central and Northern Europe is highly influenced by the North Atlantic Ocean due to heat transfer from lower latitudes. Detailed knowledge about spatio-temporal variability of sea surface temperature (SST) in that region is thus of high interest for climate and environmental research. Because of the close relations between ocean and coastal climate and the climate sensitivity of plant growth, annual rings of woody plants in coastal regions might be used as a proxy for SST. We show here for the first time the proxy potential of the common and widespread evergreen dwarf shrub Calluna vulgaris (heather), using the Faroe Islands as our case study. Despite its small and irregular ring structure, the species seems suitable for dendroecological investigations. Ring width showed high and significant correlations with summer and winter air temperatures and SST. The C. vulgaris chronology from the Faroe Islands, placed directly within the North Atlantic Current, clearly reflects variations in summer SSTs over an area between Iceland and Scotland. Utilising shrubs like C. vulgaris as easy accessible and annually resolved proxies offers an interesting possibility for reconstruction of the coupled climate-ocean system at high latitudes.

  7. Last Glacial Maximum sea surface temperature and sea-ice extent in the Pacific sector of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Benz, Verena; Esper, Oliver; Gersonde, Rainer; Lamy, Frank; Tiedemann, Ralf

    2016-08-01

    Sea surface temperatures and sea-ice extent are most critical variables to evaluate the Southern Ocean paleoceanographic evolution in relation to the development of the global carbon cycle, atmospheric CO2 and ocean-atmosphere circulation. Here we present diatom transfer function-based summer sea surface temperature (SSST) and winter sea-ice (WSI) estimates from the Pacific sector of the Southern Ocean to bridge a gap in information that has to date hampered a well-established reconstruction of the last glacial Southern Ocean at circum-Antarctic scale. We studied the Last Glacial Maximum (LGM) at the EPILOG time slice (19,000-23,000 calendar years before present) in 17 cores and consolidated our LGM picture of the Pacific sector taking into account published data from its warmer regions. Our data display a distinct east-west differentiation with a rather stable WSI edge north of the Pacific-Antarctic Ridge in the Ross Sea sector and a more variable WSI extent over the Amundsen Abyssal Plain. The zone of maximum cooling (>4 K) during the LGM is in the present Subantarctic Zone and bounded to its south by the 4 °C isotherm. The isotherm is in the SSST range prevailing at the modern Antarctic Polar Front, representing a circum-Antarctic feature, and marks the northern edge of the glacial Antarctic Circumpolar Current (ACC). The northward deflection of colder than modern surface waters along the South American continent led to a significant cooling of the glacial Humboldt Current surface waters (4-8 K), which affected the temperature regimes as far north as tropical latitudes. The glacial reduction of ACC temperatures may also have resulted in significant cooling in the Atlantic and Indian Southern Ocean, thus enhancing thermal differentiation of the Southern Ocean and Antarctic continental cooling. The comparison with numerical temperature and sea-ice simulations yields discrepancies, especially concerning the estimates of the sea-ice fields, but some simulations

  8. Holocene Sea Surface and Subsurface Water Mass Variability Reconstructed from Temperature and Sea-ice Proxies in Fram Strait

    NASA Astrophysics Data System (ADS)

    Werner, Kirstin; Spielhagen, Robert F.; Müller, Juliane; Husum, Katrine; Kandiano, Evgenia S.; Polyak, Leonid

    2016-04-01

    In two high-resolution sediment cores from the West Spitsbergen continental margin we investigated planktic foraminiferal, biomarker and dinocyst proxy data in order to reconstruct surface and subsurface water mass variability during the Holocene. The two study sites are today influenced by northward flowing warm and saline Atlantic Water. Both foraminiferal and dinocyst (de Vernal et al., 2013) temperature reconstructions indicate a less-stratified, ice-free, nutrient-rich summer surface ocean with strong Atlantic Water advection between 10.6 and 8.5 cal ka BP, likely related to maximum July insolation during the early Holocene. Sea surface to subsurface water temperatures of up to 6°C prevailed until ca 5 cal ka BP. A weakened contribution of Atlantic Water is found when subsurface temperatures strongly decreased with minimum values between ca 4 and 3 cal ka BP. High planktic foraminifer shell fragmentation and increased oxygen isotope values of the subpolar planktic foraminifer species Turborotalita quinqueloba as well as increasing concentrations of the sea ice biomarker IP25 further indicate cool conditions. Indices associated with IP25 as well as dinocyst data suggest a sustained cooling and consequently sea-ice increase during the late Holocene. However, planktic foraminiferal data indicate a slight return of stronger subsurface influx of Atlantic Water since ca 3 cal ka BP. The observed decoupling of cooling surface and warming subsurface waters during the later Holocene might be attributed to a strong pycnocline layer separating cold sea-ice fed surface waters from enhanced subsurface Atlantic Water advection. Reference: de Vernal, A., Hillaire-Marcel, C., Rochon, A., Fréchette, B., Henry, M., Solignac, S., Bonnet, S., 2013. Dinocyst-based reconstructions of sea ice cover concentration during the Holocene in the Arctic Ocean, the northern North Atlantic Ocean and its adjacent seas. Quaternary Science Reviews 79, 111-121.

  9. Mueller matrix imaging of targets under an air-sea interface.

    PubMed

    Zhai, Peng-Wang; Kattawar, George W; Yang, Ping

    2009-01-10

    The Mueller matrix imaging method is a powerful tool for target detection. In this study, the effect of the air-sea interface on the detection of underwater objects is studied. A backward Monte Carlo code has been developed to study this effect. The main result is that the reflection of the diffuse sky light by the interface reduces the Mueller image contrast. If the air-sea interface is ruffled by wind, the distinction between different regions of the underwater target is smoothed out. The effect of the finite size of an active light source is also studied. The image contrast is found to be relatively insensitive to the size of the light source. The volume scattering function plays an important role on the underwater object detection. Generally, a smaller asymmetry parameter decreases the contrast of the polarimetry images.

  10. The contribution of ship emissions to air pollution in the North Sea regions.

    PubMed

    Matthias, Volker; Bewersdorff, Ines; Aulinger, Armin; Quante, Markus

    2010-06-01

    As a consequence of the global distribution of manufacturing sites and the increasing international division of labour, ship traffic is steadily increasing and is becoming more and more important as an origin of air pollution. This study investigates the impact of ship emissions in coastal areas of the North Sea under conditions of the year 2000 by means of a regional chemistry transport model which runs on a sufficiently high resolution to study air pollution in coastal regions. It was found that northern Germany and Denmark in summer suffer from more than 50% higher sulphate, nitrate and ammonium aerosol concentrations due to contributions from ships. The implementation of a sulphur emission control area (SECA) in the North Sea, as it was implemented at the end of 2007, directly results in reduced sulphur dioxide and sulphate aerosol concentrations while nitrate aerosol concentrations are slightly increased.

  11. Disentangling the air-sea interaction in the South Atlantic Convergence Zone

    NASA Astrophysics Data System (ADS)

    tirabassi, giulio; masoller, cristina; barreiro, marcelo

    2014-05-01

    Air-sea interaction in the region of the South Atlantic Convergence Zone (SACZ) is disentangled using Granger causality as a measure of directional coupling. Calculation of the area weighted connectivity indicates that the SACZ region is the one with largest mutual air-sea connectivity in the south Atlantic basin during summertime. Focusing on the leading mode of daily coupled variability, Granger causality allows distinguishing four regimes characterized by different coupling: there are years in which the forcing is mainly directed from the atmosphere to the ocean, years in which the ocean forces the atmosphere, years in which the influence is mutual, and years in which the coupling is not significant. A composite analysis shows that ocean-driven events have atmospheric anomalies that develop first and are strongest over the ocean, while in events without coupling anomalies develop from the continent where they are strongest and have weaker oceanic extension.

  12. The Impact of the Ocean Thermal Skin Layer on Air-Sea Interfacial Heat Fluxes

    NASA Astrophysics Data System (ADS)

    Minnett, P. J.; Wong, E.

    2015-12-01

    The upper ocean heat content has been observed to be increasing over the past few decades much of which has been attributed to anthropogenic effects resulting in an increase in greenhouse gases thereby increasing the amounts of incoming longwave (LWin) radiation impinging onto the ocean's surface. However, the penetration depth of LWin extends to micrometer scales, where the ocean's thermal skin layer (TSL) exists, and does not directly heat the upper few meters of the ocean thereby raising the conundrum of how does the upper ocean warm with increasing levels of infrared (IR) radiation. The TSL consists of a strong temperature gradient on the aqueous side of the interface that sustains the upward heat flux by molecular conduction. As such, we hypothesize the heat lost through the air-sea interface which is controlled by the TSL, modulates the amount of heat stored in the upper few meters of the ocean. An analysis of properties of the retrieved TSL profiles from a shipboard IR spectrometer with heat fluxes (specifically LWin) and wind speeds from two cruises limited to night-time data are presented. We also show a comparison between these properties with current published viscous layer models. The results indicate that the data have an inherent wind speed dependence with net flux thereby requiring a segregation of the data into wind speed bins to acknowledge the effects of wind-driven shear in the analysis. The temperature differences derived from the models indicates that at low wind speeds (<2 m/s), where wind-driven shear effects are negligible and buoyancy effects dominate, the TSL profile's gradient is decreasing with increased LWin which leads to a lowered net heat flux and is in agreement with our hypothesis. However our field results show an opposite effect (higher gradient at higher LWin) which is believed to be due to the formation of a thicker TSL at low winds. The presence of a thicker TSL suggests that more of the vertical temperature gradient lies

  13. Effect of Ambient Design Temperature on Air-Cooled Binary Plant Output

    SciTech Connect

    Dan Wendt; Greg Mines

    2011-10-01

    Air-cooled binary plants are designed to provide a specified level of power production at a particular air temperature. Nominally this air temperature is the annual mean or average air temperature for the plant location. This study investigates the effect that changing the design air temperature has on power generation for an air-cooled binary plant producing power from a resource with a declining production fluid temperature and fluctuating ambient temperatures. This analysis was performed for plants operating both with and without a geothermal fluid outlet temperature limit. Aspen Plus process simulation software was used to develop optimal air-cooled binary plant designs for specific ambient temperatures as well as to rate the performance of the plant designs at off-design operating conditions. Results include calculation of annual and plant lifetime power generation as well as evaluation of plant operating characteristics, such as improved power generation capabilities during summer months when electric power prices are at peak levels.

  14. 2012/13 abnormal cold winter in Japan associated with Large-scale Atmospheric Circulation and Local Sea Surface Temperature over the Sea of Japan

    NASA Astrophysics Data System (ADS)

    Ando, Y.; Ogi, M.; Tachibana, Y.

    2013-12-01

    reference, the conventional AO index is shown by the gray line. (b) a 5-day running mean WP index, (c) area-averaged Surface Air Temperature anomalies in Japan, (d) Air Temperature anomalies, (e) heat flux anomalies, and (f) Sea Surface Temperature anomalies. The boxed area on the Sea of Japan indicates the area in which the (d)-(f) indexes were calculated.

  15. Air-Sea and Lateral Exchange Processes in East Indian Coastal Current off Sri Lanka

    DTIC Science & Technology

    2015-09-30

    of which have a bearing on local air-sea fluxes. The project seeks to collect hydrographic data sets in the international waters (R/V Roger Revelle...and in Sri Lankan coastal waters (R/V Samuddrika). The measurements include thermohaline stratification, currents and the kinetic energy...conducted CTD and ADCP measurements in the southern BoB onboard R/V Roger Revelle and in Sri Lanka coastal waters using R/V Samuddrika. The data analysis

  16. Temporal variability of air-sea CO2 exchange in a low-emission estuary

    NASA Astrophysics Data System (ADS)

    Mørk, Eva Thorborg; Sejr, Mikael Kristian; Stæhr, Peter Anton; Sørensen, Lise Lotte

    2016-07-01

    There is the need for further study of whether global estimates of air-sea CO2 exchange in estuarine systems capture the relevant temporal variability and, as such, the temporal variability of bulk parameterized and directly measured CO2 fluxes was investigated in the Danish estuary, Roskilde Fjord. The air-sea CO2 fluxes showed large temporal variability across seasons and between days and that more than 30% of the net CO2 emission in 2013 was a result of two large fall and winter storms. The diurnal variability of ΔpCO2 was up to 400 during summer changing the estuary from a source to a sink of CO2 within the day. Across seasons the system was suggested to change from a sink of atmospheric CO2 during spring to near neutral during summer and later to a source of atmospheric CO2 during fall. Results indicated that Roskilde Fjord was an annual low-emission estuary, with an estimated bulk parameterized release of 3.9 ± 8.7 mol CO2 m-2 y-1 during 2012-2013. It was suggested that the production-respiration balance leading to the low annual emission in Roskilde Fjord, was caused by the shallow depth, long residence time and high water quality in the estuary. In the data analysis the eddy covariance CO2 flux samples were filtered according to the H2Osbnd CO2 cross-sensitivity assessment suggested by Landwehr et al. (2014). This filtering reduced episodes of contradicting directions between measured and bulk parameterized air-sea CO2 exchanges and changed the net air-sea CO2 exchange from an uptake to a release. The CO2 gas transfer velocity was calculated from directly measured CO2 fluxes and ΔpCO2 and agreed to previous observations and parameterizations.

  17. Small Autonomous Air/Sea System Concepts for Coast Guard Missions

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2005-01-01

    A number of small autonomous air/sea system concepts are outlined in this paper that support and enhance U.S. Coast Guard missions. These concepts draw significantly upon technology investments made by NASA in the area of uninhabited aerial vehicles and robotic/intelligent systems. Such concepts should be considered notional elements of a greater as-yet-not-defined robotic system-of-systems designed to enable unparalleled maritime safety and security.

  18. Validation study of air-sea gas transfer modeling

    SciTech Connect

    Asher, W.E.; Farley, P.J.; Leifer, I.S.

    1995-07-01

    Laboratory results have demonstrated the importance of bubble plumes to air-water gas transfer (Asher et al., 1994). Bubble plumes enhance gas transfer by disrupting surface films, by directly transporting a gas, and by the creation of turbulence. Models of bubble gas transfer have been developed by different authors (Atkinson, 1973; Memery and Merlivat, 1985; Woolf and Thorpe, 1991) to determine the magnitude of gas transfer due to bubbles. Laboratory measurements of both the gas transfer rate k{sub L}, and the bubble distribution {phi} in a whitecap simulation tank (WST) have allowed these models to be validated and deficiencies in the theoretical assumptions to be explored. In the WST, each bucket tip simulates a wave breaking event. Important tests of these models include whether they can explain the experimentally determined solubility and Schmidt number dependency of k{sub L}, predict the time varying bubble concentrations, predict the evasion-invasion asymmetry, and predict the fraction of k{sub L} due to bubble plumes. Four different models were tested, a steady state model (Atkinson, 1973), a non-turbulence model with constant bubble radius (Memery and Merlivat, 1985), a turbulence model with constant bubble radius (Wolf and Thorpe, 1991), and a turbulence model with varying bubble radius. All models simulated multiple bubble tip cycles. The two turbulence models were run for sufficient tip cycles to generate statistically significant number of eddies ({number_sign}{gt}50) for bubbles affected by turbulence (V{sub B}{le}V{sub T}), found to be at least four tip cycles. The models allowed up to nine gases simultaneously and were run under different conditions of trace and major gas concentrations and partial pressures.

  19. The pattern of northern hemisphere surface air temperature during prolonged periods of low solar output

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, A.; Feyman, J.; Jiang, X.; Noone, D. C.; Waple, A. M.; Yung, Y. L.

    2004-01-01

    We show that the reconstructed sensitivity of the sea level temperature to long term solar forcing in the Northern Hemisphere is in very good agreement with the empirical temperature pattern corresponding to changes of the North Annular Mode (NAM).

  20. Temperature profile in apricot tree canopies under the soil and climate conditions of the Romanian Black Sea Coast.

    PubMed

    Paltineanu, Cristian; Septar, Leinar; Chitu, Emil

    2016-03-01

    The paper describes the temperature profiles determined by thermal imagery in apricot tree canopies under the semi-arid conditions of the Black Sea Coast in a chernozem of Dobrogea Region, Romania. The study analyzes the thermal vertical profile of apricot orchards for three representative cultivars during summertime. Measurements were done when the soil water content (SWC) was at field capacity (FC) within the rooting depth, after intense sprinkler irrigation applications. Canopy temperature was measured during clear sky days at three heights for both sides of the apricot trees, sunlit (south), and shaded (north). For the SWC studied, i.e., FC, canopy height did not induce a significant difference between the temperature of apricot tree leaves (Tc) and the ambient air temperature (Ta) within the entire vertical tree profile, and temperature measurements by thermal imagery can therefore be taken at any height on the tree crown leaves. Differences between sunlit and shaded sides of the canopy were significant. Because of these differences for Tc-Ta among the apricot tree cultivars studied, lower base lines (LBLs) should be determined for each cultivar separately. The use of thermal imagery technique under the conditions of semi-arid coastal areas with low range of vapor pressure deficit could be useful in irrigation scheduling of apricot trees. The paper discusses the implications of the data obtained in the experiment under the conditions of the coastal area of the Black Sea, Romania, and neighboring countries with similar climate, such as Bulgaria and Turkey.

  1. Temperature profile in apricot tree canopies under the soil and climate conditions of the Romanian Black Sea Coast

    NASA Astrophysics Data System (ADS)

    Paltineanu, Cristian; Septar, Leinar; Chitu, Emil

    2016-03-01

    The paper describes the temperature profiles determined by thermal imagery in apricot tree canopies under the semi-arid conditions of the Black Sea Coast in a chernozem of Dobrogea Region, Romania. The study analyzes the thermal vertical profile of apricot orchards for three representative cultivars during summertime. Measurements were done when the soil water content (SWC) was at field capacity (FC) within the rooting depth, after intense sprinkler irrigation applications. Canopy temperature was measured during clear sky days at three heights for both sides of the apricot trees, sunlit (south), and shaded (north). For the SWC studied, i.e., FC, canopy height did not induce a significant difference between the temperature of apricot tree leaves (Tc) and the ambient air temperature (Ta) within the entire vertical tree profile, and temperature measurements by thermal imagery can therefore be taken at any height on the tree crown leaves. Differences between sunlit and shaded sides of the canopy were significant. Because of these differences for Tc-Ta among the apricot tree cultivars studied, lower base lines (LBLs) should be determined for each cultivar separately. The use of thermal imagery technique under the conditions of semi-arid coastal areas with low range of vapor pressure deficit could be useful in irrigation scheduling of apricot trees. The paper discusses the implications of the data obtained in the experiment under the conditions of the coastal area of the Black Sea, Romania, and neighboring countries with similar climate, such as Bulgaria and Turkey.

  2. DDT in fuel air mixtures at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Card, J.; Rival, D.; Ciccarelli, G.

    2005-11-01

    An experimental study was carried out to investigate flame acceleration and deflagration-to-detonation transition (DDT) in fuel air mixtures at initial temperatures up to 573 K and pressures up to 2 atm. The fuels investigated include hydrogen, ethylene, acetylene and JP-10 aviation fuel. The experiments were performed in a 3.1-m long, 10-cm inner-diameter heated detonation tube equipped with equally spaced orifice plates. Ionization probes were used to measure the flame time-of-arrival from which the average flame velocity versus propagation distance could be obtained. The DDT composition limits and the distance required for the flame to transition to detonation were obtained from this flame velocity data. The correlation developed by Veser et al. (run-up distance to supersonic flames in obstacle-laden tubes. In the proceedings of the 4th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions, France (2002)) for the flame choking distance proved to work very well for correlating the detonation run-up distance measured in the present study. The only exception was for the hydrogen air data at elevated initial temperatures which tended to fall outside the scatter of the hydrocarbon mixture data. The DDT limits obtained at room temperature were found to follow the classical d/λ = 1 correlation, where d is the orifice plate diameter and λ is the detonation cell size. Deviations found for the high-temperature data could be attributed to the one-dimensional ZND detonation structure model used to predict the detonation cell size for the DDT limit mixtures. This simple model was used in place of actual experimental data not currently available.

  3. Effect of water temperature on sea lamprey growth and lake trout survival

    SciTech Connect

    Swink, W.D. )

    1993-11-01

    Percent mortality of lake trout Salvelinus namaycush subjected to single sea lamprey Petromyzon marinus attacks did not differ significantly between lower-temperature (mortality = 54%; temperature [le] 10[degrees]C; N = 33) and higher-temperature (mortality = 69%; temperature = 12.8-14.4[degrees]C; N = 45) laboratory studies conducted from 1 June to 28 November 1989. However, sea lampreys fed longer and killed fewer fish in colder water (mean attachment 467.0 h; 18 fish killed) than in warmer water (mean attachment 161.7 h; 31 fish killed), probably because food consumption was lower in colder water. These results indicate that the number of fish killed by sea lampreys could be much greater in warmer water and that temperature must be considered when fish losses from sea lamprey attacks are estimated. Previous studies (Swink and Hanson 1989; Swink 1990) of the effects of single sea lamprey Petromyzon marinus attacks on lake trout Salvelinus namaycush showed significantly less lake trout mortality at temperatures of 10[degrees]C and lower than at higher temperatures. The reduced host mortality, however, could not be attributed solely to lower temperature because warmwater and coldwater attacks occurred during different seasons. In those studies, the author was unable to hold water temperature at 10[degrees]C or less in late summer and early fall, when most fish are killed by sea lampreys in the Great Lakes (Christie and Kolenosky 1980; Bergstedt and Schneider 1988). Modifications to the fish holding facilities at the Hammond Bay Biological Station in 1988 allowed maintenance of a limited amount of water at 10[degrees]C or less throughout the year. Hence, the objective of this study was to compare sea lamprey-induced mortality of lake trout at 10[degrees]C or less with that at 12.8-14.4[degrees]C during the normal feeding season (June through November). 15 refs., 1 fig., 1 tab.

  4. Large-scale effects on the regulation of tropical sea surface temperature

    NASA Technical Reports Server (NTRS)

    Hartmann, Dennis L.; Michelsen, Marc L.

    1993-01-01

    The dominant terms in the surface energy budget of the tropical oceans are absorption of solar radiation and evaporative cooling. If it is assumed that relative humidity in the boundary layer remains constant, evaporative cooling will increase rapidly with sea surface temperature (SST) because of the strong temperature dependence of saturation water vapor pressure. The resulting stabilization of SST provided by evaporative cooling is sufficient to overcome positive feedback contributed by the decrease of surface net longwave cooling with increasing SST. Evaporative cooling is sensitive to small changes in boundary-layer relative humidity. Large and negative shortwave cloud forcing in the regions of highest SST are supported by the moisture convergence associated with largescale circulations. In the descending portions of these circulations the shortwave cloud forcing is suppressed. When the effect of these circulations is taken into account by spatial averaging, the area-averaged cloud forcing shows no sensitivity to area-averaged SST changes associated with the 1987 warming event in the tropical Pacific. While the shortwave cloud forcing is large and important in the convective regions, the importance of its role in regulating the average temperature of the tropics and in modulating temperature gradients within the tropics is less clear. A heuristic model of SST is used to illustrate the possible role of large-scale atmospheric circulations on SST in the tropics and the coupling between SST gradients and mean tropical SST. The intensity of large-scale circulations responds sensitivity to SST gradients and affects the mean tropical SST by supplying dry air to the planetary boundary layer. Large SST gradients generate vigorous circulations that increase evaporation and reduce the mean SST.

  5. Calculation of the Bowen ratio in the tropical Pacific using sea surface temperature data

    NASA Astrophysics Data System (ADS)

    Jo, Young-Heon; Yan, Xiao-Hai; Pan, Jiayi; He, Ming-Xia; Liu, W. Timothy

    2002-09-01

    The equilibrium Bowen ratio (Bo*) can be estimated empirically from the sea surface temperature (SST) only when the air is saturated with water vapor at the sea surface. However, since most of the sea surface is not saturated with water vapor, several studies have been conducted for the empirical Bowen ratio (BoE = Bo*(SST)), which was formulated with many sources of data from many areas. [1977] linear regression formula for the BoE as a function of SST alone was used to estimate the empirical Bowen ratio in the tropical Pacific. Climatological and long-term time series Optimum Interpolation Sea Surface Temperature (OISST) data was used for the climatological study of the BoE. The climatological mean Bowen ratio showed the regions, where the latent heat flux was most dominant. The Bowen ratio in the western Pacific warm pool (WPWP) area (O (0.04)) was 10% smaller than those in the upwelling coastal areas (O (0.14)). Along 5°N and 5°S, a 0.7 correlation coefficient between the BoE and the bulk formulated Bowen ratio (BoB), using climatological data, was found in the weak wind zone of the doldrums. BoB is the ratio of the bulk formulated sensible heat flux to the bulk formulated latent heat flux. EOF analysis was used to find out dominant temporal and spatial signals of the BoE. The first temporal EOF of the BoE, using 156 months (1986-1999) of OISST anomaly was related to El Niño events with an approximate 12-month lag when compared to the El Niño-Southern Oscillation (ENSO) index (SOI). The second and third temporal EOF showed annual and interannual signals, respectively. In order to estimate the discrepancy between the BoE and the BoB and to correct for the wind effect and the humidity effect, long-term time series of Tropical Atmosphere Ocean (TAO) data was used. Our results showed that the eastern Pacific demonstrated a stronger correlation between the BoB and the BoE than the western Pacific. However, the Bowen ratio differences (BoD = |BoE - BoB|) were

  6. Direct measurements of air-sea CO2 exchange over a coral reef

    NASA Astrophysics Data System (ADS)

    McGowan, Hamish A.; MacKellar, Mellissa C.; Gray, Michael A.

    2016-05-01

    Quantification of CO2 exchange with the atmosphere over coral reefs has relied on microscale measurements of pCO2 gradients across the air-sea interfacial boundary; shipboard measurements of air-sea CO2 exchange over adjacent ocean inferred to represent over reef processes or ecosystem productivity modeling. Here we present by way of case study the first direct measurements of air-sea CO2 exchange over a coral reef made using the eddy covariance method. Research was conducted during the summer monsoon over a lagoonal platform reef in the southern Great Barrier Reef, Australia. Results show the reef flat to be a net source of CO2 to the atmosphere of similar magnitude as coastal lakes, while adjacent shallow and deep lagoons were net sinks as was the surrounding ocean. Thi