Science.gov

Sample records for air temperature significantly

  1. On the statistical significance of surface air temperature trends in the Eurasian Arctic region

    NASA Astrophysics Data System (ADS)

    Franzke, C.

    2012-12-01

    This study investigates the statistical significance of the trends of station temperature time series from the European Climate Assessment & Data archive poleward of 60°N. The trends are identified by different methods and their significance is assessed by three different null models of climate noise. All stations show a warming trend but only 17 out of the 109 considered stations have trends which cannot be explained as arising from intrinsic climate fluctuations when tested against any of the three null models. Out of those 17, only one station exhibits a warming trend which is significant against all three null models. The stations with significant warming trends are located mainly in Scandinavia and Iceland.

  2. Regional Contrasts of the Warming Rate over Land Significantly Depend on the Calculation Methods of Mean Air Temperature.

    PubMed

    Wang, Kaicun; Zhou, Chunlüe

    2015-07-22

    Global analyses of surface mean air temperature (T(m)) are key datasets for climate change studies and provide fundamental evidences for global warming. However, the causes of regional contrasts in the warming rate revealed by such datasets, i.e., enhanced warming rates over the northern high latitudes and the "warming hole" over the central U.S., are still under debate. Here we show these regional contrasts depend on the calculation methods of T(m). Existing global analyses calculate T(m) from daily minimum and maximum temperatures (T2). We found that T2 has a significant standard deviation error of 0.23 °C/decade in depicting the regional warming rate from 2000 to 2013 but can be reduced by two-thirds using T(m) calculated from observations at four specific times (T4), which samples diurnal cycle of land surface air temperature more often. From 1973 to 1997, compared with T4, T2 significantly underestimated the warming rate over the central U.S. and overestimated the warming rate over the northern high latitudes. The ratio of the warming rate over China to that over the U.S. reduces from 2.3 by T2 to 1.4 by T4. This study shows that the studies of regional warming can be substantially improved by T4 instead of T2.

  3. Significance of High-Speed Air Temperature Measurements in the Sampling Cell of a Closed-Path Gas Analyzer with a Short Tube

    NASA Astrophysics Data System (ADS)

    Kathilankal, James; Fratini, Gerardo; Burba, George

    2015-04-01

    Eddy covariance gas analyzers measure gas content in a known volume, thus essentially measuring gas density. The fundamental flux equation, however, is based on the dry mole fraction. The relationship between dry mole fraction and density is regulated by the ideal gas law describing the processes of temperature- and pressure-related expansions and contractions, and by the law of partial pressures, describing the process of dilution. As a result, this relationship depends on water vapor content, temperature and pressure of the air sample. If the instrument is able to output precise high-speed dry mole fraction, the flux processing is significantly simplified and WPL density terms accounting for the air density fluctuations are no longer required. This should also lead to the reduction in uncertainties associated with the density terms resulting from the eddy covariance measurements of sensible and latent heat fluxes used in these terms. In this framework, three main measurement approaches may be considered: Open-path approach Outputting correct high-speed dry mole fraction from the open-path instrument is difficult because of complexities with maintaining reliable fast temperature measurements integrated over the entire measuring path, and also because of extraordinary challenges with accurate measurements of fast pressure in the open air flow. Classical long-tube closed-path approach For instruments utilizing traditional long-tube closed-path design, with tube length 1000 or more times the tube diameter, the fast dry mole fraction can be used successfully when instantaneous fluctuations in the air temperature of the sampled air are effectively dampened to negligible levels, instantaneous pressure fluctuations are regulated or negligible, and water vapor is measured simultaneously with gas or the air sample is dried. Short-tube closed-path approach, the enclosed design For instruments with a short-tube enclosed design, most - but not all - of the temperature

  4. No significant increase in long-term CH4 emissions on North Slope of Alaska despite significant increase in air temperature

    NASA Astrophysics Data System (ADS)

    Sweeney, Colm; Dlugokencky, Edward; Miller, Charles E.; Wofsy, Steven; Karion, Anna; Dinardo, Steve; Chang, Rachel Y.-W.; Miller, John B.; Bruhwiler, Lori; Crotwell, Andrew M.; Newberger, Tim; McKain, Kathryn; Stone, Robert S.; Wolter, Sonja E.; Lang, Patricia E.; Tans, Pieter

    2016-06-01

    Continuous measurements of atmospheric methane (CH4) mole fractions measured by NOAA's Global Greenhouse Gas Reference Network in Barrow, AK (BRW), show strong enhancements above background values when winds come from the land sector from July to December from 1986 to 2015, indicating that emissions from arctic tundra continue through autumn and into early winter. Twenty-nine years of measurements show little change in seasonal mean land sector CH4 enhancements, despite an increase in annual mean temperatures of 1.2 ± 0.8°C/decade (2σ). The record does reveal small increases in CH4 enhancements in November and December after 2010 due to increased late-season emissions. The lack of significant long-term trends suggests that more complex biogeochemical processes are counteracting the observed short-term (monthly) temperature sensitivity of 5.0 ± 3.6 ppb CH4/°C. Our results suggest that even the observed short-term temperature sensitivity from the Arctic will have little impact on the global atmospheric CH4 budget in the long term if future trajectories evolve with the same temperature sensitivity.

  5. 40 CFR 52.1929 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.1929 Section 52.1929 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) Regulation for preventing significant deterioration of air... preventing significant deterioration of air quality....

  6. Nowcasting daily minimum air and grass temperature.

    PubMed

    Savage, M J

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient (b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  7. Nowcasting daily minimum air and grass temperature

    NASA Astrophysics Data System (ADS)

    Savage, M. J.

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient ( b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  8. 40 CFR 52.1165 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.1165 Section 52.1165 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulation for preventing significant deterioration of air quality....

  9. 40 CFR 52.499 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.499 Section 52.499 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  10. 40 CFR 52.1180 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.1180 Section 52.1180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  11. 40 CFR 52.2729 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.2729 Section 52.2729 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  12. 40 CFR 52.1603 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.1603 Section 52.1603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  13. 40 CFR 52.1689 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.1689 Section 52.1689 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  14. 40 CFR 52.1234 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.1234 Section 52.1234 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  15. 40 CFR 52.1234 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.1234 Section 52.1234 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  16. 40 CFR 52.2676 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.2676 Section 52.2676 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  17. 40 CFR 52.2497 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.2497 Section 52.2497 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  18. 40 CFR 52.2729 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.2729 Section 52.2729 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  19. 40 CFR 52.2676 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.2676 Section 52.2676 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  20. 40 CFR 52.2497 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.2497 Section 52.2497 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  1. 40 CFR 52.1884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.1884 Section 52.1884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  2. 40 CFR 52.2779 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.2779 Section 52.2779 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  3. 40 CFR 52.2779 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.2779 Section 52.2779 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  4. 40 CFR 52.2827 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.2827 Section 52.2827 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  5. 40 CFR 52.1180 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.1180 Section 52.1180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  6. 40 CFR 52.1165 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.1165 Section 52.1165 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulation for preventing significant deterioration of air quality....

  7. 40 CFR 52.2827 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.2827 Section 52.2827 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  8. 40 CFR 52.1884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.1884 Section 52.1884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  9. 40 CFR 52.499 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.499 Section 52.499 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  10. 40 CFR 52.1603 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.1603 Section 52.1603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  11. 40 CFR 52.1234 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.1234 Section 52.1234 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  12. 40 CFR 52.1165 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.1165 Section 52.1165 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulation for preventing significant deterioration of air quality....

  13. 40 CFR 52.1165 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.1165 Section 52.1165 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulation for preventing significant deterioration of air quality....

  14. 40 CFR 52.499 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.499 Section 52.499 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  15. 40 CFR 52.2827 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.2827 Section 52.2827 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  16. 40 CFR 52.1180 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.1180 Section 52.1180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  17. 40 CFR 52.2729 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.2729 Section 52.2729 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  18. 40 CFR 52.1180 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.1180 Section 52.1180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  19. 40 CFR 52.1180 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.1180 Section 52.1180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  20. 40 CFR 52.2676 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.2676 Section 52.2676 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  1. 40 CFR 52.2676 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.2676 Section 52.2676 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  2. 40 CFR 52.1884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.1884 Section 52.1884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  3. 40 CFR 52.2497 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.2497 Section 52.2497 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  4. 40 CFR 52.2676 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.2676 Section 52.2676 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  5. 40 CFR 52.2779 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.2779 Section 52.2779 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  6. 40 CFR 52.2729 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.2729 Section 52.2729 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  7. 40 CFR 52.499 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.499 Section 52.499 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  8. 40 CFR 52.1603 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.1603 Section 52.1603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  9. 40 CFR 52.1603 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.1603 Section 52.1603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  10. 40 CFR 52.1234 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.1234 Section 52.1234 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  11. 40 CFR 52.1165 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.1165 Section 52.1165 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulation for preventing significant deterioration of air quality....

  12. 40 CFR 52.2497 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.2497 Section 52.2497 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  13. 40 CFR 52.1603 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.1603 Section 52.1603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  14. 40 CFR 52.2779 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.2779 Section 52.2779 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  15. 40 CFR 52.499 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.499 Section 52.499 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  16. 40 CFR 52.2497 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.2497 Section 52.2497 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  17. 40 CFR 52.1234 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.1234 Section 52.1234 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  18. 40 CFR 52.2827 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.2827 Section 52.2827 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  19. 40 CFR 52.1884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.1884 Section 52.1884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  20. 40 CFR 52.1884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.1884 Section 52.1884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  1. 40 CFR 52.2827 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.2827 Section 52.2827 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  2. 40 CFR 52.2729 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.2729 Section 52.2729 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  3. 40 CFR 52.2779 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.2779 Section 52.2779 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  4. Modeling monthly mean air temperature for Brazil

    NASA Astrophysics Data System (ADS)

    Alvares, Clayton Alcarde; Stape, José Luiz; Sentelhas, Paulo Cesar; de Moraes Gonçalves, José Leonardo

    2013-08-01

    Air temperature is one of the main weather variables influencing agriculture around the world. Its availability, however, is a concern, mainly in Brazil where the weather stations are more concentrated on the coastal regions of the country. Therefore, the present study had as an objective to develop models for estimating monthly and annual mean air temperature for the Brazilian territory using multiple regression and geographic information system techniques. Temperature data from 2,400 stations distributed across the Brazilian territory were used, 1,800 to develop the equations and 600 for validating them, as well as their geographical coordinates and altitude as independent variables for the models. A total of 39 models were developed, relating the dependent variables maximum, mean, and minimum air temperatures (monthly and annual) to the independent variables latitude, longitude, altitude, and their combinations. All regression models were statistically significant ( α ≤ 0.01). The monthly and annual temperature models presented determination coefficients between 0.54 and 0.96. We obtained an overall spatial correlation higher than 0.9 between the models proposed and the 16 major models already published for some Brazilian regions, considering a total of 3.67 × 108 pixels evaluated. Our national temperature models are recommended to predict air temperature in all Brazilian territories.

  5. 40 CFR 52.1929 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.1929 Section 52.1929 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) Regulation for preventing significant deterioration of air... preventing significant deterioration of air quality. (c)(1) Insofar as the Prevention of...

  6. 40 CFR 52.793 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.793 Section 52.793 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  7. 40 CFR 52.683 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.683 Section 52.683 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The State of Idaho Rules for Control of Air Pollution in Idaho, specifically... the Clean Air Act for preventing significant deterioration of air quality. (b) The requirements...

  8. 40 CFR 52.432 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.432 Section 52.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulation for preventing significant deterioration of air quality. The provisions...

  9. 40 CFR 52.738 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.738 Section 52.738 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  10. 40 CFR 52.632 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.632 Section 52.632 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  11. 40 CFR 52.632 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.632 Section 52.632 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  12. 40 CFR 52.432 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.432 Section 52.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulation for preventing significant deterioration of air quality. The provisions...

  13. 40 CFR 52.683 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.683 Section 52.683 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The State of Idaho Rules for Control of Air Pollution in Idaho, specifically... the Clean Air Act for preventing significant deterioration of air quality. (b) The requirements...

  14. 40 CFR 52.793 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.793 Section 52.793 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  15. 40 CFR 52.738 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.738 Section 52.738 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  16. 40 CFR 52.793 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.793 Section 52.793 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  17. 40 CFR 52.738 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.738 Section 52.738 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  18. 40 CFR 52.738 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.738 Section 52.738 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  19. 40 CFR 52.432 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.432 Section 52.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulation for preventing significant deterioration of air quality. The provisions...

  20. 40 CFR 52.632 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.632 Section 52.632 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  1. 40 CFR 52.632 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.632 Section 52.632 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  2. 40 CFR 52.632 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.632 Section 52.632 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  3. 40 CFR 52.683 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.683 Section 52.683 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The State of Idaho Rules for Control of Air Pollution in Idaho, specifically... the Clean Air Act for preventing significant deterioration of air quality. (b) The requirements...

  4. 40 CFR 52.793 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.793 Section 52.793 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  5. 40 CFR 52.738 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.738 Section 52.738 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  6. 40 CFR 52.793 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.793 Section 52.793 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  7. 40 CFR 52.2303 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.2303 Section 52.2303 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The plan submitted by Texas is approved as meeting the requirements of part C, Clean Air Act for preventing significant deterioration of air quality. The...

  8. 40 CFR 52.1436 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Significant deterioration of air quality. 52.1436 Section 52.1436 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. The requirements of sections 160 through 165 of the Clean Air...

  9. 40 CFR 52.1485 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.1485 Section 52.1485 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... include approvable procedures for preventing the significant deterioration of air quality. (b)...

  10. 40 CFR 52.2451 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.2451 Section 52.2451 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... Quality Deterioration. (b) Regulations for preventing significant deterioration of air quality....

  11. 40 CFR 52.2303 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.2303 Section 52.2303 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The plan submitted by Texas is approved as meeting the requirements of part C, Clean Air Act for preventing significant deterioration of air quality. The...

  12. 40 CFR 52.1436 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Significant deterioration of air quality. 52.1436 Section 52.1436 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. The requirements of sections 160 through 165 of the Clean Air...

  13. 40 CFR 52.2528 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.2528 Section 52.2528 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of Sections 160 through 165 of the Clean Air... Quality Deterioration. (b) Regulations for Preventing Significant Deterioration of Air Quality,...

  14. 40 CFR 52.2451 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.2451 Section 52.2451 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... Quality Deterioration. (b) Regulations for preventing significant deterioration of air quality....

  15. 40 CFR 52.2528 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.2528 Section 52.2528 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of Sections 160 through 165 of the Clean Air... Quality Deterioration. (b) Regulations for Preventing Significant Deterioration of Air Quality,...

  16. 40 CFR 52.1485 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.1485 Section 52.1485 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... include approvable procedures for preventing the significant deterioration of air quality. (b)...

  17. 40 CFR 52.2303 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.2303 Section 52.2303 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The plan submitted by Texas is approved as meeting the requirements of part C, Clean Air Act for preventing significant deterioration of air quality. The...

  18. 40 CFR 52.1436 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Significant deterioration of air quality. 52.1436 Section 52.1436 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. The requirements of sections 160 through 165 of the Clean Air...

  19. 40 CFR 52.432 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Significant deterioration of air quality. 52.432 Section 52.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) (b) Regulation for preventing significant deterioration of air quality....

  20. 40 CFR 52.2451 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.2451 Section 52.2451 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... Quality Deterioration. (b) Regulations for preventing significant deterioration of air quality....

  1. 40 CFR 52.1436 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Significant deterioration of air quality. 52.1436 Section 52.1436 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. The requirements of sections 160 through 165 of the Clean Air...

  2. 40 CFR 52.2451 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.2451 Section 52.2451 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... Quality Deterioration. (b) Regulations for preventing significant deterioration of air quality....

  3. 40 CFR 52.2303 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.2303 Section 52.2303 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The plan submitted by Texas is approved as meeting the requirements of part C, Clean Air Act for preventing significant deterioration of air quality. The...

  4. 40 CFR 52.2451 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.2451 Section 52.2451 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... Quality Deterioration. (b) Regulations for preventing significant deterioration of air quality....

  5. 40 CFR 52.2528 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.2528 Section 52.2528 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of Sections 160 through 165 of the Clean Air... Quality Deterioration. (b) Regulations for Preventing Significant Deterioration of Air Quality,...

  6. 40 CFR 52.1485 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.1485 Section 52.1485 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... include approvable procedures for preventing the significant deterioration of air quality. (b)...

  7. 40 CFR 52.1436 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Significant deterioration of air quality. 52.1436 Section 52.1436 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. The requirements of sections 160 through 165 of the Clean Air...

  8. 40 CFR 52.2528 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.2528 Section 52.2528 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of Sections 160 through 165 of the Clean Air... Quality Deterioration. (b) Regulations for Preventing Significant Deterioration of Air Quality,...

  9. 40 CFR 52.2303 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.2303 Section 52.2303 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The plan submitted by Texas is approved as meeting the requirements of part C, Clean Air Act for preventing significant deterioration of air quality. The...

  10. Surface Temperature variability from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Dang, V. T.; Aumann, H. H.

    2015-12-01

    To address the existence and possible causes of the climate hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014for the day and night conditions. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We compare the satellite data with the new surface data produced by Karl et al. (2015) who denies the reality of the climate hiatus. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The day-night difference is an indicator of the anthropogenic trend. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  11. [Air rescue: current significance and practical issues].

    PubMed

    Schellhaaß, A; Popp, E

    2014-12-01

    Germany has a nationwide and powerful helicopter emergency medical services system (HEMS), which executes primary rescue missions and interhospital transfer of intensive care patients. In recent years the range of HEMS missions has become modified due to demographic changes and structural changes in the healthcare system. Furthermore, the number of HEMS missions is steadily increasing. If reasonably used air rescue contributes to desired reductions in overall preclinical time. Moreover, it facilitates prompt transport of patients to a hospital suitable for definitive medical care and treatment can be initiated earlier which is a particular advantage for severely injured and critically ill patients. Because of complex challenges during air rescue missions the qualifications of the HEMS personnel have to be considerably higher in comparison with ground based emergency medical services.

  12. 40 CFR 52.1116 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.1116 Section 52.1116 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) The following provisions of 40 CFR 52.21 are hereby incorporated and made...

  13. 40 CFR 52.343 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.343 Section 52.343 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met for the following categories of sources for preventing the significant deterioration of air...

  14. 40 CFR 52.833 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.833 Section 52.833 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are met... for preventing significant deterioration of air quality. The provisions of § 52.21 except paragraph...

  15. 40 CFR 52.1987 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.1987 Section 52.1987 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (d) The requirements of sections 160 through 165 of the Clean Air... Quality rules identified in paragraph (a) of this section, and the Lane Regional Air Pollution...

  16. 40 CFR 52.382 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Significant deterioration of air quality. 52.382 Section 52.382 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not...

  17. 40 CFR 52.343 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.343 Section 52.343 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met for the following categories of sources for preventing the significant deterioration of air...

  18. 40 CFR 52.931 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.931 Section 52.931 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) Regulations for preventing significant deterioration of air quality. The..., the Kentucky Division for Air Quality has determined that the application complies with the...

  19. 40 CFR 52.833 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.833 Section 52.833 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are met... for preventing significant deterioration of air quality. The provisions of § 52.21 except paragraph...

  20. 40 CFR 52.884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Significant deterioration of air quality. 52.884 Section 52.884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of section 160 through 165 of the Clean Air Act, as...

  1. 40 CFR 52.382 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Significant deterioration of air quality. 52.382 Section 52.382 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not...

  2. 40 CFR 52.884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Significant deterioration of air quality. 52.884 Section 52.884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of section 160 through 165 of the Clean Air Act, as...

  3. 40 CFR 52.1116 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.1116 Section 52.1116 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) The following provisions of 40 CFR 52.21 are hereby incorporated and made...

  4. 40 CFR 52.931 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.931 Section 52.931 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) Regulations for preventing significant deterioration of air quality. The..., the Kentucky Division for Air Quality has determined that the application complies with the...

  5. 40 CFR 52.1116 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.1116 Section 52.1116 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) The following provisions of 40 CFR 52.21 are hereby incorporated and made...

  6. 40 CFR 52.833 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.833 Section 52.833 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are met... for preventing significant deterioration of air quality. The provisions of § 52.21 except paragraph...

  7. 40 CFR 52.884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Significant deterioration of air quality. 52.884 Section 52.884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of section 160 through 165 of the Clean Air Act, as...

  8. 40 CFR 52.382 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Significant deterioration of air quality. 52.382 Section 52.382 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not...

  9. 40 CFR 52.382 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Significant deterioration of air quality. 52.382 Section 52.382 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not...

  10. 40 CFR 52.833 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.833 Section 52.833 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are met... for preventing significant deterioration of air quality. The provisions of § 52.21 except paragraph...

  11. 40 CFR 52.1116 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.1116 Section 52.1116 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) The following provisions of 40 CFR 52.21 are hereby incorporated and made...

  12. 40 CFR 52.382 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Significant deterioration of air quality. 52.382 Section 52.382 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not...

  13. 40 CFR 52.343 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.343 Section 52.343 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met for the following categories of sources for preventing the significant deterioration of air...

  14. 40 CFR 52.884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Significant deterioration of air quality. 52.884 Section 52.884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of section 160 through 165 of the Clean Air Act, as...

  15. 40 CFR 52.884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Significant deterioration of air quality. 52.884 Section 52.884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of section 160 through 165 of the Clean Air Act, as...

  16. 40 CFR 52.1116 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.1116 Section 52.1116 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) The following provisions of 40 CFR 52.21 are hereby incorporated and made...

  17. 40 CFR 52.833 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.833 Section 52.833 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are met... for preventing significant deterioration of air quality. The provisions of § 52.21 except paragraph...

  18. Modeling air temperature changes in Northern Asia

    NASA Astrophysics Data System (ADS)

    Onuchin, A.; Korets, M.; Shvidenko, A.; Burenina, T.; Musokhranova, A.

    2014-11-01

    Based on time series (1950-2005) of monthly temperatures from 73 weather stations in Northern Asia (limited by 70-180° EL and 48-75° NL), it is shown that there are statistically significant spatial differences in character and intensity of the monthly and yearly temperature trends. These differences are defined by geomorphological and geographical parameters of the area including exposure of the territory to Arctic and Pacific air mass, geographic coordinates, elevation, and distances to Arctic and Pacific oceans. Study area has been divided into six domains with unique groupings of the temperature trends based on cluster analysis. An original methodology for mapping of temperature trends has been developed and applied to the region. The assessment of spatial patterns of temperature trends at the regional level requires consideration of specific regional features in the complex of factors operating in the atmosphere-hydrosphere-lithosphere-biosphere system.

  19. 40 CFR 52.2131 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Significant deterioration of air quality. 52.2131 Section 52.2131 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a)-(b) (c) All applications and other information required...

  20. 40 CFR 52.2346 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.2346 Section 52.2346 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The Utah plan, as submitted, is approved as meeting the... construct on Indian Reservations. (b) Regulation for prevention of significant deterioration of air...

  1. 40 CFR 52.2178 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.2178 Section 52.2178 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The South Dakota plan, as submitted, is approved as meeting the... on Indian reservations; (b) Regulations for preventing significant deterioration of air quality....

  2. 40 CFR 52.1987 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.1987 Section 52.1987 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The Oregon Department of Environmental Quality rules for the prevention of significant deterioration of air quality (provisions of OAR chapter 340, Divisions 200,...

  3. 40 CFR 52.1529 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Significant deterioration of air quality. 52.1529 Section 52.1529 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. New Hampshire's Part Env-A 623, “Requirements for Prevention...

  4. 40 CFR 52.2131 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Significant deterioration of air quality. 52.2131 Section 52.2131 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a)-(b) (c) All applications and other information required...

  5. 40 CFR 52.2178 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.2178 Section 52.2178 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The South Dakota plan, as submitted, is approved as meeting the... on Indian reservations; (b) Regulations for preventing significant deterioration of air quality....

  6. 40 CFR 52.1280 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Significant deterioration of air quality. 52.1280 Section 52.1280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) All applications and other information required pursuant to §...

  7. 40 CFR 52.1029 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Significant deterioration of air quality. 52.1029 Section 52.1029 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. The program to review operation and construction of new and...

  8. 40 CFR 52.2083 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Significant deterioration of air quality. 52.2083 Section 52.2083 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The Rhode Island plan, as submitted, is approved as meeting...

  9. 40 CFR 52.2083 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Significant deterioration of air quality. 52.2083 Section 52.2083 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The Rhode Island plan, as submitted, is approved as meeting...

  10. 40 CFR 52.2380 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Significant deterioration of air quality. 52.2380 Section 52.2380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. The program to review the construction and operation of new...

  11. 40 CFR 52.530 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Significant deterioration of air quality. 52.530 Section 52.530 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) EPA approves the Florida Prevention of Significant Deterioration program,...

  12. 40 CFR 52.1029 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Significant deterioration of air quality. 52.1029 Section 52.1029 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. The program to review operation and construction of new and...

  13. 40 CFR 52.1529 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Significant deterioration of air quality. 52.1529 Section 52.1529 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. New Hampshire's Part Env-A 623, “Requirements for Prevention...

  14. 40 CFR 52.2346 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.2346 Section 52.2346 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The Utah plan, as submitted, is approved as meeting the... construct on Indian Reservations. (b) Regulation for prevention of significant deterioration of air...

  15. 40 CFR 52.2581 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.2581 Section 52.2581 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a)-(c) (d) The requirements of sections 160 through 165 of the... of Wisconsin. (e) Regulations for the prevention of the significant deterioration of air quality....

  16. 40 CFR 52.530 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Significant deterioration of air quality. 52.530 Section 52.530 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) EPA approves the Florida Prevention of Significant Deterioration program,...

  17. 40 CFR 52.1280 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Significant deterioration of air quality. 52.1280 Section 52.1280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) All applications and other information required pursuant to §...

  18. 40 CFR 52.2233 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.2233 Section 52.2233 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a)(1) Paragraph 1200-3-9-.01(4)-(0)-2. of Tennessee's regulations... requesting innovative technology waivers which would significantly impact air quality in adjacent states....

  19. 40 CFR 52.2581 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.2581 Section 52.2581 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a)-(c) (d) The requirements of sections 160 through 165 of the... of Wisconsin. (e) Regulations for the prevention of the significant deterioration of air quality....

  20. 40 CFR 52.2380 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Significant deterioration of air quality. 52.2380 Section 52.2380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. The program to review the construction and operation of new...

  1. 40 CFR 52.2233 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.2233 Section 52.2233 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a)(1) Paragraph 1200-3-9-.01(4)-(0)-2. of Tennessee's regulations... requesting innovative technology waivers which would significantly impact air quality in adjacent states....

  2. 40 CFR 52.2581 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.2581 Section 52.2581 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a)-(c) (d) The requirements of sections 160 through 165 of the... of Wisconsin. (e) Regulations for the prevention of the significant deterioration of air quality....

  3. 40 CFR 52.2380 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Significant deterioration of air quality. 52.2380 Section 52.2380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. The program to review the construction and operation of new...

  4. 40 CFR 52.1529 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Significant deterioration of air quality. 52.1529 Section 52.1529 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. New Hampshire's Part Env-A 623, “Requirements for Prevention...

  5. 40 CFR 52.2083 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Significant deterioration of air quality. 52.2083 Section 52.2083 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The Rhode Island plan, as submitted, is approved as meeting...

  6. 40 CFR 52.1029 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Significant deterioration of air quality. 52.1029 Section 52.1029 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. The program to review operation and construction of new and...

  7. 40 CFR 52.1529 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Significant deterioration of air quality. 52.1529 Section 52.1529 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. New Hampshire's Part Env-A 623, “Requirements for Prevention...

  8. 40 CFR 52.530 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Significant deterioration of air quality. 52.530 Section 52.530 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) EPA approves the Florida Prevention of Significant Deterioration program,...

  9. 40 CFR 52.1029 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Significant deterioration of air quality. 52.1029 Section 52.1029 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. The program to review operation and construction of new and...

  10. 40 CFR 52.2131 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Significant deterioration of air quality. 52.2131 Section 52.2131 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a)-(b) (c) All applications and other information required...

  11. 40 CFR 52.2380 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Significant deterioration of air quality. 52.2380 Section 52.2380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. The program to review the construction and operation of new...

  12. 40 CFR 52.2178 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.2178 Section 52.2178 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The South Dakota plan, as submitted, is approved as meeting the... on Indian reservations; (b) Regulations for preventing significant deterioration of air quality....

  13. 40 CFR 52.1529 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Significant deterioration of air quality. 52.1529 Section 52.1529 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. New Hampshire's Part Env-A 623, “Requirements for Prevention...

  14. 40 CFR 52.2131 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Significant deterioration of air quality. 52.2131 Section 52.2131 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a)-(b) (c) All applications and other information required...

  15. 40 CFR 52.1029 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Significant deterioration of air quality. 52.1029 Section 52.1029 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. The program to review operation and construction of new and...

  16. 40 CFR 52.2380 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Significant deterioration of air quality. 52.2380 Section 52.2380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. The program to review the construction and operation of new...

  17. 40 CFR 52.2922 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.2922 Section 52.2922 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Northern Mariana Islands § 52.2922 Significant deterioration of air quality. (a) The requirements of... procedures for preventing the significant deterioration of air quality. (b) Regulations for...

  18. 40 CFR 52.1987 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.1987 Section 52.1987 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The Oregon Department of Environmental Quality rules for the prevention of significant deterioration of air quality (provisions of OAR Chapter 340, Divisions 200,...

  19. 40 CFR 52.530 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Significant deterioration of air quality. 52.530 Section 52.530 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) EPA approves the Florida Prevention of Significant Deterioration program,...

  20. 40 CFR 52.2581 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.2581 Section 52.2581 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a)-(c) (d) The requirements of sections 160 through 165 of the... of Wisconsin. (e) Regulations for the prevention of the significant deterioration of air quality....

  1. 40 CFR 52.2083 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Significant deterioration of air quality. 52.2083 Section 52.2083 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The Rhode Island plan, as submitted, is approved as meeting...

  2. 40 CFR 52.2581 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.2581 Section 52.2581 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a)-(c) (d) The requirements of sections 160 through 165 of the... of Wisconsin. (e) Regulations for the prevention of the significant deterioration of air quality....

  3. 40 CFR 52.2528 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Significant deterioration of air quality. 52.2528 Section 52.2528 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of Sections 160 through 165 of the Clean...

  4. 40 CFR 52.1987 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.1987 Section 52.1987 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The Oregon Department of Environmental Quality rules for the prevention of significant deterioration of air quality (provisions of OAR Chapter 340, Divisions 200,...

  5. 40 CFR 52.1987 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.1987 Section 52.1987 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The Oregon Department of Environmental Quality rules for the prevention of significant deterioration of air quality (provisions of OAR Chapter 340, Divisions 200,...

  6. 40 CFR 52.2346 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.2346 Section 52.2346 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The Utah plan, as submitted, is approved as meeting the... construct on Indian Reservations. (b) Regulation for prevention of significant deterioration of air...

  7. 40 CFR 52.2346 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.2346 Section 52.2346 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The Utah plan, as submitted, is approved as meeting the... construct on Indian Reservations. (b) Regulation for prevention of significant deterioration of air...

  8. 40 CFR 52.2131 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Significant deterioration of air quality. 52.2131 Section 52.2131 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a)-(b) (c) All applications and other information required...

  9. 40 CFR 52.530 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Significant deterioration of air quality. 52.530 Section 52.530 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) EPA approves the Florida Prevention of Significant Deterioration program,...

  10. 40 CFR 52.2083 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Significant deterioration of air quality. 52.2083 Section 52.2083 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The Rhode Island plan, as submitted, is approved as meeting...

  11. 40 CFR 52.2178 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.2178 Section 52.2178 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The South Dakota plan, as submitted, is approved as meeting the... on Indian reservations; (b) Regulations for preventing significant deterioration of air quality....

  12. 40 CFR 52.2178 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.2178 Section 52.2178 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The South Dakota plan, as submitted, is approved as meeting the... on Indian reservations; (b) Regulations for preventing significant deterioration of air quality....

  13. Honeybee flight metabolic rate: does it depend upon air temperature?

    PubMed

    Woods, William A; Heinrich, Bernd; Stevenson, Robert D

    2005-03-01

    Differing conclusions have been reached as to how or whether varying heat production has a thermoregulatory function in flying honeybees Apis mellifera. We investigated the effects of air temperature on flight metabolic rate, water loss, wingbeat frequency, body segment temperatures and behavior of honeybees flying in transparent containment outdoors. For periods of voluntary, uninterrupted, self-sustaining flight, metabolic rate was independent of air temperature between 19 and 37 degrees C. Thorax temperatures (T(th)) were very stable, with a slope of thorax temperature on air temperature of 0.18. Evaporative heat loss increased from 51 mW g(-1) at 25 degrees C to 158 mW g(-1) at 37 degrees C and appeared to account for head and abdomen temperature excess falling sharply over the same air temperature range. As air temperature increased from 19 to 37 degrees C, wingbeat frequency showed a slight but significant increase, and metabolic expenditure per wingbeat showed a corresponding slight but significant decrease. Bees spent an average of 52% of the measurement period in flight, with 19 of 78 bees sustaining uninterrupted voluntary flight for periods of >1 min. The fraction of time spent flying declined as air temperature increased. As the fraction of time spent flying decreased, the slope of metabolic rate on air temperature became more steeply negative, and was significant for bees flying less than 80% of the time. In a separate experiment, there was a significant inverse relationship of metabolic rate and air temperature for bees requiring frequent or constant agitation to remain airborne, but no dependence for bees that flew with little or no agitation; bees were less likely to require agitation during outdoor than indoor measurements. A recent hypothesis explaining differences between studies in the slope of flight metabolic rate on air temperature in terms of differences in metabolic capacity and thorax temperature is supported for honeybees in voluntary

  14. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James C. R.; Leijnse, Hidde; Steeneveld, Gert-Jan; Horn, Berthold K. P.; Uijlenhoet, Remko

    2014-05-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. It has been shown that a straightforward heat transfer model can be employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. The methodology has been applied to Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree

  15. 40 CFR 52.270 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.270 Section 52.270 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) With the exception of the areas listed in paragraph (b) of this section: (1... plan does not include approvable procedures for preventing the significant deterioration of air...

  16. 40 CFR 52.270 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.270 Section 52.270 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) With the exception of the areas listed in paragraph (b) of this section: (1... plan does not include approvable procedures for preventing the significant deterioration of air...

  17. 40 CFR 52.1778 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.1778 Section 52.1778 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a)-(b) (c) All applications and other information required pursuant... Air Quality, 1641 Mail Service Center, Raleigh, North Carolina 27699-1641 or local agencies,...

  18. 40 CFR 52.581 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Significant deterioration of air quality. 52.581 Section 52.581 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) All applications and other information required pursuant to § 52.21 of...

  19. 40 CFR 52.986 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.986 Section 52.986 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The plan submitted by the Governor of Louisiana on August 14, 1984 (as adopted... preventing significant deterioration of air quality. (b) The requirements of sections 160 through 165 of...

  20. 40 CFR 52.144 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.144 Section 52.144 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Act are not met... lands does not include approvable procedures for preventing the significant deterioration of air...

  1. 40 CFR 52.581 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Significant deterioration of air quality. 52.581 Section 52.581 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) All applications and other information required pursuant to § 52.21 of...

  2. 40 CFR 52.1634 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.1634 Section 52.1634 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The plan submitted by the Governor of New Mexico on February 21... adopted by the NMEID on March 9, 1990), Air Quality Control Regulation 707—Permits, Prevention...

  3. 40 CFR 52.986 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.986 Section 52.986 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The plan submitted by the Governor of Louisiana on August 14, 1984 (as adopted... preventing significant deterioration of air quality. (b) The requirements of sections 160 through 165 of...

  4. 40 CFR 52.1634 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.1634 Section 52.1634 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The plan submitted by the Governor of New Mexico on February 21... adopted by the NMEID on March 9, 1990), Air Quality Control Regulation 707—Permits, Prevention...

  5. 40 CFR 52.1778 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.1778 Section 52.1778 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a)-(b) (c) All applications and other information required pursuant... Air Quality, 1641 Mail Service Center, Raleigh, North Carolina 27699-1641 or local agencies,...

  6. 40 CFR 52.144 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.144 Section 52.144 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Act are not met... lands does not include approvable procedures for preventing the significant deterioration of air...

  7. 40 CFR 52.2233 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Nashville, Tennessee 37243-1531, or local agencies, Knox County Air Quality Management-Department of Public... quality. 52.2233 Section 52.2233 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a)(1) Paragraph 1200-3-9-.01(4)-(0)-2. of Tennessee's...

  8. 40 CFR 52.2233 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Nashville, Tennessee 37243-1531, or local agencies, Knox County Air Quality Management-Department of Public... quality. 52.2233 Section 52.2233 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a)(1) Paragraph 1200-3-9-.01(4)-(0)-2. of Tennessee's...

  9. 40 CFR 52.2233 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., 15th Floor, Nashville, TN 37243, or local agencies, Knox County Air Quality Management-Department of... quality. 52.2233 Section 52.2233 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a)(1) Paragraph 1200-3-9-.01(4)-(0)-2. of Tennessee's...

  10. 40 CFR 52.144 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.144 Section 52.144 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Act are not met... lands does not include approvable procedures for preventing the significant deterioration of air...

  11. 40 CFR 52.1778 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.1778 Section 52.1778 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a)-(b) (c) All applications and other information required pursuant... Air Quality, 1641 Mail Service Center, Raleigh, North Carolina 27699-1641 or local agencies,...

  12. 40 CFR 52.1634 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.1634 Section 52.1634 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The plan submitted by the Governor of New Mexico on February 21... adopted by the NMEID on March 9, 1990), Air Quality Control Regulation 707—Permits, Prevention...

  13. 40 CFR 52.144 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.144 Section 52.144 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Act are not met... lands does not include approvable procedures for preventing the significant deterioration of air...

  14. 40 CFR 52.1634 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.1634 Section 52.1634 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The plan submitted by the Governor of New Mexico on February 21... adopted by the NMEID on March 9, 1990), Air Quality Control Regulation 707—Permits, Prevention...

  15. 40 CFR 52.144 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.144 Section 52.144 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Act are not met... lands does not include approvable procedures for preventing the significant deterioration of air...

  16. 40 CFR 52.432 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.432 Section 52.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. Link to an amendment published at 78 FR 33984, June 6, 2013. (a) The requirements... approvable procedures for preventing the significant deterioration of air quality. (b) Regulation...

  17. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

  18. The Relationship Between Air Temperature and Stream Temperature

    NASA Astrophysics Data System (ADS)

    Morrill, J. C.; Bales, R. C.; Conklin, M. H.

    2001-05-01

    This study examined the relationship, both linear and non-linear, between air temperature and stream temperature in order to determine if air temperature can be used as an accurate predictor of stream temperature, if general relationships could be developed that apply to a large number of streams, and how changes in stream temperature associated with climate variability or climate warming might affect the dissolved oxygen level, and thus the quality of life, in some of these streams. Understanding the relationship between air temperature and water temperature is important if we want to predict how stream temperatures are likely to respond to the increase in surface air temperature that is occurring. Data from over 50 streams in 13 countries, mostly gathered by K-12 students in the GLOBE program (Global Learning and Observations to Benefit the Environment), are examined. Only a few streams display a linear 1:1 air/water temperature trend. The majority of streams instead show an increase in water temperature of about 0.6 to 0.8 degrees for every 1-degree increase in air temperature. At some of these sites, where dissolved oxygen content is already low, an increase in summer stream temperatures of 2-3 degrees could cause the dissolved oxygen levels to fall into a critically low range. At some locations, such as near the source of a stream, water temperature does not change much despite wide ranges in air temperatures. The temperatures at these sites are likely to be least affected by surface warming. More data are needed in warmer climates, where the water temperature already gets above 25oC, in order to better examine the air/water temperature relationship under warmer conditions. Global average surface air temperature is expected to increase by 3-5oC by the middle of this century. Surface water temperature in streams, lakes and wetlands will likely increase as air temperature increases, although the change in water temperature may not be as large as the change in

  19. Is Air Temperature Enough to Predict Lake Surface Temperature?

    NASA Astrophysics Data System (ADS)

    Piccolroaz, S.; Toffolon, M.; Majone, B.

    2014-12-01

    Lake surface water (LST) is a key factor that controls most of the physical and ecological processes occurring in lakes. Reliable estimates are especially important in the light of recent studies, which revealed that inland water bodies are highly sensitive to climate, and are rapidly warming throughout the world. However, an accurate estimation of LST usually requires a significant amount of information that is not always available. In this work, we present an application of air2water, a lumped model that simulates LST as a function of air temperature only. In addition, air2water allows for a qualitative evaluation of the depth of the epilimnion during the annual stratification cycle. The model consists in a simplification of the complete heat budget of the well-mixed surface layer, and has a few parameters (from 4 to 8 depending on the version) that summarize the role of the different heat flux components. Model calibration requires only air and water temperature data, possibly covering sufficiently long historical periods in order to capture inter-annual variability and long-term trends. During the calibration procedure, the information included in input data is retrieved to directly inform model parameters, which can be used to classify the thermal behavior of the lake. In order to investigate how thermal dynamics are related to morphological features, the model has been applied to 14 temperate lakes characterized by different morphological and hydrological conditions, by different sources of temperature data (buoys, satellite), and by variable frequency of acquisition. A good agreement between observed and simulated LST has been achieved, with a RMSE in the order of 1°C, which is fully comparable to the performances of more complex process-based models. This application allowed for a deeper understanding of the thermal response of lakes as a function of their morphology, as well as for specific analyses as for example the investigation of the exceptional

  20. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, A.; Robinson, J. C. R.; Leijnse, H.; Steeneveld, G. J.; Horn, B. K. P.; Uijlenhoet, R.

    2013-08-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. A straightforward heat transfer model is employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas.

  1. Importance and Significance of Transition Temperatures.

    DTIC Science & Technology

    1984-11-01

    Friction Natural leather Gas chromatography Necking GEM disubetitution Nucleation Glass reinforced plastics Oil Golf balls Optical activity Grafting Ozone...peratures and to some degree the toughness of plastics , and the drawing temperature of fibres. In general terns, all physical properties of amorphous...polymers which depend on the segmental relaxation rate undergo a major change on heating through the glass tran- sition temperature (T ) region. A

  2. Controlled-Temperature Hot-Air Gun

    NASA Technical Reports Server (NTRS)

    Munoz, M. C.

    1986-01-01

    Materials that find applications in wind tunnels first tested in laboratory. Hot-Air Gun differs from commercial units in that flow rate and temperature monitored and controlled. With typical compressed-airsupply pressure of 25 to 38 psi (170 to 260 kPa), flow rate and maximum temperature are 34 stdft3/min (0.96 stdm3/min) and 1,090 degrees F (590 degrees C), respectively. Resembling elaborate but carefully regulated hot-air gun, setup used to apply blasts of air temperatures above 1,500 degrees F (815 degrees C) to test specimens.

  3. Air separation with temperature and pressure swing

    DOEpatents

    Cassano, Anthony A.

    1986-01-01

    A chemical absorbent air separation process is set forth which uses a temperature swing absorption-desorption cycle in combination with a pressure swing wherein the pressure is elevated in the desorption stage of the process.

  4. Air Temperature in the Undulator Hall

    SciTech Connect

    Not Available

    2010-12-07

    Various analyses have been performed recently to estimate the performance of the air conditioning (HVAC) system planned for the Undulator Hall. This reports summarizes the results and provides an upgrade plan to be used if new requirements are needed in the future. The estimates predict that with the planned loads the tunnel air temperature will be well within the allowed tolerance during normal operation.

  5. Temperature Tunable Air-Gap Etalon Filter

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Stephen, Mark A.; Lunt, David L.

    1998-01-01

    We report on experimental measurements of a temperature tuned air-gap etalon filter. The filter exhibits temperature dependent wavelength tuning of 54 pm/C. It has a nominal center wavelength of 532 nm. The etalon filter has a 27 pm optical bandpass and 600 pm free spectral range (finesse approximately 22). The experimental results are in close agreement with etalon theory.

  6. Ambient air temperature effects on the temperature of sewage sludge composting process.

    PubMed

    Huang, Qi-fei; Chen, Tong-bin; Gao, Ding; Huang, Ze-chun

    2005-01-01

    Using data obtained with a full-scale sewage sludge composting facility, this paper studied the effects of ambient air temperature on the composting temperature with varying volume ratios of sewage sludge and recycled compost to bulking agent. Two volume ratios were examined experimentally, 1: 0: 1 and 3: 1: 2. The results show that composting temperature was influenced by ambient air temperature and the influence was more significant when composting was in the temperature rising process: composting temperature changed 2.4-6.5 degrees C when ambient air temperature changed 13 degrees C. On the other hand, the influence was not significant when composting was in the high-temperature and/or temperature falling process: composting temperature changed 0.75-1.3 degrees C when ambient air temperature changed 8-15 degrees C. Hysteresis effect was observed in composting temperature's responses to ambient air temperature. When the ventilation capability of pile was excellent (at a volume ratio of 1:0:1), the hysteresis time was short and ranging 1.1-1.2 h. On the contrary, when the proportion of added bulking agent was low, therefore less porosity in the substrate (at a volume ratio of 3:1:2), the hysteresis time was long and ranging 1.9-3.1 h.

  7. Undulator Hall Air Temperature Fault Scenarios

    SciTech Connect

    Sevilla, J.; Welch, J.; /SLAC

    2010-11-17

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  8. Modeling of global surface air temperature

    NASA Astrophysics Data System (ADS)

    Gusakova, M. A.; Karlin, L. N.

    2012-04-01

    A model to assess a number of factors, such as total solar irradiance, albedo, greenhouse gases and water vapor, affecting climate change has been developed on the basis of Earth's radiation balance principle. To develop the model solar energy transformation in the atmosphere was investigated. It's a common knowledge, that part of the incoming radiation is reflected into space from the atmosphere, land and water surfaces, and another part is absorbed by the Earth's surface. Some part of outdoing terrestrial radiation is retained in the atmosphere by greenhouse gases (carbon dioxide, methane, nitrous oxide) and water vapor. Making use of the regression analysis a correlation between concentration of greenhouse gases, water vapor and global surface air temperature was obtained which, it is turn, made it possible to develop the proposed model. The model showed that even smallest fluctuations of total solar irradiance intensify both positive and negative feedback which give rise to considerable changes in global surface air temperature. The model was used both to reconstruct the global surface air temperature for the 1981-2005 period and to predict global surface air temperature until 2030. The reconstructions of global surface air temperature for 1981-2005 showed the models validity. The model makes it possible to assess contribution of the factors listed above in climate change.

  9. AIRS Retrieved Temperature Isotherms over Southern Europe

    NASA Technical Reports Server (NTRS)

    2002-01-01

    AIRS Retrieved Temperature Isotherms over Southern Europe viewed from the west, September 8, 2002. The isotherms in this map made from AIRS data show regions of the same temperature in the atmosphere.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  10. 40 CFR 52.1634 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Significant deterioration of air... FR 5964). Therefore, the conditional approval was converted to a full approval on July 15, 2011. (b... 15, 2010 and respectively adopted on March 8, 1989, July 12, 1989, April 11, 1990, February 10,...

  11. 40 CFR 52.343 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Significant deterioration of air... constructed prior to September 2, 1986 and which have not otherwise subjected themselves to Colorado's PSD permitting regulations after September 2, 1986, either through application to Colorado for a PSD permit...

  12. 40 CFR 52.343 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Significant deterioration of air... constructed prior to September 2, 1986 and which have not otherwise subjected themselves to Colorado's PSD permitting regulations after September 2, 1986, either through application to Colorado for a PSD permit...

  13. 40 CFR 52.683 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Significant deterioration of air..., IDAPA 58.01.01.005 through 007 (definitions), IDAPA 58.01.01.107.03.a, b, c, p, and q (incorporations by reference), IDAPA 58.01.01.200 through 222 (permit to construct rules), IDAPA 58.01.01.510 through...

  14. 40 CFR 52.683 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Significant deterioration of air..., IDAPA 58.01.01.005 through 007 (definitions), IDAPA 58.01.01.107.03(a), (b), (c) (incorporations by...)(i)(c), (k)(2), and the second sentence of (b)(49)(ii)(a)), IDAPA 58.01.01.200 through 222 (permit...

  15. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  16. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  17. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  18. Improving Forecast Skill by Assimilation of AIRS Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The AIRS Version 5 retrieval algorithm, is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates delta T(p) for retrieved quantities and the use of these error estimates for Quality Control. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 deg. latitude X 0.67 deg longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates delta (p) were used as the uncertainty for each measurement in the data assimilation process. We compared forecasts analyses generated from the analyses done by assimilation of AIRS temperature profiles with three different sets of thresholds; Standard, Medium, and Tight. Assimilation of Quality Controlled AIRS temperature profiles significantly improve 5-7 day forecast skill compared to that obtained without the benefit of AIRS data in all of the cases studied. In addition, assimilation of Quality Controlled AIRS temperature soundings performs better than assimilation of AIRS observed radiances. Based on the experiments shown, Tight Quality Control of AIRS temperature profile performs best

  19. 40 CFR 52.96 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.96 Section 52.96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The State of Alaska Department of Environmental Conservation Air Quality... deterioration of air quality. (b) The requirements of sections 160 through 165 of the Clean Air Act are not...

  20. Global surface air temperatures - Update through 1987

    NASA Technical Reports Server (NTRS)

    Hansen, James; Lebedeff, Sergej

    1988-01-01

    Data from meteorological stations show that surface air temperatures in the 1980s are the warmest in the history of instrumental records. The four warmest years on record are all in the 1980s, with the warmest years in the analysis being 1981 and 1987. The rate of warming between the mid-1960s and the present is higher than that which occurrred in the previous period of rapid warming between the 1880s and 1940.

  1. Global trends of measured surface air temperature

    NASA Technical Reports Server (NTRS)

    Hansen, James; Lebedeff, Sergej

    1987-01-01

    The paper presents the results of surface air temperature measurements from available meteorological stations for the period of 1880-1985. It is shown that the network of meteorological stations is sufficient to yield reliable long-term, decadal, and interannual temperature changes for both the Northern Hemisphere and the Southern Hemisphere, despite the fact that most stations are located on the continents. The results indicate a global warming of about 0.5-0.7 C in the past century, with warming of similar magnitude in both hemispheres. A strong warming trend between 1965 and 1980 raised the global mean temperature in 1980 and 1981 to the highest level in the period of instrumental records. Selected graphs of the temperature change in each of the eight latitude zones are included.

  2. Temperature Dependence of Lithium Reactions with Air

    NASA Astrophysics Data System (ADS)

    Sherrod, Roman; Skinner, C. H.; Koel, Bruce

    2016-10-01

    Liquid lithium plasma facing components (PFCs) are being developed to handle long pulse, high heat loads in tokamaks. Wetting by lithium of its container is essential for this application, but can be hindered by lithium oxidation by residual gases or during tokamak maintenance. Lithium PFCs will experience elevated temperatures due to plasma heat flux. This work presents measurements of lithium reactions at elevated temperatures (298-373 K) when exposed to natural air. Cylindrical TZM wells 300 microns deep with 1 cm2 surface area were filled with metallic lithium in a glovebox containing argon with less than 1.6 ppm H20, O2, and N2. The wells were transferred to a hot plate in air, and then removed periodically for mass gain measurements. Changes in the surface topography were recorded with a microscope. The mass gain of the samples at elevated temperatures followed a markedly different behavior to that at room temperature. One sample at 373 K began turning red indicative of lithium nitride, while a second turned white indicative of lithium carbonate formation. Data on the mass gain vs. temperature and associated topographic changes of the surface will be presented. Science Undergraduate Laboratory Internship funded by Department of Energy.

  3. Passive radiative cooling below ambient air temperature under direct sunlight.

    PubMed

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day.

  4. Trends in Surface Temperature from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Aumann, H. H.

    2014-12-01

    To address possible causes of the current hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We find a monotonic positive trend for the land temperature but not for the ocean temperature. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The results are compared with the model studies. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  5. 40 CFR 52.96 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.96 Section 52.96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The State of Alaska Department of Environmental Conservation Air Quality... deterioration of air quality. The introductory paragraph to 18 AAC 50.040(h) as in effect on December 9, 2010...

  6. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  7. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  8. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  9. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  10. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  11. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  12. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  13. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  14. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  15. Significant Advances in the AIRS Science Team Version-6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena; Molnar, Gyula

    2012-01-01

    AIRS/AMSU is the state of the art infrared and microwave atmospheric sounding system flying aboard EOS Aqua. The Goddard DISC has analyzed AIRS/AMSU observations, covering the period September 2002 until the present, using the AIRS Science Team Version-S retrieval algorithm. These products have been used by many researchers to make significant advances in both climate and weather applications. The AIRS Science Team Version-6 Retrieval, which will become operation in mid-20l2, contains many significant theoretical and practical improvements compared to Version-5 which should further enhance the utility of AIRS products for both climate and weather applications. In particular, major changes have been made with regard to the algOrithms used to 1) derive surface skin temperature and surface spectral emissivity; 2) generate the initial state used to start the retrieval procedure; 3) compute Outgoing Longwave Radiation; and 4) determine Quality Control. This paper will describe these advances found in the AIRS Version-6 retrieval algorithm and demonstrate the improvement of AIRS Version-6 products compared to those obtained using Version-5,

  16. Historical Air Temperatures Across the Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Kagawa-Viviani, A.; Giambelluca, T. W.

    2015-12-01

    This study focuses on an analysis of daily temperature from over 290 ground-based stations across the Hawaiian Islands from 1905-2015. Data from multiple stations were used to model environmental lapse rates by fitting linear regressions of mean daily Tmax and Tmin on altitude; piecewise regressions were also used to model the discontinuity introduced by the trade wind inversion near 2150m. Resulting time series of both model coefficients and lapse rates indicate increasing air temperatures near sea level (Tmax: 0.09°C·decade-1 and Tmin: 0.23°C·decade-1 over the most recent 65 years). Evaluation of lapse rates during this period suggest Tmax lapse rates (~0.6°C·100m-1) are decreasing by 0.006°C·100m-1decade-1 due to rapid high elevation warming while Tmin lapse rates (~0.8°C·100m-1) are increasing by 0.002°C·100m-1decade-1 due to the stronger increase in Tmin at sea level versus at high elevation. Over the 110 year period, temperatures tend to vary coherently with the PDO index. Our analysis verifies warming trends and temperature variability identified earlier by analysis of selected index stations. This method also provides temperature time series we propose are more robust to station inhomogeneities.

  17. 40 CFR 52.931 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Kentucky stated: As requested, the Division of Air Pollution Control hereby commits to changing the..., Department of Environmental Protection, Division for Air Quality, 200 Fair Oaks Lane, 1st Floor,...

  18. 40 CFR 52.931 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Kentucky stated: As requested, the Division of Air Pollution Control hereby commits to changing the..., Department of Environmental Protection, Division for Air Quality, 200 Fair Oaks Lane, 1st Floor,...

  19. 40 CFR 52.931 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Kentucky stated: As requested, the Division of Air Pollution Control hereby commits to changing the..., Department of Environmental Protection, Division for Air Quality, 200 Fair Oaks Lane, 1st Floor,...

  20. 40 CFR 52.60 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.60 Section 52.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) All applications and other information required pursuant to § 52.21 from... “Guideline on Air Quality Models (Revised)” or other models approved by EPA....

  1. 40 CFR 52.60 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.60 Section 52.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) All applications and other information required pursuant to § 52.21 from... “Guideline on Air Quality Models (Revised)” or other models approved by EPA....

  2. 40 CFR 52.270 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 83-01, 5/6/83. (2) The PSD rules for North Coast Unified Air Quality Management District are approved... part of the State plan for California for the North Coast Unified Air Quality Management District for... Air Quality Management District, as incorporated by reference in § 52.220(c)(420), is approved...

  3. 40 CFR 52.270 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 83-01, 5/6/83. (2) The PSD rules for North Coast Unified Air Quality Management District are approved... part of the State plan for California for the North Coast Unified Air Quality Management District for... Air Quality Management District, as incorporated by reference in § 52.220(c)(420), is approved...

  4. 40 CFR 52.60 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.60 Section 52.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) All applications and other information required pursuant to § 52.21 from... “Guideline on Air Quality Models (Revised)” or other models approved by EPA....

  5. 40 CFR 52.60 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.60 Section 52.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) All applications and other information required pursuant to § 52.21 from... “Guideline on Air Quality Models (Revised)” or other models approved by EPA....

  6. 40 CFR 52.60 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.60 Section 52.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) All applications and other information required pursuant to § 52.21 from... “Guideline on Air Quality Models (Revised)” or other models approved by EPA....

  7. Impacts of Lowered Urban Air Temperatures on Precursor Emission and Ozone Air Quality.

    PubMed

    Taha, Haider; Konopacki, Steven; Akbari, Hashem

    1998-09-01

    Meteorological, photochemical, building-energy, and power plant simulations were performed to assess the possible precursor emission and ozone air quality impacts of decreased air temperatures that could result from implementing the "cool communities" concept in California's South Coast Air Basin (SoCAB). Two pathways are considered. In the direct pathway, a reduction in cooling energy use translates into reduced demand for generation capacity and, thus, reduced precursor emissions from electric utility power plants. In the indirect pathway, reduced air temperatures can slow the atmospheric production of ozone as well as precursor emission from anthropogenic and biogenic sources. The simulations suggest small impacts on emissions following implementation of cool communities in the SoCAB. In summer, for example, there can be reductions of up to 3% in NOx emissions from in-basin power plants. The photochemical simulations suggest that the air quality impacts of these direct emission reductions are small. However, the indirect atmospheric effects of cool communities can be significant. For example, ozone peak concentrations can decrease by up to 11% in summer and population-weighted exceedance exposure to ozone above the California and National Ambient Air Quality Standards can decrease by up to 11 and 17%, respectively. The modeling suggests that if these strategies are combined with others, such as mobile-source emission control, the improvements in ozone air quality can be substantial.

  8. Climate change and river temperature sensitivity to warmer nighttime vs. warmer daytime air temperatures

    NASA Astrophysics Data System (ADS)

    Diabat, M.; Haggerty, R.; Wondzell, S. M.

    2011-12-01

    We investigated the July river temperature response to atmospheric warming over the diurnal cycle in a 36 km reach of the upper Middle Fork John Day River of Oregon, USA. The physical model Heat Source was calibrated and used to run 3 different cases of increased air temperature during July: 1) uniform increase over the whole day ("delta method"), 2) warmer daytime, and 3) warmer nighttime. All 3 cases had the same mean daily air temperatures - a 4 °C increase relative to 2002. Results show that the timing of air temperature increases has a significant effect on the magnitude, timing and duration of changes in water temperatures relative to current conditions. In all cases, river temperatures in the lower reach increased by at least 1.1 °C . For the delta case, water temperature increases never exceeded 2.3 °C. In contrast, under the warmer daytime case, water temperature increases exceeded 2.3 °C for 6.6 hours/day on average, with the largest increases occurring during mid-day. In the warmer night case the river temperature increases exceeded 2.3 °C for 4.3 hours/day on average with the largest increases occurring around midnight. In addition, an average increase of 4 °C in air temperature under the delta case increased the water temperature by an average of 1.9 °C uniformly during daytime and nighttime. Still, an average increase of 4 °C in air temperature under the warmer daytime case increased water temperature by an average of at least 1.6 °C during the daytime and by an average of up to 2.5 °C during the nighttime, while an average increase of 4 °C in air temperature under the warmer nighttime case increased the water temperature by an average of at least 1.4 °C during the nighttime and by an average of up to 2.4 °C during the daytime. The spatial response of temperature was different for each case. The lower 13 rkm warmed by at least 1.1 °C with the delta case, while only the lower 6 rkm warmed by at least 1.1 °C with the warmer daytime case

  9. Experimental study of the decrease in the temperature of an air/water-cooled turbine blade

    NASA Astrophysics Data System (ADS)

    Ryzhov, A. A.; Sereda, A. V.; Shaiakberov, V. F.; Iskakov, K. M.; Shatalov, Iu. S.

    Results of the full-scale testing of an air/water-cooled deflector-type turbine blade are reported. Data on the decrease in the temperature of the cooling air and of the blade are presented and compared with the calculated values. An analysis of the results indicates that the use of air/water cooling makes it possible to significantly reduce the temperature of the cooling air and of the blade with practically no increase in the engine weight and dimensions.

  10. Variation in the urban vegetation, surface temperature, air temperature nexus.

    PubMed

    Shiflett, Sheri A; Liang, Liyin L; Crum, Steven M; Feyisa, Gudina L; Wang, Jun; Jenerette, G Darrel

    2017-02-01

    Our study examines the urban vegetation - air temperature (Ta) - land surface temperature (LST) nexus at micro- and regional-scales to better understand urban climate dynamics and the uncertainty in using satellite-based LST for characterizing Ta. While vegetated cooling has been repeatedly linked to reductions in urban LST, the effects of vegetation on Ta, the quantity often used to characterize urban heat islands and global warming, and on the interactions between LST and Ta are less well characterized. To address this need we quantified summer temporal and spatial variation in Ta through a network of 300 air temperature sensors in three sub-regions of greater Los Angeles, CA, which spans a coastal to desert climate gradient. Additional sensors were placed within the inland sub-region at two heights (0.1m and 2m) within three groundcover types: bare soil, irrigated grass, and underneath citrus canopy. For the entire study region, we acquired new imagery data, which allowed calculation of the normalized difference vegetation index (NDVI) and LST. At the microscale, daytime Ta measured along a vertical gradient, ranged from 6 to 3°C cooler at 0.1 and 2m, underneath tall canopy compared to bare ground respectively. At the regional scale NDVI and LST were negatively correlated (p<0.001). Relationships between diel variation in Ta and daytime LST at the regional scale were progressively weaker moving away from the coast and were generally limited to evening and nighttime hours. Relationships between NDVI and Ta were stronger during nighttime hours, yet effectiveness of mid-day vegetated cooling increased substantially at the most arid region. The effectiveness of vegetated Ta cooling increased during heat waves throughout the region. Our findings suggest an important but complex role of vegetation on LST and Ta and that vegetation may provide a negative feedback to urban climate warming.

  11. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  12. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  13. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  14. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  15. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  16. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  17. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  18. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  19. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  20. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  1. Air temperature variation across the seed cotton dryer mixpoint

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eighteen tests were conducted in six gins in the fall of 2008 to measure air temperature variation within various heated air seed cotton drying systems with the purpose of: checking validation of recommendations by a professional engineering society and measuring air temperature variation across the...

  2. AIR TEMPERATURE DISTRIBUTION IN SEED COTTON DRYING SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ten tests were conducted in the fall of 2007 to measure air temperature variation within various heated air seed cotton drying systems with the purpose of: checking validation of recommendations by a professional engineering society and measuring air temperature variation across the airflow ductwork...

  3. Possible Economies in Air-Conditioning by Accepting Temperature Swings.

    ERIC Educational Resources Information Center

    Loudon, A. G.; Petherbridge, P.

    Public building air conditioning systems, which use constant and varying heat and cooling loads, are compared and investigated. Experiments indicated that constant temperature controls based on outside air temperature alone were inefficient. Ventilating a building with outside air and the methods of doing so are cited as being the most economical…

  4. 40 CFR 52.270 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 83-01, 5/6/83. (2) The PSD rules for North Coast Unified Air Quality Management District are approved... part of the State plan for California for the North Coast Unified Air Quality Management District for... quality. 52.270 Section 52.270 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  5. 40 CFR 52.1778 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... County Environmental Affairs, 201 North Chestnut Street, Winston-Salem, North Carolina 27101 or Forsyth County Air Quality Section, 537 North Spruce Street, Winston-Salem, North Carolina 27101;...

  6. 40 CFR 52.1778 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... County Environmental Affairs, 201 North Chestnut Street, Winston-Salem, North Carolina 27101 or Forsyth County Air Quality Section, 537 North Spruce Street, Winston-Salem, North Carolina 27101;...

  7. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  8. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  9. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  10. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  11. Daily Air Temperature and Electricity Load in Spain.

    NASA Astrophysics Data System (ADS)

    Valor, Enric; Meneu, Vicente; Caselles, Vicente

    2001-08-01

    Weather has a significant impact on different sectors of the economy. One of the most sensitive is the electricity market, because power demand is linked to several weather variables, mainly the air temperature. This work analyzes the relationship between electricity load and daily air temperature in Spain, using a population-weighted temperature index. The electricity demand shows a significant trend due to socioeconomic factors, in addition to daily and monthly seasonal effects that have been taken into account to isolate the weather influence on electricity load. The results indicate that the relationship is nonlinear, showing a `comfort interval' of ±3°C around 18°C and two saturation points beyond which the electricity load no longer increases. The analysis has also revealed that the sensitivity of electricity load to daily air temperature has increased along time, in a higher degree for summer than for winter, although the sensitivity in the cold season is always more significant than in the warm season. Two different temperature-derived variables that allow a better characterization of the observed relationship have been used: the heating and cooling degree-days. The regression of electricity data on them defines the heating and cooling demand functions, which show correlation coefficients of 0.79 and 0.87, and predicts electricity load with standard errors of estimate of ±4% and ±2%, respectively. The maximum elasticity of electricity demand is observed at 7 cooling degree-days and 9 heating degree-days, and the saturation points are reached at 11 cooling degree-days and 13 heating degree-days, respectively. These results are helpful in modeling electricity load behavior for predictive purposes.

  12. 40 CFR 52.96 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Control Regulations as in effect on December 3, 2005 (specifically 18 AAC 50.010 except (7) and (8); 50... deterioration of air quality. The following regulations as in effect on April 1, 2010, are also approved as...) (introductory paragraph and (a)(2); and 18 AAC 50.990(129). The following regulations as in effect on December...

  13. 40 CFR 52.96 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Control Regulations as in effect on December 3, 2005 (specifically 18 AAC 50.010 except (7) and (8); 50... deterioration of air quality. The introductory paragraph to 18 AAC 50.040(h) as in effect on December 9, 2010 is... regulation” in 40 CFR 52.21(b)(49) for the purpose of greenhouse gases only. (b) The requirements of...

  14. 40 CFR 52.96 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Control Regulations as in effect on December 3, 2005 (specifically 18 AAC 50.010 except (7) and (8); 50... deterioration of air quality. The following regulations as in effect on April 1, 2010, are also approved as...) (introductory paragraph and (a)(2); and 18 AAC 50.990(129). The following regulations as in effect on December...

  15. Ceramic Composite Intermediate Temperature Stress-Rupture Properties Improved Significantly

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Hurst, Janet B.

    2002-01-01

    Silicon carbide (SiC) composites are considered to be potential materials for future aircraft engine parts such as combustor liners. It is envisioned that on the hot side (inner surface) of the combustor liner, composites will have to withstand temperatures in excess of 1200 C for thousands of hours in oxidizing environments. This is a severe condition; however, an equally severe, if not more detrimental, condition exists on the cold side (outer surface) of the combustor liner. Here, the temperatures are expected to be on the order of 800 to 1000 C under high tensile stress because of thermal gradients and attachment of the combustor liner to the engine frame (the hot side will be under compressive stress, a less severe stress-state for ceramics). Since these composites are not oxides, they oxidize. The worst form of oxidation for strength reduction occurs at these intermediate temperatures, where the boron nitride (BN) interphase oxidizes first, which causes the formation of a glass layer that strongly bonds the fibers to the matrix. When the fibers strongly bond to the matrix or to one another, the composite loses toughness and strength and becomes brittle. To increase the intermediate temperature stress-rupture properties, researchers must modify the BN interphase. With the support of the Ultra-Efficient Engine Technology (UEET) Program, significant improvements were made as state-of-the-art SiC/SiC composites were developed during the Enabling Propulsion Materials (EPM) program. Three approaches were found to improve the intermediate-temperature stress-rupture properties: fiber-spreading, high-temperature silicon- (Si) doped boron nitride (BN), and outside-debonding BN.

  16. 40 CFR 52.2058 - Prevention of significant air quality deterioration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Prevention of significant air quality deterioration. 52.2058 Section 52.2058 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Prevention of significant air quality deterioration. (a) The requirements of sections 160 through 165 of...

  17. 40 CFR 52.1829 - Prevention of significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of air quality. 52.1829 Section 52.1829 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Dakota § 52.1829 Prevention of significant deterioration of air quality. (a) The North Dakota plan, as... of significant deterioration of air quality. The provisions of § 52.21 except paragraph (a)(1)...

  18. 40 CFR 52.1382 - Prevention of significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of air quality. 52.1382 Section 52.1382 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.1382 Prevention of significant deterioration of air quality. (a) The Montana plan, as submitted... significant deterioration of air quality. The provisions of § 52.21 except paragraph (a)(1) are...

  19. 40 CFR 52.2630 - Prevention of significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of air quality. 52.2630 Section 52.2630 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.2630 Prevention of significant deterioration of air quality. (a) The Wyoming plan, as submitted...) Regulation for preventing significant deterioration of air quality. The Wyoming plan, as submitted, does...

  20. 40 CFR 52.2058 - Prevention of significant air quality deterioration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Prevention of significant air quality deterioration. 52.2058 Section 52.2058 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Prevention of significant air quality deterioration. (a) The requirements of sections 160 through 165 of...

  1. 40 CFR 52.2058 - Prevention of significant air quality deterioration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Prevention of significant air quality deterioration. 52.2058 Section 52.2058 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Prevention of significant air quality deterioration. (a) The requirements of sections 160 through 165 of...

  2. 40 CFR 52.2630 - Prevention of significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of air quality. 52.2630 Section 52.2630 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.2630 Prevention of significant deterioration of air quality. (a) The Wyoming plan, as submitted...) Regulation for preventing significant deterioration of air quality. The Wyoming plan, as submitted, does...

  3. Analysis of surface air temperature variations and local urbanization effects on central Yunnan Plateau, SW China

    NASA Astrophysics Data System (ADS)

    He, Yunling; Wu, Zhijie; Liu, Xuelian; Deng, Fuying

    2016-10-01

    With the surface air temperature (SAT) data at 37 stations on Central Yunnan Plateau (CYP) for 1961-2010 and the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light data, the temporal-spatial patterns of the SAT trends are detected using Sen's Nonparametric Estimator of Slope approach and MK test, and the impact of urbanization on surface warming is analyzed by comparing the differences between the air temperature change trends of urban stations and their corresponding rural stations. Results indicated that annual mean air temperature showed a significant warming trend, which is equivalent to a rate of 0.17 °C/decade during the past 50 years. Seasonal mean air temperature presents a rising trend, and the trend was more significant in winter (0.31 °C/decade) than in other seasons. Annual/seasonal mean air temperature tends to increase in most areas, and higher warming trend appeared in urban areas, notably in Kunming city. The regional mean air temperature series was significantly impacted by urban warming, and the urbanization-induced warming contributed to approximately 32.3-62.9 % of the total regional warming during the past 50 years. Meantime, the urbanization-induced warming trend in winter and spring was more significant than that in summer and autumn. Since 1985, the urban heat island (UHI) intensity has gradually increased. And the urban temperatures always rise faster than rural temperatures on the CYP.

  4. Comparison of MODIS Land Surface Temperature and Air Temperature over the Continental USA Meteorological Stations

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Bounoua, Lahouari; Imhoff, Marc L.; Wolfe, Robert E.; Thome, Kurtis

    2014-01-01

    The National Land Cover Database (NLCD) Impervious Surface Area (ISA) and MODIS Land Surface Temperature (LST) are used in a spatial analysis to assess the surface-temperature-based urban heat island's (UHIS) signature on LST amplitude over the continental USA and to make comparisons to local air temperatures. Air-temperature-based UHIs (UHIA), calculated using the Global Historical Climatology Network (GHCN) daily air temperatures, are compared with UHIS for urban areas in different biomes during different seasons. NLCD ISA is used to define urban and rural temperatures and to stratify the sampling for LST and air temperatures. We find that the MODIS LST agrees well with observed air temperature during the nighttime, but tends to overestimate it during the daytime, especially during summer and in nonforested areas. The minimum air temperature analyses show that UHIs in forests have an average UHIA of 1 C during the summer. The UHIS, calculated from nighttime LST, has similar magnitude of 1-2 C. By contrast, the LSTs show a midday summer UHIS of 3-4 C for cities in forests, whereas the average summer UHIA calculated from maximum air temperature is close to 0 C. In addition, the LSTs and air temperatures difference between 2006 and 2011 are in agreement, albeit with different magnitude.

  5. Retrieval of air temperatures from crowd-sourced battery temperatures of cell phones

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James; Leijnse, Hidde; Uijlenhoet, Remko; Steeneveld, Gert-Jan; Horn, Berthold K. P.

    2013-04-01

    Accurate air temperature observations are important for urban meteorology, for example to study the urban heat island and adverse effects of high temperatures on human health. The number of available temperature observations is often relatively limited. A new development is presented to derive temperature information for the urban canopy from an alternative source: cell phones. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. Results are presented for Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree Celsius. This shows that monitoring air temperatures employing an Android application holds great promise. Since 75% of the world's population has a cell phone, 20% of the land surface of the earth has cellular telephone coverage, and 500 million devices use the Android operating system, there is a huge potential for measuring air temperatures employing cell phones. This could eventually lead to real-time world-wide temperature maps.

  6. 40 CFR 52.581 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Parkway, Suite 120, Atlanta, Georgia 30354 rather than to EPA's Region 4 office. (b) ... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Georgia § 52.581 Significant... part from sources located in the State of Georgia shall be submitted to the State agency,...

  7. 40 CFR 52.581 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Parkway, Suite 120, Atlanta, Georgia 30354 rather than to EPA's Region 4 office. (b) ... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Georgia § 52.581 Significant... part from sources located in the State of Georgia shall be submitted to the State agency,...

  8. 40 CFR 52.581 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Parkway, Suite 120, Atlanta, Georgia 30354 rather than to EPA's Region 4 office. (b) ... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Georgia § 52.581 Significant... part from sources located in the State of Georgia shall be submitted to the State agency,...

  9. Perceiving nasal patency through mucosal cooling rather than air temperature or nasal resistance.

    PubMed

    Zhao, Kai; Blacker, Kara; Luo, Yuehao; Bryant, Bruce; Jiang, Jianbo

    2011-01-01

    Adequate perception of nasal airflow (i.e., nasal patency) is an important consideration for patients with nasal sinus diseases. The perception of a lack of nasal patency becomes the primary symptom that drives these patients to seek medical treatment. However, clinical assessment of nasal patency remains a challenge because we lack objective measurements that correlate well with what patients perceive. The current study examined factors that may influence perceived patency, including air temperature, humidity, mucosal cooling, nasal resistance, and trigeminal sensitivity. Forty-four healthy subjects rated nasal patency while sampling air from three facial exposure boxes that were ventilated with untreated room air, cold air, and dry air, respectively. In all conditions, air temperature and relative humidity inside each box were recorded with sensors connected to a computer. Nasal resistance and minimum airway cross-sectional area (MCA) were measured using rhinomanometry and acoustic rhinometry, respectively. General trigeminal sensitivity was assessed through lateralization thresholds to butanol. No significant correlation was found between perceived patency and nasal resistance or MCA. In contrast, air temperature, humidity, and butanol threshold combined significantly contributed to the ratings of patency, with mucosal cooling (heat loss) being the most heavily weighted predictor. Air humidity significantly influences perceived patency, suggesting that mucosal cooling rather than air temperature alone provides the trigeminal sensation that results in perception of patency. The dynamic cooling between the airstream and the mucosal wall may be quantified experimentally or computationally and could potentially lead to a new clinical evaluation tool.

  10. Solar Eclipse Effect on Shelter Air Temperature

    NASA Technical Reports Server (NTRS)

    Segal, M.; Turner, R. W.; Prusa, J.; Bitzer, R. J.; Finley, S. V.

    1996-01-01

    Decreases in shelter temperature during eclipse events were quantified on the basis of observations, numerical model simulations, and complementary conceptual evaluations. Observations for the annular eclipse on 10 May 1994 over the United States are presented, and these provide insights into the temporal and spatial changes in the shelter temperature. The observations indicated near-surface temperature drops of as much as 6 C. Numerical model simulations for this eclipse event, which provide a complementary evaluation of the spatial and temporal patterns of the temperature drops, predict similar decreases. Interrelationships between the temperature drop, degree of solar irradiance reduction, and timing of the peak eclipse are also evaluated for late spring, summer, and winter sun conditions. These simulations suggest that for total eclipses the drops in shelter temperature in midlatitudes can be as high as 7 C for a spring morning eclipse.

  11. Monitored summer peak attic air temperatures in Florida residences

    SciTech Connect

    Parker, D.S.; Sherwin, J.R.

    1998-12-31

    The Florida Solar Energy Center (FSEC) has analyzed measured summer attic air temperature data taken for some 21 houses (three with two different roof configurations) over the last several years. The analysis is in support of the calculation within ASHRAE Special Project 152P, which will be used to estimate duct system conductance gains that are exposed to the attic space. Knowledge of prevailing attic thermal conditions are critical to the duct heat transfer calculations for estimation of impacts on residential cooling system sizing. The field data were from a variety of residential monitoring projects that were classified according to intrinsic differences in roofing configurations and characteristics. The sites were occupied homes spread around the state of Florida. There were a variety of different roofing construction types, roof colors, and ventilation configurations. Data at each site were obtained from June 1 to September 30 according to the ASHRAE definition of summer. The attic air temperature and ambient air temperature were used for the data analysis. The attic air temperature was measured with a shielded type-T thermocouple at mid-attic height, halfway between the decking and insulation surface. The ambient air temperature was obtained at each site by thermocouples located inside a shielded exterior enclosure at a 3 to 4 m (10--12 ft) height. The summer 15-minute data from each site were sorted by the average ambient air temperature into the top 2.5% of the observations of the highest temperature. Within this limited group of observations, the average outside air temperature, attic air temperature, and coincident difference were reported.

  12. Solar activity influence on air temperature regimes in caves

    NASA Astrophysics Data System (ADS)

    Stoeva, Penka; Mikhalev, Alexander; Stoev, Alexey

    Cave atmospheres are generally included in the processes that happen in the external atmosphere as circulation of the cave air is connected with the most general circulation of the air in the earth’s atmosphere. Such isolated volumes as the air of caves are also influenced by the variations of solar activity. We discuss cave air temperature response to climate and solar and geomagnetic activity for four show caves in Bulgaria studied for a period of 46 years (1968 - 2013). Everyday noon measurements in Ledenika, Saeva dupka, Snezhanka and Uhlovitsa cave have been used. Temperatures of the air in the zone of constant temperatures (ZCT) are compared with surface temperatures recorded at meteorological stations situated near about the caves - in the towns of Vratsa, Lovech, Peshtera and Smolyan, respectively. For comparison, The Hansen cave, Middle cave and Timpanogos cave from the Timpanogos Cave National Monument, Utah, USA situated nearly at the same latitude have also been examined. Our study shows that the correlation between cave air temperature time series and sunspot number is better than that between the cave air temperature and Apmax indices; that t°ZCT is rather connected with the first peak in geomagnetic activity, which is associated with transient solar activity (CMEs) than with the second one, which is higher and connected with the recurrent high speed streams from coronal holes. Air temperatures of all examined show caves, except the Ledenika cave, which is ice cave show decreasing trends. On the contrary, measurements at the meteorological stations show increasing trends in the surface air temperatures. The trend is decreasing for the Timpanogos cave system, USA. The conclusion is that surface temperature trends depend on the climatic zone, in which the cave is situated, and there is no apparent relation between temperatures inside and outside the caves. We consider possible mechanism of solar cosmic rays influence on the air temperatures in caves

  13. 40 CFR 52.21 - Prevention of significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of air quality. 52.21 Section 52.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.21 Prevention of significant deterioration of air quality. Link to an amendment published at 76 FR... quality in any portion of any State where the existing air quality is better than the national ambient...

  14. Associations of endothelial function and air temperature in diabetic subjects

    EPA Science Inventory

    Background and Objective: Epidemiological studies consistently show that air temperature is associated with changes in cardiovascular morbidity and mortality. However, the biological mechanisms underlying the association remain largely unknown. As one index of endothelial functio...

  15. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... must be made within 100 cm of the air-intake of the engine. The measurement location must be either in... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test...

  16. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... must be made within 100 cm of the air-intake of the engine. The measurement location must be either in... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test...

  17. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... location must be within 10 cm of the engine intake system (i.e., the air cleaner, for most engines.) (b... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19...

  18. High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to

  19. Daily Cycle of Air Temperature and Surface Temperature in Stone Forest

    NASA Astrophysics Data System (ADS)

    Wang, K.; Li, Y.; Wang, X.; Yuan, M.

    2013-12-01

    vegetation in the measurement area. The differences of the daily cycle of air temperature and surface temperature in these four scenarios show a significant impact of urban man-made structures on the dynamics of urban thermal environment.

  20. Assessing surface air temperature variability using quantile regression

    NASA Astrophysics Data System (ADS)

    Timofeev, A. A.; Sterin, A. M.

    2014-12-01

    Many researches in climate change currently involve linear trends, based on measured variables. And many of them only consider trends in mean values, whereas it is clear, that not only means, but also whole shape of distribution changes over time and requires careful assessment. For example extreme values including outliers may get bigger, while median has zero slope.Quantile regression provides a convenient tool, that enables detailed analysis of changes in full range of distribution by producing a vector of quantile trends for any given set of quantiles.We have applied quantile regression to surface air temperature observations made at over 600 weather stations across Russian Federation during last four decades. The results demonstrate well pronounced regions with similar values of significant trends in different parts of temperature value distribution (left tail, middle part, right tail). The uncertainties of quantile trend estimations for several spatial patterns of trends over Russia are estimated and analyzed for each of four seasons.For temperature trend estimation over vast territories, quantile regression is an effort consuming approach, but is more informative than traditional instrument, to assess decadal evolution of temperature values, including evolution of extremes.Partial support of ERA NET RUS ACPCA joint project between EU and RBRF 12-05-91656-ЭРА-А is highly appreciated.

  1. Statistical temperature profile retrievals in clear-air using passive 118-GHz O2 observations

    NASA Technical Reports Server (NTRS)

    Gasiewski, A. J.; Johnson, J. T.

    1993-01-01

    The clean-air temperature profile accuracy yielded by a localized linear statistical retrieval operator applied to passive aircraft-based 118-GHz spectra is demonstrated. A comparison of the statistically and physically derived correlation coefficients of antenna temperature and kinetic temperature furnishes a physical justification of the statistical retrieval technique. The atmospheric temperature mean and covariance significantly depend on such geophysical parameters as latitude, longitude, local season, and time, as well as the prevailing meteorological state and orographic effects.

  2. Effect of Initial Mixture Temperature on Flame Speed of Methane-Air, Propane-Air, and Ethylene-Air Mixtures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L

    1952-01-01

    Flame speeds based on the outer edge of the shadow cast by the laminar Bunsen cone were determined as functions of composition for methane-air mixtures at initial mixture temperatures ranging from -132 degrees to 342 degrees c and for propane-air and ethylene-air mixtures at initial mixture temperatures ranging from -73 degrees to 344 degrees c. The data showed that maximum flame speed increased with temperature at an increasing rate. The percentage change in flame speed with change in initial temperature for the three fuels followed the decreasing order, methane, propane, and ethylene. Empirical equations were determined for maximum flame speed as a function of initial temperature over the temperature range covered for each fuel. The observed effect of temperature on flame speed for each of the fuels was reasonably well predicted by either the thermal theory as presented by Semenov or the square-root law of Tanford and Pease.

  3. The influence of snow depth and surface air temperature on satellite-derived microwave brightness temperature. [central Russian steppes, and high plains of Montana, North Dakota, and Canada

    NASA Technical Reports Server (NTRS)

    Foster, J. L.; Hall, D. K.; Chang, A. T. C.; Rango, A.; Allison, L. J.; Diesen, B. C., III

    1980-01-01

    Areas of the steppes of central Russia, the high plains of Montana and North Dakota, and the high plains of Canada were studied in an effort to determine the relationship between passive microwave satellite brightness temperature, surface air temperature, and snow depth. Significant regression relationships were developed in each of these homogeneous areas. Results show that sq R values obtained for air temperature versus snow depth and the ratio of microwave brightness temperature and air temperature versus snow depth were not as the sq R values obtained by simply plotting microwave brightness temperature versus snow depth. Multiple regression analysis provided only marginal improvement over the results obtained by using simple linear regression.

  4. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... temperature measurement must be made within 122 cm of the engine. The measurement location must be made either... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES...

  5. Impacts of wind farms on surface air temperatures

    PubMed Central

    Baidya Roy, Somnath; Traiteur, Justin J.

    2010-01-01

    Utility-scale large wind farms are rapidly growing in size and numbers all over the world. Data from a meteorological field campaign show that such wind farms can significantly affect near-surface air temperatures. These effects result from enhanced vertical mixing due to turbulence generated by wind turbine rotors. The impacts of wind farms on local weather can be minimized by changing rotor design or by siting wind farms in regions with high natural turbulence. Using a 25-y-long climate dataset, we identified such regions in the world. Many of these regions, such as the Midwest and Great Plains in the United States, are also rich in wind resources, making them ideal candidates for low-impact wind farms. PMID:20921371

  6. Impacts of wind farms on surface air temperatures.

    PubMed

    Baidya Roy, Somnath; Traiteur, Justin J

    2010-10-19

    Utility-scale large wind farms are rapidly growing in size and numbers all over the world. Data from a meteorological field campaign show that such wind farms can significantly affect near-surface air temperatures. These effects result from enhanced vertical mixing due to turbulence generated by wind turbine rotors. The impacts of wind farms on local weather can be minimized by changing rotor design or by siting wind farms in regions with high natural turbulence. Using a 25-y-long climate dataset, we identified such regions in the world. Many of these regions, such as the Midwest and Great Plains in the United States, are also rich in wind resources, making them ideal candidates for low-impact wind farms.

  7. 40 CFR 52.1382 - Prevention of significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Prevention of significant deterioration of air quality. 52.1382 Section 52.1382 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.1382 Prevention of significant deterioration of air quality. (a) The Montana plan, as...

  8. 40 CFR 52.1829 - Prevention of significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Prevention of significant deterioration of air quality. 52.1829 Section 52.1829 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Dakota § 52.1829 Prevention of significant deterioration of air quality. (a) The North Dakota plan,...

  9. Temperature distribution of air source heat pump barn with different air flow

    NASA Astrophysics Data System (ADS)

    He, X.; Li, J. C.; Zhao, G. Q.

    2016-08-01

    There are two type of airflow form in tobacco barn, one is air rising, the other is air falling. They are different in the structure layout and working principle, which affect the tobacco barn in the distribution of temperature field and velocity distribution. In order to compare the temperature and air distribution of the two, thereby obtain a tobacco barn whose temperature field and velocity distribution are more uniform. Taking the air source heat pump tobacco barn as the investigated subject and establishing relevant mathematical model, the thermodynamics of the two type of curing barn was analysed and compared based on Fluent. Provide a reasonable evidence for chamber arrangement and selection of outlet for air source heat pump tobacco barn.

  10. Data Assimilation Experiments Using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2009-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains a number of significant improvements over Version 4. Two very significant improvements are described briefly below. 1) The AIRS Science Team Radiative Transfer Algorithm (RTA) has now been upgraded to accurately account for effects of non-local thermodynamic equilibrium on the AIRS observations. This allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval algorithm during both day and night. Following theoretical considerations, tropospheric temperature profile information is obtained almost exclusively from clear column radiances in the 4.3 micron CO2 band in the AIRS Version 5 temperature profile retrieval step. These clear column radiances are a derived product that are indicative of radiances AIRS channels would have seen if the field of view were completely clear. Clear column radiances for all channels are determined using tropospheric sounding 15 micron CO2 observations. This approach allows for the generation of accurate values of clear column radiances and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel clear column radiances. These error estimates are used for quality control of the retrieved products. Based on error estimate thresholds, each temperature profiles is assigned a characteristic pressure, pg, down to which the profile is characterized as good for use for data assimilation purposes. We have conducted forecast impact experiments assimilating AIRS quality controlled temperature profiles using the NASA GEOS-5 data assimilation system, consisting of the NCEP GSI analysis coupled with the

  11. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  12. Temperature effect on titanium nitride nanometer thin film in air

    NASA Astrophysics Data System (ADS)

    Cen, Z. H.; Xu, B. X.; Hu, J. F.; Ji, R.; Toh, Y. T.; Ye, K. D.; Hu, Y. F.

    2017-02-01

    Titanium nitride (TiN) is a promising alternative plasmonic material to conventional novel metals. For practical plasmonic applications under the influence of air, the temperature-dependent optical properties of TiN thin films in air and its volume variation are essential. Ellipsometric characterizations on a TiN thin film at different increasing temperatures in ambient air were conducted, and optical constants along with film thickness were retrieved. Below 200 °C, the optical properties varied linearly with temperature, in good agreement with other temperature dependent studies of TiN films in vacuum. The thermal expansion coefficient of the TiN thin film was determined to be 10.27  ×  10‑6 °C‑1. At higher temperatures, the TiN thin film gradually loses its metallic characteristics and has weaker optical absorption, impairing its plasmonic performance. In addition, a sharp increase in film thickness was observed at the same time. Changes in the optical properties and film thickness with temperatures above 200 °C were revealed to result from TiN oxidation in air. For the stability of TiN-based plasmonic devices, operation temperatures of lower than 200 °C, or measures to prevent oxidation, are required. The present study is important to fundamental physics and technological applications of TiN thin films.

  13. Thermal Coupling Between Air and Ground Temperatures in the CMIP5 Historical and Future Simulations

    NASA Astrophysics Data System (ADS)

    García-García, A.; Cuesta-Valero, F. J.; Smerdon, J. E.; Beltrami, H.

    2015-12-01

    The thermal coupling between air and ground temperatures is investigated herein for General Circulation Models (GCMs) that participated in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). For each simulation, we evaluate the regional relationship between air and ground temperatures to study surface energy fluxes and the attenuation of the annual temperature signal across the air-ground interface and into the shallow subsurface for North America. Our results show that the transport of energy across the air-ground interface and into the shallow subsurface is different across GCMs and is dependent on the land surface models that each employs. The variability of the difference between air and ground temperatures is high among simulations and is not dependent on the depth of the bottom boundary of the subsurface soil model. The difference between air and ground temperatures differs significantly from observations. Additionally, while the variability among GCMs can be explained by the physics of the land surface models, the regional variability of the air-ground coupling is associated with the model treatment of soil properties as well as snow and vegetation processes within GCMs. The difference between air and ground temperatures at high latitudes within the majority of the CMIP5 models is directly proportional to the amount of snow on the ground, due to the insulating effect of snow cover. On the other hand, the difference between air and ground temperatures at low latitudes within some of the CMIP5 models is inversely proportional to the vegetation cover (leaf area index), due to changes in latent and sensible heat fluxes. The large variability among GCMs and the marked dependency of the results on the choice of the land-surface model illustrates the need for improving the simulation of air-ground coupling in land-surface models towards a robust simulation of near-surface processes, such as permafrost and soil carbon stability within GCMs.

  14. Soil temperature prediction from air temperature for alluvial soils in lower Indo-Gangetic plain

    NASA Astrophysics Data System (ADS)

    Barman, D.; Kundu, D. K.; Pal, Soumen; Pal, Susanto; Chakraborty, A. K.; Jha, A. K.; Mazumdar, S. P.; Saha, R.; Bhattacharyya, P.

    2017-01-01

    Soil temperature is an important factor in biogeochemical processes. On-site monitoring of soil temperature is limited in spatiotemporal scale as compared to air temperature data inventories due to various management difficulties. Therefore, empirical models were developed by taking 30-year long-term (1985-2014) air and soil temperature data for prediction of soil temperatures at three depths (5, 15, 30 cm) in morning (0636 Indian standard time) and afternoon (1336 Indian standard time) for alluvial soils in lower Indo-Gangetic plain. At 5 cm depth, power and exponential regression models were best fitted for daily data in morning and afternoon, respectively, but it was reverse at 15 cm. However, at 30 cm, exponential models were best fitted for both the times. Regression analysis revealed that in morning for all three depths and in afternoon for 30 cm depth, soil temperatures (daily, weekly, and monthly) could be predicted more efficiently with the help of corresponding mean air temperature than that of maximum and minimum. However, in afternoon, prediction of soil temperature at 5 and 15 cm depths were more precised for all the time intervals when maximum air temperature was used, except for weekly soil temperature at 15 cm, where the use of mean air temperature gave better prediction.

  15. Preliminary verification of instantaneous air temperature estimation for clear sky conditions based on SEBAL

    NASA Astrophysics Data System (ADS)

    Zhu, Shanyou; Zhou, Chuxuan; Zhang, Guixin; Zhang, Hailong; Hua, Junwei

    2017-02-01

    Spatially distributed near surface air temperature at the height of 2 m is an important input parameter for the land surface models. It is of great significance in both theoretical research and practical applications to retrieve instantaneous air temperature data from remote sensing observations. An approach based on Surface Energy Balance Algorithm for Land (SEBAL) to retrieve air temperature under clear sky conditions is presented. Taking the meteorological measurement data at one station as the reference and remotely sensed data as the model input, the research estimates the air temperature by using an iterative computation. The method was applied to the area of Jiangsu province for nine scenes by using MODIS data products, as well as part of Fujian province, China based on four scenes of Landsat 8 imagery. Comparing the air temperature estimated from the proposed method with that of the meteorological station measurement, results show that the root mean square error is 1.7 and 2.6 °C at 1000 and 30 m spatial resolution respectively. Sensitivity analysis of influencing factors reveals that land surface temperature is the most sensitive to the estimation precision. Research results indicate that the method has great potentiality to be used to estimate instantaneous air temperature distribution under clear sky conditions.

  16. Uncertainties of satellite-derived surface skin temperatures in the polar oceans: MODIS, AIRS/AMSU, and AIRS only

    NASA Astrophysics Data System (ADS)

    Kang, H.-J.; Yoo, J.-M.; Jeong, M.-J.; Won, Y.-I.

    2015-05-01

    Uncertainties in the satellite-derived Surface Skin Temperature (SST) data in the polar oceans during two periods (16-24 April and 15-23 September) of 2003-2014 were investigated and the three datasets were intercompared as follows: MODerate Resolution Imaging Spectroradiometer Ice Surface Temperature (MODIS IST), the SST of the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A (AIRS/AMSU), and AIRS only. AIRS only algorithm was developed in preparation for the degradation of the AMSU-A. MODIS IST was systematically up to 1.65 K warmer at the sea ice boundary and up to 2.04 K colder in the polar sea ice regions of both the Arctic and Antarctic than that of the AIRS/AMSU. This difference in the results could have been caused by the surface classification method. The spatial correlation coefficient of the AIRS only to the AIRS/AMSU (0.992-0.999) method was greater than that of the MODIS IST to the AIRS/AMSU (0.968-0.994). The SST of the AIRS only compared to that of the AIRS/AMSU had a bias of 0.168 K with a RMSE of 0.590 K over the Northern Hemisphere high latitudes and a bias of -0.109 K with a RMSE of 0.852 K over the Southern Hemisphere high latitudes. There was a systematic disagreement between the AIRS retrievals at the boundary of the sea ice, because the AIRS only algorithm utilized a~less accurate GCM forecast over the seasonally-varying frozen oceans than the microwave data. The three datasets (MODIS, AIRS/AMSU and AIRS only) showed significant warming rates (2.3 ± 1.7 ~2.8 ± 1.9 K decade-1) in the northern high latitude regions (70-80° N) as expected from the ice-albedo feedback. The systematic temperature disagreement associated with surface type classification had an impact on the resulting temperature trends.

  17. Uncertainties of satellite-derived surface skin temperatures in the polar oceans: MODIS, AIRS/AMSU, and AIRS only

    NASA Astrophysics Data System (ADS)

    Kang, H.-J.; Yoo, J.-M.; Jeong, M.-J.; Won, Y.-I.

    2015-10-01

    Uncertainties in the satellite-derived surface skin temperature (SST) data in the polar oceans during two periods (16-24 April and 15-23 September) 2003-2014 were investigated and the three data sets were intercompared as follows: MODerate Resolution Imaging Spectroradiometer Ice Surface Temperature (MODIS IST), the SST of the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A (AIRS/AMSU), and AIRS only. The AIRS only algorithm was developed in preparation for the degradation of the AMSU-A. MODIS IST was systematically warmer up to 1.65 K at the sea ice boundary and colder down to -2.04 K in the polar sea ice regions of both the Arctic and Antarctic than that of the AIRS/AMSU. This difference in the results could have been caused by the surface classification method. The spatial correlation coefficient of the AIRS only to the AIRS/AMSU (0.992-0.999) method was greater than that of the MODIS IST to the AIRS/AMSU (0.968-0.994). The SST of the AIRS only compared to that of the AIRS/AMSU had a bias of 0.168 K with a RMSE of 0.590 K over the Northern Hemisphere high latitudes and a bias of -0.109 K with a RMSE of 0.852 K over the Southern Hemisphere high latitudes. There was a systematic disagreement between the AIRS retrievals at the boundary of the sea ice, because the AIRS only algorithm utilized a less accurate GCM forecast over the seasonally varying frozen oceans than the microwave data. The three data sets (MODIS, AIRS/AMSU and AIRS only) showed significant warming rates (2.3 ± 1.7 ~ 2.8 ± 1.9 K decade-1) in the northern high regions (70-80° N) as expected from the ice-albedo feedback. The systematic temperature disagreement associated with surface type classification had an impact on the resulting temperature trends.

  18. Finding of No Significant Impact: Forest Harvesting at New Boston Air Force Station, New Hampshire

    DTIC Science & Technology

    2003-05-20

    FINDING OF NO SIGNIFICANT IMPACT Forest Harvesting at New Boston Air Force Station, New Hampshire The U.S. Air Force (USAF) at New Boston Air...Station (NBAFS), New Hampshire proposes to conduct forest harvesting in three locations (see attachment l) on approximately 15,0-f~O acres over the next...two-three years. Harvesting would occur primarily during fall and winter months (September-March). Forest mana’gement practices would include the

  19. Correlation of air temperature above water-air sections with the forecasted low level clouds

    NASA Astrophysics Data System (ADS)

    Huseynov, N. Sh.; Malikov, B. M.

    2009-04-01

    As a case study approach the development of low clouds forecasting methods in correlation with air temperature transformational variations on the sections "water-air" is surveyed. It was evident, that transformational variations of air temperature mainly depend on peculiarities and value of advective variations of temperature. DT is the differences of initial temperature on section water-air in started area, from contrast temperature of water surface along a trajectory of movement of air masses and from the temperature above water surface in a final point of a trajectory. Main values of transformational variations of air temperature at advection of a cold masses is 0.530C•h, and at advection of warm masses is -0.370C•h. There was dimensionless quantity K determined and implemented into practice which was characterized with difference of water temperature in forecasting point and air temperature in an initial point in the ratio of dew-points deficiency at the forecasting area. It follows, that the appropriate increasing or decreasing of K under conditions of cold and warm air masses advection, contributes decreasing of low clouds level. References: Abramovich K.G.: Conditions of development and forecasting of low level clouds. vol. #78, 124 pp., Hydrometcenter USSR 1973. Abramovich K.G.: Variations of low clouds level // Meteorology and Hydrology, vol. # 5, 30-41, Moscow, 1968. Budiko M.I.: Empirical assessment of climatic changes toward the end of XX century // Meteorology and Hydrology, vol. #12, 5-13, Moscow, 1999. Buykov M.V.: Computational modeling of daily evolutions of boundary layer of atmosphere at the presence of clouds and fog // Meteorology and Hydrology, vol. # 4, 35-44, Moscow, 1981. Huseynov N.Sh. Transformational variations of air temperature above Caspian Sea / Proceedings of Conference On Climate And Protection of Environment, 118-120, Baku, 1999. Huseynov N.Sh.: Consideration of advective and transformational variations of air temperature in

  20. Heat tolerance of higher plants cenosis to damaging air temperatures

    NASA Astrophysics Data System (ADS)

    Ushakova, Sofya; Shklavtsova, Ekaterina

    Designing sustained biological-technical life support systems (BTLSS) including higher plants as a part of a photosynthesizing unit, it is important to foresee the multi species cenosis reaction on either stress-factors. Air temperature changing in BTLSS (because of failure of a thermoregulation system) up to the values leading to irreversible damages of photosynthetic processes is one of those factors. However, it is possible to increase, within the certain limits, the plant cenosis tolerance to the unfavorable temperatures’ effect due to the choice of the higher plants possessing resistance both to elevated and to lowered air temperatures. Besides, the plants heat tolerance can be increased when subjecting them during their growing to the hardening off temperatures’ effect. Thus, we have come to the conclusion that it is possible to increase heat tolerance of multi species cenosis under the damaging effect of air temperature of 45 (°) СC.

  1. AIRS Sea Surface Temperature and Pacific Decadal Oscillation

    NASA Astrophysics Data System (ADS)

    Chen, L. L.

    2015-12-01

    Atmospheric Infrared Sounder (AIRS) has been providing necessary measurements for long term atmospheric and surface processes aboard NASA' s Aqua polar orbiter since May 2002. Here, we use time series of AIRS sea surface temperature (SST) anomalies to show the time evolution of Pacific Decadal Oscillation (PDO) in the Gulf of Alaska (lon:-144.5, lat:54.5) from 2003 to 2014. PDO is connected to the first mode of North Pacific SST variability and is tele-connected to ENSO in the tropics. Further analysis of AIRS data can provide clarification of Pacific climate variability.

  2. 40 CFR 51.166 - Prevention of significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 2 2014-07-01 2014-07-01 false Prevention of significant deterioration of air quality. 51.166 Section 51.166 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Review of New Sources and Modifications §...

  3. Variability of Winter Air Temperature in Mid-Latitude Europe

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Ardizzone, J.; Atlas, R.; Bungato, D.; Cierniewski, J.; Jusem, J. C.; Przybylak, R.; Schubert, S.; Starr, D.; Walczewski, J.

    2002-01-01

    The aim of this paper is to report extreme winter/early-spring air temperature (hereinafter temperature) anomalies in mid-latitude Europe, and to discuss the underlying forcing to these interannual fluctuations. Warm advection from the North Atlantic in late winter controls the surface-air temperature, as indicated by the substantial correlation between the speed of the surface southwesterlies over the eastern North Atlantic (quantified by a specific Index Ina) and the 2-meter level air temperatures (hereinafter Ts) over Europe, 45-60 deg N, in winter. In mid-March and subsequently, the correlation drops drastically (quite often it is negative). This change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature: absorption of insolation replaces the warm advection as the dominant control. This forcing by maritime-air advection in winter was demonstrated in a previous publication, and is re-examined here in conjunction with extreme fluctuations of temperatures in Europe. We analyze here the interannual variability at its extreme by comparing warm-winter/early-spring of 1989/90 with the opposite scenario in 1995/96. For these two December-to-March periods the differences in the monthly mean temperature in Warsaw and Torun, Poland, range above 10 C. Short-term (shorter than a month) fluctuations of the temperature are likewise very strong. We conduct pentad-by-pentad analysis of the surface-maximum air temperature (hereinafter Tmax), in a selected location, examining the dependence on Ina. The increased cloudiness and higher amounts of total precipitable water, corollary effects to the warm low-level advection. in the 1989/90 winter, enhance the positive temperature anomalies. The analysis of the ocean surface winds is based on the Special Sensor Microwave/Imager (SSM/I) dataset; ascent rates, and over land wind data are from the European Centre for Medium-Range Weather Forecasts (ECMWF); maps of 2-m temperature, cloud

  4. Pulsed positive streamer discharges in air at high temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Kamakura, Taku

    2016-08-01

    Atmospheric-pressure air pulsed positive streamer discharges are generated in a 13 mm point-plane gap in the temperature range of 293 K-1136 K, and the effect of temperature on the streamer discharges is studied. When the temperature is increased, the product of applied voltage and temperature VT proportional to the reduced electric field can be used as a primary parameter that determines some discharge parameters regardless of temperature. For a given VT, the transferred charge per pulse, streamer diameter, product of discharge energy and temperature, and length of secondary streamer are almost constant regardless of T, whereas the streamer velocity decreases with increasing T and the decay rate of the discharge current is proportional to 1/T. The N2(C) emission intensity is approximately determined by the discharge energy independent of T. These results are useful to predict the streamer discharge and its reactive species production when the ambient temperature is increased.

  5. Effects of air flow directions on composting process temperature profile

    SciTech Connect

    Kulcu, Recep; Yaldiz, Osman

    2008-07-01

    In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO{sub 2} and O{sub 2} ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperature distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2.

  6. Modeling daily average stream temperature from air temperature and watershed area

    NASA Astrophysics Data System (ADS)

    Butler, N. L.; Hunt, J. R.

    2012-12-01

    Habitat restoration efforts within watersheds require spatial and temporal estimates of water temperature for aquatic species especially species that migrate within watersheds at different life stages. Monitoring programs are not able to fully sample all aquatic environments within watersheds under the extreme conditions that determine long-term habitat viability. Under these circumstances a combination of selective monitoring and modeling are required for predicting future geospatial and temporal conditions. This study describes a model that is broadly applicable to different watersheds while using readily available regional air temperature data. Daily water temperature data from thirty-eight gauges with drainage areas from 2 km2 to 2000 km2 in the Sonoma Valley, Napa Valley, and Russian River Valley in California were used to develop, calibrate, and test a stream temperature model. Air temperature data from seven NOAA gauges provided the daily maximum and minimum air temperatures. The model was developed and calibrated using five years of data from the Sonoma Valley at ten water temperature gauges and a NOAA air temperature gauge. The daily average stream temperatures within this watershed were bounded by the preceding maximum and minimum air temperatures with smaller upstream watersheds being more dependent on the minimum air temperature than maximum air temperature. The model assumed a linear dependence on maximum and minimum air temperature with a weighting factor dependent on upstream area determined by error minimization using observed data. Fitted minimum air temperature weighting factors were consistent over all five years of data for each gauge, and they ranged from 0.75 for upstream drainage areas less than 2 km2 to 0.45 for upstream drainage areas greater than 100 km2. For the calibration data sets within the Sonoma Valley, the average error between the model estimated daily water temperature and the observed water temperature data ranged from 0.7

  7. An Optimization Approach to Analyzing the Effect of Supply Water and Air Temperatures in Planning an Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Karino, Naoki; Shiba, Takashi; Yokoyama, Ryohei; Ito, Koichi

    In planning an air conditioning system, supply water and air temperatures are important factors from the viewpoint of cost reduction. For example, lower temperature supply water and air reduce the coefficient of performance of a refrigeration machine, and increase the thickness of heat insulation material. However, they enable larger temperature differences, and reduce equipment sizes and power demand. The purposes of this paper are to propose an optimal planning method for a cold air distribution system, and to analyze the effect of supply water and air temperatures on the long-term economics through a numerical study for an office building. As a result, it is shown that the proposed method effectively determines supply water and air temperatures for a cold air distribution system, and that the influence of supply air temperature is larger than that of supply water temperature on the long-term economics.

  8. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    SciTech Connect

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue Fang, Jing

    2015-10-15

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  9. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue; Fang, Jing

    2015-10-01

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  10. Improving Forecast Skill by Assimilation of Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2009-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of cloud cleared radiances R(sub i). This approach allows for the generation of accurate values of R(sub i) and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel error estimates for R(sub i). These error estimates are used for Quality Control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of Quality Control using the NASA GEOS-5 data assimilation system. Assimilation of Quality Controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done operationally by ECMWF and NCEP. Forecast resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.

  11. Data Assimilation Experiments using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    SUsskind, Joel

    2008-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 pm C02 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 pm C02 observations are now used primarily in the generation of cloud cleared radiances Ri. This approach allows for the generation of accurate values of Ri and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by- channel error estimates for Ri. These error estimates are used for quality control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of quality control using the NASA GEOS-5 data assimilation system. Assimilation of quality controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done Operationally by ECMWF and NCEP. Forecasts resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.

  12. Arctic air may become cleaner as temperatures rise

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2011-10-01

    The air in the Arctic is cleaner during summer than during winter. Previous studies have shown that for light-scattering pollutants, this seasonal cycle is due mainly to summer precipitation removing pollutants from the air during atmospheric transport from midlatitude industrial and agricultural sources. With new measurements from Barrow, Alaska, and Alert, Nunavut, Canada, Garrett et al. extended previous research to show that light-absorbing aerosols such as black carbon are also efficiently removed by seasonal precipitation. Precipitation removes these particles from the air most efficiently at high humidities and relatively warm temperatures, suggesting that as the Arctic gets warmer and wetter in the future, the air and snow might also become cleaner.

  13. Flame Speeds of Methane-Air, Propane-Air, and Ethylene-Air Mixtures at Low Initial Temperatures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L; Heimel, Sheldon

    1952-01-01

    Flame speeds were determined for methane-air, propane-air, and ethylene-air mixtures at -73 C and for methane-air mixtures at -132 C. The data extend the curves of maximum flame speed against initial mixture temperature previously established for the range from room temperature to 344 C. Empirical equations for maximum flame speed u(cm/ sec) as a function of initial mixture temperature T(sub O) were determined to be as follows: for methane, for T(sub O) from 141 to 615 K, u = 8 + 0.000160 T(sub O)(exp 2.11); for propane, for T(sub O) from 200 to 616 K, u = 10 + 0.000342 T(sub O)(exp 2.00); for ethylene, for T(sub O) from 200 to 617 K, u = 10 + 0.00259 T(sub O)(exp 1.74). Relative flame speeds at low initial temperatures were predicted within approximately 20 percent by either the thermal theory as presented by Semenov or by the diffusion theory of Tanford and Pease. The same order was found previously for high initial temperatures. The low-temperature data were also found to extend the linear correlations between maximum flame speed and calculated equilibrium active-radical concentrations, which were established by the previously reported high-temperature data.

  14. Advances in Fast Response Acoustically Derived Air Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Bogoev, Ivan; Jacobsen, Larry; Horst, Thomas; Conrad, Benjamin

    2016-04-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity. The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  15. The relationship between radiant heat, air temperature and thermal comfort at rest and exercise.

    PubMed

    Guéritée, Julien; Tipton, Michael J

    2015-02-01

    The aims of the present work were to investigate the relationships between radiant heat load, air velocity and body temperatures with or without coincidental exercise to determine the physiological mechanisms that drive thermal comfort and thermoregulatory behaviour. Seven male volunteers wearing swimming trunks in 18°C, 22°C or 26°C air were exposed to increasing air velocities up to 3 m s(-1) and self-adjusted the intensity of the direct radiant heat received on the front of the body to just maintain overall thermal comfort, at rest or when cycling (60 W, 60 rpm). During the 30 min of the experiments, skin and rectal temperatures were continuously recorded. We hypothesized that mean body temperature should be maintained stable and the intensity of the radiant heat and the mean skin temperatures would be lower when cycling. In all conditions, mean body temperature was lower when facing winds of 3 m s(-1) than during the first 5 min, without wind. When facing winds, in all but the 26°C air, the radiant heat was statistically higher at rest than when exercising. In 26°C air mean skin temperature was lower at rest than when exercising. No other significant difference was observed. In all air temperatures, high correlation coefficients were observed between the air velocity and the radiant heat load. Other factors that we did not measure may have contributed to the constant overall thermal comfort status despite dropping mean skin and body temperatures. It is suggested that the allowance to behaviourally adjust the thermal environment increases the tolerance of cold discomfort.

  16. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  17. Discovery about temperature fluctuations in turbulent air flows

    NASA Astrophysics Data System (ADS)

    1985-02-01

    The law of spatial fluctuations of temperature in a turbulent flow in the atmosphere was studied. The turbulent movement of air in the atmosphere manifests itself in random changes in wind velocity and in the dispersal of smoke. If a miniature thermometer with sufficient sensitivity and speed of response were placed in a air flow, its readings would fluctuate chaotically against the background of average temperature. This is Characteristic of practically every point of the flow. The temperature field forms as a result of the mixing of the air. A method using the relation of the mean square of the difference in temperatures of two points to the distance between these points as the structural characteristic of this field was proposed. It was found that the dissipation of energy in a flow and the equalization of temperatures are connected with the breaking up of eddies in a turbulent flow into smaller ones. Their energy in turn is converted into heat due to the viscosity of the medium. The law that has been discovered makes for a much broader field of application of physical methods of analyzing atmospheric phenomena.

  18. Assessment of two-temperature kinetic model for ionizing air

    NASA Technical Reports Server (NTRS)

    Park, Chul

    1987-01-01

    A two-temperature chemical-kinetic model for air is assessed by comparing theoretical results with existing experimental data obtained in shock-tubes, ballistic ranges, and flight experiments. In the model, named the TTv model, one temperature (T) is assumed to characterize the heavy-particle translational and molecular rotational energies, and another temperature (Tv) to characterize the molecular vibrational, electron translational, and electronic excitation energies. The theoretical results for nonequilibrium air flow in shock tubes are obtained using the computer code STRAP (Shock-Tube Radiation Program), and for flow along the stagnation streamline in the shock layer over spherical bodies using the newly developed code STRAP (Stagnation-Point Radiation Program). Substantial agreement is shown between the theoretical and experimental results for relaxation times and radiative heat fluxes. At very high temperatures the spectral calculations need further improvement. The present agreement provides strong evidence that the two-temperature model characterizes principal features of nonequilibrium air flow. New theoretical results using the model are presented for the radiative heat fluxes at the stagnation point of a 6-m-radius sphere, representing an aeroassisted orbital transfer vehicle, over a range of free-stream conditions. Assumptions, approximations, and limitations of the model are discussed.

  19. The mass and speed dependence of meteor air plasma temperatures.

    PubMed

    Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  20. Can air temperature be used to project influences of climate change on stream temperature?

    USGS Publications Warehouse

    Arismendi, Ivan; Safeeq, Mohammad; Dunham, Jason B.; Johnson, Sherri L.

    2014-01-01

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To address this knowledge gap, we examined the performance of two widely used linear and nonlinear regression models that predict stream temperatures based on air temperatures. We evaluated model performance and temporal stability of model parameters in a suite of regulated and unregulated streams with 11–44 years of stream temperature data. Although such models may have validity when predicting stream temperatures within the span of time that corresponds to the data used to develop them, model predictions did not transfer well to other time periods. Validation of model predictions of most recent stream temperatures, based on air temperature–stream temperature relationships from previous time periods often showed poor performance when compared with observed stream temperatures. Overall, model predictions were less robust in regulated streams and they frequently failed in detecting the coldest and warmest temperatures within all sites. In many cases, the magnitude of errors in these predictions falls within a range that equals or exceeds the magnitude of future projections of climate-related changes in stream temperatures reported for the region we studied (between 0.5 and 3.0 °C by 2080). The limited ability of regression-based statistical models to accurately project stream temperatures over time likely stems from the fact that underlying processes at play, namely the heat budgets of air and water, are distinctive in each medium and vary among localities and through time.

  1. Microwave temperature profiler for clear air turbulence prediction

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    1992-01-01

    A method is disclosed for determining Richardson Number, Ri, or its reciprocal, RRi, for clear air prediction using measured potential temperature and determining the vertical gradient of potential temperature, d(theta)/dz. Wind vector from the aircraft instrumentation versus potential temperature, dW/D(theta), is determined and multiplies by d(theta)/dz to obtain dW/dz. Richardson number or its reciprocal is then determined from the relationship Ri = K(d theta)/dz divided by (dW/dz squared) for use in detecting a trend toward a threshold value for the purpose of predicting clear air turbulence. Other equations for this basic relationship are disclosed together with the combination of other atmospheric observables using multiple regression techniques.

  2. CARS Temperature and Species Measurements For Air Vehicle Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Gord, James R.; Grisch, Frederic; Klimenko, Dmitry; Clauss, Walter

    2005-01-01

    The coherent anti-Stokes Raman spectroscopy (CARS) method has recently been used in the United States and Europe to probe several different types of propulsion systems for air vehicles. At NASA Langley Research Center in the United States, CARS has been used to simultaneously measure temperature and the mole fractions of N2, O2 and H2 in a supersonic combustor, representative of a scramjet engine. At Wright- Patterson Air Force Base in the United States, CARS has been used to simultaneously measure temperature and mole fractions of N2, O2 and CO2, in the exhaust stream of a liquid-fueled, gas-turbine combustor. At ONERA in France and the DLR in Germany researchers have used CARS to measure temperature and species concentrations in cryogenic LOX-H2 rocket combustion chambers. The primary aim of these measurements has been to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.

  3. Improved Temperature Sounding and Quality Control Methodology Using AIRS/AMSU Data: The AIRS Science Team Version 5 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John M.; Iredell, Lena; Keita, Fricky

    2009-01-01

    This paper describes the AIRS Science Team Version 5 retrieval algorithm in terms of its three most significant improvements over the methodology used in the AIRS Science Team Version 4 retrieval algorithm. Improved physics in Version 5 allows for use of AIRS clear column radiances in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of clear column radiances .R(sub i) for all channels. This new approach allows for the generation of more accurate values of .R(sub i) and T(p) under most cloud conditions. Secondly, Version 5 contains a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 also contains for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology, referred to as AIRS Version 5 AO, was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Results are shown comparing the relative performance of the AIRS Version 4, Version 5, and Version 5 AO for the single day, January 25, 2003. The Goddard DISC is now generating and distributing products derived using the AIRS Science Team Version 5 retrieval algorithm. This paper also described the Quality Control flags contained in the DISC AIRS/AMSU retrieval products and their intended use for scientific research purposes.

  4. The Effects of Air Pollution and Temperature on COPD

    PubMed Central

    Hansel, Nadia N.; McCormack, Meredith C.; Kim, Victor

    2016-01-01

    Chronic Obstructive Pulmonary Disease (COPD) affects 12–16 million people in the United States and is the third-leading cause of death. In developed countries, smoking is the greatest risk factor for the development of COPD, but other exposures also contribute to the development and progression of the disease. Several studies suggest, though are not definitive, that outdoor air pollution exposure is linked to the prevalence and incidence of COPD. Among individuals with COPD, outdoor air pollutants are associated with loss of lung function and increased respiratory symptoms. In addition, outdoor air pollutants are also associated with COPD exacerbations and mortality. There is much less evidence for the impact of indoor air on COPD, especially in developed countries in residences without biomass exposure. The limited existing data suggests that indoor particulate matter and nitrogen dioxide concentrations are linked to increased respiratory symptoms among patients with COPD. In addition, with the projected increases in temperature and extreme weather events in the context of climate change there has been increased attention to the effects of heat exposure. Extremes of temperature—both heat and cold—have been associated with increased respiratory morbidity in COPD. Some studies also suggest that temperature may modify the effect of pollution exposure and though results are not conclusive, understanding factors that may modify susceptibility to air pollution in patients with COPD is of utmost importance. PMID:26683097

  5. Requirements for high-temperature air-cooled central receivers

    NASA Astrophysics Data System (ADS)

    Wright, J. D.; Copeland, R. J.

    1983-12-01

    The design of solar thermal central receivers will be shaped by the end user's need for energy. This paper identifies the requirements for receivers supplying heat for industrial processes or electric power generation in the temperature range 540 to 1000(0)C and evaluates the effects of the requirements on air cooled central receivers. Potential IPH applications are identified as large baseload users that are located some distance from the receiver. In the electric power application, the receiver must supply heat to a pressurized gas power cycle. The difficulty in providing cost effective thermal transport and thermal storage for air cooled receivers is a critical problem.

  6. Significance of 1,3-butadiene to the US air toxics regulatory effort.

    PubMed

    Morrow, N L

    2001-06-01

    Because of its prevalence, particularly as a combustion by-product, 1,3-butadiene is a particularly important air toxic. It plays a significant role in all air toxics regulatory efforts in the US. The various requirements of the Federal Clean Air Act (CAA) dealing with air toxics are reviewed and the significance of 1,3-butadiene in each area is discussed in light of what is known about its emissions and health effects. The impacts of the changes in the understanding of 1,3-butadiene cancer potency over the past 15 years demonstrates the possible impact of such benchmarks and the importance of using the best science in understanding public health risks.

  7. Evaluating CMIP5 models using AIRS tropospheric air temperature and specific humidity climatology

    NASA Astrophysics Data System (ADS)

    Tian, Baijun; Fetzer, Eric J.; Kahn, Brian H.; Teixeira, Joao; Manning, Evan; Hearty, Thomas

    2013-01-01

    This paper documents the climatological mean features of the Atmospheric Infrared Sounder (AIRS) monthly mean tropospheric air temperature (ta, K) and specific humidity (hus, kg/kg) products as part of the Obs4MIPs project and compares them to those from NASA's Modern Era Retrospective analysis for Research and Applications (MERRA) for validation and 16 models from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) for CMIP5 model evaluation. MERRA is warmer than AIRS in the free troposphere but colder in the boundary layer with differences typically less than 1 K. MERRA is also drier (~10%) than AIRS in the tropical boundary layer but wetter (~30%) in the tropical free troposphere and the extratropical troposphere. In particular, the large MERRA-AIRS specific humidity differences are mainly located in the deep convective cloudy regions indicating that the low sampling of AIRS in the cloudy regions may be the main reason for these differences. In comparison to AIRS and MERRA, the sixteen CMIP5 models can generally reproduce the climatological features of tropospheric air temperature and specific humidity well, but several noticeable biases exist. The models have a tropospheric cold bias (around 2 K), especially in the extratropical upper troposphere, and a double-ITCZ problem in the troposphere from 1000 hPa to 300 hPa, especially in the tropical Pacific. The upper-tropospheric cold bias exists in the most (13 of 16) models, and the double-ITCZ bias is found in all 16 CMIP5 models. Both biases are independent of the reference dataset used (AIRS or MERRA).

  8. Record low surface air temperature at Vostok station, Antarctica

    NASA Astrophysics Data System (ADS)

    Turner, John; Anderson, Phil; Lachlan-Cope, Tom; Colwell, Steve; Phillips, Tony; Kirchgaessner, AméLie; Marshall, Gareth J.; King, John C.; Bracegirdle, Tom; Vaughan, David G.; Lagun, Victor; Orr, Andrew

    2009-12-01

    The lowest recorded air temperature at the surface of the Earth was a measurement of -89.2°C made at Vostok station, Antarctica, at 0245 UT on 21 July 1983. Here we present the first detailed analysis of this event using meteorological reanalysis fields, in situ observations and satellite imagery. Surface temperatures at Vostok station in winter are highly variable on daily to interannual timescales as a result of the great sensitivity to intrusions of maritime air masses as Rossby wave activity changes around the continent. The record low temperature was measured following a near-linear cooling of over 30 K over a 10 day period from close to mean July temperatures. The event occurred because of five specific conditions that arose: (1) the temperature at the core of the midtropospheric vortex was at a near-record low value; (2) the center of the vortex moved close to the station; (3) an almost circular flow regime persisted around the station for a week resulting in very little warm air advection from lower latitudes; (4) surface wind speeds were low for the location; and (5) no cloud or diamond dust was reported above the station for a week, promoting the loss of heat to space via the emission of longwave radiation. We estimate that should a longer period of isolation occur the surface temperature at Vostok could drop to around -96°C. The higher site of Dome Argus is typically 5-6 K colder than Vostok so has the potential to record an even lower temperature.

  9. Air conditioner operation behaviour based on students' skin temperature in a classroom.

    PubMed

    Song, Gook-Sup; Lim, Jae-Han; Ahn, Tae-Kyung

    2012-01-01

    A total of 25 college students participated in a study to determine when they would use an air conditioner during a lecture in a university classroom. The ambient temperature and relative humidity were measured 75 cm above the floor every minute. Skin temperatures were measured every minute at seven points, according to the recommendation of Hardy and Dubois. The average clothing insulation value (CLO) of subjects was 0.53 ± 0.07 CLO. The mean air velocity in the classroom was 0.13 ± 0.028 m/s. When the subjects turned the air conditioner both on and off, the average ambient temperatures, relative humidity and mean skin temperatures were 27.4 and 23.7 °C (p = 0.000), 40.9 and 40.0% (p = 0.528) and 32.7 and 32.2 °C (p = 0.024), respectively. When the status of the air conditioner was changed, the differences of skin temperatures in core body parts (head, abdomen and thigh) were not statistically significant. However, in the extremities (mid-lower arm, hand, shin and instep), the differences were statistically significant. Subjects preferred a fluctuating environment to a constant temperature condition. We found that a changing environment does not affect classroom study.

  10. Elevation of nasal mucosal temperature increases the ability of the nose to warm and humidify air.

    PubMed

    Abbott, D J; Baroody, F M; Naureckas, E; Naclerio, R M

    2001-01-01

    The nose functions to warm and humidify inspired air. The factors that influence these functions have been studied to a limited degree. We have developed a method for measuring the temperature and relative humidity of the air before and after nasal conditioning to study nasal function. In this experiment we studied the effects of raising the mucosal surface temperature by immersion of the feet in warm water. Six subjects (avg. age = 27.0 years) were randomized to immersion of the feet in 30 degrees C and 40 degrees C water. The nasal mucosal temperature increased significantly from the 32.2+/-1.3 degrees C during immersion in the 30 degrees C water to the 33.1+/-1.2 degrees C during immersion in 40 degrees water (p < 0.05). No significant difference in nasal volume was noted between the 30 degrees (17.8+/-4.5 cc) and the 40 degrees (17.7+/-5.3 cc) immersions. There was a significant increase in the conditioning capacity of the nose (as measured by total water content of inspired air) in response to cold-air challenge during the 40 degrees immersion (1669+/-312 mg water) when compared to the 30 degrees immersion (1324+/-152 mg water). From these data we deduce that warming of the nasal mucosa improves the ability of the nose to condition inspired air without a significant change in the volume of the nasal cavity.

  11. 40 CFR 52.1382 - Prevention of significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Prevention of significant deterioration... § 52.1382 Prevention of significant deterioration of air quality. (a) The Montana plan, as submitted... does not apply to sources proposing to construct on Indian Reservations. (b) Regulation for...

  12. 40 CFR 52.1382 - Prevention of significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Prevention of significant deterioration... § 52.1382 Prevention of significant deterioration of air quality. (a) The Montana plan, as submitted... does not apply to sources proposing to construct on Indian Reservations. (b) Regulation for...

  13. 40 CFR 52.1829 - Prevention of significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Prevention of significant deterioration... Dakota § 52.1829 Prevention of significant deterioration of air quality. (a) The North Dakota plan, as... does not apply to sources proposing to construct on Indian Reservations. (b) Regulation for...

  14. 40 CFR 52.1829 - Prevention of significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Prevention of significant deterioration... Dakota § 52.1829 Prevention of significant deterioration of air quality. (a) The North Dakota plan, as... does not apply to sources proposing to construct on Indian Reservations. (b) Regulation for...

  15. Temperature and Transpiration Resistances of Xanthium Leaves as Affected by Air Temperature, Humidity, and Wind Speed 1

    PubMed Central

    Drake, B. G.; Raschke, K.; Salisbury, F. B.

    1970-01-01

    Transpiration and temperatures of single, attached leaves of Xanthium strumarium L. were measured in high intensity white light (1.2 calories per square centimeter per minute on a surface normal to the radiation), with abundant water supply, at wind speeds of 90, 225, and 450 centimeters per second, and during exposure to moist and dry air. Partitioning of absorbed radiation between transpiration and convection was determined, and transpiration resistances were computed. Leaf resistances decreased with increasing temperature (down to a minimum of 0.36 seconds per centimeter). Silicone rubber replicas of leaf surfaces proved that the decrease was due to increased stomatal apertures. At constant air temperature, leaf resistances were higher in dry than in moist air with the result that transpiration varied less than would have been predicted on the basis of the water-vapor pressure difference between leaf and air. The dependence of stomatal conductance on temperature and moisture content of the air caused the following effects. At air temperatures below 35 C, average leaf temperatures were above air temperature by an amount dependent on wind velocity; increasing wind diminished transpiration. At air temperatures above 35 C, leaf temperatures were below air temperatures, and increasing wind markedly increased transpiration. Leaf temperatures equaled air temperature near 35 C at all wind speeds and in moist as well as in dry air. PMID:16657458

  16. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect

    Waye, S.; Musselman, M.; King, C.

    2014-09-01

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  17. Temperature Variations Recorded During Interinstitutional Air Shipments of Laboratory Mice

    PubMed Central

    Syversen, Eric; Pineda, Fernando J; Watson, Julie

    2008-01-01

    Despite extensive guidelines and regulations that govern most aspects of rodent shipping, few data are available on the physical environment experienced by rodents during shipment. To document the thermal environment experienced by mice during air shipments, we recorded temperatures at 1-min intervals throughout 103 routine interinstitutional shipments originating at our institution. We found that 49.5% of shipments were exposed to high temperatures (greater than 29.4 °C), 14.6% to low temperatures (less than 7.2 °C), and 61% to temperature variations of 11 °C or more. International shipments were more likely than domestic shipments to experience temperature extremes and large variations in temperature. Freight forwarders using passenger airlines rather than their own airplanes were more likely to have shipments that experienced temperature extremes or variations. Temperature variations were most common during stopovers. Some airlines were more likely than others to experience inflight temperature extremes or swings. Most domestic shipments lasted at least 24 h, whereas international shipments lasted 48 to 72 h. Despite exposure to high and low temperatures, animals in all but 1 shipment arrived alive. We suggest that simple measures, such as shipping at night during hot weather, provision of nesting material in shipping crates, and specifying aircraft cargo-hold temperatures that are suitable for rodents, could reduce temperature-induced stress. Measures such as additional training for airport ground crews, as previously recommended by the American Veterinary Medical Association, could further reduce exposure of rodents to extreme ambient temperatures during airport stopovers. PMID:18210996

  18. Opportunities to Reduce Air-Conditioning Loads Through Lower Cabin Soak Temperatures

    SciTech Connect

    Farrington, R.; Cuddy, M.; Keyser, M.; Rugh, J.

    1999-07-12

    Air-conditioning loads can significantly reduce electric vehicle (EV) range and hybrid electric vehicle (HEV) fuel economy. In addition, a new U. S. emissions procedure, called the Supplemental Federal Test Procedure (SFTP), has provided the motivation for reducing the size of vehicle air-conditioning systems in the United States. The SFTP will measure tailpipe emissions with the air-conditioning system operating. If the size of the air-conditioning system is reduced, the cabin soak temperature must also be reduced, with no penalty in terms of passenger thermal comfort. This paper presents the impact of air-conditioning on EV range and HEV fuel economy, and compares the effectiveness of advanced glazing and cabin ventilation. Experimental and modeled results are presented.

  19. Global surface air temperature variations: 1851-1984

    SciTech Connect

    Jones, P.D.; Raper, S.C.B.; Kelly, P.M.

    1986-11-01

    Many attempts have been made to combine station surface air temperature data into an average for the Northern Hemisphere. Fewer attempts have been made for the Southern Hemisphere because of the unavailability of data from the Antarctic mainland before the 1950s and the uncertainty of making a hemispheric estimate based solely on land-based analyses for a hemisphere that is 80% ocean. Past estimates have been based largely on data from the World Weather Records (Smithsonian Institution, 1927, 1935, 1947, and U.S. Weather Bureau, 1959-82) and have been made without considerable effort to detect and correct station inhomogeneities. Better estimates for the Southern Hemisphere are now possible because of the availability of 30 years of climatological data from Antarctica. The mean monthly surface air temperature anomalies presented in this package for the than those previously published because of the incorporation of data previously hidden away in archives and the analysis of station homogeneity before estimation.

  20. Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels: The AIRS Version 6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002 together with ASMU-A and HSB to form a next generation polar orbiting infrared and microwave atmosphere sounding system (Pagano et al 2003). The theoretical approach used to analyze AIRS/AMSU/HSB data in the presence of clouds in the AIRS Science Team Version 3 at-launch algorithm, and that used in the Version 4 post-launch algorithm, have been published previously. Significant theoretical and practical improvements have been made in the analysis of AIRS/AMSU data since the Version 4 algorithm. Most of these have already been incorporated in the AIRS Science Team Version 5 algorithm (Susskind et al 2010), now being used operationally at the Goddard DISC. The AIRS Version 5 retrieval algorithm contains three significant improvements over Version 4. Improved physics in Version 5 allowed for use of AIRS clear column radiances (R(sub i)) in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations were used primarily in the generation of clear column radiances (R(sub i)) for all channels. This new approach allowed for the generation of accurate Quality Controlled values of R(sub i) and T(p) under more stressing cloud conditions. Secondly, Version 5 contained a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 contained for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Susskind et al 2010 shows that Version 5 AIRS Only sounding are only slightly degraded from the AIRS/AMSU soundings, even at large fractional cloud

  1. Evidence of Lunar Phase Influence on Global Surface Air Temperatures

    NASA Technical Reports Server (NTRS)

    Anyamba, Ebby; Susskind, Joel

    2000-01-01

    Intraseasonal oscillations appearing in a newly available 20-year record of satellite-derived surface air temperature are composited with respect to the lunar phase. Polar regions exhibit strong lunar phase modulation with higher temperatures occurs near full moon and lower temperatures at new moon, in agreement with previous studies. The polar response to the apparent lunar forcing is shown to be most robust in the winter months when solar influence is minimum. In addition, the response appears to be influenced by ENSO events. The highest mean temperature range between full moon and new moon in the polar region between 60 deg and 90 deg latitude was recorded in 1983, 1986/87, and 1990/91. Although the largest lunar phase signal is in the polar regions, there is a tendency for meridional equatorward progression of anomalies in both hemispheres so that the warning in the tropics occurs at the time of the new moon.

  2. Influence of metallic vapours on thermodynamic and transport properties of two-temperature air plasma

    NASA Astrophysics Data System (ADS)

    Zhong, Linlin; Wang, Xiaohua; Cressault, Yann; Teulet, Philippe; Rong, Mingzhe

    2016-09-01

    The metallic vapours (i.e., copper, iron, and silver in this paper) resulting from walls and/or electrode surfaces can significantly affect the characteristics of air plasma. Different from the previous works assuming local thermodynamic equilibrium, this paper investigates the influence of metallic vapours on two-temperature (2 T) air plasma. The 2 T compositions of air contaminated by Cu, Fe, and Ag are first determined based on Saha's and Guldberg-Waage's laws. The thermodynamic properties (including mass density, specific enthalpy, and specific heat) are then calculated according to their definitions. After determining the collision integrals for each pair of species in air-metal mixtures using the newly published methods and source data, the transport coefficients (including electrical conductivity, viscosity, and thermal conductivity) are calculated for air-Cu, air-Fe, and air-Ag plasmas with different non-equilibrium degree θ (Te/Th). The influences of metallic contamination as well as non-equilibrium degree are discussed. It is found that copper, iron, and silver exist mainly in the form of Cu2, FeO, and AgO at low temperatures. Generally, the metallic vapours increase mass density at most temperatures, reduce the specific enthalpy and specific heat in the whole temperature range, and affect the transport properties remarkably from 5000 K to 20 000 K. The effect arising from the type of metals is little except for silver at certain temperatures. Besides, the departure from thermal equilibrium results in the delay of dissociation and ionization reactions, leading to the shift of thermodynamic and transport properties towards a higher temperature.

  3. Antarctic Sea ice variations and seasonal air temperature relationships

    NASA Technical Reports Server (NTRS)

    Weatherly, John W.; Walsh, John E.; Zwally, H. J.

    1991-01-01

    Data through 1987 are used to determine the regional and seasonal dependencies of recent trends of Antarctic temperature and sea ice. Lead-lag relationships involving regional sea ice and air temperature are systematically evaluated, with an eye toward the ice-temperature feedbacks that may influence climatic change. Over the 1958-1087 period the temperature trends are positive in all seasons. For the 15 years (l973-l987) for which ice data are available, the trends are predominantly positive only in winter and summer, and are most strongly positive over the Antarctic Peninsula. The spatially aggregated trend of temperature for this latter period is small but positive, while the corresponding trend of ice coverage is small but negative. Lag correlations between seasonal anomalies of the two variables are generally stronger with ice lagging the summer temperatures and with ice leading the winter temperatures. The implication is that summer temperatures predispose the near-surface waters to above-or below-normal ice coverage in the following fall and winter.

  4. Multi-fractal scaling comparison of the Air Temperature and the Surface Temperature over China

    NASA Astrophysics Data System (ADS)

    Jiang, Lei; Zhang, Jiping; Liu, Xinwei; Li, Fei

    2016-11-01

    The spatial and temporal multi-scaling behaviors between the daily Air Temperature (AT) and the Surface Temperature (ST) over China are compared in about 60-yr observations by Multi-fractal Detrended Fluctuation Analysis (MF-DFA) method. The different fractal phenomena and diversity features in the geographic distribution are found for the AT and ST series using MF-DFA. There are more multi-fractal features for the AT records but less for ST. The respective geographic sites show important scaling differences when compared to the multi-fractal signatures of AT with ST. An interval threshold for 95% confidence level is obtained by shuffling the AT records and the ST records. For the AT records, 93% of all observed stations shows the strong multi-fractal behaviors. In addition, the multi-fractal characteristics decrease with increasing latitude in South China and are obviously strong along the coast. The multi-fractal behaviors of the AT records between the Yangtze River and Yellow River basin and in most regions of Northwest China seem to be weak and not significant, even single mono-fractal features. However, for the ST records, the geographical distributions of multi-fractal phenomenon seem to be in disorder which account for 81% of the stations. The weak multi-fractal behaviors of the ST records are concentrated in North China, most regions of Northeast China.

  5. Sensitivity of New England Stream Temperatures to Air Temperature and Precipitation Under Projected Climate

    NASA Astrophysics Data System (ADS)

    Huang, T.; Samal, N. R.; Wollheim, W. M.; Stewart, R. J.; Zuidema, S.; Prousevitch, A.; Glidden, S.

    2015-12-01

    The thermal response of streams and rivers to changing climate will influence aquatic habitat. This study examines the impact that changing climate has on stream temperatures in the Merrimack River, NH/MA USA using the Framework for Aquatic Modeling in the Earth System (FrAMES), a spatially distributed river network model driven by air temperature, air humidity, wind speed, precipitation, and solar radiation. Streamflow and water temperatures are simulated at a 45-second (latitude x longitude) river grid resolution for 135 years under historical and projected climate variability. Contemporary streamflow (Nash-Sutcliffe Coefficient = 0.77) and river temperatures (Nash-Sutcliffe Coefficient = 0.89) matched at downstream USGS gauge data well. A suite of model runs were made in combination with uniformly increased daily summer air temperatures by 2oC, 4 oC and 6 oC as well as adjusted precipitation by -40%, -30%, -20%, -10% and +10% as a sensitivity analysis to explore a broad range of potential future climates. We analyzed the summer stream temperatures and the percent of river length unsuitable for cold to warm water fish habitats. Impacts are greatest in large rivers due to the accumulation of river temperature warming throughout the entire river network. Cold water fish (i.e. brook trout) are most strongly affected while, warm water fish (i.e. largemouth bass) aren't expected to be impacted. The changes in stream temperatures under various potential climate scenarios will provide a better understanding of the specific impact that air temperature and precipitation have on aquatic thermal regimes and habitat.

  6. Spatial distribution of air temperature in Toruń (Central Poland) and its causes

    NASA Astrophysics Data System (ADS)

    Przybylak, Rajmund; Uscka-Kowalkowska, Joanna; Araźny, Andrzej; Kejna, Marek; Kunz, Mieczysław; Maszewski, Rafał

    2017-01-01

    In this article, the results of an investigation into the air temperature pattern and development (including the urban heat island (UHI)) in Toruń (central Poland) are presented. For the analysis, daily mean temperature (Ti) as well as daily maximum (Tmax) and minimum (Tmin) temperatures for 2012 gathered for 20 sites, evenly distributed in the area of city, have been taken as source data. Additionally, in order to provide more extensive characteristics of the diversity of the air temperature in the study area, the diurnal temperature range (DTR) and the number of the so-called characteristic days were calculated as well. The impact of weather conditions (cloudiness and wind speed), atmospheric circulation, urban morphological parameters and land cover on the UHI in the study area was investigated. In Toruń, according to the present study, the average UHI intensity in 2012 was equal to 1.0 °C. The rise of cloudiness and wind speed led to a decrease of the magnitude of the UHI. Generally, in most cases, anticyclonic situations favour increased thermal contrast between rural and city areas, particularly in summer. Warm western circulation types significantly reduced temperature differences in the western side of the city and enlarged them in the eastern side of the city. Eastern cold types also have a similar influence on air temperature differences. Positive and statistically significant correlations have been found between the percentage of built-up areas (sealing factor) and air temperature. Conversely, sky view factor (SVF) reveals negative correlations which are statistically significant only for Tmin.

  7. 76 FR 59899 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Prevention of Significant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ... of Significant Deterioration Greenhouse Gas Tailoring Rule AGENCY: Environmental Protection Agency... subject to Indiana's PSD permitting requirements for their greenhouse gas (GHG) emissions. EPA proposed... Findings for Greenhouse Gases Under Section 202(a) of the Clean Air Act.'' 74 FR 66496 (December 15,...

  8. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  9. Effects of a ceramic coating on metal temperatures of an air-cooled turbine vane

    NASA Astrophysics Data System (ADS)

    Gladden, H. J.; Liebert, C. H.

    1980-02-01

    The metal temperatures of air cooled turbine vanes both uncoated and coated with the NASA thermal barrier system were studied experimentally. Current and advanced gas turbine engine conditions were simulated at reduced temperatures and pressures. Airfoil metal temperatures were significantly reduced, both locally and on the average, by use of the the coating. However, at low gas Reynolds number, the ceramic coating tripped a laminar boundary layer on the suction surface, and the resulting higher heat flux increased the metal temperatures. Simulated coating loss was also investigated and shown to increase local metal temperatures. However, the metal temperatures in the leading edge region remained below those of the uncoated vane tested at similar conditions. Metal temperatures in the trailing edge region exceeded those of the uncoated vane.

  10. Effects of a ceramic coating on metal temperatures of an air-cooled turbine vane

    NASA Technical Reports Server (NTRS)

    Gladden, H. J.; Liebert, C. H.

    1980-01-01

    The metal temperatures of air cooled turbine vanes both uncoated and coated with the NASA thermal barrier system were studied experimentally. Current and advanced gas turbine engine conditions were simulated at reduced temperatures and pressures. Airfoil metal temperatures were significantly reduced, both locally and on the average, by use of the the coating. However, at low gas Reynolds number, the ceramic coating tripped a laminar boundary layer on the suction surface, and the resulting higher heat flux increased the metal temperatures. Simulated coating loss was also investigated and shown to increase local metal temperatures. However, the metal temperatures in the leading edge region remained below those of the uncoated vane tested at similar conditions. Metal temperatures in the trailing edge region exceeded those of the uncoated vane.

  11. On extreme rainfall intensity increases with air temperature

    NASA Astrophysics Data System (ADS)

    Molnar, Peter; Fatichi, Simone; Paschalis, Athanasios; Gaal, Ladislav; Szolgay, Jan; Burlando, Paolo

    2016-04-01

    The water vapour holding capacity of air increases at about 7% per degree C according to the Clausius-Clapeyron (CC) relation. This is one of the arguments why a warmer future atmosphere, being able to hold more moisture, will generate higher extreme precipitation intensities. However, several empirical studies have recently demonstrated an increase in extreme rain intensities with air temperature above CC rates, in the range 7-14% per degree C worldwide (called super-CC rates). This was observed especially for shorter duration rainfall, i.e. in hourly and finer resolution data (e.g. review in Westra et al., 2014). The super-CC rate was attributed to positive feedbacks between water vapour and the updraft dynamics in convective clouds and lateral supply (convergence) of moisture. In addition, mixing of storm types was shown to be potentially responsible for super-CC rates in empirical studies. Assuming that convective events are accompanied by lightning, we will show on a large rainfall dataset in Switzerland (30 year records of 10-min and 1-hr data from 59 stations) that while the average rate of increase in extreme rainfall intensity (95th percentile) is 6-7% in no-lightning events and 8-9% in lightning events, it is 11-13% per degree C when all events are combined (Molnar et al., 2015). These results are relevant for climate change studies which predict shifts in storm types in a warmer climate in some parts of the world. The observation that extreme rain intensity and air temperature are positively correlated has consequences for the stochastic modelling of rainfall. Most current stochastic models do not explicitly include a direct rain intensity-air temperature dependency beyond applying factors of change predicted by climate models to basic statistics of precipitation. Including this dependency explicitly in stochastic models will allow, for example in the nested modelling approach of Paschalis et al. (2014), the random cascade disaggregation routine to be

  12. Air-sea interactions in sea surface temperature frontal region

    NASA Astrophysics Data System (ADS)

    Pianezze, Joris; Redelsperger, Jean-Luc; Ardhuin, Fabrice; Reynaud, Thierry; Marié, Louis; Bouin, Marie-Noelle; Garnier, Valerie

    2015-04-01

    Representation of air-sea exchanges in coastal, regional and global models represent a challenge firstly due to the small scale of acting turbulent processes comparatively to the resolved scales of these models. Beyond this subgrid parameterization issue, a comprehensive understanding of air-sea interactions at the turbulent process scales is still lacking. Many successful efforts are dedicated to measure the energy and mass exchanges between atmosphere and ocean, including the effect of surface waves. In comparison less efforts are brought to understand the interactions between the atmospheric boundary layer and the oceanic mixing layer. In this regard, we are developing research mainly based on ideal and realistic numerical simulations which resolve very small scales (horizontal resolutions from 1 to 100 meters) in using grid nesting technics and coupled ocean-wave-atmosphere models. As a first step, the impact of marked gradients in sea surface temperatures (SST) on air-sea exchanges has been explored through realistic numerical simulations at 100m horizontal resolution. Results from simulations of a case observed during the FROMVAR experiment will be shown. The talk will mainly focus on the marked impact of SST front on the atmospheric boundary layer (stability and winds), the air-sea exchanges and surface parameters (rugosity, drag coefficient) Results will be also shown on the strong impact on the simulated atmosphere of small scale variability of SST field.

  13. Generation of low-temperature air plasma for food processing

    NASA Astrophysics Data System (ADS)

    Stepanova, Olga; Demidova, Maria; Astafiev, Alexander; Pinchuk, Mikhail; Balkir, Pinar; Turantas, Fulya

    2015-11-01

    The project is aimed at developing a physical and technical foundation of generating plasma with low gas temperature at atmospheric pressure for food industry needs. As known, plasma has an antimicrobial effect on the numerous types of microorganisms, including those that cause food spoilage. In this work an original experimental setup has been developed for the treatment of different foods. It is based on initiating corona or dielectric-barrier discharge in a chamber filled with ambient air in combination with a certain helium admixture. The experimental setup provides various conditions of discharge generation (including discharge gap geometry, supply voltage, velocity of gas flow, content of helium admixture in air and working pressure) and allows for the measurement of the electrical discharge parameters. Some recommendations on choosing optimal conditions of discharge generation for experiments on plasma food processing are developed.

  14. Global Distribution and Variability of Surface Skin and Surface Air Temperatures as Depicted in the AIRS Version-6 Data Set

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2014-01-01

    In this presentation, we will briefly describe the significant improvements made in the AIRS Version-6 retrieval algorithm, especially as to how they affect retrieved surface skin and surface air temperatures. The global distribution of seasonal 1:30 AM and 1:30 PM local time 12 year climatologies of Ts,a will be presented for the first time. We will also present the spatial distribution of short term 12 year anomaly trends of Ts,a at 1:30 AM and 1:30 PM, as well as the spatial distribution of temporal correlations of Ts,a with the El Nino Index. It will be shown that there are significant differences between the behavior of 1:30 AM and 1:30 PM Ts,a anomalies in some arid land areas.

  15. Annual committee reports on significant legislative, judicial and administrative developments in 1983: Air-Quality Committee

    SciTech Connect

    Not Available

    1984-01-01

    Congress passed no significant amendments to the Clean Air Act (CAA) in 1983. Under judicial developments, the committee describes seven categories of cases concerning: nonattainment areas under CAA section 107, the adequacy and appropriateness of state implementation plans and regulation of interstate air pollution, new source-permitting cases, regulation of hazardous air pollutants, enforcement and attorneys fees and the scope of section 304 and 307 of the CAA, sections 120 and 123 of the CAA, and 1983 Title II cases. Administration developments included new steps under Titles I and II of the CAA taken by the Environmental Protection Agency to promulgate final regulation on nonattainment sanctions and new source standards and to revise hydrocarbon and carbon monoxide standards for heavy-duty engines and for vehicles at high altitudes. 264 references.

  16. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  17. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  18. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  19. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  20. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  1. Pd-modified Reactive Air Braze for Increased Melting Temperature

    SciTech Connect

    Hardy, John S.; Weil, K. Scott; Kim, Jin Yong Y.; Darsell, Jens T.

    2005-03-01

    Complex high temperature devices such as planar solid oxide fuel cell (pSOFC) stacks often require a two-step sealing process. For example, in pSOFC stacks the oxide ceramic fuel cell plates might be sealed into metallic support frames in one step. Then the frames with the fuel plates sealed to them would be joined together in a separate sealing step to form the fuel cell stack. In this case, the initial seal should have a sufficiently high solidus temperature that it will not begin to remelt at the sealing temperature of the material used for the subsequent sealing step. Previous experience has indicated that, when heated at a rate of 10°C/min, Ag-CuO reactive air braze (RAB) compositions have solidus and liquidus temperatures in the approximate range of 925 to 955°C. Therefore, compositionally modifying the original Ag-CuO braze with Pd-additions such that the solidus temperature of the new braze is between 1025 and 1050°C would provide two RAB compositions with a difference in melting points large enough to allow reactive air brazing of both sets of seals in the fuel cell stack. This study determines the appropriate ratio of Pd to Ag in RAB required to achieve a solidus in the desired range and discusses the wettability of the resulting Pd-Ag-CuO brazes on YSZ substrates. The interfacial microstructures and flexural strengths of Pd-Ag-CuO joints in YSZ will also be presented.

  2. Effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding.

    PubMed

    Secilmis, Asli; Bulbul, Mehmet; Sari, Tugrul; Usumez, Aslihan

    2013-01-01

    The neodymium/yttrium-aluminum-garnet (Nd/YAG) laser has been suggested to repair broken prostheses in the mouth. This study investigated the effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding. Three intact human maxillary molars were prepared for full-veneer crown. For each tooth, dentin thicknesses in mesiobuccal cusp was 2, 3, or 4 mm. Twenty dies were duplicated from each of the prepared teeth. For metal copings with 0.5-mm thickness, wax patterns were prepared with dip wax technique directly onto each of dies. All patterns were sprued and invested. The castings were made using a nickel-chromium alloy (Nicromed Premium, Neodontics). A hole with 0.5-mm diameter was prepared on the mesiobuccal cusp of each crown. The Nd/YAG laser (9.85 W; 1 Hz repetition rate; fluence, 1.230 J/cm(2); Fidelis Plus 3, Fotona) was used for welding with or without air cooling (n = 10). The temperature rise was measured in pulpal chamber with a J-type thermocouple wire that was connected to a data logger. Differences between start and highest temperature reading were taken, and temperature rise values were compared using two-way analysis of variance and Tukey's honestly significant difference tests (α = .05). Pulpal temperature rise varied significantly depending on the dentin thickness and air cooling (p < 0.05). The non-air cooling group induced significantly the highest temperature increases. There were no significant differences between 2- and 3-mm dentin thicknesses groups (p > 0.05); however, pulpal temperature rise was the lowest for 4-mm dentin thickness group (p < 0.05). The highest values of thermal increase were found in the pulp chamber (6.8°C) when no air cooling was used in 2-mm dentin thickness group. Laser welding on base metal castings with Nd/YAG laser can be applied with air cooling to avoid temperature rises known to adversely affect pulpal health when dentin thickness is 2 or 3 mm.

  3. Model-based estimation of changes in air temperature seasonality

    NASA Astrophysics Data System (ADS)

    Barbosa, Susana; Trigo, Ricardo

    2010-05-01

    Seasonality is a ubiquitous feature in climate time series. Climate change is expected to involve not only changes in the mean of climate parameters but also changes in the characteristics of the corresponding seasonal cycle. Therefore the identification and quantification of changes in seasonality is a highly relevant topic in climate analysis, particularly in a global warming context. However, the analysis of seasonality is far from a trivial task. A key challenge is the discrimination between long-term changes in the mean and long-term changes in the seasonal pattern itself, which requires the use of appropriate statistical approaches in order to be able to distinguish between overall trends in the mean and trends in the seasons. Model based approaches are particularly suitable for the analysis of seasonality, enabling to assess uncertainties in the amplitude and phase of seasonal patterns within a well defined statistical framework. This work addresses the changes in the seasonality of air temperature over the 20th century. The analysed data are global air temperature values close to surface (2m above ground) and mid-troposphere (500 hPa geopotential height) from the recently developed 20th century reanalysis. This new 3-D Reanalysis dataset is available since 1891, considerably extending all other Reanalyses currently in use (e.g. NCAR, ECWMF), and was obtained with the Ensemble Filter (Compo et al., 2006) by assimilation of pressure observations into a state-of-the-art atmospheric general circulation model that includes the radiative effects of historical time-varying CO2 concentrations, volcanic aerosol emissions and solar output variations. A modeling approach based on autoregression (Barbosa et al, 2008; Barbosa, 2009) is applied within a Bayesian framework for the estimation of a time varying seasonal pattern and further quantification of changes in the amplitude and phase of air temperature over the 20th century. Barbosa, SM, Silva, ME, Fernandes, MJ

  4. Important temperatures associated with flames, their prediction and significance. (1) The ``instantaneous, spontaneous, ignition temperature''

    SciTech Connect

    Kretschmer, D.; Odgers, J.

    1998-07-01

    Two methods of calculating the instantaneous, spontaneous ignition temperature are suggested. Method 1 is based upon the prediction of the weak limits of any gaseous mixture and then calculating the corresponding temperature. Method 2 is a new equation related directly to experimental values of Ti. To obtain these techniques 409 data points have been examined representing the following--hydrogen, carbon monoxide, a range of alkanes, several other hydrocarbon fuels, a number of CHO fuels and a number of commercial fuel gases. Dilution effects due to added nitrogen, water, carbon dioxide, helium and argon have been included as well as changes of inlet temperatures from 298 to 600 K. These notes indicate that a satisfactory prediction of Ti offers the possibility of relating a number of flame parameters. These include the prediction of laminar flame temperature distribution and flame velocity, the prediction of spontaneous ignition delays, and the extension of knowledge of, as well as the prediction of, Well Stirred Reactor performance.

  5. Neutral air density and temperature measurements by the TOTAL instrument aboard the ROSE payloads

    NASA Astrophysics Data System (ADS)

    Friker, A.; Luebken, F.-J.

    1992-06-01

    Four ROSE payloads, launched from November 1988 to February 1989 from northern Scandinavia, carried ionization gauges ('TOTAL' instruments) for neutral air density measurements in the altitude range 90-105 km. Temperature profiles are derived by integrating the number density profiles. Density and temperature data are presented. The limitations of the measurement technique as well as instrumental errors are discussed. In one of the flights (F1) a significant temperature enhancement was observed at an altitude where plasma instabilities were detected by independent measurements.

  6. An Experimental Investigation Into the Temperature Profile of a Compliant Foil Air Bearing

    NASA Technical Reports Server (NTRS)

    Radil, Kevin; Zeszotek, Michelle

    2004-01-01

    A series of tests was performed to determine the internal temperature profile in a compliant bump-type foil journal air bearing operating at room temperature under various speeds and load conditions. The temperature profile was collected by instrumenting a foil bearing with nine, type K thermocouples arranged in the center and along the bearing s edges in order to measure local temperatures and estimate thermal gradients in the axial and circumferential directions. To facilitate the measurement of maximum temperatures from viscous shearing in the air film, the thermocouples were tack welded to the backside of the bumps that were in direct contact with the top foil. The mating journal was coated with a high temperature solid lubricant that, together with the bearing, underwent high temperature start-stop cycles to produce a smooth, steady-state run-in surface. Tests were conducted at speeds from 20 to 50 krpm and loads ranging from 9 to 222 N. The results indicate that, over the conditions tested, both journal rotational speed and radial load are responsible for heat generation with speed playing a more significant role in the magnitude of the temperatures. The temperature distribution was nearly symmetric about the bearing center at 20 and 30 krpm but became slightly skewed toward one side at 40 and 50 krpm. Surprisingly, the maximum temperatures did not occur at the bearing edge where the minimum film thickness is expected but rather in the middle of the bearing where analytical investigations have predicted the air film to be much thicker. Thermal gradients were common during testing and were strongest in the axial direction from the middle of the bearing to its edges, reaching 3.78 8C/mm. The temperature profile indicated the circumferential thermal gradients were negligible.

  7. Effect of Ambient Design Temperature on Air-Cooled Binary Plant Output

    SciTech Connect

    Dan Wendt; Greg Mines

    2011-10-01

    Air-cooled binary plants are designed to provide a specified level of power production at a particular air temperature. Nominally this air temperature is the annual mean or average air temperature for the plant location. This study investigates the effect that changing the design air temperature has on power generation for an air-cooled binary plant producing power from a resource with a declining production fluid temperature and fluctuating ambient temperatures. This analysis was performed for plants operating both with and without a geothermal fluid outlet temperature limit. Aspen Plus process simulation software was used to develop optimal air-cooled binary plant designs for specific ambient temperatures as well as to rate the performance of the plant designs at off-design operating conditions. Results include calculation of annual and plant lifetime power generation as well as evaluation of plant operating characteristics, such as improved power generation capabilities during summer months when electric power prices are at peak levels.

  8. DDT in fuel air mixtures at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Card, J.; Rival, D.; Ciccarelli, G.

    2005-11-01

    An experimental study was carried out to investigate flame acceleration and deflagration-to-detonation transition (DDT) in fuel air mixtures at initial temperatures up to 573 K and pressures up to 2 atm. The fuels investigated include hydrogen, ethylene, acetylene and JP-10 aviation fuel. The experiments were performed in a 3.1-m long, 10-cm inner-diameter heated detonation tube equipped with equally spaced orifice plates. Ionization probes were used to measure the flame time-of-arrival from which the average flame velocity versus propagation distance could be obtained. The DDT composition limits and the distance required for the flame to transition to detonation were obtained from this flame velocity data. The correlation developed by Veser et al. (run-up distance to supersonic flames in obstacle-laden tubes. In the proceedings of the 4th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions, France (2002)) for the flame choking distance proved to work very well for correlating the detonation run-up distance measured in the present study. The only exception was for the hydrogen air data at elevated initial temperatures which tended to fall outside the scatter of the hydrocarbon mixture data. The DDT limits obtained at room temperature were found to follow the classical d/λ = 1 correlation, where d is the orifice plate diameter and λ is the detonation cell size. Deviations found for the high-temperature data could be attributed to the one-dimensional ZND detonation structure model used to predict the detonation cell size for the DDT limit mixtures. This simple model was used in place of actual experimental data not currently available.

  9. [Effects of sudden air temperature and pressure changes on mortality in the Czech Republic].

    PubMed

    Plavcová, E; Kyselý, J

    2009-04-01

    We have developed an algorithm for identifying sudden changes in air pressure and temperature over the Czech Republic. Such events were retrieved from the data covering in 1986-2005 and were matched with the daily numbers of all-cause deaths and deaths due to cardiovascular diseases from the national database, separately for the whole population and that aged 70 years and over. Excess daily mortality was determined by calculating deviations of the observed number of deaths from the expected number of deaths for each day in the respective groups. The relative deviation of the mortality the mean was calculated as the ratio of the excess mortality to the expected number of deaths. We used 3-hour air pressure data from 10 meteorological stations and hourly air temperature data from 9 stations representative of the Czech Republic. Pressure changes were evaluated on time scales of 3, 6 and 12 hours, separately for summer and winter time. Temperature changes were evaluated on a 24-hour time scale, separately for summer and winter season. Events characterized by pressure or temperature changes above the critical threshold and recorded within 24 hours at more than 50% of meteorological stations were retrieved. The critical thresholds were defined separately for each station using quantiles of distributions of air pressure and temperature changes. Relative mortality deviations for days D-2 (2 days before the change) to D+7 (7 days after the change) were averaged over the retrieved events. Statistical significance of the mean relative deviation was tested using the Monte Carlo method. Increased mortality followed large temperature increases and large pressure drops both in summer and winter months. Decreased mortality was observed after large pressure increases and large temperature drops in summer. Mortality variations are usually more pronounced in the population aged 70 years and over, and cardiovascular diseases account for most deaths after sudden temperature changes.

  10. Simulation and projection of summer surface air temperature over China: a comparison between a RCM and the driving global model

    NASA Astrophysics Data System (ADS)

    Li, Donghuan; Zhou, Tianjun; Zou, Liwei

    2016-04-01

    The regional climate model (version 3, RegCM3) with the horizontal resolution of 50 km was employed to downscale the historical and projected climate changes over CORDEX East Asia domain, nested within the global climate system model FGOALS-g2 (Flexible Global Ocean-Atmosphere-Land System Model: Grid-point Version 2). The simulated (1986-2005) and projected (2046-2065) summer surface air temperature changes under RCP8.5 scenario over China were compared between the RegCM3 and FGOALS-g2. The air temperature indices used in this study included tmx (daily maximum temperature), t2m (daily average temperature) and tmn (daily minimum temperature), and extreme high-temperature events included TXx (max tmx), TX90p (warm days) and WSDI (warm spell duration). Results indicated that both models could reasonably reproduce the climatological distribution of surface air temperature and extreme high-temperature events. Compared to the driving global climate model, the detailed characteristics of summer surface air temperature were better simulated in RegCM3 due to its higher horizontal resolution. Under the RCP8.5 scenario, summer surface air temperature over China will increase significantly during the middle of 21st century. RegCM3 projected larger increase of tmx than tmn over most regions of China, but in the western Tibet Plateau, the increase of tmn was larger. In the projection of FGOALS-g2, the projected changes of the three temperature indices (t2m, tmn, and tmx) were similar with larger increases over northeastern China and Tibet Plateau. Extreme high-temperature events were projected to increase significantly in both models. TX90p will increase more than 60% compared to present day, while WSDI will become twice of present day. Key words: Summer surface air temperature; Extreme high-temperature events; Regional climate model; Climate change

  11. Impact of Atlantic sea surface temperatures on the warmest global surface air temperature of 1998

    NASA Astrophysics Data System (ADS)

    Lu, Riyu

    2005-03-01

    The year 1998 is the warmest year in the record of instrumental measurements. In this study, an atmospheric general circulation model is used to investigate the role of sea surface temperatures (SSTs) in this warmth, with a focus on the role of the Atlantic Ocean. The model forced with the observed global SSTs captures the main features of land surface air temperature anomalies in 1998. A sensitivity experiment shows that in comparison with the global SST anomalies, the Atlantic SST anomalies can explain 35% of the global mean surface air temperature (GMAT) anomaly, and 57% of the land surface air temperature anomaly in 1998. The mechanisms through which the Atlantic Ocean influences the GMAT are likely different from season to season. Possible detailed mechanisms involve the impact of SST anomalies on local convection in the tropical Atlantic region, the consequent excitation of a Rossby wave response that propagates into the North Atlantic and the Eurasian continent in winter and spring, and the consequent changes in tropical Walker circulation in summer and autumn that induce changes in convection over the tropical Pacific. This in turn affects climate in Asia and Australia. The important role of the Atlantic Ocean suggests that attention should be paid not only to the tropical Pacific Ocean, but also to the tropical Atlantic Ocean in understanding the GMAT variability and its predictability.

  12. Estimation of Surface Air Temperature Over Central and Eastern Eurasia from MODIS Land Surface Temperature

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.

    2011-01-01

    Surface air temperature (T(sub a)) is a critical variable in the energy and water cycle of the Earth.atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T(sub a) from satellite remotely sensed land surface temperature (T(sub s)) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T(sub a) and MODIS T(sub s). The relationships between the maximum T(sub a) and daytime T(sub s) depend significantly on land cover types, but the minimum T(sub a) and nighttime T(sub s) have little dependence on the land cover types. The largest difference between maximum T(sub a) and daytime T(sub s) appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T(sub a) were estimated from 1 km resolution MODIS T(sub s) under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T(sub a) were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T(sub a) varies from 2.4 C over closed shrublands to 3.2 C over grasslands, and the MAE of the estimated minimum Ta is about 3.0 C.

  13. Improving 7-Day Forecast Skill by Assimilation of Retrieved AIRS Temperature Profiles

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Rosenberg, Bob

    2016-01-01

    We conducted a new set of Data Assimilation Experiments covering the period January 1 to February 29, 2016 using the GEOS-5 DAS. Our experiments assimilate all data used operationally by GMAO (Control) with some modifications. Significant improvement in Global and Southern Hemisphere Extra-tropical 7-day forecast skill was obtained when: We assimilated AIRS Quality Controlled temperature profiles in place of observed AIRS radiances, and also did not assimilate CrISATMS radiances, nor did we assimilate radiosonde temperature profiles or aircraft temperatures. This new methodology did not improve or degrade 7-day Northern Hemispheric Extra-tropical forecast skill. We are conducting experiments aimed at further improving of Northern Hemisphere Extra-tropical forecast skill.

  14. Protect and enhance: Lowi's juridical democracy and the prevention of significant deterioration of air quality

    SciTech Connect

    Meiburg, A.S.

    1986-01-01

    The capture of Federal regulatory agencies by the groups they were supposed to be regulating has been a topic of concern in the traditional literature of public administration. In his influential book The End of Liberalism, Professor Theordore Lowi suggested that capture resulted in part from vauge delegations of authority of Congress to regulatory agencies. Lowi argued that democracy would be better served if Congress were more specific in drafting laws, if agencies made greater use of formal rulemaking in implementing them, and if the courts rejected statutes which contained excessively vague delegations of authority - a remedy which he labeled juridicial democracy. This dissertation examines Lowi's theory in light of the experience of Congress and the Environmental Protection Agency (EPA) with the requirements of the Clean Air Act to prevent the significant deterioration of air quality in areas where air was already relatively clean. The history of the program to develop and carry out these requirements, known as PSD, is described in detail from its inception in the late 1960's through EPA's final regulations in 1980. Special attention is given to the actions taken by EPA after environmental groups successfully used the courts to force EPA to develop a PSD program in 1974, how Congress responded by amending the Clean Air Act in 1977, and the difficulties these amendments and subsequent additional court reviews caused for EPA.

  15. Effectiveness of an air-cooled vest using selected air temperature and humidity combinations.

    PubMed

    Pimental, N A; Cosimini, H M; Sawka, M N; Wenger, C B

    1987-02-01

    We evaluated the effectiveness of an air-cooled vest in reducing thermal strain of subjects exercising in the heat (49 degrees C dry bulb (db), 20 degrees C dew point (dp] in chemical protective clothing. Four male subjects attempted 300-min heat exposures at two metabolic rates (175 and 315 W) with six cooling combinations--control (no vest) and five different db and dp combinations. Air supplied to the vest at 15 scfm ranged from 20-27 degrees C db, 7-18 degrees C dp; theoretical cooling capacities were 498-687 W. Without the vest, endurance times were 118 min (175 W) and 73 min (315 W). Endurance times with the vest were 300 min (175 W) and 242-300 min (315 W). The five cooling combinations were similarly effective in reducing thermal strain and extending endurance time, although there was a trend for the vest to be more effective when supplied with air at the lower dry bulb temperature. At 175 W, subjects maintained a constant body temperature; at 315 W, the vest's ability to extend endurance is limited to about 5 hours.

  16. Trend analysis of air temperature and precipitation time series over Greece: 1955-2010

    NASA Astrophysics Data System (ADS)

    Marougianni, G.; Melas, D.; Kioutsioukis, I.; Feidas, H.; Zanis, P.; Anandranistakis, E.

    2012-04-01

    In this study, a database of air temperature and precipitation time series from the network of Hellenic National Meteorological Service has been developed in the framework of the project GEOCLIMA, co-financed by the European Union and Greek national funds through the Operational Program "Competitiveness and Entrepreneurship" of the Research Funding Program COOPERATION 2009. Initially, a quality test was applied to the raw data and then missing observations have been imputed with a regularized, spatial-temporal expectation - maximization algorithm to complete the climatic record. Next, a quantile - matching algorithm was applied in order to verify the homogeneity of the data. The processed time series were used for the calculation of temporal annual and seasonal trends of air temperature and precipitation. Monthly maximum and minimum surface air temperature and precipitation means at all available stations in Greece were analyzed for temporal trends and spatial variation patterns for the longest common time period of homogenous data (1955 - 2010), applying the Mann-Kendall test. The majority of the examined stations showed a significant increase in the summer maximum and minimum temperatures; this could be possibly physically linked to the Etesian winds, because of the less frequent expansion of the low over the southeastern Mediterranean. Summer minimum temperatures have been increasing at a faster rate than that of summer maximum temperatures, reflecting an asymmetric change of extreme temperature distributions. Total annual precipitation has been significantly decreased at the stations located in western Greece, as well as in the southeast, while the remaining areas exhibit a non-significant negative trend. This reduction is very likely linked to the positive phase of the NAO that resulted in an increase in the frequency and persistence of anticyclones over the Mediterranean.

  17. Data Assimilation Experiments using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2008-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AlRS data. Version 5 contains accurate case-by-case error estimates for most derived products, which are also used for quality control. We have conducted forecast impact experiments assimilating AlRS quality controlled temperature profiles using the NASA GEOS-5 data assimilation system, consisting of the NCEP GSI analysis coupled with the NASA FVGCM. Assimilation of quality controlled temperature profiles resulted in significantly improved forecast skill in both the Northern Hemisphere and Southern Hemisphere Extra-Tropics, compared to that obtained from analyses obtained when all data used operationally by NCEP except for AlRS data is assimilated. Experiments using different Quality Control thresholds for assimilation of AlRS temperature retrievals showed that a medium quality control threshold performed better than a tighter threshold, which provided better overall sounding accuracy; or a looser threshold, which provided better spatial coverage of accepted soundings. We are conducting more experiments to further optimize this balance of spatial coverage and sounding accuracy from the data assimilation perspective. In all cases, temperature soundings were assimilated well below cloud level in partially cloudy cases. The positive impact of assimilating AlRS derived atmospheric temperatures all but vanished when only AIRS stratospheric temperatures were assimilated. Forecast skill resulting from assimilation of AlRS radiances uncontaminated by clouds, instead of AlRS temperature soundings, was only slightly better than that resulting from assimilation of only stratospheric AlRS temperatures. This reduction in forecast skill is most likely the result of significant loss of tropospheric information when only AIRS radiances unaffected by clouds are used in the data assimilation process.

  18. Emissions of an AVCO Lycoming 0-320-DIAD air cooled light aircraft engine as a function of fuel-air ratio, timing, and air temperature and humidity

    NASA Technical Reports Server (NTRS)

    Meng, P. R.; Skorobatckyi, M.; Cosgrove, D. V.; Kempke, E. E., Jr.

    1976-01-01

    A carbureted aircraft engine was operated over a range of test conditions to establish the exhaust levels over the EPA seven-mode emissions cycle. Baseline (full rich production limit) exhaust emissions at an induction air temperature of 59 F and near zero relative humidity were 90 percent of the EPA standard for HC, 35 percent for NOx, and 161 percent for CO. Changes in ignition timing around the standard 25 deg BTDC from 30 deg BTDC to 20 deg BTDC had little effect on the exhaust emissions. Retarding the timing to 15 deg BTDC increased both the HC and CO emissions and decreased NOx emissions. HC and CO emissions decreased as the carburetor was leaned out, while NOx emissions increased. The EPA emission standards were marginally achieved at two leanout conditions. Variations in the quantity of cooling air flow over the engine had no effect on exhaust emissions. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased.

  19. Effect of air temperature and relative humidity at various fuel-air ratios on exhaust emissions on a per-mode basis of an Avco Lycoming 0-320 DIAD light aircraft engine. Volume 2: Individual data points

    NASA Technical Reports Server (NTRS)

    Skorobatckyi, M.; Cosgrove, D. V.; Meng, P. R.; Kempke, E. R.

    1976-01-01

    A carbureted four cylinder air cooled 0-320 DIAD Lycoming aircraft engine was tested to establish the effects of air temperature and humidity at various fuel-air ratios on the exhaust emissions on a per-mode basis. The test conditions included carburetor lean-out at air temperatures of 50, 59, 80, and 100 F at relative humidities of 0, 30, 60, and 80 percent. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased. Even at a fixed fuel-air ratio, the HC emissions increase and the NOx emissions decrease at the higher values of air temperature and humidity. Volume II contains the data taken at each of the individual test points.

  20. Air Surface Temperature Correlation with Greenhouse Gases by Using Airs Data Over Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Rajab, Jasim Mohammed; MatJafri, M. Z.; Lim, H. S.

    2014-08-01

    The main objective of this study is to develop algorithms for calculating the air surface temperature (AST). This study also aims to analyze and investigate the effects of greenhouse gases (GHGs) on the AST value in Peninsular Malaysia. Multiple linear regression is used to achieve the objectives of the study. Peninsular Malaysia has been selected as the research area because it is among the regions of tropical Southeast Asia with the greatest humidity, pockets of heavy pollution, rapid economic growth, and industrialization. The predicted AST was highly correlated ( R = 0.783) with GHGs for the 6-year data (2003-2008). Comparisons of five stations in 2009 showed close agreement between the predicted AST and the observed AST from AIRS, especially in the wet season (within 1.3 K). The in situ data ranged from 1 to 2 K. Validation results showed that AST ( R = 0.776-0.878) has values nearly the same as the observed AST from AIRS. We found that O3 during the wet season was indicated by a strongly positive beta coefficient (0.264-0.992) with AST. The CO2 yields a reasonable relationship with temperature with low to moderate beta coefficient (-0.065 to 0.238). The O3, CO2, and environmental variables experienced different seasonal fluctuations that depend on weather conditions and topography. The concentration of gases and pollution were the highest over industrial zones and overcrowded cities, and the dry season was more polluted compared with the wet season. These results indicate the advantage of using the satellite AIRS data and a correlation analysis to investigate the effect of atmospheric GHGs on AST over Peninsular Malaysia. An algorithm that is capable of retrieving Peninsular Malaysian AST in all weather conditions with total uncertainties ranging from 1 to 2 K was developed.

  1. Temperature profile and producer gas composition of high temperature air gasification of oil palm fronds

    NASA Astrophysics Data System (ADS)

    Guangul, F. M.; Sulaiman, S. A.; Ramli, A.

    2013-06-01

    Environmental pollution and scarcity of reliable energy source are the current pressing global problems which need a sustainable solution. Conversion of biomass to a producer gas through gasification process is one option to alleviate the aforementioned problems. In the current research the temperature profile and composition of the producer gas obtained from the gasification of oil palm fronds by using high temperature air were investigated and compared with unheated air. By preheating the gasifying air at 500°C the process temperature were improved and as a result the concentration of combustible gases and performance of the process were improved. The volumetric percentage of CO, CH4 and H2 were improved from 22.49, 1.98, and 9.67% to 24.98, to 2.48% and 13.58%, respectively. In addition, HHV, carbon conversion efficiency and cold gas efficiency were improver from 4.88 MJ/Nm3, 83.8% and 56.1% to 5.90 MJ/Nm3, 87.3% and 62.4%, respectively.

  2. Cyclic Oxidation of High-Temperature Alloy Wires in Air

    NASA Technical Reports Server (NTRS)

    Reigel, Marissa M.

    2004-01-01

    High-temperature alloy wires are proposed for use in seal applications for future re-useable space vehicles. These alloys offer the potential for improved wear resistance of the seals. The wires must withstand the high temperature environments the seals are subjected to as well as maintain their oxidation resistance during the heating and cooling cycles of vehicle re-entry. To model this, the wires were subjected to cyclic oxidation in stagnant air. of this layer formation is dependent on temperature. Slow growing oxides such as chromia and alumina are desirable. Once the oxide is formed it can prevent the metal from further reacting with its environment. Cyclic oxidation models the changes in temperature these wires will undergo in application. Cycling the temperature introduces thermal stresses which can cause the oxide layer to break off. Re-growth of the oxide layer consumes more metal and therefore reduces the properties and durability of the material. were used for cyclic oxidation testing. The baseline material, Haynes 188, has a Co base and is a chromia former while the other two alloys, Kanthal A1 and PM2000, both have a Fe base and are alumina formers. Haynes 188 and Kanthal A1 wires are 250 pm in diameter and PM2000 wires are 150 pm in diameter. The coiled wire has a total surface area of 3 to 5 sq cm. The wires were oxidized for 11 cycles at 1204 C, each cycle containing a 1 hour heating time and a minimum 20 minute cooling time. Weights were taken between cycles. After 11 cycles, one wire of each composition was removed for analysis. The other wire continued testing for 70 cycles. Post-test analysis includes X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) for phase identification and morphology.

  3. Effect of posture on body temperature of young men in cold air.

    PubMed

    Donaldson, G C; Scarborough, M; Mridha, K; Whelan, L; Caunce, M; Keatinge, W R

    1996-01-01

    We studied eight young adult men to see whether a supine posture caused a fall in body core temperature in the cold, as it does in thermoneutral conditions. In air at 31 degrees C (thermoneutral), a supine posture for 3 h reduced mean aural, gastric, oesophageal and rectal temperatures by 0.2-0.4 degree C, compared to upright and increased femoral artery blood flow from 278 (SEM 42)ml.min-1 whilst upright to 437 (SEM 42) ml.min-1 whilst supine. In cold air (8 degrees C) the supine posture failed to reduce these temperatures [corrected] significantly, or to increase femoral blood flow: it reduced heart rate, and increased arterial systolic and pulse pressures adjusted to carotid sinus level, less than in thermoneutral conditions. However, the behaviour of core temperature at the four sites was significantly nonuniform between the two postures in the cold, mainly because the supine posture tended to reduce rectal temperature. It may have done so by reducing heat production in the muscles of the pelvis, since it reduced overall metabolic rate from 105 (SEM 8) to 87 (SEM 4) W.m-2 in the cold. In other respects the results indicated that posture ceased to have an important effect on body core temperatures during cold stress.

  4. Study of Ram-air Heat Exchangers for Reducing Turbine Cooling-air Temperature of a Supersonic Aircraft Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Diaguila, Anthony J; Livingood, John N B; Eckert, Ernst R G

    1956-01-01

    The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude of 70,000 feet. A compressor-bleed-air weight flow of 2.7 pounds per second was assumed for the coolant; ram air was considered as the other fluid. Pressure drops and inlet states of both fluids were prescribed, and ranges of compressor-bleed-air temperature reductions and of the ratio of compressor-bleed to ram-air weight flows were considered.

  5. Effect of production microclimate on female thermal state with increased temperature and air humidity

    NASA Technical Reports Server (NTRS)

    Machablishvili, O. G.

    1980-01-01

    The thermal state of women during the effect of high air temperature and relative humidity with a varying degree of physical loads was studied. Parameters for air temperature, relative humidity, and air movement were established. It was established that in women the thermo-regulatory stress occurs at lower air temperatures and with lower physical loads than in men. The accumulation of heat in women was revealed with lower air temperature than in men. It is concluded that to preserve the normal physiological state of the female organism it is necessary to create more favorable microclimate conditions and decrease the physical loads.

  6. Ecological significance of temperature tolerance and preference of some inshore California fishes

    SciTech Connect

    Shrode, J.B.; Zerba, K.E.; Stephens, J.S. Jr.

    1982-01-01

    Dwarf perch Micrometrus minimus, shiner perch Cymatogaster aggregata, blacksmith Chromis punctipinnis, black perch Embiotoca jacksoni, rainbow seaperch Hypurus caryi, and calico rockfish Sebastes dalli were collected in a vertical thermal gradient at the breakwater of King Harbor, Redondo Beach, California. Fish were acclimated at the field temperature. Acute preferred temperatures and avoidance temperatures determined in the laboratory were compared with temperatures in the field gradient at which the species were collected or observed by divers. Dwarf and black perch preferred temperatures significantly lower than their field temperatures. Preferred temperatures of the other four species were consistent with temperatures at their positions in the harbor. Although the field distributions of the six species are thermally differentiated, those of two species appear to be determined by factors other than temperature.

  7. Effects of lighting and air movement on temperatures in reproductive organs of plants in a closed plant growth facility

    NASA Astrophysics Data System (ADS)

    Kitaya, Y.; Hirai, H.

    Temperature increases in plant reproductive organs such as anthers and stigmas could cause fertility impediments and thus produce sterile seeds under artificial lighting conditions without adequately controlled environments in closed plant growth facilities. There is a possibility such a situation could occur in Bioregenerative Life Support Systems under microgravity conditions in space because there will be little natural convective or thermal mixing. This study was conducted to determine the temperature of the plant reproductive organs as affected by illumination and air movement under normal gravitational forces on the earth and to make an estimation of the temperature increase in reproductive organs in closed plant growth facilities under microgravity in space. Thermal images of reproductive organs of rice and strawberry were captured using infrared thermography at air temperatures of 10 11 °C. Compared to the air temperature, temperatures of petals, stigmas and anthers of strawberry increased by 24, 22 and 14 °C, respectively, after 5 min of lighting at an irradiance of 160 W m-2 from incandescent lamps. Temperatures of reproductive organs and leaves of strawberry were significantly higher than those of rice. The temperatures of petals, stigmas, anthers and leaves of strawberry decreased by 13, 12, 13 and 14 °C, respectively, when the air velocity was increased from 0.1 to 1.0 ms-1. These results show that air movement is necessary to reduce the temperatures of plant reproductive organs in plant growth facilities.

  8. Air exposure of coral is a significant source of dimethylsulfide (DMS) to the atmosphere

    NASA Astrophysics Data System (ADS)

    Hopkins, Frances E.; Bell, Thomas G.; Yang, Mingxi; Suggett, David J.; Steinke, Michael

    2016-10-01

    Corals are prolific producers of dimethylsulfoniopropionate (DMSP). High atmospheric concentrations of the DMSP breakdown product dimethylsulfide (DMS) have been linked to coral reefs during low tides. DMS is a potentially key sulfur source to the tropical atmosphere, but DMS emission from corals during tidal exposure is not well quantified. Here we show that gas phase DMS concentrations (DMSgas) increased by an order of magnitude when three Indo-Pacific corals were exposed to air in laboratory experiments. Upon re-submersion, an additional rapid rise in DMSgas was observed, reflecting increased production by the coral and/or dissolution of DMS-rich mucus formed by the coral during air exposure. Depletion in DMS following re-submersion was likely due to biologically-driven conversion of DMS to dimethylsulfoxide (DMSO). Fast Repetition Rate fluorometry showed downregulated photosynthesis during air exposure but rapid recovery upon re-submersion, suggesting that DMS enhances coral tolerance to oxidative stress during a process that can induce photoinhibition. We estimate that DMS emission from exposed coral reefs may be comparable in magnitude to emissions from other marine DMS hotspots. Coral DMS emission likely comprises a regular and significant source of sulfur to the tropical marine atmosphere, which is currently unrecognised in global DMS emission estimates and Earth System Models.

  9. Air exposure of coral is a significant source of dimethylsulfide (DMS) to the atmosphere

    PubMed Central

    Hopkins, Frances E.; Bell, Thomas G.; Yang, Mingxi; Suggett, David J.; Steinke, Michael

    2016-01-01

    Corals are prolific producers of dimethylsulfoniopropionate (DMSP). High atmospheric concentrations of the DMSP breakdown product dimethylsulfide (DMS) have been linked to coral reefs during low tides. DMS is a potentially key sulfur source to the tropical atmosphere, but DMS emission from corals during tidal exposure is not well quantified. Here we show that gas phase DMS concentrations (DMSgas) increased by an order of magnitude when three Indo-Pacific corals were exposed to air in laboratory experiments. Upon re-submersion, an additional rapid rise in DMSgas was observed, reflecting increased production by the coral and/or dissolution of DMS-rich mucus formed by the coral during air exposure. Depletion in DMS following re-submersion was likely due to biologically-driven conversion of DMS to dimethylsulfoxide (DMSO). Fast Repetition Rate fluorometry showed downregulated photosynthesis during air exposure but rapid recovery upon re-submersion, suggesting that DMS enhances coral tolerance to oxidative stress during a process that can induce photoinhibition. We estimate that DMS emission from exposed coral reefs may be comparable in magnitude to emissions from other marine DMS hotspots. Coral DMS emission likely comprises a regular and significant source of sulfur to the tropical marine atmosphere, which is currently unrecognised in global DMS emission estimates and Earth System Models. PMID:27796323

  10. Requirement to Publish All Significant Final Actions Under Title I of The Clean Air Act

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  11. STUDY ON AIR INGRESS MITIGATION METHODS IN THE VERY HIGH TEMPERATURE GAS COOLED REACTOR (VHTR)

    SciTech Connect

    Chang H. Oh

    2011-03-01

    An air-ingress accident followed by a pipe break is considered as a critical event for a very high temperature gas-cooled reactor (VHTR). Following helium depressurization, it is anticipated that unless countermeasures are taken, air will enter the core through the break leading to oxidation of the in-core graphite structure. Thus, without mitigation features, this accident might lead to severe exothermic chemical reactions of graphite and oxygen. Under extreme circumstances, a loss of core structural integrity may occur along with excessive release of radiological inventory. Idaho National Laboratory under the auspices of the U.S. Department of Energy is performing research and development (R&D) that focuses on key phenomena important during challenging scenarios that may occur in the VHTR. Phenomena Identification and Ranking Table (PIRT) studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Oh et al. 2006, Schultz et al. 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) requirements are part of the experimental validation plan. This paper discusses about various air-ingress mitigation concepts applicable for the VHTRs. The study begins with identifying important factors (or phenomena) associated with the air-ingress accident by using a root-cause analysis. By preventing main causes of the important events identified in the root-cause diagram, the basic air-ingress mitigation ideas can be conceptually derived. The main concepts include (1) preventing structural degradation of graphite supporters; (2) preventing local stress concentration in the supporter; (3) preventing graphite oxidation; (4) preventing air ingress; (5) preventing density gradient driven flow; (4) preventing fluid density gradient; (5) preventing fluid temperature gradient; (6) preventing high temperature. Based on the basic concepts listed above, various air

  12. Variable air temperature response of gas-phase atmospheric polychlorinated biphenyls near a former manufacturing facility.

    PubMed

    Hermanson, Mark H; Scholten, Cheryl A; Compher, Kevin

    2003-09-15

    Many investigations of gas-phase atmospheric PCB show a strong relationship between concentration and air temperature, especially near PCB sources. Comparative gas-phase atmospheric PCB trends during an annual temperature regime at two sites near a former PCB manufacturing plant and nearby PCB landfills in Anniston, AL, indicate a departure from this trend. The Mars Hill sampling site, located closest to the plant and landfills, shows an annual average sigmaPCB concentration of 27 ng m(-3) (ranging from 8.7 to 82 ng m(-3)) three times the average at Carter, 1.5 km away (9 ng m(-3), ranging from 1.1 to 39). However, total PCB and congener concentrations vary more with air temperature at Carter where PCB are evaporating from surfaces during warmer weather. The slopes of the Clausius-Clapeyron plots of 18 of the most concentrated congeners representing dichloro- through heptachlorobiphenyl homologues are significantly higher at the Carter site. While some of the atmospheric PCB at Mars Hill is derived from ground surface evaporation, the source of much of it apparently is the material buried in the landfills, which has different thermal properties than surface materials and is not in equilibrium with air temperature.

  13. An improved method for correction of air temperature measured using different radiation shields

    NASA Astrophysics Data System (ADS)

    Cheng, Xinghong; Su, Debin; Li, Deping; Chen, Lu; Xu, Wenjing; Yang, Meilin; Li, Yongcheng; Yue, Zhizhong; Wang, Zijing

    2014-11-01

    The variation of air temperature measurement errors using two different radiation shields (DTR502B Vaisala, Finland, and HYTFZ01, Huayun Tongda Satcom, China) was studied. Datasets were collected in the field at the Daxing weather station in Beijing from June 2011 to May 2012. Most air temperature values obtained with these two commonly used radiation shields were lower than the reference records obtained with the new Fiber Reinforced Polymers (FRP) Stevenson screen. In most cases, the air temperature errors when using the two devices were smaller on overcast and rainy days than on sunny days; and smaller when using the imported rather than the Chinese shield. The measured errors changed sharply at sunrise and sunset, and reached maxima at noon. Their diurnal variation characteristics were, naturally, related to changes in solar radiation. The relationships between the record errors, global radiation, and wind speed were nonlinear. An improved correction method was proposed based on the approach described by Nakamura and Mahrt (2005) (NM05), in which the impact of the solar zenith angle (SZA) on the temperature error is considered and extreme errors due to changes in SZA can be corrected effectively. Measurement errors were reduced significantly after correction by either method for both shields. The error reduction rate using the improved correction method for the Chinese and imported shields were 3.3% and 40.4% higher than those using the NM05 method, respectively.

  14. Contribution of Modis Satellite Image to Estimate the Daily Air Temperature in the Casablanca City, Morocco

    NASA Astrophysics Data System (ADS)

    Bahi, Hicham; Rhinane, Hassan; Bensalmia, Ahmed

    2016-10-01

    Air temperature is considered to be an essential variable for the study and analysis of meteorological regimes and chronics. However, the implementation of a daily monitoring of this variable is very difficult to achieve. It requires sufficient of measurements stations density, meteorological parks and favourable logistics. The present work aims to establish relationship between day and night land surface temperatures from MODIS data and the daily measurements of air temperature acquired between [2011-20112] and provided by the Department of National Meteorology [DMN] of Casablanca, Morocco. The results of the statistical analysis show significant interdependence during night observations with correlation coefficient of R2=0.921 and Root Mean Square Error RMSE=1.503 for Tmin while the physical magnitude estimated from daytime MODIS observation shows a relatively coarse error with R2=0.775 and RMSE=2.037 for Tmax. A method based on Gaussian process regression was applied to compute the spatial distribution of air temperature from MODIS throughout the city of Casablanca.

  15. Detecting and adjusting temporal inhomogeneity in Chinese mean surface air temperature data

    NASA Astrophysics Data System (ADS)

    Li, Qingxiang; Liu, Xiaoning; Zhang, Hongzheng; Thomas C., Peterson; David R., Easterling

    2004-04-01

    Adopting the Easterling-Peterson (EP) techniques and considering the reality of Chinese meteorological observations, this paper designed several tests and tested for inhomogeneities in all Chinese historical surface air temperature series from 1951 to 2001. The result shows that the time series have been widely impacted by inhomogeneities resulting from the relocation of stations and changes in local environment such as urbanization or some other factors. Among these factors, station relocations caused the largest magnitude of abrupt changes in the time series, and other factors also resulted in inhomogeneities to some extent. According to the amplitude of change of the difference series and the monthly distribution features of surface air temperatures, discontinuities identified by applying both the E-P technique and supported by China’s station history records, or by comparison with other approaches, have been adjusted. Based on the above processing, the most significant temporal inhomogeneities were eliminated, and China’s most homogeneous surface air temperature series has thus been created. Results show that the inhomogeneity testing captured well the most important change of the stations, and the adjusted dataset is more reliable than ever. This suggests that the adjusted temperature dataset has great value of decreasing the uncertaities in the study of observed climate change in China.

  16. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.

    PubMed

    Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin

    2015-04-28

    We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks.

  17. Combustion and gasification characteristics of pulverized coal using high-temperature air

    SciTech Connect

    Hanaoka, R.; Nakamura, M.; Kiga, T.; Kosaka, H.; Iwahashi, T.; Yoshikawa, K.; Sakai, M.; Muramatsu, K.; Mochida, S.

    1998-07-01

    In order to confirm performance of high-temperature-air combusting of pulverized coal, laboratory-scale combustion and gasification tests of coal were conducted changing air temperature and oxygen concentration in the air. Theses were conducted in a drop tube furnace of 200mm in inside diameter and 2,000mm in length. The furnace was heated by ceramic heater up to 1,300 C. A high-temperature air preheater utilizing the HRS (High Cycle Regenerative Combustion System) was used to obtain high-temperature combustion air. As the results, NOx emission was reduced when pulverized coal was fired with high-temperature-air. On the other hand, by lower oxygen concentration in combustion air diluted by nitrogen, NOx emission slightly decreased while became higher under staging condition.

  18. Effect of low air velocities on thermal homeostasis and comfort during exercise at space station operational temperature and humidity

    NASA Technical Reports Server (NTRS)

    Beumer, Ronald J.

    1989-01-01

    The effectiveness of different low air velocities in maintaining thermal comfort and homeostasis during exercise at space station operational temperature and humidity was investigated. Five male subjects exercised on a treadmill for successive ten minute periods at 60, 71, and 83 percent of maximum oxygen consumption at each of four air velocities, 30, 50, 80, and 120 ft/min, at 22 C and 62 percent relative humidity. No consistent trends or statistically significant differences between air velocities were found in body weight loss, sweat accumulation, or changes in rectal, skin, and body temperatures. Occurrence of the smallest body weight loss at 120 ft/min, the largest sweat accumulation at 30 ft/min, and the smallest rise in rectal temperature and the greatest drop in skin temperature at 120 ft/min all suggested more efficient evaporative cooling at the highest velocity. Heat storage at all velocities was evidenced by increased rectal and body temperatures; skin temperatures declined or increased only slightly. Body and rectal temperature increases corresponded with increased perception of warmth and slight thermal discomfort as exercise progressed. At all air velocities, mean thermal perception never exceeded warm and mean discomfort, greatest at 30 ft/min, was categorized at worst as uncomfortable; sensation of thermal neutrality and comfort returned rapidly after cessation of exercise. Suggestions for further elucidation of the effects of low air velocities on thermal comfort and homeostasis include larger numbers of subjects, more extensive skin temperature measurements and more rigorous analysis of the data from this study.

  19. Quantifying the impact of land cover composition on intra-urban air temperature variations at a mid-latitude city.

    PubMed

    Yan, Hai; Fan, Shuxin; Guo, Chenxiao; Hu, Jie; Dong, Li

    2014-01-01

    The effects of land cover on urban-rural and intra-urban temperature differences have been extensively documented. However, few studies have quantitatively related air temperature to land cover composition at a local scale which may be useful to guide landscape planning and design. In this study, the quantitative relationships between air temperature and land cover composition at a neighborhood scale in Beijing were investigated through a field measurement campaign and statistical analysis. The results showed that the air temperature had a significant positive correlation with the coverage of man-made surfaces, but the degree of correlation varied among different times and seasons. The different land cover types had different effects on air temperature, and also had very different spatial extent dependence: with increasing buffer zone size (from 20 to 300 m in radius), the correlation coefficient of different land cover types varied differently, and their relative impacts also varied among different times and seasons. At noon in summer, ∼ 37% of the variations in temperature were explained by the percentage tree cover, while ∼ 87% of the variations in temperature were explained by the percentage of building area and the percentage tree cover on summer night. The results emphasize the key role of tree cover in attenuating urban air temperature during daytime and nighttime in summer, further highlighting that increasing vegetation cover could be one effective way to ameliorate the urban thermal environment.

  20. How the Plant Temperature Links to the Air Temperature in the Desert Plant Artemisia ordosica.

    PubMed

    Yu, Ming-Han; Ding, Guo-Dong; Gao, Guang-Lei; Sun, Bao-Ping; Zhao, Yuan-Yuan; Wan, Li; Wang, De-Ying; Gui, Zi-Yang

    2015-01-01

    Plant temperature (Tp) is an important indicator of plant health. To determine the dynamics of plant temperature and self-cooling ability of the plant, we measured Tp in Artemisia ordosica in July, in the Mu Us Desert of Northwest China. Related factors were also monitored to investigate their effects on Tp, including environmental factors, such as air temperature (Ta), relative humidity, wind speed; and physiological factors, such as leaf water potential, sap flow, and water content. The results indicate that: 1) Tp generally changes in conjunction with Ta mainly, and varies with height and among the plant organs. Tp in the young branches is most constant, while it is the most sensitive in the leaves. 2) Correlations between Tp and environmental factors show that Tp is affected mainly by Ta. 3) The self-cooling ability of the plant was effective by midday, with Tp being lower than Ta. 4) Increasing sap flow and leaf water potential showed that transpiration formed part of the mechanism that supported self-cooling. Increased in water conductance and specific heat at midday may be additional factors that contribute to plant cooling ability. Therefore, our results confirmed plant self-cooling ability. The response to high temperatures is regulated by both transpiration speed and an increase in stem water conductance. This study provides quantitative data for plant management in terms of temperature control. Moreover, our findings will assist species selection with taking plant temperature as an index.

  1. Rapid fluctuations of the air and surface temperature in the city of Bucharest (Romania)

    NASA Astrophysics Data System (ADS)

    Cheval, Sorin; Dumitrescu, Alexandru; Hustiu, Mihaita-Cristinel

    2016-04-01

    Urban areas derive significant changes of the ambient temperature generating specific challenges for society and infrastructure. Extreme temperature events, heat and cold waves affect the human comfort, increase the health risk, and require specific building regulations and emergency preparedness, strongly related to the magnitude and frequency of the thermal hazards. Rapid changes of the temperature put a particular stress for the urban settlements, and the topic has been approached constantly in the scientific literature. Due to its geographical position in a plain area with a temperate climate and noticeable continental influence, the city of Bucharest (Romania) deals with high seasonal and daily temperature variations. However, rapid fluctuations also occur at sub-daily scale caused by cold or warm air advections or by very local effects (e.g. radiative heat exchange, local precipitation). For example, in the area of Bucharest, the cold fronts of the warm season may trigger temperature decreasing up to 10-15 centigrades / hour, while warm advections lead to increasing of 1-2 centigrades / hour. This study focuses on the hourly and sub-hourly temperature variations over the period November 2014 - February 2016, using air temperature data collected from urban sensors and meteorological stations of the national network, and land surface temperature data obtained from satellite remote sensing. The analysis returns different statistics, such as magnitude, intensity, frequency, simultaneous occurrence and areal coverage of the rapid temperature fluctuations. Furthermore, the generating factors for each case study are assessed, and the results are used to define some preliminary patterns and enhance the urban temperature forecast at fine scale. The study was funded by the Romanian Programme Partnership in Priority Domains, PN - II - PCCA - 2013 - 4 - 0509 - Reducing UHI effects to improve urban comfort and balance energy consumption in Bucharest (REDBHI).

  2. Topographic and spatial impacts of temperature inversions on air quality using mobile air pollution surveys.

    PubMed

    Wallace, Julie; Corr, Denis; Kanaroglou, Pavlos

    2010-10-01

    We investigated the spatial and topographic effects of temperature inversions on air quality in the industrial city of Hamilton, located at the western tip of Lake Ontario, Canada. The city is divided by a 90-m high topographic scarp, the Niagara Escarpment, and dissected by valleys which open towards Lake Ontario. Temperature inversions occur frequently in the cooler seasons, exacerbating the impact of emissions from industry and traffic. This study used pollution data gathered from mobile monitoring surveys conducted over a 3-year period, to investigate whether the effects of the inversions varied across the city. Temperature inversions were identified with vertical temperature data from a meteorological tower located within the study area. We divided the study area into an upper and lower zone separated by the Escarpment and further into six zones, based on location with respect to the Escarpment and industrial and residential areas, to explore variations across the city. The results identified clear differences in the responses of nitrogen dioxide (NO(2)) and fine particulate matter (PM2.5) to temperature inversions, based on the topographic and spatial criteria. We found that pollution levels increased as the inversion strengthened, in the lower city. However, the results also suggested that temperature inversions identified in the lower city were not necessarily experienced in the upper city with the same intensity. Further, pollution levels in the upper city appeared to decrease as the inversion deepened in the lower city, probably because of an associated change in prevailing wind direction and lower wind speeds, leading to decreased long-range transport of pollutants.

  3. Development rates of two Xenopsylla flea species in relation to air temperature and humidity.

    PubMed

    Krasnov, B R; Khokhlova, I S; Fielden, L J; Burdelova, N V

    2001-09-01

    The rate of development of immature fleas, Xenopsylla conformis Wagner and Xenopsylla ramesis Rothschild (Siphonaptera: Xenopsyllidae) was studied in the laboratory at 25 degrees C and 28 degrees C with 40, 55, 75 and 92% relative humidity (RH). These fleas are separately associated with the host jird Meriones crassus Sundevall in different microhabitats of the Ramon erosion cirque, Negev Highlands, Israel. This study of basic climatic factors in relation to flea bionomics provides the basis for ecological investigations to interpret reasons for paratopic local distributions of these two species of congeneric fleas on the same host. Both air temperature and RH were positively correlated with duration of egg and larval stages in both species. Change of humidity between egg and larval environments did not affect duration of larval development at any temperature. At each temperature and RH, the eggs and larvae of X. ramesis did not differ between males and females in the duration of their development, whereas female eggs and larvae of X. conformis usually developed significantly faster than those of males. For both species, male pupae developed slower than female pupae at the same air temperature and RH. Air temperature, but not RH, affected the duration of pupal development. At each humidity, duration of the pupal stage was significantly longer at 25 degrees C than at 28 degrees C: 15.3+/-1.7 vs. 11.7+/-1.2 days in X. conformis; 14.1+/-2.0 vs. 11.5+/-1.7 days in X. ramesis, with a significantly shorter pupal period of the latter species at 25 degrees C. These limited interspecific bionomic contrasts in relation to basic climatic factors appear insufficient to explain the differential habitat distributions of X. conformis and X. ramesis.

  4. Environmentally sound thermal energy extraction from coal and wastes using high temperature air combustion technology

    SciTech Connect

    Yoshikawa, Kunio

    1999-07-01

    High temperature air combustion is one of promising ways of burning relatively low BTU gas obtained from gasification of low grade coal or wastes. In this report, the author proposes a new power generation system coupled with high temperature air gasification of coal/wastes and high temperature air combustion of the syngas from coal/wastes. This system is realized by employing Multi-staged Enthalpy Extraction Technology (MEET). The basic idea of the MEET system is that coal or wastes are gasified with high temperature air of about 1,000 C, then the generated syngas is cooled in a heat recovery boiler to be cleaned-up in a gas cleanup system (desulfurization, desalinization and dust removal). Part of thermal energy contained in this cleaned-up syngas is used for high temperature air preheating, and the complete combustion of the fuel gas is done using also high temperature air for driving gas turbines or steam generation in a boiler.

  5. Temporal and spatial assessments of minimum air temperature using satellite surface temperature measurements in Massachusetts, USA

    PubMed Central

    Kloog, Itai; Chudnovsky, Alexandra; Koutrakis, Petros; Schwartz, Joel

    2015-01-01

    Although meteorological stations provide accurate air temperature observations, their spatial coverage is limited and thus often insufficient for epidemiological studies. Satellite data expand spatial coverage, enhancing our ability to estimate near surface air temperature (Ta). However, the derivation of Ta from surface temperature (Ts) measured by satellites is far from being straightforward. In this study, we present a novel approach that incorporates land use regression, meteorological variables and spatial smoothing to first calibrate between Ts and Ta on a daily basis and then predict Ta for days when satellite Ts data were not available. We applied mixed regression models with daily random slopes to calibrate Moderate Resolution Imaging Spectroradiometer (MODIS) Ts data with monitored Ta measurements for 2003. Then, we used a generalized additive mixed model with spatial smoothing to estimate Ta in days with missing Ts. Out-of-sample tenfold cross-validation was used to quantify the accuracy of our predictions. Our model performance was excellent for both days with available Ts and days without Ts observations (mean out-of-sample R2=0.946 and R2=0.941 respectively). Furthermore, based on the high quality predictions we investigated the spatial patterns of Ta within the study domain as they relate to urban vs. non-urban land uses. PMID:22721687

  6. Temporal and spatial assessments of minimum air temperature using satellite surface temperature measurements in Massachusetts, USA.

    PubMed

    Kloog, Itai; Chudnovsky, Alexandra; Koutrakis, Petros; Schwartz, Joel

    2012-08-15

    Although meteorological stations provide accurate air temperature observations, their spatial coverage is limited and thus often insufficient for epidemiological studies. Satellite data expand spatial coverage, enhancing our ability to estimate near surface air temperature (Ta). However, the derivation of Ta from surface temperature (Ts) measured by satellites is far from being straightforward. In this study, we present a novel approach that incorporates land use regression, meteorological variables and spatial smoothing to first calibrate between Ts and Ta on a daily basis and then predict Ta for days when satellite Ts data were not available. We applied mixed regression models with daily random slopes to calibrate Moderate Resolution Imaging Spectroradiometer (MODIS) Ts data with monitored Ta measurements for 2003. Then, we used a generalized additive mixed model with spatial smoothing to estimate Ta in days with missing Ts. Out-of-sample tenfold cross-validation was used to quantify the accuracy of our predictions. Our model performance was excellent for both days with available Ts and days without Ts observations (mean out-of-sample R(2)=0.946 and R(2)=0.941 respectively). Furthermore, based on the high quality predictions we investigated the spatial patterns of Ta within the study domain as they relate to urban vs. non-urban land uses.

  7. 76 FR 55799 - Approval of Clean Air Act Prevention of Significant Deterioration Permit Issued to Avenal Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... AGENCY 40 CFR Part 52 Approval of Clean Air Act Prevention of Significant Deterioration Permit Issued to Avenal Power Center, LLC To Construct the Avenal Energy Project AGENCY: Environmental Protection Agency... decision granting the Clean Air Act Prevention of Significant Deterioration (PSD) permit...

  8. Simultaneous Measurement of Air Temperature and Humidity Based on Sound Velocity and Attenuation Using Ultrasonic Probe

    NASA Astrophysics Data System (ADS)

    Motegi, Takahiro; Mizutani, Koichi; Wakatsuki, Naoto

    2013-07-01

    In this paper, an acoustic technique for air temperature and humidity measurement in moist air is described. The previous ultrasonic probe can enable the estimation of temperature from sound velocity in dry air by making use of the relationship between sound velocity and temperature. However, temperature measurement using the previous ultrasonic probe is not suitable in moist air because sound velocity also depends on humidity, and the temperature estimated from the sound velocity measured in moist air must be adjusted. Moreover, a method of humidity measurement by using only an ultrasonic probe has not been established. Thus, we focus on sound attenuation, which depends on temperature and humidity. Our proposed technique utilizes two parameters, sound velocity and attenuation, and can measure both temperature and humidity simultaneously. The acoustic technique for temperature and humidity measurement has the advantages that instantaneous temperature and humidity can be measured, and the measurement is not affected by thermal radiation because air itself is used as a sensing element. As an experiment, temperature and humidity are measured in a chamber, and compared with the reference values. The experimental results indicate the achievement of a practical temperature measurement accuracy of within +/-0.5 K in moist air, of which the temperature is 293-308 K and relative humidity (RH) is 50-90% RH, and the simultaneous measurement of temperature and humidity.

  9. Computational Fluid Dynamics Analyses on Very High Temperature Reactor Air Ingress

    SciTech Connect

    Chang H Oh; Eung S. Kim; Richard Schultz; David Petti; Hyung S. Kang

    2009-07-01

    A preliminary computational fluid dynamics (CFD) analysis was performed to understand density-gradient-induced stratified flow in a Very High Temperature Reactor (VHTR) air-ingress accident. Various parameters were taken into consideration, including turbulence model, core temperature, initial air mole-fraction, and flow resistance in the core. The gas turbine modular helium reactor (GT-MHR) 600 MWt was selected as the reference reactor and it was simplified to be 2-D geometry in modeling. The core and the lower plenum were assumed to be porous bodies. Following the preliminary CFD results, the analysis of the air-ingress accident has been performed by two different codes: GAMMA code (system analysis code, Oh et al. 2006) and FLUENT CFD code (Fluent 2007). Eventually, the analysis results showed that the actual onset time of natural convection (~160 sec) would be significantly earlier than the previous predictions (~150 hours) calculated based on the molecular diffusion air-ingress mechanism. This leads to the conclusion that the consequences of this accident will be much more serious than previously expected.

  10. Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H

    1937-01-01

    Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.

  11. [Temperature differences of air-rice plant under different irrigated water depths at spiking stage].

    PubMed

    Zhang, Bin; Zheng, Jian-chu; Huang, Shan; Tian, Yun-lu; Peng, Lan; Bian, Xin-min; Zhang, Wei-jian

    2008-01-01

    With rice cultivars Yangdao 6, Yangjing 9538 and Wuxiangjing 14 as test materials, field experiment was conducted to study the effects of 3 irrigated water depths (0 cm, 2-4 cm, and > 10 cm) on the temperature of different parts of rice plant at spiking stage. The results showed that from 10:30 to 15:00 on sunny days, irrigated water depth on paddy field had significant effects on the temperature of field surface, middle part of rice plant, and rice spike. The higher the water depth on field surface, the lower the temperature of rice plant and rice spike. At the water level > 10 cm, the average temperature differences between air and the rice spike, middle part of rice plant and field surface of these three cultivars were 1.37, 2.98 and 4.12 degrees C higher than those at the water depth of 0 cm, and 0.67, 1.59 and 2.17 degrees C higher than those at the water depth of 2-4 cm, respectively. In addition, the temperature differences were 0.71, 1.39 and 1.95 degrees C higher at the water depth of 2-4 cm than those at the water depth of 0 cm, respectively. Obvious temperature differences of air-rice plant were also observed among the three rice varieties under different irrigated water depths. The analysis of the characteristics of temperature transfer among field surface, middle part of plant and rice spike indicated that the temperature transfer patterns under all test water management regimes accorded with the principles of energy transfer, suggesting that keeping proper water depth on the field surface at rice spiking stage contributed great to the decrease of rice spike temperature and the alleviation of rice heat injury.

  12. Regression analysis in modeling of air surface temperature and factors affecting its value in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Rajab, Jasim Mohammed; Jafri, Mohd. Zubir Mat; Lim, Hwee San; Abdullah, Khiruddin

    2012-10-01

    This study encompasses air surface temperature (AST) modeling in the lower atmosphere. Data of four atmosphere pollutant gases (CO, O3, CH4, and H2O) dataset, retrieved from the National Aeronautics and Space Administration Atmospheric Infrared Sounder (AIRS), from 2003 to 2008 was employed to develop a model to predict AST value in the Malaysian peninsula using the multiple regression method. For the entire period, the pollutants were highly correlated (R=0.821) with predicted AST. Comparisons among five stations in 2009 showed close agreement between the predicted AST and the observed AST from AIRS, especially in the southwest monsoon (SWM) season, within 1.3 K, and for in situ data, within 1 to 2 K. The validation results of AST with AST from AIRS showed high correlation coefficient (R=0.845 to 0.918), indicating the model's efficiency and accuracy. Statistical analysis in terms of β showed that H2O (0.565 to 1.746) tended to contribute significantly to high AST values during the northeast monsoon season. Generally, these results clearly indicate the advantage of using the satellite AIRS data and a correlation analysis study to investigate the impact of atmospheric greenhouse gases on AST over the Malaysian peninsula. A model was developed that is capable of retrieving the Malaysian peninsulan AST in all weather conditions, with total uncertainties ranging between 1 and 2 K.

  13. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    Johnson, R. K.

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  14. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Spuler, S. M.; Spowart, M.; Lenschow, D. H.; Friesen, R. B.

    2014-09-01

    A new laser air-motion sensor measures the true airspeed with a standard uncertainty of less than 0.1 m s-1 and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the global positioning system, then indicate (via integrations of the hydrostatic equation during climbs and descents) that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature, these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that although the initial calibration of the measured static and dynamic pressures requires a measured temperature, once calibrated these measured pressures and the measurement of airspeed from the new laser air-motion sensor provide a measurement of temperature that does not depend on any other temperature sensor.

  15. Dynamics of Air Temperature, Velocity and Ammonia Emissions in Enclosed and Conventional Pig Housing Systems

    PubMed Central

    Song, J. I.; Park, K.-H.; Jeon, J. H.; Choi, H. L.; Barroga, A. J.

    2013-01-01

    This study aimed to compare the dynamics of air temperature and velocity under two different ventilation and housing systems during summer and winter in Korea. The NH3 concentration of both housing systems was also investigated in relation to the pig’s growth. The ventilation systems used were; negative pressure type for the enclosed pig house (EPH) and natural airflow for the conventional pig house (CPH). Against a highly fluctuating outdoor temperature, the EPH was able to maintain a stable temperature at 24.8 to 29.1°C during summer and 17.9 to 23.1°C during winter whilst the CPH had a wider temperature variance during summer at 24.7 to 32.3°C. However, the temperature fluctuation of the CPH during winter was almost the same with that of EPH at 14.5 to 18.2°C. The NH3 levels in the CPH ranged from 9.31 to 16.9 mg/L during summer and 5.1 to 19.7 mg/L during winter whilst that of the EPH pig house was 7.9 to 16.1 mg/L and 3.7 to 9.6 mg/L during summer and winter, respectively. These values were less than the critical ammonia level for pigs with the EPH maintaining a lower level than the CPH in both winter and summer. The air velocity at pig nose level in the EPH during summer was 0.23 m/s, enough to provide comfort because of the unique design of the inlet feature. However, no air movement was observed in almost all the lower portions of the CPH during winter because of the absence of an inlet feature. There was a significant improvement in weight gain and feed intake of pigs reared in the EPH compared to the CPH (p<0.05). These findings proved that despite the difference in the housing systems, a stable indoor temperature was necessary to minimize the impact of an avoidable and highly fluctuating outdoor temperature. The EPH consistently maintained an effective indoor airspeed irrespective of season; however the CPH had defective and stagnant air at pig nose level during winter. Characteristics of airflow direction and pattern were consistent relative to

  16. Diagnostic significance of nitric oxide concentrations in exhaled air from the airways in allergic rhinitis patients

    PubMed Central

    Krzych-Fałta, Edyta; Samoliński, Bolesław K; Zalewska, Marta

    2016-01-01

    Introduction The effect of nitric oxide (NO) on the human body is very important due its physiological regulation of the following functions of airways: modulation of ciliary movement and maintenance of sterility in sinuses. Aim To evaluate the diagnostic significance of NO concentrations in exhaled air from the upper and lower airways in patients diagnosed with allergic rhinitis (AR). Material and methods The subjects included in the study were a group of 30 people diagnosed with sensitivity to environmental allergens and a control group consisting of 30 healthy subjects. The measurement of NO in the air exhaled from the lower and upper airways was performed using an on-line method by means of Restricted Exhaled Breath (REB), as well as using the measurement procedure (chemiluminescence) set out in the guidelines prepared in 2005 by the American Thoracic Society and the European Respiratory Society. Results In the late phase of the allergic reaction, higher values of the level of exhaled NO concentration from the lower airways were observed in the groups of subjects up to the threshold values of 25.17 ppb in the group of subjects with year-round allergic rhinitis and 21.78 ppb in the group with diagnosed seasonal allergic rhinitis. The difference in the concentration of NO exhaled from the lungs between the test group and the control group in the 4th h of the test was statistically significant (p = 0.045). Conclusions Exhaled NO should be considered as a marker of airway inflammation. It plays an important role in the differential diagnosis of allergy. PMID:27279816

  17. Short-term effects of air temperature on plasma metabolite concentrations in patients undergoing cardiac cattheterization.

    EPA Science Inventory

    BACKGROUND: Epidemiological studies have shown associations between air temperature and cardiovascular health outcomes. Metabolic dysregulation might also play a role in the development of cardiovascular disease.OBJECTIVES: To investigate short-term temperature effects on metabol...

  18. Rainfall Prediction using Soil and Air Temperature in a Tropical Station

    NASA Astrophysics Data System (ADS)

    Chacko, Tessy P.; Renuka, G.

    2007-07-01

    An attempt is made to establish a linkage between soil and air temperature and south-west monsoon rainfall at Pillicode (12°12'N,75°10'E) a tropical station in north Kerala. The dependence of monsoon rainfall on pre-monsoon soil temperature decreases as the depth of the soil increases. A regression equation has been developed for the estimation of monsoon rainfall using pre-monsoon soil and air temperature. The results show that sub soil temperature along with air temperature can be used for forecasting the monsoon level.

  19. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 34 2013-07-01 2013-07-01 false NOX intake-air humidity...

  20. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 32 2010-07-01 2010-07-01 false NOX intake-air humidity...

  1. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 33 2014-07-01 2014-07-01 false NOX intake-air humidity...

  2. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 33 2011-07-01 2011-07-01 false NOX intake-air humidity...

  3. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 34 2012-07-01 2012-07-01 false NOX intake-air humidity...

  4. One-Component Pressure-Temperature Phase Diagrams in the Presence of Air

    ERIC Educational Resources Information Center

    Andrade-Gamboa, Julio; Martire, Daniel O.; Donati, Edgardo R.

    2010-01-01

    One-component phase diagrams are good approximations to predict pressure-temperature ("P-T") behavior of a substance in the presence of air, provided air pressure is not much higher than the vapor pressure. However, at any air pressure, and from the conceptual point of view, the use of a traditional "P-T" phase diagram is not strictly correct. In…

  5. The Role of Auxiliary Variables in Deterministic and Deterministic-Stochastic Spatial Models of Air Temperature in Poland

    NASA Astrophysics Data System (ADS)

    Szymanowski, Mariusz; Kryza, Maciej

    2017-02-01

    Our study examines the role of auxiliary variables in the process of spatial modelling and mapping of climatological elements, with air temperature in Poland used as an example. The multivariable algorithms are the most frequently applied for spatialization of air temperature, and their results in many studies are proved to be better in comparison to those obtained by various one-dimensional techniques. In most of the previous studies, two main strategies were used to perform multidimensional spatial interpolation of air temperature. First, it was accepted that all variables significantly correlated with air temperature should be incorporated into the model. Second, it was assumed that the more spatial variation of air temperature was deterministically explained, the better was the quality of spatial interpolation. The main goal of the paper was to examine both above-mentioned assumptions. The analysis was performed using data from 250 meteorological stations and for 69 air temperature cases aggregated on different levels: from daily means to 10-year annual mean. Two cases were considered for detailed analysis. The set of potential auxiliary variables covered 11 environmental predictors of air temperature. Another purpose of the study was to compare the results of interpolation given by various multivariable methods using the same set of explanatory variables. Two regression models: multiple linear (MLR) and geographically weighted (GWR) method, as well as their extensions to the regression-kriging form, MLRK and GWRK, respectively, were examined. Stepwise regression was used to select variables for the individual models and the cross-validation method was used to validate the results with a special attention paid to statistically significant improvement of the model using the mean absolute error (MAE) criterion. The main results of this study led to rejection of both assumptions considered. Usually, including more than two or three of the most significantly

  6. Temperature and Runback Ice Prediction Method for Three-Dimensional Hot Air Anti-Icing System

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Lin, Guiping; Bu, Xueqin; Mu, Zuodong; Pan, Rui; Ge, Qimo; Qiao, Xudong

    2017-03-01

    A prediction method of surface temperature and runback ice for a three-dimensional hot air anti-icing system was proposed. Computational approach to realize this method was introduced. Both the external and internal flows were separately calculated, results of which were set as boundary conditions of heat conduction computation in airfoil skin. The results of external and internal flow calculations show that the effect of surface temperature on convective heat transfer coefficients and local droplet collection efficiency is negligible and the calculations can be decoupled. The prediction method based on heat flux was used to calculate surface temperature and runback ice results. The results show that, the effects of LWC and Mach number are much more significant than the effect of external flow temperature. The surface temperature at impinging interaction point is more sensitive to the change of external conditions than that at stagnation point. The surface temperature changes significantly with changing Mach number because both the mass rate of droplet and the impact limit are changed.

  7. Startup of air-cooled condensers and dry cooling towers at low temperatures of the cooling air

    NASA Astrophysics Data System (ADS)

    Milman, O. O.; Ptakhin, A. V.; Kondratev, A. V.; Shifrin, B. A.; Yankov, G. G.

    2016-05-01

    The problems of startup and performance of air-cooled condensers (ACC) and dry cooling towers (DCT) at low cooling air temperatures are considered. Effects of the startup of the ACC at sub-zero temperatures are described. Different options of the ACC heating up are analyzed, and examples of existing technologies are presented (electric heating, heating up with hot air or steam, and internal and external heating). The use of additional heat exchanging sections, steam tracers, in the DCT design is described. The need for high power in cases of electric heating and heating up with hot air is noted. An experimental stand for research and testing of the ACC startup at low temperatures is described. The design of the three-pass ACC unit is given, and its advantages over classical single-pass design at low temperatures are listed. The formation of ice plugs inside the heat exchanging tubes during the start-up of ACC and DCT at low cooling air temperatures is analyzed. Experimental data on the effect of the steam flow rate, steam nozzle distance from the heat-exchange surface, and their orientation in space on the metal temperature were collected, and test results are analyzed. It is noted that the surface temperature at the end of the heat up is almost independent from its initial temperature. Recommendations for the safe start-up of ACCs and DCTs are given. The heating flow necessary to sufficiently heat up heat-exchange surfaces of ACCs and DCTs for the safe startup is estimated. The technology and the process of the heat up of the ACC with the heating steam external supply are described by the example of the startup of the full-scale section of the ACC at sub-zero temperatures of the cooling air, and the advantages of the proposed start-up technology are confirmed.

  8. Temperature, air pollution, and mortality from myocardial infarction in São Paulo, Brazil.

    PubMed

    Sharovsky, R; César, L A M; Ramires, J A F

    2004-11-01

    An increase in daily mortality from myocardial infarction has been observed in association with meteorological factors and air pollution in several cities in the world, mainly in the northern hemisphere. The objective of the present study was to analyze the independent effects of environmental variables on daily counts of death from myocardial infarction in a subtropical region in South America. We used the robust Poisson regression to investigate associations between weather (temperature, humidity and barometric pressure), air pollution (sulfur dioxide, carbon monoxide, and inhalable particulate), and the daily death counts attributed to myocardial infarction in the city of São Paulo in Brazil, where 12,007 fatal events were observed from 1996 to 1998. The model was adjusted in a linear fashion for relative humidity and day-of-week, while nonparametric smoothing factors were used for seasonal trend and temperature. We found a significant association of daily temperature with deaths due to myocardial infarction (P < 0.001), with the lowest mortality being observed at temperatures between 21.6 and 22.6 degrees C. Relative humidity appeared to exert a protective effect. Sulfur dioxide concentrations correlated linearly with myocardial infarction deaths, increasing the number of fatal events by 3.4% (relative risk of 1.03; 95% confidence interval = 1.02-1.05) for each 10 microg/m(3) increase. In conclusion, this study provides evidence of important associations between daily temperature and air pollution and mortality from myocardial infarction in a subtropical region, even after a comprehensive control for confounding factors.

  9. Effects of CO2/N2 dilution on laminar burning velocity of stoichiometric DME-air mixture at elevated temperatures.

    PubMed

    Mohammed, Abdul Naseer; Juhany, Khalid A; Kumar, Sudarshan; Kishore, V Ratna; Mohammad, Akram

    2017-03-21

    The laminar burning velocity of CO2/N2 diluted stoichiometric dimethyl ether (DME) air mixtures is determined experimentally at atmospheric pressure and elevated mixture temperatures using a mesoscale high aspect-ratio diverging channel with inlet dimensions of 25mm×2mm. In this method, planar flames at different initial temperatures (Tu) were stabilized inside the channel using an external electric heater. The magnitude of burning velocities was acquired by measuring the flame position and initial temperature. The mass conservation of the mixture entering the inlet and the stationary planar flame front is applied to obtain the laminar burning velocity. Laminar burning velocity at different initial mixture temperatures is plotted with temperature ratio (Tu/Tu,o), where a reference temperature (Tu,o) of 300K is used. Enhancement in the laminar burning velocity is observed with mixture temperature for DME-air mixtures with CO2 and N2 dilutions. A significant decrease in the burning velocity and slight increase in temperature exponent of the stoichiometric DME-air mixture was observed with dilution at same temperatures. The addition of CO2 has profound influence when compared to N2 addition on both burning velocity and temperature exponent.

  10. Effects of Outside Air Temperature on Movement of Phosphine Gas in Concrete Elevator Bins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies that measured the movement and concentration of phosphine gas in upright concrete bins over time indicated that fumigant movement was dictated by air currents, which in turn, were a function of the difference between the average grain temperature and the average outside air temperature durin...

  11. Correction of Temperatures of Air-Cooled Engine Cylinders for Variation in Engine and Cooling Conditions

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Pinkel, Benjamin; Ellerbrock, Herman H , Jr

    1939-01-01

    Factors are obtained from semiempirical equations for correcting engine-cylinder temperatures for variation in important engine and cooling conditions. The variation of engine temperatures with atmospheric temperature is treated in detail, and correction factors are obtained for various flight and test conditions, such as climb at constant indicated air speed, level flight, ground running, take-off, constant speed of cooling air, and constant mass flow of cooling air. Seven conventional air-cooled engine cylinders enclosed in jackets and cooled by a blower were tested to determine the effect of cooling-air temperature and carburetor-air temperature on cylinder temperatures. The cooling air temperature was varied from approximately 80 degrees F. to 230 degrees F. and the carburetor-air temperature from approximately 40 degrees F. to 160 degrees F. Tests were made over a large range of engine speeds, brake mean effective pressures, and pressure drops across the cylinder. The correction factors obtained experimentally are compared with those obtained from the semiempirical equations and a fair agreement is noted.

  12. Predicting seed cotton moisture content from changes in drying air temperature - second year

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A mathematical model was used to predict seed cotton moisture content in the overhead section of a cotton gin. The model took into account the temperature, mass flow, and specific heat of both the air and seed cotton. Air temperatures and mass flows were measured for a second year at a commercial g...

  13. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Spuler, S. M.; Spowart, M.; Lenschow, D. H.; Friesen, R. B.

    2014-03-01

    A new laser air-motion sensor measures the true airspeed with an uncertainty of less than 0.1 m s-1 (standard error) and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard-error uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the Global Positioning System, then indicate (via integrations of the hydrostatic equation during climbs and descents) that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that the new laser air-motion sensor, combined with parametrized fits to correction factors for the measured dynamic and ambient pressure, provides a measurement of temperature that is independent of any other temperature sensor.

  14. Prediction of air temperature in the aircraft cabin under different operational conditions

    NASA Astrophysics Data System (ADS)

    Volavý, F.; Fišer, J.; Nöske, I.

    2013-04-01

    This paper deals with the prediction of the air temperature in the aircraft cabin by means of Computational Fluid Dynamics. The simulations are performed on the CFD model which is based on geometry and cabin interior arrangement of the Flight Test Facility (FTF) located at Fraunhofer IBP, Germany. The experimental test flights under three different cabin temperatures were done in FTF and the various data were gathered during these flights. Air temperature in the cabin was measured on probes located near feet, torso and head of each passenger and also surface temperature and air temperature distributed from inlets were measured. The data were firstly analysed in order to obtain boundary conditions for cabin surfaces and inlets. Then the results of air temperature from the simulations were compared with measured data. The suitability and accuracy of the CFD approach for temperature prediction is discussed.

  15. System and method for air temperature control in an oxygen transport membrane based reactor

    DOEpatents

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  16. Recent variations of sea ice and air temperature in high latitudes

    SciTech Connect

    Chapman, W.L.; Walsh, J.E. )

    1993-01-01

    Feedbacks resulting from the retreat of sea ice and snow contribute to the polar amplification of the greenhouse warming projected by global climate models. A gridded sea-ice database, for which the record length is now approaching four decades for the Arctic and two decades for the Antarctic, is summarized here. The sea-ice fluctuations derived from the data set are characterized by (1) temporal scales of several seasons to several years and (2) spatial scales of 30[degrees]-180[degrees] of longitude. The ice data are examined in conjunction with air temperature data for evidence of recent climate change in the polar regions. The arctic sea-ice variations over the past several decades are compatible with the corresponding air temperatures, which show a distinct warming that is strongest over northern land areas during the winter and spring. The temperature trends over the sub arctic seas are smaller and even negative in the southern Greenland region. Statistically significant decreases of the summer extent of arctic ice are apparent in the sea-ice data, and new summer minima have been achieved three times in the past 15 years. There is no significant trend of ice extent in the Arctic during winter or in the Antarctic during any season. The seasonal and geographical changes of sea-ice coverage are consistent with the more recent greenhouse experiments performed with coupled atmosphere-ocean models.

  17. Observations of Cooling Summer Daytime Temperatures (1948-2005) in Growing Urban Coastal California Air Basins

    NASA Astrophysics Data System (ADS)

    Bornstein, R.; Lebassi, B.; Gonzalez, J.

    2008-12-01

    The study evaluated long-term (1948-2005) air temperatures in California (CA) during summer (June- August). The aggregate CA results showed asymmetric warming, as daily minimum temperatures increased faster than daily maximum temperatures. The spatial distributions of daily maximum temperatures in the heavily urbanized South Coast and San Francisco Bay Area air basins, however, exhibited a complex pattern, with cooling at low-elevation (mainly urban) coastal-areas and warming at (mainly rural) inland areas. Previous studies have suggested that cooling summer max temperatures in CA were due to increased irrigation, coastal upwelling, or cloud cover. The current hypothesis, however, is that this temperature pattern arises from a 'reverse-reaction' to greenhouse gas (GHG) induced global-warming. In this hypothesis, the global warming of inland areas resulted in an increased (cooling) sea breeze activity in coastal areas. The coastal cooling thus resulted as urban heat island (UHI) warming was weaker than the reverse-reaction cooling; if there was no UHI effect, then the cooling would be even stronger. The cooling or warming trends at several pairs of nearby urban and non- urban sites were compared in an effort to separate out the urban heat island (UHI) and global warming components of the trend. Average temperatures from global circulation models show warming that decreases from inland areas of California to its coastal areas. Such large scale models, however, cannot resolve these smaller scale topographic and coastal effects. Meso-scale modeling on a 4 km grid is thus being carried out to evaluate the contributions from GHG global-warming and land-use changes, including UHI development, to the observed trends. Significant societal impacts may result from this observed reverse-reaction to GHG- warming; possible beneficial effects include decreased maximum: O3 levels, human thermal-stress, and per- capita energy requirements for cooling.

  18. Air temperature "singularities" as a tool for the comprehension of the climate diversity in Europe

    NASA Astrophysics Data System (ADS)

    Jarzyna, Krzysztof

    2014-05-01

    Air temperature "singularities" were used to study climate diversity in Europe. The basis of analysis were data of mean daily air temperature for 50-years period (1951-2000) from 66 European meteorological stations. Multiyear mean air temperature values were counted for the each day of the year at first (29th February was omitted). Next a theoretical sine curve of annual air temperature course was created with help of the Fourier's analysis for the each station. Differences between theoretical and observed mean vales of daily air temperatures were counted in the next step. The biggest of these differences (below the lower quartile and above the upper quartile) lasting at least 3 days can be treated as thermal "singularities". A cluster analysis was used to find similarities of the singularities occurrence in analyzed stations. As a result 8 clusters were distinguished representing regions with different thermal "singularities" occurrence pattern.

  19. Seasonality of viral respiratory infections in southeast of Brazil: the influence of temperature and air humidity

    PubMed Central

    Gardinassi, Luiz Gustavo; Marques Simas, Paulo Vitor; Salomão, João Batista; Durigon, Edison Luiz; Zanetta Trevisan, Dirce Maria; Cordeiro, José Antonio; Lacerda, Mauricio Nogueira; Rahal, Paula; de Souz, Fátima Pereira

    2012-01-01

    Viruses are the major cause of lower respiratory tract infections in childhood and the main viruses involved are Human Respiratory Syncytial Virus (HRSV), Human Metapneumovirus (HMPV), Influenzavirus A and B (FLUA and FLUB), Human Parainfluenza Virus 1, 2 and 3 (HPIV1, 2 and 3) and Human Rhinovirus (HRV). The purposes of this study were to detect respiratory viruses in hospitalized children younger than six years and identify the influence of temperature and relative air humidity on the detected viruses. Samples of nasopharyngeal washes were collected from hospitalized children between May/2004 and September/2005. Methods of viral detection were RT-PCR, PCR and HRV amplicons were confirmed by hybridization. Results showed 54% (148/272) of viral positivity. HRSV was detected in 29% (79/272) of the samples; HRV in 23.1% (63/272); HPIV3 in 5.1% (14/272); HMPV in 3.3% (9/272); HPIV1 in 2.9% (8/272); FLUB in 1.4% (4/272), FLUA in 1.1% (3/272), and HPIV2 in 0.3% (1/272). The highest detection rates occurred mainly in the spring 2004 and in the autumn 2005. It was observed that viral respiratory infections tend to increase as the relative air humidity decreases, showing significant association with monthly averages of minimal temperature and minimal relative air humidity. In conclusion, viral respiratory infections vary according to temperature and relative air humidity and viral respiratory infections present major incidences it coldest and driest periods. PMID:24031808

  20. Modeling subcanopy incoming longwave radiation to seasonal snow using air and tree trunk temperatures

    NASA Astrophysics Data System (ADS)

    Webster, Clare; Rutter, Nick; Zahner, Franziska; Jonas, Tobias

    2016-02-01

    Data collected at three Swiss alpine forested sites over a combined 11 year period were used to evaluate the role of air temperature in modeling subcanopy incoming longwave radiation to the snow surface. Simulated subcanopy incoming longwave radiation is traditionally partitioned into that from the sky and that from the canopy, i.e., a two-part model. Initial uncertainties in predicting longwave radiation using the two-part model resulted from vertical differences in measured air temperature. Above-canopy (35 m) air temperatures were higher than those within (10 m) and below (2 m) canopy throughout four snow seasons (December-April), demonstrating how the forest canopy can act as a cold sink for air. Lowest model root-mean-square error (RMSE) was using above-canopy air temperature. Further investigation of modeling subcanopy longwave radiation using above-canopy air temperature showed underestimations, particularly during periods of high insolation. In order to explicitly account for canopy temperatures in modeling longwave radiation, the two-part model was improved by incorporating a measured trunk view component and trunk temperature. Trunk temperature measurements were up to 25°C higher than locally measured air temperatures. This three-part model reduced the RMSE by up to 7.7 W m-2 from the two-part air temperature model at all sensor positions across the 2014 snowmelt season and performed particularly well during periods of high insolation when errors from the two-part model were up to 40 W m-2. A parameterization predicting tree trunk temperatures using measured air temperature and incoming shortwave radiation demonstrate a simple method that can be applied to provide input to the three-part model across midlatitude coniferous forests.

  1. Impact of Surface Air Temperature and Snow Cover Depth on the Upper Soil Temperature Variations in Russia

    NASA Astrophysics Data System (ADS)

    Sherstyukov, A. B.; Sherstyukov, B. G.; Groisman, P. Y.

    2007-12-01

    A study of the impact of climate changes during for the last four decades on soil temperatures at depths up to 3.2 meters has been conducted for the territory of Russia. For the 1965-2004 period, we compiled and analyzed data from all Russian meteorological stations with long-term soil temperature observations at depths 80, 160 and 320 cm. Traditionally, these stations also observe a complete set of standard meteorological variables (that include surface air temperature and extensive monitoring of snow cover characteristics). This allowed us to investigate the impact of surface air temperatures and snow depth variations on soil temperatures in the upper soil layer, to quantify it using statistical analyses of multi-dimensional 40-year-long time series at 164 locations throughout the country, and assess the representativeness of the obtained results. Three-dimensional spatial distributions of regression and correlation coefficients were mapped for warm and cold seasons separately as well as for the entire year, and thereafter analyzed. In the permafrost zone we found special features in these fields that distinctively separate the permafrost zone from the remaining territory. In this zone, soil temperatures are practically uncorrelated with surface air temperatures and variations of the snow depth controls soil temperature variations (with R2 up to 0.5) Quantitative estimates of the contribution of mid-annual air temperature and snow cover depth in the long-term changes of mid-annual soil temperatures across the Russia territory were received. We found that the prevailing influence on soil temperature variations in the European part was surface air temperatures and in the Asian part of Russia was snow cover depth. Furthermore, increase of the winter snow depth in the permafrost zone (by preserving the heat accumulated in the warm season) promotes annual soil temperature increase and therefore may foster the further permafrost degradation associated with ongoing

  2. Significance of the Human Being as an Element in an Information System: WWII Forward Air Controllers and Close Air Support

    DTIC Science & Technology

    2002-03-01

    accomplishment” ( Giddens , 1979, p 373). Unfortunately, by fantasizing that information is structured data, we deny the importance of dialogue as the basis......Ground Attack Aviation in the U.S. Army Air Arm. Evolution and Doctrine, 1908-1926. Thesis: Duke University, 1971, 81. Giddens , A. Central

  3. Effects of animal activity and air temperature on methane and ammonia emissions from a naturally ventilated building for dairy cows

    NASA Astrophysics Data System (ADS)

    Ngwabie, N. M.; Jeppsson, K.-H.; Gustafsson, G.; Nimmermark, S.

    2011-12-01

    Knowledge of how different factors affect gas emissions from animal buildings can be useful for emission prediction purposes and for the improvement of emission abatement techniques. In this study, the effects of dairy cow activity and indoor air temperature on gas emissions were examined. The concentrations of CH 4, NH 3, CO 2 and N 2O inside and outside a dairy cow building were measured continuously between February and May together with animal activity and air temperature. The building was naturally ventilated and had a solid concrete floor which sloped towards a central urine gutter. Manure was scraped from the floor once every hour in the daytime and once every second hour at night into a partly covered indoor pit which was emptied daily at 6 a.m. and at 5 p.m. Gas emissions were calculated from the measured gas concentrations and ventilation rates estimated by the CO 2 balance method. The animal activity and emission rates of CH 4 and NH 3 showed significant diurnal variations with two peaks which were probably related to the feeding routine. On an average day, CH 4 emissions ranged from 7 to 15 g LU -1 h -1 and NH 3 emissions ranged from 0.4 to 1.5 g LU -1 h -1 (1 LU = 500 kg animal weight). Mean emissions of CH 4 and NH 3 were 10.8 g LU -1 h -1 and 0.81 g LU -1 h -1, respectively. The NH 3 emissions were comparable to emissions from tied stall buildings and represented a 4% loss in manure nitrogen. At moderate levels, temperature seems to affect the behaviour of dairy cows and in this study where the daily indoor air temperature ranged from about 5 up to about 20 °C, the daily activity of the cows decreased with increasing indoor air temperature ( r = -0.78). Results suggest that enteric fermentation is the main source of CH 4 emissions from systems of the type in this study, while NH 3 is mainly emitted from the manure. Daily CH 4 emissions increased significantly with the activity of the cows ( r = 0.61) while daily NH 3 emissions increased

  4. 40 CFR 52.2630 - Prevention of significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Wyoming... hereby incorporated and made a part of the State implementation plan for the State of Wyoming and are... Standards and Regulations on the use of the “Guidelines for Air Quality Models.” In a letter to Douglas...

  5. Research report on the physiological effects of air ions and their significance as environmental factors

    NASA Technical Reports Server (NTRS)

    Varga, A.

    1978-01-01

    The series of experiments performed have shown that small air ions generated artificially using radioactive materials produced physiological effects in all test subjects, which are described. These results show that the air ions were important climatic factors in the production of comfortable and healthy room climates.

  6. Relationship between alpine tourism demand and hot summer air temperatures associated with climate change

    NASA Astrophysics Data System (ADS)

    Rebetez, M.; Serquet, G.

    2010-09-01

    We quantified the impacts of hot summer air temperatures on tourism in the Swiss Alps by analyzing the relationship between temperature and overnight stays in 40 Alpine resorts. Several temperature and insolation thresholds were tested to detect their relationship to summer tourism. Our results reveal significant correlations between the number of nights spent in mountain resorts and hot temperatures at lower elevations. Alpine resorts nearest to cities are most sensitive to hot temperatures. This is probably because reactions to hot episodes take place on a short-term basis as heat waves remain relatively rare. The correlation in June is stronger compared to the other months, probably because school holidays and the peak domestic tourist demand in summer usually takes place in July and August. Our results suggest that alpine tourist resorts could benefit from hotter temperatures at lower elevations under future climates. Tourists already react on a short-term basis to hot days and spend more nights in hotels in mountain resorts. If heat waves become more regular, it seems likely that tourists choose to stay at alpine resorts more frequently and for longer periods.

  7. MARSpline model for lead seven-day maximum and minimum air temperature prediction in Chennai, India

    NASA Astrophysics Data System (ADS)

    Ramesh, K.; Anitha, R.

    2014-06-01

    In this study, a Multivariate Adaptive Regression Spline (MARS) based lead seven days minimum and maximum surface air temperature prediction system is modelled for station Chennai, India. To emphasize the effectiveness of the proposed system, comparison is made with the models created using statistical learning technique Support Vector Machine Regression (SVMr). The analysis highlights that prediction accuracy of MARS models for minimum temperature forecast are promising for short term forecast (lead days 1 to 3) with mean absolute error (MAE) less than 1 °C and the prediction efficiency and skill degrades in medium term forecast (lead days 4 to 7) with slightly above 1 °C. The MAE of maximum temperature is little higher than minimum temperature forecast varying from 0.87 °C for day-one to 1.27 °C for lag day-seven with MARS approach. The statistical error analysis emphasizes that MARS models perform well with an average 0.2 °C of reduction in MAE over SVMr models for all ahead seven days and provide significant guidance for the prediction of temperature event. The study also suggests that the correlation between the atmospheric parameters used as predictors and the temperature event decreases as the lag increases with both approaches.

  8. Axial flow reversal and its significance in air-sparged hydrocyclone (ASH) flotation

    SciTech Connect

    Miller, J.D.; Das, A.; Yin, D.

    1995-12-31

    In recent years the potential of air-sparged hydrocyclone (ASH) flotation for fine coal cleaning has been demonstrated both in pilot plant testing and in a plant-site demonstration program. Further improvements in the ASH technology will depend, to some extent, on improved understanding of the complex multiphase fluid flow. Froth transport plays a very important role in determining the efficiency of fine coal cleaning by ASH flotation. It should be noted that the surface of zero axial velocity is of particular significance in froth transport because the location of this surface actually accounts for the amount of froth being transported to the overflow. In this regard, the axial flow reversal has been examined based on specially designed tracer experiments. On the basis of these experimental results, modeling efforts were made to characterize the flow pattern in the ASH. The theoretical predictions based on turbulent fluid dynamic considerations were found to describe experimental observations regarding the surface of zero axial velocity. These results that define the surface of zero axial velocity together with froth phase features established from X-ray CT measurements provide an excellent description of the flow characteristics in ASH flotation and explain the effect of various process variables, such as dimensionless area (A*), dimensionless flowrate (Q*), inlet pressure, percent solids, etc., on flotation recovery. On this basis it is expected that further advances in the design and operation of the ASH system can be made, leading to more efficient use of the ASH technology for fine coal cleaning.

  9. Auto-ignitions of a methane/air mixture at high and intermediate temperatures

    NASA Astrophysics Data System (ADS)

    Leschevich, V. V.; Martynenko, V. V.; Penyazkov, O. G.; Sevrouk, K. L.; Shabunya, S. I.

    2016-09-01

    A rapid compression machine (RCM) and a shock tube (ST) have been employed to study ignition delay times of homogeneous methane/air mixtures at intermediate-to-high temperatures. Both facilities allow measurements to be made at temperatures of 900-2000 K, at pressures of 0.38-2.23 MPa, and at equivalence ratios of 0.5, 1.0, and 2.0. In ST experiments, nitrogen served as a diluent gas, whereas in RCM runs the diluent gas composition ranged from pure nitrogen to pure argon. Recording pressure, UV, and visible emissions identified the evolution of chemical reactions. Correlations of ignition delay time were generated from the data for each facility. At temperatures below 1300 K, a significant reduction of average activation energy from 53 to 15.3 kcal/mol was obtained. Moreover, the RCM data showed significant scatter that dramatically increased with decreasing temperature. An explanation for the abnormal scatter in the data was proposed based on the high-speed visualization of auto-ignition phenomena and experiments performed with oxygen-free and fuel-free mixtures. It is proposed that the main reason for such a significant reduction of average activation energy is attributable to the premature ignition of ultrafine particles in the reactive mixture.

  10. A comparison of urban heat islands mapped using skin temperature, air temperature, and apparent temperature (Humidex), for the greater Vancouver area.

    PubMed

    Ho, Hung Chak; Knudby, Anders; Xu, Yongming; Hodul, Matus; Aminipouri, Mehdi

    2016-02-15

    Apparent temperature is more closely related to mortality during extreme heat events than other temperature variables, yet spatial epidemiology studies typically use skin temperature (also known as land surface temperature) to quantify heat exposure because it is relatively easy to map from satellite data. An empirical approach to map apparent temperature at the neighborhood scale, which relies on publicly available weather station observations and spatial data layers combined in a random forest regression model, was demonstrated for greater Vancouver, Canada. Model errors were acceptable (cross-validated RMSE=2.04 °C) and the resulting map of apparent temperature, calibrated for a typical hot summer day, corresponded well with past temperature research in the area. A comparison with field measurements as well as similar maps of skin temperature and air temperature revealed that skin temperature was poorly correlated with both air temperature (R(2)=0.38) and apparent temperature (R(2)=0.39). While the latter two were more similar (R(2)=0.87), apparent temperature was predicted to exceed air temperature by more than 5 °C in several urban areas as well as around the confluence of the Pitt and Fraser rivers. We conclude that skin temperature is not a suitable proxy for human heat exposure, and that spatial epidemiology studies could benefit from mapping apparent temperature, using an approach similar to the one reported here, to better quantify differences in heat exposure that exist across an urban landscape.

  11. Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels

    NASA Technical Reports Server (NTRS)

    Susskind,Joel

    2009-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. AIRS is a grating spectrometer with a number of linear arrays of detectors with each detector sensitive to outgoing radiation in a characteristic frequency v(sub i) with a spectral band pass delta v(sub i) of roughly v(sub i) /1200. AIRS contains 2378 spectral channels covering portions of the spectral region 650 cm(exp -1) (15.38 gm) - 2665 cm(exp -1)' (3.752 micrometers). These spectral regions contain significant absorption features from two CO2 absorption bands, the 15 micrometer (longwave) CO2 band, and the 4.3 micrometer (shortwave) CO, absorption band. There are also two atmospheric window regions, the 12 micrometerm - 8 micrometer (longwave) window, and the 4.17 micrometer - 3.75 micrometer (shortwave) window. Historically, determination of surface and atmospheric temperatures from satellite observations was performed using primarily observations in the longwave window and CO2 absorption regions. One reason for this was concerns about the effects, during the day, of reflected sunlight and non-Local Thermodynamic Equilibrium (non-LTE) on the observed radiances in the shortwave portion of the spectrum. According to cloud clearing theory, more accurate soundings of both surface skin and atmospheric temperatures can be obtained under partial cloud cover conditions if one uses the longwave channels to determine cloud cleared radiances R(sub i) for all channels, and uses R(sub i) only from shortwave channels in the determination of surface and atmospheric temperatures. This procedure is now being used by the AIRS Science Team in preparation for the AIRS Version 6 Retrieval Algorithm. This paper describes how the effects on the radiances of solar radiation reflected by clouds and the Earth's surface, and also of non-LTE, are accounted for in the analysis of the data. Results are presented for both

  12. The EUSTACE project: delivering global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Morice, C. P.; Rayner, N. A.; Auchmann, R.; Bessembinder, J.; Bronnimann, S.; Brugnara, Y.; Conway, E. A.; Ghent, D.; Good, E.; Herring, K.; Kennedy, J.; Lindgren, F.; Madsen, K. S.; Merchant, C. J.; van der Schrier, G.; Stephens, A.; Tonboe, R. T.; Waterfall, A. M.; Mitchelson, J.; Woolway, I.

    2015-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, we must develop an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. These relationships can be derived either empirically or with the help of a physical model.Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals would be used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. As the data volumes involved are considerable, such work needs to include development of new "Big Data" analysis methods.We will present plans and progress along this road in the EUSTACE project (2015-June 2018), i.e.: • providing new, consistent, multi-component estimates of uncertainty in surface skin temperature retrievals from satellites; • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras.Information will also be given on how interested users can become

  13. [Effects of air temperature increase and precipitation change on grain yield and quality of spring wheat in semiarid area of Northwest China].

    PubMed

    Wang, He-ling; Zhang, Qiang; Wang, Run-yuan; Gan, Yan-tai; Niu, Jun-yi; Zhang, Kai; Zhao, Fu-nian; Zhao, Hong

    2015-01-01

    In order to predict effects of climate changing on growth, quality and grain yields of spring wheat, a field experiment was conducted to investigate the effects of air temperature increases (0 °C, 1.0 °C, 2.0° C and 3.0°) and precipitation variations (decrease 20%, unchanging and increase 20%) on grain yields, quality, diseases and insect pests of spring wheat at the Dingxi Arid Meteorology and Ecological Environment Experimental Station of the Institute of Arid Meteorology of China Meteorological Administration (35°35' N ,104°37' E). The results showed that effects of precipitation variations on kernel numbers of spring wheat were not significant when temperature increased by less than 2.0° C , but was significant when temperature increased by 3.0° C. Temperature increase enhanced kernel numbers, while temperature decrease reduced kernel numbers. The negative effect of temperature on thousand-kernel mass of spring wheat increased with increasing air temperature. The sterile spikelet of spring wheat response to air temperature was quadratic under all precipitation regimes. Compared with control ( no temperature increase), the decreases of grain yield of spring wheat when air temperature increased by 1.0°C, 2.0°C and 3.0°C under each of the three precipitation conditions (decrease 20%, no changing and increase 20%) were 12.1%, 24.7% and 42.7%, 8.4%, 15.1% and 21.8%, and 9.0%, 15.5% and 22.2%, respectively. The starch content of spring wheat decreased and the protein content increased with increasing air temperature. The number of aphids increased when air temperature increased by 2.0°C , but decreased when air temperature increased by 3.0°CT. The infection rates of rust disease increased with increasing air temperature.

  14. Air-Cooled Design of a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization Systems

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.; Affleck, Dave L.; Rosen, Micha; LeVan, M. Douglas; Wang, Yuan; Cavalcante, Celio L.

    2004-01-01

    The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. We have a developed a temperature-swing adsorption compressor (TSAC) for performing these tasks that is energy efficient, quiet, and has no rapidly moving parts. This paper discusses the mechanical design and the results of thermal model validation tests of a TSAC that uses air as the cooling medium.

  15. Some Effects of Air and Fuel Oil Temperatures on Spray Penetration and Dispersion

    NASA Technical Reports Server (NTRS)

    Gelalles, A G

    1930-01-01

    Presented here are experimental results obtained from a brief investigation of the appearance, penetration, and dispersion of oil sprays injected into a chamber of highly heated air at atmospheric pressure. The development of single sprays injected into a chamber containing air at room temperature and at high temperature was recorded by spray photography equipment. A comparison of spray records showed that with the air at the higher temperature, the spray assumed the appearance of thin, transparent cloud, the greatest part of which rapidly disappeared from view. With the chamber air at room temperature, a compact spray with an opaque core was obtained. Measurements of the records showed a decrease in penetration and an increase in the dispersion of the spray injected into the heated air. No ignition of the fuel injected was observed or recorded until the spray particles came in contact with the much hotter walls of the chamber about 0.3 second after the start of injection.

  16. Attribution of precipitation changes on ground-air temperature offset: Granger causality analysis

    NASA Astrophysics Data System (ADS)

    Cermak, Vladimir; Bodri, Louise

    2016-06-01

    This work examines the causal relationship between the value of the ground-air temperature offset and the precipitation changes for monitored 5-min data series together with their hourly and daily averages obtained at the Sporilov Geophysical Observatory (Prague). Shallow subsurface soil temperatures were monitored under four different land cover types (bare soil, sand, short-cut grass and asphalt). The ground surface temperature (GST) and surface air temperature (SAT) offset, ΔT(GST-SAT), is defined as the difference between the temperature measured at the depth of 2 cm below the surface and the air temperature measured at 5 cm above the surface. The results of the Granger causality test did not reveal any evidence of Granger causality for precipitation to ground-air temperature offsets on the daily scale of aggregation except for the asphalt pavement. On the contrary, a strong evidence of Granger causality for precipitation to the ground-air temperature offsets was found on the hourly scale of aggregation for all land cover types except for the sand surface cover. All results are sensitive to the lag choice of the autoregressive model. On the whole, obtained results contain valuable information on the delay time of ΔT(GST-SAT) caused by the rainfall events and confirmed the importance of using autoregressive models to understand the ground-air temperature relationship.

  17. Validation of AIRS V6 Surface Temperature over Greenland with GCN and NOAA Stations

    NASA Technical Reports Server (NTRS)

    Lee, Jae N.; Hearty, Thomas; Cullather, Richard; Nowicki, Sophie; Susskind, Joel

    2016-01-01

    This work compares the temporal and spatial characteristics of the AIRSAMSU (Atmospheric Infrared Sounder Advanced Microwave Sounding Unit A) Version 6 and MODIS (Moderate resolution Imaging Spectroradiometer) Collection 5 derived surface temperatures over Greenland. To estimate uncertainties in space-based surface temperature measurements, we re-projected the MODIS Ice Surface Temperature (IST) to 0.5 by 0.5 degree spatial resolution. We also re-gridded AIRS Skin Temperature (Ts) into the same grid but classified with different cloud conditions and surface types. These co-located data sets make intercomparison between the two instruments relatively straightforward. Using this approach, the spatial comparison between the monthly mean AIRS Ts and MODIS IST is in good agreement with RMS 2K for May 2012. This approach also allows the detection of any long-term calibration drift and the careful examination of calibration consistency in the MODIS and AIRS temperature data record. The temporal correlations between temperature data are also compared with those from in-situ measurements from GC-Net (GCN) and NOAA stations. The coherent time series of surface temperature evident in the correlation between AIRS Ts and GCN temperatures suggest that at monthly time scales both observations capture the same climate signal over Greenland. It is also suggested that AIRS surface air temperature (Ta) can be used to estimate the boundary layer inversion.

  18. Low-cycle fatigue of two austenitic alloys in hydrogen gas and air at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Jaske, C. E.; Rice, R. C.

    1976-01-01

    The low-cycle fatigue resistance of type 347 stainless steel and Hastelloy Alloy X was evaluated in constant-amplitude, strain-controlled fatigue tests conducted under continuous negative strain cycling at a constant strain rate of 0.001 per sec and at total axial strain ranges of 1.5, 3.0, and 5.0 percent in both hydrogen gas and laboratory air environments in the temperature range 538-871 C. Elevated-temperature, compressive-strain hold-time experiments were also conducted. In hydrogen, the cyclic stress-strain behavior of both materials at 538 C was characterized by appreciable cyclic hardening at all strain ranges. At 871 C neither material hardened significantly; in fact, at 5% strain range 347 steel showed continuous cyclic softening until failure. The fatigue resistance of 347 steel was slightly higher than that of Alloy X at all temperatures and strain ranges. Ten-minute compressive hold time experiments at 760 and 871 C resulted in increased fatigue lives for 347 steel and decreased fatigue lives for Alloy X. Both alloys showed slightly lower fatigue resistance in air than in hydrogen. Some fractographic and metallographic results are also given.

  19. Investigation of the impact of extreme air temperature on river water temperature: case study of the heat episode 2013.

    NASA Astrophysics Data System (ADS)

    Weihs, Philipp; Trimmel, Heidelinde; Goler, Robert; Formayer, Herbert; Holzapfel, Gerda; Rauch, Hans Peter

    2014-05-01

    Water stream temperature is a relevant factor for water quality since it is an important driver of water oxygen content and in turn also reduces or increases stress on the aquatic fauna. The water temperature of streams is determined by the source and inflow water temperature, by the energy balance at the stream surface and by the hydrological regime of the stream. Main factors driving the energy balance of streams are radiation balance and air temperature which influences the sensitive and latent heat flux. The present study investigates the impact of the heat episode of summer 2013 on water temperature of two lowland rivers in south eastern Austria. Within the scope of the project BIO_CLIC routine measurements of water temperature at 33 locations alongside the rivers Pinka and Lafnitz have been performed since spring 2012. In addition meteorological measurements of global shortwave and longwave radiation, air temperature, wind and air humidity have been carried out during this time. For the same time period, data of discharge and water levels of both rivers were provided by the public hydrological office. The heat episode of summer 2013 started, according to the Kysely- definition, on 18 July and lasted until 14 August. The highest air temperature ever recorded in Austria was reported on 8 August at 40.5°C. In Güssing, which is located within the project area, 40.0 °C were recorded. In the lower reaches of the river Pinka, at the station Burg the monthly mean water temperature of August 2013 was with more than 22°C, 1°C higher than the mean water temperature of the same period of the previous years. At the same station, the maximum water temperature of 27.1°C was recorded on 29 July, 9 days prior to the air temperature record. Analysis shows that at the downstream stations the main driving parameter is solar radiation whereas at the upstream stations a better correlation between air temperature and water temperature is obtained. Using the extensive data set

  20. Comparison of Near-Surface Air Temperatures and MODIS Ice-Surface Temperatures at Summit, Greenland (2008-2013)

    NASA Technical Reports Server (NTRS)

    Shuman, Christopher A.; Hall, Dorothy K.; DiGirolamo, Nicolo E.; Mefford, Thomas K.; Schnaubelt, Michael J.

    2014-01-01

    We have investigated the stability of the MODerate resolution Imaging Spectroradiometer (MODIS) infrared-derived ice surface temperature (IST) data from Terra for use as a climate quality data record. The availability of climate quality air temperature data (TA) from a NOAA Global Monitoring Division observatory at Greenlands Summit station has enabled this high temporal resolution study of MODIS ISTs. During a 5 year period (July 2008 to August 2013), more than 2500 IST values were compared with 3-minute average TA values derived from the 1-minute data from NOAAs primary 2 m air temperature sensor. These data enabled an expected small offset between air and surface temperatures at this the ice sheet location to be investigated over multiple annual cycles.