Science.gov

Sample records for air temperature snow

  1. A new approach to quantifying soil temperature responses to changing air temperature and snow cover

    NASA Astrophysics Data System (ADS)

    Mackiewicz, Michael C.

    2012-08-01

    Seasonal snow cover provides an effective insulating barrier, separating shallow soil (0.25 m) from direct localized meteorological conditions. The effectiveness of this barrier is evident in a lag in the soil temperature response to changing air temperature. The causal relationship between air and soil temperatures is largely because of the presence or absence of snow cover, and is frequently characterized using linear regression analysis. However, the magnitude of the dampening effect of snow cover on the temperature response in shallow soils is obscured in linear regressions. In this study the author used multiple linear regression (MLR) with dummy predictor variables to quantify the degree of dampening between air and shallow soil temperatures in the presence and absence of snow cover at four Greenland sites. The dummy variables defining snow cover conditions were z = 0 for the absence of snow and z = 1 for the presence of snow cover. The MLR was reduced to two simple linear equations that were analyzed relative to z = 0 and z = 1 to enable validation of the selected equations. Compared with ordinary linear regression of the datasets, the MLR analysis yielded stronger coefficients of multiple determination and less variation in the estimated regression variables.

  2. Pan-Arctic linkages between snow accumulation and growing season air temperature, soil moisture and vegetation

    NASA Astrophysics Data System (ADS)

    Luus, K. A.; Gel, Y.; Lin, J. C.; Kelly, R. E. J.; Duguay, C. R.

    2013-01-01

    Arctic field studies have indicated that the air temperature, soil moisture and vegetation at a site influence the quantity of snow accumulated, and that snow accumulation can alter growing season soil moisture and vegetation. Climate change is predicted to bring about warmer air temperatures, greater snow accumulation and northward movements of the shrub and tree lines. Understanding the response of northern environments to changes in snow and growing season land surface characteristics requires: (1) insights into the present-day linkages between snow and growing season land surface characteristics; and (2) the ability to continue to monitor these associations over time across the vast pan-Arctic. The objective of this study was therefore to examine the pan-Arctic (north of 60° N) linkages between two temporally distinct data products created from AMSR-E satellite passive microwave observations: GlobSnow snow water equivalent, and NTSG (growing season air temperature, soil moisture and vegetation transmissivity). Due to the complex and interconnected nature of processes determining snow and growing season land surface characteristics, these associations were analyzed using the modern non-parametric technique of Alternating Conditional Expectations (ACE), as this approach does not impose a predefined analytic form. Findings indicate that regions with lower vegetation transmissivity (more biomass) at the start and end of the growing season tend to accumulate less snow at the start and end of the snow season, possibly due to interception and shading. Warmer air temperatures at the start and end of the growing season were associated with diminished snow accumulation at the start and end of the snow season. High latitude sites with warmer mean annual growing season temperatures tended to accumulate more snow, probably due to the greater availability of water vapor for snow season precipitation at warmer locations. Regions with drier soils preceding snow onset tended

  3. Snow removal and ambient air temperature effects on forest soil temperatures in northern Vermont

    NASA Astrophysics Data System (ADS)

    Wang, D.; Decker, K. L.; Waite, C.; Scherbatskoy, T.

    2003-12-01

    We measured deciduous forest soil temperatures under control (unmanipulated) and snow-free (where snow is manually removed) conditions for four winters (at three soil depths) to determine effects of a snow cover reduction such as may occur as a result of climate change on Vermont forest soils. The four winters we studied were characterized as:`cold and snowy', `warm with low snow', `cold with low snow', and `cool with low snow'. Snow-free soils were colder than controls at 5 and 15 cm depth for all years, and at all depths in the two cold winters. Soil thermal variability generally decreased with both increased snow cover and soil depth. The effect of snow cover on soil freeze-thaw events was highly dependent on both the depth of snow and the soil temperature. Snow kept the soil warm and reduced soil temperature variability, but often this caused soil to remain near 0 deg C, resulting in more freeze-thaw events under snow at one or more soil depths. During the `cold snowy' winter, soils under snow had daily averages consistently >0 deg C, whereas snow-free soil temperatures commonly dropped below -3 deg C. During the `warm' year, temperatures of soil under snow were often lower than those of snow-free soils. The warmer winter resulted in less snow cover to insulate soil from freezing in the biologically active top 30 cm. The possible consequences of increased soil freezing include more root mortality and nutrient loss which would potentially alter ecosystem dynamics, decrease productivity of some tree species, and increase sugar maple mortality in northern hardwood forests.

  4. Modeling subcanopy incoming longwave radiation to seasonal snow using air and tree trunk temperatures

    NASA Astrophysics Data System (ADS)

    Webster, Clare; Rutter, Nick; Zahner, Franziska; Jonas, Tobias

    2016-02-01

    Data collected at three Swiss alpine forested sites over a combined 11 year period were used to evaluate the role of air temperature in modeling subcanopy incoming longwave radiation to the snow surface. Simulated subcanopy incoming longwave radiation is traditionally partitioned into that from the sky and that from the canopy, i.e., a two-part model. Initial uncertainties in predicting longwave radiation using the two-part model resulted from vertical differences in measured air temperature. Above-canopy (35 m) air temperatures were higher than those within (10 m) and below (2 m) canopy throughout four snow seasons (December-April), demonstrating how the forest canopy can act as a cold sink for air. Lowest model root-mean-square error (RMSE) was using above-canopy air temperature. Further investigation of modeling subcanopy longwave radiation using above-canopy air temperature showed underestimations, particularly during periods of high insolation. In order to explicitly account for canopy temperatures in modeling longwave radiation, the two-part model was improved by incorporating a measured trunk view component and trunk temperature. Trunk temperature measurements were up to 25°C higher than locally measured air temperatures. This three-part model reduced the RMSE by up to 7.7 W m-2 from the two-part air temperature model at all sensor positions across the 2014 snowmelt season and performed particularly well during periods of high insolation when errors from the two-part model were up to 40 W m-2. A parameterization predicting tree trunk temperatures using measured air temperature and incoming shortwave radiation demonstrate a simple method that can be applied to provide input to the three-part model across midlatitude coniferous forests.

  5. The influence of snow depth and surface air temperature on satellite-derived microwave brightness temperature. [central Russian steppes, and high plains of Montana, North Dakota, and Canada

    NASA Technical Reports Server (NTRS)

    Foster, J. L.; Hall, D. K.; Chang, A. T. C.; Rango, A.; Allison, L. J.; Diesen, B. C., III

    1980-01-01

    Areas of the steppes of central Russia, the high plains of Montana and North Dakota, and the high plains of Canada were studied in an effort to determine the relationship between passive microwave satellite brightness temperature, surface air temperature, and snow depth. Significant regression relationships were developed in each of these homogeneous areas. Results show that sq R values obtained for air temperature versus snow depth and the ratio of microwave brightness temperature and air temperature versus snow depth were not as the sq R values obtained by simply plotting microwave brightness temperature versus snow depth. Multiple regression analysis provided only marginal improvement over the results obtained by using simple linear regression.

  6. Near-surface air temperature and snow skin temperature comparison from CREST-SAFE station data with MODIS land surface temperature data

    NASA Astrophysics Data System (ADS)

    Pérez Díaz, C. L.; Lakhankar, T.; Romanov, P.; Muñoz, J.; Khanbilvardi, R.; Yu, Y.

    2015-08-01

    Land Surface Temperature (LST) is a key variable (commonly studied to understand the hydrological cycle) that helps drive the energy balance and water exchange between the Earth's surface and its atmosphere. One observable constituent of much importance in the land surface water balance model is snow. Snow cover plays a critical role in the regional to global scale hydrological cycle because rain-on-snow with warm air temperatures accelerates rapid snow-melt, which is responsible for the majority of the spring floods. Accurate information on near-surface air temperature (T-air) and snow skin temperature (T-skin) helps us comprehend the energy and water balances in the Earth's hydrological cycle. T-skin is critical in estimating latent and sensible heat fluxes over snow covered areas because incoming and outgoing radiation fluxes from the snow mass and the air temperature above make it different from the average snowpack temperature. This study investigates the correlation between MODerate resolution Imaging Spectroradiometer (MODIS) LST data and observed T-air and T-skin data from NOAA-CREST-Snow Analysis and Field Experiment (CREST-SAFE) for the winters of 2013 and 2014. LST satellite validation is imperative because high-latitude regions are significantly affected by climate warming and there is a need to aid existing meteorological station networks with the spatially continuous measurements provided by satellites. Results indicate that near-surface air temperature correlates better than snow skin temperature with MODIS LST data. Additional findings show that there is a negative trend demonstrating that the air minus snow skin temperature difference is inversely proportional to cloud cover. To a lesser extent, it will be examined whether the surface properties at the site are representative for the LST properties within the instrument field of view.

  7. Pan-Arctic linkages between snow accumulation and growing-season air temperature, soil moisture and vegetation

    NASA Astrophysics Data System (ADS)

    Luus, K. A.; Gel, Y.; Lin, J. C.; Kelly, R. E. J.; Duguay, C. R.

    2013-11-01

    Arctic field studies have indicated that the air temperature, soil moisture and vegetation at a site influence the quantity of snow accumulated, and that snow accumulation can alter growing-season soil moisture and vegetation. Climate change is predicted to bring about warmer air temperatures, greater snow accumulation and northward movements of the shrub and tree lines. Understanding the responses of northern environments to changes in snow and growing-season land surface characteristics requires: (1) insights into the present-day linkages between snow and growing-season land surface characteristics; and (2) the ability to continue to monitor these associations over time across the vast pan-Arctic. The objective of this study was therefore to examine the pan-Arctic (north of 60° N) linkages between two temporally distinct data products created from AMSR-E satellite passive microwave observations: GlobSnow snow water equivalent (SWE), and NTSG growing-season AMSR-E Land Parameters (air temperature, soil moisture and vegetation transmissivity). Due to the complex and interconnected nature of processes determining snow and growing-season land surface characteristics, these associations were analyzed using the modern nonparametric technique of alternating conditional expectations (ACE), as this approach does not impose a predefined analytic form. Findings indicate that regions with lower vegetation transmissivity (more biomass) at the start and end of the growing season tend to accumulate less snow at the start and end of the snow season, possibly due to interception and sublimation. Warmer air temperatures at the start and end of the growing season were associated with diminished snow accumulation at the start and end of the snow season. High latitude sites with warmer mean annual growing-season temperatures tended to accumulate more snow, probably due to the greater availability of water vapor for snow season precipitation at warmer locations. Regions with drier

  8. Influence of Air Temperature Difference on the Snow Melting Simulation of SWAT Model

    NASA Astrophysics Data System (ADS)

    YAN, Y.; Onishi, T.

    2013-12-01

    The temperature-index models are commonly used to simulate the snowmelt process in mountain areas because of its good performance, low data requirements, and computational simplicity. Widely used distributed hydrological model: Soil and Water Assessment Tool (SWAT) model is also using a temperature-index module. However, the lack of monitoring air temperature data still involves uncertainties and errors in its simulation performance especially in data sparse area. Thus, to evaluate the different air temperature data influence on the snow melt of the SWAT model, five different air temperature data are applied in two different Russia basins (Birobidjan basin and Malinovka basin). The data include the monitoring air temperature data (TM), NCEP reanalysis data (TNCEP), the dataset created by inverse distance weighted interpolation (IDW) method (TIDW), the dataset created by improved IDW method considering the elevation influence (TIDWEle), and the dataset created by using linear regression and MODIS Land Surface Temperature (LST) data (TLST). Among these data, the TLST , the TIDW and TIDWEle data have the higher spatial density, while the TNCEP and TM DATA have the most valid monitoring value for daily scale. The daily simulation results during the snow melting seasons (March, April and May) showed reasonable results in both test basins for all air temperature data. While R2 and NSE in Birobidjan basin are around 0.6, these values in Malinovka basin are over 0.75. Two methods: Generalized Likelihood Uncertainty Estimation (GLUE) and Sequential Uncertainty Fitting, version. 2 (SUFI-2) were used for model calibration and uncertainty analysis. The evolution index is p-factor which means the percentage of measured data bracketed by the 95% Prediction Uncertainty (95PPU). The TLST dataset always obtained the best results in both basins compared with other datasets. On the other hand, the two IDW based method get the worst results among all the scenarios. Totally, the

  9. Tomography-based characterization of ice-air interface dynamics of temperature gradient snow metamorphism under advective conditions

    NASA Astrophysics Data System (ADS)

    Ebner, Pirmin Philipp; Andreoli, Christian; Schneebeli, Martin; Steinfeld, Aldo

    2015-12-01

    Snow at or close to the surface commonly undergoes temperature gradient metamorphism under advective flow, which alters its microstructure and physical properties. A functional understanding of this process is essential for many disciplines, from modeling the effects of snow on regional and global climate to assessing avalanche formation. Time-lapse X-ray microtomography was applied to investigate the structural dynamics of temperature gradient snow metamorphism exposed to an advective airflow in controlled laboratory conditions. Experiments specifically analyzed sublimation and deposition of water vapor on the ice structure. In addition, an analysis of the ice-air interface dynamics was carried out using a macroscopic equivalent model of heat and water vapor transport through a snow layer. The results indicate that sublimation of the ice matrix dominated for flow rates < 10-6 m3 s-1 while during increased mass flow rates the water vapor deposition supplied by the advective flow counteracted sublimation. A flow rate dependence of water vapor deposition at the ice interface was observed, asymptotically approaching an average estimated maximum deposition rate on the whole sample of 1.05 · 10-4 kg m-3 s-1. The growth of microsized whisker-like crystals on larger ice crystals was detected on microscope photographs, leading to an increase of the specific surface area and thus suggest a change of the physical and optical properties of the snow. The estimated values of the curvature effect of the ice crystals and the interface kinetic coefficient are in good agreement with previously published values.

  10. Air temperature thresholds to evaluate snow melting at the surface of Alpine glaciers by T-index models: the case study of Forni Glacier (Italy)

    NASA Astrophysics Data System (ADS)

    Senese, A.; Maugeri, M.; Vuillermoz, E.; Smiraglia, C.; Diolaiuti, G.

    2014-03-01

    The glacier melt conditions (i.e.: null surface temperature and positive energy budget) can be assessed by analyzing meteorological and energy data acquired by a supraglacial Automatic Weather Station (AWS). In the case this latter is not present the assessment of actual melting conditions and the evaluation of the melt amount is difficult and simple methods based on T-index (or degree days) models are generally applied. These models require the choice of a correct temperature threshold. In fact, melt does not necessarily occur at daily air temperatures higher than 273.15 K. In this paper, to detect the most indicative threshold witnessing melt conditions in the April-June period, we have analyzed air temperature data recorded from 2006 to 2012 by a supraglacial AWS set up at 2631 m a.s.l. on the ablation tongue of the Forni Glacier (Italian Alps), and by a weather station located outside the studied glacier (at Bormio, a village at 1225 m a.s.l.). Moreover we have evaluated the glacier energy budget and the Snow Water Equivalent (SWE) values during this time-frame. Then the snow ablation amount was estimated both from the surface energy balance (from supraglacial AWS data) and from T-index method (from Bormio data, applying the mean tropospheric lapse rate and varying the air temperature threshold) and the results were compared. We found that the mean tropospheric lapse rate permits a good and reliable reconstruction of glacier air temperatures and the major uncertainty in the computation of snow melt is driven by the choice of an appropriate temperature threshold. From our study using a 5.0 K lower threshold value (with respect to the largely applied 273.15 K) permits the most reliable reconstruction of glacier melt.

  11. Snow and the ground temperature record of climate change

    NASA Astrophysics Data System (ADS)

    Bartlett, Marshall G.; Chapman, David S.; Harris, Robert N.

    2004-12-01

    Borehole temperature-depth profiles contain a record of surface ground temperature (SGT) changes with time and complement surface air temperature (SAT) analysis to infer climate change over multiple centuries. Ground temperatures are generally warmer than air temperatures due to solar radiation effects in the summer and the insulating effect of snow cover during the winter. The low thermal diffusivity of snow damps surface temperature variations; snow effectively acts as an insulator of the ground during the coldest part of the year. A numerical model of snow-ground thermal interactions is developed to investigate the effect of seasonal snow cover on annual ground temperatures. The model is parameterized in terms of three snow event parameters: onset time of the annual snow event, duration of the event, and depth of snow during the event. These parameters are commonly available from meteorological and remotely sensed data making the model broadly applicable. The model is validated using SAT, subsurface temperature from a depth of 10 cm, and snow depth data from the 6 years of observations at Emigrant Pass climate observatory in northwestern Utah and 217 station years of National Weather Service data from sites across North America. Measured subsurface temperature-time series are compared to changes predicted by the model. The model consistently predicts ground temperature changes that compare well with those observed. Sensitivity analysis of the model leads to a nonlinear relationship between the three snow event parameters (onset, duration, and depth of the annual snow event) and the influence snow has on mean annual SGT.

  12. Limitations of using a thermal imager for snow pit temperatures

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Jamieson, B.

    2013-10-01

    Driven by temperature gradients, kinetic snow metamorphism is important for avalanche formation. Even when gradients appear to be insufficient for kinetic metamorphism, based on temperatures measured 10 cm apart, faceting close to a~crust can still be observed. Recent studies that visualized small scale (< 10 cm) thermal structures in a profile of snow layers with an infrared (IR) camera produced interesting results. The studies found melt-freeze crusts to be warmer or cooler than the surrounding snow depending on the large scale gradient direction. However, an important assumption within the studies was that a thermal photo of a freshly exposed snow pit was similar enough to the internal temperature of the snow. In this study, we tested this assumption by recording thermal videos during the exposure of the snow pit wall. In the first minute, the results showed increasing gradients with time, both at melt-freeze crusts and at artificial surface structures such as shovel scours. Cutting through a crust with a cutting blade or a shovel produced small concavities (holes) even when the objective was to cut a planar surface. Our findings suggest there is a surface structure dependency of the thermal image, which is only observed at times with large temperature differences between air and snow. We were able to reproduce the hot-crust/cold-crust phenomenon and relate it entirely to surface structure in a temperature-controlled cold laboratory. Concave areas cooled or warmed slower compared with convex areas (bumps) when applying temperature differences between snow and air. This can be explained by increased radiative transfer or convection by air at convex areas. Thermal videos suggest that such processes influence the snow temperature within seconds. Our findings show the limitations of the use of a thermal camera for measuring pit-wall temperatures, particularly in scenarios where large gradients exist between air and snow and the interaction of snow pit and

  13. Air-snow interactions and atmospheric chemistry.

    PubMed

    Dominé, Florent; Shepson, Paul B

    2002-08-30

    The presence of snow greatly perturbs the composition of near-surface polar air, and the higher concentrations of hydroxyl radicals (OH) observed result in a greater oxidative capacity of the lower atmosphere. Emissions of nitrogen oxides, nitrous acid, light aldehydes, acetone, and molecular halogens have also been detected. Photolysis of nitrate ions contained in the snow appears to play an important role in creating these perturbations. OH formed in the snowpack can oxidize organic matter and halide ions in the snow, producing carbonyl compounds and halogens that are released to the atmosphere or incorporated into snow crystals. These reactions modify the composition of the snow, of the interstitial air, and of the overlying atmosphere. Reconstructing the composition of past atmospheres from ice-core analyses may therefore require complex corrections and modeling for reactive species. PMID:12202818

  14. Air-Snow Interactions and Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Dominé, Florent; Shepson, Paul B.

    2002-08-01

    The presence of snow greatly perturbs the composition of near-surface polar air, and the higher concentrations of hydroxyl radicals (OH) observed result in a greater oxidative capacity of the lower atmosphere. Emissions of nitrogen oxides, nitrous acid, light aldehydes, acetone, and molecular halogens have also been detected. Photolysis of nitrate ions contained in the snow appears to play an important role in creating these perturbations. OH formed in the snowpack can oxidize organic matter and halide ions in the snow, producing carbonyl compounds and halogens that are released to the atmosphere or incorporated into snow crystals. These reactions modify the composition of the snow, of the interstitial air, and of the overlying atmosphere. Reconstructing the composition of past atmospheres from ice-core analyses may therefore require complex corrections and modeling for reactive species.

  15. Snow surface temperature, radiative forcing and snow depth as determinants of snow density

    NASA Astrophysics Data System (ADS)

    Kirchner, P. B.; Painter, T. H.; Skiles, M.; Deems, J. S.

    2014-12-01

    Watershed scale observations of snow water equivalence (SWE) are becoming increasingly important globally as the quantity and timing of snowmelt has become less predictable. In the Colorado River watershed, where dust deposition can hasten snowmelt by several weeks, the need for these observations is critical. While advances in measuring snow depth and albedo from the NASA Airborne Snow Observatory have greatly improved our ability to constrain snow depth and radiative forcing, we have yet to develop a method for remotely observing snow density, which is required for calculating SWE. We evaluate measured and modeled variables of snow- infrared surface temperature, radiative forcing and snow depth as predictors of snow density. We use 10 seasons of in situ measured snow surface temperature, cumulative modeled dust in snow radiative forcing, snow depth and manually measured snow density from locations in the Rocky Mountains of southwestern Colorado. We also use measured snow depth and SWE from the 2013 and 2014 water years, from 23-35 locations stratified by modeled downwelling short wave radiation, and evaluate them as predictors of snow density. Our analysis shows that daily mean snow surface temperature (R2 0.61, p = <0.001) and cumulative radiative forcing (R2 0.54, p = <0.001) individually have significant coefficients of determination whereas snow depth alone was not significant. Multiple regression with all three variables (R2 0.84, p = <0.001) was the best predictor of density. Furthermore, when snowpack conditions were isothermal at 0° C, the diurnal coefficient of variation, of measured hourly surface temperature, exhibited consistently high variance. In 2013 we found significant correlations between spatially distributed measurements of snow density (R2 0.33, p = <0.001) and modeled downwelling short wave radiation. However, in 2014 the correlation was very low, supporting our hypothesis that seasonal differences in dust driven radiative forcing are also

  16. Snow effect on North American ground temperatures, 1950-2002

    NASA Astrophysics Data System (ADS)

    Bartlett, Marshall G.; Chapman, David S.; Harris, Robert N.

    2005-09-01

    Changes in snow's influence on surface ground temperature (SGT) could create a bias in the borehole temperature record of climate change. Using a snow-ground thermal model which predicts changes in the mean annual offset between SGT and surface air temperature (SAT), we calculate the response of SGT to changes in seasonal snow cover in North America from 1950 to 2002, the period for which comprehensive snow and air observations exist across the region. Daily snow and SAT observations come from the U.S. Historical Climatology Network, the Canadian Daily Climatic Dataset, and a set of National Weather Service cooperative stations in Alaska. For the period 1961-1990 the mean snow onset date in North America is 15 December, with mean snow cover duration of 81 days. There are no significant trends in either onset or duration from 1950 to 2002. Winter season air temperature, however, has warmed during this period, particularly from 1970 to 2002. The effect of the combination of a relatively stationary snow season with winter season SAT warming has been to diminish the mean annual SGT-SAT offset by -0.05 K/decade over the past 30 years. This effect is most pronounced between 50° and 75°N in west central North America, coincident with the location of greatest winter season warming since 1970. Although comprehensive snow cover data do not exist prior to 1950, this analysis quantifies the changes in snow cover required to account for the difference between borehole temperature and multiproxy climate reconstructions.

  17. Limitations of using a thermal imager for snow pit temperatures

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Jamieson, B.

    2014-03-01

    Driven by temperature gradients, kinetic snow metamorphism plays an import role in avalanche formation. When gradients based on temperatures measured 10 cm apart appear to be insufficient for kinetic metamorphism, faceting close to a crust can be observed. Recent studies that visualised small-scale (< 10 cm) thermal structures in a profile of snow layers with an infrared (IR) camera produced interesting results. The studies found melt-freeze crusts to be warmer or cooler than the surrounding snow depending on the large-scale gradient direction. However, an important assumption within these studies was that a thermal photo of a freshly exposed snow pit was similar enough to the internal temperature of the snow. In this study, we tested this assumption by recording thermal videos during the exposure of the snow pit wall. In the first minute, the results showed increasing gradients with time, both at melt-freeze crusts and artificial surface structures such as shovel scours. Cutting through a crust with a cutting blade or shovel produced small concavities (holes) even when the objective was to cut a planar surface. Our findings suggest there is a surface structure dependency of the thermal image, which was only observed at times during a strong cooling/warming of the exposed pit wall. We were able to reproduce the hot-crust/cold-crust phenomenon and relate it entirely to surface structure in a temperature-controlled cold laboratory. Concave areas cooled or warmed more slowly compared with convex areas (bumps) when applying temperature differences between snow and air. This can be explained by increased radiative and/or turbulent energy transfer at convex areas. Thermal videos suggest that such processes influence the snow temperature within seconds. Our findings show the limitations of using a thermal camera for measuring pit-wall temperatures, particularly during windy conditions, clear skies and large temperature differences between air and snow. At crusts or other

  18. Formaldehyde (HCHO) in air, snow, and interstitial air at Concordia (East Antarctic Plateau) in summer

    NASA Astrophysics Data System (ADS)

    Preunkert, S.; Legrand, M.; Frey, M. M.; Kukui, A.; Savarino, J.; Gallée, H.; King, M.; Jourdain, B.; Vicars, W.; Helmig, D.

    2015-06-01

    During the 2011/12 and 2012/13 austral summers, HCHO was investigated for the first time in ambient air, snow, and interstitial air at the Concordia site, located near Dome C on the East Antarctic Plateau, by deploying an Aerolaser AL-4021 analyzer. Snow emission fluxes were estimated from vertical gradients of mixing ratios observed at 1 cm and 1 m above the snow surface as well as in interstitial air a few centimeters below the surface and in air just above the snowpack. Typical flux values range between 1 and 2 × 1012 molecules m-2 s-1 at night and 3 and 5 × 1012 molecules m-2 s-1 at noon. Shading experiments suggest that the photochemical HCHO production in the snowpack at Concordia remains negligible compared to temperature-driven air-snow exchanges. At 1 m above the snow surface, the observed mean mixing ratio of 130 pptv and its diurnal cycle characterized by a slight decrease around noon are quite well reproduced by 1-D simulations that include snow emissions and gas-phase methane oxidation chemistry. Simulations indicate that the gas-phase production from CH4 oxidation largely contributes (66%) to the observed HCHO mixing ratios. In addition, HCHO snow emissions account for ~ 30% at night and ~ 10% at noon to the observed HCHO levels.

  19. Formaldehyde (HCHO) in air, snow and interstitial air at Concordia (East Antarctic plateau) in summer

    NASA Astrophysics Data System (ADS)

    Preunkert, S.; Legrand, M.; Frey, M.; Kukui, A.; Savarino, J.; Gallée, H.; King, M.; Jourdain, B.; Vicars, W.; Helmig, D.

    2014-12-01

    During the 2011/12 and 2012/13 austral summers HCHO was investigated for the first time in ambient air, snow, and interstitial air at the Concordia site located near Dome C on the East Antarctic plateau by deploying an Aerolaser AL-4021 analyser. Snow emission fluxes were estimated from vertical gradients of mixing ratios observed between 1 cm and 1 m above the snow surface as well as between interstitial air a few cm below the surface and in air just above the snow-pack. Typical flux values range between 1 to 2 × 1012 molecules m-2 s-1 at night and 3 to 5 × 1012 molecules m-2 s-1 at noon. Shading experiments suggest that the photochemical HCHO production in the snowpack at Concordia remains negligible compared to temperature-driven air-snow exchanges. At 1 m above the snow surface, the observed mean mixing ratio of 130 pptv and its diurnal cycle characterized by a slight decrease around noon are quite well reproduced by 1-D simulations that include snow emissions and gas phase methane oxidation chemistry.

  20. Using Air Temperature to Quantitatively Predict the MODIS Fractional Snow Cover Retrieval Errors over the Continental US (CONUS)

    NASA Technical Reports Server (NTRS)

    Dong, Jiarui; Ek, Mike; Hall, Dorothy K.; Peters-Lidard, Christa; Cosgrove, Brian; Miller, Jeff; Riggs, George A.; Xia, Youlong

    2013-01-01

    In the middle to high latitude and alpine regions, the seasonal snow pack can dominate the surface energy and water budgets due to its high albedo, low thermal conductivity, high emissivity, considerable spatial and temporal variability, and ability to store and then later release a winters cumulative snowfall (Cohen, 1994; Hall, 1998). With this in mind, the snow drought across the U.S. has raised questions about impacts on water supply, ski resorts and agriculture. Knowledge of various snow pack properties is crucial for short-term weather forecasts, climate change prediction, and hydrologic forecasting for producing reliable daily to seasonal forecasts. One potential source of this information is the multi-institution North American Land Data Assimilation System (NLDAS) project (Mitchell et al., 2004). Real-time NLDAS products are used for drought monitoring to support the National Integrated Drought Information System (NIDIS) and as initial conditions for a future NCEP drought forecast system. Additionally, efforts are currently underway to assimilate remotely-sensed estimates of land-surface states such as snowpack information into NLDAS. It is believed that this assimilation will not only produce improved snowpack states that better represent snow evolving conditions, but will directly improve the monitoring of drought.

  1. Air-snow exchange of nitrate: a modelling approach to investigate physicochemical processes in surface snow at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Bock, Josué; Savarino, Joël; Picard, Ghislain

    2016-04-01

    Snowpack is a multiphase (photo)chemical reactor that strongly influences the air composition in polar and snow-covered regions. Snowpack plays a special role in the nitrogen cycle, as it has been shown that nitrate undergoes numerous recycling stages (including photolysis) in the snow before being permanently buried in the firn. However, the current understanding of these physicochemical processes remains very poor. Several modelling studies have attempted to reproduce (photo)chemical reactions inside snow grains, but these required strong assumptions to characterise snow reactive properties, which are not well defined. Physical processes such as adsorption, solid state diffusion and co-condensation also affect snow chemical composition. We developed a model including a physically based parameterisation of these air-snow exchange processes for nitrate. This modelling study divides into two distinct parts: firstly, surface concentration of nitrate adsorbed onto snow is calculated using existing isotherm parametrisation. Secondly, bulk concentration of nitrate in solid solution into the ice matrix is modelled. In this second approach, solid state diffusion drives the evolution of nitrate concentration inside a layered spherical snow grain. A physically-based parameterisation defining the concentration at the air-snow interface was developed to account for the the co-condensation process. The model uses as input a one-year long time series of atmospheric nitrate concentration measured at Dome C, Antarctica. The modelled nitrate concentration in surface snow is compared to field measurements. We show that on the one hand, the adsorption of nitric acid on the surface of the snow grains fails to fit the observed variations. During winter and spring, the modelled adsorbed concentration of nitrate is 2.5 and 8.3-fold higher than the measured one, respectively. A strong diurnal variation driven by the temperature cycle and a peak occurring in early spring are two other

  2. Temperature Control Method in the Snow Road Construction

    NASA Astrophysics Data System (ADS)

    Serebrenikova, Yu; Lysyannikov, A.; Kaizer, Yu; Zhelykevich, R.; Plakhotnikova, M.; Lysyannikova, N.; Merko, M.; Merko, I.

    2016-06-01

    The paper substantiates the process of heat treatment before the snow compaction in snow road construction. The methods to measure the temperature of snow as a moving dispersed material have been considered in the paper.

  3. Interaction between temperature, precipitation and snow cover trends in Norway

    NASA Astrophysics Data System (ADS)

    Rizzi, Jonathan; Brox Nilsen, Irene; Stagge, James Howard; Gisnås, Kjersti; Merete Tallaksen, Lena

    2016-04-01

    Northern latitudes are experiencing faster warming than other regions, partly due to the snow--albedo feedback. A reduction in snow cover, which has a strong positive feedback on the energy balance, leads to a lowering of the albedo and thus, an amplification of the warming signal. Norway, in particular, can be considered a "cold climate laboratory" with large gradients in geography and climate that allows studying the effect of changing temperature and precipitation on snow in highly varying regions. Previous research showed that during last decades there has been an increase in air temperature for the entire country and a concurrent reduction in the land surface area covered by snow. However, these studies also demonstrate the sensitivity of the trend analysis to the period of record, to the start and end of the period, and to the presence of extreme years. In this study, we analyse several variables and their spatial and temporal variability across Norway, including mean, minimum and maximum daily temperature, daily precipitation, snow covered area and total snow water equivalent. Climate data is retrieved from seNorge (http://www.senorge.no), an operationally gridded dataset for Norway with a resolution of 1 km2. Analysis primarily focused on three overlapping 30-year periods (i.e., 1961-1990, 1971-2000, 1981-2010), but also tested trend sensitivity by varying period lengths. For each climate variable the Theil-Sen trend was calculated for each 30-year period along with the difference between 30-year mean values. In addition, indices specific to each variable were calculated (e.g. the number of days with a shift from negative to positive temperature values). The analysis was performed for the whole of Norway as well as for separate climatological regions previously defined based on temperature, precipitation and elevation. Results confirm a significant increase in mean daily temperatures and accelerating warming trends, especially during winter and spring

  4. Quasi-steady temperature gradient metamorphism in idealized, dry snow

    SciTech Connect

    Christon, M. . Methods Development Group); Burns, P.J. . Dept. of Mechanical Engineering); Sommerfeld, R.A. )

    1994-03-01

    A three-dimensional model for heat and mass transport in microscale ice lattices of dry snow is formulated consistent with conservation laws and solid-vapor interface constraints. A finite element model that employs continuous mesh deformation is developed, and calculation of the effective diffusion rates in snow, metamorphosing under a temperature gradient, is performed. Results of the research provide basic insight into the movement of heat and water vapor in seasonal snowcovers. Agreement between the numerical results and measured data of effective thermal conductivity is excellent. The enhancement to the water vapor diffusion rate in snow is bracketed in the range of 1.05--2.0 times that of water vapor in dry air.

  5. Metamorphism during temperature gradient with undersaturated advective airflow in a snow sample

    NASA Astrophysics Data System (ADS)

    Ebner, Pirmin Philipp; Schneebeli, Martin; Steinfeld, Aldo

    2016-04-01

    Snow at or close to the surface commonly undergoes temperature gradient metamorphism under advective flow, which alters its microstructure and physical properties. Time-lapse X-ray microtomography is applied to investigate the structural dynamics of temperature gradient snow metamorphism exposed to an advective airflow in controlled laboratory conditions. Cold saturated air at the inlet was blown into the snow samples and warmed up while flowing across the sample with a temperature gradient of around 50 K m-1. Changes of the porous ice structure were observed at mid-height of the snow sample. Sublimation occurred due to the slight undersaturation of the incoming air into the warmer ice matrix. Diffusion of water vapor opposite to the direction of the temperature gradient counteracted the mass transport of advection. Therefore, the total net ice change was negligible leading to a constant porosity profile. However, the strong recrystallization of water molecules in snow may impact its isotopic or chemical content.

  6. Wind tunnel experiments: cold-air pooling and atmospheric decoupling above a melting snow patch

    NASA Astrophysics Data System (ADS)

    Mott, R.; Paterna, E.; Horender, S.; Crivelli, P.; Lehning, M.

    2015-10-01

    The longevity of perennial snow fields is not fully understood but it is known that strong atmospheric stability and thus boundary layer decoupling limits the amount of (sensible and latent) heat that can be transmitted to the snow surface. The strong stability is typically caused by two factors, (i) the temperature difference between the (melting) snow surface and the near-surface atmosphere and (ii) cold-air pooling in topographic depressions. These factors are almost always a prerequisite for perennial snow fields to exist. For the first time, this contribution investigates the relative importance of the two factors in a controlled wind tunnel environment. Vertical profiles of sensible heat fluxes are measured using two-component hot wire and one-component cold-wire anemometry directly over the melting snow patch. The comparison between a flat snow surface and one that has a depression shows that atmospheric decoupling is strongly increased in the case of topographic sheltering but only for low to moderate wind speeds. For those conditions, the near-surface suppression of turbulent mixing was observed to be strongest and drainage flows were decoupled from the surface enhancing atmospheric stability and promoting the cold-air pooling over the single snow patch. Further work is required to systematically and quantitatively describe the flux distribution for varying terrain geometry, wind speeds and air temperatures.

  7. Hypercapnia increases core temperature cooling rate during snow burial.

    PubMed

    Grissom, Colin K; Radwin, Martin I; Scholand, Mary Beth; Harmston, Chris H; Muetterties, Mark C; Bywater, Tim J

    2004-04-01

    Previous retrospective studies report a core body temperature cooling rate of 3 degrees C/h during avalanche burial. Hypercapnia occurs during avalanche burial secondary to rebreathing expired air, and the effect of hypercapnia on hypothermia during avalanche burial is unknown. The objective of this study was to determine the core temperature cooling rate during snow burial under normocapnic and hypercapnic conditions. We measured rectal core body temperature (T(re)) in 12 subjects buried in compacted snow dressed in a lightweight clothing insulation system during two different study burials. In one burial, subjects breathed with a device (AvaLung 2, Black Diamond Equipment) that resulted in hypercapnia over 30-60 min. In a control burial, subjects were buried under identical conditions with a modified breathing device that maintained normocapnia. Mean snow temperature was -2.5 +/- 2.0 degrees C. Burial time was 49 +/- 14 min in the hypercapnic study and 60 min in the normocapnic study (P = 0.02). Rate of decrease in T(re) was greater with hypercapnia (1.2 degrees C/h by multiple regression analysis, 95% confidence limits of 1.1-1.3 degrees C/h) than with normocapnia (0.7 degrees C/h, 95% confidence limit of 0.6-0.8 degrees C/h). In the hypercapnic study, the fraction of inspired carbon dioxide increased from 1.4 +/- 1.0 to 7.0 +/- 1.4%, minute ventilation increased from 15 +/- 7 to 40 +/- 12 l/min, and oxygen saturation decreased from 97 +/- 1 to 90 +/- 6% (P < 0.01). During the normocapnic study, these parameters remained unchanged. In this study, T(re) cooling rate during snow burial was less than previously reported and was increased by hypercapnia. This may have important implications for prehospital treatment of avalanche burial victims. PMID:14660514

  8. The impact of coniferous forest temperature on incoming longwave radiation to melting snow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted in Rocky Mountain evergreen forests of differing density, insolation and latitude to test whether air temperatures are suitable surrogates for canopy temperature in estimating sub-canopy longwave irradiance to snow. Under conditions of low to no insolation then air temper...

  9. Interannual changes in snow cover and its impact on ground surface temperatures in Livingston Island (Antarctica)

    NASA Astrophysics Data System (ADS)

    Nieuwendam, Alexandre; Ramos, Miguel; Vieira, Gonçalo

    2015-04-01

    In permafrost areas the seasonal snow cover is an important factor on the ground thermal regime. Snow depth and timing are important in ground insulation from the atmosphere, creating different snow patterns and resulting in spatially variable ground temperatures. The aim of this work is to characterize the interactions between ground thermal regimes and snow cover and the influence on permafrost spatial distribution. The study area is the ice-free terrains of northwestern Hurd Peninsula in the vicinity of the Spanish Antarctic Station "Juan Carlos I" and Bulgarian Antarctic Station "St. Kliment Ohridski". Air and ground temperatures and snow thickness data where analysed from 4 sites along an altitudinal transect in Hurd Peninsula from 2007 to 2012: Nuevo Incinerador (25 m asl), Collado Ramos (110 m), Ohridski (140 m) and Reina Sofia Peak (275 m). The data covers 6 cold seasons showing different conditions: i) very cold with thin snow cover; ii) cold with a gradual increase of snow cover; iii) warm with thick snow cover. The data shows three types of periods regarding the ground surface thermal regime and the thickness of snow cover: a) thin snow cover and short-term fluctuation of ground temperatures; b) thick snow cover and stable ground temperatures; c) very thick snow cover and ground temperatures nearly constant at 0°C. a) Thin snow cover periods: Collado Ramos and Ohridski sites show frequent temperature variations, alternating between short-term fluctuations and stable ground temperatures. Nuevo Incinerador displays during most of the winter stable ground temperatures; b) Cold winters with a gradual increase of the snow cover: Nuevo Incinerador, Collado Ramos and Ohridski sites show similar behavior, with a long period of stable ground temperatures; c) Thick snow cover periods: Collado Ramos and Ohridski show long periods of stable ground, while Nuevo Incinerador shows temperatures close to 0°C since the beginning of the winter, due to early snow cover

  10. Microwave emission from snow and glacier ice. [brightness temperature for snow fields

    NASA Technical Reports Server (NTRS)

    Chang, T. C.; Gloersen, P.; Schmugge, T.; Wilheit, T. T.; Zwally, H. J.

    1975-01-01

    The microwave brightness temperature for snow fields was studied assuming that the snow cover consists of closely packed scattering spheres which do not interact coherently. The Mie scattering theory was used to compute the volume scattering albedo. It is shown that in the wavelength range from 0.8 to 2.8 cm, most of the micro-radiation emanates from a layer 10 meters or less in thickness. It is concluded that it is possible to determine snow accumulation rates as well as near-surface temperature.

  11. Thermal diffusivity of seasonal snow determined from temperature profiles

    NASA Astrophysics Data System (ADS)

    Oldroyd, H. J.; Higgins, C. W.; Huwald, H.; Selker, J. S.; Parlange, M. B.

    2013-05-01

    Thermal diffusivity of snow is an important thermodynamic property associated with key hydrological phenomena such as snow melt and heat and water vapor exchange with the atmosphere. Direct determination of snow thermal diffusivity requires coupled point measurements of thermal conductivity and density, which continually change due to snow metamorphism. Traditional methods for determining these two quantities are generally limited by temporal resolution. In this study we present a method to determine the thermal diffusivity of snow with high temporal resolution using snow temperature profile measurements. High resolution (between 2.5 and 10 cm at 1 min) temperature measurements from the seasonal snow pack at the Plaine-Morte glacier in Switzerland are used as initial conditions and Neumann (heat flux) boundary conditions to numerically solve the one-dimensional heat equation and iteratively optimize for thermal diffusivity. The implementation of Neumann boundary conditions and a t-test, ensuring statistical significance between solutions of varied thermal diffusivity, are important to help constrain thermal diffusivity such that spurious high and low values as seen with Dirichlet (temperature) boundary conditions are reduced. The results show that time resolved thermal diffusivity can be determined from temperature measurements of seasonal snow and support density-based empirical parameterizations for thermal conductivity.

  12. Improving the accuracy of MODIS 8-day snow products with in situ temperature and precipitation data

    NASA Astrophysics Data System (ADS)

    Dong, Chunyu; Menzel, Lucas

    2016-03-01

    MODIS snow data are appropriate for a wide range of eco-hydrological studies and applications in the fields of snow-related hazards, early warning systems and water resources management. However, the high spatio-temporal resolution of the remotely sensed data is often biased by snow misclassifications, and cloud cover frequently limits the availability of the MODIS-based snow cover information. In this study, we applied a four-step methodology that aims to optimize the accuracy of MODIS snow data. To reduce the cloud fraction, 8-day MODIS data from both the Aqua and Terra satellites were combined. Neighborhood analysis was applied as well for this purpose, and it also contributed to the retrieval of some omitted snow. Two meteorological filters were then applied to combine information from station-based measurements of minimum ground temperature, precipitation and air temperature. This procedure helped to reduce the overestimation of snow cover. To test this technique, the methodology was applied to the Rhineland-Palatinate region in southwestern Germany (approximately 20,000 km2), where cloud cover is especially high during winter and surface heterogeneity is complex. The results show that mean annual cloud coverage (reference period 2002-2013) of the 8-day MODIS snow maps could be reduced using this methodology from approximately 14% to 4.5%. During the snow season, obstruction by clouds could be reduced by even a higher degree, but still remains at about 11%. Further, the overall snow overestimation declined from 11.0-11.9% (using the original Aqua-Terra data) to 1.0-1.5%. The method is able to improve the overall accuracy of the 8-day MODIS snow product from originally 78% to 89% and even to 93% during cloud free periods.

  13. From Snow Depth Distribution to Small-Scale Variability of Soil Temperatures

    NASA Astrophysics Data System (ADS)

    Gisnås, Kjersti; Westermann, Sebastian; Etzelmüller, Bernd; Schuler, Thomas V.

    2013-04-01

    Permafrost is a temperature phenomenon on the local scale. Soil temperatures are not only influenced by atmospheric conditions varying on scales of kilometers, but are also determined by the land cover and soil properties, which display large variability on the meter-scale in many permafrost areas. In mountain areas the seasonal snow cover is crucial for the ground thermal regime, and the redistribution of snow by wind can create a pattern of different snow depths, which results in spatially variable permafrost temperatures. Existing permafrost models (CryoGRID1.0 and CryoGRID2.0) are implemented at 1x1km spatial resolution for Norway, and have proven to capture the regional distribution of permafrost. One of the principal uncertainties of these models is the effect of sub-grid variability in snow cover, and downscaling approaches for snow are therefore required to get a satisfactorily representation of the ground thermal regime. An extensive dataset including ground temperatures of 7 boreholes and data of 5 stations measuring snow depth and air/ground surface temperature is available from Juvflye, a high-mountain site in central southern Norway (1800-1900m a.s.l.). The area has a rough topography and a seasonal snow cover dominated by heavy wind redistribution. A Ground Penetration Radar (GPR) survey of snow depth was conducted in March 2012, covering an 8km2 area including the 7 boreholes. This GPR-survey will be repeated in 2013. The measured snow depths form the basis for probability density functions (PDFs) of snow cover within each 1x1km grid cell for this area. A 1-D numerical model including both a soil thermal model and snow pack scheme are calibrated for all 7 boreholes. Several model runs are performed for different snow depths, intended to cover the range of observed values. We present the effects of different snow depths on the thermal regime of the underlying permafrost, based on this model attempt. Furthermore, we outline a probabilistic approach for

  14. Developing Temperature Forcing for Snow and Ice Melt Runoff Models in High Mountain Regions

    NASA Astrophysics Data System (ADS)

    Barrett, A. P.; Armstrong, R. L.; Brodzik, M. J.; Khalsa, S. J. S.; Raup, B. H.; Rittger, K.

    2014-12-01

    Glaciers and snow cover are natural storage reservoirs that delay runoff on seasonal and longer time-scales. Glacier wastage and reduced snow packs will impact the volume and timing of runoff from mountain basins. Estimates of the contributions of glacier and snow melt to runoff in river systems draining mountain regions are critical for water resources planning. The USAID funded CHARIS project aims to estimate the contributions of glacier and snow melt to streamflow in the Ganges, Indus, Brahmaputra, Amu Darya and Syr Darya rivers. Most efforts to estimate glacier and snow melt contributions use temperature-index or degree-day approaches. Near-surface air temperature is a key forcing variable for such models. As with all mountain regions, meteorological stations are sparse and may have short records. Few stations exist at high elevations, with most stations located in valleys below the elevations of glaciers and seasonal snow cover. Reanalyses offer an alternative source of temperature data. However, reanalyses have coarse resolution and simplified topography, especially in the Himalaya. Surface fields are often biased. Any reanalysis product must be both bias-corrected and "downscaled" to the resolution of the melt-runoff model. We present a combined empirically-based bias-correction and downscaling procedure that uses near-surface air temperature from global atmospheric reanalyses to generate near-surface temperature forcing fields for the five river basins in the CHARIS study area. We focus on three 3rd Generation reanalyses; NASA MERRA, NCEP CFSR and ECMWF ERA-Interim. Evaluation of reanalysis temperature fields reveals differences between seasonal means of 500 hPa air temperatures for the three products are of the order of 1 °C, indicating choice of reanalysis can impact model results. The procedure accounts for these seasonal variations in biases of the reanalysis products and in lapse rates.

  15. Neutral Poly-/perfluoroalkyl Substances in Air and Snow from the Arctic

    PubMed Central

    Xie, Zhiyong; Wang, Zhen; Mi, Wenying; Möller, Axel; Wolschke, Hendrik; Ebinghaus, Ralf

    2015-01-01

    Levels of neutral poly-/perfluoroalkyl substances (nPFASs) in air and snow collected from Ny-Ålesund were measured and their air-snow exchange was determined to investigate whether they could re-volatilize into the atmosphere driven by means of air-snow exchange. The total concentration of 12 neutral PFASs ranged from 6.7 to 39 pg m−3 in air and from 330 to 690 pg L−1 in snow. A significant log-linear relationship was observed between the gas/particle partition coefficient and vapor pressure of the neutral PFASs. For fluorotelomer alcohol (FTOHs) and fluorotelomer acrylates (FTAs), the air-snow exchange fluxes were positive, indicating net evaporative from snow into air, while net deposition into snow was observed for perfluorooctane sulfonamidoethanols (Me/EtFOSEs) in winter and spring of 2012. The air-snow exchange was snow-phase controlled for FTOHs and FTAs, and controlled by the air-phase for FOSEs. Air-snow exchange may significantly interfere with atmospheric concentrations of neutral PFASs in the Arctic. PMID:25746440

  16. Neutral Poly-/perfluoroalkyl Substances in Air and Snow from the Arctic

    NASA Astrophysics Data System (ADS)

    Xie, Zhiyong; Wang, Zhen; Mi, Wenying; Möller, Axel; Wolschke, Hendrik; Ebinghaus, Ralf

    2015-03-01

    Levels of neutral poly-/perfluoroalkyl substances (nPFASs) in air and snow collected from Ny-Ålesund were measured and their air-snow exchange was determined to investigate whether they could re-volatilize into the atmosphere driven by means of air-snow exchange. The total concentration of 12 neutral PFASs ranged from 6.7 to 39 pg m-3 in air and from 330 to 690 pg L-1 in snow. A significant log-linear relationship was observed between the gas/particle partition coefficient and vapor pressure of the neutral PFASs. For fluorotelomer alcohol (FTOHs) and fluorotelomer acrylates (FTAs), the air-snow exchange fluxes were positive, indicating net evaporative from snow into air, while net deposition into snow was observed for perfluorooctane sulfonamidoethanols (Me/EtFOSEs) in winter and spring of 2012. The air-snow exchange was snow-phase controlled for FTOHs and FTAs, and controlled by the air-phase for FOSEs. Air-snow exchange may significantly interfere with atmospheric concentrations of neutral PFASs in the Arctic.

  17. Wind tunnel experiments: cold-air pooling and atmospheric decoupling above a melting snow patch

    NASA Astrophysics Data System (ADS)

    Mott, Rebecca; Paterna, Enrico; Horender, Stefan; Crivelli, Philip; Lehning, Michael

    2016-02-01

    The longevity of perennial snowfields is not fully understood, but it is known that strong atmospheric stability and thus boundary-layer decoupling limit the amount of (sensible and latent) heat that can be transmitted from the atmosphere to the snow surface. The strong stability is typically caused by two factors, (i) the temperature difference between the (melting) snow surface and the near-surface atmosphere and (ii) cold-air pooling in topographic depressions. These factors are almost always a prerequisite for perennial snowfields to exist. For the first time, this contribution investigates the relative importance of the two factors in a controlled wind tunnel environment. Vertical profiles of sensible heat and momentum fluxes are measured using two-component hot-wire and one-component cold-wire anemometry directly over the melting snow patch. The comparison between a flat snow surface and one that has a depression shows that atmospheric decoupling is strongly increased in the case of topographic sheltering but only for low to moderate wind speeds. For those conditions, the near-surface suppression of turbulent mixing was observed to be strongest, and the ambient flow was decoupled from the surface, enhancing near-surface atmospheric stability over the single snow patch.

  18. Winter stream temperature in the rain-on-snow zone of the Pacific Northwest: influences of hillslope runoff and transient snow cover

    NASA Astrophysics Data System (ADS)

    Leach, J. A.; Moore, R. D.

    2014-02-01

    Stream temperature dynamics during winter are less well studied than summer thermal regimes, but the winter season thermal regime can be critical for fish growth and development in coastal catchments. The winter thermal regimes of Pacific Northwest headwater streams, which provide vital winter habitat for salmonids and their food sources, may be particularly sensitive to changes in climate because they can remain ice-free throughout the year and are often located in rain-on-snow zones. This study examined winter stream temperature patterns and controls in small headwater catchments within the rain-on-snow zone at the Malcolm Knapp Research Forest, near Vancouver, British Columbia, Canada. Two hypotheses were addressed by this study: (1) winter stream temperatures are primarily controlled by advective fluxes associated with runoff processes and (2) stream temperatures should be depressed during rain-on-snow events, compared to rain-on-bare-ground events, due to the cooling effect of rain passing through the snowpack prior to infiltrating the soil or being delivered to the stream as saturation-excess overland flow. A reach-scale energy budget analysis of two winter seasons revealed that the advective energy input associated with hillslope runoff overwhelms vertical energy exchanges (net radiation, sensible and latent heat fluxes, bed heat conduction, and stream friction) and hyporheic energy fluxes during rain and rain-on-snow events. Historical stream temperature data and modelled snowpack dynamics were used to explore the influence of transient snow cover on stream temperature over 13 winters. When snow was not present, daily stream temperature during winter rain events tended to increase with increasing air temperature. However, when snow was present, stream temperature was capped at about 5 °C, regardless of air temperature. The stream energy budget modelling and historical analysis support both of our hypotheses. A key implication is that climatic warming may

  19. Remotely sensed ground surface temperature variations over Arctic during summer and winter (under snow cover) periods

    NASA Astrophysics Data System (ADS)

    Royer, A.; Marchand, N.; Ottle, C.; Krinner, G.; Roy, A.

    2015-12-01

    Projected future warming is particularly strong in northern high latitudes. Permafrost present in those areas contains high quantities of "frozen carbon" that could be released in the atmosphere. This communication will present different improved approaches to monitor the land-surface temperature (LST) variations in summer (without snow) and in winter (under snow cover), using microwave brightness temperatures. For the summer period, the method combines 37 GHz passive microwave and thermal infrared data to estimate LST during summer snow-free periods calibrated at a pixel-based scale, leading to a new LST dataset provided at 25 km scale and at an hourly time step during the ten-year analysis period (2000-2011). This product was locally evaluated at five experimental sites of the EU-PAGE21 project against air temperature measurements and meteorological model reanalysis, and compared to the MODIS LST product at both local and circumpolar scale. The results giving a mean RMSE of the order of 2.2 K demonstrate the usefulness of the microwave product, which is unaffected by clouds as opposed to thermal infrared products and offers a better resolution compared to model reanalysis. The snow impact on ground temperature, due to its insulation properties modified by the climate changes, must also be monitored. For the winter period, we use satellite data (MODIS "LST" and passive microwave AMSR-E "Tb") assimilated in a climate land surface scheme (CLASS) driven by reanalysis meteorological data and coupled with a radiative transfer model (HUT) in order to generate a daily Tb corresponding the simulated soil and snow conditions. The land surface scheme is adjusted to minimize the simulated Tbs against the measured Tbs. We show that the retrieved simulated ground-temperatures under the simulated modified snow cover is improved by up to 2 to 4 K when using satellite data compared to the simulated ground temperatures using the model (alone) without constraint.

  20. Comparison of AMSR-E derived Antarctic snow-ice interface temperatures with previous surface observations

    NASA Astrophysics Data System (ADS)

    Lewis, M.; Ackley, S. F.; Xie, H.; Cicek, B.

    2006-12-01

    The AMSR-E Sea Ice Temperature (L3 25 km) data product derived from passive microwave emissions at 6.9 GHz is available from the National Snow and Ice Data Center. The Sea Ice Temperature data represents the temperature at the surface of the sea ice, or the temperature corresponding to the snow-ice interface. Antarctic sea ice images from 2005 were obtained at approximate 5-day intervals corresponding to typical days of the four seasons, winter, spring, summer and fall. Available measurements conducted during previous field campaigns were obtained from the literature. The field data of snow-ice interface temperatures roughly corresponding to the typical days of the four seasons, albeit over much more limited areas of ice cover and at times different from the satellite images, were utilized for comparison. The field measurements give insight into the physical behavior of the Antarctic ice surface temperature. These field data show: 1) during the summer season, mean ice surface temperatures invariably range from 0 to -2ºC, corresponding to an isothermal snowpack or surface flooded with ocean water; 2) during the spring season, mean ice surface temperatures are generally above -8ºC, as increases in air temperature and solar radiation result in interface temperatures that lie between the air temperature (mean above -10ºC) and the seawater temperature at the ice-water interface (-1.8ºC); 3) during fall and winter seasons, warmest interface temperatures are found beneath the deepest snow cover, which either better insulates the surface from colder air temperatures than thin snow cover or causes surface flooding from the increased overburden, leading to sea ice interface temperatures near -1.8ºC. While the field data are not a validation sensu strictu, the AMSR-E product appears to conflict with several of these generally observed properties. The coldest interface temperatures from the satellite data are reported for spring and summer, which are lower than winter

  1. Use of low-temperature scanning electron microscopy to compare and characterize three classes of snow cover.

    PubMed

    Foster, James; Kelly, Richard; Rango, Albert; Armstrong, Richard; Erbe, Eric F; Pooley, Christopher; Wergin, William P

    2006-01-01

    This study, which uses low-temperature scanning electron microscopy (LTSEM), systematically sampled and characterized snow crystals that were collected from three unique classes of snow cover: prairie, taiga, and alpine. These classes, which were defined in previous field studies, result from exposure to unique climatic variables relating to wind, precipitation, and air temperature. Snow samples were taken at 10 cm depth intervals from the walls of freshly excavated snow pits. The depth of the snow pits for the prairie, taiga, and alpine covers were 28, 81, and 110 cm, respectively. Visual examination revealed that the prairie snow cover consisted of two distinct layers whereas the taiga and alpine covers had four distinct layers. Visual measurements were able to establish the range of crystal sizes that occurred in each layer, the temperature within the pit, and the snow density. The LTSEM observations revealed the detailed structures of the types of crystals that occurred in the snow covers, and documented the metamorphosis that transpired in the descending layers. Briefly, the top layers from two of the snow covers consisted of freshly fallen snow crystals that could be readily distinguished as plates and columns (prairie) or graupel (taiga). Alternatively, the top layer in the alpine cover consisted of older dendritic crystal fragments that had undergone early metamorphosis, that is, they had lost their sharp edges and had begun to show signs of joining or bonding with neighboring crystals. A unique layer, known as sun crust, was found in the prairie snow cover; however, successive samplings from all three snow covers showed similar stages of metamorphism that led to the formation of depth hoar crystals. These changes included the gradual development of large, three-dimensional crystals having clearly defined flat faces, sharp edges, internal depressions, and facets. The study, which indicates that LTSEM can be used to enhance visual data by systematically

  2. Microwave brightness temperatures of laboratory-grown undeformed first-year ice with an evolving snow cover

    SciTech Connect

    Lohanick, A.W. )

    1993-03-15

    A laboratory experiment was performed to study a case in which a snow cover introduced on an established saline ice sheet resulted in physical processes that significantly affected the microwave brightness temperature over a period of a few weeks. Saline ice was grown to a thickness of 240 mm in an outdoor pool at ambient air temperatures. Precipitation was allowed by use of a movable roof. Brightness temperatures were measured at 10 and 85 GHz before and for several weeks after one snowfall. During the same period, the vertical temperature profile and crystallography of the snow column, as well as ice structure and salinity at the original ice surface, were monitored. The 10-GHz brightness temperature dropped by as much as 100 K from bare ice values during the first few days after the snow fell, because of a saline slush layer which formed at the bottom of the snow. The saline water in the slush layer apparently was forced up through the unbroken ice by the added snow load. The slush layer eventually froze into an added highly emissive frazil ice layer which raised the 10-GHz brightness temperature to above its bare ice values. The frazil ice layer was similar to superimposed frazil ice observed on freezing leads in high-latitude ice packs. The 85-GHz brightness temperature did not change from bare ice values soon after the snowfall but dropped by about 40 K over the following 20 days. We use a simple dielectric model to qualitatively test the dependence of 10-GHz brightness temperature on relevant physical conditions at the bottom of the snow. At 85 GHz the snow layer was optically thick, and the brightness temperature drop was probably the result of increased volume scatter from the growing snow grains. 24 refs., 7 figs.

  3. Isotopes of HNO3 in Air and Snow at Summit, Greenland

    NASA Astrophysics Data System (ADS)

    Jarvis, J. C.; Hastings, M. G.; Steig, E. J.

    2007-12-01

    The ice core record of nitric acid (HNO3, or nitrate, NO3-), a final sink for atmospheric NO and NO2, potentially contains valuable information about past changes in our atmosphere. Through reactions with OH and ozone, NOx (NO and NO2) is closely linked to the oxidizing capacity of the atmosphere. However, the interpretation of nitrate ice core records is complicated by post-depositional processing of nitrate, whereby photolysis and volatilization can result in nitrate losses from the snow surface. Quantitatively understanding the air-to-snow transfer of nitric acid is a necessary step in unraveling ice core records of nitrate. We present isotopic measurements (15N/14N and 18O/16O) of HNO3 in air and snow from Summit, Greenland. Preliminary results show that the δ15N of HNO3 is similar in surface snow and in air sampled 1.5 meters above the snow surface. The δ18O of HNO3 is significantly higher in the surface snow versus the air samples. Previous studies of nitrate in precipitation have suggested that the δ15N of nitrate is influenced by sources of precursor NOx while the δ18O of nitrate is influenced by the chemical pathways of nitrate production. We discuss the possibility that the difference in δ18O between the air and snow samples may be an indication that the air samples contain nitrate that was photolyzed and recycled from the snow surface. The similarity between δ15N in air and snow samples suggests that, despite the possibility of nitrate recycling, there is no net loss of nitrate from the snow surface. The utility of comparisons between variations in the δ15N of nitrate and changes in the source regions of air masses reaching Summit will also be discussed.

  4. Possibility to discriminate snow types using brightness temperatures in the thermal infrared wavelength region

    NASA Astrophysics Data System (ADS)

    Hori, Masahiro; Tanikawa, Tomonori; Aoki, Teruo; Hachikubo, Akihiro; Sugiura, Konosuke; Kuchiki, Katsuyuki; Niwano, Masashi

    2013-05-01

    Spectral emissivity of snow surface in the thermal infrared (TIR) wavelength region is an important parameter for monitoring snow surface temperature in cold climate regions and also for discriminating clouds and underlying snow surfaces in polar nights using satellite observed brightness temperature data. Past in-situ observations of snow emissivity revealed that the emissivity of snow surfaces varies depending on snow type [1]. Fine dendrite snow exhibits high emissivity over 0.98 in TIR at all exiting angles (θ). As ice granules of snow surface become large, the snow emissivity in TIR decreases and exhibits a wavelength dependence due to enhanced Fresnel reflectance at a wavelength around 12μm. Reduced snow emissivity is further enhanced as exiting angle increases. For example, emissivities of coarse grain snow at wavelengths of 11μm and 12μm are 0.99 and 0.975 for the zenith direction (θ=0°) but 0.965 and 0.93 for the slant direction of θ=75°. For sun crust snow, wavelength and directional dependences of snow emissivity are further enhanced. As the extreme case, emissivity of smooth bare ice can be approximated using the Fresnel reflectance theory. This snow type dependence of TIR emissivity as a function of wavelength and exiting angle is expected to make snow type discrimination possible using TIR brightness temperatures remotely sensed from space. In this study the possibility of snow type discrimination using TIR brightness temperatures is examined. Typical channels employed for satellite TIR image sensors are at wavelengths of 11μm and 12μm. Brightness temperature differences (BTD) at these two TIR channels (11μm-12μm) are calculated using the in-situ measured emissivities. The results showed that at the zenith direction the calculated BTD ranges from 0.5K for fine snow to 1.5K for bare ice, whereas the BTD ranges from 0.5K to over 2.3K at the slant direction of θ=60°. Thus, remotely sensed BTD ranges of around 1.0K at the zenith direction

  5. Collecting, shipping, storing, and imaging snow crystals and ice grains with low-temperature scanning electron microscopy.

    PubMed

    Erbe, Eric F; Rango, Albert; Foster, James; Josberger, Edward G; Pooley, Christopher; Wergin, William P

    2003-09-01

    Methods to collect, transport, and store samples of snow and ice have been developed that enable detailed observations of these samples with a technique known as low-temperature scanning electron microscopy (LTSEM). This technique increases the resolution and ease with which samples of snow and ice can be observed, studied, and photographed. Samples are easily collected in the field and have been shipped to the electron microscopy laboratory by common air carrier from distances as far as 5,000 miles. Delicate specimens of snow crystals and ice grains survive the shipment procedures and have been stored for as long as 3 years without undergoing any structural changes. The samples are not subjected to the melting or sublimation artifacts. LTSEM allows individual crystals to be observed for several hours with no detectable changes. Furthermore, the instrument permits recording of photographs containing the parallax information necessary for three-dimensional imaging of the true shapes of snowflakes, snow crystals, snow clusters, ice grains, and interspersed air spaces. This study presents detailed descriptions of the procedures that have been used successfully in the field and the laboratory to collect, ship, store, and image snow crystals and ice grains. PMID:12938115

  6. Collecting, shipping, storing, and imaging snow crystals and ice grains with low-temperature scanning electron microscopy

    USGS Publications Warehouse

    Erbe, E.F.; Rango, A.; Foster, J.; Josberger, E.G.; Pooley, C.; Wergin, W.P.

    2003-01-01

    Methods to collect, transport, and store samples of snow and ice have been developed that enable detailed observations of these samples with a technique known as low-temperature scanning electron microscopy (LTSEM). This technique increases the resolution and ease with which samples of snow and ice can be observed, studied, and photographed. Samples are easily collected in the field and have been shipped to the electron microscopy laboratory by common air carrier from distances as far as 5,000 miles. Delicate specimens of snow crystals and ice grains survive the shipment procedures and have been stored for as long as 3 years without undergoing any structural changes. The samples are not subjected to the melting or sublimation artifacts. LTSEM allows individual crystals to be observed for several hours with no detectable changes. Furthermore, the instrument permits recording of photographs containing the parallax information necessary for three-dimensional imaging of the true shapes of snowflakes, snow crystals, snow clusters, ice grains, and interspersed air spaces. This study presents detailed descriptions of the procedures that have been used successfully in the field and the laboratory to collect, ship, store, and image snow crystals and ice grains. Published 2003 Wiley-Liss, Inc.

  7. Small-scale variability of alpine snow packs from fiber-optic distributed temperature

    NASA Astrophysics Data System (ADS)

    Huwald, H.; Williams, S.; Higgins, C. W.; Nolin, A. W.; Drake, S. A.; Selker, J. S.; Parlange, M. B.

    2012-04-01

    Variations in small-scale surface roughness, snow density and in the snowpack microstructure influence the surface and internal snow temperature, being key quantities for various heat flux components of the surface energy balance. Detailed knowledge on the spatial distribution and temporal evolution of snow temperature is crucial to quantify spatial variability in the subsurface and surface heat fluxes of the snow pack. We present measurements of small-scale temperature variations in alpine snow packs using fiber-optic distributed temperature sensing (DTS) together with traditional sensors at spatial resolutions much smaller than most common distributed snow cover models to shed light on subgrid-scale physics. Fiber-optic cables of several 100m were installed in a fence-like configuration in in the Swiss Alps to obtain 2D information on subgrid-scale snow variability. The setup allowed for computation of subsurface heat fluxes at 1m spatial resolution along the measurement transect based on the Fourier heat equation using snow temperature and snow depth data, and an effective thermal conductivity of the snow derived from density measurements.

  8. Changes of snow cover, temperature, and radiative heat balance over the Northern Hemisphere

    SciTech Connect

    Groisman, P.Ya.; Karl, T.R.; Knight, R.W.; Stenchikov, G.L. |

    1994-11-01

    Contemporary large-scale changes in satellite-derived snow cover were examined over the Northern Hemisphere extratropical land (NEL) areas. These areas encompass 55% of the land in the Northern Hemisphere. Snow cover (S) transient regions, the `centers of action` relative to interannual variations of snow cover, were identified for the years 1972-1992. During these years a global retreat in snow cover extent (SE) occurred in the second half of the hydrologic year (April-September). Mean annual SE has decreased by 10% (2.3 x 10(exp 6) sq km). Negative trends account for one-third to one-half of the interannual continental variance of SE. The historical influence of S on the planetary albedo and outgoing longwave radiation (OLR) is investigated. The mean annual response of the S feedback on the radiative balance (RB) is negative and suggests a largescale heat redistribution. During autumn and early winter (up to January), however, the feedback of S on the planetary RB may be positive. Only by February does the cooling effect of S (due to albedo increase) dominate the planetary warming due to reduced OLR over the S. Despite a wintertime maximum in SE, the feedback in spring has the greatest magnitude. The global retreat of spring SE should lead to a positive feedback on temperature. Based on observed records of S, changes in RB are calculated that parallel an observed increase of spring temperature during the past 20 years. The results provide a partial explanation of the significant increase in spring surface air temperature observed over the land areas of the Northern Hemisphere during the past century. The mean SE in years with an El Nino and La Nina were also evaluated. El Nino events are generally accompanied by increased SE over the NEL during the first half of the hydrological year.

  9. Changes of snow cover, temperature, and radiative heat balance over the Northern Hemisphere

    NASA Technical Reports Server (NTRS)

    Groisman, Pavel YA.; Karl, Thomas R.; Knight, Richard W.; Stenchikov, Georgiy L.

    1994-01-01

    Contemporary large-scale changes in satellite-derived snow cover were examined over the Northern Hemisphere extratropical land (NEL) areas. These areas encompass 55% of the land in the Northern Hemisphere. Snow cover (S) transient regions, the 'centers of action' relative to interannual variations of snow cover, were identified for the years 1972-1992. During these years a global retreat in snow cover extent (SE) occurred in the second half of the hydrologic year (April-September). Mean annual SE has decreased by 10% (2.3 x 10(exp 6) sq km). Negative trends account for one-third to one-half of the interannual continental variance of SE. The historical influence of S on the planetary albedo and outgoing longwave radiation (OLR) is investigated. The mean annual response of the S feedback on the radiative balance (RB) is negative and suggests a largescale heat redistribution. During autumn and early winter (up to January), however, the feedback of S on the planetary RB may be positive. Only by February does the cooling effect of S (due to albedo increase) dominate the planetary warming due to reduced OLR over the S. Despite a wintertime maximum in SE, the feedback in spring has the greatest magnitude. The global retreat of spring SE should lead to a positive feedback on temperature. Based on observed records of S, changes in RB are calculated that parallel an observed increase of spring temperature during the past 20 years. The results provide a partial explanation of the significant increase in spring surface air temperature observed over the land areas of the Northern Hemisphere during the past century. The mean SE in years with an El Nino and La Nina were also evaluated. El Nino events are generally accompanied by increased SE over the NEL during the first half of the hydrological year. In the second half of the hydrologic year (spring and summer), the El Nino events are accompanied by a global retreat of SE.

  10. Using continuous measurements of near-surface atmospheric water vapor isotopes to document snow-air interactions

    NASA Astrophysics Data System (ADS)

    Steen-Larsen, Hans Christian; Masson-Delmotte, Valerie; Hirabayashi, Motohiro; Winkler, Renato; Satow, Kazuhide; Prie, Frederic; Bayou, Nicolas; Brun, Eric; Cuffey, Kurt; Dahl-Jensen, Dorthe; Dumont, Marie; Guillevic, Myriam; Kipfstuhl, Sepp; Landais, Amaelle; Popp, Trevor; Risi, Camille; Steffen, Konrad; Stenni, Barbara; Sveinbjornsdottir, Arny

    2014-05-01

    Water stable isotope data from Greenland ice cores provide key paleoclimatic information. However, post-depositional processes linked with snow metamorphism remain poorly documented. For this purpose, a monitoring of the isotopic composition δ18O and δD at several height levels (up to 13 meter) of near-surface water vapor, precipitation and snow in the first 0.5 cm from the surface has been conducted during three summers (2010-2012) at NEEM, NW Greenland. We observe a clear diurnal cycle in both the value and gradient of the isotopic composition of the water vapor above the snow surface. The diurnal amplitude in δD is found to be ~15‰. The diurnal isotopic composition follows the absolute humidity cycle. This indicates a large flux of vapor from the snow surface to the atmosphere during the daily warming and reverse flux during the daily cooling. The isotopic measurements of the flux of water vapor above the snow give new insights into the post depositional processes of the isotopic composition of the snow. During nine 1-5 days periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and near-surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated using the CROCUS snow model that 6 to 20% of the surface snow mass is exchanged with the atmosphere. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or deposition. Comparisons with atmospheric models show that day-to-day variations in near-surface vapor isotopic composition are driven by synoptic variations and changes in air mass trajectories and distillation histories. We suggest that, in-between precipitation events, changes in the surface snow isotopic composition are driven by these changes in near-surface vapor isotopic composition. This is consistent with an estimated 60% mass turnover of surface snow per day driven by snow

  11. Concentrations of Reactive Trace Gases In The Interstitial Air of Surface Snow

    NASA Astrophysics Data System (ADS)

    Jacobi, H.-W.; Honrath, R. E.; Peterson, M. C.; Lu, Y.; Dibb, J. E.; Arsenault, M. A.; Swanson, A. L.; Blake, N. J.; Bales, R. C.; Schrems, O.

    Several measurements at Arctic and Antarctic sites have demonstrated that unexpected photochemical reactions occur in irradiated surface snow influencing the composi- tion of the boundary layer over snow-covered areas. The results of these reactions are probably most obvious in the interstitial air of the surface snow since it constitutes the interface between the surface snow and the boundary layer. Therefore, measurements of concentrations of nitrogen oxide and dioxide, nitrous acid, formaldehyde, hydro- gen peroxide, formic acid, acetic acid, and other organic compounds were performed in the interstitial air of the surface snow of the Greenland ice sheet. Concentrations were measured at variable depths between - 10 cm and - 50 cm during the summer field season in 2000 at the Summit Environmental Observatory. At shallow depths, the system NO-NO2-O3 exhibits large deviations from the calculated photostationary state. Using steady-state analyses applied to OH-HO2-CH3O2 cycling indicated the presence of high concentrations of OH and peroxy radicals in the firn air. Maximum concentrations calculated for a depth of - 10 cm are in the order of 6 105 molecules cm-3 and 1.4 * 107 molecules cm-3 for OH and HO2, respectively, although radia- tion levels at - 10 cm are reduced by approximately 50 % compared to levels above the snow surface. By far the most important OH source is the photolysis of HONO while the photolysis of ozone contributes less than 2 % to the overall production of OH in the firn air.

  12. Mesoscale modeling of lake effect snow over Lake Erie - sensitivity to convection, microphysics and the water temperature

    NASA Astrophysics Data System (ADS)

    Theeuwes, N. E.; Steeneveld, G. J.; Krikken, F.; Holtslag, A. A. M.

    2010-03-01

    Lake effect snow is a shallow convection phenomenon during cold air advection over a relatively warm lake. A severe case of lake effect snow over Lake Erie on 24 December 2001 was studied with the MM5 and WRF mesoscale models. This particular case provided over 200 cm of snow in Buffalo (NY), caused three casualties and 10 million of material damage. Hence, the need for a reliable forecast of the lake effect snow phenomenon is evident. MM5 and WRF simulate lake effect snow successfully, although the intensity of the snowbelt is underestimated. It appears that significant differences occur between using a simple and a complex microphysics scheme. In MM5, the use of the simple-ice microphysics scheme results in the triggering of the convection much earlier in time than with the more sophisticated Reisner-Graupel-scheme. Furthermore, we find a large difference in the maximum precipitation between the different nested domains: Reisner-Graupel produces larger differences in precipitation between the domains than "simple ice". In WRF, the sophisticated Thompson microphysics scheme simulates less precipitation than the simple WSM3 scheme. Increased temperature of Lake Erie results in an exponential growth in the 24-h precipitation. Regarding the convection scheme, the updated Kain-Fritsch scheme (especially designed for shallow convection during lake effect snow), gives only slight differences in precipitation between the updated and the original scheme.

  13. A radiation-derived temperature-index snow routine for the GSSHA hydrologic model

    NASA Astrophysics Data System (ADS)

    Follum, Michael L.; Downer, Charles W.; Niemann, Jeffrey D.; Roylance, Spencer M.; Vuyovich, Carrie M.

    2015-10-01

    Accurate estimation of snowpack is vital in many parts of the world for both water management and flood prediction. Temperature-index (TI) snowmelt models are commonly used for this purpose due to their simplicity and low data requirements. Although TI models work well within lumped watershed models, their reliance on air temperature (and potentially an assumed lapse rate) as the only external driver of snowmelt limits their ability to accurately simulate the spatial distribution of snowpack and thus the timing of snowmelt. This limitation significantly reduces the utility of the TI approach in distributed hydrologic models because spatial variability within the watershed, including snowpack and snowmelt, is usually the primary reason for selecting a distributed model. In this paper, a new radiation-derived temperature index (RTI) approach is presented that uses a spatially-varying proxy temperature in place of air temperature within the TI model of the fully-distributed Gridded Surface Subsurface Hydrologic Analysis (GSSHA) watershed model. The RTI is derived from a radiation balance and includes spatial heterogeneity in both shortwave and longwave radiation. Thus, the RTI accounts for more local variation in the available energy than air temperature alone. The RTI model in GSSHA is tested at the Senator Beck basin in southwestern Colorado where observations for snow water equivalent (SWE) and LandSat-derived images of snow cover area (SCA) are available. The TI and RTI approaches produce similar SWE estimates at two non-forested and relatively flat sites with SWE observations. However, the two models can produce very different SWE values at sites with forests or topographic slopes, which leads to significant differences in the basin-wide SWE values of the two models. Furthermore, the RTI model provides better basin-wide SCA estimates than the TI model in 75% of the LandSat images analyzed.

  14. Relationship between snow, temperature, rainfall and the North Atlantic Oscillation on the Moroccan Atlas

    NASA Astrophysics Data System (ADS)

    Marchane, Ahmed; Jarlan, Lionel; Boudhar, Abdeghani; Hanich, Lahoucine

    2015-04-01

    In semi-arid Mediterranean areas, Snowpack represents a significant source of water for many people living downstream.The objective of this work was: to re-investigate the well-known impact of the North Atlantic Oscillation (NAO) on rainfall and temperature in Morocco and to evaluate, for the first time, linkages between NAO and snow cover areas (SCA) derived from remote sensing observations. For this purpose, we analyzed daily SCA products (2000-2013) from the MODIS sensor, meteorological data from 37 stations (1993-2011), NCEP re-analysis of surface air temperature and rainfall rate and a monthly NAO index. The linear linkages sought using simple correlation analysis demonstrated that negative (positive) NAO (1) is associated to enhanced (reduced) rainfall in December and February for the northern part of the country; (2) comes with above-normal (below-normal) temperature and, by contrast with rainfall , correlation persists far inland and late in the season. These results highlight a possible competing influence of NAO on snowpack dynamic through rainfall and temperature. Indeed, negative (positive) NAO tends to favor earlier (latter) melting and lower (increases) snow cover extent in spring (April-May) through milder temperature. Results have direct implications for seasonal forecast of SCA in Morocco.

  15. Impact of errors in the downwelling irradiances on simulations of snow water equivalent, snow surface temperature, and the snow energy balance

    NASA Astrophysics Data System (ADS)

    Lapo, Karl E.; Hinkelman, Laura M.; Raleigh, Mark S.; Lundquist, Jessica D.

    2015-03-01

    The forcing irradiances (downwelling shortwave and longwave irradiances) are the primary drivers of snowmelt; however, in complex terrain, few observations, the use of estimated irradiances, and the influence of topography and elevation all lead to uncertainties in these radiative fluxes. The impact of uncertainties in the forcing irradiances on simulations of snow is evaluated in idealized modeling experiments. Two snow models of contrasting complexity, the Utah Energy Balance Model (UEB) and the Snow Thermal Model (SNTHERM), are forced with irradiances with prescribed errors of the structure and magnitude representative of those found in methods for estimating the downwelling irradiances. Relatively modest biases have substantial impacts on simulated snow water equivalent (SWE) and surface temperature (Ts) across a range of climates, whereas random noise at the daily scale has a negligible effect on modeled SWE and Ts. Shortwave biases have a smaller SWE impact, due to the influence of albedo, and Ts impact, due to their diurnal cycle, compared to equivalent longwave biases. Warmer sites exhibit greater sensitivity to errors when evaluated using SWE, while colder sites exhibit more sensitivity as evaluated using Ts. The two models displayed different sensitivity and responses to biases. The stability feedback in the turbulent fluxes explains differences in Ts between models in the negative longwave bias scenarios. When the models diverge during melt events, differences in the turbulent fluxes and internal energy change of the snow are found to be responsible. From this analysis, we suggest model evaluations use Ts in addition to SWE.

  16. Trends and projections of temperature, precipitation, and snow cover during snow cover-observed period over southwestern Iran

    NASA Astrophysics Data System (ADS)

    Zarenistanak, Mohammad; Dhorde, Amit G.; Kripalani, R. H.; Dhorde, Anargha A.

    2015-11-01

    In the present study, tendencies in temperature, precipitation, and snow cover area over the southwestern part of Iran have been assessed. The research mainly focused on snow cover-observed period which included the months of December, January, February, March, and April in the area. This research has been divided into two parts. First part consists of an analysis of the trends in temperature, precipitation, and snow cover area during the above months. Trends in these parameters were tested by linear regression, and significance was determined by t test. Mann-Kendall rank test (MK test) was also employed to confirm the results of linear regression. Sequential Mann-Kendall test (SQ-MK test) was applied for change point detection in the series. For snow cover analysis, remote sensing images from National Oceanic and Atmospheric Administration (NOAA) satellite with advanced very high resolution radiometer (AVHRR) sensor for the period 1987-2007 were used. The second part of the research involved future projections based on four models under B1 and A1B emission scenarios. The models used were centre national de recherches meteorologiques (CNRM), European Center Hamburg model (ECHAM), Model for Interdisciplinary Research on Climate (MIROCH) and United Kingdom Meteorological Office (UKMOC) under the Intergovernmental Panel on Climate Change (IPCC) AR4. The analysis of temperature trends revealed a significant increase during February and April. Temperature projections showed that temperature may increase between 1.12 to 7.87 °C by 2100 in the study area. The results of precipitation series indicated that majority of the stations registered insignificant trends during the twentieth century. However, precipitation may decrease according to most of the models under both scenarios, but the decrease may not be large, except according to MIROCH model. The results of trend analysis of snow cover area indicated that no significant trends were detected by any statistical tests

  17. Modeling the snow surface temperature with a one-layer energy balance snowmelt model

    NASA Astrophysics Data System (ADS)

    You, J.; Tarboton, D. G.; Luce, C. H.

    2014-12-01

    Snow surface temperature is a key control on and result of dynamically coupled energy exchanges at the snow surface. The snow surface temperature is the result of the balance between external forcing (incoming radiation) and energy exchanges above the surface that depend on surface temperature (outgoing longwave radiation and turbulent fluxes) and the transport of energy into the snow by conduction and meltwater influx. Because of the strong insulating properties of snow, thermal gradients in snow packs are large and nonlinear, a fact that has led many to advocate multiple layer snowmelt models over single layer models. In an effort to keep snowmelt modeling simple and parsimonious, the Utah Energy Balance (UEB) snowmelt model used only one layer but allowed the snow surface temperature to be different from the snow average temperature by using an equilibrium gradient parameterization based on the surface energy balance. Although this procedure was considered an improvement over the ordinary single layer snowmelt models, it still resulted in discrepancies between modeled and measured snowpack energy contents. In this paper we evaluate the equilibrium gradient approach, the force-restore approach, and a modified force-restore approach when they are integrated as part of a complete energy and mass balance snowmelt model. The force-restore and modified force-restore approaches have not been incorporated into the UEB in early versions, even though Luce and Tartoton have done work in calculating the energy components using these approaches. In addition, we evaluate a scheme for representing the penetration of a refreezing front in cold periods following melt. We introduce a method to adjust effective conductivity to account for the presence of ground near to a shallow snow surface. These parameterizations were tested against data from the Central Sierra Snow Laboratory, CA, Utah State University experimental farm, UT, and subnivean snow laboratory at Niwot Ridge, CO

  18. Influence of temperature and precipitation variability on near-term snow trends

    NASA Astrophysics Data System (ADS)

    Mankin, Justin S.; Diffenbaugh, Noah S.

    2015-08-01

    Snow is a vital resource for a host of natural and human systems. Global warming is projected to drive widespread decreases in snow accumulation by the end of the century, potentially affecting water, food, and energy supplies, seasonal heat extremes, and wildfire risk. However, over the next few decades, when the planning and implementation of current adaptation responses are most relevant, the snow response is more uncertain, largely because of uncertainty in regional and local precipitation trends. We use a large (40-member) single-model ensemble climate model experiment to examine the influence of precipitation variability on the direction and magnitude of near-term Northern Hemisphere snow trends. We find that near-term uncertainty in the sign of regional precipitation change does not cascade into uncertainty in the sign of regional snow accumulation change. Rather, temperature increases drive statistically robust consistency in the sign of future near-term snow accumulation trends, with all regions exhibiting reductions in the fraction of precipitation falling as snow, along with mean decreases in late-season snow accumulation. However, internal variability does create uncertainty in the magnitude of hemispheric and regional snow changes, including uncertainty as large as 33 % of the baseline mean. In addition, within the 40-member ensemble, many mid-latitude grid points exhibit at least one realization with a statistically significant positive trend in net snow accumulation, and at least one realization with a statistically significant negative trend. These results suggest that the direction of near-term snow accumulation change is robust at the regional scale, but that internal variability can influence the magnitude and direction of snow accumulation changes at the local scale, even in areas that exhibit a high signal-to-noise ratio.

  19. A Micro-Structural Phase-Field Model for Snow Metamorphism and First Experimental Validations using Migrating Air Inclusions in Ice

    NASA Astrophysics Data System (ADS)

    Kaempfer, T. U.; Plapp, M.; Johnson, J. B.; Sturm, M.

    2007-12-01

    Snow is a highly porous medium consisting of an ice matrix and porous space containing water vapor. Moreover, snow undergoes metamorphism as heat flow and interface effects induce mass flow and thus profoundly change the microstructure, i.e., the distribution of ice and pores. Reciprocally, this evolution influences the thermophysical, chemical, and mechanical properties of snow. In particular, the microstructure of snow influences the heat conductivity as heat transport consists in (i) heat conduction in the ice and pores, (ii) heat transport related to water vapor diffusion in the pores, and (iii) latent heat release and gain due to phase changes at the ice-pore interfaces Recently, detailed image series of metamorphosing snow using computed X-ray micro-tomography (micro-CT) became available and models for heat conduction through a steady state ice and pore network emerged. We present a phase-field model to solve the coupled heat and mass transport problem including phase-change processes in an evolving ice-pore network. The model considers mass fluxes that are induced by temperature gradients in the snow as well as by curvature effects and handles topological changes of the microstructure implicitly. We apply the model to 3D micro-CT data of snow. The simulations agree qualitatively well with laboratory observations and underline the strong link between microstructure and heat conductivity of snow. In order to validate the model quantitatively and to constrain the model parameters, simpler experiments than snow metamorphism observations by micro-CT are needed. We designed a relatively simple experimental apparatus to observe the migration of air inclusions in ice subjected to a temperature gradient. Considerable insulation and good temperature control at the hot and cold sides of an ice block allow us to impose a nearly constant and mono-dimensional temperature gradient. Small air inclusions can be inserted into the ice for example by drilling. The advantage of

  20. Effects of different temperature treatments on biological ice nuclei in snow samples

    NASA Astrophysics Data System (ADS)

    Hara, Kazutaka; Maki, Teruya; Kakikawa, Makiko; Kobayashi, Fumihisa; Matsuki, Atsushi

    2016-09-01

    The heat tolerance of biological ice nucleation activity (INA) depends on their types. Different temperature treatments may cause varying degrees of inactivation on biological ice nuclei (IN) in precipitation samples. In this study, we measured IN concentration and bacterial INA in snow samples using a drop freezing assay, and compared the results for unheated snow and snow treated at 40 °C and 90 °C. At a measured temperature of -7 °C, the concentration of IN in untreated snow was 100-570 L-1, whereas the concentration in snow treated at 40 °C and 90 °C was 31-270 L-1 and 2.5-14 L-1, respectively. In the present study, heat sensitive IN inactivated by heating at 40 °C were predominant, and ranged 23-78% of IN at -7 °C compared with untreated samples. Ice nucleation active Pseudomonas strains were also isolated from the snow samples, and heating at 40 °C and 90 °C inactivated these microorganisms. Consequently, different temperature treatments induced varying degrees of inactivation on IN in snow samples. Differences in the concentration of IN across a range of treatment temperatures might reflect the abundance of different heat sensitive biological IN components.

  1. Threshold temperatures mediate the impact of reduced snow cover on overwintering freeze-tolerant caterpillars

    NASA Astrophysics Data System (ADS)

    Marshall, Katie E.; Sinclair, Brent J.

    2012-01-01

    Decreases in snow cover due to climate change could alter the energetics and physiology of ectothermic animals that overwinter beneath snow, yet how snow cover interacts with physiological thresholds is unknown. We applied numerical simulation of overwintering metabolic rates coupled with field validation to determine the importance of snow cover and freezing to the overwintering lipid consumption of the freeze-tolerant Arctiid caterpillar Pyrrharctia isabella. Caterpillars that overwintered above the snow experienced mean temperatures 1.3°C lower than those below snow and consumed 18.36 mg less lipid of a total 68.97-mg reserve. Simulations showed that linear temperature effects on metabolic rate accounted for only 30% of the difference in lipid consumption. When metabolic suppression by freezing was included, 93% of the difference between animals that overwintered above and below snow was explained. Our results were robust to differences in temperature sensitivity of metabolic rate, changes in freezing point, and the magnitude of metabolic suppression by freezing. The majority of the energy savings was caused by the non-continuous reduction in metabolic rate due to freezing, the first example of the importance of temperature thresholds in the lipid use of overwintering insects.

  2. A snow extent time series assimilation using MODIS images and temperature data, case study Koohrang, Iran

    NASA Astrophysics Data System (ADS)

    Abdollahi, K.; Batelaan, O.

    2012-04-01

    A unique advantage of satellite data is the possibility for delineation of snow line and calculation of snow cover area. Recent availability of remote sensing data offers promise for better performance of hydrological models, which contain a snow component. The near-daily coverage of Moderate Resolution Imaging Spectrometer (MODIS) data and its moderate resolution provide a powerful capability for time series analysis of snow cover area. However, because of several reasons like cloud cover, technical problems, etc., images are not available or usable. This paper suggests a regional solution to fill the gap of missing data for purpose of snow cover assessment. In this study 27 images of MODIS from NASA have been used to calculate basin scale snow cover area by applying NDSI technique. Also a temperature dataset was collected from the Koohrang station, which was measured by the Iranian meteorological organization for the period 2004-2008. The elevation of the Koohrang station is 2285 m above sea level and geographically it is located at latitude 32 26' and longitude 50 07'. The study considered snow cover derived from satellite imagery as dependent variable and temperature as independent variable. To find a relationship between snow extent and temperature we used the CURVEEXPERT 1.4 package. This program uses the Levenberg-Marquardt algorithm to solve nonlinear regressions by combination of steepest-descent method and a Taylor series technique. Our methodology is applied each time when snow extent is not available and it estimates snow extend based on the remaining data. A wide range of built in models were tested for this purpose but finally a Logistic, Exponential, Richards, Gompertz, Linear Fit and Exponential model were adopted because of high correlation relationship and low variance.

  3. Does Temperature Modify the Effects of Rain and Snow Precipitation on Road Traffic Injuries?

    PubMed Central

    Lee, Won-Kyung; Lee, Hye-Ah; Hwang, Seung-sik; Kim, Ho; Lim, Youn-Hee; Hong, Yun-Chul; Ha, Eun-Hee; Park, Hyesook

    2015-01-01

    Background There are few data on the interaction between temperature and snow and rain precipitation, although they could interact in their effects on road traffic injuries. Methods The integrated database of the Korea Road Traffic Authority was used to calculate the daily frequency of road traffic injuries in Seoul. Weather data included rain and snow precipitation, temperature, pressure, and fog from May 2007 to December 2011. Precipitation of rain and snow were divided into nine and six temperature range categories, respectively. The interactive effects of temperature and rain and snow precipitation on road traffic injuries were analyzed using a generalized additive model with a Poisson distribution. Results The risk of road traffic injuries during snow increased when the temperature was below freezing. Road traffic injuries increased by 6.6% when it was snowing and above 0°C, whereas they increased by 15% when it was snowing and at or below 0°C. In terms of heavy rain precipitation, moderate temperatures were related to an increased prevalence of injuries. When the temperature was 0–20°C, we found a 12% increase in road traffic injuries, whereas it increased by 8.5% and 6.8% when it was <0°C and >20°C, respectively. The interactive effect was consistent across the traffic accident subtypes. Conclusions The effect of adverse weather conditions on road traffic injuries differed depending on the temperature. More road traffic injuries were related to rain precipitation when the temperature was moderate and to snow when it was below freezing. PMID:26073021

  4. [John Snow (1813-1858): experimental studies on rebreathing of anesthetic gases in exhaled air].

    PubMed

    Baum, J

    1995-02-01

    As early as in 1850 (only 4 years after the first clinical performance of ether anaesthesia by W. T. G. Morton on 16 October 1846) John Snow recognised that ether and chloroform were exhaled unchanged with the expired air. To reuse these unchanged vapours in the following inspiration and thereby prolonging the narcotic effect of a given amount of anaesthetic vapour, he converted his ether inhaler into a To-and-Fro Rebreathing System: The apparatus was equipped with a facemask without an expiratory valve and a large reservoir bag containing pure oxygen; an aqueous solution of caustic potash was used as CO2 absorbent. In several experiments, performed on himself, Snow succeeded to demonstrate that rebreathing of the exhaled vapours was possible following carbon dioxide absorption, and that it resulted in a pronounced prolongation of the narcotic effects of the volatile anaesthetics. Furthermore, Snow performed experiments on animals using a closed system for evaluating the carbon dioxide production during anaesthesia. It is all the more worthwhile to introduce Snow's publications on these topics, as, despite their extraordinary theoretical and practical significance, they remained nearly unnoticed. Even in the fundamental articles by D. Jackson and R. Waters, both being the respected protagonists of the rebreathing technique in anaesthesia, the Snow papers remained uncited. PMID:7888519

  5. A room temperature operating cryogenic cell for in vivo monitoring of dry snow metamorphism by X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Calonne, N.; Flin, F.; Lesaffre, B.; Dufour, A.; Roulle, J.; Puglièse, P.; Philip, A.; Lahoucine, F.; Rolland du Roscoat, S.; Geindreau, C.

    2013-12-01

    Three-dimensional (3D) images of snow offer the possibility of studying snow metamorphism at the grain scale by analysing the time evolution of its complex microstructure. Such images are also particularly useful for providing physical effective properties of snow arising in macroscopic models. In the last 15 years, several experiments have been developed in order to get 3D images of snow by X-ray microtomography. Up to now, two different approaches have been used: a static and an in vivo approach. The static method consists in imaging a snow sample whose structural evolution has been stopped by impregnation and/or very cold temperature conditions. The sample is placed in a cryogenic cell that can operate at the ambient temperature of the tomograph room (e.g. Brzoska et al., 1999, Coléou et al., 2001). The in vivo technique uses a non impregnated sample which continues to undergo structural evolutions and is put in a cell that controls the temperature conditions at the boundaries of the sample. This kind of cell requires a cold environnement and the whole tomographic acquisition process takes place in a cold room (e.g. Schneebeli and Sokratov, 2004, Pinzer and Schneebeli, 2009). The 2nd approach has the major advantage to provide the time evolution of the microstructure of a same snow sample but requires a dedicated cold-room tomographic scanner, whereas the static method can be used with any tomographic scanner operating at ambient conditions. We developed a new in vivo cryogenic cell which benefits from the advantages of each of the above methods: it (1) allows to follow the evolution of the same sample with time and (2) is usable with a wide panel of tomographic scanners provided with large cabin sizes, which has many advantages in terms of speed, resolution, and availability of new technologies. The thermal insulation between the snow sample and the outside is ensured by a double wall vacuum system of thermal conductivity of about 0.0015 Wm-1K-1. An air

  6. Time Resolved Thermal Diffusivity of Seasonal Snow Determined from Inexpensive, Easily-Implemented Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Oldroyd, H. J.; Higgins, C. W.; Huwald, H.; Selker, J. S.; Parlange, M. B.

    2011-12-01

    Thermal diffusivity of snow is an important physical property associated with key hydrological phenomena such as snow melt and heat and water vapor exchange with the atmosphere. These phenomena have broad implications in studies of climate and heat and water budgets on many scales. However, direct measurements of snow thermal diffusivity require coupled point measurements of thermal conductivity and density, which are nonstationary due to snow metamorphism. Furthermore, thermal conductivity measurements are typically obtained with specialized heating probes or plates and snow density measurements require digging snow pits. Therefore, direct measurements are difficult to obtain with high enough temporal resolution such that direct comparisons with atmospheric conditions can be made. This study uses highly resolved (7.5 to 10 cm for depth and 1min for time) temperature measurements from the Plaine Morte glacier in Switzerland as initial and boundary conditions to numerically solve the 1D heat equation and iteratively optimize for thermal diffusivity. The method uses flux boundary conditions to constrain thermal diffusivity such that spuriously high values in thermal diffusivity are eliminated. Additionally, a t-test ensuring statistical significance between solutions of varied thermal diffusivity result in further constraints on thermal diffusivity that eliminate spuriously low values. The results show that time resolved (1 minute) thermal diffusivity can be determined from easily implemented and inexpensive temperature measurements of seasonal snow with good agreement to widely used parameterizations based on snow density. This high time resolution further affords the ability to explore possible turbulence-induced enhancements to heat and mass transfer in the snow.

  7. Impacts of snow and organic soils parameterization on northern Eurasian soil temperature profiles simulated by the ISBA land surface model

    NASA Astrophysics Data System (ADS)

    Decharme, Bertrand; Brun, Eric; Boone, Aaron; Delire, Christine; Le Moigne, Patrick; Morin, Samuel

    2016-04-01

    In this study we analyzed how an improved representation of snowpack processes and soil properties in the multilayer snow and soil schemes of the Interaction Soil-Biosphere-Atmosphere (ISBA) land surface model impacts the simulation of soil temperature profiles over northern Eurasian regions. For this purpose, we refine ISBA's snow layering algorithm and propose a parameterization of snow albedo and snow compaction/densification adapted from the detailed Crocus snowpack model. We also include a dependency on soil organic carbon content for ISBA's hydraulic and thermal soil properties. First, changes in the snowpack parameterization are evaluated against snow depth, snow water equivalent, surface albedo, and soil temperature at a 10 cm depth observed at the Col de Porte field site in the French Alps. Next, the new model version including all of the changes is used over northern Eurasia to evaluate the model's ability to simulate the snow depth, the soil temperature profile, and the permafrost characteristics. The results confirm that an adequate simulation of snow layering and snow compaction/densification significantly impacts the snowpack characteristics and the soil temperature profile during winter, while the impact of the more accurate snow albedo computation is dominant during the spring. In summer, the accounting for the effect of soil organic carbon on hydraulic and thermal soil properties improves the simulation of the soil temperature profile. Finally, the results confirm that this last process strongly influences the simulation of the permafrost active layer thickness and its spatial distribution.

  8. Low Temperature SEM of Precipitated and Metamorphosed Snow Crystals Collected and Transported from Remote Sites

    NASA Astrophysics Data System (ADS)

    Wergin, William P.; Rango, Albert; Erbe, Eric F.; Murphy, Charles A.

    1996-06-01

    Procedures were developed to sample, store, ship, and process precipitated and metamorphosed snow crystals, collectively known as “snowflakes,” from remote sites to a laboratory where they could be observed and photographed using low temperature scanning electron microscopy (LTSEM). Snow samples were collected during 1994 96 from West Virginia, Colorado, and Alaska and sent to Beltsville, Maryland for observation. The samples consisted of freshly precipitated snowflakes as well as snow that was collected from pits that were excavated in winter snowfields measuring up to 1.5m in depth. The snow crystals were mounted onto copper plates, plunged into lN2 and then transferred to a storage dewar that was shipped to the laboratory. Observations, which could be easily recorded in stereo format (three-dimension), revealed detailed surface features on the precipitated crystals consisting of rime, graupel, and skeletal features. Samples from snowpacks preserved the metamorphosed crystals, which had unique structural features and bonding patterns resulting from temperature and vapor pressure gradients. In late spring, the surface of a snowpack in an alpine region exhibited a reddish hue. Undisturbed surfaces from these snowpacks could be sampled to observe the snow crystals as well as the organisms responsible for the coloration. Etching the surface of samples from these sites exposed the presence of numerous cells believed to be algae. The results of this study indicate that LTSEM can be used to provide detailed information about the surface features of precipitated and metamorphosed snow crystals sampled at remote locations. The technique can also be used to increase our understanding about the ecology of snow. The results have application to research activities that attempt to forecast the quantity of water in the winter snowpack and the amount that will ultimately reach reservoirs and be available for agriculture and hydroelectric power.

  9. A new soil-temperature module for SWAT application in regions with seasonal snow cover

    NASA Astrophysics Data System (ADS)

    Qi, Junyu; Li, Sheng; Li, Qiang; Xing, Zisheng; Bourque, Charles P.-A.; Meng, Fan-Rui

    2016-07-01

    Accurate estimates of soil temperature are important for quantifying hydrological and biological processes in hydrological models. Soil temperature predictions in the widely used Soil and Water Assessment Tool (SWAT) have large prediction errors when applied to regions with significant snow cover during winter. In this study, a new physically-based soil-temperature module is developed as an alternative to the empirical soil-temperature module currently used in SWAT. The physically-based module ​simulates soil temperature in different soil layers as a result of energy transfer between the atmosphere and soil (or snow) interface. The modified version of SWAT with the new soil-temperature module in place, introduces only three new parameters over the original soil-temperature module. Both the original and new soil-temperature modules are tested against field data from the Black Brook Watershed, a small watershed in Atlantic Canada. The results indicate that both versions of soil-temperature module ​are able to provide acceptable predictions of temperature in different layers of the soil during non-winter seasons. However, the original module severely underestimates soil temperatures in winter (within -10 to -20 °C), while the new module produces results that are more consistent with field measurements (within -2 to 2 °C). In addition, unlike its counterpart, the new module ​is able to simulate freeze-thaw cycles in the soil profile. Ice-water content variations in winter are reasonably simulated by the new module for different snow cover scenarios. In general, modified-SWAT improves prediction accuracy on baseflow discharge compared with the original-SWAT, due to improved estimates of soil temperature during winter. The new physically-based soil-temperature module has greatly improved the ability of SWAT to predict soil temperatures under seasonal snow cover, which is essential to the application of the model in regions like Atlantic Canada.

  10. Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region

    NASA Astrophysics Data System (ADS)

    Wang, Wenli; Rinke, Annette; Moore, John C.; Ji, Duoying; Cui, Xuefeng; Peng, Shushi; Lawrence, David M.; McGuire, A. David; Burke, Eleanor J.; Chen, Xiaodong; Decharme, Bertrand; Koven, Charles; MacDougall, Andrew; Saito, Kazuyuki; Zhang, Wenxin; Alkama, Ramdane; Bohn, Theodore J.; Ciais, Philippe; Delire, Christine; Gouttevin, Isabelle; Hajima, Tomohiro; Krinner, Gerhard; Lettenmaier, Dennis P.; Miller, Paul A.; Smith, Benjamin; Sueyoshi, Tetsuo; Sherstiukov, Artem B.

    2016-08-01

    A realistic simulation of snow cover and its thermal properties are important for accurate modelling of permafrost. We analyse simulated relationships between air and near-surface (20 cm) soil temperatures in the Northern Hemisphere permafrost region during winter, with a particular focus on snow insulation effects in nine land surface models, and compare them with observations from 268 Russian stations. There are large cross-model differences in the simulated differences between near-surface soil and air temperatures (ΔT; 3 to 14 °C), in the sensitivity of soil-to-air temperature (0.13 to 0.96 °C °C-1), and in the relationship between ΔT and snow depth. The observed relationship between ΔT and snow depth can be used as a metric to evaluate the effects of each model's representation of snow insulation, hence guide improvements to the model's conceptual structure and process parameterisations. Models with better performance apply multilayer snow schemes and consider complex snow processes. Some models show poor performance in representing snow insulation due to underestimation of snow depth and/or overestimation of snow conductivity. Generally, models identified as most acceptable with respect to snow insulation simulate reasonable areas of near-surface permafrost (13.19 to 15.77 million km2). However, there is not a simple relationship between the sophistication of the snow insulation in the acceptable models and the simulated area of Northern Hemisphere near-surface permafrost, because several other factors, such as soil depth used in the models, the treatment of soil organic matter content, hydrology and vegetation cover, also affect the simulated permafrost distribution.

  11. Air permeability and capillary rise as measures of the pore structure of snow: an experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Jordan, Rachel E.; Hardy, Janet P.; Perron, Frank E., Jr.; Fisk, David J.

    1999-09-01

    Air permeability and capillary pressure are macroscopic snow properties that are influenced by the pore structure of the snow cover. Formulas for predicting fluid transport, species elution, and acoustive wave propagation require parameterization of one or both of these properties. We report paired measurements of permeability and capillary rise from snow samples at field sites in Hanover, New Hampshire, and Sleepers River Research Watershed, Danville, Vermont. We augment these data with laboratory tests on sieved snow and glass beads. Our measurements demonstrate a linear relationship between permeability and the ratio of porosity and the square of capillary rise, which we corroborate theoretically using a simple conduit model of the pore space. We propose that scatter in the data results, in part, from the effect of crystal shape on air flow and imbibition contact angle.Since the early measurements and classification schemes of Bader in 1939, many investigators have expanded the database of permeability observations for a wide range of snow types. We summarize these data and report our own recent observations from the New England sites and from an additional site in Manitoba, Canada. Our measurements are in the high range of reported values. However, after normalizing our data by the square of grain diameter, they follow the empirical function of Shimizu fairly closely. This agreement supports our measurements, and demonstrates the usefulness of Shimizu's function for snow types other than the relatively dense, fine-grained snow used in his analysis.Our normalized permeability data for low density snow, as well as the Shimizu function, are below theoretical predictions for suspensions of spheres and infinite cylinders. By extending the model for spheres to oblate spheroids and discs, we estimate permeability that is in closer agreement with our data. We suggest that a decrease in surface-to-volume ratio as snow ages may account for a relative increase in

  12. Effects of soil temperature and snow cover on the mortality of overwintering pupae of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae)

    NASA Astrophysics Data System (ADS)

    Huang, Jian

    2015-10-01

    Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is one of the most damaging insect pests in the world. However, little is known about the effects of snow cover and soil temperature on the overwintering pupae of H. armigera. A field experiment was conducted from November 2, 2012 to April 24, 2013 at the agrometeorological experimental station in Wulanwusu, China. Overwintering pupae were embedded into the soil at depths of 5, 10, and 15 cm in the following four treatments: without snow cover, snow cover, and increased temperatures from 600 and 1200 W infrared lights. The results showed that snow cover and rising temperatures could all markedly increase soil temperatures, which was helpful in improving the survival of the overwintering pupae of H. armigera. The mortality of overwintering pupae (MOP) at a depth of 15 cm was the highest, and the MOP at a depth of 5 cm followed. The lower accumulated temperature (≤0 °C) (AT ≤ °C) led to the higher MOP, and the lower diurnal soil temperature range (DSTR) likely led to the lower MOP. After snowmelt, the MOPs at the depths of 5 and 10 cm increased as the soil temperature increased, especially in April. The AT of the soil (≤0 °C) was the factor with the strongest effect on MOP. The soil moisture content was not a major factor affecting the MOP in this semiarid region because precipitation was 45 mm over the entire experimental period. With climate warming, the MOP will likely decrease, and the overwintering boundary air temperatures of H. armigera should be expanded due to higher soil temperatures and increased snow cover.

  13. Effects of soil temperature and snow cover on the mortality of overwintering pupae of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae).

    PubMed

    Huang, Jian

    2016-07-01

    Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is one of the most damaging insect pests in the world. However, little is known about the effects of snow cover and soil temperature on the overwintering pupae of H. armigera. A field experiment was conducted from November 2, 2012 to April 24, 2013 at the agrometeorological experimental station in Wulanwusu, China. Overwintering pupae were embedded into the soil at depths of 5, 10, and 15 cm in the following four treatments: without snow cover, snow cover, and increased temperatures from 600 and 1200 W infrared lights. The results showed that snow cover and rising temperatures could all markedly increase soil temperatures, which was helpful in improving the survival of the overwintering pupae of H. armigera. The mortality of overwintering pupae (MOP) at a depth of 15 cm was the highest, and the MOP at a depth of 5 cm followed. The lower accumulated temperature (≤0 °C) (AT ≤ °C) led to the higher MOP, and the lower diurnal soil temperature range (DSTR) likely led to the lower MOP. After snowmelt, the MOPs at the depths of 5 and 10 cm increased as the soil temperature increased, especially in April. The AT of the soil (≤0 °C) was the factor with the strongest effect on MOP. The soil moisture content was not a major factor affecting the MOP in this semiarid region because precipitation was 45 mm over the entire experimental period. With climate warming, the MOP will likely decrease, and the overwintering boundary air temperatures of H. armigera should be expanded due to higher soil temperatures and increased snow cover. PMID:26514355

  14. Effects of soil temperature and snow cover on the mortality of overwintering pupae of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae)

    NASA Astrophysics Data System (ADS)

    Huang, Jian

    2016-07-01

    Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is one of the most damaging insect pests in the world. However, little is known about the effects of snow cover and soil temperature on the overwintering pupae of H. armigera. A field experiment was conducted from November 2, 2012 to April 24, 2013 at the agrometeorological experimental station in Wulanwusu, China. Overwintering pupae were embedded into the soil at depths of 5, 10, and 15 cm in the following four treatments: without snow cover, snow cover, and increased temperatures from 600 and 1200 W infrared lights. The results showed that snow cover and rising temperatures could all markedly increase soil temperatures, which was helpful in improving the survival of the overwintering pupae of H. armigera. The mortality of overwintering pupae (MOP) at a depth of 15 cm was the highest, and the MOP at a depth of 5 cm followed. The lower accumulated temperature (≤0 °C) (AT ≤ °C) led to the higher MOP, and the lower diurnal soil temperature range (DSTR) likely led to the lower MOP. After snowmelt, the MOPs at the depths of 5 and 10 cm increased as the soil temperature increased, especially in April. The AT of the soil (≤0 °C) was the factor with the strongest effect on MOP. The soil moisture content was not a major factor affecting the MOP in this semiarid region because precipitation was 45 mm over the entire experimental period. With climate warming, the MOP will likely decrease, and the overwintering boundary air temperatures of H. armigera should be expanded due to higher soil temperatures and increased snow cover.

  15. Evolution of the snow area index of the subarctic snowpack in central Alaska over a whole season. consequences for the air to snow transfer of pollutants.

    PubMed

    Taillandier, A S; Domine, F; Simpson, W R; Sturm, M; Douglas, T A; Severin, K

    2006-12-15

    The detailed physical characteristics of the subarctic snowpack must be known to quantify the exchange of adsorbed pollutants between the atmosphere and the snow cover. For the first time, the combined evolutions of specific surface area (SSA), snow stratigraphy, temperature, and density were monitored throughout winter in central Alaska. We define the snow area index (SAI) as the vertically integrated surface area of snow crystals, and this variable is used to quantify pollutants' adsorption. Intense metamorphism generated by strong temperature gradients formed a thick depth hoar layer with low SSA (90 cm(2) g-1) and density (200 kg m(-3)), resulting in a low SAI. After snowpack buildup in autumn, the winter SAI remained around 1000 m(2)/m(2) of ground, much lower than the SAI of the Arctic snowpack, 2500 m(2) m-(2). With the example of PCBs 28 and 180, we calculate that the subarctic snowpack is a smaller reservoir of adsorbed pollutants than the Arctic snowpack and less efficiently transfers adsorbed pollutants from the atmosphere to ecosystems. The difference is greater for the more volatile PCB 28. With climate change, snowpack structure will be modified, and the snowpack's ability to transfer adsorbed pollutants from the atmosphere to ecosystems may be reduced, especially for the more volatile pollutants. PMID:17256489

  16. Air- ice-snow interaction in the Northern Hemisphere under different stability conditions

    NASA Astrophysics Data System (ADS)

    Repina, Irina; Chechin, Dmitry; Artamonov, Arseny

    2013-04-01

    The traditional parameterizations of the atmospheric boundary layer are based on similarity theory and the coefficients of turbulent transfer, describing the atmospheric-surface interaction and the diffusion of impurities in the operational models of air pollution, weather forecasting and climate change. Major drawbacks of these parameterizations is that they are not applicable for the extreme conditions of stratification and currents over complex surfaces (such as sea ice, marginal ice zone or stormy sea). These problem could not be overcome within the framework of classical theory, i.e, by rectifying similarity functions or through the introduction of amendments to the traditional turbulent closure schemes. Lack of knowledge on the structure of the surface air layer and the exchange of momentum, heat and moisture between the rippling water surface and the atmosphere at different atmospheric stratifications is at present the major obstacle which impede proper functioning of the operational global and regional weather prediction models and expert models of climate and climate change. This is especially important for the polar regions, where in winter time the development of strong stable boundary layer in the presence of polynyas and leads usually occur. Experimental studies of atmosphere-ice-snow interaction under different stability conditions are presented. Strong stable and unstable conditions are discussed. Parametrizations of turbulent heat and gas exchange at the atmosphere ocean interface are developed. The dependence of the exchange coefficients and aerodynamic roughness on the atmospheric stratification over the snow and ice surface is experimentally confirmed. The drag coefficient is reduced with increasing stability. The behavior of the roughness parameter is simple. This result was obtained in the Arctic from the measurements over hummocked surface. The value of the roughness in the Arctic is much less than that observed over the snow in the middle and

  17. USE OF LOW-TEMPERATURE SCANNING ELECTRON MICROSCOPY TO COMPARE AND CHARACTERIZE THREE CLASSES OF SNOW COVER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study, which uses low temperature scanning electron microscopy (LTSEM), systematically sampled and characterized snow crystals that were collected from three unique classes of snow cover: prairie, taiga and alpine. These classes, which were defined in previous field studies, result from exposu...

  18. Comparison of temperature, precipitation and snow characteristics in two 30-year periods 1951-1980 and 1981-2010

    NASA Astrophysics Data System (ADS)

    Fasko, Pavel; Švec, Marek; Šťastný, Pavel; Kajaba, Peter

    2014-05-01

    Differences in some characteristics of temperature, precipitation totals and snow cover, for two 30-year periods 1951-1980 and 1981-2010 were examined at selected meteorological stations located in different regions of Slovakia. Stations represent lowland regions (up to 300 meters), mid-altitude regions (300 to 800 meters) and high altitude mountain regions (above 1000 m). The analysis of highest maximum air temperature for individual days showed higher values of maxima for 1981 - 2010 period primarily during the summer months. The differences between corresponding values of two periods were relatively often higher at some stations during the winter months, but unlike the periods in summer months they were more regional in nature. The comparison of long-term average of daily air temperature for two 30-years periods showed increase in 1981 - 2010 period. The most significant change occurred mainly in January, July and August. Warming was not significant in September - December period. The annual regime of mean monthly precipitation amount was different in both 30-years periods in the most of the selected stations with noticeable increase in the average monthly sum in May and decline in June in 1981 - 2010 period. The only exception is the station Košice airport, where on the contrary the increase in June was registered in the 1981-2010 period. Increase of precipitation in May in the second thirty year period was probably caused by a higher number of storms in the spring months as a result of faster warming of the earth's surface and occurrence of more frequent convective precipitation. Average number of days with a snow cover in the period 1981-2010 compared with the period 1951-1980 is significantly lower in January at meteorological stations lying at lower altitudes. This is due to the higher air temperature and a higher amount of mixed and liquid precipitation during this month. In February, small increase in the average number of days with a total snow cover

  19. Cold air incursions, δ18O variability, and monsoon dynamics associated with snow days at Quelccaya Ice Cap, Peru

    NASA Astrophysics Data System (ADS)

    Hurley, John V.; Vuille, Mathias; Hardy, Douglas R.; Burns, Stephen J.; Thompson, Lonnie G.

    2015-08-01

    Quelccaya Ice Cap in the Andes of Peru contains an annually resolved δ18O record covering the past 1800 years; yet atmospheric dynamics associated with snow deposition and δ18O variability at this site are poorly understood. Here we make use of 10 years of snow pit and short core δ18O data and hourly snow-height measurements obtained by an automated weather station deployed at the ice cap's summit to analyze linkages between snowfall, δ18O, and the South American summer monsoon (SASM). Snow accumulation peaks in December and is negative May-September. Snow δ18O values decrease gradually through austral summer from about -17 to -24‰. Surface snow δ18O is altered after deposition during austral winter from about -24 to -15‰. More than 70% of the total snow accumulation is tied to convection along the leading edge of cold air incursions of midlatitude air advected equatorward from southern South America. Snowfall amplitude at Quelccaya Ice Cap varies systematically with regional precipitation, atmospheric dynamics, midtroposphere humidity, and water vapor δD. Strongest snowfall gains correspond with positive precipitation anomalies over the western Amazon Basin, increased humidity, and lowered water vapor δD values, consistent with the "amount effect." We discuss ventilation of the monsoon, modulated by midlatitude cold air advection, as potentially diagnostic of the relationship between SASM dynamics and Quelccaya snowfall. Results will serve as a basis for development of a comprehensive isotopic forward model to reconstruct past monsoon dynamics using the ice core δ18O record.

  20. Cold air outbreaks along a non-frozen sea channel: effects of wind on snow bands

    NASA Astrophysics Data System (ADS)

    Savijärvi, Hannu

    2015-08-01

    Wintertime cold air outbreaks along a non-frozen sea channel or a long lake can become destructive if the related bands of heavy snowfall hit onto land. The forcing for such bands is studied with a 2D numerical model set across an east-west sea channel at 60oN (`Gulf of Finland'), varying the basic geostrophic wind V g. Without any V g opposite coastal land breezes emerge with convergence. This results in a quasi-steady rising motion w max ~ 7.5 cm/s at 600 m in the middle of the gulf, which can force a snow band. During weak V g, the rising motion is reduced but least so for winds from 60o to 80o (~ENE), when modest alongshore bands could exist near the downstream (Estonian) coast. During V g of 4-6 m/s from any direction, the land breezes and rising motions are reduced more effectively, so snow bands are not expected during moderate basic flow. In contrast, during a strong V g of 20-25 m/s from 110o to 120o (~ESE) the land breeze perturbations are intense with w max up to 15-18 cm/s. The induced alongshore bands of heavy snowfall are located in these cases at the sea but quite close to the downstream (Finnish) coast. They can suddenly make a landfall if the basic wind turns clockwise.

  1. Influence of the melting temperature on the measurement of the mass concentration and size distribution of black carbon in snow

    NASA Astrophysics Data System (ADS)

    Kinase, Takeshi; Kita, Kazuyuki; Tsukagawa-Ogawa, Yoshimi; Goto-Azuma, Kumiko; Kawashima, Hiroto

    2016-04-01

    The influence of temperature and time of snow sample melting on the measurement of mass concentration and size distribution of black carbon (BC) in snow was evaluated experimentally. In the experiments, fresh (Shirouma) and aged (Hakusan) snow samples were melted at different temperatures or at different time lengths, and the BC mass concentration and size distribution in the melted snow samples were measured using a nebulizer and a single-particle soot photometer (SP2). In the experiment where melting temperature was varied, the BC mass concentration in the liquid decreased at a melting temperature of 70 °C. This decrease was 8.0 % for the Shirouma sample and 46.4 % for the Hakusan sample and depended on BC particle size, with a significant decrease found at BC diameters less than 350 nm. A similar decrease in BC mass concentration was found when the Hakusan snow sample that had been melted at 5 °C was heated to 70 °C. The experiment in which melting time was varied indicated that BC mass concentration in the liquid did not change for the Shirouma sample but decreased significantly with a longer melting time for the Hakusan sample (38.6 %). These results indicate that melting of snow samples at high temperatures or over long time periods can significantly affect the measurement of BC mass and its size distribution, especially for aged snow samples.

  2. Investigating the Thermophysical Properties of the Ice-Snow Interface Under a Controlled Temperature Gradient

    NASA Astrophysics Data System (ADS)

    Hammonds, Kevin; Lieb-Lappen, Ross; Baker, Ian; Wang, Xuan; Courville, Zoe

    2015-04-01

    Of critical importance for avalanche forecasting, is the ability to draw meaningful conclusions from a handful of field observations. To this end, it is common for avalanche forecasters to not only have to rely on these sparse data, but also to use their own intuitive understanding of how these observations are correlated with the complex physical processes that produce mechanical instabilities within a snowpack. One such example of this is the long-held notion that kinetic snow metamorphism does not occur at bulk temperature gradients of less than -10°C/m. Although this may be true for the homogeneous case, it has become a point of contention as to whether or not this guideline should be applied to the more representative case of a heavily stratified and anisotropic snowpack. As an idealized case for our initial laboratory investigations, we have studied how an artificially created ice layer or "lens" would affect the thermophysical state of the snow layers adjacent to the ice lens and the ice lens itself, while being held under a controlled temperature gradient. Our findings have shown, via in-situ micro-thermocouple measurements, that a super-temperature gradient many times greater than the imposed bulk temperature gradient can exist within a millimeter above and below the surface of the ice lens. Furthermore, microstructural analysis via time-lapse X-ray Micro-Computed Tomography and environmental SEM imaging has been performed. Results from this analysis show new ice crystal growth and kinetic snow metamorphism occurring simultaneously on or near the ice lens itself with the connectivity density at the ice-snow interface increasing markedly more below the ice lens than above.

  3. Temporal Analysis of Snow Cover Depletion in the Eastern Part of Turkey Based on MODIS-Terra and Temperature Data

    NASA Astrophysics Data System (ADS)

    Akyurek, Z.; Surer, S.; Bolat, K.

    2012-04-01

    Snow cover is an important feature of mountainous regions. Depending on latitude, the higher altitudes are completely covered by snow for several months in a year. Snow cover is also an important factor for optimum use of water in energy production, flood control, irrigation and reservoir operation optimization, as well as ski tourism. Snow cover depletion curve (SDC) is one of the important variables in snow hydrological applications, and these curves are very much required for snowmelt runoff modeling in a snow-fed catchment. In this study it is aimed to monitor the temporal changes in the snow cover depletion in Upper-Euphrates basin for the period of 2000-2011. Snow mapping was performed by reclassifying the fractional snow cover areas obtained from MODIS-Terra (MOD09GA) data by the algorithm derived for the region. An automatic approach was developed in deriving the snow cover depletion curves. Maximum snow cover occurs in winter months in Upper-Euphrates basin and the amount of maximum snow cover is between 80-90 % of the total area. Approximately 45% of the area is covered with snow in the autumn, the melting occurs in spring and 15% of the area is covered with snow during spring months. At the beginning of April there exists snow generally above 1900 m in the basin, at the lower elevations snow does not stay after the end of February. The previous studies indicate warming trends for the basin's temperatures. Statistically insignificant decreasing trends in precipitation in the basin except autumn season for the period of 1975-2008 were obtained. The major melting period in this basin starts in early April, but in the last three years a shift in snow melting time was detected. When sufficient satellite data are not available due to cloud cover or due to some other reasons, then SDC can be generated using temperature data. Mean cloud coverage for the melting period was obtained as 82% from MODIS-Terra images in the basin. Under changed climate conditions also

  4. Temporal Analysis of Snow Cover Depletion in the Eastern Part of Turkey Based on MODIS-Terra and Temperature Data

    NASA Astrophysics Data System (ADS)

    Akyurek, Z.; Sürer, S.; Bolat, K.

    2012-12-01

    Snow cover is an important feature of mountainous regions. Depending on latitude, the higher altitudes are completely covered by snow for several months in a year. Snow cover is also an important factor for optimum use of water in energy production, flood control, irrigation and reservoir operation optimization, as well as ski tourism. Snow cover depletion curve (SDC) is one of the important variables in snow hydrological applications, and these curves are very much required for snowmelt runoff modeling in a snow-fed catchment. In this study it is aimed to monitor the temporal changes in the snow cover depletion in Upper-Euphrates basin for the period of 2000-2011. Snow mapping was performed by reclassifying the fractional snow cover areas obtained from MODIS-Terra (MOD09GA) data by the algorithm derived for the region. An automatic approach was developed in deriving the snow cover depletion curves. Maximum snow cover occurs in winter months in Upper-Euphrates basin and the amount of maximum snow cover is between 80-90 % of the total area. Approximately 45% of the area is covered with snow in the autumn, the melting occurs in spring and 15% of the area is covered with snow during spring months. At the beginning of April there exists snow generally above 1900 m in the basin, at the lower elevations snow does not stay after the end of February. The previous studies indicate warming trends for the basin's temperatures. Statistically insignificant decreasing trends in precipitation in the basin except autumn season for the period of 1975-2008 were obtained. The major melting period in this basin starts in early April, but in the last three years a shift in snow melting time was detected. When sufficient satellite data are not available due to cloud cover or due to some other reasons, then SDC can be generated using temperature data. Mean cloud coverage for the melting period was obtained as 82% from MODIS-Terra images in the basin. Under changed climate conditions also

  5. Evolution of the surface area of a snow layer

    SciTech Connect

    Hanot, L.; Domine, F.

    1999-12-01

    Atmospheric trace gases can partition between the atmosphere and the snow surface. Because snow has a large surface-to-volume ratio, an important interaction potential between ice and atmospheric trace gases exists. Quantifying this partitioning requires the knowledge of the surface area (SA) of snow. Eleven samples were taken from a 50 cm thick snow fall at Col de Porte, near Grenoble (French Alps) between January 20 and February 4, 1998. Fresh snow and 3, 8, and 15-day-old snow were sampled at three different depths. Surface hoar, formed after the fall, was also sampled. Air and surface snow temperature, snow density, and snow fall rate were measured. Snow temperature always remained below freezing. Snow SA was measured using methane adsorption at 77.15 K. Values ranged from 2.25 m{sup 2}/g for fresh snow to 0.25 m{sup 2}/g for surface hoar and surface snow after 15 days. These values are much too high to be explained by the macroscopic aspect of snow crystals, and microstructures such as small rime droplets must have been present. Large decrease in SA with time were observed. The first meter of snowpack had a total surface area of about 50,000 m{sup 2} per m{sup 2} of ground. Reduction in SA will lead to the emission of adsorbed species by the snowpack, with possible considerable increase in atmospheric concentrations.

  6. A passive microwave snow depth algorithm with a proxy for snow metamorphism

    USGS Publications Warehouse

    Josberger, E.G.; Mognard, N.M.

    2002-01-01

    Passive microwave brightness temperatures of snowpacks depend not only on the snow depth, but also on the internal snowpack properties, particularly the grain size, which changes through the winter. Algorithms that assume a constant grain size can yield erroneous estimates of snow depth or water equivalent. For snowpacks that are subject to temperatures well below freezing, the bulk temperature gradient through the snowpack controls the metamorphosis of the snow grains. This study used National Weather Service (NWS) station measurements of snow depth and air temperature from the Northern US Great Plains to determine temporal and spatial variability of the snow depth and bulk snowpack temperature gradient. This region is well suited for this study because it consists primarily of open farmland or prairie, has little relief, is subject to very cold temperatures, and has more than 280 reporting stations. A geostatistical technique called Kriging was used to grid the randomly spaced snow depth measurements. The resulting snow depth maps were then compared with the passive microwave observations from the Special Sensor Microwave Imager (SSM/I). Two snow seasons were examined: 1988-89, a typical snow year, and 1996-97, a record year for snow that was responsible for extensive flooding in the Red River Basin. Inspection of the time series of snow depth and microwave spectral gradient (the difference between the 19 and 37 GHz bands) showed that while the snowpack was constant, the spectral gradient continued to increase. However, there was a strong correlation (0.6 < R2 < 0.9) between the spectral gradient and the cumulative bulk temperature gradient through the snowpack (TGI). Hence, TGI is an index of grain size metamorphism that has occurred within the snowpack. TGI time series from 21 representative sites across the region and the corresponding SSM/I observations were used to develop an algorithm for snow depth that requires daily air temperatures. Copyright ?? 2002

  7. Snow complexity representation and GCM climate

    NASA Astrophysics Data System (ADS)

    Dutra, Emanuel; Viterbo, Pedro; Miranda, Pedro M. A.; Balsamo, Gianpaolo

    2010-05-01

    . The impact on the modeĺs climate of snow representations of increasing complexity is evaluated. Comparison includes near surface temperature, snow cover extension and variability, and northern hemisphere circulation patterns and variability. The increased complexity of a multi-layer snow scheme shows its potential in modelling thick snowpacks in open areas (low vegetation) such as prairies or tundra in Northern Latitudes. This leads to an improved match to the observed near surface air temperature.

  8. Surface Temperature variability from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Dang, V. T.; Aumann, H. H.

    2015-12-01

    To address the existence and possible causes of the climate hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014for the day and night conditions. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We compare the satellite data with the new surface data produced by Karl et al. (2015) who denies the reality of the climate hiatus. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The day-night difference is an indicator of the anthropogenic trend. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  9. Estimation of snow temperature and mean crystal radius from remote multispectral passive microwave measurements

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.

    1978-01-01

    Variation in crystal size and physical temperature of snowfield observations from space give large variations in the microwave brightness temperature. Since the brightness temperature is a function of wavelength, the microwave brightness temperature can be used to extract the snow temperature and mean crystal radius profiles. The Scanning Multichannel Microwave Radiometer (SMMR), to be launched on board the Nimbus-G and Seasat-A spacecraft, will make observations in wavelengths of 0.8, 1.4, 1.7, 2.8, and 4.6 cm. A statistical retrieval method was developed to determine the snowfield temperature profile and mean crystal size by using the scanning multifrequency microwave radiometer on board a spacecraft. The estimated errors for retrieval are approximately 1.5 K for temperature and 0.001 for crystal radius in the presence of 1 K rms noise for each SMMR channel.

  10. Incorporating cold-air pooling into downscaled climate models increases potential refugia for snow-dependent species within the Sierra Nevada Ecoregion, CA

    USGS Publications Warehouse

    Curtis, Jennifer A.; Flint, Lorraine E.; Flint, Alan L.; Lundquist, Jessica D.; Hudgens, Brian; Boydston, Erin E.; Young, Julie K.

    2014-01-01

    We present a unique water-balance approach for modeling snowpack under historic, current and future climates throughout the Sierra Nevada Ecoregion. Our methodology uses a finer scale (270 m) than previous regional studies and incorporates cold-air pooling, an atmospheric process that sustains cooler temperatures in topographic depressions thereby mitigating snowmelt. Our results are intended to support management and conservation of snow-dependent species, which requires characterization of suitable habitat under current and future climates. We use the wolverine (Gulo gulo) as an example species and investigate potential habitat based on the depth and extent of spring snowpack within four National Park units with proposed wolverine reintroduction programs. Our estimates of change in spring snowpack conditions under current and future climates are consistent with recent studies that generally predict declining snowpack. However, model development at a finer scale and incorporation of cold-air pooling increased the persistence of April 1st snowpack. More specifically, incorporation of cold-air pooling into future climate projections increased April 1st snowpack by 6.5% when spatially averaged over the study region and the trajectory of declining April 1st snowpack reverses at mid-elevations where snow pack losses are mitigated by topographic shading and cold-air pooling. Under future climates with sustained or increased precipitation, our results indicate a high likelihood for the persistence of late spring snowpack at elevations above approximately 2,800 m and identify potential climate refugia sites for snow-dependent species at mid-elevations, where significant topographic shading and cold-air pooling potential exist.

  11. Incorporating cold-air pooling into downscaled climate models increases potential refugia for snow-dependent species within the Sierra Nevada Ecoregion, CA.

    PubMed

    Curtis, Jennifer A; Flint, Lorraine E; Flint, Alan L; Lundquist, Jessica D; Hudgens, Brian; Boydston, Erin E; Young, Julie K

    2014-01-01

    We present a unique water-balance approach for modeling snowpack under historic, current and future climates throughout the Sierra Nevada Ecoregion. Our methodology uses a finer scale (270 m) than previous regional studies and incorporates cold-air pooling, an atmospheric process that sustains cooler temperatures in topographic depressions thereby mitigating snowmelt. Our results are intended to support management and conservation of snow-dependent species, which requires characterization of suitable habitat under current and future climates. We use the wolverine (Gulo gulo) as an example species and investigate potential habitat based on the depth and extent of spring snowpack within four National Park units with proposed wolverine reintroduction programs. Our estimates of change in spring snowpack conditions under current and future climates are consistent with recent studies that generally predict declining snowpack. However, model development at a finer scale and incorporation of cold-air pooling increased the persistence of April 1st snowpack. More specifically, incorporation of cold-air pooling into future climate projections increased April 1st snowpack by 6.5% when spatially averaged over the study region and the trajectory of declining April 1st snowpack reverses at mid-elevations where snow pack losses are mitigated by topographic shading and cold-air pooling. Under future climates with sustained or increased precipitation, our results indicate a high likelihood for the persistence of late spring snowpack at elevations above approximately 2,800 m and identify potential climate refugia sites for snow-dependent species at mid-elevations, where significant topographic shading and cold-air pooling potential exist. PMID:25188379

  12. Incorporating Cold-Air Pooling into Downscaled Climate Models Increases Potential Refugia for Snow-Dependent Species within the Sierra Nevada Ecoregion, CA

    PubMed Central

    Curtis, Jennifer A.; Flint, Lorraine E.; Flint, Alan L.; Lundquist, Jessica D.; Hudgens, Brian; Boydston, Erin E.; Young, Julie K.

    2014-01-01

    We present a unique water-balance approach for modeling snowpack under historic, current and future climates throughout the Sierra Nevada Ecoregion. Our methodology uses a finer scale (270 m) than previous regional studies and incorporates cold-air pooling, an atmospheric process that sustains cooler temperatures in topographic depressions thereby mitigating snowmelt. Our results are intended to support management and conservation of snow-dependent species, which requires characterization of suitable habitat under current and future climates. We use the wolverine (Gulo gulo) as an example species and investigate potential habitat based on the depth and extent of spring snowpack within four National Park units with proposed wolverine reintroduction programs. Our estimates of change in spring snowpack conditions under current and future climates are consistent with recent studies that generally predict declining snowpack. However, model development at a finer scale and incorporation of cold-air pooling increased the persistence of April 1st snowpack. More specifically, incorporation of cold-air pooling into future climate projections increased April 1st snowpack by 6.5% when spatially averaged over the study region and the trajectory of declining April 1st snowpack reverses at mid-elevations where snow pack losses are mitigated by topographic shading and cold-air pooling. Under future climates with sustained or increased precipitation, our results indicate a high likelihood for the persistence of late spring snowpack at elevations above approximately 2,800 m and identify potential climate refugia sites for snow-dependent species at mid-elevations, where significant topographic shading and cold-air pooling potential exist. PMID:25188379

  13. Simulations of a Canadian snowpack brightness temperatures using SURFEX-Crocus for Snow Water Equivalent (SWE) retrievals

    NASA Astrophysics Data System (ADS)

    Larue, Fanny; Royer, Alain; De Sève, Danielle; Langlois, Alexandre; Roy, Alexandre; Saint-Jean-Rondeau, Olivier

    2016-04-01

    In Quebec, the water associated to snowmelt represents 30% of the annual electricity production so that the snow cover evaluation in real time is of primary interest. The key variable is snow water equivalent (SWE) which describes the evolution of a global seasonal snow cover. However, the sparse distribution of meteorological stations in northern Québec generates great uncertainty in the extrapolation of SWE. On the contrary, the spatial and temporal coverage of satellite data offer a source of information with a high potential when considered as an alternative to the poor spatial distribution of in-situ information. Thus, this project aims to improve the prediction of SWE by assimilation of satellite passive microwave brightness temperatures (Tb) observations, independently of any ground observations. The snowpack evolution is simulated by the French snow model SURFEX-Crocus, driven by the Canadian atmospheric model GEM with a spatial resolution of 10 km. The bias of the atmospheric model and the impact of initialization errors on the simulated SWE were quantified from our ground measurements. To assimilate satellite observations, the multi-layered snow model is first coupled with a radiative transfer model using the Dense Media Radiative transfer theory (the DMRT-ML model) to estimate the microwave snow emission of the simulated snowpack. In order to retrieve simulated Tb in frequencies of interest (i.e. sensitive to snow dielectric properties), the snow microstructure needs to be well parameterized. It was shown in previous studies that the specific surface area (SSA) of snow grains is a well-defined parameter to describe the size and the shape of snow grains and which allows reproducible field measurements. SURFEX-Crocus estimates a SSA for each simulated snow layer, however, the snow microstructure in DMRT-ML is defined per layer by monodisperse optical radius of grain (~ 1/SSA) and by the stickiness which is not known. It thus becomes necessary to introduce

  14. Andes Mountain Snow Distribution, Properties, and Trend: 1979-2014

    NASA Astrophysics Data System (ADS)

    Mernild, Sebastian H.; Liston, Glen E.; Hiemstra, Christopher A.

    2015-04-01

    Andes snow presence, absence, properties, and water amount are key components of Earth's changing climate system that incur far-reaching physical ramifications. Modeling developments permit relatively high-resolution (4-km horizontal grid; 3-h time step) Andes snow estimates for 1979-2014. SnowModel, in conjunction with land cover, topography, and 35-years of NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) atmospheric reanalysis data, was used to create a spatially distributed, time-evolving, snow-related dataset that included air temperature, snow precipitation, snow-season timing and length, maximum snow water equivalent depth, and average snow density. Regional variability is a dominant feature of the modeled snow-property trends from an area northeast of Quito (latitude: 2.65°S to 0.23°N) to Patagonia (latitude: 52.15°S to 46.44°S). For example, the Quito area annual snow cover area changed -45%, -43% around Cusco (latitude: 14.75°S to 12.52°S), -5% east of Santiago (including the Olivares Basin), and 25% in Patagonia. The annual snow covered area for the entire Andes decreased 13%, mainly in the elevation band between 4,000-5,000 m a.s.l. In spite of strong regional variability, the data clearly show a general positive trend in mean annual air temperature and precipitation, and a decreasing trend in snow precipitation, snow precipitation days, and snow density. Also, the snow-cover onset is later and the snow-cover duration - the number of snow cover days - decreased.

  15. Comparison of Satellite-Derived and In-Situ Observations of Ice and Snow Surface Temperatures over Greenland

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Box, Jason E.; Casey, Kimberly A.; Hook, Simon J.; Shuman, Christopher A.; Steffen, Konrad

    2008-01-01

    The most practical way to get a spatially broad and continuous measurements of the surface temperature in the data-sparse cryosphere is by satellite remote sensing. The uncertainties in satellite-derived LSTs must be understood to develop internally-consistent decade-scale land-surface temperature (LST) records needed for climate studies. In this work we assess satellite-derived "clear-sky" LST products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and LSTs derived from the Enhanced Thematic Mapper Plus (ETM+) over snow and ice on Greenland. When possible, we compare satellite-derived LSTs with in-situ air-temperature observations from Greenland Climate Network (GC-Net) automatic-weather stations (AWS). We find that MODIS, ASTER and ETM+ provide reliable and consistent LSTs under clear-sky conditions and relatively-flat terrain over snow and ice targets over a range of temperatures from -40 to 0 C. The satellite-derived LSTs agree within a relative RMS uncertainty of approx.0.5 C. The good agreement among the LSTs derived from the various satellite instruments is especially notable since different spectral channels and different retrieval algorithms are used to calculate LST from the raw satellite data. The AWS record in-situ data at a "point" while the satellite instruments record data over an area varying in size from: 57 X 57 m (ETM+), 90 X 90 m (ASTER), or to 1 X 1 km (MODIS). Surface topography and other factors contribute to variability of LST within a pixel, thus the AWS measurements may not be representative of the LST of the pixel. Without more information on the local spatial patterns of LST, the AWS LST cannot be considered valid ground truth for the satellite measurements, with RMS uncertainty approx.2 C. Despite the relatively large AWS-derived uncertainty, we find LST data are characterized by high accuracy but have uncertain absolute precision.

  16. Role of snow cover on urban heat island intensity investigated by urban canopy model with snow effects

    NASA Astrophysics Data System (ADS)

    Sato, T.; Mori, K.

    2015-12-01

    Urban heat islands have been investigated around the world including snowy regions. However, the relationship between urban heat island and snow cover remains unclear. This study examined the effect of snow cover in urban canopy on energy budget in urban areas of Sapporo, north Japan by 1km mesh WRF experiments. The modified urban canopy model permits snow cover in urban canopy by the modification of surface albedo, surface emissivity, and thermal conductivity for roof and road according to snow depth and snow water equivalent. The experiments revealed that snow cover in urban canopy decreases urban air temperature more strongly for daily maximum temperature (0.4-0.6 K) than for daily minimum temperature (0.1-0.3 K). The high snow albedo reduces the net radiation at building roof, leading to decrease in sensible heat flux. Interestingly, the cooling effect of snow cover compensates the warming effect by anthropogenic heat release in Sapporo, suggesting the importance of snow cover treatment in urban canopy model as well as estimating accurate anthropogenic heat distributions. In addition, the effect of road snow clearance tends to increase nocturnal surface air temperature in urban areas. A possible role of snow cover on urban heat island intensity was evaluated by two experiments with snow cover (i.e., realistic condition) and without snow cover in entire numerical domain. The snow cover decreases surface air temperature more in rural areas than in urban areas, which was commonly seen throughout a day, with stronger magnitude during nighttime than daytime, resulting in intensifying urban heat island by 4.0 K for daily minimum temperature.

  17. L-Band Brightness Temperature Variations at Dome C and Snow Metamorphism at the Surface

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Dinnat, Emmanuel; Picard, Ghislain; Champollion, Nicolas

    2014-01-01

    The Antarctic Plateau is a promising site to monitor microwave radiometers' drift, and to inter-calibrate microwave radiometers, especially 1.4 GigaHertz (L-band) radiometers on board the Soil Moisture and Ocean Salinity (SMOS), and AquariusSAC-D missions. The Plateau is a thick ice cover, thermally stable in depth, with large dimensions, and relatively low heterogeneities. In addition, its high latitude location in the Southern Hemisphere enables frequent observations by polar-orbiting satellites, and no contaminations by radio frequency interference. At Dome C (75S, 123E), on the Antarctic Plateau, the substantial amount of in-situ snow measurements available allows us to interpret variations in space-borne microwave brightness temperature (TB) (e.g. Macelloni et al., 2007, 2013, Brucker et al., 2011, Champollion et al., 2013). However, to analyze the observations from the Aquarius radiometers, whose sensitivity is 0.15 K, the stability of the snow layers near the surface that are most susceptible to rapidly change needs to be precisely assessed. This study focuses on the spatial and temporal variations of the Aquarius TB over the Antarctic Plateau, and at Dome C in particular, to highlight the impact of snow surface metamorphism on the TB observations at L-band.

  18. Aquarius Brightness Temperature Variations at Dome C and Snow Metamorphism at the Surface. [29

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Dinnat, Emmanuel Phillippe; Picard, Ghislain; Champollion, Nicolas

    2014-01-01

    The Antarctic Plateau is a promising site to monitor microwave radiometers' drift, and to inter-calibrate microwave radiometers, especially 1.4 GHz (L-band) radiometers on board the Soil Moisture and Ocean Salinity (SMOS), and AquariusSAC-D missions. The Plateau is a thick ice cover, thermally stable in depth, with large dimensions, and relatively low heterogeneities. In addition, its high latitude location in the Southern Hemisphere enables frequent observations by polar-orbiting satellites, and no contaminations by radio frequency interference. At Dome C (75S, 123E), on the Antarctic Plateau, the substantial amount of in-situ snow measurements available allows us to interpret variations in space-borne microwave brightness temperature (TB) (e.g. Macelloni et al., 2007, 2013, Brucker et al., 2011, Champollion et al., 2013). However, to analyze the observations from the Aquarius radiometers, whose sensitivity is 0.15 K, the stability of the snow layers near the surface that are most susceptible to rapidly change needs to be precisely assessed. This study focuses on the spatial and temporal variations of the Aquarius TB over the Antarctic Plateau, and at Dome C in particular, to highlight the impact of snow surface metamorphism on the TB observations at L-band.

  19. Spatiotemporal changes of snow cover and its correlation with temperature and precipitation over the upstream area of Heihe River basin based on MODIS snow cover product from hydrological year 2001 to 2012

    NASA Astrophysics Data System (ADS)

    Bi, Y.; Xie, H.

    2013-12-01

    Snow cover is an important water source of major Asian rivers and greatly influences water availability in the downstream areas. In this study, snow cover dynamics of the upstream areas of Heihe River in the northwestern China during hydrological years 2001-2012 (September through August) are examined using the flexible multiday combined MODIS snow cover products. The time series of multiday, seasonal, and annual snow covered area (SCA), snow covered days (SCD), peaks of maximum SCA, and snow cover index (SCI) for each hydrological year (HY) are examined. Further analysis is also based on the four elevation zones based on the distribution of vegetation. Results show that for high elevation zones (3400 to 3800m, 3800 to 4200 m, and above 4200 m), there are two peaks of snow cover area (SCA) for each hydrological years (Sep to Oct and Mar to Apr). For low elevation zones ( below 2400 m and 2400 m to 3400 m), the large peaks appear in Nov to Dec for each year. Regression analysis is used to assess the role of elevation zone in determining the relative performance of temperature and precipitation as predictors of snow cover area. The results indicate that temperature is the main explanatory variable for snow cover at low elevation zone and precipitation is a better predictor of snow cover area at high elevation zone. Upstream area of Heihe River Basin

  20. Numerical simulation of drifting snow sublimation in the saltation layer

    PubMed Central

    Dai, Xiaoqing; Huang, Ning

    2014-01-01

    Snow sublimation is an important hydrological process and one of the main causes of the temporal and spatial variation of snow distribution. Compared with surface sublimation, drifting snow sublimation is more effective due to the greater surface exposure area of snow particles in the air. Previous studies of drifting snow sublimation have focused on suspended snow, and few have considered saltating snow, which is the main form of drifting snow. In this study, a numerical model is established to simulate the process of drifting snow sublimation in the saltation layer. The simulated results show 1) the average sublimation rate of drifting snow particles increases linearly with the friction velocity; 2) the sublimation rate gradient with the friction velocity increases with increases in the environmental temperature and the undersaturation of air; 3) when the friction velocity is less than 0.525 m/s, the snowdrift sublimation of saltating particles is greater than that of suspended particles; and 4) the snowdrift sublimation in the saltation layer is less than that of the suspended particles only when the friction velocity is greater than 0.625 m/s. Therefore, the drifting snow sublimation in the saltation layer constitutes a significant portion of the total snow sublimation. PMID:25312383

  1. Work of Breathing into Snow in the Presence versus Absence of an Artificial Air Pocket Affects Hypoxia and Hypercapnia of a Victim Covered with Avalanche Snow: A Randomized Double Blind Crossover Study.

    PubMed

    Roubík, Karel; Sieger, Ladislav; Sykora, Karel

    2015-01-01

    Presence of an air pocket and its size play an important role in survival of victims buried in the avalanche snow. Even small air pockets facilitate breathing. We hypothesize that the size of the air pocket significantly affects the airflow resistance and work of breathing. The aims of the study are (1) to investigate the effect of the presence of an air pocket on gas exchange and work of breathing in subjects breathing into the simulated avalanche snow and (2) to test whether it is possible to breathe with no air pocket. The prospective interventional double-blinded study involved 12 male volunteers, from which 10 completed the whole protocol. Each volunteer underwent two phases of the experiment in a random order: phase "AP"--breathing into the snow with a one-liter air pocket, and phase "NP"--breathing into the snow with no air pocket. Physiological parameters, fractions of oxygen and carbon dioxide in the airways and work of breathing expressed as pressure-time product were recorded continuously. The main finding of the study is that it is possible to breath in the avalanche snow even with no air pocket (0 L volume), but breathing under this condition is associated with significantly increased work of breathing. The significant differences were initially observed for end-tidal values of the respiratory gases (EtO2 and EtCO2) and peripheral oxygen saturation (SpO2) between AP and NP phases, whereas significant differences in inspiratory fractions occurred much later (for FIO2) or never (for FICO2). The limiting factor in no air pocket conditions is excessive increase in work of breathing that induces increase in metabolism accompanied by higher oxygen consumption and carbon dioxide production. The presence of even a small air pocket reduces significantly the work of breathing. PMID:26666523

  2. Work of Breathing into Snow in the Presence versus Absence of an Artificial Air Pocket Affects Hypoxia and Hypercapnia of a Victim Covered with Avalanche Snow: A Randomized Double Blind Crossover Study

    PubMed Central

    2015-01-01

    Presence of an air pocket and its size play an important role in survival of victims buried in the avalanche snow. Even small air pockets facilitate breathing. We hypothesize that the size of the air pocket significantly affects the airflow resistance and work of breathing. The aims of the study are (1) to investigate the effect of the presence of an air pocket on gas exchange and work of breathing in subjects breathing into the simulated avalanche snow and (2) to test whether it is possible to breathe with no air pocket. The prospective interventional double-blinded study involved 12 male volunteers, from which 10 completed the whole protocol. Each volunteer underwent two phases of the experiment in a random order: phase “AP”—breathing into the snow with a one-liter air pocket, and phase “NP”—breathing into the snow with no air pocket. Physiological parameters, fractions of oxygen and carbon dioxide in the airways and work of breathing expressed as pressure-time product were recorded continuously. The main finding of the study is that it is possible to breath in the avalanche snow even with no air pocket (0 L volume), but breathing under this condition is associated with significantly increased work of breathing. The significant differences were initially observed for end-tidal values of the respiratory gases (EtO2 and EtCO2) and peripheral oxygen saturation (SpO2) between AP and NP phases, whereas significant differences in inspiratory fractions occurred much later (for FIO2) or never (for FICO2). The limiting factor in no air pocket conditions is excessive increase in work of breathing that induces increase in metabolism accompanied by higher oxygen consumption and carbon dioxide production. The presence of even a small air pocket reduces significantly the work of breathing. PMID:26666523

  3. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James C. R.; Leijnse, Hidde; Steeneveld, Gert-Jan; Horn, Berthold K. P.; Uijlenhoet, Remko

    2014-05-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. It has been shown that a straightforward heat transfer model can be employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. The methodology has been applied to Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree

  4. Surface and Atmospheric Contributions to Passive Microwave Brightness Temperatures for Falling Snow Events

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Johnson, Benjamin T.

    2011-01-01

    Physically based passive microwave precipitation retrieval algorithms require a set of relationships between satellite -observed brightness temperatures (TBs) and the physical state of the underlying atmosphere and surface. These relationships are nonlinear, such that inversions are ill ]posed especially over variable land surfaces. In order to elucidate these relationships, this work presents a theoretical analysis using TB weighting functions to quantify the percentage influence of the TB resulting from absorption, emission, and/or reflection from the surface, as well as from frozen hydrometeors in clouds, from atmospheric water vapor, and from other contributors. The percentage analysis was also compared to Jacobians. The results are presented for frequencies from 10 to 874 GHz, for individual snow profiles, and for averages over three cloud-resolving model simulations of falling snow. The bulk structure (e.g., ice water path and cloud depth) of the underlying cloud scene was found to affect the resultant TB and percentages, producing different values for blizzard, lake effect, and synoptic snow events. The slant path at a 53 viewing angle increases the hydrometeor contributions relative to nadir viewing channels. Jacobians provide the magnitude and direction of change in the TB values due to a change in the underlying scene; however, the percentage analysis provides detailed information on how that change affected contributions to the TB from the surface, hydrometeors, and water vapor. The TB percentage information presented in this paper provides information about the relative contributions to the TB and supplies key pieces of information required to develop and improve precipitation retrievals over land surfaces.

  5. Evaluation of distributed hydrologic impacts of temperature-index and energy-based snow models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proper characterizations of snow melt and accumulation processes in the snow-dominated mountain environment are needed to understand and predict spatiotemporal distribution of water cycle components. Two commonly used strategies in modeling of snow accumulation and melt are the full energy based and...

  6. Remote sensing of snow

    NASA Technical Reports Server (NTRS)

    Foster, J. L.; Hall, D. K.; Chang, A. T. C.

    1987-01-01

    The snow parameters affecting sensor responses at different wavelengths are discussed. The effects of snow depth and background radiation on gamma ray sensors and of crystal size, contaminants, snow depth, liquid water, and surface roughness on visible and near-infrared sensors are considered. The influence of temperature, crystal size, and liquid water on thermal infrared sensors and of liquid water, crystal size, water equivalent depth, stratification, snow surface roughness, density, temperature, and soil condition on microwave sensors are addressed.

  7. Impacts of snow and organic soils parameterization on North-Eurasian soil temperature profiles simulated by the ISBA land surface model

    NASA Astrophysics Data System (ADS)

    Decharme, B.; Brun, E.; Boone, A.; Delire, C.; Le Moigne, P.; Morin, S.

    2015-12-01

    In this study we analysed how an improved representation of snowpack processes and soil properties in the multi-layer snow and soil schemes of the ISBA land surface model impacts the simulation of soil temperature profiles over North-Eurasian regions. For this purpose, we refine ISBA's snow layering algorithm and propose a parameterization of snow albedo and snow compaction/densification adapted from the detailed Crocus snowpack model. We also include a dependency on soil organic carbon content for ISBA's hydraulic and thermal soil properties. First, changes in the snowpack parameterization are evaluated against snow depth, snow water equivalent, surface albedo, and soil temperature at a 10 cm depth observed at the Col de Porte field site in the French Alps. Next, the new model version including all of the changes is used over Northern-Eurasia to evaluate the model's ability to simulate the snow depth, the soil temperature profile and the permafrost characteristics. The results confirm that an adequate simulation of snow layering and snow compaction/densification significantly impacts the snowpack characteristics and the soil temperature profile during winter, while the impact of the more accurate snow albedo computation is dominant during the spring. In summer, the accounting for the effect of soil organic carbon on hydraulic and thermal soil properties improves the simulation of the soil temperature profile. Finally, the results confirm that this last process strongly influences the simulation of the permafrost active layer thickness and its spatial distribution.

  8. Study on the conditions necessary for blowing snow to occur in which multiple meteorological elements are considered

    NASA Astrophysics Data System (ADS)

    Omiya, S.; Takechi, H.; Kokubu, T.; Harada, Y.; Matsuzawa, M.

    2015-12-01

    Elucidation of the conditions under which blowing snow occurs is important not only in mitigating snowstorm-related disasters but also in discussing the mass balance of water. The major factor for the occurrence of blowing snow is strong winds. However, the conditions that cause blowing snow are complicated, because temperature, the condition of the snow surface, and the presence or absence of falling snow affect blowing snow occurrence. We created a formula for determining the conditions under which blowing snow will occur, based on multiple meteorological elements. In this presentation, we report the results of analysis on the occurrence conditions of blowing snow without concurrent falling snow. The observation data used in the analysis were obtained in Hokkaido, northern Japan, from December 2012 to April 2013. The observed items were air temperature, wind velocity, intensity of solar radiation, snow depth and the mass flux of blowing snow particles. In addition to the above, videos were taken to determine the presence of blowing snow. After the blowing snow events were extracted, each meteorological element was compared with the frequency of blowing snow occurrence. The analysis found that the frequency tended to be low when 12 or more hours had passed after a snowfall event or when the maximum air temperature exceeded 2 °C. It is thought that the snow particles sinter together and the surface of the snow pack hardens, and that such sintering makes it difficult for the particles fly off from the snow surface. It was shown that the frequency of blowing snow occurrence is high when large amounts of fresh snow are on the ground. Based on the above examinations, a formula for determining the occurrence of blowing snow was created using the discriminate analysis method. An accuracy verification test found the formula to have a hit ratio of 92.3%. The verification test showed the formula to be useful in determining the occurrence of blowing snow.

  9. Influence of the seasonal snow cover on the ground thermal regime: An overview

    NASA Astrophysics Data System (ADS)

    Zhang, Tingjun

    2005-12-01

    The presence of seasonal snow cover during the cold season of the annual air temperature cycle has significant influence on the ground thermal regime in cold regions. Snow has high albedo and emissivity that cool the snow surface, high absorptivity that tends to warm the snow surface, low thermal conductivity so that a snow layer acts as an insulator, and high latent heat due to snowmelt that is a heat sink. The overall impact of snow cover on the ground thermal regime depends on the timing, duration, accumulation, and melting processes of seasonal snow cover; density, structure, and thickness of seasonal snow cover; and interactions of snow cover with micrometeorological conditions, local microrelief, vegetation, and the geographical locations. Over different timescales either the cooling or warming impact of seasonal snow cover may dominate. In the continuous permafrost regions, impact of seasonal snow cover can result in an increase of the mean annual ground and permafrost surface temperature by several degrees, whereas in discontinuous and sporadic permafrost regions the absence of seasonal snow cover may be a key factor for permafrost development. In seasonally frozen ground regions, snow cover can substantially reduce the seasonal freezing depth. However, the influence of seasonal snow cover on seasonally frozen ground has received relatively little attention, and further study is needed. Ground surface temperatures, reconstructed from deep borehole temperature gradients, have increased by up to 4°C in the past centuries and have been widely used as evidence of paleoclimate change. However, changes in air temperature alone cannot account for the changes in ground temperatures. Changes in seasonal snow conditions might have significantly contributed to the ground surface temperature increase. The influence of seasonal snow cover on soil temperature, soil freezing and thawing processes, and permafrost has considerable impact on carbon exchange between the

  10. Scattering optics of snow.

    PubMed

    Kokhanovsky, Alexander A; Zege, Eleonora P

    2004-03-01

    Permanent snow and ice cover great portions of the Arctic and the Antarctic. It appears in winter months in northern parts of America, Asia, and Europe. Therefore snow is an important component of the hydrological cycle. Also, it is a main regulator of the seasonal variation of the planetary albedo. This seasonal change in albedo is determined largely by the snow cover. However, the presence of pollutants and the microstructure of snow (e.g., the size and shape of grains, which depend also on temperature and on the age of the snow) are also of importance in the variation of the snow's spectral albedo. The snow's spectral albedo and its bidirectional reflectance are studied theoretically. The albedo also determines the spectral absorptance of snow, which is of importance, e.g., in studies of the heating regime in snow. We investigate the influence of the nonspherical shape of grains and of close-packed effects on snow's reflectance in the visible and the near-infrared regions of the electromagnetic spectrum. The rate of the spectral transition from highly reflective snow in the visible to almost totally absorbing black snow in the infrared is governed largely by the snow's grain sizes and by the load of pollutants. Therefore both the characteristics of snow and its concentration of impurities can be monitored on a global scale by use of spectrometers and radiometers placed on orbiting satellites. PMID:15015542

  11. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, A.; Robinson, J. C. R.; Leijnse, H.; Steeneveld, G. J.; Horn, B. K. P.; Uijlenhoet, R.

    2013-08-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. A straightforward heat transfer model is employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas.

  12. Controlled-Temperature Hot-Air Gun

    NASA Technical Reports Server (NTRS)

    Munoz, M. C.

    1986-01-01

    Materials that find applications in wind tunnels first tested in laboratory. Hot-Air Gun differs from commercial units in that flow rate and temperature monitored and controlled. With typical compressed-airsupply pressure of 25 to 38 psi (170 to 260 kPa), flow rate and maximum temperature are 34 stdft3/min (0.96 stdm3/min) and 1,090 degrees F (590 degrees C), respectively. Resembling elaborate but carefully regulated hot-air gun, setup used to apply blasts of air temperatures above 1,500 degrees F (815 degrees C) to test specimens.

  13. Changes in embryonic development and hatching in Chionoecetes opilio (snow crab) with variation in incubation temperature.

    PubMed

    Webb, Joel B; Eckert, Ginny L; Shirley, Thomas C; Tamone, Sherry L

    2007-08-01

    Water temperature affects the distribution, movement, and reproductive potential of female snow crab, Chionoecetes opilio. Ovigerous females of C. opilio from the eastern Bering Sea were held at five temperatures (-1, 0, 1, 3, and 6 degrees C) in the laboratory while their embryos developed from gastrula to hatching. The duration of incubation increased by 105 d (30%) with decreasing temperature; however, a switch to a 2-year duration of embryo incubation was not observed. For females held at 6, 3, and 1 degrees C, their embryos underwent a short period of diapause late in development; no diapause was observed for embryos of females held at 0 or -1 degrees C. Successful extrusion of a subsequent clutch and hatch timing comparable with that observed in the eastern Bering Sea indicated that temperatures of 0 to 3 degrees C may be optimal for multiparous female reproduction. We demonstrated that a switch from 1-year to 2-year reproduction cannot be triggered by changing the thermal regime after several months of embryonic development. The timing of female movement from colder to warmer waters may be important for maintaining population reproductive potential during the recent phase of warming and contraction of cold-water biomes in the Bering Sea. PMID:17679721

  14. What is the role of wind pumping on heat and mass transfer rates at the air-snow interface?

    NASA Astrophysics Data System (ADS)

    Helgason, W.; Pomeroy, J. W.

    2010-12-01

    Accurate prediction of the turbulent exchange of sensible heat and water vapour between the atmosphere and snowpack remains a challenging task under all but the most ideal conditions. Heat and mass transfer coefficients that recognize the unique properties of the snow surface are warranted. A particular area requiring improvement concerns the role of the porous nature of snow which provides a large surface area for heat and mass exchange with the atmosphere. Wind-pumping has long been considered as a viable mechanism for incorporating aerosols into snowpacks; however these processes are not considered in parameterization schemes for heat and mass transfer near the surface. This study attempts to determine the degree to which wind pumping can increase the rates of heat and mass transfer to snow, and to ascertain which structural properties of the snowpack are needed for inclusion in heat and mass transfer coefficients that reflect wind pumping processes. Based upon a review of recent geophysical and engineering literature where porous surfaces are exploited for their ability to augment heat and mass transfer rates, a technical analysis was conducted. Numerous conceptual mechanisms of wind pumping were considered: topographically-induced flow; barometric pressure changes; high frequency pressure fluctuations at the surface; and steady flow in the interfacial region. A sensitivity analysis was performed, subjecting each conceptual model to varying thermal and hydraulic conditions at the air-snow interface, as well as variable micro-structural properties of snow. It is shown that the rate of heat and mass exchange is most sensitive to the interfacial thermal conditions and factors controlling the energy balance of the uppermost snow grains. The effect upon the thermal regime of the snowpack was found to be most significant for mechanisms of wind pumping that result in shorter flow paths near the surface, rather than those caused by low frequency pressure changes. In

  15. The Persistent Life of Snow (Invited)

    NASA Astrophysics Data System (ADS)

    Hiemstra, C. A.; Liston, G. E.; Elder, K.; Sturm, M.

    2009-12-01

    Snow is an essential element linking mountains and poles. In high-elevation and high-latitude environments, snow is the dominant precipitation form, and observations suggest snowpacks in both these areas are being altered with climate change directly (higher temperatures) and indirectly (vegetation change). Snow’s substantial control on energy balance, water resources, and ecosystem processes make it a key variable in understanding climate change ramifications in both mountain and polar systems. In spite of its broad importance, snow remains difficult to accurately quantify on many landscapes and over a wide range of spatial and temporal scales. Because of its interactions with the atmosphere and surrounding landscape, snow is inherently dynamic and a challenge to measure and model. In both mountainous and Arctic domains, it is often transported by wind and interacts with topography and vegetation to form a heterogeneous distribution in both space and time. This heterogeneous distribution imparts numerous effects on ecosystem structure and function and land-atmosphere surface fluxes; it also obfuscates analyses of long-term trends. Both middle latitude mountains and the Arctic are experiencing changes in vegetation, precipitation, and air temperature. These accompany attendant changes in the timing and spatial distributions of snow properties, characteristics, and quantities. We will describe tools, techniques, challenges, and outcomes of measuring and modeling snow accumulation and ablation in snowy environments ranging from low to high elevations and middle to high northern latitudes, with a particular focus on the common snow-related impacts of climate and vegetation changes in these two environments. We will look at middle- and high-latitude snow-vegetation interactions within shrubland environments and present improved ways to represent snow-atmosphere interactions within these landscapes. We will describe the potential ramifications of widespread bark

  16. Snow depth on Arctic and Antarctic sea ice derived from autonomous (Snow Buoy) measurements

    NASA Astrophysics Data System (ADS)

    Nicolaus, Marcel; Arndt, Stefanie; Hendricks, Stefan; Heygster, Georg; Huntemann, Marcus; Katlein, Christian; Langevin, Danielle; Rossmann, Leonard; Schwegmann, Sandra

    2016-04-01

    The snow cover on sea ice received more and more attention in recent sea ice studies and model simulations, because its physical properties dominate many sea ice and upper ocean processes. In particular; the temporal and spatial distribution of snow depth is of crucial importance for the energy and mass budgets of sea ice, as well as for the interaction with the atmosphere and the oceanic freshwater budget. Snow depth is also a crucial parameter for sea ice thickness retrieval algorithms from satellite altimetry data. Recent time series of Arctic sea ice volume only use monthly snow depth climatology, which cannot take into account annual changes of the snow depth and its properties. For Antarctic sea ice, no such climatology is available. With a few exceptions, snow depth on sea ice is determined from manual in-situ measurements with very limited coverage of space and time. Hence the need for more consistent observational data sets of snow depth on sea ice is frequently highlighted. Here, we present time series measurements of snow depths on Antarctic and Arctic sea ice, recorded by an innovative and affordable platform. This Snow Buoy is optimized to autonomously monitor the evolution of snow depth on sea ice and will allow new insights into its seasonality. In addition, the instruments report air temperature and atmospheric pressure directly into different international networks, e.g. the Global Telecommunication System (GTS) and the International Arctic Buoy Programme (IABP). We introduce the Snow Buoy concept together with technical specifications and results on data quality, reliability, and performance of the units. We highlight the findings from four buoys, which simultaneously drifted through the Weddell Sea for more than 1.5 years, revealing unique information on characteristic regional and seasonal differences. Finally, results from seven snow buoys co-deployed on Arctic sea ice throughout the winter season 2015/16 suggest the great importance of local

  17. Influence of stress, temperature and crystal morphology on isothermal densification and specific surface area decrease of new snow

    NASA Astrophysics Data System (ADS)

    Schleef, S.; Löwe, H.; Schneebeli, M.

    2014-10-01

    Laboratory-based, experimental data for the microstructural evolution of new snow are scarce, though applications would benefit from a quantitative characterization of the main influences. To this end, we have analyzed the metamorphism and concurrent densification of new snow under isothermal conditions by means of X-ray microtomography and compiled a comprehensive data set of 45 time series. In contrast to previous measurements on isothermal metamorphism on time scales of weeks to months, we analyzed the initial 24-48 h of snow evolution at a high temporal resolution of 3 hours. The data set comprised natural and laboratory-grown snow, and experimental conditions included systematic variations of overburden stress, temperature and crystal habit to address the main influences on specific surface area (SSA) decrease rate and densification rate in a snowpack. For all conditions, we found a linear relation between density and SSA, indicating that metamorphism has an immediate influence for the densification of new snow. The slope of the linear relation, however, depends on the other parameters which were analyzed individually to derive a best-fit parameterization for the SSA decrease rate and densification rate. In the investigated parameter range, we found that the initial value of the SSA constituted the main morphological influence on the SSA decrease rate. In turn, the SSA decrease rate constituted the main influence on the densification rate.

  18. Air separation with temperature and pressure swing

    DOEpatents

    Cassano, Anthony A.

    1986-01-01

    A chemical absorbent air separation process is set forth which uses a temperature swing absorption-desorption cycle in combination with a pressure swing wherein the pressure is elevated in the desorption stage of the process.

  19. Shielding with Martian snow: suitable temperature and water vapor for possible living organisms

    NASA Astrophysics Data System (ADS)

    Horvath, Andras; Berczi, Szaniszlo; Kereszturi, Akos; Pocs, Tamas; Sik, Andras; Szathmary, Eors

    Periodic favorable conditions on Mars may exist at the Polar Regions during local spring, when elevated temperature and water ice on the surface is present. Based on our previous works, ideal microhabitats could be present at the Dark Dune Spots, where thin H2 O and the topmost mineral layer provide shielding against UV radiation. Here we outline two recently implemented new elements of our model. 1. A heat insulator layer may form inside wintertime H2 O frost, if a fraction of it accumulated as snowflakes, as Phoenix lander observed it. In springtime H2 O molecules sublime away at the "warmest" part of the snow layer: at the bottom where insolation heated grains are present. These vapor molecules diffuse through the snow and freeze at the coldest upper part. This process enlarges vapor filled voids at the bottom, and produces a closed frost layer above, serving as heat insulator and maintaining elevated vapor concentration below. 2. Another new element is to decrease the long-term damage against solar particle events and galactic cosmic rays. This ionizing radiation could sterilize the upper meter of the Martian surface in long term, but organisms with periodic biogenic activity could repair the damage, except if very long inactive phases separate the active periods. Because of the climatic changes on Mars, the distribution of ice coverage at the Polar Region changes, and may result periods when all year long water ice layer exists. During this case phases with photosynthetic activity are missing, but the accumulated ice on the surface lowers the cumulative radiation damage.

  20. Snow Micro-Structure Model

    2014-06-25

    PIKA is a MOOSE-based application for modeling micro-structure evolution of seasonal snow. The model will be useful for environmental, atmospheric, and climate scientists. Possible applications include application to energy balance models, ice sheet modeling, and avalanche forecasting. The model implements physics from published, peer-reviewed articles. The main purpose is to foster university and laboratory collaboration to build a larger multi-scale snow model using MOOSE. The main feature of the code is that it is implementedmore » using the MOOSE framework, thus making features such as multiphysics coupling, adaptive mesh refinement, and parallel scalability native to the application. PIKA implements three equations: the phase-field equation for tracking the evolution of the ice-air interface within seasonal snow at the grain-scale; the heat equation for computing the temperature of both the ice and air within the snow; and the mass transport equation for monitoring the diffusion of water vapor in the pore space of the snow.« less

  1. Snow Micro-Structure Model

    SciTech Connect

    Micah Johnson, Andrew Slaughter

    2014-06-25

    PIKA is a MOOSE-based application for modeling micro-structure evolution of seasonal snow. The model will be useful for environmental, atmospheric, and climate scientists. Possible applications include application to energy balance models, ice sheet modeling, and avalanche forecasting. The model implements physics from published, peer-reviewed articles. The main purpose is to foster university and laboratory collaboration to build a larger multi-scale snow model using MOOSE. The main feature of the code is that it is implemented using the MOOSE framework, thus making features such as multiphysics coupling, adaptive mesh refinement, and parallel scalability native to the application. PIKA implements three equations: the phase-field equation for tracking the evolution of the ice-air interface within seasonal snow at the grain-scale; the heat equation for computing the temperature of both the ice and air within the snow; and the mass transport equation for monitoring the diffusion of water vapor in the pore space of the snow.

  2. Ground surface temperatures (GST) modeling in the Russian Altay Mountains by using MODIS Land Surface Temperatures (LST). Assessment of the impact of snow cover, topography, landcover and sub-pixel variability on the GST-LST relationship.

    NASA Astrophysics Data System (ADS)

    van de Kerchove, Ruben; Goossens, Rudi

    2010-05-01

    The Russian Altay Mountains are a challenging area for large scale permafrost modeling. The lack of meteo-data, strong temperature-inversions, rapid changing snow cover patterns and complicated landcover demand an in-depth approach. As a solution, time and spatially covering MODIS land surface temperature (LST) might be used as a proxy replacing the interpolated air and ground surface temperatures (GST). Recent studies show the potential of this method on large continental areas (e.g. Canadian Arctic, Siberia), by using sinusoidal fits to eliminate the data-gaps both spatially as temporally out of the time-series. These studies use isotherms and analytical solutions for freezing and thawing to model permafrost distribution. However to use the LST-values as an upper boundary condition at heterogeneous mountain ranges as the Russian Altay, further research needs to be conducted. In detail the relation between this parameter and surface temperatures beneath areas covered with snow and vegetation requires more attention. In addition the effect of sub-pixel variability and topographic influence needs to be considered as the LST pixels come at 1km resolution. This study tries to answer these questions by showing results of 96 surface temperature time-series recorded in and around the valley of Dzhazator and on the Tarkhata plain (Kosh Agatch District) from July 2008 until July 2009, areas both characterized by discontinuous permafrost, together with spatial dynamics in LST, GST, snow cover and NDVI. iButtons and Onset dataloggers were installed in order to cover surface temperatures beneath a broad range of landcovers, different topographical positions and in grids to measure the sub-grid variability. LST time-series were interpolated by using the relationship with air temperatures. This enables to incorporate high frequency temperature variations in GST modeling. Correlations both for the summer as the winter season are presented between LST, GST, snow cover and NDVI

  3. Crowdsourcing urban air temperature measurements using smartphones

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-10-01

    Crowdsourced data from cell phone battery temperature sensors could be used to contribute to improved real-time, high-resolution air temperature estimates in urban areas, a new study shows. Temperature observations in cities are in some cases currently limited to a few weather stations, but there are millions of smartphone users in many cities. The batteries in cell phones have temperature sensors to avoid damage to the phone.

  4. IRREGULAR SNOW CRYSTALS: STRUCTURAL FEATURES AS REVEALED BY LOW TEMPERATURE SCANNING ELECTRON MICROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For nearly 50 years, investigators using light microscopy have vaguely alluded to a unique type of snow crystal known as an irregular snow crystal. However, the limited resolution and depth-of-field of the light microscope has prevented investigators from characterizing these crystals. In this stud...

  5. Snow Conditions Near Barrow in Spring 2012

    NASA Astrophysics Data System (ADS)

    Webster, M.; Rigor, I.; Nghiem, S. V.; Sturm, M.; Kurtz, N. T.; Farrell, S. L.; Gleason, E.; Lieb-Lappen, R.; Saiet, E.

    2012-12-01

    Snow has a dual role in the growth and decay of Arctic sea ice. It provides insulation from colder air temperatures during the winter, which hinders sea ice formation. Snow is highly reflective and, as a result, it delays the surface ice melt during the spring. Summer snow melt influences the formation and location of melt ponds on sea ice, which further modifies heat transport into sea ice and the underlying ocean. Identifying snow thickness and extent is of key importance in understanding the surface heat budget, particularly during the early spring when the maximum snowfall has surpassed, and surface melt has not yet occurred. Regarding Arctic atmospheric chemical processes, snow may sustain or terminate halogen chemical recycling and distribution, depending on the state of the snow cover. Therefore, an accurate assessment of the snow cover state in the changing Arctic is important to identify subsequent impacts of snow change on both physical and chemical processes in the Arctic environment. In this study, we assess the springtime snow conditions near Barrow, Alaska using coordinated airborne and in situ measurements taken during the NASA Operation IceBridge and BRomine, Ozone, and Mercury EXperiment (BROMEX) field campaigns in March 2012, and compare these to climatological records. Operation IceBridge was conceived to bridge the gap between satellite retrievals ice thickness by ICESat which ceased operating in 2009 and ICESat-2 which is planned for launch in 2016. As part of the IceBridge mission, snow depth may be estimated by taking the difference between the snow/air surface and the snow/ice interface measured by University of Kansas's snow radar installed on a P-3 Orion and the measurements have an approximate spatial resolution of 40 m along-track and 16 m across-track. The in situ snow depth measurements were measured by an Automatic Snow Depth Probe (Magnaprobe), which has an accuracy of 0.5 cm. Samples were taken every one-to-two meters at two sites

  6. Phase-field modeling of dry snow metamorphism.

    PubMed

    Kaempfer, Thomas U; Plapp, Mathis

    2009-03-01

    Snow on the ground is a complex three-dimensional porous medium consisting of an ice matrix formed by sintered snow crystals and a pore space filled with air and water vapor. If a temperature gradient is imposed on the snow, a water vapor gradient in the pore space is induced and the snow microstructure changes due to diffusion, sublimation, and resublimation: the snow metamorphoses. The snow microstructure, in turn, determines macroscopic snow properties such as the thermal conductivity of a snowpack. We develop a phase-field model for snow metamorphism that operates on natural snow microstructures as observed by computed x-ray microtomography. The model takes into account heat and mass diffusion within the ice matrix and pore space, as well as phase changes at the ice-air interfaces. Its construction is inspired by phase-field models for alloy solidification, which allows us to relate the phase-field to a sharp-interface formulation of the problem without performing formal matched asymptotics. To overcome the computational difficulties created by the large difference between diffusional and interface-migration time scales, we introduce a method for accelerating the numerical simulations that formally amounts to reducing the heat- and mass-diffusion coefficients while maintaining the correct interface velocities. The model is validated by simulations for simple one- and two-dimensional test cases. Furthermore, we perform qualitative metamorphism simulations on natural snow structures to demonstrate the potential of the approach. PMID:19391945

  7. Nowcasting daily minimum air and grass temperature

    NASA Astrophysics Data System (ADS)

    Savage, M. J.

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient ( b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  8. Nowcasting daily minimum air and grass temperature.

    PubMed

    Savage, M J

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient (b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  9. First steps toward development of a stable isotope forward model for tropical ice cores: cold air incursions and snow days at Quelccaya Ice Cap, Peru

    NASA Astrophysics Data System (ADS)

    Hurley, J. V.; Vuille, M. F.; Hardy, D. R.; Burns, S. J.

    2014-12-01

    We are working towards a forward-model reconstruction of the South American Summer Monsoon (SASM) for the last millennium from the Quelccaya Ice Cap (QIC) d18O record. QIC receives precipitation almost exclusively during the SASM season. Initial efforts focus on dynamics that yield precipitation at this receding tropical ice cap, and how they relate to the hydrogen and oxygen stable isotopes. We present over a decade of daily snow-height change observations from the summit of QIC. Accumulation of snow (~2 m yr-1) at the summit occurs October through April, peaking in December. Net monthly snow-height change is negative May through September, though positive snow height change days do occur throughout the year. Snow height change time-series are used to develop d18O age-models for annual snow collected in vertical profiles near the summit of QIC since 2003. Snow d18O decreases during austral summer from about -17 to -24 per mil VSMOW. Post-depositional alteration of late summer snow during austral winter elevates d18O from about -24 to about -15 per mil VSMOW. Timing of 90thpercentile positive snow-height change events at QIC corresponds with regional precipitation and outgoing longwave radiation (OLR) anomalies that are dynamically triggered by cold air incursions propagating from the midlatitudes east of the Andes into the Amazon Basin. Precipitation and OLR anomalies migrate northwest in about 2-3 days from near Rio de la Plata to central Peru. The convective anomalies are the result of southerly horizontal wind anomalies in the lower troposphere that advect cold extratropical air equatorward. Composite analysis of satellite measurements shows that cold air incursions are associated with negative water vapor dD (~ -40 per mil) anomalies at QIC. We expect that snow stable isotope values from QIC are thus not only records of the deep overturning component of the monsoon circulation but also of synoptic scale monsoon disturbances. Cold air incursions into the South

  10. Modeled mass and temperature effects of released and entrained snow on the lubricated flow regime of avalanches at bird hill, southcentral Alaska

    NASA Astrophysics Data System (ADS)

    Wikstrom Jones, Katreeen

    The unpredictable effects of entrained snow on avalanche flow make the tasks of assessing avalanche run-out distances and deciding on road closures very difficult. At Bird Hill in southcentral Alaska, snow entrainment has caused small release volumes (< 25,000 m3) to develop into surprisingly large and far-running avalanches which have endangered the highway and railroad located at the terminus of the slopes. In this project, the dynamical avalanche run-out model RAMMS was implemented to examine how mass and temperature of released and entrained snow affect development of lubricated flow regime and impact run-out distances at Bird Hill. The results showed that temperature was more critical than mass in determining flow regime, with a close correlation between meltwater production and long run-out distances. Meltwater lubricates the avalanche at the base, drastically reducing basal friction and allowing it to glide over the ground. Bird Hill's large drop height (1000 m) and rough terrain (due to shallow snow cover) contributed to the warming of the avalanche core in the simulations. The entrained snow temperature appeared critical in determining the effects of released and entrained snow volumes. Cold releases (-5°C, -8°C), constrained by the "Wet snow" RKE regime in RAMMS, regardless of volume, only generated long run-outs with entrained snow of ≥ -1°C. Depending on the entrained snow temperature, small (< 10,000 m3) medium warm (-3°C) releases warmed up quickly and became lubricated, or remained cold and starved early. Despite cold entrained snow, larger sized (> 15,000 m3) medium warm releases produced meltwater due to dissipated heat from random kinetic energy produced in the upper elevations. Monitoring of warming snow cover temperatures and mapping of terrain features that could affect avalanche flow may help avalanche forecasters better understand the variability of run-out distances.

  11. Temperature Tunable Air-Gap Etalon Filter

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Stephen, Mark A.; Lunt, David L.

    1998-01-01

    We report on experimental measurements of a temperature tuned air-gap etalon filter. The filter exhibits temperature dependent wavelength tuning of 54 pm/C. It has a nominal center wavelength of 532 nm. The etalon filter has a 27 pm optical bandpass and 600 pm free spectral range (finesse approximately 22). The experimental results are in close agreement with etalon theory.

  12. Undulator Hall Air Temperature Fault Scenarios

    SciTech Connect

    Sevilla, J.; Welch, J.; /SLAC

    2010-11-17

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  13. Modeling monthly mean air temperature for Brazil

    NASA Astrophysics Data System (ADS)

    Alvares, Clayton Alcarde; Stape, José Luiz; Sentelhas, Paulo Cesar; de Moraes Gonçalves, José Leonardo

    2013-08-01

    Air temperature is one of the main weather variables influencing agriculture around the world. Its availability, however, is a concern, mainly in Brazil where the weather stations are more concentrated on the coastal regions of the country. Therefore, the present study had as an objective to develop models for estimating monthly and annual mean air temperature for the Brazilian territory using multiple regression and geographic information system techniques. Temperature data from 2,400 stations distributed across the Brazilian territory were used, 1,800 to develop the equations and 600 for validating them, as well as their geographical coordinates and altitude as independent variables for the models. A total of 39 models were developed, relating the dependent variables maximum, mean, and minimum air temperatures (monthly and annual) to the independent variables latitude, longitude, altitude, and their combinations. All regression models were statistically significant ( α ≤ 0.01). The monthly and annual temperature models presented determination coefficients between 0.54 and 0.96. We obtained an overall spatial correlation higher than 0.9 between the models proposed and the 16 major models already published for some Brazilian regions, considering a total of 3.67 × 108 pixels evaluated. Our national temperature models are recommended to predict air temperature in all Brazilian territories.

  14. Measuring Wind Ventilation of Dense Surface Snow

    NASA Astrophysics Data System (ADS)

    Drake, S. A.; Huwald, H.; Selker, J. S.; Higgins, C. W.; Lehning, M.; Thomas, C. K.

    2014-12-01

    Wind ventilation enhances exposure of suspended, canopy-captured and corniced snow to subsaturated air and can significantly increase sublimation rate. Although sublimation rate may be high for highly ventilated snow this snow regime represents a small fraction snow that resides in a basin potentially minimizing its influence on snow mass balance. In contrast, the vast majority of a seasonal snowpack typically resides as poorly ventilated surface snow. The sublimation rate of surface snow is often locally so small as to defy direct measurement but regionally pervasive enough that the integrated mass loss of frozen water across a basin may be significant on a seasonal basis. In a warming climate, sublimation rate increases even in subfreezing conditions because the equilibrium water vapor pressure over ice increases exponentially with temperature. To better understand the process of wintertime surface snow sublimation we need to quantify the depth to which turbulent and topographically driven pressure perturbations effect air exchange within the snowpack. Hypothetically, this active layer depth increases the effective ventilated snow surface area, enhancing sublimation above that given by a plane, impermeable snow surface. We designed and performed a novel set of field experiments at two sites in the Oregon Cascades during the 2014 winter season to examine the spectral attenuation of pressure perturbations with depth for dense snow as a function of turbulence intensity and snow permeability. We mounted a Campbell Scientific Irgason Integrated CO2 and H2O Open Path Gas Analyzer and 3-D Sonic Anemometer one meter above the snow to capture mean and turbulent wind forcing and placed outlets of four high precision ParoScientific 216B-102 pressure transducers at different depths to measure the depth-dependent pressure response to wind forcing. A GPS antenna captured data acquisition time with sufficient precision to synchronize a Campbell Scientific CR-3000 acquiring

  15. The impact of clouds, land use and snow cover on climate in the Canadian Prairies

    NASA Astrophysics Data System (ADS)

    Betts, Alan K.; Desjardins, Raymond L.; Worth, Devon E.

    2016-03-01

    This study uses 55 years of hourly observations of air temperature, relative humidity, daily precipitation, snow cover and cloud cover from 15 climate stations across the Canadian Prairies to analyze biosphere-atmosphere interactions. We will provide examples of the coupling between climate, snow cover, clouds, and land use. Snow cover acts as a fast climate switch. With the first snow fall, air temperature falls by 10 °C, and a similar increase in temperature occurs with snow melt. Climatologically, days with snow cover are 10 °C cooler than days with no snow cover in Alberta. However the interannual variability has a larger range, so that for every 10 % decrease in days with snow cover, the mean October to April climate is warmer by 1.4 to 1.5 °C. Snow cover also transforms the coupling between clouds and the diurnal cycle of air temperature from a boundary layer regime dominated by shortwave cloud forcing in the warm season to one dominated by longwave cloud forcing with snow cover. Changing agricultural land use in the past thirty years, specifically the reduction of summer fallowing, has cooled and moistened the growing season climate and increased summer precipitation. These hourly climate data provide a solid observational basis for understanding land surface coupling, which can be used to improve the representation of clouds and land-surface processes in atmospheric models.

  16. Relating temperature, snow height and glacier characteristics to streamflow trends in Western Austria

    NASA Astrophysics Data System (ADS)

    Kormann, Christoph; Morin, Efrat; Renner, Maik; Francke, Till; Bronstert, Axel

    2014-05-01

    The results of streamflow trend studies are often characterised by mostly insignificant trends. This applies especially for trends of annually averaged runoff: In our study region, Western Austria, we found that there is a trend gradient from high-altitude to low-altitude stations, i.e. a pattern of mostly positive annual trends at higher stations and negative ones at lower stations. At mid-altitudes, trends are mostly insignificant. The trends were most probably caused by the following two main processes: On the one hand, melting glaciers produce excess runoff at high-altitude watersheds. On the other hand, increasing evapotranspiration results in decreasing trends at low-altitude watersheds. However, these patterns are masked at mid-altitudes because the resulting positive and negative trends balance each other. To verify these theories, we attributed the detected trends to specific causes. For this purpose, we analysed trends on a daily basis, as the causes for these changes might be restricted to a smaller temporal scale than the annual one. The daily trends were assessed by calculating 30-day moving average subsets and then estimating significance and magnitude. This allowed for the explicit pointing out of the exact days of year (DOY) when certain streamflow trends emerge and then relating them to the according DOYs of trends and annual cycles of other observed variables, e.g. the DOYs when snow height trends occur or the DOY when temperature crosses the freezing point in spring. Concerning trends caused by increased glacial melt, we applied correlation analyses between glacier area and trend magnitudes during the corresponding DOYs. As a result, the positive trends in spring were attributed to an earlier and more intense snow melt. The ones that follow in late spring at upper stations could be related to increased glacial melt. The negative trends in summertime that turn up earlier at low-altitude stations and later at high-altitude stations are most

  17. Influence of stress, temperature and crystal habit on isothermal densification and specific surface area decrease of new snow

    NASA Astrophysics Data System (ADS)

    Schleef, S.; Löwe, H.; Schneebeli, M.

    2014-03-01

    Laboratory-based, experimental data for the microstructural evolution of new snow is scarce, though applications would benefit from a quantitative characterization of the main mechanism underlying the initial microstructural changes. To this end we have analyzed the metamorphism and concurrent densification of new snow under isothermal conditions by means of X-ray microtomography and compiled a comprehensive data set of 45 time series covering the practically relevant short time behavior within the first 24-48 h in high temporal resolution. The data set comprises natural and laboratory grown snow and experimental conditions include systematic variations of overburden stress, temperature and crystal habit to address the main influences on specific surface area (SSA) decrease rate and densification rate in a natural snowpack. For all conditions we find a linear increase of the density with the SSA, indicating that metamorphism has a key influence for the densification of new snow. Corroborated by the analysis of the individual influences of external conditions we derive a best-fit parametrization for the SSA decrease rate and the densification rate as required for applications.

  18. Climatology and Real-Data Simulations of Snow Bands over the English Channel and Irish Sea during Cold-Air Outbreaks

    NASA Astrophysics Data System (ADS)

    Norris, J.; Vaughan, G.; Schultz, D. M.

    2012-04-01

    During the winters of 2009—2010 and 2010—2011, anti-cyclonic blocking over the north Atlantic led to cold, dry air being advected over the UK from the north and east, generating widespread snow depths not seen since the early 1980s. The societal and economical impacts of this snow were severe and diverse, including those on transport, industry, commerce, emergency services, and retail. The most distinctive precipitation features during these winters formed over the English Channel and Irish Sea, where convection frequently organised into bands, as diagnosed from Met Office NIMROD precipitation radar images, forming along the major axis of each body of water (hereafter, sea) when the boundary-layer flow was roughly parallel to each of those axes (hereafter, along-sea). In this study, we address the atmospheric conditions, diagnosed from soundings from suitable locations, at times when bands were observed and at times that they were not, during the cold-air outbreaks in these winters. We find that, for both seas, a band was present the majority of times that the 850-hPa flow was along-sea. We subsequently find that, of these times of along-sea flow, for both seas, 850-hPa wind speed and surface-to-850-hPa temperature difference were significantly greater when bands were present than when they were not. Real-data simulations using the Weather Research and Forecasting (WRF) model are then presented for a typical band over each sea and the model is found to be accurate in reproducing the structures observed on radar. Output from control runs for each band is compared to that in which topography, surface heat fluxes, and land-sea borders are each removed in turn in order to investigate how the low-level flow evolves to generate the observed bands.

  19. Trace Elements and Common Ions in Southeastern Idaho Snow: Regional Air Pollutant Tracers for Source Area Emissions

    SciTech Connect

    Abbott, Michael Lehman; Einerson, Jeffrey James; Schuster, Paul; Susong, David D.

    2002-09-01

    Snow samples were collected in southeastern Idaho over two winters to assess trace elements and common ions concentrations in air pollutant fallout across the region. The objectives were to: 1) develop sampling and analysis techniques that would produce accurate measurements of a broad suite of elements and ions in snow, 2) identify the major elements in regional fallout and their spatial and temporal trends, 3) determine if there are unique combinations of elements that are characteristic to the major source areas in the region (source profiles), and 4) use pattern recognition and multivariate statistical techniques (principal component analysis and classical least squares regression) to investigate source apportionment of the fallout to the major source areas. In the winter of 2000-2001, 250 snow samples were collected across the region over a 4-month period and analyzed in triplicate using inductively-coupled plasma mass spectrometry (ICP-MS) and ion chromatography (IC). Thirty-nine (39) trace elements and 9 common ions were positively identified in most samples. The data were analyzed using pattern recognition tools in the software, Pirouette® (Infometrix, Inc.). These results showed a large crustal component (Al, Zn, Mn, Ba, and rare earth elements), an overwhelming contribution from phosphate processing facilities located outside Pocatello in the southern portion of the ESRP, some changes in concentrations over time, and no obvious source area profiles (unique chemical signatures) other than at Pocatello. Concentrations near a major U.S. Department of Energy industrial complex on the Idaho National Engineering and Environmental Laboratory (INEEL) were lower than those observed at major downwind communities. In the winter of 2001-2002, we tried a new sampling design (and collected 135 additional samples) in an attempt to estimate pure emission profiles from the major source areas in the region and used classical least squares regression (CLS) to source

  20. Environmental radiological monitoring of air, rain, and snow on and near the Hanford Site, 1945-1957

    SciTech Connect

    Hanf, R.W.; Thiede, M.E.

    1994-03-01

    This report is a result of the Hanford Environmental Dose Reconstruction (HEDR) Project. The goal of the HEDR Project is to estimate the radiation dose that individuals could have received from emissions since 1944 at the Hanford Site near Richland, Washington. Members of the HEDR Project`s Environmental Monitoring Data Task have developed databases of historical environmental measurements of such emissions. Hanford documents were searched for information on the radiological monitoring of air, rain, and snow at and near the Hanford Site in Richland, Washington. The monitoring information was reviewed and summarized. The end product is a yearly overview of air, rain, and snow samples as well as ambient radiation levels in the air that were measured from 1945 through 1957. The following information is provided in each annual summary: the media sampled, the constituents (radionuclides) measured/reported, the sampling locations, the sampling frequencies, the sampling methods, and the document references. For some years a notes category is included that contains additional useful information. For the years 1948 through 1957, tables summarizing the sampling locations for the various sample media are also included in the appendix. A large number of documents were reviewed to obtain the information in this report. A reference list is attached to the end of each annual summary. All of the information summarized here was obtained from reports originating at Hanford. These reports are all publicly available and can be found in the Richland Operations Office (RL) public reading room. The information in this report has been compiled without analysis and should only be used as a guide to the original documents.

  1. A newly developed snow vehicle (SM100S) for Antarctica. Part 4: Low temperature properties of crawler belt

    NASA Astrophysics Data System (ADS)

    Maekawa, Etsuji; Terayama, Yoshihide

    1992-11-01

    In order to discover a high cold-resistance material for use in the crawler belt of snow vehicles, the physical properties at very low temperatures of a recently developed material, isoprene/butadiene (70/30) random copolymer filled with carbon black, was investigated in comparison with a blended rubber NR (Natural Rubber) / BR (Butadiene Rubber) (65/35) as well as a currently used NR. It has been found that this material can keep rubber elasticity even at low temperatures below - 70 C, though it is somewhat inferior to the other two materials as to strengths such as stress-at-break and tear; and hence, it is considered as quite worthy of a practical test for a snow vehicle in the Antarctic area.

  2. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  3. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  4. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  5. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  6. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  7. An electrostatic charge measurement of blowing snow particles focusing on collision frequency to the snow surface

    NASA Astrophysics Data System (ADS)

    Omiya, S.; Sato, A.

    2010-12-01

    the fixed fetch (12m). The number of collisions of particle was converted from the wind velocity using an equation obtained by Kosugi et al. (2004). Blowing snow particles tend to accumulate negative charges gradually with increase of the number of collisions to the snow surface. As a result, it is demonstrated that the gaps between the field values and the wind tunnel ones were due to difference of the collision frequency of snow particles. Assuming a logarithmic relationship as first approximation between the measured charges and the number of collisions, the charge-to-mass ratios will reach roughly the same value which was obtained in the field with several hundreds collisions. For instance, fetch is needed roughly 200m for blowing snow particles to gain -30 μC/kg under the following conditions: air temperature -20 degrees Celsius, wind velocity 7m/s and hard snow surface. REFERENCE: Kosugi et al., (2004): Dependence of drifting snow saltation length on snow surface hardness. Cold Reg. Sci. Technol., 39, 133-139.

  8. Soil temperature and water dynamics on contrasting aspects in the rain-snow transition zone

    NASA Astrophysics Data System (ADS)

    Link, T. E.; Seyfried, M. S.; Bryden, S.; McNamara, J. P.; Klos, P. Z.

    2013-12-01

    Understanding how complex terrain affects ecohydrological and biogeochemical processes in the critical zone has become increasingly important as the global climate changes. Soils modulate both fluxes and are therefore central to this understanding. We are particularly interested in soil temperature and water content because they exert strong controls on hydrologic and biogeochemical fluxes and ecological processes. We measured soil water (θ) and temperature (Ts) profiles at three paired locations in mountainous, complex terrain in SW Idaho, USA (~43°latitude). Each pair consisted of a soil profile of temperature and water content from a depth of 5 cm to bedrock (50 to 110 cm) on opposing north and south facing slopes at the same elevation. The sites are located near the rain/snow transition elevation for the area (1600 m) on steep slopes (25 to 40°) with sparse vegetative cover. We measured dramatic differences between the two slopes, with a difference of 9°C (at 50 cm) in August. Differences between slopes were smaller in winter, about 4° C. The Ts difference between two opposing slopes at identical elevations that we measured is practically the same as the difference between Ts measured on nearly level ground but separated by 1000 m in elevation. This implies that we need to consider two snowmelt seasons within a given watershed based on aspect. We expected θ on north facing soils to decline more slowly and later in the year the south facing soils due to the evaporative demand differential. We did not observe this and, in fact, θ on the two slopes responded similarly during spring and early summer. This is attributed to two factors. First, spring rains were sufficient to maintain relatively high soil water storage on both slopes. Second, the denser vegetative cover on the north-facing slopes counters the lesser evaporative demand. Results suggest that as climate warms, south facing slopes will be the first to transition from a five hydrologic season system

  9. Blasting and blast effects in cold regions. Part 1. Air blast. Special report

    SciTech Connect

    Not Available

    1985-12-01

    Contents include: ideal blast waves in free air; the shock equations for air blast; scaling procedures for comparison of explosions; reflection and refraction of airblast; effect of charge height, or height of burst; attenuation of air blast and variation of shock-front properties; air blast from nuclear explosions; air blast from underground explosions; air blast from underwater explosions; air blast damage criteria; effects of ambient pressure and temperature; explosions in vacuum or in space; air blast attenuation over snow surfaces; shock reflection from snow surfaces; shock velocity over snow; variation of shock pressure with charge height over snow; release of avalanches by air blast.

  10. Microwave emissions from snow

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.

    1984-01-01

    The radiation emitted from dry and wet snowpack in the microwave region (1 to 100 GHz) is discussed and related to ground observations. Results from theoretical model calculations match the brightness temperatures obtained by truck mounted, airborne and spaceborne microwave sensor systems. Snow wetness and internal layer structure complicate the snow parameter retrieval algorithm. Further understanding of electromagnetic interaction with snowpack may eventually provide a technique to probe the internal snow properties

  11. Snow Wetness Estimates of Vegetated Terrain from Satellite Passive Microwave Data

    NASA Astrophysics Data System (ADS)

    Sun, Changyi; Neale, Christopher M. U.; McDonnell, Jeffrey J.

    1996-12-01

    The Special Sensor Microwave/Imager (SSM/I) radiometer is a useful tool for monitoring snow wetness on a large scale because water content has a significant effect on the microwave emissions at the snowpack surface. To date, SSM/I snow wetness algorithms, based on statistical regression analysis, have been developed only for specific regions. Inadequate ground-based snow wetness measurements and the non-linearity between SSM/I brightness temperatures (TBs) and snow wetness over varied vegetation covered terrain has impeded the development of a general model. In this study, we used a previously developed linear relationship between snowpack surface wetness (% by volume) and concurrent air temperature (̂C) to estimate the snow wetness at ground weather stations. The snow condition (snow free, dry, wet or refrozen snow) of each SSM/I pixel (a 37x29 km area at 37.0 GHz) was determined from ground-measured weather data and the TB signature. SSM/I TBs of wet snow were then linked with the snow wetness estimates as an input/output relationship. A single-hidden-layer back-propagation (backprop) artificial neural network (ANN) was designed to learn the relationships. After training, the snow wetness values estimated by the ANN were compared with those derived by regression models. Results show that the ANN performed better than the existing regression models in estimating snow wetness from SSM/I data over terrain with different amounts of vegetation cover.

  12. Snow Study at Centre for Atmospheric Research Experiments: Variability of snow fall velocity, density and shape

    NASA Astrophysics Data System (ADS)

    Jung, Eunsil

    In this work, snow data, collected at the Centre for Atmospheric Research Experiments (CARE) site during the winter of 2005/06 as part of the Canadian CALIPSO/CloudSat Validation Project (C3VP) were analyzed with various goals in mind: 1) investigate the effects of surface temperature and system depth on the snow fall velocity and particle size . . distribution, 2) find the variables that control the relationships between snow fall velocity and size (control variables), 3) retrieve the coefficient and the exponent in the power-law mass-size relations used in snow reflectivity, 4) estimate vertical air motion and 5) describe the shape of snowflakes that can be used in polarimetric studies of snow. It also includes considerable calibration work on the Hydrometeor Velocity and Shape Detector (HVSD); as well as sensitivity testing for radar calibration and Mie-scattering effect on snow density. Snow events were classified into several categories according to the radar echo vertical extent (H), surface and echo top temperatures (T s, Tt), to find their effects on snow fall velocity and particle size distribution. Several case studies, including situations of strong turbulence, were also examined. Simple and multiple correlation analyses between control variables and parameters of the power-law size-velocity relationship were carried out for 13 snow cases having a high R2 between their mean snowflakes fall velocity and the v-D fitted curve, in order to find the control variables of power-law v-D relations. Those cases were all characterized by single layered precipitation with different echo depth, surface and echo top temperatures. Results show that the exponent "b" in v-D power-law relationship has little effect on the variability of snow fall velocity; all control variables (T s, Tt, H) correlate much better to the coefficient "a" than to the exponent "b", leading to a snow fall velocity that can be simulated with a varying coefficient "a" and a fixed exponent "b" (v

  13. Air quality at a snowmobile staging area and snow chemistry on and off trail in a Rocky Mountain subalpine forest, Snowy Range, Wyoming.

    PubMed

    Musselman, Robert C; Korfmacher, John L

    2007-10-01

    A study was begun in the winter of 2000-2001 and continued through the winter of 2001-2002 to examine air quality at the Green Rock snowmobile staging area at 2,985 m elevation in the Snowy Range of Wyoming. The study was designed to evaluate the effects of winter recreation snowmobile activity on air quality at this high elevation site by measuring levels of nitrogen oxides (NO( x ), NO), carbon monoxide (CO), ozone (O(3)) and particulate matter (PM(10) mass). Snowmobile numbers were higher weekends than weekdays, but numbers were difficult to quantify with an infrared sensor. Nitrogen oxides and carbon monoxide were significantly higher weekends than weekdays. Ozone and particulate matter were not significantly different during the weekend compared to weekdays. Air quality data during the summer was also compared to the winter data. Carbon monoxide levels at the site were significantly higher during the winter than during the summer. Nitrogen oxides and particulates were significantly higher during the summer compared to winter. Nevertheless, air pollutants were well dispersed and diluted by strong winds common at the site, and it appears that snowmobile emissions did not have a significant impact on air quality at this high elevation ecosystem. Pollutant concentrations were generally low both winter and summer. In a separate study, water chemistry and snow density were measured from snow samples collected on and adjacent to a snowmobile trail. Snow on the trail was significantly denser and significantly more acidic with significantly higher concentrations of sodium, ammonium, calcium, magnesium, fluoride, and sulfate than in snow off the trail. Snowmobile activity had no effect on nitrate levels in snow. PMID:17286173

  14. Irregular snow crystals: structural features as revealed by low temperature scanning electron microscopy.

    PubMed

    Wergin, William P; Rango, Albert; Foster, James; Erbe, Eric F; Pooley, Christopher

    2002-01-01

    For nearly 50 years, investigators using light microscopy have vaguely alluded to a unique type of snow crystal that has become known as an irregular snow crystal. However, the limited resolution and depth-of-field of the light microscope has prevented investigators from characterizing these crystals. In this study, a field-emission scanning electron microscope, equipped with a cold stage, was used to document the structural features, physical associations, and atmospheric metamorphosis of irregular snow crystals. The crystals appear as irregular hexagons, measuring 60 to 90 mm across, when viewed from the a-axis. Their length (c-axis) rarely exceeds the diameter. The irregular crystals are occasionally found as secondary particles on other larger forms of snow crystals; however, they most frequently occur in aggregates consisting of more than 100 irregular crystals. In the aggregates, the irregular crystals have their axes oriented parallel to one another and, collectively, tend to form columnar structures. Occasionally, these columnar structures exhibit rounded faces along one side, suggesting atmospheric metamorphoses during formation and descent. In extreme cases of metamorphoses, the aggregates would be difficult to distinguish from graupel. Frost, consisting of irregular crystals, has also been encountered, suggesting that atmospheric conditions that favor their growth can also occur terrestrially. PMID:12392356

  15. OBSERVATIONS OF SNOW AND ICE CRYSTALS WITH LOW TEMPERATURE SCANNING ELECTRON MICROSCOPY (REVIEW)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review summarizes the advantages of LTSEM for observations of samples of snow and ice by illustrating the type of surface information that is obtainable, the resolution that can be attained and how the depth of field allows one to observe crystals with significant topography. In addition, we i...

  16. The influence of air temperature inversions on snowmelt and glacier mass-balance simulations, Ammassalik island, SE Greenland

    SciTech Connect

    Mernild, Sebastian Haugard; Liston, Glen

    2009-01-01

    In many applications, a realistic description of air temperature inversions is essential for accurate snow and glacier ice melt, and glacier mass-balance simulations. A physically based snow-evolution modeling system (SnowModel) was used to simulate eight years (1998/99 to 2005/06) of snow accumulation and snow and glacier ice ablation from numerous small coastal marginal glaciers on the SW-part of Ammassalik Island in SE Greenland. These glaciers are regularly influenced by inversions and sea breezes associated with the adjacent relatively low temperature and frequently ice-choked fjords and ocean. To account for the influence of these inversions on the spatiotemporal variation of air temperature and snow and glacier melt rates, temperature inversion routines were added to MircoMet, the meteorological distribution sub-model used in SnowModel. The inversions were observed and modeled to occur during 84% of the simulation period. Modeled inversions were defined not to occur during days with strong winds and high precipitation rates due to the potential of inversion break-up. Field observations showed inversions to extend from sea level to approximately 300 m a.s.l., and this inversion level was prescribed in the model simulations. Simulations with and without the inversion routines were compared. The inversion model produced air temperature distributions with warmer lower elevation areas and cooler higher elevation areas than without inversion routines due to the use of cold sea-breeze base temperature data from underneath the inversion. This yielded an up to 2 weeks earlier snowmelt in the lower areas and up to 1 to 3 weeks later snowmelt in the higher elevation areas of the simulation domain. Averaged mean annual modeled surface mass-balance for all glaciers (mainly located above the inversion layer) was -720 {+-} 620 mm w.eq. y{sup -1} for inversion simulations, and -880 {+-} 620 mm w.eq. y{sup -1} without the inversion routines, a difference of 160 mm w.eq. y

  17. X-ray computed microtomography of sea ice - comment on "A review of air-ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow" by Bartels-Rausch et al. (2014)

    NASA Astrophysics Data System (ADS)

    Obbard, R. W.

    2015-07-01

    This comment addresses a statement made in "A review of air-ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow" by Bartels-Rausch et al. (Atmos. Chem. Phys., 14, 1587-1633, doi:10.5194/acp-14-1587-2014, 2014). Here we rebut the assertion that X-ray computed microtomography of sea ice fails to reveal liquid brine inclusions by discussing the phases present at the analysis temperature.

  18. Density of Freshly Fallen Snow in the Central Rocky Mountains.

    NASA Astrophysics Data System (ADS)

    Judson, Arthur; Doesken, Nolan

    2000-07-01

    New snow density distributions are presented for six measurement sites in the mountains of Colorado and Wyoming. Densities were computed from daily measurements of new snow depth and water equivalent from snow board cores. All data were measured once daily in wind-protected forest sites. Observed densities of freshly fallen snow ranged from 10 to 257 kg m-3. Average densities at each site based on four year's of daily observations ranged from 72 to 103 kg m-3. Seventy-two percent of all daily densities fell between 50 and 100 kg m-3. Approximately 5% of all daily snows had densities below 40 kg m-3. The highest frequency of low densities occurred at Steamboat Springs and Dry Lake. The relationship between air temperature and new snow density exhibited a decline of density with temperature with a correlation coefficient of 0.52. No obvious reversal toward higher densities occurred at cold temperatures, as some previous studies have reported. No clear relationship was found between snow density and the depth of new snowfalls. Correlations of daily densities between measurement sites decreased rapidly with increasing distance between sites. New snow densities are strongly influenced by orography, which contributes to density differences over short distances.

  19. A newly developed snow vehicle (SM100S) for Antarctica. Part 3: Low temperature toughness of the welded joints of the structural steel

    NASA Astrophysics Data System (ADS)

    Sakui, Shin; Nakajima, Masashi

    1992-11-01

    For the purpose of developing a new snow vehicle (common use at temperature about -50 C) for the deep ice coring project at Dome Fuji, East Antarctica, the low temperature toughness of the welded joints of structural steel was investigated. It is empirically well known that in case of vehicles employed in a cold air temperature of about -50 C, the low temperature brittle fracture of the structural members does not take place, if one uses semi-killed or killed steel, for which 50 percent FATT's (fracture appearance transition temperature) of the Charpy impact test is about -50 C and Charpy impact values at -50 C are 20 to 29 J/sq cm. In the present report, the Charpy impact test has been performed for both single pass SMAW (shield metal arc welding) and CO2 arc welded joints of JIS (Japan Industrial Standards) steels of SS400, SL2N255, STPL380, and STPL450. The test results show that the JIS steels of SL2N255 and STPL450 can be used for the new vehicle, considering their toughness.

  20. What controls the isotopic composition of Greenland surface snow?

    NASA Astrophysics Data System (ADS)

    Steen-Larsen, H. C.; Masson-Delmotte, V.; Hirabayashi, M.; Winkler, R.; Satow, K.; Prié, F.; Bayou, N.; Brun, E.; Cuffey, K. M.; Dahl-Jensen, D.; Dumont, M.; Guillevic, M.; Kipfstuhl, J.; Landais, A.; Popp, T.; Risi, C.; Steffen, K.; Stenni, B.; Sveinbjörnsdottír, A.

    2013-10-01

    Water stable isotopes in Greenland ice core data provide key paleoclimatic information, and have been compared with precipitation isotopic composition simulated by isotopically-enabled atmospheric models. However, post-deposition processes linked with snow metamorphism remain poorly documented. For this purpose, a monitoring of the isotopic composition (δ18O, δD) of surface water vapor, precipitation and samples of top (0.5 cm) snow surface has been conducted during two summers (2011-2012) at NEEM, NW Greenland. The measurements also include a subset of 17O-excess measurements over 4 days, and the measurements span the 2012 Greenland heat wave. Our observations are consistent with calculations assuming isotopic equilibrium between surface snow and water vapor. We observe a strong correlation between surface vapor δ18O and air temperature (0.85 ± 0.11 ‰ °C-1 (R = 0.76) for 2012). The correlation with air temperature is not observed in precipitation data or surface snow data. Deuterium excess (d-excess) is strongly anti-correlated with δ18O with a stronger slope for vapor than for precipitation and snow surface data. During nine 1-5 days periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated that 6 to 20% of the surface snow mass is exchanged with the atmosphere using the CROCUS snow model. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or condensation. Comparisons with atmospheric models show that day-to-day variations in surface vapor isotopic composition are driven by synoptic weather and changes in air mass trajectories and distillation histories. We suggest that, in-between precipitation events, changes in the surface snow isotopic composition are driven by these changes in surface vapor isotopic composition. This

  1. What controls the isotopic composition of Greenland surface snow?

    NASA Astrophysics Data System (ADS)

    Steen-Larsen, H. C.; Masson-Delmotte, V.; Hirabayashi, M.; Winkler, R.; Satow, K.; Prié, F.; Bayou, N.; Brun, E.; Cuffey, K. M.; Dahl-Jensen, D.; Dumont, M.; Guillevic, M.; Kipfstuhl, S.; Landais, A.; Popp, T.; Risi, C.; Steffen, K.; Stenni, B.; Sveinbjörnsdottír, A. E.

    2014-02-01

    Water stable isotopes in Greenland ice core data provide key paleoclimatic information, and have been compared with precipitation isotopic composition simulated by isotopically enabled atmospheric models. However, post-depositional processes linked with snow metamorphism remain poorly documented. For this purpose, monitoring of the isotopic composition (δ18O, δD) of near-surface water vapor, precipitation and samples of the top (0.5 cm) snow surface has been conducted during two summers (2011-2012) at NEEM, NW Greenland. The samples also include a subset of 17O-excess measurements over 4 days, and the measurements span the 2012 Greenland heat wave. Our observations are consistent with calculations assuming isotopic equilibrium between surface snow and water vapor. We observe a strong correlation between near-surface vapor δ18O and air temperature (0.85 ± 0.11‰ °C-1 (R = 0.76) for 2012). The correlation with air temperature is not observed in precipitation data or surface snow data. Deuterium excess (d-excess) is strongly anti-correlated with δ18O with a stronger slope for vapor than for precipitation and snow surface data. During nine 1-5-day periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and near-surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated using the CROCUS snow model that 6 to 20% of the surface snow mass is exchanged with the atmosphere. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or deposition. Comparisons with atmospheric models show that day-to-day variations in near-surface vapor isotopic composition are driven by synoptic variations and changes in air mass trajectories and distillation histories. We suggest that, in between precipitation events, changes in the surface snow isotopic composition are driven by these changes in near-surface vapor

  2. Spring Snow Depth on Arctic Sea Ice using the IceBridge Snow Depth Product (Invited)

    NASA Astrophysics Data System (ADS)

    Webster, M.; Rigor, I. G.; Nghiem, S. V.; Kurtz, N. T.; Farrell, S. L.

    2013-12-01

    Snow has dual roles in the growth and decay of Arctic sea ice. In winter, it insulates sea ice from colder air temperatures, slowing its growth. From spring into summer, the albedo of snow determines how much insolation is transmitted through the sea ice and into the underlying ocean, ultimately impacting the progression of the summer ice melt. Knowing the snow thickness and distribution are essential for understanding and modeling sea ice thermodynamics and the surface heat budget. Therefore, an accurate assessment of the snow cover is necessary for identifying its impacts in the changing Arctic. This study assesses springtime snow conditions on Arctic sea ice using airborne snow thickness measurements from Operation IceBridge (2009-2012). The 2012 data were validated with coordinated in situ measurements taken in March 2012 during the BRomine, Ozone, and Mercury EXperiment field campaign. We find a statistically significant correlation coefficient of 0.59 and RMS error of 5.8 cm. The comparison between the IceBridge snow thickness product and the 1937, 1954-1991 Soviet drifting ice station data suggests that the snow cover has thinned by 33% in the western Arctic and 44% in the Beaufort and Chukchi Seas. A rudimentary estimation shows that a thinner snow cover in the Beaufort and Chukchi Seas translates to a mid-December surface heat flux as high as 81 W/m2 compared to 32 W/m2. The relationship between the 2009-2012 thinner snow depth distribution and later sea ice freeze-up is statistically significant, with a correlation coefficient of 0.59. These results may help us better understand the surface energy budget in the changing Arctic, and may improve our ability to predict the future state of the sea ice cover.

  3. Trends in Surface Temperature from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Aumann, H. H.

    2014-12-01

    To address possible causes of the current hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We find a monotonic positive trend for the land temperature but not for the ocean temperature. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The results are compared with the model studies. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  4. Macroscopic modeling of heat and water vapor transfer with phase change in dry snow based on an upscaling method: Influence of air convection

    NASA Astrophysics Data System (ADS)

    Calonne, N.; Geindreau, C.; Flin, F.

    2015-12-01

    At the microscopic scale, i.e., pore scale, dry snow metamorphism is mainly driven by the heat and water vapor transfer and the sublimation-deposition process at the ice-air interface. Up to now, the description of these phenomena at the macroscopic scale, i.e., snow layer scale, in the snowpack models has been proposed in a phenomenological way. Here we used an upscaling method, namely, the homogenization of multiple-scale expansions, to derive theoretically the macroscopic equivalent modeling of heat and vapor transfer through a snow layer from the physics at the pore scale. The physical phenomena under consideration are steady state air flow, heat transfer by conduction and convection, water vapor transfer by diffusion and convection, and phase change (sublimation and deposition). We derived three different macroscopic models depending on the intensity of the air flow considered at the pore scale, i.e., on the order of magnitude of the pore Reynolds number and the Péclet numbers: (A) pure diffusion, (B) diffusion and moderate convection (Darcy's law), and (C) strong convection (nonlinear flow). The formulation of the models includes the exact expression of the macroscopic properties (effective thermal conductivity, effective vapor diffusion coefficient, and intrinsic permeability) and of the macroscopic source terms of heat and vapor arising from the phase change at the pore scale. Such definitions can be used to compute macroscopic snow properties from 3-D descriptions of snow microstructures. Finally, we illustrated the precision and the robustness of the proposed macroscopic models through 2-D numerical simulations.

  5. Climate Sensitivity to Realistic Solar Heating of Snow and Ice

    NASA Astrophysics Data System (ADS)

    Flanner, M.; Zender, C. S.

    2004-12-01

    Snow and ice-covered surfaces are highly reflective and play an integral role in the planetary radiation budget. However, GCMs typically prescribe snow reflection and absorption based on minimal knowledge of snow physical characteristics. We performed climate sensitivity simulations with the NCAR CCSM including a new physically-based multi-layer snow radiative transfer model. The model predicts the effects of vertically resolved heating, absorbing aerosol, and snowpack transparency on snowpack evolution and climate. These processes significantly reduce the model's near-infrared albedo bias over deep snowpacks. While the current CCSM implementation prescribes all solar radiative absorption to occur in the top 2 cm of snow, we estimate that about 65% occurs beneath this level. Accounting for the vertical distribution of snowpack heating and more realistic reflectance significantly alters snowpack depth, surface albedo, and surface air temperature over Northern Hemisphere regions. Implications for the strength of the ice-albedo feedback will be discussed.

  6. Recent increase in snow-melt area in the Greenland Ice sheet as an indicator of the effect of reduced surface albedo by snow impurities

    NASA Astrophysics Data System (ADS)

    Rikiishi, K.

    2008-12-01

    Recent rapid decline of cryosphere including mountain glaciers, sea ice, and seasonal snow cover tends to be associated with global warming. However, positive feedback is likely to operate between the cryosphere and air temperature, and then it may not be so simple to decide the cause-and-effect relation between them. The theory of heat budget for snow surface tells us that sensible heat transfer from the air to the snow by atmospheric warming by 1°C is about 10 W/m2, which is comparable with heat supply introduced by reduction of the snow surface albedo by only 0.02. Since snow impurities such as black carbon and soil- origin dusts have been accumulated every year on the snow surface in snow-melting season, it is very important to examine whether the snow-melting on the ice sheets, mountain glaciers, and sea ice is caused by global warming or by accumulated snow impurities originated from atmospheric pollutants. In this paper we analyze the dataset of snow-melt area in the Greenland ice sheet for the years 1979 - 2007 (available from the National Snow and Ice Data Center), which is reduced empirically from the satellite micro-wave observations by SMMR and SMM/I. It has been found that, seasonally, the snow-melt area extends most significantly from the second half of June to the first half of July when the sun is highest and sunshine duration is longest, while it doesn't extend any more from the second half of July to the first half of August when the air temperature is highest. This fact may imply that sensible heat required for snow-melting comes from the solar radiation rather than from the atmosphere. As for the interannual variation of snow-melt area, on the other hand, we have found that the growth rate of snow-melt area gradually increases from July, to August, and to the first half of September as the impurities come out to and accumulated at the snow surface. However, the growth rate is almost zero in June and the second half of September when fresh snow

  7. Decadal trend of precipitation and temperature patterns and impacts on snow-related variables in a semiarid region, Sierra Nevada, Spain.

    NASA Astrophysics Data System (ADS)

    José Pérez-Palazón, María; Pimentel, Rafael; Herrero, Javier; José Polo, María

    2016-04-01

    In the current context of global change, mountainous areas constitute singular locations in which these changes can be traced. Early detection of significant shifts of snow state variables in semiarid regions can help assess climate variability impacts and future snow dynamics in northern latitudes. The Sierra Nevada mountain range, in southern Spain, is a representative example of snow areas in Mediterranean-climate regions and both monitoring and modelling efforts have been performed to assess this variability and its significant scales. This work presents a decadal trend analysis throughout the 50-yr period 1960-2010 performed on some snow-related variables over Sierra Nevada, in Spain, which is included in the global climate change observatories network around the world. The study area comprises 4583 km2 distributed throughout the five head basins influenced by these mountains, with altitude values ranging from 140 to 3479 m.a.s.l., just 40 km from the Mediterranean coastline. Meteorological variables obtained from 44 weather stations from the National Meteorological Agency were studied and further used as input to the distributed hydrological model WiMMed (Polo et al., 2010), operational at the study area, to obtain selected snow variables. Decadal trends were obtained, together with their statistical significance, over the following variables, averaged over the whole study area: (1) annual precipitation; (2) annual snowfall; annual (3) mean, (4) maximum and (5) minimum daily temperature; annual (6) mean and (7) maximum daily fraction of snow covered areas; (8) annual number of days with snow cover; (9) mean and (10) maximum daily snow water equivalent; (11) annual number of extreme precipitation events; and (12) mean intensity of the annual extreme precipitation events. These variables were also studied over each of the five regions associated to each basin in the range. Globally decreasing decadal trends were obtained for all the meteorological variables

  8. Is Air Temperature Enough to Predict Lake Surface Temperature?

    NASA Astrophysics Data System (ADS)

    Piccolroaz, S.; Toffolon, M.; Majone, B.

    2014-12-01

    Lake surface water (LST) is a key factor that controls most of the physical and ecological processes occurring in lakes. Reliable estimates are especially important in the light of recent studies, which revealed that inland water bodies are highly sensitive to climate, and are rapidly warming throughout the world. However, an accurate estimation of LST usually requires a significant amount of information that is not always available. In this work, we present an application of air2water, a lumped model that simulates LST as a function of air temperature only. In addition, air2water allows for a qualitative evaluation of the depth of the epilimnion during the annual stratification cycle. The model consists in a simplification of the complete heat budget of the well-mixed surface layer, and has a few parameters (from 4 to 8 depending on the version) that summarize the role of the different heat flux components. Model calibration requires only air and water temperature data, possibly covering sufficiently long historical periods in order to capture inter-annual variability and long-term trends. During the calibration procedure, the information included in input data is retrieved to directly inform model parameters, which can be used to classify the thermal behavior of the lake. In order to investigate how thermal dynamics are related to morphological features, the model has been applied to 14 temperate lakes characterized by different morphological and hydrological conditions, by different sources of temperature data (buoys, satellite), and by variable frequency of acquisition. A good agreement between observed and simulated LST has been achieved, with a RMSE in the order of 1°C, which is fully comparable to the performances of more complex process-based models. This application allowed for a deeper understanding of the thermal response of lakes as a function of their morphology, as well as for specific analyses as for example the investigation of the exceptional

  9. Observations of northern latitude ground-surface and surface-air temperatures

    NASA Astrophysics Data System (ADS)

    Woodbury, Allan D.; Bhuiyan, A. K. M. H.; Hanesiak, John; Akinremi, O. O.

    2009-04-01

    Note that the magnitude of temperature increases reconstructed from borehole records seems to contrast with some proxy based reconstructions of surface air temperature (SAT) that indicate lower amounts of warming over the same period. We present data suggesting that ground and snow cover may bias climate reconstructions based on BT in portions of the Canadian northwest. Eight sites west of the Canadian cordillera, were examined for long-term SAT and GST changes. At seven of these sites precise borehole temperature profiles are used for the first time since the 1960s, thereby exploring the linkage between GST and SAT. New readings were made at four of these locations. All sites showed significant increasing SAT trends, in terms of annual mean minimum and maximum temperatures. Over a 54 year period, the minimum temperatures increased between 1.1°C and 1.5°C while the maximum increased between 0.8°C and 1.5°C, among those eight stations. Observations of GST at those sites, however, showed no obvious climate induced perturbations. Therefore, we believe that a trend in our area towards an increase in SAT temperatures only over the winter and spring is being masked by freeze thaw and latent energy effects. These results are important, particularly in northern locations where ground and snow cover may play an important role in creating a seasonal bias in GST reconstructions from borehole surveys.

  10. Long-term experimental manipulation of winter snow regime and summer temperature in arctic and alpine tundra

    USGS Publications Warehouse

    Walker, M.D.; Walker, D. A.; Welker, J.M.; Arft, A.M.; Bardsley, T.; Brooks, P.D.; Fahnestock, J.T.; Jones, M.H.; Losleben, M.; Parsons, A.N.; Seastedt, T.R.; Turner, P.L.

    1999-01-01

    Three 60 m long, 2.8 m high snowfences have been erected to study long-term effects of changing winter snow conditions on arctic and alpine tundra. This paper describes the experimental design and short-term effects. Open-top fiberglass warming chambers are placed along the experimental snow gradients and in controls areas outside the fences; each warming plot is paired with an unwarmed plot. The purpose of the experiment is to examine short- and long-term changes to the integrated physical-biological systems under simultaneous changes of winter snow regime and summer temperature, as part of the Long-Term Ecological Research network and the International Tundra Experiment. The sites were at Niwot Ridge, Colorado, a temperate high altitude site in the Colorado Rockies, and Toolik Lake, Alaska, a high-latitude site. Initial results indicate that although experimental designs are essentially identical at the arctic and alpine sites, experimental effects are different. The drift at Niwot Ridge lasts much longer than do the Toolik Lake drifts, so that the Niwot Ridge fence affects both summer and winter conditions, whereas the Toolik Lake fence affects primarily winter conditions. The temperature experiment also differs in effect between the sites. Although the average temperature increase at the two sites is similar (daily increase 1.5??C at Toolik and 1.9??C at Niwot Ridge), at Toolik Lake there is only minor diurnal variation, whereas at Niwot Ridge the daytime increases are extreme on sunny days (as much as 7-10??C), and minimum nighttime temperatures in the chambers are often slightly cooler than ambient (by about 1??C). The experimental drifts resulted in wintertime increases in temperature and CO2 flux. Temperatures under the deep drifts were much more consistent and warmer than in control areas, and at Niwot Ridge remained very close to 0??C all winter. These increased temperatures were likely responsible for observed increases in system carbon loss. Initial

  11. Assessing the Potential of the AIRS Retrieved Surface Temperature for 6-Hour Average Temperature Forecast in River Forecast Centers

    NASA Astrophysics Data System (ADS)

    Ding, F.; Theobald, M.; Vollmer, B.; Savtchenko, A. K.; Hearty, T. J.; Esfandiari, A. E.

    2012-12-01

    Producing timely and accurate water forecast and information is the mission of National Weather Service River Forecast Centers (NWS RFCs) of National Oceanic and Atmospheric Administration (NOAA). The river forecast system in RFCs requires average surface temperature in the fixed 6-hour period 000-0600, 0600-1200, 1200-1800, and 1200-0000 UTC. The current logic of RFC temperature forecast relies on ingest of point values of daytime maximum and nighttime minimum temperature. Meanwhile, the mean temperature for the 6-hour period is estimated from a weighted average of daytime maximum and nighttime minimum temperature. The Atmospheric Infrared Sounder (AIRS) in the first high spectral resolution infrared sounder on board the Aqua satellite which was launched in May 2002 and follows a Sun-synchronous polar orbit. It is aimed to produce high resolution atmospheric profile and surface atmospheric parameters. As Aqua crosses the equator at about 1330 and 0130 local time, the AIRS retrieved surface temperature may represent daytime maximum and nighttime minimum value. Comparing to point observation from surface weather stations which are often sparse over the less-populated area and are unevenly distributed, satellite may obtain better area averaged observation. This test study assesses the potential of using AIRS retrieved surface temperature to forecast 6-hour average temperature for NWS RFCs. The California Nevada RFC is selected due to the poor coverage of surface observation in the mountainous region and spring snow melting. The study focuses on the March to May spring season when water from snowpack melting often plays important role in flood. AIRS retrieved temperature and surface weather station data set will be used to derive statistical weighting coefficient for 6-hour average temperature forecast. The resulting forecast biases and errors will be the main indicators of the potential usage. All study results will be presented in the meeting.

  12. Snow-atmosphere coupling and extremes over North America in the Canadian Regional Climate Model (CRCM5)

    NASA Astrophysics Data System (ADS)

    Diro, G. T.; Sushama, L.; Huziy, O.

    2015-12-01

    Given the importance of land in the climate system, we investigate the influence of land surface, in particular the variation in snow characteristics, on climate variability and extremes over North America using the fifth generation of Canadian Regional Climate Model (CRCM5). To this end, we carried out two CRCM5 simulations driven by ERA-Interim reanalysis, where snow is either prescribed (uncoupled) or evolves interactively (coupled) during the model integration. Results indicate a systematic influence of snow on the inter-annual variability of air and surface temperature throughout the winter and spring seasons. In the coupled simulations, where the snow depth and snow cover were allowed to evolve freely, the inter-annual variability of surface and near surface air temperatures were found to be larger. Comparison with the uncoupled simulation suggests that snow depth/cover variability accounts for about 70% of the total surface temperature variability over the northern Great Plains and Canadian Prairies for the winter and spring seasons. The snow-atmosphere coupling is stronger in spring than in winter, since in spring season both the albedo and the latent heat flux contribute to the variability in temperature. Snow is also found to modulate extreme temperature events such as the number of cold days over Prairies during weak La-Nina episodes. These results suggest that initializing forecast models with realistic snow condition could potentially help to improve seasonal/sub-seasonal prediction skill over these snow-atmosphere coupling hotspot regions.

  13. Observations and Modelling of Hillslope Throughflow Temperature and Its Influence on Headwater Stream Thermal Regimes in the Rain-on-Snow Zone

    NASA Astrophysics Data System (ADS)

    Leach, J. A.; Moore, R. D.

    2014-12-01

    Stream temperature controls a variety of biological, chemical and physical in-stream processes. A growing body of research has highlighted the importance of advection associated with surface water and groundwater interactions on stream thermal regimes, and considerable effort has focused on the thermal role of hyporheic exchange and groundwater discharge. However, few studies have focused on advection associated with hillslope throughflow inputs. Current catchment-scale coupled hydrology and stream temperature models (DHSVM, SWAT, HSPF, CEQUEAU, MIKE SHE) use a variety of approaches to estimate throughflow temperatures, but none of these approaches has been evaluated against field measurements of throughflow temperature. We monitored throughflow temperature at fifty locations along a headwater stream located in the rain-on-snow zone of the Pacific Northwest. Current approaches to estimate throughflow temperature were evaluated against field observations and were found to under- or over-predict throughflow temperatures by up to 8 °C, or not be able to represent the influence of transient snow cover. Therefore, we developed a conceptual-parametric hydrology and stream temperature model that simulates hillslope throughflow temperatures. The model successfully predicts throughflow temperatures and highlights the dominant role of throughflow advection and the influence of snow cover on stream thermal regimes during high flow periods and rain-on-snow events.

  14. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  15. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  16. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  17. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  18. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  19. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  20. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  1. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  2. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  3. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  4. Appalachia Snow

    Atmospheric Science Data Center

    2014-05-15

    ... on December 4 and 5, 2002, also brought the season's first snow to parts of the south and southern Appalachia. The extent of snow cover over central Kentucky, eastern Tennessee, western North Carolina and ...

  5. "Snowing" Core in Earth?

    NASA Astrophysics Data System (ADS)

    Li, J.; Chen, B.; Cormier, V.; Gao, L.; Gubbins, D.; Kharlamova, S. A.; He, K.; Yang, H.

    2008-12-01

    As a planet cools, an initially molten core gradually solidifies. Solidification occurs at shallow depths in the form of "snow", if the liquidus temperature gradient of the core composition is smaller than the adiabatic temperature gradient in the core. Experimental data on the melting behavior of iron-sulfur binary system suggest that the cores of Mercury and Ganymede are probably snowing at the present time. The Martian core is predicted to snow in the future, provided that the sulfur content falls into the range of 10 to 14 weight percent. Is the Earth's core snowing? If so, what are the surface manifestations? If the Earth's core snowed in the past, how did it affect the formation of the solid inner core and the geodynamo? Here, we evaluate the likelihood and consequences of a snowing core throughout the Earth's history, on the basis of mineral physics data describing the melting behavior, equation-of-state, and thermodynamic properties of iron-rich alloys at high pressures. We discuss if snowing in the present-day Earth can reproduce the shallow gradients of compressional wave velocity above the inner-core boundary, and whether or not snowing in the early Earth may reconcile the apparent young age of the solid inner core with a long-lived geodynamo.

  6. Sea Ice SAR Signature Dependence on Thaw and Refreeze Event in the Snow Cover

    NASA Astrophysics Data System (ADS)

    Hudier, E. J.; Tolszczuk-Leclerc, S.

    2010-12-01

    As a result of the dependence of microwaves on the dielectric properties of the material they interfere with, the microwave signature of sea ice changes dramatically with the seasons as well as overnight when the snow layer is at the freezing point While pure ice and dry snow do not cause significant scattering and can be considered transparent throughout the winter season, the presence of liquid water, later on at spring, on air-ice or air-snow interfaces or within the snow cover turns the snow layer into an opaque medium and makes the air-snow interface the main contributor of the microwave backscattered to the SAR antenna. The availability of liquid water in the snow is the result of a shift in the thermodynamic balance of the snow layer and sea ice sheet. At spring, with the irradiance and air temperature increasing, the snow media quickly becomes isothermal. The snow layer is then a tri-phasic medium in which water changes state to balance radiations (short and long waves) and conductive heat fluxes variations. As a consequence, the surface layer of the snow cover is subject to a diurnal cycle of thaw during day time and refreeze at night which translates into a parallel diurnal cycle on snow wetness content. This cycle is of major relevance to microwave remote sensing applications and specifically to sea ice morphological features extraction. Using the output of a thermodynamic model of an isothermal snow cover forced by incoming L↓ and outgoing L↑ long-wave radiations, incident S↓ and reflected S↑ short-wave radiations and a turbulent atmospheric heat flux Qatm, an evaluation of the volume and surface components of a backscattered SAR is computed as a function of the SAR incident angle. We observe that when heat fluxes (irradiative and conductive) are positive, liquid water available in the top layer of the snow cover turns the air-snow interface into a specular reflector. Conversely, with wetness decreasing overnight, more energy can penetrate the

  7. 50 years of snow stratigraphy observations

    NASA Astrophysics Data System (ADS)

    Johansson, C.; Pohjola, V.; Jonasson, C.; Challagan, T. V.

    2012-04-01

    With start in autumn 1961 the Abisko Scientific Research Station (ASRS) located in the Swedish sub Arctic has performed snow stratigraphy observations, resulting in a unique 50 year long time series of data. The data set contains grain size, snow layer hardness, grain compactness and snow layer dryness, observed every second week during the winter season. In general snow and snow cover are important factors for the global radiation budget, and the earth's climate. On a more local scale the layered snowpack creates a relatively mild microclimate for Arctic plants and animals, and it also determines the water content of the snowpack (snow water equivalent) important for e.g. hydrological applications. Analysis of the snow stratigraphy data, divided into three consecutive time periods, show that there has been a change in the last time period. The variable most affected is the snow layer hardness, which shows an increase in hardness of the snowpack. The number of observations with a very hard snow layer/ice at ground level increased three-fold between the first two time periods and the last time period. The thickness of the bottom layer in the snowpack is also highly affected. There has been a 60% increase in layers thinner than 10 cm in the last time period, resulting in a mean reduction in the thickness of the bottom layer from 14 cm to 11 cm. Hence the living conditions for plants and animals at the ground surface have been highly changed. The changes in the snowpack are correlated to an increased mean winter air temperature. Thus, continued increasing, or temperatures within the same ranges as in the last time period, is likely to create harder snow condition in the future. These changes are likely to affect animals that live under the snow such as lemmings and voles or animals that graze sub-Arctic vegetation in winter (e.g. reindeer that would potentially require increased supplementary feeding that incurs financial costs to Sami reindeer herders). Any decrease

  8. A meteorological and snow observational data set from Snoqualmie Pass (921 m), Washington Cascades, USA

    NASA Astrophysics Data System (ADS)

    Wayand, Nicholas E.; Massmann, Adam; Butler, Colin; Keenan, Eric; Stimberis, John; Lundquist, Jessica D.

    2015-12-01

    We introduce a quality controlled observational atmospheric, snow, and soil data set from Snoqualmie Pass, Washington, USA, to enable testing of hydrometeorological and snow process representations within a rain-snow transitional climate where existing observations are sparse and limited. Continuous meteorological forcing (including air temperature, total precipitation, wind speed, specific humidity, air pressure, and short and longwave irradiance) are provided at hourly intervals for a 24 year historical period (water years 1989-2012) and at half-hourly intervals for a more recent period (water years 2013-2015), separated based on the availability of observations. The majority of missing data were filled with biased-corrected reanalysis model values (using NLDAS). Additional observations include 40 years of snow board new snow accumulation, multiple measurements of total snow depth, and manual snow pits, while more recent years include subdaily surface temperature, snowpack drainage, soil moisture and temperature profiles, and eddy covariance-derived turbulent heat flux. This data set is ideal for testing hypotheses about energy balance, soil, and snow processes in the rain-snow transition zone.

  9. Air-snow transfer of nitrate on the East Antarctic Plateau - Part 2: An isotopic model for the interpretation of deep ice-core records

    NASA Astrophysics Data System (ADS)

    Erbland, J.; Savarino, J.; Morin, S.; France, J. L.; Frey, M. M.; King, M. D.

    2015-10-01

    Unraveling the modern budget of reactive nitrogen on the Antarctic Plateau is critical for the interpretation of ice-core records of nitrate. This requires accounting for nitrate recycling processes occurring in near-surface snow and the overlying atmospheric boundary layer. Not only concentration measurements but also isotopic ratios of nitrogen and oxygen in nitrate provide constraints on the processes at play. However, due to the large number of intertwined chemical and physical phenomena involved, numerical modeling is required to test hypotheses in a quantitative manner. Here we introduce the model TRANSITS (TRansfer of Atmospheric Nitrate Stable Isotopes To the Snow), a novel conceptual, multi-layer and one-dimensional model representing the impact of processes operating on nitrate at the air-snow interface on the East Antarctic Plateau, in terms of concentrations (mass fraction) and nitrogen (δ15N) and oxygen isotopic composition (17O excess, Δ17O) in nitrate. At the air-snow interface at Dome C (DC; 75° 06' S, 123° 19' E), the model reproduces well the values of δ15N in atmospheric and surface snow (skin layer) nitrate as well as in the δ15N profile in DC snow, including the observed extraordinary high positive values (around +300 ‰) below 2 cm. The model also captures the observed variability in nitrate mass fraction in the snow. While oxygen data are qualitatively reproduced at the air-snow interface at DC and in East Antarctica, the simulated Δ17O values underestimate the observed Δ17O values by several per mill. This is explained by the simplifications made in the description of the atmospheric cycling and oxidation of NO2 as well as by our lack of understanding of the NOx chemistry at Dome C. The model reproduces well the sensitivity of δ15N, Δ17O and the apparent fractionation constants (15ϵapp, 17Eapp) to the snow accumulation rate. Building on this development, we propose a framework for the interpretation of nitrate records

  10. Air-snow transfer of nitrate on the East Antarctic plateau - Part 2: An isotopic model for the interpretation of deep ice-core records

    NASA Astrophysics Data System (ADS)

    Erbland, J.; Savarino, J.; Morin, S.; France, J. L.; Frey, M. M.; King, M. D.

    2015-03-01

    Unraveling the modern budget of reactive nitrogen on the Antarctic plateau is critical for the interpretation of ice core records of nitrate. This requires accounting for nitrate recycling processes occurring in near surface snow and the overlying atmospheric boundary layer. Not only concentration measurements, but also isotopic ratios of nitrogen and oxygen in nitrate, provide constraints on the processes at play. However, due to the large number of intertwined chemical and physical phenomena involved, numerical modelling is required to test hypotheses in a quantitative manner. Here we introduce the model "TRansfer of Atmospheric Nitrate Stable Isotopes To the Snow" (TRANSITS), a novel conceptual, multi-layer and one-dimensional model representing the impact of processes operating on nitrate at the air-snow interface on the East Antarctic plateau, in terms of concentrations (mass fraction) and the nitrogen (δ15N) and oxygen isotopic composition (17O}-excess, Δ17O) in nitrate. At the air-snow interface at Dome C (DC, 75°06' S, 123°19' E), the model reproduces well the values of δ15N in atmospheric and surface snow (skin layer) nitrate as well as in the δ15N profile in DC snow including the observed extraordinary high positive values (around +300 ‰) below 20 unit{cm}. The model also captures the observed variability in nitrate mass fraction in the snow. While oxygen data are qualitatively reproduced at the air-snow interface at DC and in East Antarctica, the simulated Δ17O values underestimate the observed Δ17O values by a few ‰. This is explained by the simplifications made in the description of the atmospheric cycling and oxidation of NO2. The model reproduces well the sensitivity of δ15N, Δ17O and the apparent fractionation constants (15ϵapp, 17Eapp) to the snow accumulation rate. Building on this development, we propose a framework for the interpretation of nitrate records measured from ice cores. Measurement of nitrate mass fractions

  11. Air and Ground Surface Temperature Relations in a Mountainous Basin, Wolf Creek, Yukon Territory

    NASA Astrophysics Data System (ADS)

    Roadhouse, Emily A.

    The links between climate and permafrost are well known, but the precise nature of the relationship between air and ground temperatures remains poorly understood, particularly in complex mountain environments. Although previous studies indicate that elevation and potential incoming solar radiation (PISR) are the two leading factors contributing to the existence of permafrost at a given location, additional factors may also contribute significantly to the existence of mountain permafrost, including vegetation cover, snow accumulation and the degree to which individual mountain landscapes are prone to air temperature inversions. Current mountain permafrost models consider only elevation and aspect, and have not been able to deal with inversion effects in a systematic fashion. This thesis explores the relationship between air and ground surface temperatures and the presence of surface-based inversions at 27 sites within the Wolf Creek basin and surrounding area between 2001 and 2006, as a first step in developing an improved permafrost distribution TTOP model. The TTOP model describes the relationship between the mean annual air temperature and the temperature at the top of permafrost in terms of the surface and thermal offsets (Smith and Riseborough, 2002). Key components of this model are n-factors which relate air and ground climate by establishing the ratio between air and surface freezing (winter) and thawing (summer) degree-days, thus summarizing the surface energy balance on a seasonal basis. Here we examine (1) surface offsets and (2) freezing and thawing n-factor variability at a number of sites through altitudinal treeline in the southern Yukon. Thawing n-factors (nt) measured at individual sites remained relatively constant from one year to the next and may be related to land cover. During the winter, the insulating effect of a thick snow cover results in higher surface temperatures, while thin snow cover results in low surface temperatures more closely

  12. High arctic snow avalanche observations and modeling in Svalbard 2007-2009

    NASA Astrophysics Data System (ADS)

    Eckerstorfer, Markus; Christiansen, Hanne H.; Humlum, Ole

    2010-05-01

    Systematic snow avalanche observations, carried out by the Norklima CRYOSLOPE Svalbard research project 2007-2009, represent the first comprehensive study of periglacial slope processes and especially snow avalanches in a high arctic maritime landscape. The main focus is on snow avalanche types, their spatial distribution, timing and associated controlling meteorological and snow pack conditions. Another focus is on the classification of the snow pack in central Svalbard in terms of thickness, hardness, stratigraphy and most persistent weak layers that cause avalanching. As a result of increasing population and tourism, snow mobile transportation and other recreational use of the steep terrain has increased, especially during the last 10-15 years in Svalbard. Such winter activity takes place in a high relief, almost vegetation free landscape, affected by snow avalanches. We present results from the 3 years project period, as well as the methods used to collect observations on snow avalanches, the snow pack and the meteorological data along the most intensively used 70 km snow mobile tracks around Svalbard's main settlement Longyearbyen. This enables us to identify the main factors controlling snow avalanches. We have recorded the amount of traffic along the main snow mobile tracks in our snow avalanche affected study area by use of radar, for avalanche risk evaluation. We also exemplify the high arctic maritime snow climate as an important additional type of snow climate, and emphasize its characteristics. Along with the field work, numerical modeling of avalanche activity has been developed and tested during the winter 2008-2009, on a weekly basis. The modeling includes topography, geomorphology and vegetation as input data, along with daily meteorological observations on air temperature, wind, cloud cover and precipitation from two meteorological stations at different altitudes. Examples from this modeling experiment will be presented together with the collected

  13. Estimation Accuracy of air Temperature and Water Vapor Amount Above Vegetation Canopy Using MODIS Satellite Data

    NASA Astrophysics Data System (ADS)

    Tomosada, M.

    2005-12-01

    Estimation accuracy of the air temperature and water vapor amount above vegetation canopy using MODIS satellite data is indicated at AGU fall meeting. The air temperature and water vapor amount which are satisfied the multilayer energy budget model from the ground surface to the atmosphere are estimated. Energy budget models are described the fluxes of sensible heat and latent heat exchange for the ground surface and the vegetated surface. Used MODIS satellite data is the vegetated surface albedo which is calculated from visible and near infrared band data, the vegetated surface temperature, NDVI (Normalized Difference Vegetation Index), LAI (Leaf Area Index). Estimation accuracy of air temperature and water vapor amount above vegetation canopy is evaluated comparing with the value which is measured on a flux research tower in Tomakomai northern forest of Japan. Meteorological parameters such as temperature, wind speed, water vapor amount, global solar radiation are measured on a flux tower from the ground to atmosphere. Well, MODIS satellite observes at day and night, and it snows in Tomakomai in winter. Therefore, estimation accuracy is evaluated dividing on at daytime, night, snowfall day, and not snowfall day. There is the investigation of the undeveloped region such as dense forest and sea in one of feature of satellite observation. Since there is almost no meteorological observatory at the undeveloped region so far, it is hard to get the meteorological parameters. Besides, it is the one of the subject of satellite observation to get the amount of physical parameter. Although the amount of physical parameter such as surface temperature and concentration of chlorophyll-a are estimated by satellite, air temperature and amount of water vapor above vegetation canopy have not been estimated by satellite. Therefore, the estimation of air temperature and water vapor amount above vegetation canopy using satellite data is significant. Further, a highly accurate

  14. Snow-Atmosphere Interaction in the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Huwald, H.; Bou-Zeid, E.; Mezzo, J.; Chamecki, M.; Parlange, M. B.; Meneveau, C.

    2005-12-01

    First results from field observations of snow-atmosphere interaction in an alpine environment near Crans-Montana, Switzerland, are presented. The measurements were taken in March and April 2005 at the "Glacier de la Plaine Morte", a seasonally snow covered, flat glacier at a site 2775 m above sea level. A surface energy budget is calculated from measurements of radiative fluxes, skin and air temperatures, humidity, and 3-D wind components from an array of 12 sonic anemometers. The effect of temporal changes in this energy budget on small scale turbulence near the surface is investigated. The high-frequency wind, temperature, and humidity data also allow the computation of the roughness height and scalar roughness of snow, used in the Monin-Obukhov similarity theory. We also look at sublimation and deposition events and the validity of various bulk transfer formulations for the computation of these quantities over a snow cover.

  15. Air temperature variation across the seed cotton dryer mixpoint

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eighteen tests were conducted in six gins in the fall of 2008 to measure air temperature variation within various heated air seed cotton drying systems with the purpose of: checking validation of recommendations by a professional engineering society and measuring air temperature variation across the...

  16. Possible Economies in Air-Conditioning by Accepting Temperature Swings.

    ERIC Educational Resources Information Center

    Loudon, A. G.; Petherbridge, P.

    Public building air conditioning systems, which use constant and varying heat and cooling loads, are compared and investigated. Experiments indicated that constant temperature controls based on outside air temperature alone were inefficient. Ventilating a building with outside air and the methods of doing so are cited as being the most economical…

  17. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  18. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  19. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  20. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  1. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  2. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  3. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  4. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  5. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  6. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  7. AIR TEMPERATURE DISTRIBUTION IN SEED COTTON DRYING SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ten tests were conducted in the fall of 2007 to measure air temperature variation within various heated air seed cotton drying systems with the purpose of: checking validation of recommendations by a professional engineering society and measuring air temperature variation across the airflow ductwork...

  8. Acoustic method for measuring air temperature and humidity in rooms

    NASA Astrophysics Data System (ADS)

    Kanev, N. G.

    2014-05-01

    A method is proposed to determine air temperature and humidity in rooms with a system of sound sources and receivers, making it possible to find the sound velocity and reverberation time. Nomograms for determining the air temperature and relative air humidity are constructed from the found sound velocity and time reverberation values. The required accuracy of measuring these parameters is estimated.

  9. Global Snow-Cover Evolution from Twenty Years of Satellite Passive Microwave Data

    USGS Publications Warehouse

    Mognard, N.M.; Kouraev, A.V.; Josberger, E.G.

    2003-01-01

    Starting in 1979 with the SMMR (Scanning Multichannel Microwave Radiometer) instrument onboard the satellite NIMBUS-7 and continuing since 1987 with the SSMI (Special Sensor Microwave Imager) instrument on board the DMSP (Defence Meteorological Satellite Program) series, more then twenty years of satellite passive microwave data are now available. This dataset has been processed to analyse the evolution of the global snow cover. This work is part of the AICSEX project from the 5th Framework Programme of the European Community. The spatio-temporal evolution of the satellite-derived yearly snow maximum extent and the timing of the spring snow melt were estimated and analysed over the Northern Hemisphere. Significant differences between the evolution of the yearly maximum snow extent in Eurasia and in North America were found. A positive correlation between the maximum yearly snow cover extent and the ENSO index was obtained. High interannual spatio-temporal variability characterises the timing of snow melt in the spring. Twenty-year trends in the timing of spring snow melt have been computed and compared with spring air temperature trends for the same period and the same area. In most parts of Eurasia and in the central and western parts of North America the tendency has been for earlier snow melt. In northeastern Canada, a large area of positive trends, where snow melt timing starts later than in the early 1980s, corresponds to a region of positive trends of spring air temperature observed over the same period.

  10. NOAA's National Snow Analyses

    NASA Astrophysics Data System (ADS)

    Carroll, T. R.; Cline, D. W.; Olheiser, C. M.; Rost, A. A.; Nilsson, A. O.; Fall, G. M.; Li, L.; Bovitz, C. T.

    2005-12-01

    NOAA's National Operational Hydrologic Remote Sensing Center (NOHRSC) routinely ingests all of the electronically available, real-time, ground-based, snow data; airborne snow water equivalent data; satellite areal extent of snow cover information; and numerical weather prediction (NWP) model forcings for the coterminous U.S. The NWP model forcings are physically downscaled from their native 13 km2 spatial resolution to a 1 km2 resolution for the CONUS. The downscaled NWP forcings drive an energy-and-mass-balance snow accumulation and ablation model at a 1 km2 spatial resolution and at a 1 hour temporal resolution for the country. The ground-based, airborne, and satellite snow observations are assimilated into the snow model's simulated state variables using a Newtonian nudging technique. The principle advantages of the assimilation technique are: (1) approximate balance is maintained in the snow model, (2) physical processes are easily accommodated in the model, and (3) asynoptic data are incorporated at the appropriate times. The snow model is reinitialized with the assimilated snow observations to generate a variety of snow products that combine to form NOAA's NOHRSC National Snow Analyses (NSA). The NOHRSC NSA incorporate all of the available information necessary and available to produce a "best estimate" of real-time snow cover conditions at 1 km2 spatial resolution and 1 hour temporal resolution for the country. The NOHRSC NSA consist of a variety of daily, operational, products that characterize real-time snowpack conditions including: snow water equivalent, snow depth, surface and internal snowpack temperatures, surface and blowing snow sublimation, and snowmelt for the CONUS. The products are generated and distributed in a variety of formats including: interactive maps, time-series, alphanumeric products (e.g., mean areal snow water equivalent on a hydrologic basin-by-basin basis), text and map discussions, map animations, and quantitative gridded products

  11. Sensitivity of Alpine Snow and Streamflow Regimes to Climate Changes

    NASA Astrophysics Data System (ADS)

    Rasouli, K.; Pomeroy, J. W.; Marks, D. G.; Bernhardt, M.

    2014-12-01

    Understanding the sensitivity of hydrological processes to climate change in alpine areas with snow dominated regimes is of paramount importance as alpine basins show both high runoff efficiency associated with the melt of the seasonal snowpack and great sensitivity of snow processes to temperature change. In this study, meteorological data measured in a selection of alpine headwaters basins including Reynolds Mountain East, Idaho, USA, Wolf Creek, Yukon in Canada, and Zugspitze Mountain, Germany with climates ranging from arctic to continental temperate were used to study the snow and streamflow sensitivity to climate change. All research sites have detailed multi-decadal meteorological and snow measurements. The Cold Regions Hydrological Modelling platform (CRHM) was used to create a model representing a typical alpine headwater basin discretized into hydrological response units with physically based representations of snow redistribution by wind, complex terrain snowmelt energetics and runoff processes in alpine tundra. The sensitivity of snow hydrology to climate change was investigated by changing air temperature and precipitation using weather generating methods based on the change factors obtained from different climate model projections for future and current periods. The basin mean and spatial variability of peak snow water equivalent, sublimation loss, duration of snow season, snowmelt rates, streamflow peak, and basin discharge were assessed under varying climate scenarios and the most sensitive hydrological mechanisms to the changes in the different alpine climates were detected. The results show that snow hydrology in colder alpine climates is more resilient to warming than that in warmer climates, but that compensatory factors to warming such as reduced blowing snow sublimation loss and reduced melt rate should also be assessed when considering climate change impacts on alpine hydrology.

  12. Rain-on-Snow Flooding and the Sensitivity of Mountain Snowcovers to Temperature, Humidity, and Phase Change in a Warming Climate

    NASA Astrophysics Data System (ADS)

    Marks, D. G.

    2015-12-01

    Devastating floods in mountain regions of the western US and Canada can result from rapid snowmelt during mid-winter rain-on-snow (ROS) events. Key components of snowmelt flooding during ROS are conditions prior to the storm, the combination of temperature, humidity and wind during the event, and the extent to which the snowcover is exposed to the wind. The critical antecedent condition is the extension of the snowcover to lower elevations. In mountain basins this significantly increases the snow-covered area (SCA) and volume of water stored in the snowcover. During ROS events the elevation of the rain/snow transition can rise, resulting in rain over large snow-covered areas. During typical conditions the mountain snowcover is generally cooled by evaporation (latent heat flux), and warmed by sensible heat flux, such that the turbulent fluxes tend to balance, and have only modest effect on the energy state of the snowcover. However, during ROS higher humidity results in condensation on the snow, increasing melt energy by 50 - 100 times such that most of the energy for snowmelt comes from the combination of sensible and latent heat exchange. If SCA is extensive and exposed to the wind, the surface water input (SWI) can be more than doubled by the addition of melt to the rain. Data indicate that as the climate warms, higher temperatures and more humid conditions during storms may result in more frequent flooding events from mountain regions.

  13. Observations of Precipitation Size and Fall Speed Characteristics within Coexisting Rain and Wet Snow

    NASA Technical Reports Server (NTRS)

    Yuter, Sandra E.; Kingsmill, David E.; Nance, Louisa B.; Loeffler-Mang, Martin

    2006-01-01

    Ground-based measurements of particle size and fall speed distributions using a Particle Size and Velocity (PARSIVEL) disdrometer are compa red among samples obtained in mixed precipitation (rain and wet snow) and rain in the Oregon Cascade Mountains and in dry snow in the Rock y Mountains of Colorado. Coexisting rain and snow particles are distinguished using a classification method based on their size and fall sp eed properties. The bimodal distribution of the particles' joint fall speed-size characteristics at air temperatures from 0.5 to 0 C suggests that wet-snow particles quickly make a transition to rain once mel ting has progressed sufficiently. As air temperatures increase to 1.5 C, the reduction in the number of very large aggregates with a diame ter > 10 mm coincides with the appearance of rain particles larger than 6 mm. In this setting. very large raindrops appear to be the result of aggregates melting with minimal breakup rather than formation by c oalescence. In contrast to dry snow and rain, the fall speed for wet snow has a much weaker correlation between increasing size and increasing fall speed. Wet snow has a larger standard deviation of fall spee d (120%-230% relative to dry snow) for a given particle size. The ave rage fall speed for observed wet-snow particles with a diameter great er than or equal to 2.4 mm is 2 m/s with a standard deviation of 0.8 m/s. The large standard deviation is likely related to the coexistence of particles of similar physical size with different percentages of melting. These results suggest that different particle sizes are not required for aggregation since wet-snow particles of the same size can have different fall speeds. Given the large standard deviation of fa ll speeds in wet snow, the collision efficiency for wet snow is likely larger than that of dry snow. For particle sizes between 1 and 10 mm in diameter within mixed precipitation, rain constituted I % of the particles by volume within the isothermal layer

  14. Deciphering influences of temperature, moisture sources, post-deposition effects and stratospheric inputs in records of stable isotopes in East Antarctic snow

    NASA Astrophysics Data System (ADS)

    Touzeau, Alexandra; Fourré, Elise; Baroni, Mélanie; Curran, Mark; Ekaykin, Alexey; Magand, Olivier; Moy, Andrew; McConnell, Joe; Landais, Amaelle

    2015-04-01

    The oxygen and deuterium isotopic composition of ice represent a prodigal source of information for the reconstruction of past climate. Their widespread use relies upon the straightforward relationship between the oxygen or deuterium isotopic composition in the snow precipitated and the inversion temperature (or the local temperature). However, between the precipitation of the snow and the solidification of ice, several mechanisms may affect the initial composition of the snow, thereby rendering the climatic signal less perceptible. During deposition or shortly after deposition, the wind may blow away and redeposit the uncompact snow, and therefore affect the chronology of the record. Various origins of the moisture source, including possible stratospheric inputs in very low accumulation sites, may also affect water isotopic composition. Finally, after deposition, the isotopic signal is also modified by diffusion of isotopes in the solid phase, local sublimation and condensation with associated fractionation, and water vapor transport between snow layers. In order to assess the effect of these mechanisms on the snow isotopic composition, we compare the results of the analysis of five snow pits from the East Antarctica plateau: two from Vostok, one from Dome C, one from S2 and one from Aurora Basin (ABN). For each snow pit, snow was sampled every three cm over a depth of about three meters. The ratios of 18O/16O, 17O/16O and D/H were determined for each sample and additional 10Be profiles were obtained for some profiles. Because the different water isotopes are affected differently by equilibrium and diffusive processes and because stratospheric inputs are expected to leave a significant signature in 10Be and 17Oexcess, the combination of the different isotopic profiles is a useful tool for inferring the origin of δ18O or δD variations in the top 3 m of the ice sheet. Using the relationships observed between δ18O, d-excess, 17O-excess and 10Be, we are able to

  15. Validation of snow characteristics and snow albedo feedback in the Canadian Regional Climate Model simulations over North America

    NASA Astrophysics Data System (ADS)

    Fang, B.; Sushama, L.; Diro, G. T.

    2015-12-01

    Snow characteristics and snow albedo feedback (SAF) over North America, as simulated by the fifth-generation Canadian Regional Climate Model (CRCM5), when driven by ERA-40/ERA-Interim, CanESM2 and MPI-ESM-LR at the lateral boundaries, are analyzed in this study. Validation of snow characteristics is performed by comparing simulations against available observations from MODIS, ISCCP and CMC. Results show that the model is able to represent the main spatial distribution of snow characteristics with some overestimation in snow mass and snow depth over the Canadian high Arctic. Some overestimation in surface albedo is also noted for the boreal region which is believed to be related to the snow unloading parameterization, as well as the overestimation of snow albedo. SAF is assessed both in seasonal and climate change contexts when possible. The strength of SAF is quantified as the amount of additional net shortwave radiation at the top of the atmosphere as surface albedo decreases in association with a 1°C increase in surface temperature. Following Qu and Hall (2007), this is expressed as the product of the variation in planetary albedo with surface albedo and the change in surface albedo for 1°C change in surface air temperature during the season, which in turn is determined by the strength of the snow cover and snowpack metamorphosis feedback loops. Analysis of the latter term in the seasonal cycle suggests that for CRCM5 simulations, the snow cover feedback loop is more dominant compared to the snowpack metamorphosis feedback loop, whereas for MODIS, the two feedback loops have more or less similar strength. Moreover, the SAF strength in the climate change context appears to be weaker than in the seasonal cycle and is sensitive to the driving GCM and the RCP scenario.

  16. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  17. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  18. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  19. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  20. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  1. Air-snow transfer of nitrate on the East Antarctic Plateau - Part 1: Isotopic evidence for a photolytically driven dynamic equilibrium in summer

    NASA Astrophysics Data System (ADS)

    Erbland, J.; Vicars, W. C.; Savarino, J.; Morin, S.; Frey, M. M.; Frosini, D.; Vince, E.; Martins, J. M. F.

    2013-07-01

    Here we report the measurement of the comprehensive isotopic composition (δ15N, Δ17O and δ18O) of nitrate at the air-snow interface at Dome C, Antarctica (DC, 75°06' S, 123°19' E), and in snow pits along a transect across the East Antarctic Ice Sheet (EAIS) between 66° S and 78° S. In most of the snow pits, nitrate loss (either by physical release or UV photolysis of nitrate) is observed and fractionation constants associated are calculated. Nitrate collected from snow pits on the plateau (snow accumulation rate below 50 kg m-2 a-1) displays average fractionation constants of (-59±10) ‰, (+2.0±1.0) ‰ and (+8.7±2.4)‰ for δ15N, Δ17O and δ18O, respectively. In contrast, snow pits sampled on the coast show distinct isotopic signatures with average fractionation constants of (-16±14) ‰, (-0.2±1.5) ‰ and (+3.1±5.8) ‰, for δ15N, Δ17O and δ18O, respectively. Our observations corroborate that photolysis (associated with a 15N / 14N fractionation constant of the order of -48 ‰ according to Frey et al. (2009) is the dominant nitrate loss process on the East Antarctic Plateau, while on the coast the loss is less pronounced and could involve both physical release and photochemical processes. Year-round isotopic measurements at DC show a~close relationship between the Δ17O of atmospheric nitrate and Δ17O of nitrate in skin layer snow, suggesting a photolytically driven isotopic equilibrium imposed by nitrate recycling at this interface. Atmospheric nitrate deposition may lead to fractionation of the nitrogen isotopes and explain the almost constant shift of the order of 25 ‰ between the δ15N values in the atmospheric and skin layer nitrate at DC. Asymptotic δ15N(NO3-) values calculated for each snow pit are found to be correlated with the inverse of the snow accumulation rate (ln(δ15N as. + 1) = (5.76±0.47) ċ (kg m-2 a-1/ A) + (0.01±0.02)), confirming the strong relationship between the snow accumulation rate and the degree of isotopic

  2. Snow Art

    ERIC Educational Resources Information Center

    Kraus, Nicole

    2012-01-01

    It was nearing the end of a very long, rough winter with a lot of snow and too little time to play outside. The snow had formed small hills and valleys over the bushes and this was at the perfect height for the students to paint. In this article, the author describes how her transitional first-grade students created snow art paintings. (Contains 1…

  3. Snow cover and ground surface temperature on a talus slope affected by mass movements. Veleta cirque, Sierra Nevada, Spain

    NASA Astrophysics Data System (ADS)

    Tanarro, L. M.; Palacios, D.; Gómez-Ortiz, A.; Salvador-Franch, F.

    2012-04-01

    This paper analyses the thermal ground behaviour on an alpine talus slope located at the foot of the north wall of the glacial cirque on the Pico del Veleta (3398 m, 37°03'21''N, 3°21'57''W, MAAT: -0,4°C) in Sierra Nevada, SE Spain. There are frequent mass movements on this talus slope, particularly in its central section, caused by the abundant presence of fine-grained sediment and by the water from snowmelt and/or ice degradation in the ground or permafrost (Gómez et al., 2003). To determine the snowmelt pattern and ocurrence of permafrost, a continuous ground surface temperature was kept by installing 6 mini-loggers (HOBO Pendant) along the descending profile of the central talus, which is 170 m long with altitudes ranging from 3180 m at the higher end to 3085 m at the lower end. A thermal borehole was also installed at a depth of 2 m at the base of the slope on an active rock glacier. The results obtained for the period October 2008 - September 2009 show that, in contrast to alpine talus slopes (Luetschg et. al., 2004; Lambiel and Pieracci, 2008), the upper part of the slope is characterized by mean annual ground surface temperatures (MAGST) lower than at the base of the talus, possibly due to the effect of the shadow of the cirque wall. The MAGST oscillate between 0.592°C at the station near the slope apex (S2) and 1.836°C at the station near the base (S5). In winter-spring, when the talus slope is covered with snow, the GST are stabilized at all stations between mid-October and early November. The minimum GST, which express the BTS conditions, oscillate between 0.232 and 0.01°C, depending on the month, with lowest values recorded during the month of April. Only one station (S3, mid-slope) recorded negative values (max. value : - 0.549°C in December and - 0.211 in April ). In summer, the snow disappears fairly quickly between mid- and late July on the intermediate stretch of the talus slope (S3, S4, S6), where the majority of the flows detected occur

  4. Siberia snow depth climatology derived from SSM/I data using a combined dynamic and static algorithm

    USGS Publications Warehouse

    Grippa, M.; Mognard, N.; Le, Toan T.; Josberger, E.G.

    2004-01-01

    One of the major challenges in determining snow depth (SD) from passive microwave measurements is to take into account the spatiotemporal variations of the snow grain size. Static algorithms based on a constant snow grain size cannot provide accurate estimates of snow pack thickness, particularly over large regions where the snow pack is subjected to big spatial temperature variations. A recent dynamic algorithm that accounts for the dependence of the microwave scattering on the snow grain size has been developed to estimate snow depth from the Special Sensor Microwave/Imager (SSM/I) over the Northern Great Plains (NGP) in the US. In this paper, we develop a combined dynamic and static algorithm to estimate snow depth from 13 years of SSM/I observations over Central Siberia. This region is characterised by extremely cold surface air temperatures and by the presence of permafrost that significantly affects the ground temperature. The dynamic algorithm is implemented to take into account these effects and it yields accurate snow depths early in the winter, when thin snowpacks combine with cold air temperatures to generate rapid crystal growth. However, it is not applicable later in the winter when the grain size growth slows. Combining the dynamic algorithm to a static algorithm, with a temporally constant but spatially varying coefficient, we obtain reasonable snow depth estimates throughout the entire snow season. Validation is carried out by comparing the satellite snow depth monthly averages to monthly climatological data. We show that the location of the snow depth maxima and minima is improved when applying the combined algorithm, since its dynamic portion explicitly incorporate the thermal gradient through the snowpack. The results obtained are presented and evaluated for five different vegetation zones of Central Siberia. Comparison with in situ measurements is also shown and discussed. ?? 2004 Elsevier Inc. All rights reserved.

  5. Detection of ice crust formation on snow with satellite data

    NASA Astrophysics Data System (ADS)

    Bartsch, Annett; Bulygina, Olga N.; Kumpula, Timo; Forbes, Bruce; Stammler, Florian

    2010-05-01

    Short term thawing of the snow surface and subsequent refreeze can lead to the formation of ice crusts. These events are related to specific meteorological conditions such us rain-on-snow events and/or temporary increase of air temperature above zero degree Celsius. The structure change in the snow pack has adverse effect especially on wild life and also the local community related to reindeer herding. Active microwave satellite data can be used to monitor changes of snow related to thawing. So far they have been mostly employed for spring thaw detection. Coarse spatial resolution sensors such as scatterometer feature short revisit intervals. Seawinds QuikScat (Ku-band, 25km, 1999-2009) acquired data several times per day at high latitudes. This allows precise detection of the timing of thaw events. Also the change of structure in the snow itself impacts the backscatter. Values increase significantly. A method has been developed to monitor these events at high latitudes (>60°N) on circumpolar scale. Validation is carried out based on air temperature records and snow course data over Northern Eurasia. Events during midwinter of the last nine years (November - February 2000/1 - 2008/9) have been frequent in northern Europe, European Russia and Alaska. They have occurred up to once a year in central Siberia, the Russian Far East and most of northern Canada. Monitoring is important as such events are discussed in relation to climate change especially over Northern Eurasia.

  6. Experimental measurement and modeling of snow accumulation and snowmelt in a mountain microcatchment

    NASA Astrophysics Data System (ADS)

    Danko, Michal; Krajčí, Pavel; Hlavčo, Jozef; Kostka, Zdeněk; Holko, Ladislav

    2016-04-01

    Fieldwork is a very useful source of data in all geosciences. This naturally applies also to the snow hydrology. Snow accumulation and snowmelt are spatially very heterogeneous especially in non-forested, mountain environments. Direct field measurements provide the most accurate information about it. Quantification and understanding of processes, that cause these spatial differences are crucial in prediction and modelling of runoff volumes in spring snowmelt period. This study presents possibilities of detailed measurement and modeling of snow cover characteristics in a mountain experimental microcatchment located in northern part of Slovakia in Western Tatra mountains. Catchment area is 0.059 km2 and mean altitude is 1500 m a.s.l. Measurement network consists of 27 snow poles, 3 small snow lysimeters, discharge measurement device and standard automatic weather station. Snow depth and snow water equivalent (SWE) were measured twice a month near the snow poles. These measurements were used to estimate spatial differences in accumulation of SWE. Snowmelt outflow was measured by small snow lysimeters. Measurements were performed in winter 2014/2015. Snow water equivalent variability was very high in such a small area. Differences between particular measuring points reached 600 mm in time of maximum SWE. The results indicated good performance of a snow lysimeter in case of snowmelt timing identification. Increase of snowmelt measured by the snow lysimeter had the same timing as increase in discharge at catchment's outlet and the same timing as the increase in air temperature above the freezing point. Measured data were afterwards used in distributed rainfall-runoff model MIKE-SHE. Several methods were used for spatial distribution of precipitation and snow water equivalent. The model was able to simulate snow water equivalent and snowmelt timing in daily step reasonably well. Simulated discharges were slightly overestimated in later spring.

  7. Impact of climate change on snow distribution in Japan estimated using data from the remote weather stations (AMeDAS) and Spot VGT

    NASA Astrophysics Data System (ADS)

    Kominami, Y.; Asaoka, Y.; Tsuyama, I.; Tanaka, N.

    2010-12-01

    Change of the amount of snow by climate change is possibly remarkable in Japan, because air temperature is relatively high as snowy area in the world. And the change of the amount of snow cover highly depends on the supply form of precipitation (rain or snow) in winter corresponding to the change of the temperature in addition to the change of precipitation. And vegetation distribution of Japan is highly affected by snow conditions (snow duration and snow accumulation). To evaluate the change of snow condition in Japan climate change, daily change of SWE of 1km mesh was estimated using daily precipitation and air temperature of AMeDAS(Automated Meteorological Data Acquisition System) data. And using this model, changes of SWE and snow cover period were estimated in condition of global warming. Daily air temperature and precipitation on 1km mesh were estimated over all of Japan by interpolation of the AMeDAS data. AMeDAS is a system that observes the temperature and precipitation, etc. per hour automatically in about 1,300 places (about 17km spacing) in Japan. And daily change of SWE of each point was calculated using degree-day method and threshold temperature for the distinction between snow and rain using these data. We used precipitation and air temperature data of AMeDAS for 23 years from 1980 to 2002. Snow melt coefficient and elevation dependency of winter precipitation of each grid were optimized by snow duration estimated using satellite data (S3 index of Spot VGT) from 1990 to 2000 To estimate the change in the snow accumulation for the years from 2031 to 2051 and from 2081 to 2100, we used the climate change scenario of a high-resolution Regional Climate Model with a 20-km mesh size (RCM20) developed at the Meteorological Research Institute based on the Special Report for Emission Scenario (SRES)-A2. Estimated snow duration was evaluated in 10 points of mountainous snow measurement stations. Averaged error was about 4 days from 1980 to 1999. And estimated

  8. Simulation of air and ground temperatures in PMIP3/CMIP5 last millennium simulations: implications for climate reconstructions from borehole temperature profiles

    NASA Astrophysics Data System (ADS)

    García-García, A.; Cuesta-Valero, F. J.; Beltrami, H.; Smerdon, J. E.

    2016-04-01

    For climate models to simulate the continental energy storage of the Earth’s energy budget they must capture the processes that partition energy across the land-atmosphere boundary. We evaluate herein the thermal consequences of these processes as simulated by models in the third phase of the paleoclimate modelling intercomparison project and the fifth phase of the coupled model intercomparison project (PMIP3/CMIP5). We examine air and ground temperature tracking at decadal and centennial time-scales within PMIP3 last-millennium simulations concatenated to historical simulations from the CMIP5 archive. We find a strong coupling between air and ground temperatures during the summer from 850 to 2005 CE. During the winter, the insulating effect of snow and latent heat exchanges produce a decoupling between the two temperatures in the northern high latitudes. Additionally, we use the simulated ground surface temperatures as an upper boundary condition to drive a one-dimensional conductive model in order to derive synthetic temperature-depth profiles for each PMIP3/CMIP5 simulation. Inversion of these subsurface profiles yields temperature trends that retain the low-frequency variations in surface air temperatures over the last millennium for all the PMIP3/CMIP5 simulations regardless of the presence of seasonal decoupling in the simulations. These results demonstrate the robustness of surface temperature reconstructions from terrestrial borehole data and their interpretation as indicators of past surface air temperature trends and continental energy storage.

  9. Atmospheric and forest decoupling from AMSR-E passive microwave brightness temperature observations in snow-covered regions over North America

    NASA Astrophysics Data System (ADS)

    Xue, Y.; Forman, B. A.

    2014-12-01

    Remotely-sensed measurements from space-borne instrumentation have been extensively utilized in order to quantify snow water equivalent (SWE) across the globe, primarily in the form of SWE retrievals derived from passive microwave (PMW) brightness temperature (Tb) measurements. However, the application of these SWE retrieval products is largely limited by wet snow, deep snow, overlying vegetation, depth hoar, ice crusts, sub-grid scale lake ice, snow stratigraphy, and snow morphology. Alternatively, PMW Tb can be integrated directly (i.e., without the need of a SWE retrieval algorithm) into a land surface model as part of a Tb data assimilation (DA) framework. However, it is worthwhile to first decouple non-SWE related signals from the Tb observations prior to assimilation of the SWE-related Tb information. This study addresses two significant sources of SWE-related uncertainties using the Advanced Microwave Scanning Radiometer (AMSR-E) PMW Tb observations. Namely, atmospheric and overlying forest effects are decoupled using relatively simple radiative transfer models. Comparisons against independent Tb measurements collected during airborne PMW Tb surveys highlight the effectiveness of AMSR-E Tb measurements decoupling with the eventual goal of enhancing estimated SWE as part of a PMW Tb data assimilation framework into an advanced land surface model.

  10. Are We Biologically Safe with Snow Precipitation? A Case Study in Beijing

    PubMed Central

    Shen, Fangxia; Yao, Maosheng

    2013-01-01

    In this study, the bacterial and fungal abundances, diversities, conductance levels as well as total organic carbon (TOC) were investigated in the snow samples collected from five different snow occurrences in Beijing between January and March, 2010. The collected snow samples were melted and cultured at three different temperatures (4, 26 and 37°C). The culturable bacterial concentrations were manually counted and the resulting colony forming units (CFUs) at 26°C were further studied using V3 region of 16 S rRNA gene-targeted polymerase chain reaction -denaturing gradient gel electrophoresis (PCR-DGGE). The clone library was constructed after the liquid culturing of snow samples at 26°C. And microscopic method was employed to investigate the fungal diversity in the samples. In addition, outdoor air samples were also collected using mixed cellulose ester (MCE) filters and compared with snow samples with respect to described characteristics. The results revealed that snow samples had bacterial concentrations as much as 16000 CFU/ml for those cultured at 26°C, and the conductance levels ranged from 5.6×10−6 to 2.4×10−5 S. PCR-DGGE, sequencing and microscopic analysis revealed remarkable bacterial and fungal diversity differences between the snow samples and the outdoor air samples. In addition, DGGE banding profiles for the snow samples collected were also shown distinctly different from one another. Absent from the outdoor air, certain human, plant, and insect fungal pathogens were found in the snow samples. By calculation, culturable bacteria accounted for an average of 3.38% (±1.96%) of TOC for the snow samples, and 0.01% for that of outdoor air samples. The results here suggest that snow precipitations are important sources of fungal pathogens and ice nucleators, thus could affect local climate, human health and agriculture security. PMID:23762327

  11. Using MODIS land surface temperatures and the Crocus snow model to understand the warm bias of ERA-Interim reanalyses at the surface in Antarctica

    NASA Astrophysics Data System (ADS)

    Fréville, H.; Brun, E.; Picard, G.; Tatarinova, N.; Arnaud, L.; Lanconelli, C.; Reijmer, C.; van den Broeke, M.

    2014-07-01

    Moderate-Resolution Imaging spectroradiometer (MODIS) land surface temperatures in Antarctica were processed in order to produce a gridded data set at 25 km resolution, spanning the period 2000-2011 at an hourly time step. The Aqua and Terra orbits and MODIS swath width, combined with frequent clear-sky conditions, lead to very high availability of quality-controlled observations: on average, hourly data are available 14 h per day at the grid points around the South Pole and more than 9 h over a large area of the Antarctic Plateau. Processed MODIS land surface temperatures, referred to hereinafter as MODIS Ts values, were compared with in situ hourly measurements of surface temperature collected over the entirety of the year 2009 by seven stations from the Baseline Surface Radiation Network (BSRN) and automatic weather stations (AWSs). In spite of an occasional failure in the detection of clouds, MODIS Ts values exhibit a good performance, with a bias ranging from -1.8 to 0.1 °C and errors ranging from 2.2 to 4.8 °C root mean square at the five stations located on the plateau. These results show that MODIS Ts values can be used as a precise and accurate reference to test other surface temperature data sets. Here, we evaluate the performance of surface temperature in the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis known as ERA-Interim reanalysis. During conditions detected as cloud free by MODIS, ERA-Interim shows a widespread warm bias in Antarctica in every season, ranging from +3 to +6 °C on the plateau. This confirms a recent study which showed that the largest discrepancies in 2 m air temperature between ERA-Interim and the global temperature data set HadCRUT4 compiled by the Met Office Hadley Centre and the University of East Anglia's Climatic Research Unit occur in Antarctica. A comparison with in situ surface temperature shows that this bias is not strictly limited to clear-sky conditions. A detailed comparison with stand

  12. Air-snow transfer of nitrate on the East Antarctic Plateau - Part 1: Isotopic evidence for a photolytically driven dynamic equilibrium

    NASA Astrophysics Data System (ADS)

    Erbland, J.; Vicars, W. C.; Savarino, J.; Morin, S.; Frey, M. M.; Frosini, D.; Vince, E.; Martins, J. M. F.

    2012-10-01

    Here we report the measurement of the comprehensive isotopic composition (δ15N, Δ17O and δ18O) of nitrate at the air-snow interface at Dome C, Antarctica (DC, 75° 06' S, 123° 19' E) and in snow pits along a transect across the East Antarctic Ice Sheet (EAIS) between 66° S and 78° S. For each of the East Antarctic snow pits in most of which nitrate loss is observed, we derive apparent fractionation constants associated with this loss as well as asymptotic values of nitrate concentration and isotopic ratios below the photic zone. Nitrate collected from snow pits on the plateau have average apparent fractionation constants of (-59±10)‰, (+2.0±1.0)‰ and (+8.7±2.4)‰, for δ15N, Δ17O and δ18O, respectively. In contrast, snow pits sampled on the coast show distinct isotopic signatures with average apparent fractionation constants of (-16±14)‰, (-0.2±1.5)‰ and (+3.1±5.8)‰, for δ15N, Δ17O and δ18O, respectively. From a lab experiment carried out at DC in parallel to the field investigations, we find that the 15N/14N fractionation associated with the physical release of nitrate is (-8.5±2.5)‰, a value significantly different from the modelled estimate previously found for photolysis (-48‰, Frey et al., 2009) when assuming a Rayleigh-type process. Our observations corroborate that photolysis is the dominant nitrate loss process on the East Antarctic Plateau, while on the coast the loss is less pronounced and could involve both physical release and photochemical processes. Year-round isotopic measurements at DC show a close relationship between the Δ17O of atmospheric nitrate and Δ17O of nitrate in skin layer snow, suggesting a photolytically-driven isotopic equilibrium imposed by nitrate recycling at this interface. The 3-4 weeks shift observed for nitrate concentration in these two compartments may be explained by the different sizes of the nitrate reservoirs and by deposition from the atmosphere to the snow. Atmospheric nitrate

  13. Microwave emission from an irregular snow layer

    NASA Technical Reports Server (NTRS)

    Eom, H. J.; Lee, K. K.; Fung, A. K.

    1983-01-01

    Emission from an irregular snow layer is modeled by a layer of Mie scatterers using the radiative transfer method. Comparisons are made with measurements showing snow wetness effects and rough air-snow boundary effects. For convenience of reference, theoretical model behavior is also illustrated.

  14. A consideration on the electric field formed by blowing snow particles

    NASA Astrophysics Data System (ADS)

    Omiya, Satoshi; Sato, Atsushi

    2013-04-01

    Fluctuations of the atmospheric electric field strength have been reported during blowing snow events. A primary factor of this phenomenon is the electrification of the blowing snow particles. Electric force applied to the blowing snow particles may be a contributing factor in the formation of snow drifts and snow cornices and changing particles' trajectory motion. These can cause natural disaster such as an avalanche and visibility deterioration. Therefore, charging phenomenon of the blowing snow particles is an important issue in terms of not only precise understanding of the particle motion but disaster prevention. The purpose of this study was to clarify the fluctuation characteristics of the electric field. In previous studies, some numerical models have been proposed; however, these models did not consider the dependency of the particle charges on the particle diameter or the height dependency of the horizontal mass flux. Taking into account those dependencies, we estimated the vertical electric field distribution. In this study, an experimental equation (Omiya et al., 2011), which can estimate the individual particle charge from the particle diameter and the air temperature, was used. In addition, the approximation equations of the vertical distribution of wind speed, the horizontal mass flux, and the average particle diameter were also used. A hot-wire anemometer was used to measure the wind speed. A snow particle counter (SPC) was used to measure the horizontal mass flux and the particle diameter distribution. This experiment was conducted in a cold wind tunnel (Ice and Snow Research Center, NIED, JAPAN) at an air temperature of -10 degree Celsius. In this calculation, for simplicity, some assumptions were considered; 1) The particle diameter and the particle number density are horizontally constant and uniform. (The electric field formed by the blowing snow particles is uniform horizontally.) 2) All the blowing snow particles are electrified negatively

  15. Northern-Hemisphere snow cover patterns and formation conditions in winter 2007 and 2012

    NASA Astrophysics Data System (ADS)

    Cui, Hongyan; Qiao, Fangli; Shu, Qi; Yu, Long

    2016-06-01

    The Arctic sea ice minimum records appeared in the Septembers of 2007 and 2012, followed by high snow cover areas in the Northern Hemisphere winters. The snow cover distributions show different spatial patterns in these two years: increased snow cover in Central Asia and Central North America in 2007, while increased snow cover in East Asia and northwestern Europe in 2012. The high snow cover anomaly shifted to higher latitudes in winter of 2012 compared to 2007. It is noticed that the snow cover had positive anomaly in 2007 and 2012 with the following conditions: the negative geopotential height and the related cyclonic wind anomaly were favorable for upwelling, and, with the above conditions, the low troposphere and surface air temperature anomaly and water vapor anomaly were favorable for the formation and maintenance of snowfalls. The negative geopotential height, cyclonic wind and low air temperature conditions were satisfied in different locations in 2007 and 2012, resulting in different spatial snow cover patterns. The cross section of lower air temperature move to higher latitudes in winter of 2012 compared to 2007.

  16. Estimating Snow Water Equivalent in the Swedish mountains by scaling snow depth measurements based on in situ data and local topography using passive and active remote sensing

    NASA Astrophysics Data System (ADS)

    Ingvander, Susanne; Johansson, Cecilia; Brandel, Malin; Brown, Ian

    2014-05-01

    Estimating the snow water equivalent (SWE) of the seasonal snow pack in the Swedish mountains is key information for the prediction of spring flood rates and the contribution to water reservoirs in Hydro-power production. The snow pack properties determining the SWE (snow depth and snow density) show spatial variations caused by synoptic scale weather patterns (air temperature gradients, wind and precipitation patterns) topography and vegetation. By establishing the relationship between accumulation patterns and physical parameters in the landscape a model of the spatial organization of the snow pack and its change over the season can be determined. By identifying the frequency and amplitude of topography in the Swedish mountain regions and by measuring snow accumulation in these regions we can increase the accuracy of the estimation of SWE. By using multiple parameters sampled in the snow pack from four sites in the Swedish mountains we quantify the local variability of SWE. This information will then be up-scaled to local coverage based on interpolation weighted on topography and vegetation. By validation of satellite imagery and existing snow cover products the information can be up-scaled from high-resolution field data to regional scale covering the Swedish mountain range in order to derive new satellite algorithms.

  17. Multi-Scale Brightness Temperatures Over Snow Covered Northern Boreal and Tundra Environments: A Comparison of Results From Canada and Finland

    NASA Astrophysics Data System (ADS)

    Derksen, C.; Lemmetyinen, J.; Pulliainen, J.; Strapp, W.; Walker, A.; Hallikainen, M.

    2006-12-01

    The winter season land cover in Finland and large portions of northern Canada are very similar: a latitudinal evolution from closed canopy forest to open canopy forest to open tundra, all with a persistent snow cover. It is similarly important to both nations to retrieve timely and spatially continuous information on snow water equivalent (SWE) for issues such as flood forecasting and reservoir management for hydropower generation. In both countries, satellite passive microwave data are utilized to provide operational information on snow depth and SWE throughout the snow cover season. Airborne passive microwave surveys conducted independently across Finland and western Canada have provided the opportunity to assess the level of similarity in snowpack physical properties and brightness temperature response in these two countries. In Canada, flights occurred across the Northwest Territories (April 2005) and northern Manitoba (March 2006). Environment Canada radiometers (6.9, 19, 37, and 89 GHz) were mounted on the National Research Council Twin Otter aircraft. Long transect flight lines were flown from southern to northern Finland in March 2005 and 2006, with the Helsinki University of Technology Radiometer system (HUTRAD; 6.8, 10.7, 18.7, 23.8, 36.5, 94 GHz) mounted on a SC-7 Skyvan aircraft. Detailed surface snow cover measurements (SWE, depth, density, stratigraphy, grain size) were acquired coincidentally to all flights in both countries. A primary objective of these campaigns was to determine the influence of sub-satellite scale heterogeneity on brightness temperatures. Because comparable forest inventory datasets were not available in both countries, forest transmissivity estimates were produced from MODIS imagery in order to examine vegetation effects. A reduction in 37V-19V brightness temperature difference with decreased forest transmissivity was consistent in both datasets, and clearly illustrated the impact of forest vegetation density on brightness

  18. MODIS Snow and Ice Production

    NASA Technical Reports Server (NTRS)

    Hall, Dorthoy K.; Hoser, Paul (Technical Monitor)

    2002-01-01

    Daily, global snow cover maps, and sea ice cover and sea ice surface temperature (IST) maps are derived from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS), are available at no cost through the National Snow and Ice Data Center (NSIDC). Included on this CD-ROM are samples of the MODIS snow and ice products. In addition, an animation, done by the Scientific Visualization studio at Goddard Space Flight Center, is also included.

  19. A Comparison of Sea Ice Type, Sea Ice Temperature, and Snow Thickness Distributions in the Arctic Seasonal Ice Zones with the DMSP SSM/I

    NASA Technical Reports Server (NTRS)

    St.Germain, Karen; Cavalieri, Donald J.; Markus, Thorsten

    1997-01-01

    Global climate studies have shown that sea ice is a critical component in the global climate system through its effect on the ocean and atmosphere, and on the earth's radiation balance. Polar energy studies have further shown that the distribution of thin ice and open water largely controls the distribution of surface heat exchange between the ocean and atmosphere within the winter Arctic ice pack. The thickness of the ice, the depth of snow on the ice, and the temperature profile of the snow/ice composite are all important parameters in calculating surface heat fluxes. In recent years, researchers have used various combinations of DMSP SSMI channels to independently estimate the thin ice type (which is related to ice thickness), the thin ice temperature, and the depth of snow on the ice. In each case validation efforts provided encouraging results, but taken individually each algorithm gives only one piece of the information necessary to compute the energy fluxes through the ice and snow. In this paper we present a comparison of the results from each of these algorithms to provide a more comprehensive picture of the seasonal ice zone using passive microwave observations.

  20. Modeling Impacts On and Feedbacks Among Surface Energy and Water Budgets Due to Aerosols-In-Snow Across North America

    NASA Astrophysics Data System (ADS)

    Oaida, C. M.; Xue, Y.; Chin, M.; Flanner, M.; De Sales, F.; Painter, T. H.

    2014-12-01

    Snow albedo is known to have a significant impact on energy and water budgets by modulating land-atmosphere flux exchanges. In recent decades, anthropogenic activities that cause dust and soot emission and deposition on snow-covered areas have lead to the alteration of snow albedo. Our study aims to investigate and quantitatively assess the impact of aerosols-in-snow on surface energy and water budgets at a local and regional scale using a recently enhanced regional climate model that has physically based snow processes, including aerosols in snow. We employ NCAR's WRF-ARW model, which we have previously coupled with a land surface model, Simplified Simple Biosphere version 3 (SSiB-3). We improve the original WRF/SSiB-3 framework to include a snow-radiative transfer model, Snow, Ice, and Aerosol Radiative (SNICAR) model, which considers the effects of snow grain size and aerosols-in-snow on snow albedo evolution. Furthermore, the modified WRF/SSiB-3 can now account for the deposition and tracking of aerosols in snow. The model is run for 10 continuous years (2000-2009) over North America under two scenarios: (1) no aerosol deposition in snow, and (2) with GOCART dust, black carbon, and organic carbon surface deposition in snow. By comparing the two cases, we can investigate the impact of aerosols-in-snow. We examine the changes in surface energy balance, such as albedo, surface net solar radiation (radiative forcing), and surface air and skin temperature, and how these might interact with, and lead to, changes in the hydrologic cycle, including SWE, runoff, evapotranspiration and soil moisture. We investigate the mechanisms and feedbacks that might contribute to the changes seen across select regions of North America, which are potentially a result of both local and remote effects.

  1. Modeling 2 m air temperatures over mountain glaciers: Exploring the influence of katabatic cooling and external warming

    NASA Astrophysics Data System (ADS)

    Ayala, A.; Pellicciotti, F.; Shea, J. M.

    2015-04-01

    Air temperature is one of the most relevant input variables for snow and ice melt calculations. However, local meteorological conditions, complex topography, and logistical concerns in glacierized regions make the measuring and modeling of air temperature a difficult task. In this study, we investigate the spatial distribution of 2 m air temperature over mountain glaciers and propose a modification to an existing model to improve its representation. Spatially distributed meteorological data from Haut Glacier d'Arolla (Switzerland), Place (Canada), and Juncal Norte (Chile) Glaciers are used to examine approximate flow line temperatures during their respective ablation seasons. During warm conditions (off-glacier temperatures well above 0°C), observed air temperatures in the upper reaches of Place Glacier and Haut Glacier d'Arolla decrease down glacier along the approximate flow line. At Juncal Norte and Haut Glacier d'Arolla, an increase in air temperature is observed over the glacier tongue. While the temperature behavior over the upper part can be explained by the cooling effect of the glacier surface, the temperature increase over the glacier tongue may be caused by several processes induced by the surrounding warm atmosphere. In order to capture the latter effect, we add an additional term to the Greuell and Böhm (GB) thermodynamic glacier wind model. For high off-glacier temperatures, the modified GB model reduces root-mean-square error up to 32% and provides a new approach for distributing air temperature over mountain glaciers as a function of off-glacier temperatures and approximate glacier flow lines.

  2. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

  3. Ecohydrological and Topographical Controls on Soil Moisture and Soil Temperature for a Snow-dominated Watershed in Pacific Northwest of North America

    NASA Astrophysics Data System (ADS)

    Chatanantavet, P.; Maneta, M. P.; Wilcox, A. C.; Silverman, N. L.

    2014-12-01

    In mountainous, snow-dominated watersheds, the relative influence of and interactions among factors controlling the spatio-temporal distributions of soil moisture and soil temperature, including slope, elevation, precipitation magnitude and type, incoming solar radiation, and vegetation, are poorly understood at the watershed scale. We investigated these processes by using the Weather Research and Forecasting model to dynamically downscale the Global Forecast System model to a 4 km resolution for western Montana for years 2000-2006. We used the resulting regional climate data to force a physics-based ecohydrologic model, ECH2O, over the Bitterroot River basin (6,500 km2). The model was run at daily time steps in a 250-m resolution grid and was calibrated against measured streamflow and snow water equivalent, as well as satellite-derived snow covered distribution, gross primary production, evapotranspiration, leaf area index, and land-surface temperature. Soil moisture, soil temperature, runoff, and other ecohydrologic variables were simulated. We focus on analyzing the sensitivity of soil moisture and soil temperature to elevation by studying soil moisture-temperature curves for six elevation intervals spanning the elevation range of ~ 2 km. Results show that as elevation increases, the ranges of variation for depth-averaged soil moisture and soil temperature throughout the year evolve differently. A negative correlation between soil temperature and soil moisture is apparent at all elevations, being stronger in the valley bottom and at low altitudes. The spatial variability of soil moisture and soil temperature increases from the valley bottom toward low and moderate elevations due to more transient and complex patterns of snow cover. A stronger hysteresis between these two variables was also detected as elevation increases with two loops, one corresponding to late summer and fall precipitation and the other to the onset of spring snowmelt. The soil moisture-temperature

  4. Simulation of Air and Ground Temperatures in PMIP3/CMIP5 Last Millennium Simulations: Implications for Climate Reconstructions from Borehole Temperature Profiles

    NASA Astrophysics Data System (ADS)

    Beltrami, Hugo; García-García, Almudena; José Cuesta-Valero, Francisco; Smerdon, Jason

    2016-04-01

    For General Circulation Models (GCMs) to simulate the continental energy storage of the Earth's energy budget it is crucial that they correctly capture the processes that partition energy across the land-atmosphere boundary. We evaluate herein the characteristics of these processes as simulated by models in the third phase of the Paleoclimate Modelling Intercomparison Project and the fifth phase of the Coupled Model Intercomparison Project (PMIP3/CMIP5). We examine the seasonal differences between air and ground temperatures within PMIP3 last-millennium simulations concatenated with historical simulations from the CMIP5 archive. We find a strong air-ground coupling during the summer from 850 to 2000 CE. During the winter, the insulating effect of snow and latent heat exchanges produce a decoupling between air and ground temperatures in the northern high latitudes. Additionally, we use the simulated temperature trends as an upper boundary condition to force a one-dimensional conductive model to derive synthetic temperature-depth profiles for each PMIP3/CMIP5 simulation. The inversions of these subsurface profiles yield temperature trends that retain the surface temperature variations of the last millennium for all the PMIP3/CMIP5 simulations. These results support the use of underground temperatures to reconstruct past changes in ground surface temperature and to estimate the continental energy storage.

  5. Are there evidences of altitudinal effects of air temperature trends in the European Alps 1820-2013?

    NASA Astrophysics Data System (ADS)

    Schoener, W.; Auer, I.; Chimani, B.; Garnekind, M.; Haslinger, K.

    2013-12-01

    We use the HISTALP data set (www.zamg.ac.at/histalp) in order to assess the elevation dependency of air temperature trends within the European Alps. The evidence of altitudinal effects of the climate warming (with higher sensitivity of high mountain regions to warming) is a key statement, or at least key hypothesis, in many studies. The high relevance of such statement resp. hypothesis is obvious if one consider the impacts resulting from such fact, such as snow- and glacier melting and related effects for mountain hydrology. The HISTALP data set stands out with respect to its series lengths and its high level of homogenisation. Interestingly, the HISTALP temperature data show no clear altitudinal dependency of warming or cooling trends within the period 1820-2013. Additionally, a rather homogenous temporal trend could be observed within the entire Greater Alpine Region (GAR). Because HISTALP include also air pressure and vapour pressure series, we could compare our measured air temperatures with mean-column air temperatures, computed by the barometric formula, which were derived from the independently measured air pressure data (using vapour pressure to account for the atmospheric water content) at low resp. high elevations. Computed mean column temperatures are in good agreement with observed temperatures, indicating generally homogenous temporal temperature trend behaviour at different elevations. Our finding contradicts several results from climate modelling attempts and also other studies investigating Alpine temperature trends. We conclude that, whereas modelling results are still limited in the assessment of altitudinal effect of temperature trends from missing atmospheric processes captured by the models, the difference of the trend behaviour compared to other analyses of instrumental air temperatures comes from the seasonal base taken as the basis for trend estimation. It appears that opposite trend in spring and autumn for the period 1980

  6. The impact of spring subsurface soil temperature and snow anomaly in the Western U.S. on Southern U.S. summer precipitation and the Texas drought 2011

    NASA Astrophysics Data System (ADS)

    Xue, Y.; Vasic, R.; Li, S.; Oaida, C. M.; De Sales, F.; Robinson, D. A.; Janjic, Z.; Liu, Y.; Chu, P. C.

    2012-12-01

    The impact of spring subsurface soil temperature and snow anomaly in the Western U.S. on Southern U.S. summer precipitation and the Texas drought 2011 Yongkang Xue1,2, Ratko Vasic3, Suosuo Li1, Catalina Oaida2, David Robinson4, Fernando De Sales1, Zavisa Janjic3, Y. M. Liu5, and Peter C. Chu6 Abstract The observational evidence has indicated that the conditions with heavy snow cover and cold subsurface soil temperature (SUBT) in the western U.S. in the spring have high probably to associate with drier condition in southern U.S., including Texas. Based on these observed based associations, this study explores the impact of spring SUBT and snow anomaly in the Western U.S. on southern U.S. summer precipitation, especially the Texas Drought 2011, and possible mechanisms using two regional climate models (RCM) and a general circulation model (GCM). The GCM produces the lateral boundary condition (LBC) for the RCMs. The study has found that the snow effect is greatly enhanced though the SUBT anomaly memory. In the first experiment, two initial SUBT conditions (one cold and another warm) on May 1st were assigned for the GCM runs and the corresponding RCM runs, to explore the SUBT effect. The results suggest that antecedent May 1st warm (cold) initial SUBT in the Western U.S. contributes positive (negative) June precipitation over the southern U.S. and less (more) precipitation to the north, consistent with the observed anomalies between a year with a warm spring and a year with a cold spring in the Western U.S. The anomalous cyclone induced by the surface heating due to SUBT anomaly propagated eastward through Rossby waves in westerly mean flow. In addition, the steering flow also contributed to the dissipation of perturbation in the northeastern U.S. and its enhancement in southeastern U.S. However, these results were obtained only when the RCM model run was driven by the corresponding GCM run. When the same reanalysis data were applied for both (cold and warm initial

  7. Solar Eclipse Effect on Shelter Air Temperature

    NASA Technical Reports Server (NTRS)

    Segal, M.; Turner, R. W.; Prusa, J.; Bitzer, R. J.; Finley, S. V.

    1996-01-01

    Decreases in shelter temperature during eclipse events were quantified on the basis of observations, numerical model simulations, and complementary conceptual evaluations. Observations for the annular eclipse on 10 May 1994 over the United States are presented, and these provide insights into the temporal and spatial changes in the shelter temperature. The observations indicated near-surface temperature drops of as much as 6 C. Numerical model simulations for this eclipse event, which provide a complementary evaluation of the spatial and temporal patterns of the temperature drops, predict similar decreases. Interrelationships between the temperature drop, degree of solar irradiance reduction, and timing of the peak eclipse are also evaluated for late spring, summer, and winter sun conditions. These simulations suggest that for total eclipses the drops in shelter temperature in midlatitudes can be as high as 7 C for a spring morning eclipse.

  8. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations.

    PubMed

    Wang, Tao; Peng, Shushi; Krinner, Gerhard; Ryder, James; Li, Yue; Dantec-Nédélec, Sarah; Ottlé, Catherine

    2015-01-01

    Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation) into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique) improve the simulation accuracy of mean seasonal (October throughout May) snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the magnitude of

  9. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations

    PubMed Central

    Wang, Tao; Peng, Shushi; Krinner, Gerhard; Ryder, James; Li, Yue; Dantec-Nédélec, Sarah; Ottlé, Catherine

    2015-01-01

    Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation) into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique) improve the simulation accuracy of mean seasonal (October throughout May) snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the magnitude of

  10. Drought and Snow: Analysis of Drivers, Processes and Impacts of Streamflow Droughts in Snow-Dominated Regions

    NASA Astrophysics Data System (ADS)

    Van Loon, Anne; Laaha, Gregor; Van Lanen, Henny; Parajka, Juraj; Fleig, Anne; Ploum, Stefan

    2016-04-01

    Around the world, drought events with severe socio-economic impacts seem to have a link with winter snowpack. That is the case for the current California drought, but analysing historical archives and drought impact databases for the US and Europe we found many impacts that can be attributed to snowpack anomalies. Agriculture and electricity production (hydropower) were found to be the sectors that are most affected by drought related to snow. In this study, we investigated the processes underlying hydrological drought in snow-dominated regions. We found that drought drivers are different in different regions. In Norway, more than 90% of spring streamflow droughts were preceded by below-average winter precipitation, while both winter air temperature and spring weather were indifferent. In Austria, however, spring streamflow droughts could only be explained by a combination of factors. For most events, winter and spring air temperatures were above average (70% and 65% of events, respectively), and winter and spring precipitation was below average (75% and 80%). Because snow storage results from complex interactions between precipitation and temperature and these variables vary strongly with altitude, snow-related drought drivers have a large spatial variability. The weather input is subsequently modified by land properties. Multiple linear regression between drought severity variables and a large number of catchment characteristics for 44 catchments in Austria showed that storage influences both drought duration and deficit volume. The seasonal storage of water in snow and glaciers was found to be a statistically important variable explaining streamflow drought deficit. Our drought impact analysis in Europe also showed that 40% of the selected drought impacts was caused by a combination of snow-related and other drought types. For example, the combination of a winter drought with a preceding or subsequent summer drought was reported to have a large effect on

  11. Drought and Snow: Analysis of Drivers, Processes and Impacts of Streamflow Droughts in Snow-Dominated Regions

    NASA Astrophysics Data System (ADS)

    Van Loon, A.; Laaha, G.; Van Lanen, H.; Parajka, J.; Fleig, A. K.; Ploum, S.

    2015-12-01

    Around the world, drought events with severe socio-economic impacts seem to have a link with winter snowpack. That is the case for the current California drought, but analysing historical archives and drought impact databases for the US and Europe we found many impacts that can be attributed to snowpack anomalies. Agriculture and electricity production (hydropower) were found to be the sectors that are most affected by drought related to snow. In this study, we investigated the processes underlying hydrological drought in snow-dominated regions. We found that drought drivers are different in different regions. In Norway, more than 90% of spring streamflow droughts were preceded by below-average winter precipitation, while both winter air temperature and spring weather were indifferent. In Austria, however, spring streamflow droughts could only be explained by a combination of factors. For most events, winter and spring air temperatures were above average (70% and 65% of events, respectively), and winter and spring precipitation was below average (75% and 80%). Because snow storage results from complex interactions between precipitation and temperature and these variables vary strongly with altitude, snow-related drought drivers have a large spatial variability. The weather input is subsequently modified by land properties. Multiple linear regression between drought severity variables and a large number of catchment characteristics for 44 catchments in Austria showed that storage influences both drought duration and deficit volume. The seasonal storage of water in snow and glaciers was found to be a statistically important variable explaining streamflow drought deficit. Our drought impact analysis in Europe also showed that 40% of the selected drought impacts was caused by a combination of snow-related and other drought types. For example, the combination of a winter drought with a preceding or subsequent summer drought was reported to have a large effect on

  12. The Role of Snow Cover on Surface Trace Gas Exchanges at Toolik Lake, AK

    NASA Astrophysics Data System (ADS)

    Helmig, D.; Obrist, D.; Moore, C.; Van Dam, B.; Jacques, H.; Molnar, T.; Williams, M. W.; Kramer, L. J.; Doskey, P. V.; Fain, X.

    2014-12-01

    Snow has a profound influence on the emission and deposition of atmospheric trace gases in the arctic environment. Processes that play a role in modulating gas exchanges include biological, soil biogeochemical, snow chemical, and snow physical processes. Environmental conditions underneath the snow are relatively stable throughout the winter period. Above the snow surface, variations in temperature, radiation, and wind exert a wide range of influences on snowpack gas chemistry, gas exchanges at the snow-air interface, and chemical interactions between the interstitial snowpack air and vegetation and soil below the snowpack. This presentation will present an overview of experimental approaches for continuous, all winter-long experiments conducted at a permafrost site at the Long-Term Ecological Research (LTER) station at Toolik Lake on the north slope of the Brooks Range, Alaska. These studies include observations of carbon dioxide and the reactive gases ozone, nitrogen oxides, and gaseous elemental mercury. Parameterizations developed from these measurements are used for improving descriptions of trace gas budgets and their feedbacks on climate and associated snow cover changes in the Arctic and seasonally snow-covered midlatitude environments.

  13. Passive Microwave Brightness Temperature Prediction over Snow-covered Land Using an Artificial Neural Network and a Land Surface Model

    NASA Astrophysics Data System (ADS)

    Forman, B.; Reichle, R. H.

    2012-12-01

    An artificial neural network (ANN) is presented for the purpose of estimating passive microwave (PMW) emission from snow-covered land in North America. The NASA Catchment Land Surface Model (Catchment) is used to define snowpack properties. The Catchment-based ANN is then trained with PMW measurements acquired by the Advanced Microwave Scanning Radiometer (AMSR-E) or the Special Sensor Microwave/Imager (SSM/I). The intended use of the ANN is for eventual application as a predicted measurement operator in an ensemble-based data assimilation (DA) framework to be presented in a follow-on study. A comparison of ANN output against AMSR-E and SSM/I measurements not used during training activities as well as a comparison against independent PMW measurements collected during airborne surveys demonstrates the predictive skill of the ANN. When averaged over the study domain for the available PMW measurement collection period, computed statistics (relative to PMW measurements not used during training) for multiple frequencies and polarizations yielded a near-zero bias, a root mean squared error less than 10K, and an anomaly correlation coefficient of approximately 0.7. The ANN demonstrates skill at reproducing brightness temperatures during the ablation phase when the snowpack is ripe and relatively wet. The ANN demonstrates even greater skill during the accumulation phase when the snowpack is relatively dry. Overall, the results suggest the ANN should serve as an effective predicted measurement operator that is computationally efficient at the continental scale.a) bias, (b) RMSE, and (c) anomaly correlation coefficient for vertically-polarized 18.7 GHz passive microwave brightness temperatures from 1 September 2002 to 1 September 2011. Anomaly R values not statistically different from zero at the 95% significance level based on a Fisher Z transform are shown in gray.

  14. Snow contribution to springtime atmospheric predictability over the second half of the twentieth century

    NASA Astrophysics Data System (ADS)

    Peings, Yannick; Douville, H.; Alkama, R.; Decharme, B.

    2011-09-01

    A set of global atmospheric simulations has been performed with the ARPEGE-Climat model in order to quantify the contribution of realistic snow conditions to seasonal atmospheric predictability in addition to that of a perfect sea surface temperature (SST) forcing. The focus is on the springtime boreal hemisphere where the combination of a significant snow cover variability and an increasing solar radiation favour the potential snow influence on the surface energy budget. The study covers the whole 1950-2000 period through the use of an original snow mass reanalysis based on an off-line land surface model and possibly constrained by satellite snow cover observations. Two ensembles of 10-member AMIP-type experiments have been first performed with relaxed versus free snow boundary conditions. The nudging towards the monthly snow mass reanalysis significantly improves both potential and actual predictability of springtime surface air temperature over Central Europe and North America. Yet, the impact is confined to the lower troposphere and there is no clear improvement in the predictability of the large-scale atmospheric circulation. Further constraining the prescribed snow boundary conditions with satellite observations does not change much the results. Finally, using the snow reanalysis only for initializing the model on March 1st also leads to a positive impact on predicted low-level temperatures but with a weaker amplitude and persistence. A conditional skill approach as well as some selected case studies provide some guidelines for interpreting these results and suggest that an underestimated snow cover variability and a misrepresentation of ENSO teleconnections may hamper the benefit of an improved snow initialization in the ARPEGE-Climat model.

  15. Time budgets of Snow Geese Chen caerulescens and Ross's Geese Chen rossii in mixed flocks: Implications of body size, ambient temperature and family associations

    USGS Publications Warehouse

    Jonsson, J.E.; Afton, A.D.

    2009-01-01

    Body size affects foraging and forage intake rates directly via energetic processes and indirectly through interactions with social status and social behaviour. Ambient temperature has a relatively greater effect on the energetics of smaller species, which also generally are more vulnerable to predator attacks than are larger species. We examined variability in an index of intake rates and an index of alertness in Lesser Snow Geese Chen caerulescens caerulescens and Ross's Geese Chen rossii wintering in southwest Louisiana. Specifically we examined variation in these response variables that could be attributed to species, age, family size and ambient temperature. We hypothesized that the smaller Ross's Geese would spend relatively more time feeding, exhibit relatively higher peck rates, spend more time alert or raise their heads up from feeding more frequently, and would respond to declining temperatures by increasing their proportion of time spent feeding. As predicted, we found that Ross's Geese spent more time feeding than did Snow Geese and had slightly higher peck rates than Snow Geese in one of two winters. Ross's Geese spent more time alert than did Snow Geese in one winter, but alert rates differed by family size, independent of species, in contrast to our prediction. In one winter, time spent foraging and walking was inversely related to average daily temperature, but both varied independently of species. Effects of age and family size on time budgets were generally independent of species and in accordance with previous studies. We conclude that body size is a key variable influencing time spent feeding in Ross's Geese, which may require a high time spent feeding at the expense of other activities. ?? 2008 The Authors.

  16. Comparison of MODIS Land Surface Temperature and Air Temperature over the Continental USA Meteorological Stations

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Bounoua, Lahouari; Imhoff, Marc L.; Wolfe, Robert E.; Thome, Kurtis

    2014-01-01

    The National Land Cover Database (NLCD) Impervious Surface Area (ISA) and MODIS Land Surface Temperature (LST) are used in a spatial analysis to assess the surface-temperature-based urban heat island's (UHIS) signature on LST amplitude over the continental USA and to make comparisons to local air temperatures. Air-temperature-based UHIs (UHIA), calculated using the Global Historical Climatology Network (GHCN) daily air temperatures, are compared with UHIS for urban areas in different biomes during different seasons. NLCD ISA is used to define urban and rural temperatures and to stratify the sampling for LST and air temperatures. We find that the MODIS LST agrees well with observed air temperature during the nighttime, but tends to overestimate it during the daytime, especially during summer and in nonforested areas. The minimum air temperature analyses show that UHIs in forests have an average UHIA of 1 C during the summer. The UHIS, calculated from nighttime LST, has similar magnitude of 1-2 C. By contrast, the LSTs show a midday summer UHIS of 3-4 C for cities in forests, whereas the average summer UHIA calculated from maximum air temperature is close to 0 C. In addition, the LSTs and air temperatures difference between 2006 and 2011 are in agreement, albeit with different magnitude.

  17. Challenges in simulation of snow microstructure and implications for remote sensing of snow mass

    NASA Astrophysics Data System (ADS)

    Sandells, M. J.; Essery, R.; Leppänen, L.; Lemmetyinen, J.; Rutter, N.

    2014-12-01

    One of the greatest challenges for global measurement of snow mass is quantification of the snow microstructure. Radiative transfer models are more sensitive to the snow structure metrics used than to snow depth, so microstructure must be well quantified in order to retrieve snow mass from satellite observations. Principles of physics have been used to simulate microstructure in many years of avalanche and climate research, although these have different accuracy requirements to remote sensing applications. Growth of snow crystals is dependent primarily on the snow temperature gradient, but also the temperature and density of the snow. Forced with the same meteorological data, different models simulate different snow temperatures. Even with the same grain growth assumptions, this leads to different rates of microstructure evolution. This must be taken into consideration if snow models are to be used to give the necessary parameters for retrieval of snow water equivalent. The JULES Investigation Model snow model (JIM) has a highly configurable structure that allows different layering assumptions to be used. It incorporates all major components from existing snow models, which enables the simulation of an ensemble of 1701 members. JIM was used to quantify the impact of different model parameterizations such as snow compaction and thermal conductivity on simulated microstructure (previously referred to as 'grain size') for each of four different grain size parameterizations from the Crocus, MOSES, SNICAR and SNTHERM models. The Helsinki University of Technology snow microwave emission model was then used to demonstrate the impact of different snow model assumptions on the simulation of microwave brightness temperature. This paper discusses potential snow mass retrieval errors due to uncertainties in snow parameters from snow evolution models, and how these may be mitigated through techniques such as data assimilation.

  18. Retrieval of air temperatures from crowd-sourced battery temperatures of cell phones

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James; Leijnse, Hidde; Uijlenhoet, Remko; Steeneveld, Gert-Jan; Horn, Berthold K. P.

    2013-04-01

    Accurate air temperature observations are important for urban meteorology, for example to study the urban heat island and adverse effects of high temperatures on human health. The number of available temperature observations is often relatively limited. A new development is presented to derive temperature information for the urban canopy from an alternative source: cell phones. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. Results are presented for Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree Celsius. This shows that monitoring air temperatures employing an Android application holds great promise. Since 75% of the world's population has a cell phone, 20% of the land surface of the earth has cellular telephone coverage, and 500 million devices use the Android operating system, there is a huge potential for measuring air temperatures employing cell phones. This could eventually lead to real-time world-wide temperature maps.

  19. Dynamic interactions of snow and plants in the boreal forest, winter 2011-2012 revealed by time-lapse photography and LiDAR

    NASA Astrophysics Data System (ADS)

    Filhol, S. V.; Sturm, M.

    2012-12-01

    The winter blanket of snow in the boreal forest is anything but still. In winter 2011-2012 we followed the evolution of a snowpack on a boreal forest plot (0.5 ha) from first snowfall to the beginning of the melt in springtime. We used multiple methods such as time-lapse ground-based LiDAR (Light Detection and Ranging), time-lapse photography, imagery from a suspended cableway, snow-depth sensors, and frequent manual snow-pits. The experimental site is located near Fairbanks, Alaska, a typical boreal forest underlain by permafrost with sparse black spruce, larch, willow, and dwarf birch. We observed snowpack properties to be greatly affected by the vegetation substrate. Interactions between snow and plants are mainly dependent on falling snow properties (rate, wetness), plant heights and stiffness, plant canopy structure (leaves, number of branches, density), succession of weather events (wind before or after snow, thaw events) and pre-existing snow depth. Time-lapse imagery shows interception of snow by trees and shrubs controlled by air-temperature and wind events. LiDAR and snow pit measurements show one class of flexible shrubs (i.e. dwarf birch) bending under load, while a second class (willows) were far stiffer and resisted bending. Where dwarf birch branches were dense, it prevented snow from reaching the ground, leaving a significant air space under the snowpack. This vertical air gap can be as high as 10% of the total snow depth by the end of winter. Improving our understanding of the dynamic relationships between plants and snow is a fundamental key for studying boreal snow physics and snow ecology.

  20. CellDyM: A room temperature operating cryogenic cell for the dynamic monitoring of snow metamorphism by time-lapse X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Calonne, N.; Flin, F.; Lesaffre, B.; Dufour, A.; Roulle, J.; Puglièse, P.; Philip, A.; Lahoucine, F.; Geindreau, C.; Panel, J.-M.; Roscoat, S. Rolland; Charrier, P.

    2015-05-01

    Monitoring the time evolution of snow microstructure in 3-D is crucial for a better understanding of snow metamorphism. We, therefore, designed a cryogenic cell that precisely controls the experimental conditions of a sample while it is scanned by X-ray tomography. Based on a thermoelectrical regulation and a vacuum insulation, the cell operates at room temperature. It is, thus, adaptable to diverse scanners, offering advantages in terms of imaging techniques, resolution, and speed. Three-dimensional time-lapse series were obtained under equitemperature and temperature gradient conditions at a 7.8 μm precision. The typical features of each metamorphism and the anisotropic faceting behavior between the basal and prismatic planes, known to occur close to -2°C, were observed in less than 30 h. These results are consistent with the temperature fields expected from heat conduction simulations through the cell. They confirm the cell's accuracy and the interest of relatively short periods to study snow metamorphism.

  1. Ice core evidence of rapid air temperature increases since 1960 in alpine areas of the Wind River Range, Wyoming, United States

    USGS Publications Warehouse

    Naftz, D.L.; Susong, D.D.; Schuster, P.F.; Cecil, L.D.; Dettinger, M.D.; Michel, R.L.; Kendall, C.

    2002-01-01

    Site-specific transfer functions relating delta oxygen 18 (??18O) values in snow to the average air temperature (TA) during storms on Upper Fremont Glacier (UFG) were used in conjunction with ??18O records from UFG ice cores to reconstruct long-term trends in air temperature from alpine areas in the Wind River Range, Wyoming. Transfer functions were determined by using data collected from four seasonal snowpacks (1989-1990, 1997-1998, 1998-1999, and 1999-2000). The timing and amount of each storm was determined from an automated snowpack telemetry (SNOTEL) site, 22 km northeast of UFG, and ???1060 m in elevation below UFG. Statistically significant and positive correlations between ??18O values in the snow and TA were consistently found in three of the four seasonal snowpacks. The snowpack with the poor correlation was deposited in 1997-1998 during the 1997-1998 El Nin??o Southern Oscillation (ENSO). An ultrasonic snow-depth sensor installed on UFG provided valuable insights into site-specific storms and postdepositional processes that occur on UFG. The timing of storms recorded at the UFG and Cold Springs SNOTEL sites were similar; however, selected storms did not correlate. Snow from storms occurring after mid-October and followed by high winds was most susceptible to redeposition of snow. This removal of lower temperature snowfall could potentially bias the ??18O values preserved in ice core records to environmental conditions reflecting higher air temperatures and lower wind speeds. Transfer functions derived from seasonal snow cover on UFG were used to reconstruct TA values from ??18O values determined from two ice cores collected from UFG. Reconstructed air temperatures from the ice core data indicate an increase in TA of ???3.5??C from the mid-1960s to the early 1990s in the alpine areas of northwestern Wyoming. Reconstructed TA from the ice core records between the end of the Little Ice Age (LIA), mid-1800s, and the early 1990s indicate a TA increase of

  2. Associations of endothelial function and air temperature in diabetic subjects

    EPA Science Inventory

    Background and Objective: Epidemiological studies consistently show that air temperature is associated with changes in cardiovascular morbidity and mortality. However, the biological mechanisms underlying the association remain largely unknown. As one index of endothelial functio...

  3. Assessing wet snow avalanche activity using detailed physics based snowpack simulations

    NASA Astrophysics Data System (ADS)

    Wever, N.; Vera Valero, C.; Fierz, C.

    2016-06-01

    Water accumulating on microstructural transitions inside a snowpack is often considered a prerequisite for wet snow avalanches. Recent advances in numerical snowpack modeling allow for an explicit simulation of this process. We analyze detailed snowpack simulations driven by meteorological stations in three different climate regimes (Alps, Central Andes, and Pyrenees), with accompanying wet snow avalanche activity observations. Predicting wet snow avalanche activity based on whether modeled water accumulations inside the snowpack locally exceed 5-6% volumetric liquid water content is providing a higher prediction skill than using thresholds for daily mean air temperature, or the daily sum of the positive snow energy balance. Additionally, the depth of the maximum water accumulation in the simulations showed a significant correlation with observed avalanche size. Direct output from detailed snow cover models thereby is able to provide a better regional assessment of dangerous slope aspects and potential avalanche size than traditional methods.

  4. Comparison of Local Scale Measured and Modeled Brightness Temperatures and Snow Parameters from the CLPX 2003 by Means of a Dense Medium Radiative Transfer Theory Model

    NASA Technical Reports Server (NTRS)

    Tedescol, Marco; Kim, Edward J.; Cline, Don; Graf, Tobias; Koike, Toshio; Armstrong, Richard; Brodzik, Mary J.; Hardy, Janet

    2004-01-01

    Microwave remote sensing offers distinct advantages for observing the cryosphere. Solar illumination is not required, and spatial and temporal coverage are excellent from polar-orbiting satellites. Passive microwave measurements are sensitive to the two most useful physical quantities for many hydrological applications: physical temperature and water content/state. Sensitivity to the latter is a direct result of the microwave sensitivity to the dielectric properties of natural media, including snow, ice, soil (frozen or thawed), and vegetation. These considerations are factors motivating the development of future cryospheric satellite remote sensing missions, continuing and improving on a 26-year microwave measurement legacy. Perhaps the biggest issues regarding the use of such satellite measurements involve how to relate parameter values at spatial scales as small as a hectare to observations with sensor footprints that may be up to 25 x 25 km. The NASA Cold-land Processes Field Experiment (CLPX) generated a dataset designed to enhance understanding of such scaling issues. CLPX observations were made in February (dry snow) and March (wet snow), 2003 in Colorado, USA, at scales ranging from plot scale to 25 x 25 km satellite footprints. Of interest here are passive microwave observations from ground-based, airborne, and satellite sensors, as well as meteorological and snowpack measurements that will enable studies of the effects of spatial heterogeneity of surface conditions on the observations. Prior to performing such scaling studies, an evaluation of snowpack forward modelling at the plot scale (least heterogeneous scale) is in order. This is the focus of this paper. Many forward models of snow signatures (brightness temperatures) have been developed over the years. It is now recognized that a dense medium radiative transfer (DMRT) treatment represents a high degree of physical fidelity for snow modeling, yet dense medium models are particularly sensitive to

  5. Sodankylä manual snow survey program

    NASA Astrophysics Data System (ADS)

    Leppänen, L.; Kontu, A.; Hannula, H.-R.; Sjöblom, H.; Pulliainen, J.

    2015-12-01

    The manual snow survey program of the Arctic Research Centre of Finnish Meteorological Institute (FMI-ARC) consists of numerous observations of natural seasonal taiga snowpack in Sodankylä, northern Finland. The easily accessible measurement areas represent the typical forest and soil types in the boreal forest zone. Systematic snow measurements began in 1909 with snow depth (SD) and snow water equivalent (SWE); however some older records of the snow and ice cover exists. In 2006 the manual snow survey program expanded to cover snow macro- and microstructure from regular snow pits at several sites using both traditional and novel measurement techniques. Present-day measurements include observations of SD, SWE, temperature, density, horizontal layers of snow, grain size, specific surface area (SSA), and liquid water content (LWC). Regular snow pit measurements are performed weekly during the snow season. Extensive time series of manual snow measurements are important for the monitoring of temporal and spatial changes in seasonal snowpack. This snow survey program is an excellent base for the future research of snow properties.

  6. Climate and energy exchange at the snow surface in the Alpine Region of the Sierra Nevada: 1. Meteorological measurements and monitoring

    NASA Astrophysics Data System (ADS)

    Marks, Danny; Dozier, Jeff; Davis, Robert E.

    1992-11-01

    A detailed evaluation of climate conditions in a small alpine watershed, typical of much of the southern Sierra Nevada, is presented for the 1986 water year. Measurements of snowfall, meteorological and snow cover conditions, and snow cover ablation are used to characterize the climate at four locations in the watershed during that snow season. Data from these locations are then combined into two representative sites for the watershed. Measurement approaches and methodologies and the effectiveness of instrumentation used in the study are discussed, and an estimate of the uncertainty of the monitored meteorological parameters is made. The data are integrated into a continuous hourly time series of solar and thermal radiation, air, snow and soil temperature, humidity, and wind at the two representative sites in this remote alpine watershed for an entire snow season. Snow deposition and snow cover depth and density are measured manually at regular intervals throughout the snow season. While problems were encountered monitoring air and snow surface temperature, humidity, and wind, because of the extreme conditions which are likely to occur in an alpine environment, radiation is easily monitored, and the estimated uncertainty of all measured parameters was acceptably low. This effort was required to develop a high quality time series of integrated climate data to evaluate the components of the energy balance of the snow cover during both deposition and ablation conditions.

  7. Monitoring snow cover and its effect on runoff regime in the Jizera Mountains

    NASA Astrophysics Data System (ADS)

    Kulasova, Alena

    2015-04-01

    The Jizera Mountains in the northern Bohemia are known by its rich snow cover. Winter precipitation represents usually a half of the precipitation in the hydrological year. Gradual snow accumulation and melt depends on the course of the particular winter period, the topography of the catchments and the type of vegetation. During winter the snow depth, and especially the snow water equivalent, are affected by the changing character of the falling precipitation, air and soil temperatures and the wind. More rapid snowmelt occurs more on the slopes without forest oriented to the South, while a gradual snowmelt occurs on the locations turned to the North and in forest. Melting snow recharges groundwater and affects water quality in an important way. In case of extreme situation the snowmelt monitoring is important from the point of view of flood protection of communities and property. Therefore the immediate information on the amount of water in snow is necessary. The way to get this information is the continuous monitoring of the snow depth and snow water equivalent. In the Jizera Mountains a regular monitoring of snow cover has been going on since the end of the 19th century. In the 80s of the last century the Jizera Mountains were affected by the increased fallout of pollutants in the air. There followed a gradual dieback of the forest cover and cutting down the upper part of the ridges. In order to get data for the quantification of runoff regime changes in the changing natural environment, the Czech Hydrometeorological Institute (CHMI) founded in the upper part of the Mountains several experimental catchments. One of the activities of the employees of the experimental basis is the regular measurement of snow cover at selected sites from 1982 up to now. At the same time snow cover is being observed using snow pillows, where its mass is monitored with the help of pressure sensors. In order to improve the reliability of the continuous measurement of the snow water

  8. High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to

  9. Interpretation of AMSU microwave measurements for the retrievals of snow water equivalent and snow depth

    NASA Astrophysics Data System (ADS)

    Kongoli, Cezar; Grody, Norman C.; Ferraro, Ralph R.

    2004-12-01

    The objective of this paper is to interpret microwave scattering signatures over snow cover as observed by the Advanced Microwave Sounding Unit (AMSU) for the retrievals of snow water equivalent and snow depth. A case study involving seasonal snow cover over the U.S. Great Plains was analyzed in detail. Area-wide analysis of the relationship between snow depth and the AMSU scattering signatures in the 23-150 GHz window region showed weak correlation, deteriorated by the dependence of these signatures on snow metamorphism. The lower frequency scattering index, computed as the difference in the brightness temperature between 23 and 31 GHz channels, was low and insensitive to fresh snow predominant in December, but increased later in the season, and thus was more sensitive to snow depth for older snow cover. However, this seasonal increase in microwave scattering was observed for every snow depth range, suggesting a strong dependence on snow metamorphism. In contrast, the 89 GHz scattering index responded to relatively shallow snow cover in December, but was less sensitive to snow depth variability later in the season. A snow hydrology model was applied at specific locations to estimate snow water equivalent (other than snow depth) for comparisons with the AMSU measurements. Overall, the lower frequency index was the best predictor of snow water equivalent and snow depth. However, correlation was higher for snow density and snow water equivalent. This was attributed to the response of this scattering index to the grain size evolution with time, which correlated better with the snow density and water equivalent changes in the snow cover than snow depth. Correlation between the snow water equivalent and the lower frequency index for fresh snow cover was significantly improved by switching to the higher frequency index at 89 GHz as predictor when the lower frequency index at 31 GHz was less than the 5 K threshold. Correlation further improved for fresh snow cover

  10. Snow Cover Changes over Northern Eurasia from in Situ Observations

    NASA Astrophysics Data System (ADS)

    Bulygina, O. N.; Razuvaev, V. N.; Groisman, P. Ya; Korshunova, N. N.

    2012-04-01

    Data. In addition to a standard suite of synoptic snow observations (snow depth, snow type, state of the ground at the meteorological site and its surroundings), we used in our study the national snow survey data set archived at the Russian Institute for Hydrometeorological Information. This dataset has routine snow surveys run throughout the cold season each decade (during the intense snowmelt, each 5 days) at all meteorological stations of the former USSR, thereafter in Russia, since 1966. Prior to 1966 snow surveys are also available but the methodology of observations has substantially changed at that year and our analysis includes data of 958 Russian stations from 1966 to 2011 with a minimal number of missing observations. Surveys run separately along all types of environment typical for the site for 1 to 2 km, describing the current snow cover properties such as snow density, depth, water equivalent, and characteristics of snow and ice crust. Background. During the period of widespread instrumental observations in Northern Eurasia (since 1881), the annual surface air temperature has increased by 1.5°C (in the winter season by 3°C. Close to the north in the Arctic Ocean, the late summer sea ice extent has decreased by 40% providing a near-infinite source of water vapor for the dry Arctic atmosphere in the early cold season months. There is also evidence of more frequent thaw days over northern latitudes of western Eurasia. All these factors affect the state of snow cover. Methods. Regional analysis of snow cover data was carried out using quasi-homogeneous climatic regions. Maps (climatology, trends) are presented mostly for visualization purposes. The area-averaging technique using station values converted to anomalies with respect to a common reference period (in this study, 1966-2011). Anomalies were arithmetically averaged first within 1°N x 2°E grid cells and thereafter by a weighted average value derived over the quasi-homogeneous climatic regions

  11. NOx emission from surface snow and ice over Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Wang, J.; Zhu, T.; Lin, W.; Wang, F.

    2010-12-01

    Photochemical reactions on the surface of snow and ice have been proved to be an important NOx source in the polar boundary layer. The exchanges of NOx between snow and air have significant impacts on the atmospheric components and photochemical processes in the overlying boundary layer, which can increase the oxidizing capacity and may impact on the environmental records that are retrieved from ice cores. The Tibetan Plateau (TP) is the main snow-covered area in the mid-latitudes of northern hemisphere. Different from the Arctic and Antarctic, TP has strong UV radiation on the surface of snow and ice due to its high altitude and the large area of snow and glaciers. With four field measurements in July 1st Glacier, Mount Everest Area, Yulong Snow Mountain, and Tianshan NO.1 Glacier, we obtained observational evidences on the release of NOx from surface snow and ice over Tibetan Plateau. The average NOx concentration during daytime was 1-5 ppbv, this is much higher than that in Arctic and Antarctic (pptv level). Besides the photochemical reaction and transfer process within snow/ice, factors such as UV radiation intensity, temperature, snow characteristics and mountain-valley winds all affect NOx release processes from those snow covered areas. The NOx fluxes during daytime in Yulong Snow Mountain and Tianshan NO.1 Glacier were about 10-45nmol m-2 h-1, this is similar as those observed in Arctic and Antarctic (15-40 nmol m-2 h-1). The contribution of NOx emission from snow/ice over Tibetan Plateau to the atmosphere oxidizing capacity needs more research.

  12. Microtomography of macroscopic snow samples

    NASA Astrophysics Data System (ADS)

    Matzl, M.; Schneebeli, M.; Steinfeld, D.; Steiner, S.; Heggli, M.

    2010-12-01

    During the last 10 years X-ray microtomography (micro-CT) has proved to be the first successful method to measure the true three-dimensional (3-D) structure of snow on the ground. Micro-CT is used to reconstruct 3-D microstructures as a source for numerical simulations, to conduct long-term observations of metamorphism or the behavior of snow under stress and to derive macroscopic parameters describing the microstructure of snow like specific surface area or density. However, micro-CT was confined to small samples with a typically evaluated size of 5 x 5 x 5 mm3. One reason for the small size was the limited computational power, the other the sample preparation. Based on the replica method for 3-D micro-CT samples introduced by Heggli et al. (2009), we are now able to visualize snow samples up to 70 mm height, and about 10 mm diameter, with a resolution of 10 μm. Because inclusion of small air bubbles during the casting process can not be avoided, we make two scans, one before and one after sublimation, the two scans are then registered and subtracted. After image segmentation and morphological image processing the replica can be analysed in the same way as direct snow measurements. Based on such samples, we imaged highly fragile snow samples, like new snow, buried surface hoar and other weak layers. The samples show a fascinating new image of how complex snow layers are. Most samples show strong density gradients within a structurally similar layer. We think that this technique will improve our understanding of snow metamorphism and snow properties. Heggli, M.; Frei, E.; Schneebeli, M., 2009: Instruments and Methods. Snow Replica method for three-dimensional X-ray microtomographic imaging. J. Glaciol. 55, 192: 631-639.

  13. Snow and glaciers in the tropics: the importance of snowfall level and snow line altitude in the Peruvian Cordilleras

    NASA Astrophysics Data System (ADS)

    Schauwecker, Simone; Rohrer, Mario; Huggel, Christian; Salzmann, Nadine; Montoya, Nilton; Endries, Jason; Perry, Baker

    2016-04-01

    The snow line altitude, defined as the line separating snow from ice or firn surfaces, is among the most important parameters in the glacier mass and energy balance of tropical glaciers, since it determines net shortwave radiation via surface albedo. Therefore, hydroglaciological models require estimations of the melting layer during precipitation events, as well as parameterisations of the transient snow line. Typically, the height of the melting layer is implemented by simple air temperature extrapolation techniques, using data from nearby meteorological stations and constant lapse rates. Nonetheless, in the Peruvian mountain ranges, stations at the height of glacier tongues (>5000 m asl.) are scarce and the extrapolation techniques must use data from distant and much lower elevated stations, which need prior careful validation. Thus, reliable snowfall level and snow line altitude estimates from multiple data sets are necessary. Here, we assemble and analyse data from multiple sources (remote sensing, in-situ station data, reanalysis data) in order to assess their applicability in estimating both, the melting layer and snow line altitude. We especially focus on the potential of radar bright band data from TRMM and CloudSat satellite data for its use as a proxy for the snow/rain transition height. As expected for tropical regions, the seasonal and regional variability in the snow line altitude is comparatively low. During the course of the dry season, Landsat satellite as well as webcam images show that the transient snow line is generally increasing, interrupted by light snowfall or graupel events with low precipitation amounts and fast decay rates. We show limitations and possibilities of different data sources as well as their applicability to validate temperature extrapolation methods. Further on, we analyse the implications of the relatively low variability in seasonal snow line altitude on local glacier mass balance gradients. We show that the snow line

  14. Lessons Learned from AIRS: Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2011-01-01

    This slide presentation reviews the use of shortwave channels available to the Atmospheric Infrared Sounder (AIRS) to improve the determination of surface and atmospheric temperatures. The AIRS instrument is compared with the Infrared Atmospheric Sounding Interferometer (IASI) on-board the MetOp-A satellite. The objectives of the AIRS/AMSU were to (1) provide real time observations to improve numerical weather prediction via data assimilation, (2) Provide observations to measure and explain interannual variability and trends and (3) Use of AIRS product error estimates allows for QC optimized for each application. Successive versions in the AIRS retrieval methodology have shown significant improvement.

  15. Air - Ground - Bedrock Temperature Coupling, Its Monitoring at Borehole Climate Observatories

    NASA Astrophysics Data System (ADS)

    Cermák, V.

    2012-04-01

    Reconstructing ground surface temperature (GST) histories from present-day temperature-depth logs is now generally accepted as one of the independent and physically justified method to obtain information about the past climate history on the time scale of hundreds to thousands years. Any temperature change at the Earth`s surface slowly propagates downward and deeper we go farther back in time the measured temperature carries certain memory on what has happened on the surface in the past. Due to diffusive character of the process, however, the resolution quickly decreases for the remote events and the reconstructed GST at a given moment is a weighted average of temperature over a certain period of time. For better understanding of the temperature state in the subsurface T(z) logs can be suitably completed with long-run temperature-time monitoring at selected depth intervals, namely within the near-surface active layer affected by seasonal temperature variations (usually uppermost 30-40 m). In addition to GST inversions applied on deep T(z) profiles existing all over the world, several permanent borehole climate observatories were actually established in the last two decades to test the validity of the assumption that GST variations track the SAT (surface air temperature) changes as well as to study various environmental/local effects, such as the vegetation cover type/change, rain/snow precipitation, thawing/melting/freezing, etc. which controls the whole heat transfer process. Long-term monitoring of the shallow subsurface temperature field in suitably geographically located sites may additionally also help to understand the different conditions in e.g. urban vs. countryside environments and to assess the potential anthropogenic contribution to the present-day warming rate within the natural climate variability. This presentation summarizes main results obtained at the Czech borehole sites since 1992 completed with brief comparison of similar results collected

  16. Effects of snow condition on microbial respiration of Scots pine needle litter in a boreal forest

    NASA Astrophysics Data System (ADS)

    Ohnuki, Masataka; Domisch, Timo; Dannoura, Masako; Ataka, Mioko; Finér, Leena; Repo, Tapani; Osawa, Akira

    2016-04-01

    Climate warming scenarios predict decreasing snow depths and increasing winter precipitation in boreal forests ("rain on snow"). I These conditions may affect the decomposition and the microbial respiration of leaf litter, contributing a major part of tree litters, To understand how different snow conditions during winter would affect the microbial respiration of Scots pine needle litter in a boreal forest, we conducted a laboratory experiment using needle litter of two age classes (newly dropped and older litter). The experiment simulated four different winter treatments, followed by spring and early summer : (1) ambient snow cover (SNOW), (2) Compressed snow and ice encasement (ICE), (3) frozen flood (FLOOD) and (4) no snow cover at all (NO SNOW). The experiment was carried out in four walk-in dasotrons (n=3) with soil temperatures of -2° C and air temperatures of 2° C during winter and increased to 15° C and 20° C during spring, respectively . Needle litter samples were collected three times (prior to the winter, just after winter and at the end of the experiment). We evaluated the microbial respiration from the litter at several temperatures (-5° C, 0° C, 5° C and 12° C), the SIR index (an index estimating the microbial biomass), and the C/N ratio .And we calculated Q10 value (index of microbial respiration activity) using microbial respiration data. We found significant differences in microbial respiration between the newly dropped and older litter at the beginning and at the end of the experiment. However, there were no significant differences in Q10 value and the SIR (index of microbial biomass) between the different winter treatments. All samples showed decrease of microbial activity with time. Finally, we conclude that the winter snow conditions with mild air temperatures as used in our experiment, are not detrimentally affecting the Scots pine needle litter decomposition and its respiration.

  17. Effect of Initial Mixture Temperature on Flame Speed of Methane-Air, Propane-Air, and Ethylene-Air Mixtures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L

    1952-01-01

    Flame speeds based on the outer edge of the shadow cast by the laminar Bunsen cone were determined as functions of composition for methane-air mixtures at initial mixture temperatures ranging from -132 degrees to 342 degrees c and for propane-air and ethylene-air mixtures at initial mixture temperatures ranging from -73 degrees to 344 degrees c. The data showed that maximum flame speed increased with temperature at an increasing rate. The percentage change in flame speed with change in initial temperature for the three fuels followed the decreasing order, methane, propane, and ethylene. Empirical equations were determined for maximum flame speed as a function of initial temperature over the temperature range covered for each fuel. The observed effect of temperature on flame speed for each of the fuels was reasonably well predicted by either the thermal theory as presented by Semenov or the square-root law of Tanford and Pease.

  18. Modelling snow cover duration improves predictions of functional and taxonomic diversity for alpine plant communities

    PubMed Central

    Carlson, Bradley Z.; Choler, Philippe; Renaud, Julien; Dedieu, Jean-Pierre; Thuiller, Wilfried

    2015-01-01

    Background and Aims Quantifying relationships between snow cover duration and plant community properties remains an important challenge in alpine ecology. We developed a method to estimate spatial variation in energy availability in the context of a topographically complex, high-elevation watershed, which we used to test the explanatory power of environmental gradients both with and without snow cover in relation to taxonomic and functional plant diversity. Methods We mapped snow cover at 15 m resolution using Landsat imagery for five recent years and fitted a generalized additive model (GAM) for each year linking snow to time and topography. Predicted snow cover maps were combined with air temperature and solar radiation at daily resolution, summed for each year and averaged across years. Equivalent growing season energy gradients were also estimated without accounting for snow cover duration. Relationships were tested between environmental gradients and diversity metrics measured for 100 plots (including species richness, community weighted mean traits, functional diversity and hyperspectral estimates of canopy chlorophyll content). Key Results Accounting for snow cover in environmental variables consistently led to improved predictive power as well as more ecologically meaningful characterizations of plant diversity. Model parameters differed significantly when fitted with and without snow cover. Filtering solar radiation with snow as compared to without led to an average gain in R2 of 0.26 and also reversed slope direction to more intuitive relationships for several diversity metrics. Conclusions We show that in alpine environments, high-resolution data on snow cover duration are pivotal for capturing the spatial heterogeneity of both taxonomic and functional diversity. The use of climate variables without consideration of snow cover can lead to erroneous predictions of plant diversity. Our results further indicate that studies seeking to predict the response

  19. Impact of climate and land cover changes on snow cover in a small Pyrenean catchment

    NASA Astrophysics Data System (ADS)

    Szczypta, C.; Gascoin, S.; Houet, T.; Hagolle, O.; Dejoux, J.-F.; Vigneau, C.; Fanise, P.

    2015-02-01

    The seasonal snow in the Pyrenees Mountains is an essential source of runoff for hydropower production and crop irrigation in Spain and France. The Pyrenees are expected to undergo strong environmental perturbations over the 21st century because of climate change (rising temperatures) and the abandonment of agro-pastoral areas (reforestation). Both changes are happening at similar timescales and are expected to have an impact on snow cover. The effect of climate change on snow in the Pyrenees is well understood, but the effect of land cover changes is much less documented. Here, we analyze the response of snow cover to a combination of climate and land cover change scenarios in a small Pyrenean catchment (Bassiès, 14.5 km2, elevation range 940-2651 m a.s.l.) using a distributed snowpack evolution model. Climate scenarios were constructed from the output of regional climate model projections, whereas land cover scenarios were generated based on past observed changes and an inductive pattern-based model. The model was validated over a snow season using in situ snow depth measurements and high-resolution snow cover maps derived from SPOT (Satellite Pour l'Observation de la Terre - Earth Observation Satellite) satellite images. Model projections indicate that both climate and land cover changes reduce the mean snow depth. However, the impact on the snow cover duration is moderated in reforested areas by the shading effect of trees on the snow surface radiation balance. Most of the significant changes are expected to occur in the transition zone between 1500 m a.s.l. and 2000 m a.s.l. where (i) the projected increase in air temperatures decreases the snow fraction of the precipitation and (ii) the land cover changes are concentrated. However, the consequences on the runoff are limited because most of the meltwater originates from high-elevation areas of the catchment, which are less affected by climate change and reforestation.

  20. Snow Hydrology in a General Circulation Model.

    NASA Astrophysics Data System (ADS)

    Marshall, Susan; Roads, John O.; Glatzmaier, Gary

    1994-08-01

    A snow hydrology has been implemented in an atmospheric general circulation model (GCM). The snow hydrology consists of parameterizations of snowfall and snow cover fraction, a prognostic calculation of snow temperature, and a model of the snow mass and hydrologic budgets. Previously, only snow albedo had been included by a specified snow line. A 3-year GCM simulation with this now more complete surface hydrology is compared to a previous GCM control run with the specified snow line, as well as with observations. In particular, the authors discuss comparisons of the atmospheric and surface hydrologic budgets and the surface energy budget for U.S. and Canadian areas.The new snow hydrology changes the annual cycle of the surface moisture and energy budgets in the model. There is a noticeable shift in the runoff maximum from winter in the control run to spring in the snow hydrology run. A substantial amount of GCM winter precipitation is now stored in the seasonal snow pack. Snow cover also acts as an important insulating layer between the atmosphere and the ground. Wintertime soil temperatures are much higher in the snow hydrology experiment than in the control experiment. Seasonal snow cover is important for dampening large fluctuations in GCM continental skin temperature during the Northern Hemisphere winter.Snow depths and snow extent show good agreement with observations over North America. The geographic distribution of maximum depths is not as well simulated by the model due, in part, to the coarse resolution of the model. The patterns of runoff are qualitatively and quantitatively similar to observed patterns of streamflow averaged over the continental United States. The seasonal cycles of precipitation and evaporation are also reasonably well simulated by the model, although their magnitudes are larger than is observed. This is due, in part, to a cold bias in this model, which results in a dry model atmosphere and enhances the hydrologic cycle everywhere.

  1. Evaluation of the SMAP model-simulated snow internal physical properties at Sapporo, Japan from 2005 to 2015

    NASA Astrophysics Data System (ADS)

    Niwano, Masashi; Aoki, Teruo; Kuchiki, Katsuyuki; Matoba, Sumito; Kodama, Yuji; Tanikawa, Tomonori

    2016-04-01

    Temporal evolution of snow internal physical properties such as grain size, density, temperature, and water content are controlled by changes in meteorological conditions. On the other hand, in a snow covered area, surface atmospheric conditions are modulated in response to variations of snow albedo, which is affected by (optically equivalent) snow grain size as well as mass concentration of snow impurities such as black carbon and dust. Therefore, it is necessary for snowpack models incorporated in climate models to simulate realistic snow internal physical properties to perform accurate future climate prediction especially in the cryosphere. In this study, we evaluated snow internal physical properties at Sapporo (43° 05'N, 141° 21'E, 15 m a.s.l.), Japan from 2005 to 2015 simulated with a 1-D multilayered physical snowpack model SMAP (Snow Metamorphism and Albedo Process). The model was driven by quality controlled 30-min averaged data for air temperature, relative humidity, wind speed, surface pressure, snow depth, downward and upward shortwave radiant flux, downward longwave radiant flux, and ground surface soil heat flux. Simulation results were compared against the data obtained from snow pit works performed twice a week at Sapporo. First of all, the model-simulated column integrated SWE (snow water equivalent) were compared against in-situ measurements (273 data were available during the 10 winters). The results show that the model tends to underestimate SWE (mean error; ME was -19 mm); however, root mean square error (RMSE) was 34 mm, and these scores are better than those for simulations driven by not snow depth but precipitation (ME was less than -25 mm and RMSE was more than 40 mm). It suggests that the correction technique for precipitation measurements considering catch efficiency of a rain gauge is still insufficient. Next, the model-simulated profiles for snow density and snow temperature were compared against in-situ measurements. For this purpose

  2. A physically based analytical spatial air temperature and humidity model

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Endreny, Theodore A.; Nowak, David J.

    2013-09-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat storage based on semiempirical functions and generates spatially distributed estimates based on inputs of topography, land cover, and the weather data measured at a reference site. The model assumes that for all grids under the same mesoscale climate, grid air temperature and humidity are modified by local variation in absorbed solar radiation and the partitioning of sensible and latent heat. The model uses a reference grid site for time series meteorological data and the air temperature and humidity of any other grid can be obtained by solving the heat flux network equations. PASATH was coupled with the USDA iTree-Hydro water balance model to obtain evapotranspiration terms and run from 20 to 29 August 2010 at a 360 m by 360 m grid scale and hourly time step across a 285 km2 watershed including the urban area of Syracuse, NY. PASATH predictions were tested at nine urban weather stations representing variability in urban topography and land cover. The PASATH model predictive efficiency R2 ranged from 0.81 to 0.99 for air temperature and 0.77 to 0.97 for dew point temperature. PASATH is expected to have broad applications on environmental and ecological models.

  3. Snow-atmosphere coupling in current and future climates over North America in the Canadian Regional Climate Model (CRCM5)

    NASA Astrophysics Data System (ADS)

    Tefera Diro, Gulilat; Sushama, Laxmi

    2016-04-01

    The influence of snow variation on climate variability over North America is assessed using the fifth generation of Canadian Regional Climate Model (CRCM5). For this, we first carried out a suite of CRCM5 simulations driven by ERA-Interim reanalysis, whereby the snow was either prescribed (uncoupled) or allowed to evolve interactively (coupled) during the model integration. Results indicate a systematic influence of snow on the inter-annual variability of air and surface temperature throughout winter and spring seasons. In the coupled simulations, where the snow depth and snow cover were allowed to evolve freely, the inter-annual variability of surface and near surface air temperatures were found to be larger and explains up to 70% of the surface temperature variation over northern Great Plains and Canadian Prairies. The impact of snow is found to be stronger in spring than in winter, since in spring season both albedo and hydrological effects contribute to the variability in temperature. To study projected changes to snow-atmosphere coupling in future climate, coupled and uncoupled CRCM5 simulations, driven by coupled GCMs, were performed, for current (1981-2010) and future (2071-2100) climates. Coupling regions in the GCM-driven current climate simulations are similar to those obtained with ERA-Interim driven CRCM5 simulations discussed above. In future climate, snow-temperature coupling shows some change in spatial structures and in magnitudes. These results suggest that accurate initialization of snow condition could potentially be helpful to improve seasonal prediction skill over these snow-atmosphere coupling hotspot regions.

  4. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  5. Sodankylä manual snow survey program

    NASA Astrophysics Data System (ADS)

    Leppänen, Leena; Kontu, Anna; Hannula, Henna-Reetta; Sjöblom, Heidi; Pulliainen, Jouni

    2016-05-01

    The manual snow survey program of the Arctic Research Centre of the Finnish Meteorological Institute (FMI-ARC) consists of numerous observations of natural seasonal taiga snowpack in Sodankylä, northern Finland. The easily accessible measurement areas represent the typical forest and soil types in the boreal forest zone. Systematic snow measurements began in 1909 with snow depth (HS) and snow water equivalent (SWE). In 2006 the manual snow survey program expanded to cover snow macro- and microstructure from regular snow pits at several sites using both traditional and novel measurement techniques. Present-day snow pit measurements include observations of HS, SWE, temperature, density, stratigraphy, grain size, specific surface area (SSA) and liquid water content (LWC). Regular snow pit measurements are performed weekly during the snow season. Extensive time series of manual snow measurements are important for the monitoring of temporal and spatial changes in seasonal snowpack. This snow survey program is an excellent base for the future research of snow properties.

  6. Improving Forecast Skill by Assimilation of AIRS Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The AIRS Version 5 retrieval algorithm, is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates delta T(p) for retrieved quantities and the use of these error estimates for Quality Control. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 deg. latitude X 0.67 deg longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates delta (p) were used as the uncertainty for each measurement in the data assimilation process. We compared forecasts analyses generated from the analyses done by assimilation of AIRS temperature profiles with three different sets of thresholds; Standard, Medium, and Tight. Assimilation of Quality Controlled AIRS temperature profiles significantly improve 5-7 day forecast skill compared to that obtained without the benefit of AIRS data in all of the cases studied. In addition, assimilation of Quality Controlled AIRS temperature soundings performs better than assimilation of AIRS observed radiances. Based on the experiments shown, Tight Quality Control of AIRS temperature profile performs best

  7. The Role of Terrestrial Snow Cover in the Climate System

    NASA Astrophysics Data System (ADS)

    Vavrus, S. J.

    2005-12-01

    Snow cover is known to exert a strong influence on the overlying atmosphere and underlying soil, but quantifying this impact is difficult. Besides its well-accepted ability to cool locally, snow cover can also force climate remotely in complex ways by inducing changes in the atmospheric circulation. Most research on the impact of snow cover has focused on the regional rather than global scale. By contrast, this study investigates the global impact of terrestrial snow cover in the present climate by comparing a pair of Community Climate System Model (CCSM3) simulations run with prognostic snow cover (control case) and with all snow cover on land eliminated (NOSNOWCOVER). In this experiment all snowfall over land was converted into liquid water-equivalent upon reaching the surface. Compared with the control run, NOSNOWCOVER produces mean-annual surface air temperatures up to 5 K higher over northern North America and Eurasia and 8 to 9 K greater in these regions during winter. The global-mean warming of 0.8 K in NOSNOWCOVER is nearly 1/3 as large as the simulated 2 x CO2 response. This pronounced surface heating dramatically increases geopotential heights throughout the troposphere: annual increases of up to 50 m occur at the 250 hPa level, along with even larger inflations during winter. Despite the large surface warming, the absence of an insulating snow pack causes soil temperatures in NOSNOWCOVER to fall throughout northern Asia and Canada, including extreme wintertime cooling of more than 20 K in Siberia and a 5 to 10o equatorward expansion of simulated permafrost. The absence of local melt-water percolation causes significantly drier soils over northern boreal regions and a consequent decrease in cloudiness. The removal of snow cover also drastically affects extreme weather in middle latitudes. Extreme cold-air outbreaks (CAOs), defined relative to the control simulation, essentially disappear in NOSNOWCOVER. The loss of CAOs appears to stem from both the local

  8. Diffusion of nitrogen oxides and oxygenated volatile organic compounds through snow

    NASA Astrophysics Data System (ADS)

    Bartels-Rausch, T.; Ammann, M.; Schneebeli, M.; Riche, F.; Wren, S. N.

    2013-12-01

    Release of trace gases from surface snow on Earth drives atmospheric chemistry, especially in the Polar Regions. The exchange of atmospheric trace gases between snow or firn and atmosphere can also determine how these species are incorporated into glacial ice, which serves as archive. At low wind conditions, such fluxes between the porous surface snow and the overlaying atmosphere are driven by diffusion through the interstitial air. Here we present results from two laboratory studies where we looked at how the structure of the snowpack, the interaction of the trace gases with the snow surface, and the grain boundaries influence the diffusion of NO, NO2, HONO, methanol, and acetone on time scales up to 1 h. The diffusion through a snow sample was the direct observable of the experiments. Results for different snow types are presented, the structures of which were analysed by means of X-ray computed micro-tomography. Grain boundary content was quantified in one sample using a stereological method. The observed diffusion profiles were very well reproduced in simulations based on gas-phase diffusion and the known structure of the snow sample at temperatures above 253 K. At colder temperatures surface interactions start to dominate the diffusion. Parameterizing these in terms of adsorption to the solid ice surface gave much better agreement to the observations than the use of air - liquid partitioning coefficients. This is a central result as field and modelling studies have indicated that the partitioning to liquid water might describe the diffusion through snow much better even at cold temperatures. This will be discussed using our recent results from surface sensitive spectroscopy experiments. No changes in the diffusion was observed by increasing the number of grain boundaries in the snow sample by a factor of 7.

  9. Interannual Variability of Snow Water Equivalent (SWE) over Western Himalayas

    NASA Astrophysics Data System (ADS)

    Tiwari, Sarita; Kar, Sarat C.; Bhatla, R.

    2016-04-01

    Considering the importance of snow and glaciers in the Himalayas for understanding the water cycle and for water resource management of the rivers originating from the Himalayan, interannual variability of snow accumulation process over Himalayas and surrounding region has been studied using snow water equivalent (SWE) data. Remote sensing data from National Snow and Ice Data Centre have been used. These data have been compared against ground (in situ) observations of SWE measured at several gauge stations in the Indian part of the Satluj River basin. Accumulated SWE from remote sensing data and ground observations in the Satluj River basin have good and significant correlation. These data have also been compared against the Climate Forecast System Reanalysis and the European Centre for Medium Range Weather Forecast reanalysis-Interim (ERA-I). Upper air and surface data from the reanalyses have also been used to examine the atmospheric conditions when snowfall occurs and snow accumulates for the season. In this study, it is found that there is large interannual variation in SWE over western Himalayas and Satluj River basin (domain of interest). During excess years of snowfall, strong westerly winds are observed at 500 hPa over India. In wind anomaly, a cyclonic circulation is seen over northern parts of India with a deep trough along Pakistan, Rajasthan and Gujarat region. As a consequence of this trough, a moisture convergence zone is established in the region leading to more amount of snowfall. At the same time, during excess snow accumulation years, the air temperature from the surface to 500 hPa is colder than other years enabling the fallen snow to accumulate through the season.

  10. Climatology of upper air temperature in the Eastern Mediterranean region

    NASA Astrophysics Data System (ADS)

    Philandras, C. M.; Nastos, P. T.; Kapsomenakis, I. N.; Repapis, C. C.

    2015-01-01

    The goal of this study is to contribute to the climatology of upper air temperature in the Mediterranean region, during the period 1965-2011. For this purpose, both radiosonde recordings and gridded reanalysis datasets of upper air temperature from National Center for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) were used for seven barometric levels at 850 hPa, 700 hPa, 500 hPa, 300 hPa, 200 hPa, 150 hPa and 100 hPa. Trends and variability of upper air temperature were analyzed on annual and seasonal basis. Further, the impact of atmospheric circulation, by means of correlation between upper air temperature at different barometric levels and specific climatic indices such as Mediterranean Oscillation Index (MOI), North Sea Caspian Pattern Index (NCPI) and North Atlantic Oscillation Index (NAOI), was also quantified. Our findings have given evidence that air temperature is increasing at a higher rate in lower/middle troposphere against upper, and this is very likely due to increasing greenhouse gas concentrations.

  11. The value of snow cover

    NASA Astrophysics Data System (ADS)

    Sokratov, S. A.

    2009-04-01

    Snow is the natural resource, like soil and water. It has specific properties which allow its use not just for skiing but also for houses cooling in summer (Swedish experience), for air fields construction (Arctic and Antarctic), for dams (north of Russia), for buildings (not only snow-houses of some Polar peoples but artistic hotel attracting tourists in Sweden), and as art material (Sapporo snow festival, Finnish events), etc. "Adjustment" of snow distribution and amount is not only rather common practice (avalanche-protection constructions keeping snow on slopes) but also the practice with long history. So-called "snow irrigation" was used in Russia since XIX century to protect winter crop. What is now named "artificial snow production", is part of much larger pattern. What makes it special—it is unavoidable in present climate and economy situation. 5% of national income in Austria is winter tourism. 50% of the economy in Savoy relay on winter tourism. In terms of money this can be less, but in terms of jobs and income involved this would be even more considerable in Switzerland. As an example—the population of Davos is 14000 in Summer and 50000 in Winter. Skiing is growing business. In present time you can find ski slopes in Turkey and Lebanon. To keep a cite suitable for attracting tourists you need certain amount of sunny days and certain amount of snow. The snow cannons are often the only way to keep a place running. On the other hand, more artificial snow does not necessary attract more tourists, while heavy natural snowfall does attract them. Artificial snow making is costly and requires infrastructure (ponds and electric lines) with very narrow range of weather conditions. Related companies are searching for alternatives and one of them can be "weather regulation" by distribution of some chemical components in clouds. It did not happen yet, but can happen soon. The consequences of such interference in Nature is hardly known. The ski tourism is not the

  12. Forward-looking Assimilation of MODIS-derived Snow Covered Area into a Land Surface Model

    NASA Technical Reports Server (NTRS)

    Zaitchik, Benjamin F.; Rodell, Matthew

    2008-01-01

    Snow cover over land has a significant impact on the surface radiation budget, turbulent energy fluxes to the atmosphere, and local hydrological fluxes. For this reason, inaccuracies in the representation of snow covered area (SCA) within a land surface model (LSM) can lead to substantial errors in both offline and coupled simulations. Data assimilation algorithms have the potential to address this problem. However, the assimilation of SCA observations is complicated by an information deficit in the observation SCA indicates only the presence or absence of snow, and not snow volume and by the fact that assimilated SCA observations can introduce inconsistencies with atmospheric forcing data, leading to non-physical artifacts in the local water balance. In this paper we present a novel assimilation algorithm that introduces MODIS SCA observations to the Noah LSM in global, uncoupled simulations. The algorithm utilizes observations from up to 72 hours ahead of the model simulation in order to correct against emerging errors in the simulation of snow cover while preserving the local hydrologic balance. This is accomplished by using future snow observations to adjust air temperature and, when necessary, precipitation within the LSM. In global, offline integrations, this new assimilation algorithm provided improved simulation of SCA and snow water equivalent relative to open loop integrations and integrations that used an earlier SCA assimilation algorithm. These improvements, in turn, influenced the simulation of surface water and energy fluxes both during the snow season and, in some regions, on into the following spring.

  13. Sensitivity analysis of artificial neural network (ANN) brightness temperature predictions over snow-covered regions in North America using the Advanced Microwave Sounding Radiometer (AMSR-E) from 2002 to 2011

    NASA Astrophysics Data System (ADS)

    Xue, Y.; Forman, B. A.

    2013-12-01

    Snow is a significant contributor to the earth's hydrologic cycle, energy cycle, and climate system. Further, up to 80% of freshwater supply in the western United States originates as snow (and ice). Characterization of the mass of snow, or snow water equivalent (SWE), across regional and continental scales has commonly been conducted using satellite-based passive microwave (PMW) brightness temperatures (Tb) within a SWE retrieval algorithm. However, SWE retrievals often suffer from deficiencies related to deep snow, wet snow, snow evolution, snow aging, overlying vegetation, surface and internal ice lenses, depth hoar, and sub-grid scale lakes. As an alternative to SWE retrievals, this study explores the potential for using PMW Tb and machine learning within a data assimilation framework. An artificial neural network (ANN) is presented for eventual use as an observation operator to map the land surface model states into Tb space. This study explores the sensitivity of an ANN as a computationally efficient measurement model operator for the prediction of PMW Tb across North America. The analysis employs normalized sensitivity coefficients and a one-at-a-time approach such that each of the 11 different inputs could be examined separately in order to quantify the impact of perturbations to each input on the multi-frequency, multi-polarization Tb output from the ANN. Spatiotemporal variability in the Tb predictions across regional spatial scales and seasonal timescales is investigated from 2002 to 2011. Preliminary results suggest ANN-based Tb predictions are sensitive to certain snow states, such as SWE, snow density, and snow temperature in non-vegetated or sparsely vegetated regions. Further, sensitivity of ANN prediction of ΔTb=Tb, 18v*-Tb, 36v* to changes in SWE suggest the likelihood for success when the ANN is eventually implemented into a data assimilation framework. Despite the promise in these initial results, challenges remain at enhancing ANN sensitivity

  14. Snow hydrology in a general circulation model

    NASA Technical Reports Server (NTRS)

    Marshall, Susan; Roads, John O.; Glatzmaier, Gary

    1994-01-01

    A snow hydrology has been implemented in an atmospheric general circulation model (GCM). The snow hydrology consists of parameterizations of snowfall and snow cover fraction, a prognostic calculation of snow temperature, and a model of the snow mass and hydrologic budgets. Previously, only snow albedo had been included by a specified snow line. A 3-year GCM simulation with this now more complete surface hydrology is compared to a previous GCM control run with the specified snow line, as well as with observations. In particular, the authors discuss comparisons of the atmospheric and surface hydrologic budgets and the surface energy budget for U.S. and Canadian areas. The new snow hydrology changes the annual cycle of the surface moisture and energy budgets in the model. There is a noticeable shift in the runoff maximum from winter in the control run to spring in the snow hydrology run. A substantial amount of GCM winter precipitation is now stored in the seasonal snowpack. Snow cover also acts as an important insulating layer between the atmosphere and the ground. Wintertime soil temperatures are much higher in the snow hydrology experiment than in the control experiment. Seasonal snow cover is important for dampening large fluctuations in GCM continental skin temperature during the Northern Hemisphere winter. Snow depths and snow extent show good agreement with observations over North America. The geographic distribution of maximum depths is not as well simulated by the model due, in part, to the coarse resolution of the model. The patterns of runoff are qualitatively and quantitatively similar to observed patterns of streamflow averaged over the continental United States. The seasonal cycles of precipitation and evaporation are also reasonably well simulated by the model, although their magnitudes are larger than is observed. This is due, in part, to a cold bias in this model, which results in a dry model atmosphere and enhances the hydrologic cycle everywhere.

  15. Heat tolerance of higher plants cenosis to damaging air temperatures

    NASA Astrophysics Data System (ADS)

    Ushakova, Sofya; Shklavtsova, Ekaterina

    Designing sustained biological-technical life support systems (BTLSS) including higher plants as a part of a photosynthesizing unit, it is important to foresee the multi species cenosis reaction on either stress-factors. Air temperature changing in BTLSS (because of failure of a thermoregulation system) up to the values leading to irreversible damages of photosynthetic processes is one of those factors. However, it is possible to increase, within the certain limits, the plant cenosis tolerance to the unfavorable temperatures’ effect due to the choice of the higher plants possessing resistance both to elevated and to lowered air temperatures. Besides, the plants heat tolerance can be increased when subjecting them during their growing to the hardening off temperatures’ effect. Thus, we have come to the conclusion that it is possible to increase heat tolerance of multi species cenosis under the damaging effect of air temperature of 45 (°) СC.

  16. Innovative coal gasification system with high temperature air

    SciTech Connect

    Yoshikawa, K.; Katsushima, H.; Kasahara, M.; Hasegawa, T.; Tanaka, R.; Ootsuka, T.

    1997-12-31

    This paper proposes innovative coal gasification power generation systems where coal is gasified with high temperature air of about 1300K produced by gasified coal fuel gas. The main features of these systems are high thermal efficiency, low NO{sub x} emission, compact desulfurization and dust removal equipment and high efficiency molten slag removal with a very compact gasifier. Recent experimental results on the pebble bed coal gasifier appropriate for high temperature air coal gasification are reported, where 97.7% of coal ash is successfully caught in the pebble bed and extracted without clogging. A new concept of high temperature air preheating system is proposed which is characterized by its high reliability and low cost.

  17. The role of subsurface soil temperature feedbacks in summer surface air temperature variability over East Asia

    NASA Astrophysics Data System (ADS)

    Zhang, J.

    2012-12-01

    Soil temperature, an important component of land surface, can influence the climate through its effects on surface energy and water budgets and resulted changes in regional atmospheric circulation. However, the effects of soil temperature on climate variations have been less discussed. This study investigates the role of subsurface soil temperature feedbacks in influencing summer surface air temperature variability over East Asia by means of regional climate model (RCM) simulations. For this aim, two long-term simulations with and without subsurface soil temperature feedbacks are performed with the Weather Research and Forecasting (WRF) model. From our investigation, it is evident that subsurface soil temperature feedbacks make a dominant contribution to amplifying summer surface air temperature variability over the arid/semi-arid regions. Further analysis reveals that subsurface soil temperature exhibits an asymmetric effect on summer daytime and nighttime surface air temperature variability, with a stronger effect on daily minimum temperature variability than that of daily maximum temperature variability. This study provides the first RCM-based demonstration that subsurface soil temperature feedbacks play an important role in influencing climate variability over East Asia, such as summer surface air temperature. In the meanwhile, the model bias should be recognized. The results achieved by this study thus need to be further confirmed in a multi-model framework to eliminate the model dependence.

  18. Passive radiative cooling below ambient air temperature under direct sunlight.

    PubMed

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day. PMID:25428501

  19. Snow metamorphism: A fractal approach.

    PubMed

    Carbone, Anna; Chiaia, Bernardino M; Frigo, Barbara; Türk, Christian

    2010-09-01

    Snow is a porous disordered medium consisting of air and three water phases: ice, vapor, and liquid. The ice phase consists of an assemblage of grains, ice matrix, initially arranged over a random load bearing skeleton. The quantitative relationship between density and morphological characteristics of different snow microstructures is still an open issue. In this work, a three-dimensional fractal description of density corresponding to different snow microstructure is put forward. First, snow density is simulated in terms of a generalized Menger sponge model. Then, a fully three-dimensional compact stochastic fractal model is adopted. The latter approach yields a quantitative map of the randomness of the snow texture, which is described as a three-dimensional fractional Brownian field with the Hurst exponent H varying as continuous parameters. The Hurst exponent is found to be strongly dependent on snow morphology and density. The approach might be applied to all those cases where the morphological evolution of snow cover or ice sheets should be conveniently described at a quantitative level. PMID:21230135

  20. Changes in Snow Cover Characteristics over Northern Eurasia since 1966

    NASA Astrophysics Data System (ADS)

    Bulygina, Olga; Groisman, Pavel; Razuvaev, Vyacheslav; Korshunova, Natalia

    2010-05-01

    Data. In addition to a standard suite of snow observations across Northern Eurasia and its surroundings, we used in our study the national snow survey data set archived at the Russian Institute for Hydrometeorological Information. The last dataset has routine snow surveys run throughout the cold season each decade (during the intense snowmelt, each 5 days) at all meteorological stations of the former USSR, thereafter, in Russia since 1966. Prior to 1966 snow surveys are also available but the methodology of observations has substantially changed at that year. Therefore, this analysis includes only data of more than1000 Russian stations from 1966 to 2009 that have a minimal number of missing observations. Surveys run separately along all types of environment typical for the site for 1 to 2 km, describing the current snow cover properties such as snow density, depth, water equivalent, and characteristics of snow and ice crust. Background. During the past 128 years (since 1881), the annual surface air temperature in Northern Eurasia has increased by 1.5° C and in the winter season by 3° C. Nearby to the north in the Arctic Ocean, the late summer sea ice extent decreased by 40% exposing a near-infinite source of water vapor for the dry Arctic atmosphere in early cold season months. As a result of these processes the following changes in snow cover characteristics have been observed: (a) in autumn the dates of the onset of snow cover have not changed noticeably despite the strong temperature increase in this season; (b) in late spring, snow cover extent has decreased, retreating by 1 to 2 weeks earlier during the past 40 years; and (c) in the cold season maximum snow depth and SWE (at open areas) have increased over most of Russia. In the western half of Eurasian continent days with thaw became more frequent. Snowmelt duration and ice crust changes. Over Northern Eurasia, the snowmelt process can be lengthy but even the first such melt initiates a process of snow

  1. Emission Controls Using Different Temperatures of Combustion Air

    PubMed Central

    Holubčík, Michal; Papučík, Štefan

    2014-01-01

    The effort of many manufacturers of heat sources is to achieve the maximum efficiency of energy transformation chemically bound in the fuel to heat. Therefore, it is necessary to streamline the combustion process and minimize the formation of emission during combustion. The paper presents an analysis of the combustion air temperature to the heat performance and emission parameters of burning biomass. In the second part of the paper the impact of different dendromass on formation of emissions in small heat source is evaluated. The measured results show that the regulation of the temperature of the combustion air has an effect on concentration of emissions from the combustion of biomass. PMID:24971376

  2. Evaluation of North Eurasian snow-off dates in the ECHAM5.4 atmospheric general circulation model

    NASA Astrophysics Data System (ADS)

    Räisänen, P.; Luomaranta, A.; Järvinen, H.; Takala, M.; Jylhä, K.; Bulygina, O. N.; Luojus, K.; Riihelä, A.; Laaksonen, A.; Koskinen, J.; Pulliainen, J.

    2014-12-01

    The timing of springtime end of snowmelt (snow-off date) in northern Eurasia in version 5.4 of the ECHAM5 atmospheric general circulation model (GCM) is evaluated through comparison with a snow-off date data set based on space-borne microwave radiometer measurements and with Russian snow course data. ECHAM5 reproduces well the observed gross geographical pattern of snow-off dates, with earliest snow-off (in March) in the Baltic region and latest snow-off (in June) in the Taymyr Peninsula and in northeastern parts of the Russian Far East. The primary biases are (1) a delayed snow-off in southeastern Siberia (associated with too low springtime temperature and too high surface albedo, in part due to insufficient shielding by canopy); and (2) an early bias in the western and northern parts of northern Eurasia. Several sensitivity experiments were conducted, where biases in simulated atmospheric circulation were corrected through nudging and/or the treatment of surface albedo was modified. While this alleviated some of the model biases in snow-off dates, 2 m temperature and surface albedo, especially the early bias in snow-off in the western parts of northern Eurasia proved very robust and was actually larger in the nudged runs. A key issue underlying the snow-off biases in ECHAM5 is that snowmelt occurs at too low temperatures. Very likely, this is related to the treatment of the surface energy budget. On one hand, the surface temperature Ts is not computed separately for the snow-covered and snow-free parts of the grid cells, which prevents Ts from rising above 0 °C before all snow has vanished. Consequently, too much of the surface net radiation is consumed in melting snow and too little in heating the air. On the other hand, ECHAM5 does not include a canopy layer. Thus, while the albedo reduction due to canopy is accounted for, the shielding of snow on ground by the overlying canopy is not considered, which leaves too much solar radiation available for melting snow.

  3. Snow multivariable data assimilation for hydrological predictions in mountain areas

    NASA Astrophysics Data System (ADS)

    Piazzi, Gaia; Campo, Lorenzo; Gabellani, Simone; Rudari, Roberto; Castelli, Fabio; Cremonese, Edoardo; Morra di Cella, Umberto; Stevenin, Hervé; Ratto, Sara Maria

    2016-04-01

    The seasonal presence of snow on alpine catchments strongly impacts both surface energy balance and water resource. Thus, the knowledge of the snowpack dynamics is of critical importance for several applications, such as water resource management, floods prediction and hydroelectric power production. Several independent data sources provide information about snowpack state: ground-based measurements, satellite data and physical models. Although all these data types are reliable, each of them is affected by specific flaws and errors (respectively dependency on local conditions, sensor biases and limitations, initialization and poor quality forcing data). Moreover, there are physical factors that make an exhaustive reconstruction of snow dynamics complicated: snow intermittence in space and time, stratification and slow phenomena like metamorphism processes, uncertainty in snowfall evaluation, wind transportation, etc. Data Assimilation (DA) techniques provide an objective methodology to combine observational and modeled information to obtain the most likely estimate of snowpack state. Indeed, by combining all the available sources of information, the implementation of DA schemes can quantify and reduce the uncertainties of the estimations. This study presents SMASH (Snow Multidata Assimilation System for Hydrology), a multi-layer snow dynamic model, strengthened by a robust multivariable data assimilation algorithm. The model is physically based on mass and energy balances and can be used to reproduce the main physical processes occurring within the snowpack: accumulation, density dynamics, melting, sublimation, radiative balance, heat and mass exchanges. The model is driven by observed forcing meteorological data (air temperature, wind velocity, relative air humidity, precipitation and incident solar radiation) to provide a complete estimate of snowpack state. The implementation of an Ensemble Kalman Filter (EnKF) scheme enables to assimilate simultaneously ground

  4. Variability of Winter Air Temperature in Mid-Latitude Europe

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Ardizzone, J.; Atlas, R.; Bungato, D.; Cierniewski, J.; Jusem, J. C.; Przybylak, R.; Schubert, S.; Starr, D.; Walczewski, J.

    2002-01-01

    The aim of this paper is to report extreme winter/early-spring air temperature (hereinafter temperature) anomalies in mid-latitude Europe, and to discuss the underlying forcing to these interannual fluctuations. Warm advection from the North Atlantic in late winter controls the surface-air temperature, as indicated by the substantial correlation between the speed of the surface southwesterlies over the eastern North Atlantic (quantified by a specific Index Ina) and the 2-meter level air temperatures (hereinafter Ts) over Europe, 45-60 deg N, in winter. In mid-March and subsequently, the correlation drops drastically (quite often it is negative). This change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature: absorption of insolation replaces the warm advection as the dominant control. This forcing by maritime-air advection in winter was demonstrated in a previous publication, and is re-examined here in conjunction with extreme fluctuations of temperatures in Europe. We analyze here the interannual variability at its extreme by comparing warm-winter/early-spring of 1989/90 with the opposite scenario in 1995/96. For these two December-to-March periods the differences in the monthly mean temperature in Warsaw and Torun, Poland, range above 10 C. Short-term (shorter than a month) fluctuations of the temperature are likewise very strong. We conduct pentad-by-pentad analysis of the surface-maximum air temperature (hereinafter Tmax), in a selected location, examining the dependence on Ina. The increased cloudiness and higher amounts of total precipitable water, corollary effects to the warm low-level advection. in the 1989/90 winter, enhance the positive temperature anomalies. The analysis of the ocean surface winds is based on the Special Sensor Microwave/Imager (SSM/I) dataset; ascent rates, and over land wind data are from the European Centre for Medium-Range Weather Forecasts (ECMWF); maps of 2-m temperature, cloud

  5. A 7-year dataset for driving and evaluating snow models at an Arctic site (Sodankylä, Finland)

    NASA Astrophysics Data System (ADS)

    Essery, Richard; Kontu, Anna; Lemmetyinen, Juha; Dumont, Marie; Ménard, Cécile B.

    2016-06-01

    Datasets derived from measurements at Sodankylä, Finland, for driving and evaluating snow models are presented. This is the first time that such complete datasets have been made available for a site in the Arctic. The continuous October 2007-September 2014 driving data comprise all of the meteorological variables required as inputs for physically based snow models at hourly intervals: incoming solar and longwave radiation, snowfall and rainfall rates, air temperature, humidity, wind speed and atmospheric pressure. Two versions of the driving data are provided: one using radiation and wind speed measurements made above the height of the trees around the clearing where the evaluation data were measured and one with adjustments for the influence of the trees on conditions close to the ground. The available evaluation data include automatic and manual measurements of bulk snow depth and snow water equivalent, and profiles of snow temperature, snow density and soil temperature. A physically based snow model is driven and evaluated with the datasets to illustrate their utility. Shading by trees is found to extend the duration of both modelled and observed snow cover on the ground by several days a year.

  6. Potential of a low-cost sensor network to understand the spatial and temporal dynamics of a mountain snow cover

    NASA Astrophysics Data System (ADS)

    Pohl, Stefan; Garvelmann, Jakob; Wawerla, Jens; Weiler, Markus

    2014-03-01

    The spatial and temporal dynamics of seasonal snow covers play a critical role for many hydrological, ecological, and climatic processes. This paper presents a new, innovative approach to continuously monitor these dynamics using numerous low-cost, standalone snow monitoring stations (SnoMoS). These stations provide snow and related meteorological data with a high temporal and spatial resolution. Data collected by SnoMoS include: snow depth, surface temperature, air temperature and humidity, total precipitation, global radiation, wind speed, and barometric pressure. A total of 99 sensors were placed over the winters 2010/2011 and 2011/2012 at multiple locations within three 40-180 km2 basins in the Black Forest region of Southern Germany. The locations were chosen to cover a wide range of slopes, elevations, and expositions in a stratified sampling design. Furthermore, "paired stations" located in close proximity to each other, one in the open and one underneath various forest canopies, were set up to investigate the influence of vegetation on snow dynamics. The results showed that considerable differences in snow depth and, therefore, snow water equivalent (SWE) are present within the study area despite its moderate temperatures and medium elevation range (400-1500 m). The relative impact of topographical factors like elevation, aspect, and of different types of forest vegetation were quantified continuously and were found to change considerably over the winter period. The recorded differences in SWE and snow cover duration were large enough that they should be considered in hydrologic and climate models.

  7. 1D Chemical Modeling of coupled snow-atmosphere chemistry at Dome C Antarctica

    NASA Astrophysics Data System (ADS)

    Gil, Jaime E.; Thomas, Jennie; von Glasgow, Roland; Bekki, Slimane; Kukui, Alexandre; Frey, Markus; Jourdain, Bruno; Kerbrat, Michel; Genthon, Christophe; Preuknert, Susanne; Legrand, Michel

    2013-04-01

    High levels of nitrogen oxides NOx (NOx=NO+NO2) generated by the photolysis of nitrate present in surface snow profoundly impact atmospheric composition and oxidizing capacity in the Antarctic boundary layer. In particular, NOx emissions from sunlit snow increase OH values by effectively recycling HO2 to OH. In order to better characterize this chemistry the OPALE campaign was conducted in December 2011/January 2012 at Dome C, Antarctica (altitude of 3,233 meters, 75 ° S, 123 ° E). The campaign included boundary layer profiling, measurements of the physical properties of snow, as well as a comprehensive suite of atmospheric chemistry measurements (including NOx, HONO, OH and RO2, H2O2, CH2O, O3). We present results using the 1-D coupled snow-boundary layer model MISTRA-SNOW in combination with observations made during the measurement campaign to understand this chemistry. The model includes both chemistry at the surface of snow grains (aqueous chemistry), in firn air (gas phase chemistry), and gas/aerosol chemistry in the boundary layer. Model predictions of NOx mixing ratios using a model sensitivity analysis approach are presented. The model was initialized using measured snow properties, including temperature, density, and snow grain size. In addition, the model dynamics are driven using the measured surface temperature at Dome C. To calculate the rate of snowpack ventilation, measured wind speeds during the campaign were used. The model was run varying the amount of nitrate and bromide available for reaction at the surface of snow grains and results are compared to measurements made in the atmospheric boundary from 2-4 January 2012. We test the hypothesis that very low concentrations of bromine may alter the ratio of NO/NO2. We also investigate the influence of NOx emissions from snow, and bromine (if present), on OH concentrations in the boundary layer on the Antarctic plateau.

  8. Pulsed positive streamer discharges in air at high temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Kamakura, Taku

    2016-08-01

    Atmospheric-pressure air pulsed positive streamer discharges are generated in a 13 mm point-plane gap in the temperature range of 293 K–1136 K, and the effect of temperature on the streamer discharges is studied. When the temperature is increased, the product of applied voltage and temperature VT proportional to the reduced electric field can be used as a primary parameter that determines some discharge parameters regardless of temperature. For a given VT, the transferred charge per pulse, streamer diameter, product of discharge energy and temperature, and length of secondary streamer are almost constant regardless of T, whereas the streamer velocity decreases with increasing T and the decay rate of the discharge current is proportional to 1/T. The N2(C) emission intensity is approximately determined by the discharge energy independent of T. These results are useful to predict the streamer discharge and its reactive species production when the ambient temperature is increased.

  9. Brief communication "Snow profile associated measurements (SPAM) - a new instrument for quick snow profile measurements"

    NASA Astrophysics Data System (ADS)

    Lahtinen, P.

    2011-06-01

    A new instrument concept (SPAM) for snow profile associated measurements is presented. The potential of the concept is demonstrated by presenting preliminary results obtained with the prototype instrument. With this concept it is possible to retrieve rapid snow profiles of e.g. light extinction, reflectance, temperature and snow layer structure with high vertical resolution. As a side-product, also snow depth is retrieved.

  10. Effects of air flow directions on composting process temperature profile

    SciTech Connect

    Kulcu, Recep; Yaldiz, Osman

    2008-07-01

    In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO{sub 2} and O{sub 2} ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperature distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2.

  11. Temperature gradients and clear-air turbulence probabilities

    NASA Technical Reports Server (NTRS)

    Bender, M. A.; Panofsky, H. A.; Peslen, C. A.

    1976-01-01

    In order to forecast clear-air turbulence (CAT) in jet aircraft flights, a study was conducted in which the data from a special-purpose instrument aboard a Boeing 747 jet airliner were compared with satellite-derived radiance gradients, conventional temperature gradients from analyzed maps, and temperature gradients obtained from a total air temperature sensor on the plane. The advantage of making use of satellite-derived data is that they are available worldwide without the need for radiosonde observations, which are scarce in many parts of the world. Major conclusions are that CAT probabilities are significantly higher over mountains than flat terrain, and that satellite radiance gradients appear to discriminate between CAT and no CAT better than conventional temperature gradients over flat lands, whereas the reverse is true over mountains, the differences between the two techniques being not large over mountains.

  12. Comparison of AMSR-E and SSM/I snow parameter retrievals over the Ob river basin

    USGS Publications Warehouse

    Mognard, N.M.; Grippa, M.; LeToan, T.; Kelly, R.E.J.; Chang, A.T.C.; Josberger, E.G.

    2004-01-01

    Passive microwave observations from the Advanced Microwave Scanning Radiometer - EOS (AMSR-E) and from the Special Sensor Microwave Imager (SSM/I) are used to analyse the evolution of the snow pack in the Ob river basin during the snow season of 2002-03. The Ob river is the biggest Russian river with respect to its watershed area (2 975 000 km2). The Ob originates in the Altai mountains and flows northward across the vast West Siberian lowland towards the Arctic Ocean. The majority of snow cover is contained in the lowlands rather than in mountainous regions and persists for six months or more. During the snow season, surface air temperatures are very cold. Therefore, the combination of cold dry snow and large areas of uniform topography is ideal for snowpack extent and water equivalent retrievals from passive microwave observations. The thermal gradient through the snow pack is estimated and used to model the growth of the snow grain size and to compute the evolution of the passive microwave derived snow depth over the region. A comparison between the AMSR-E and SSM/I estimates is performed and the differences between the snow parameters from the two satellite instruments are analysed.

  13. Coupling Between Air and Ground Temperatures in PMIP3/CMIP5 Last Millennium Simulations and the Implications for Climate Reconstructions from Borehole Temperature Profiles

    NASA Astrophysics Data System (ADS)

    Beltrami, H.; García-García, A.; Cuesta-Valero, F. J.; Smerdon, J. E.

    2015-12-01

    The continental energy storage for the second half of the 20th20^{th} century has been estimated from geothermal data to be about 7±1×1021J7 ± 1 × 10^{21} J under the assumption that there exists a long-term coupling between the lower atmosphere and the continental subsurface. For General Circulation Models (GCMs) to simulate the continental energy storage of the Earth's energy budget, however, it is crucial that they correctly capture the processes that partition energy across the land-atmosphere boundary. We evaluate herein the characteristics of these processes as simulated by models in the third phase of the Paleoclimate Modelling Intercomparison Project and the fifth phase of the Coupled Model Intercomparison Project (PMIP33/CMIP55). We examine the seasonal differences between air and ground temperatures within PMIP3 last-millennium simulations concatenated with historical simulations from the CMIP5 archive. We find a strong air-ground coupling during the summer from 850850 to 20002000 CE. During the winter, the insulating effect of snow and latent heat exchanges produce a decoupling between air and ground temperatures in the northern high latitudes. These seasonal differences decrease with depth, supporting the central assumption of climate reconstructions from borehole temperature profiles. Additionally, we use the simulated temperature trends as an upper boundary condition to force a one-dimensional conductive model to derive synthetic temperature-depth profiles for each PMIP3/CMIP5 simulation. The inversions of these subsurface profiles yield temperature trends that retain the surface temperature variations of the last millennium for all the PMIP3/CMIP5 simulations. These results support the use of underground temperatures to reconstruct past changes in ground surface temperature and to estimate the continental energy storage. Results also provide guidance for improving the land-surface components of GCMs.

  14. The Effects of Air Pollution and Temperature on COPD.

    PubMed

    Hansel, Nadia N; McCormack, Meredith C; Kim, Victor

    2016-06-01

    Chronic Obstructive Pulmonary Disease (COPD) affects 12-16 million people in the United States and is the third-leading cause of death. In developed countries, smoking is the greatest risk factor for the development of COPD, but other exposures also contribute to the development and progression of the disease. Several studies suggest, though are not definitive, that outdoor air pollution exposure is linked to the prevalence and incidence of COPD. Among individuals with COPD, outdoor air pollutants are associated with loss of lung function and increased respiratory symptoms. In addition, outdoor air pollutants are also associated with COPD exacerbations and mortality. There is much less evidence for the impact of indoor air on COPD, especially in developed countries in residences without biomass exposure. The limited existing data suggests that indoor particulate matter and nitrogen dioxide concentrations are linked to increased respiratory symptoms among patients with COPD. In addition, with the projected increases in temperature and extreme weather events in the context of climate change there has been increased attention to the effects of heat exposure. Extremes of temperature-both heat and cold-have been associated with increased respiratory morbidity in COPD. Some studies also suggest that temperature may modify the effect of pollution exposure and though results are not conclusive, understanding factors that may modify susceptibility to air pollution in patients with COPD is of utmost importance. PMID:26683097

  15. Experimental and theoretical analysis results for high temperature air combustion

    SciTech Connect

    Tanigawa, Tadashi; Morita, Mitsunobu

    1998-07-01

    With Japan's preparation of its Action program to prevent global warming in 1990 and the holding of the United National Conference on Environment and Development (the Earth Summit) in 1992 as a backdrop, reflecting the global effort to protect the environment, a high performance industrial furnace development project was launched in 1993 by the New Energy and Industrial Technology Development Organization (NEDO). This project focuses on the development of a combustion technology which uses air that is preheated to extremely high temperatures (above 1,000 C), heretofore considered impossible. Not only can this technology reduce carbon dioxide emission, thought to cause the greenhouse effect, by over 30%, but it can also reduce nitrogen oxide emission by nearly half. This new technology makes use of the recently-developed high-cycle regenerative heat exchanger, for preheating the furnace air supply. This exchanger preheats air to above 1,000 C, much higher than for conventional furnaces, and then this air is injected with fuel. R and D data have shown that CO{sub 2} and NO{sub x} emissions can be reduced markedly. However, the theoretical analysis is yet to be made, thereby hampering efforts to have this advanced technology become widely adopted. This project accumulated new data related to uniform temperature distribution, high energy heat transfer and low NO{sub x} as common characteristics of high temperature air combustion.

  16. Flame Speeds of Methane-Air, Propane-Air, and Ethylene-Air Mixtures at Low Initial Temperatures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L; Heimel, Sheldon

    1952-01-01

    Flame speeds were determined for methane-air, propane-air, and ethylene-air mixtures at -73 C and for methane-air mixtures at -132 C. The data extend the curves of maximum flame speed against initial mixture temperature previously established for the range from room temperature to 344 C. Empirical equations for maximum flame speed u(cm/ sec) as a function of initial mixture temperature T(sub O) were determined to be as follows: for methane, for T(sub O) from 141 to 615 K, u = 8 + 0.000160 T(sub O)(exp 2.11); for propane, for T(sub O) from 200 to 616 K, u = 10 + 0.000342 T(sub O)(exp 2.00); for ethylene, for T(sub O) from 200 to 617 K, u = 10 + 0.00259 T(sub O)(exp 1.74). Relative flame speeds at low initial temperatures were predicted within approximately 20 percent by either the thermal theory as presented by Semenov or by the diffusion theory of Tanford and Pease. The same order was found previously for high initial temperatures. The low-temperature data were also found to extend the linear correlations between maximum flame speed and calculated equilibrium active-radical concentrations, which were established by the previously reported high-temperature data.

  17. Effects of the El Niño-southern oscillation on temperature, precipitation, snow water equivalent and resulting streamflow in the Upper Rio Grande river basin

    NASA Astrophysics Data System (ADS)

    Lee, Songweon; Klein, Andrew; Over, Thomas

    2004-04-01

    Snowmelt runoff dominates streamflow in the Upper Rio Grande (URG) basin of New Mexico and Colorado. Annual variations in streamflow timing and volume at most stations in the region are strongly influenced by the El Niño-southern oscillation (ENSO) through its modulation of the seasonal cycles of temperature and precipitation, and hence on snow accumulation and melting. After removing long-term trends over the study period (water years 1952-99), the dependence of monthly temperature, precipitation, snow water equivalent (SWE) at snowcourse stations, and streamflow throughout the URG on ENSO was investigated using composite analyses of the detrended residuals and through dependence of the residuals on the Climate Prediction Center southern oscillation index during the preceding summer and fall. The climate of La Niña years was found to differ significantly from either El Niño or neutral years. Moreover, significant climatological ENSO-related effects are confined to certain months, predominantly at the beginning and end of the winter season. In particular, March of La Niña years is significantly warmer and drier than during either El Niño or neutral years, and November of El Niño years is significantly colder and wetter. Differences in temperature and precipitation lead to significant differences in SWE and streamflow in the URG between the three ENSO phases.

  18. Geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppälä, A.; Randall, C. E.; Clilverd, M. A.; Rozanov, E.; Rodger, C. J.

    2009-10-01

    Here we use the ERA-40 and ECMWF operational surface level air temperature data sets from 1957 to 2006 to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the A p index. Previous modeling work has suggested that NO x produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in surface air temperatures (SATs). We find that during winter months, polar SATs in years with high A p index are different than in years with low A p index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, depending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings (SSWs) are excluded. We take into account solar irradiance variations, unlike previous analyses of geomagnetic effects in ERA-40 and operational data. Although we cannot conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating wintertime surface air temperatures. We tested our SAT results against variation in the Quasi Biennial Oscillation, the El Niño Southern Oscillation and the Southern Annular Mode. The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode, and we cannot robustly exclude a chance linkage between sea surface temperature variability and geomagnetic activity.

  19. Drier Air, Lower Temperatures, and Triggering of Paroxysmal Atrial Fibrillation

    PubMed Central

    Nguyen, Jennifer L.; Link, Mark S.; Luttmann-Gibson, Heike; Laden, Francine; Schwartz, Joel; Wessler, Benjamin S.; Mittleman, Murray A.; Gold, Diane R.; Dockery, Douglas W.

    2015-01-01

    Background The few previous studies on the onset of paroxysmal atrial fibrillation and meteorologic conditions have focused on outdoor temperature and hospital admissions, but hospital admissions are a crude indicator of atrial fibrillation incidence, and studies have found other weather measures in addition to temperature to be associated with cardiovascular outcomes. Methods Two hundred patients with dual chamber implantable cardioverter-defibrillators were enrolled and followed prospectively from 2006 to 2010 for new onset episodes of atrial fibrillation. The date and time of arrhythmia episodes documented by the implanted cardioverter-defibrillators were linked to meteorologic data and examined using a case-crossover analysis. We evaluated associations with outdoor temperature, apparent temperature, air pressure, and three measures of humidity (relative humidity, dew point, and absolute humidity). Results Of the 200 enrolled patients, 49 patients experienced 328 atrial fibrillation episodes lasting ≥30 seconds. Lower temperatures in the prior 48 hours were positively associated with atrial fibrillation. Lower absolute humidity (ie, drier air) had the strongest and most consistent association: each 0.5 g/m3 decrease in the prior 24 hours increased the odds of atrial fibrillation by 4% (95% confidence interval [CI]: 0%, 7%) and by 5% (95% CI: 2%, 8%) for exposure in the prior 2 hours. Results were similar for dew point but slightly weaker. Conclusions Recent exposure to drier air and lower temperatures were associated with the onset of atrial fibrillation among patients with known cardiac disease, supporting the hypothesis that meteorologic conditions trigger acute cardiovascular episodes. PMID:25756220

  20. Modeling daily average stream temperature from air temperature and watershed area

    NASA Astrophysics Data System (ADS)

    Butler, N. L.; Hunt, J. R.

    2012-12-01

    Habitat restoration efforts within watersheds require spatial and temporal estimates of water temperature for aquatic species especially species that migrate within watersheds at different life stages. Monitoring programs are not able to fully sample all aquatic environments within watersheds under the extreme conditions that determine long-term habitat viability. Under these circumstances a combination of selective monitoring and modeling are required for predicting future geospatial and temporal conditions. This study describes a model that is broadly applicable to different watersheds while using readily available regional air temperature data. Daily water temperature data from thirty-eight gauges with drainage areas from 2 km2 to 2000 km2 in the Sonoma Valley, Napa Valley, and Russian River Valley in California were used to develop, calibrate, and test a stream temperature model. Air temperature data from seven NOAA gauges provided the daily maximum and minimum air temperatures. The model was developed and calibrated using five years of data from the Sonoma Valley at ten water temperature gauges and a NOAA air temperature gauge. The daily average stream temperatures within this watershed were bounded by the preceding maximum and minimum air temperatures with smaller upstream watersheds being more dependent on the minimum air temperature than maximum air temperature. The model assumed a linear dependence on maximum and minimum air temperature with a weighting factor dependent on upstream area determined by error minimization using observed data. Fitted minimum air temperature weighting factors were consistent over all five years of data for each gauge, and they ranged from 0.75 for upstream drainage areas less than 2 km2 to 0.45 for upstream drainage areas greater than 100 km2. For the calibration data sets within the Sonoma Valley, the average error between the model estimated daily water temperature and the observed water temperature data ranged from 0.7

  1. Advances in Fast Response Acoustically Derived Air Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Bogoev, Ivan; Jacobsen, Larry; Horst, Thomas; Conrad, Benjamin

    2016-04-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity. The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  2. Potential for Monitoring Snow Cover in Boreal Forests by Combining MODIS Snow Cover and AMSR-E SWE Maps

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.; Foster, James L.

    2009-01-01

    through the seasons. A blended snow product, the Air Force Weather Agency and NASA (ANSA) snow algorithm and product has recently been developed. The ANSA algorithm blends the MODIS snow cover and AMSR-E SWE products into a single snow product that has been shown to improve the performance of snow cover mapping. In this study components of the ANSA snow algorithm are used along with additional MODIS data to monitor daily changes in snow cover over the period of 1 February to 30 June 2008.

  3. MODIS Snow and Sea Ice Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.

    2004-01-01

    In this chapter, we describe the suite of Earth Observing System (EOS) Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua snow and sea ice products. Global, daily products, developed at Goddard Space Flight Center, are archived and distributed through the National Snow and Ice Data Center at various resolutions and on different grids useful for different communities Snow products include binary snow cover, snow albedo, and in the near future, fraction of snow in a 5OO-m pixel. Sea ice products include ice extent determined with two different algorithms, and sea ice surface temperature. The algorithms used to develop these products are described. Both the snow and sea ice products, available since February 24,2000, are useful for modelers. Validation of the products is also discussed.

  4. Spatial estimates of snow water equivalent from reconstruction

    NASA Astrophysics Data System (ADS)

    Rittger, Karl; Bair, Edward H.; Kahl, Annelen; Dozier, Jeff

    2016-08-01

    Operational ground-based measurements of snow water equivalent (SWE) do not adequately explain spatial variability in mountainous terrain. To address this problem, we combine satellite-based retrievals of fractional snow cover for the period 2000 to 2011 with spatially distributed energy balance calculations to reconstruct SWE values throughout each melt season in the Sierra Nevada of California. Modeled solar radiation, longwave radiation, and air temperature from NLDAS drive the snowmelt model. The modeled solar radiation compares well to ground observations, but modeled longwave radiation is slightly lower than observations. Validation of reconstructed SWE with snow courses and our own snow surveys shows that the model can accurately estimate SWE at the sampled locations in a variety of topographic settings for a range of wet to dry years. The relationships of SWE with elevation and latitude are significantly different for wet, mean and dry years as well as between drainages. In all the basins studied, the relationship between remaining SWE and snow-covered area (SCA) becomes increasingly correlated from March to July as expected because SCA is an important model input. Though the SWE is calculated retrospectively SCA observations are available in near-real time and combined with historical reconstructions may be sufficient for estimating SWE with more confidence as the melt season progresses.

  5. Brilliant Colours from a White Snow Cover

    ERIC Educational Resources Information Center

    Vollmer, Michael; Shaw, Joseph A

    2013-01-01

    Surprisingly colourful views are possible from sparkling white snow. It is well known that similarly colourful features can exist in the sky whenever appropriate ice crystals are around. However, the transition of light reflection and refraction from ice crystals in the air to reflection and refraction from those in snow on the ground is not…

  6. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  7. Warming spring air temperatures, but delayed spring streamflow in an Arctic headwater basin

    NASA Astrophysics Data System (ADS)

    Shi, Xiaogang; Marsh, Philip; Yang, Daqing

    2015-06-01

    This study will use the Mann-Kendall (MK) non-parametric trend test to examine timing changes in spring (early May to the end of June) streamflow records observed by the Water Survey of Canada during 1985-2011 in an Arctic headwater basin in the Western Canadian Arctic. The MK test shows a general delay in the five timing measures of springtime streamflow, which are based on the 5 percentile (Q5), 10 percentile (Q10), 50 percentile (Q50), 90 percentile (Q90), and 95 percentile (Q95) dates of spring runoff, respectively. However, much stronger trend signals were clearly noted for the high percentiles than that for the low and middle percentiles, indicating different effects of hydroclimate processes working on the timing of springtime streamflow. In contrast, the earlier snowmelt onset derived from daily mean temperatures was found over the 27-year study period. In addition, multiple relationships were correlated between these five timing measures of spring runoff and five hydroclimate indicators (total snowfall, snowmelt onset, spring temperature fluctuation, spring rainfall, and spring rainfall timing) in order to identify possible causes on the changes of springtime streamflow timing. The results indicate that the differences are due to the contradictory effects of winter-spring air temperature changes, temperature fluctuation during the melting period, and spring rainfall to spring runoff. The earlier snowmelt onset, which is attributed to the winter-spring warming, and spring temperature fluctuation that works in the opposite way, result in the minor timing changes of Q5, Q10, and Q50. The increase in spring rainfall and its delayed timing have a significant impact on the dates of Q90 and Q95. Moreover, the decreased total snow accumulation over the winter season only has a minor influence on the timing of springtime streamflow.

  8. CARS Temperature and Species Measurements For Air Vehicle Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Gord, James R.; Grisch, Frederic; Klimenko, Dmitry; Clauss, Walter

    2005-01-01

    The coherent anti-Stokes Raman spectroscopy (CARS) method has recently been used in the United States and Europe to probe several different types of propulsion systems for air vehicles. At NASA Langley Research Center in the United States, CARS has been used to simultaneously measure temperature and the mole fractions of N2, O2 and H2 in a supersonic combustor, representative of a scramjet engine. At Wright- Patterson Air Force Base in the United States, CARS has been used to simultaneously measure temperature and mole fractions of N2, O2 and CO2, in the exhaust stream of a liquid-fueled, gas-turbine combustor. At ONERA in France and the DLR in Germany researchers have used CARS to measure temperature and species concentrations in cryogenic LOX-H2 rocket combustion chambers. The primary aim of these measurements has been to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.

  9. Microwave temperature profiler for clear air turbulence prediction

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    1992-01-01

    A method is disclosed for determining Richardson Number, Ri, or its reciprocal, RRi, for clear air prediction using measured potential temperature and determining the vertical gradient of potential temperature, d(theta)/dz. Wind vector from the aircraft instrumentation versus potential temperature, dW/D(theta), is determined and multiplies by d(theta)/dz to obtain dW/dz. Richardson number or its reciprocal is then determined from the relationship Ri = K(d theta)/dz divided by (dW/dz squared) for use in detecting a trend toward a threshold value for the purpose of predicting clear air turbulence. Other equations for this basic relationship are disclosed together with the combination of other atmospheric observables using multiple regression techniques.

  10. Symmetric scaling properties in global surface air temperature anomalies

    NASA Astrophysics Data System (ADS)

    Varotsos, Costas A.; Efstathiou, Maria N.

    2015-08-01

    We have recently suggested "long-term memory" or internal long-range correlation within the time-series of land-surface air temperature (LSAT) anomalies in both hemispheres. For example, an increasing trend in the LSAT anomalies is followed by another one at a different time in a power-law fashion. However, our previous research was mainly focused on the overall long-term persistence, while in the present study, the upward and downward scaling dynamics of the LSAT anomalies are analysed, separately. Our results show that no significant fluctuation differences were found between the increments and decrements in LSAT anomalies, over the whole Earth and over each hemisphere, individually. On the contrary, the combination of land-surface air and sea-surface water temperature anomalies seemed to cause a departure from symmetry and the increments in the land and sea surface temperature anomalies appear to be more persistent than the decrements.

  11. Evaluating snow density models for integration in operational snow water resources monitoring

    NASA Astrophysics Data System (ADS)

    Jonas, T.; Magnusson, J.

    2012-12-01

    In the Alps, the distribution of seasonal snow is highly complex in time and space. Being able to monitor snow water resources is crucial for lake and reservoir management as well as for forecasting of snow-melt related spring floods. In Switzerland, while networks for periodic SWE measurements exist, they do not resolve the variability of snow at spatial and temporal scales as required by the national snow water resources monitoring program. However, there are hundreds of stations that provide daily snow depth information. Including these stations into SWE monitoring schemes requires the use of snow density models. In this study we first look at several model approaches to predict SWE under different scenarios regarding data availability: single snow depth reading, daily snow depth, daily snow and temperature data, etc. The model assessment is based on a large archive of snow pit data measured in the Swiss Alps over several decades. In a second step, we apply the above models to integrate daily snow depth readings in a data assimilation scheme to provide SWE distribution at medium to large scale. Finally, we compare the results of the data assimilation scheme intended for larger scale applications against field data from a 50 km2 test catchment that resolves the natural variability of snow depth and density at a smaller scale. This comparison reveals interesting differences in average density and depth from both data sets, suggesting that including a basic representation of small-scale variability may enhance larger-scale model approaches.

  12. 'Snow Queen' Animation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This animation consists of two close-up images of 'Snow Queen,' taken several days apart, by the Robotic Arm Camera (RAC) aboard NASA's Phoenix Mars Lander.

    Snow Queen is the informal name for a patch of bright-toned material underneath the lander.

    Thruster exhaust blew away surface soil covering Snow Queen when Phoenix landed on May 25, 2008, exposing this hard layer comprising several smooth rounded cavities beneath the lander. The RAC images show how Snow Queen visibly changed between June 15, 2008, the 21st Martian day, or sol, of the mission and July 9, 2008, the 44th sol.

    Cracks as long as 10 centimeters (about four inches) appeared. One such crack is visible at the left third and the upper third of the Sol 44 image. A seven millimeter (one-third inch) pebble or clod appears just above and slightly to the right of the crack in the Sol 44 image. Cracks also appear in the lower part of the left third of the image. Other pieces noticeably shift, and some smooth texture has subtly roughened.

    The Phoenix team carefully positioned and focused RAC the same way in both images. Each image is about 60 centimeters, or about two feet, wide. The object protruding in from the top on the right half of the images is Phoenix's thermal and electrical conductivity probe.

    Snow Queen and other ice exposed by Phoenix landing and trenching operations on northern polar Mars is the first time scientists have been able to monitor Martian ice at a place where temperatures are cold enough that the ice doesn't immediately sublimate, or vaporize, away.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. City snow's physicochemical property affects snow disposal

    NASA Astrophysics Data System (ADS)

    Dovbysh, V. O.; Sharukha, A. V.; Evtin, P. V.; Vershinina, S. V.

    2015-10-01

    At the present day the industrial cities run into severe problem: fallen snow in a city it's a concentrator of pollutants and their quantity is constantly increasing by technology development. Pollution of snow increases because of emission of gases to the atmosphere by cars and factories. Large accumulation of polluted snow engenders many vexed ecological problems. That's why we need a new, non-polluting, scientifically based method of snow disposal. This paper investigates polluted snow's physicochemical property effects on snow melting. A distinctive feature of the ion accelerators with self-magnetically insulated diode is that there.

  14. Fiber optic distributed temperature sensing for the determination of air temperature

    NASA Astrophysics Data System (ADS)

    de Jong, S. A. P.; Slingerland, J. D.; van de Giesen, N. C.

    2015-01-01

    This paper describes a method to correct for the effect of solar radiation in atmospheric distributed temperature sensing (DTS) applications. By using two cables with different diameters, one can determine what temperature a zero diameter cable would have. Such a virtual cable would not be affected by solar heating and would take on the temperature of the surrounding air. With two unshielded cable pairs, one black pair and one white pair, good results were obtained given the general consensus that shielding is needed to avoid radiation errors (WMO, 2010). The correlations between standard air temperature measurements and air temperatures derived from both cables of colors had a high correlation coefficient (r2=0.99) and a RMSE of 0.38 °C, compared to a RMSE of 2.40 °C for a 3.0 mm uncorrected black cable. A thin white cable measured temperatures that were close to air temperature measured with a nearby shielded thermometer (RMSE of 0.61 °C). The temperatures were measured along horizontal cables with an eye to temperature measurements in urban areas, but the same method can be applied to any atmospheric DTS measurements, and for profile measurements along towers or with balloons and quadcopters.

  15. The impact of snow cover on nutrients dynamics in Western Siberia territories

    NASA Astrophysics Data System (ADS)

    Nikitich, Polina; Bredoire, Felix; Alvarez, Gaël; Barsukov, Pavel; Bakker, Mark; Buée, Marc; Derrien, Delphine; Fontaine, Sebastien; Kayler, Zachary; Rusalimova, Olga; Vaishlya, Olga; Zeller, Bernd

    2015-04-01

    Monitoring of climate parameters performed in Siberia over the last decades has revealed a general increase in temperature and an increase in winter precipitation leading to a thicker snow pack. Climate models predict an amplification of these trends and indicate that the huge territory of the western Siberian plains will become suitable for agriculture. However, these projections do not consider soil fertility -- a key issue for agricultural sustainability. The intention of our study is to test whether the predicted increase in snow precipitation will change soil water fluxes, soil organic matter (SOM) decomposition, and the rate of nutrient release in relation to reduced soil freezing. Investigations were performed in forests and grasslands both in the steppe-forest zone (Barnaul) and in the subtaiga zone (Tomsk). Average air temperatures in Barnaul and Tomsk are 2.6°C and 0.9°C and amounts of precipitation are 495 mm and 568 mm, respectively. A pair plot experiment was conducted in winter 2013-2014 to investigate the effect of snow thickness on soil temperature, moisture, and on the release of nutrients during SOM decomposition. Snow cover was artificially increased in the treatment plots and was undisturbed in the control plots. The impact of snow thickness on soil moisture and temperature has been continuously monitored over one year. Permanent snow cover occurred not before late December 2013. It reached about 60 cm in control plots and 1 m in the treatment plots, for a period of time expanding from mid-February to mid-March 2014. In spring, the snow cover persisted two weeks longer in treatment plots than in control plots. The minimum air temperature reached -35°C end of January 2014 at Tomsk and Barnaul, while minimum soil temperature at 5 cm depth was -1°C at Tomsk and -8°C at Barnaul. During winter, soil temperatures were slightly higher in the plot with additional snow compared to the control plot, indicating an insulate effect of the snow cover. At

  16. The Effects of Air Pollution and Temperature on COPD

    PubMed Central

    Hansel, Nadia N.; McCormack, Meredith C.; Kim, Victor

    2016-01-01

    Chronic Obstructive Pulmonary Disease (COPD) affects 12–16 million people in the United States and is the third-leading cause of death. In developed countries, smoking is the greatest risk factor for the development of COPD, but other exposures also contribute to the development and progression of the disease. Several studies suggest, though are not definitive, that outdoor air pollution exposure is linked to the prevalence and incidence of COPD. Among individuals with COPD, outdoor air pollutants are associated with loss of lung function and increased respiratory symptoms. In addition, outdoor air pollutants are also associated with COPD exacerbations and mortality. There is much less evidence for the impact of indoor air on COPD, especially in developed countries in residences without biomass exposure. The limited existing data suggests that indoor particulate matter and nitrogen dioxide concentrations are linked to increased respiratory symptoms among patients with COPD. In addition, with the projected increases in temperature and extreme weather events in the context of climate change there has been increased attention to the effects of heat exposure. Extremes of temperature—both heat and cold—have been associated with increased respiratory morbidity in COPD. Some studies also suggest that temperature may modify the effect of pollution exposure and though results are not conclusive, understanding factors that may modify susceptibility to air pollution in patients with COPD is of utmost importance. PMID:26683097

  17. Spatial interpolation of monthly mean air temperature data for Latvia

    NASA Astrophysics Data System (ADS)

    Aniskevich, Svetlana

    2016-04-01

    Temperature data with high spatial resolution are essential for appropriate and qualitative local characteristics analysis. Nowadays the surface observation station network in Latvia consists of 22 stations recording daily air temperature, thus in order to analyze very specific and local features in the spatial distribution of temperature values in the whole Latvia, a high quality spatial interpolation method is required. Until now inverse distance weighted interpolation was used for the interpolation of air temperature data at the meteorological and climatological service of the Latvian Environment, Geology and Meteorology Centre, and no additional topographical information was taken into account. This method made it almost impossible to reasonably assess the actual temperature gradient and distribution between the observation points. During this project a new interpolation method was applied and tested, considering auxiliary explanatory parameters. In order to spatially interpolate monthly mean temperature values, kriging with external drift was used over a grid of 1 km resolution, which contains parameters such as 5 km mean elevation, continentality, distance from the Gulf of Riga and the Baltic Sea, biggest lakes and rivers, population density. As the most appropriate of these parameters, based on a complex situation analysis, mean elevation and continentality was chosen. In order to validate interpolation results, several statistical indicators of the differences between predicted values and the values actually observed were used. Overall, the introduced model visually and statistically outperforms the previous interpolation method and provides a meteorologically reasonable result, taking into account factors that influence the spatial distribution of the monthly mean temperature.

  18. How does the representation of altitudinal variation of temperature in gridded forcing data affect modeled assessment of snow sensitivity to climate warming?

    NASA Astrophysics Data System (ADS)

    Cooper, M. G.; Nolin, A. W.; Safeeq, M.

    2014-12-01

    Modeling studies that simulate snowpack sensitivity to climate warming often represent the rate of temperature change with elevation as a parameter in the model. If not represented as a parameter, this rate is implicit in the gridded forcing data. Theory and observational evidence conclude that the relationship between temperature and elevation varies in space and time, yet models often represent this rate as a constant value. In this study, we test how seasonal variability in temperature lapse rates affects modeled sensitivity of the mountain snowpack to climate warming in the 870 km2 upper Deschutes River Basin, Oregon Cascades (USA). We calculate mean monthly temperature lapse rates using linear regression with all available measurements in the study region during the period 1989 - 2011. We then calculate lapse rates from the 1/16o gridded forcing dataset provided by Livneh et al. (2014) for the domain during the study period. These lapse rates show muted seasonal variability and are steeper than the observed lapse rates (r2 = 0.01). Using a simple bias correction algorithm, we scale the temperature and precipitation in the gridded data to the monthly average temperature and monthly total precipitation from PRISM. Lapse rates calculated from the bias corrected data match the seasonal variability and mean values of the observed lapse rates (r2 = 0.93). We then run a spatially distributed, snowpack energy balance model (SnowModel) with both datasets, prescribing the calculated lapse rates. We use a multi-response algorithm to identify optimal model parameters independently for each dataset and simulate snow accumulation and melt for the period 1989 - 2011. We then run simulations using perturbed forcing data (+2°C, +4°C and ±10% precipitation) to evaluate the potential impacts of a warmer, wetter/drier winter climate on snowpack accumulation and melt with both datasets. We quantify changes in the partitioning of solid and liquid precipitation, total snow

  19. Air pollution, temperature and pediatric influenza in Brisbane, Australia.

    PubMed

    Xu, Zhiwei; Hu, Wenbiao; Williams, Gail; Clements, Archie C A; Kan, Haidong; Tong, Shilu

    2013-09-01

    Previous studies have demonstrated the importance of weather variables in influencing the incidence of influenza. However, the role of air pollution is often ignored in identifying the environmental drivers of influenza. This research aims to examine the impacts of air pollutants and temperature on the incidence of pediatric influenza in Brisbane, Australia. Lab-confirmed daily data on influenza counts among children aged 0-14years in Brisbane from 2001 January 1st to 2008 December 31st were retrieved from Queensland Health. Daily data on maximum and minimum temperatures for the same period were supplied by the Australian Bureau of Meteorology. Winter was chosen as the main study season due to it having the highest pediatric influenza incidence. Four Poisson log-linear regression models, with daily pediatric seasonal influenza counts as the outcome, were used to examine the impacts of air pollutants (i.e., ozone (O3), particulate matter≤10μm (PM10) and nitrogen dioxide (NO2)) and temperature (using a moving average of ten days for these variables) on pediatric influenza. The results show that mean temperature (Relative risk (RR): 0.86; 95% Confidence Interval (CI): 0.82-0.89) was negatively associated with pediatric seasonal influenza in Brisbane, and high concentrations of O3 (RR: 1.28; 95% CI: 1.25-1.31) and PM10 (RR: 1.11; 95% CI: 1.10-1.13) were associated with more pediatric influenza cases. There was a significant interaction effect (RR: 0.94; 95% CI: 0.93-0.95) between PM10 and mean temperature on pediatric influenza. Adding the interaction term between mean temperature and PM10 substantially improved the model fit. This study provides evidence that PM10 needs to be taken into account when evaluating the temperature-influenza relationship. O3 was also an important predictor, independent of temperature. PMID:23911338

  20. Requirements for high-temperature air-cooled central receivers

    SciTech Connect

    Wright, J.D.; Copeland, R.J.

    1983-12-01

    The design of solar thermal central receivers will be shaped by the end user's need for energy. This paper identifies the requirements for receivers supplying heat for industrial processes or electric power generation in the temperature range 540 to 1000/sup 0/C and evaluates the effects of the requirements on air-cooled central receivers. Potential IPH applications are identified as large baseload users that are located some distance from the receiver. In the electric power application, the receiver must supply heat to a pressurized gas power cycle. The difficulty in providing cost-effective thermal transport and thermal storage for air-cooled receivers is a critical problem.

  1. Can air temperature be used to project influences of climate change on stream temperature?

    USGS Publications Warehouse

    Arismendi, Ivan; Safeeq, Mohammad; Dunham, Jason B.; Johnson, Sherri L.

    2014-01-01

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To address this knowledge gap, we examined the performance of two widely used linear and nonlinear regression models that predict stream temperatures based on air temperatures. We evaluated model performance and temporal stability of model parameters in a suite of regulated and unregulated streams with 11–44 years of stream temperature data. Although such models may have validity when predicting stream temperatures within the span of time that corresponds to the data used to develop them, model predictions did not transfer well to other time periods. Validation of model predictions of most recent stream temperatures, based on air temperature–stream temperature relationships from previous time periods often showed poor performance when compared with observed stream temperatures. Overall, model predictions were less robust in regulated streams and they frequently failed in detecting the coldest and warmest temperatures within all sites. In many cases, the magnitude of errors in these predictions falls within a range that equals or exceeds the magnitude of future projections of climate-related changes in stream temperatures reported for the region we studied (between 0.5 and 3.0 °C by 2080). The limited ability of regression-based statistical models to accurately project stream temperatures over time likely stems from the fact that underlying processes at play, namely the heat budgets of air and water, are distinctive in each medium and vary among localities and through time.

  2. Can air temperatures be used to project influences of climate change on stream temperatures?

    NASA Astrophysics Data System (ADS)

    Arismendi, I.; Safeeq, M.; Dunham, J.; Johnson, S. L.

    2013-12-01

    The lack of available in situ stream temperature records at broad spatiotemporal scales have been recognized as a major limiting factor in the understanding of thermal behavior of stream and river systems. This has motivated the promotion of a wide variety of models that use surrogates for stream temperatures including a regression approach that uses air temperature as the predictor variable. We investigate the long-term performance of widely used linear and non-linear regression models between air and stream temperatures to project the latter in future climate scenarios. Specifically, we examine the temporal variability of the parameters that define each of these models in long-term stream and air temperature datasets representing relatively natural and highly human-influenced streams. We selected 25 sites with long-term records that monitored year-round daily measurements of stream temperature (daily mean) in the western United States (California, Oregon, Idaho, Washington, and Alaska). Surface air temperature data from each site was not available. Therefore, we calculated daily mean surface air temperature for each site in contiguous US from a 1/16-degree resolution gridded surface temperature data. Our findings highlight several limitations that are endemic to linear or nonlinear regressions that have been applied in many recent attempts to project future stream temperatures based on air temperature. Our results also show that applications over longer time periods, as well as extrapolation of model predictions to project future stream temperatures are unlikely to be reliable. Although we did not analyze a broad range of stream types at a continental or global extent, our analysis of stream temperatures within the set of streams considered herein was more than sufficient to illustrate a number of specific limitations associated with statistical projections of stream temperature based on air temperature. Radar plots of Nash-Sutcliffe efficiency (NSE) values for

  3. Persistence analysis of daily mean air temperature variation in Georgia

    NASA Astrophysics Data System (ADS)

    Matcharashvili, Teimuraz; Chelidze, Tamaz; Zhukova, Natalia; Mepharidze, Ekaterine; Sborshchikov, Alexander

    2010-05-01

    Extrapolation of observed linear trends is common practice in climate change researches on different scales. In this respect it is important, that though global warming is well established, the question of persistence of trends on regional scales remain controversial. Indeed, climate change for specific region and time by definition includes more than the simple average of weather conditions. Either random events or long-term changes, or more often combinations of them, can bring about significant swings in a variety of climate indicators from one time period to the next. Therefore in order to achieve further understanding of dynamics of climate change the character of stable peculiarities of analyzed dynamics should be investigated. Analysis of the character of long range correlations in climatological time series or peculiarities of their inherent memory is motivated exactly by this goal. Such analysis carried out on a different scales may help to understand spatial and temporal features of regional climate change. In present work the problem of persistence of observed trends in air temperature time series in Georgia was investigated. Longest available mean daily temperature time series of Tbilisi (1890-2008) were analyzed. Time series on shorter time scales of five stations in the West and East Georgia also were considered as well as monthly mean temperature time series of five stations. Additionally, temporally and spatially averaged daily and monthly mean air temperature time series were analyzed. Extent of persistence in mentioned time series were evaluated using R/S analysis calculation. Detrended and Multifractal Detrended Fluctuation Analysis as well as multi scaling analysis based on CWT have been used. Our results indicate that variation of daily or monthly mean temperatures reveals clear antipersistence on whole available time scale. It seems that antipersistence on global scale is general characteristics of mean air temperature variation and is not

  4. Historical changes in air temperature are evident in temperature fluxes measured in the sub-soil.

    NASA Astrophysics Data System (ADS)

    Fraser, Fiona; McCormick, Benjamin; Hallett, Paul; Wookey, Philip; Hopkins, David

    2013-04-01

    Warming trends in soil temperature have implications for a plethora of soil processes, including exacerbated climate change through the net release of greenhouse gases. Whereas long-term datasets of air temperature changes are abundant, a search of scientific literature reveals a lack of information on soil temperature changes and their specific consequences. We analysed five long-term data series collected in the UK (Dundee and Armagh) and Canada (Charlottetown, Ottawa and Swift Current). They show that the temperatures of soils at 5 - 20 cm depth, and sub-soils at 30 - 150 cm depth, increased in line with air temperature changes over the period 1958 - 2003. Differences were found, however, between soil and air temperatures when data were sub-divided into seasons. In spring, soil temperature warming ranged from 0.19°C at 30 cm in Armagh to 4.30°C at 50 cm in Charlottetown. In summer, however, the difference was smaller and ranged from 0.21°C at 10 cm in Ottawa to 3.70°C at 50 cm in Charlottetown. Winter temperatures were warmer in soil and ranged from 0.45°C at 5 cm in Charlottetown to 3.76°C at 150 cm in Charlottetown. There were significant trends in changes to soil temperature over time, whereas air temperature trends tended only to be significant in winter (changes range from 1.27°C in Armagh to 3.35°C in Swift Current). Differences in the seasonal warming patterns between air and soil temperatures have potential implications for the parameterization of models of biogeochemical cycling.

  5. RELATIONSHIP BETWEEN WATER TEMPERATURES AND AIR TEMPERATURES FOR CENTRAL US STREAMS

    EPA Science Inventory

    An analysis of the relationship between air and stream water temperature records for 11 rivers located in the central United States was conducted. he reliability of commonly available water temperature records was shown to be of unequal quality. imple linear relationships between...

  6. Snow crystal imaging using scanning electron microscopy: III. Glacier ice, snow and biota

    USGS Publications Warehouse

    Rango, A.; Wergin, W.P.; Erbe, E.F.; Josberger, E.G.

    2000-01-01

    Low-temperature scanning electron microscopy (SEM) was used to observe metamorphosed snow, glacial firn, and glacial ice obtained from South Cascade Glacier in Washington State, USA. Biotic samples consisting of algae (Chlamydomonas nivalis) and ice worms (a species of oligochaetes) were also collected and imaged. In the field, the snow and biological samples were mounted on copper plates, cooled in liquid nitrogen, and stored in dry shipping containers which maintain a temperature of -196??C. The firn and glacier ice samples were obtained by extracting horizontal ice cores, 8 mm in diameter, at different levels from larger standard glaciological (vertical) ice cores 7.5 cm in diameter. These samples were cooled in liquid nitrogen and placed in cryotubes, were stored in the same dry shipping container, and sent to the SEM facility. In the laboratory, the samples were sputter coated with platinum and imaged by a low-temperature SEM. To image the firn and glacier ice samples, the cores were fractured in liquid nitrogen, attached to a specimen holder, and then imaged. While light microscope images of snow and ice are difficult to interpret because of internal reflection and refraction, the SEM images provide a clear and unique view of the surface of the samples because they are generated from electrons emitted or reflected only from the surface of the sample. In addition, the SEM has a great depth of field with a wide range of magnifying capabilities. The resulting images clearly show the individual grains of the seasonal snowpack and the bonding between the snow grains. Images of firn show individual ice crystals, the bonding between the crystals, and connected air spaces. Images of glacier ice show a crystal structure on a scale of 1-2 mm which is considerably smaller than the expected crystal size. Microscopic air bubbles, less than 15 ??m in diameter, clearly marked the boundaries between these crystal-like features. The life forms associated with the glacier were

  7. Reducing uncertainty in model estimates of North American polar net ecosystem exchange by including remote sensing observations of snow cover

    NASA Astrophysics Data System (ADS)

    Luus, K. A.; Lin, J. C.; Kelly, R. E.

    2012-12-01

    Uncertainty exists in high-latitude estimates of net ecosystem exchange (NEE) due to a variety of factors such as a limited number of high-latitude eddy covariance stations, and challenges in remote sensing of polar CO2 concentrations and land surface properties. Furthermore, although in situ studies have indicated that a substantial portion of annual NEE in polar regions occurs during the snow season, and that the timing and magnitude of photosynthesis and subnivean respiration are influenced by snow cover, previous estimates of NEE have not explicitly represented snow properties. The objective of this study was to examine the uncertainty in simulated estimates of NEE from the Vegetation Photosynthesis and Respiration Model (VPRM) by contrasting values generated with, versus without, an explicit representation of snow cover. VPRM is a biospheric carbon flux model that generates high resolution estimates of NEE from remote sensing observations of temperature, shortwave radiation and a vegetation index (NDVI) using a simple mathematical structure with only four parameters per vegetation class. In the standard VPRM formulation, photosynthesis is limited during the cold season by low air temperatures, diminished shortwave radiation and low NDVI values. Respiration is assumed to be constant below a threshold air temperature and is otherwise calculated as a linear function of air temperature. In this study, MODIS observations of fractional snow cover were incorporated into VPRM in order to represent the influence of snow cover on suppressing photosynthetic uptake by vegetation and allowing subnivean respiration to persist at cold air temperatures by insulating the soil from heat loss. Photosynthesis was first calculated using the standard VPRM formulation, and the rate of photosynthesis was then reduced according to the fractional snow cover such that the rate of photosynthesis on an 80% snow covered pixel would be reduced by 80%. When a pixel's snow cover area was

  8. Air Temperature Estimation over the Third Pole Using MODIS LST

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Zhang, F.; Ye, M.; Che, T.

    2015-12-01

    The Third Pole is centered on the Tibetan Plateau (TP), which is the highest large plateau around the world with extremely complex terrain and climate conditions, resulting in very scarce meteorological stations especially in the vast west region. For these unobserved areas, the remotely sensed land surface temperature (LST) can greatly contribute to air temperature estimation. In our research we utilized the MODIS LST production from both TERRA and AQUA to estimate daily mean air temperature over the TP using multiple statistical models. Other variables used in the models include longitudes, latitudes, Julian day, solar zenith, NDVI and elevation. To select a relatively optimal model, we chose six popular and representative statistical models as candidate models including the multiple linear regression (MLR), the partial least squares regression (PLS), back propagate neural network (BPNN), support vector regression (SVR), random forests (RF) and Cubist regression (CR). The performances of the six models were compared for each possible combination of LSTs at four satellite pass times and two quality situations. Eventually a ranking table consisting of optimal models for each LST combination and quality situation was built up based on the validation results. By this means, the final production is generated providing daily mean air temperature with the least cloud blockage and acceptable accuracy. The average RMSEs of cross validation are mostly around 2℃. Stratified validations were also performed to test the expansibility to unobserved and high-altitude areas of the final models selected.

  9. Regional analysis of changes in snow pack in mountainous basins in the central Danube region

    NASA Astrophysics Data System (ADS)

    Balint, Gabor; Juričeková, Katarina; Gauzer, Balazs; Hlavčová, Kamila; Kohnová, Silvia; Szolgay, Jan; Zsideková, Beata

    2013-04-01

    Accurate estimation of the volume of water stored in the snow pack and its rate of release is essential to predict the flow during the snowmelt period. In mountainous drainage basins water stored in the snow pack represents an important component of the water budget. Two modelling tools are compared. The first, HOLV snowmelt model is developed by the Hungarian National Hydrological Forecasting Service (VITUKI NHFS) for regional assessment of snow accumulation and ablation of the central Danube. The model originates from the early 80's and it is under continuous development, while its recent distributed version over a grid with 0.1 degree resolution is in use. The snowmelt model has a flexible structure; it is able to change its own structure in function of data availability. In case when only precipitation and air temperature data are available temperature index method is used. When also other data are accessible (cloudiness, dew point, wind speed) using of energy balance model is to be preferred. If there are suitable data available for calculation of the energy terms, the energy balance method can be applied. The second semi-distributed Hron model, developed at the Slovak University of Technology was applied to a smaller sub-basin to represent spatial distribution of snow cover by simulated snow water equivalent. The upper Hron river basin with an area of 1766 km2 is located in central Slovakia. The conceptual semi-distributed tool applied contains three basic storage components with 15 calibrated parameters, as the flow routing component the cascade of linear reservoirs is used as opposed to the original simple triangular routing function. The snow sub-model uses the temperature index (degree-day) method for snow accumulation and snowmelt calculations. Uncertainty of model parameters was reduced by multi-calibration on the mean daily discharges in the basin outlet and measured stations data of snow water equivalent. Changes in the model parameters during the

  10. Potential transition from seasonal to ephemeral snow in Great Lakes watersheds in a warming climate

    NASA Astrophysics Data System (ADS)

    Durand, M. T.; Rine, M.

    2013-12-01

    Snow cover in many regions is a primary contributor to the hydrologic cycle and has significant surface energy balance, biogeochemical, ecological, and societal impacts. This study uses weather stations in Canada (using Environment Canada (EC) data) and the United States (using the Midwest Regional Climate Center (MRCC) data) to characterize climatological snow cover in the Great Lakes basins, and its sensitivity to future winter temperature increases. Much of this region is dominated by an ephemeral snow cover, where snow comes and goes throughout the winter months, having no significant seasonal duration. We defined "expected duration" as the uninterrupted number of days with snow cover on the ground in a typical winter. The number of days of snow cover (as opposed to the expected duration) are also analyzed; the expected duration is a better metric of whether a snowcover is ephemeral or seasonal, since it ties more directly to snowpack residence times and seasonality of runoff. We estimated the snowcover expected duration at 448 weather stations throughout the Great Lakes basins. We defined ephemeral snowcover to have an expected duration of 60 days or greater per winter, which corresponds to a latitude north of approximately 44°, in this area. We found that average winter temperature can be used to predict duration of snowcover expected duration, to first order. The ephemeral snow line in the Great Lakes basins corresponds to an average winter temperature of approximately -4 to -5° C. The statistical model relating snowcover expected duration and average winter air temperature indicates approximately a 22 day decrease in snowcover expected duration with an increase of 2° degree C. This estimate of duration sensitivity to temperature was used to identify seasonal and ephemeral watershed changes for 2° C increase in temperature. Our analysis shows that approximately 25 percent of the snow cover in the Great Lakes Basins will shift from a seasonal to an

  11. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect

    Waye, S.; Musselman, M.; King, C.

    2014-09-01

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  12. Monitoring snow melt characteristics on the Greenland ice sheet using a new MODIS land surface temperature and emissivity product (MOD21)

    NASA Astrophysics Data System (ADS)

    Hulley, G. C.; Hall, D. K.; Hook, S. J.

    2013-12-01

    Land Surface Temperature (LST) and emissivity are sensitive energy-balance parameters that control melt and energy exchange between the surface and the atmosphere. MODIS LST is currently used to monitor melt zones on glaciers and can be used for glacier or ice sheet mass balance calculations. Much attention has been paid recently to the warming of the Arctic in the context of global warming, with a focus on the Greenland ice sheet because of its importance with sea-level rise. Various researchers have shown a steady decline in the extent of the Northern Hemisphere sea ice, both the total extent and the extent of the perennial or multiyear ice. Surface melt characteristics over the Greenland ice sheet have been traditionally monitored using the MODIS LST and albedo products (e.g. MOD11 and MOD10A1). Far fewer studies have used thermal emissivity data to monitor surface melt characteristics due to the lack of suitable data. In theory, longwave emissivity combined with LST information should give a more direct measure of snow melt characteristics since the emissivity is an intrinsic property of the surface, whereas the albedo is dependent on other factors such as solar zenith angle, and shadowing effects. Currently no standard emissivity product exists that can dynamically retrieve changes in longwave emissivity consistently over long time periods. This problem has been addressed with the new MOD21 product, which uses the ASTER TES algorithm to dynamically retrieve LST and spectral emissivity (bands 29, 31, 32) at 1-km resolution. In this study we show that using a new proposed index termed the snow emissivity difference index (SEDI) derived from the MOD21 longwave emissivity product, combined with the LST, will improve our understanding of snow melt and freezeup dynamics on ice sheets such as Greenland. The results also suggest that synergistic use of both thermal-based and albedo data will help to improve our understanding of snow melt dynamics on glaciers and ice

  13. Global surface air temperature variations: 1851-1984

    SciTech Connect

    Jones, P.D.; Raper, S.C.B.; Kelly, P.M.

    1986-11-01

    Many attempts have been made to combine station surface air temperature data into an average for the Northern Hemisphere. Fewer attempts have been made for the Southern Hemisphere because of the unavailability of data from the Antarctic mainland before the 1950s and the uncertainty of making a hemispheric estimate based solely on land-based analyses for a hemisphere that is 80% ocean. Past estimates have been based largely on data from the World Weather Records (Smithsonian Institution, 1927, 1935, 1947, and U.S. Weather Bureau, 1959-82) and have been made without considerable effort to detect and correct station inhomogeneities. Better estimates for the Southern Hemisphere are now possible because of the availability of 30 years of climatological data from Antarctica. The mean monthly surface air temperature anomalies presented in this package for the than those previously published because of the incorporation of data previously hidden away in archives and the analysis of station homogeneity before estimation.

  14. Additional Contributions to the Development of the New Snow-Physics Scheme for SSiB

    NASA Technical Reports Server (NTRS)

    Mocko, David M.; Sud, Y. C.

    1999-01-01

    The Simplified Simple Biosphere Model (SSiB) had a well-documented problem with snowmelt timing and infiltration. A new snow-physics scheme was developed for use in SSIB. In this, the snow layer is separated from the soil, with its own energy budget and temperature. Solar energy reaching the top of the snowpack is divided into three parts: one, reflected by the snow; two, absorbed by the snow; and three, transmitted to the ground following a simple extinction relation. Heat is exchanged between the ground and snow by conduction and by radiation through an arbitrary air-gap between them. In the GSWP exercise using the GEWEX ISLSCP Initiative I forcing data (hereafter "offline"), it was found that the new snow scheme ameliorated a significant fraction of snowmelt time-delay as compared to observations from satellite. It also produced warmer ground temperatures under the snowpack, which allowed realistic meltwater infiltration, resulting in better simulated spring soil moisture recharge and peak runoff amount as compared to observations. An ensemble of six June-July-August (JJA) simulations for 1987 and 1988 were performed with the NASA Goddard GEOS II GCM coupled with the new snow-physics SSIB using new initial soil moisture (ISM) from the offline simulations. The GCM produced more realistic precipitation in northern regions that had large snowmelt and wetter ISM in response to better snow-physics, as compared to simulations with ISM without the new snow scheme. The new SSiB-GCM also increased the interannual precipitation signal in the Indian monsoon region, resulting from changes in ISM in the Himalayas and central Asia.

  15. The snowmaker: nature identical snow production in the laboratory

    NASA Astrophysics Data System (ADS)

    Schleef, S.; Jaggi, M.; Loewe, H.; Schneebeli, M.

    2013-12-01

    Using natural snow for laboratory experiments can be tricky due to shortage of winter periods and snowfall, difficulties of sample casting and transport, and the great variability of natural snow due to the varying conditions of crystal growth in the clouds. This hinders repeatable laboratory experiments with reproducible specimen and microstructural characteristics. To minimize experimental uncertainties we designed an improved machine called snowmaker, which enables us to produce nature-identical snow in a cold laboratory under well defined conditions. The snowmaker is based on well-known principles: warm humid air from a heated water basin is advected into a cold nucleation chamber where the vapor resublimates on stretched Nylon wires. Crystals are automatically harvested by a motor driven brush rack and collected in a box, thereby several kilograms of snow can be produced per day with minimum maintenance. The excess vapor is collected in a moisture trap to avoid frost in the laboratory. The entire construction is designed as a rolling, modular assembly system which can easily carried out of the laboratory for defrosting. In addition to previous attempts we focus on the reproducibility of the samples and the comparison to natural snow down to the microscale. We show that the settings of water temperature and cold laboratory temperature facilitates the production of different crystal shapes like dendrites and needles in a reproducible way. Besides photography, we analyzed the microstructure of snowmaker crystals in aggregated specimen by X-ray microtomography. Depending on the settings we can create reproducible samples with density of 50-170 kg/m3 and specific surface areas of 50-80 mm-1. We briefly touch similarities between artificial and natural snow samples with respect to crystal habit, microstructural parameters and short-time metamorphism.

  16. Possible effects of ongoing and predicted climate change on snow avalanche activity in western Norway

    NASA Astrophysics Data System (ADS)

    Laute, Katja; Beylich, Achim A.

    2016-04-01

    As snow avalanche formation is mainly governed by meteorological conditions as, e.g., air temperature fluctuations, heavy precipitation and wind conditions, it is likely that the frequency and magnitude of both ordinary and extreme snow avalanche events is modified through the documented effects of current and future climate change. In the Northern Hemisphere, 1983-2013 was likely the warmest 30-year period of the last 1400 years (IPCC, 2013). Meteorological records of western Norway show the general trend that the last 100 years, especially the last three decades, have been warmer and wetter than the time periods before. However, it is not evident that snow avalanche activity will increase in the near future. Today, the number of studies assessing the impact of climate change on the occurrence and magnitude of snow avalanches is limited. This work focuses on recent and possible future effects of climate change on snow avalanche activity along the western side of the Jostedalsbreen ice cap representing one of the areas with the highest snow avalanche activity in entire Norway. We have analyzed long-term homogenized meteorological data from five meteorological stations in different elevations above sea level, three of them with a long-term record of 120 years (1895-2015). In addition to the statistical analyses of long-term datasets, gained results and insights from a four-year (2009-2012) high-resolution snow avalanche monitoring study conducted in the same study area are incorporated. The statistical analyses of mean monthly air temperature, monthly precipitation sums and mean monthly snow depths showed that there is a trend of increasing air temperatures and precipitation sums whereas no clear trend was found for mean snow depths. Magnitude-frequency analyses conducted for three defined time intervals (120, 90, 60 years) of monthly precipitation sums exhibit an increase of precipitation especially during the last 30 years with the tendency that more precipitation

  17. Industrial applications of MHD high temperature air heater technology

    NASA Astrophysics Data System (ADS)

    Saari, D. P.; Fenstermacher, J. E.; White, L. R.; Marksberry, C. L.

    1981-12-01

    The MHD high temperature air heater (HTAH) requires technology beyond the current state-of-the-art of industrial regenerative heaters. Specific aspects of HTAH technology which may find other application include refractory materials and valves resistant to the high temperature, corrosive, slag-bearing gas, materials resistant to cyclic thermal stresses, high temperature support structures for the cored brick bed, regenerative heater operating techniques for preventing accumulation of slag in the heater, and analytical tools for computing regenerative heater size, cost, and performance. Areas where HTAH technology may find application include acetylene/ethylene production processes, flash pyrolysis of coal, high temperature gas reactors, coal gasification processes, various metallurgical processes, waste incineration, and improvements to existing regenerator technology such as blast furnace stoves and glass tank regenerators.

  18. Evidence of Lunar Phase Influence on Global Surface Air Temperatures

    NASA Technical Reports Server (NTRS)

    Anyamba, Ebby; Susskind, Joel

    2000-01-01

    Intraseasonal oscillations appearing in a newly available 20-year record of satellite-derived surface air temperature are composited with respect to the lunar phase. Polar regions exhibit strong lunar phase modulation with higher temperatures occurs near full moon and lower temperatures at new moon, in agreement with previous studies. The polar response to the apparent lunar forcing is shown to be most robust in the winter months when solar influence is minimum. In addition, the response appears to be influenced by ENSO events. The highest mean temperature range between full moon and new moon in the polar region between 60 deg and 90 deg latitude was recorded in 1983, 1986/87, and 1990/91. Although the largest lunar phase signal is in the polar regions, there is a tendency for meridional equatorward progression of anomalies in both hemispheres so that the warning in the tropics occurs at the time of the new moon.

  19. Some fundamentals of handheld snow surface thermography

    NASA Astrophysics Data System (ADS)

    Shea, C.; Jamieson, B.

    2011-02-01

    This paper presents the concepts needed to perform snow surface thermography with a modern thermal imager. Snow-specific issues in the 7.5 to 13 μm spectrum such as ice emissivity, photographic angle, operator heating, and others receive detailed review and discussion. To illustrate the usefulness of this measurement technique, various applications are presented. These include detecting spatial temperature variation on snow pit walls and measuring the dependence of heat conduction on grain type.

  20. Some fundamentals of handheld snow surface thermography

    NASA Astrophysics Data System (ADS)

    Shea, C.; Jamieson, B.

    2010-08-01

    This paper presents the concepts needed to perform snow surface thermography with a modern thermal imager. Snow-specific issues in the 7.5 to 13 μm spectrum such as ice emissivity, photographic angle, operator heating, and others receive detailed review and discussion. To illustrate the usefulness of this measurement technique, various applications are presented. These include detecting spatial temperature variation on snow pit walls and measuring the dependence of heat conduction on grain type.

  1. Antarctic Sea ice variations and seasonal air temperature relationships

    NASA Technical Reports Server (NTRS)

    Weatherly, John W.; Walsh, John E.; Zwally, H. J.

    1991-01-01

    Data through 1987 are used to determine the regional and seasonal dependencies of recent trends of Antarctic temperature and sea ice. Lead-lag relationships involving regional sea ice and air temperature are systematically evaluated, with an eye toward the ice-temperature feedbacks that may influence climatic change. Over the 1958-1087 period the temperature trends are positive in all seasons. For the 15 years (l973-l987) for which ice data are available, the trends are predominantly positive only in winter and summer, and are most strongly positive over the Antarctic Peninsula. The spatially aggregated trend of temperature for this latter period is small but positive, while the corresponding trend of ice coverage is small but negative. Lag correlations between seasonal anomalies of the two variables are generally stronger with ice lagging the summer temperatures and with ice leading the winter temperatures. The implication is that summer temperatures predispose the near-surface waters to above-or below-normal ice coverage in the following fall and winter.

  2. The role of snow cover in ground thermal conditions in three sites with contrasted topography in Sierra Nevada (Spain)

    NASA Astrophysics Data System (ADS)

    Oliva, Marc; Salvador, Ferran; Gómez Ortiz, Antonio; Salvà, Montserrat

    2014-05-01

    Snow cover has a high capacity to insulate the soil from the external thermal influences. In regions of high snowfall, such as the summit areas of the highest Iberian mountain ranges, the presence of a thick snow cover may condition the existence or inexistence of permafrost conditions. In order to analyze the impact of the thickness, duration and interannual variability of snow cover on the ground thermal regime in the massif of Sierra Nevada, we have analyzed soil temperatures at a depth of 2 cm for the period 2006-2012 in three sites of contrasting topography as well as air temperatures for the same period: (a) Corral del Veleta (3100 m) in a rock glacier located in the northern Veleta cirque, with high and persistent snow cover. (b) Collado de los Machos (3300 m), in a summit area with relict stone circles, with little snow accumulation due to wind effect. (c) Río Seco (3000 m), in a solifluction lobe located in this southern glacial cirque with moderate snowfall. Considering the air and 2 cm depth soil temperature records, the freezing degree-days were calculated for each year from November to May in order to characterize the role of snow as a thermal insulator of the ground during the cold season (Frauenfeld et al., 2007). In all cases, the highest values of freezing degree-days correspond to years with little snowfall (2006-2007, 2007-2008, 2011-2012), while in years with a thicker snow cover (2008-2009, 2009-2010, 2010-2011) the total freezing degree-days were significantly lower. The accumulation of freezing degree-days is maximum at the wind-exposed site of Collado de los Machos, where the wind redistributes snow and favours the penetration of cold into the ground. The opposite pattern occurs in the Veleta cirque, where most persistent snow cover conditions determine lower accumulated freezing degree-days than in Collado de los Machos and Rio Seco.

  3. Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations

    SciTech Connect

    Qian, Yun; Gustafson, William I.; Leung, Lai-Yung R.; Ghan, Steven J.

    2009-02-14

    Radiative forcing induced by soot on snow is a major anthropogenic forcing affecting the global climate. However, it is uncertain how the soot-induced snow albedo perturbation affects regional snowpack and the hydrological cycle. In this study we simulated the deposition of soot aerosol on snow and investigated the resulting impact on snowpack and the surface water budget in the western United States. A yearlong simulation was performed using the chemistry version of the Weather Research and Forecasting model (WRF-Chem) to determine an annual budget of soot deposition, followed by two regional climate simulations using WRF in meteorology-only mode, with and without the soot-induced snow albedo perturbations. The chemistry simulation shows large spatial variability in soot deposition that reflects the localized emissions and the influence of the complex terrain. The soot-induced snow albedo perturbations increase the net solar radiation flux at the surface during late winter to early spring, increase the surface air temperature, reduce snow water equivalent amount, and lead to reduced snow accumulation and less spring snowmelt. These effects are stronger over the central Rockies and southern Alberta, where soot deposition and snowpack overlap the most. The indirect forcing of soot accelerates snowmelt and alters stream flows, including a trend toward earlier melt dates in the western United States. The soot-induced albedo reduction initiates a positive feedback process whereby dirty snow absorbs more solar radiation, heating the surface and warming the air. This warming causes reduced snow depth and fraction, which further reduces the regional surface albedo for the snow covered regions. Our simulations indicate that the change of maximum snow albedo induced by soot on snow contributes to 60% of the net albedo reduction over the central Rockies. Snowpack reduction accounts for the additional 40%.

  4. Snow economics and the NOHRSC Snow Information System (SNOW-INFO) for the United States

    NASA Astrophysics Data System (ADS)

    Carroll, T.; Cline, D.; Berkowitz, E.; Savage, D.

    2003-04-01

    .7 trillion (16%) of the Nation's GDP related to the water contained in seasonal snowpacks, reliable snow information is critical to the management of the U.S. economy. In addition to helping improve river and flood forecasts and water supply forecasts, NOHRSC snow information has the potential also to support better decision making and improved efficiency in manufacturing, mining, agriculture, and thermo- and hydroelectric power generation. A 0.1% improvement in revenue resulting from reliable snow information results in an economic benefit to the Nation of 1.7 billion each year (in 2002 dollars). In an effort to provide snow information to support hydrologic forecasting operations in the NWS as well as to enhance the national economy, the NOHRSC has developed and implemented a Snow Information System (SNOW-INFO) that generates and distributes a variety of snow cover products in a variety of formats for the coterminous U.S. SNOW-INFO provides several new products that include: modeled snowpack characteristics such as snow ripeness, melt rates, mean snowpack temperature, and sublimation losses in a variety of alphanumeric, gridded, map, and time-series representations. SNOW-INFO products and data sets are available in near real-time to end-users from the NOHRSC web site (www.nohrsc.nws.gov) and FTP. A variety of SNOW-INFO products and maps from the 2003 snow season depicting simulated and assimilated snow model state variables for the coterminous U.S. are presented.

  5. Spatiotemporal analysis of snow trends in Austria

    NASA Astrophysics Data System (ADS)

    Koch, Roland; Schöner, Wolfgang

    2015-04-01

    This study presents the spatiotemporal analysis of Austrian snow observations. A set of consistent and reliable long-term time series of snow depth on a daily scale from selected meteorological sites across Austria is used. The time series were collected by the Central Institute for Meteorology and Geodynamics (ZAMG) and the Hydrographical Central Bureau of Austria (HZB). The data cover a time period from the late nineteenth century until today. In the first part of the study spatiotemporal characteristics of seasonal snow depth observations were investigated by the method of principal component analysis (PCA). Furthermore, the spatial patterns of variability have been used for a regionalisation, identifying regions with similar conditions during the base period 1961 to 2010. The results show a clear separation of four major regions including various sub-regions. However, the regionalisation was limited due to sparse data coverage. The non-parametric Mann-Kendall statistical test had been used to assess the significance of trends in snow indices, e.g. snow depth, maximum snow depth, snow cover duration, at monthly and seasonal time scales. In order to remove the influence of the lag-1 serial correlation from the snow data, the trend-free pre-whitening approach was applied. In the monthly and seasonal time series during the period 1961-2010, negative trends in snow indices were significant at the 95% confidence level primarily at stations in the Western and Southern part of Austria. In addition, the correlation between snow observations and gridded HISTALP winter temperature and precipitation fields was investigated. The analysis has shown an increased temperature and decreased precipitation during the 1990s, yielding a pronounced reduction in snow depth and duration. As a matter of fact, the results indicate major shifts of the snow depth and snow cover duration around the 1970s and especially the 1990s, which are predominantly responsible for trends.

  6. Controls of air temperature variability over an Alpine Glacier

    NASA Astrophysics Data System (ADS)

    Shaw, Thomas; Brock, Ben; Ayala, Álvaro; Rutter, Nick

    2016-04-01

    Near surface air temperature (Ta) is one of the most important controls on energy exchange between a glacier surface and the overlying atmosphere. However, not enough detail is known about the controls on Ta across a glacier due to sparse data availability. Recent work has provided insights into variability of Ta along glacier centre-lines in different parts of the world, yet there is still a limited understanding of off-centreline variability in Ta and how best to estimate it from distant off-glacier locations. We present a new dataset of distributed 2m Ta records for the Tsanteleina Glacier in Northwest Italy from July-September, 2015. Data provide detailed information of lateral (across-glacier) and centre-line variations in Ta, with ~20,000 hourly observations from 17 locations. The suitability of different vertical temperature gradients (VTGs) in estimating air temperature is considered under a range of meteorological conditions and from different forcing locations. A key finding is that local VTGs account for a lot of Ta variability under a broad range of climatic conditions. However, across-glacier variability is found to be significant, particularly for high ambient temperatures and for localised topographic depressions. The relationship of spatial Ta patterns with regional-scale reanalysis data and alternative Ta estimation methodologies are also presented. This work improves the knowledge of local scale Ta variations and their importance to melt modelling.

  7. High efficiency power generation from coal and wastes utilizing high temperature air combustion technology (Part 2: Thermal performance of compact high temperature air preheater and MEET boiler)

    SciTech Connect

    Iwahashi, Takashi; Kosaka, Hitoshi; Yoshida, Nobuhiro

    1998-07-01

    The compact high temperature air preheater and the MEET boiler, which are critical components of the MEET system, are the direct evolutions of the high temperature air combustion technology. Innovative hardware concept for a compact high temperature air preheater has been proposed, and preliminary experiment using the MEET-I high temperature air preheater based on this concept successfully demonstrated continuous high temperature air generation with almost no temperature fluctuation. A preliminary heat transfer calculation for the MEET boiler showed that regenerative combustion using high temperature air is quite effective for radiative heat transfer augmentation in a boiler, which will lead to significant downsizing of a boiler. The heat transfer characteristics in the MEET boiler were experimentally measured and the heat transfer promotion effect and the uniform heat transfer field were confirmed. Moreover, it was understood that excellent combustion with the low BTU gas of about 3,000 kcal/m{sup 3} was done.

  8. Are methyl halides produced on all ice surfaces? Observations from snow-laden field sites

    NASA Astrophysics Data System (ADS)

    Swanson, Aaron L.; Blake, Nicola J.; Blake, Donald R.; Sherwood Rowland, F.; Dibb, Jack E.; Lefer, Barry L.; Atlas, Elliot

    We present data collected from a number of snow-covered environments including two polar locations (Summit, Greenland and the South Pole) and two mid-latitude regions (a remote site in northern Michigan, and Niwot Ridge, Colorado). At each site, concentrations of CH3I and C2H5I were enhanced within the interstitial air near the snow surface, compared to levels in boundary layer air. Fluxes of CH3Br from surface snow to the atmosphere were observed at each site except Niwot Ridge, where CH3Br appeared to have a sink. The mid-latitude sites showed significant emissions of CH3Cl, mostly originating at the ground surface and traveling up through the snow, while at the polar locations CH3Cl emissions from firn air were relatively small. In general, methyl halide mixing ratios in firn air were significantly greater at Summit than at the South Pole, with Summit showing a strong diurnal cycle in the production of alkyl halides that was well correlated with actinic radiation and firn temperature. We suggest that the most likely route to alkyl halide formation is through an acid catalyzed nucleophilic substitution of an alcohol type function by a halide, both of which should be preferentially segregated to the quasi-liquid layer at the surface of the snow grains. A series of experiments using a snow-filled quartz chamber irradiated by natural sunlight allowed estimation of emission trends that were hard to measure in the natural snowpack. These static chamber experiments confirmed significant production of the primary alkyl halides, following the order CH3Cl>CH3Br>C2H5Cl>CH3I>C2H5Br>C2H5I>1-C3H7Br>1-C3H7I. Our observations at all four locations, including polar and mid-latitude sites, imply that alkyl halide production may be associated with all surface snows.

  9. The impact of snow nitrate photolysis on boundary layer chemistry and the recycling and redistribution of reactive nitrogen across Antarctica and Greenland in a global chemical transport model

    NASA Astrophysics Data System (ADS)

    Zatko, Maria; Geng, Lei; Alexander, Becky; Sofen, Eric; Klein, Katarina

    2016-03-01

    The formation and recycling of reactive nitrogen (NO, NO2, HONO) at the air-snow interface has implications for air quality and the oxidation capacity of the atmosphere in snow-covered regions. Nitrate (NO3-) photolysis in snow provides a source of oxidants (e.g., hydroxyl radical) and oxidant precursors (e.g., nitrogen oxides) to the overlying boundary layer, and alters the concentration and isotopic (e.g., δ15N) signature of NO3- preserved in ice cores. We have incorporated an idealized snowpack with a NO3- photolysis parameterization into a global chemical transport model (Goddard Earth Observing System (GEOS) Chemistry model, GEOS-Chem) to examine the implications of snow NO3- photolysis for boundary layer chemistry, the recycling and redistribution of reactive nitrogen, and the preservation of ice-core NO3- in ice cores across Antarctica and Greenland, where observations of these parameters over large spatial scales are difficult to obtain. A major goal of this study is to examine the influence of meteorological parameters and chemical, optical, and physical snow properties on the magnitudes and spatial patterns of snow-sourced NOx fluxes and the recycling and redistribution of reactive nitrogen across Antarctica and Greenland. Snow-sourced NOx fluxes are most influenced by temperature-dependent quantum yields of NO3- photolysis, photolabile NO3- concentrations in snow, and concentrations of light-absorbing impurities (LAIs) in snow. Despite very different assumptions about snowpack properties, the range of model-calculated snow-sourced NOx fluxes are similar in Greenland (0.5-11 × 108 molec cm-2 s-1) and Antarctica (0.01-6.4 × 108 molec cm-2 s-1) due to the opposing effects of higher concentrations of both photolabile NO3- and LAIs in Greenland compared to Antarctica. Despite the similarity in snow-sourced NOx fluxes, these fluxes lead to smaller factor increases in mean austral summer boundary layer mixing ratios of total nitrate (HNO3+ NO3-), NOx, OH

  10. Yeah!!! A Snow Day!

    ERIC Educational Resources Information Center

    Cone, Theresa Purcell; Cone, Stephen L.

    2006-01-01

    As children see the first snowflake fall from the sky, they are filled with anticipation of playing in the snow. The snowy environment presents a wonderful opportunity for presenting interdisciplinary activities that connect snow play, snow formation, and snow stories with manipulative activities, gymnastic balances, and dance sequences. In this…

  11. Snowpack displacement measured by terrestrial radar interferometry as precursor for wet snow avalanches

    NASA Astrophysics Data System (ADS)

    Caduff, Rafael; Wiesmann, Andreas; Bühler, Yves

    2016-04-01

    Wet snow and full depth gliding avalanches commonly occur on slopes during springtime when air temperatures rise above 0°C for longer time. The increase in the liquid water content changes the mechanical properties of the snow pack. Until now, forecasts of wet snow avalanches are mainly done using weather data such as air and snow temperatures and incoming solar radiation. Even tough some wet snow avalanche events are indicated before the release by the formation of visible signs such as extension cracks or compressional bulges in the snow pack, a large number of wet snow avalanches are released without any previously visible signs. Continuous monitoring of critical slopes by terrestrial radar interferometry improves the scale of reception of differential movement into the range of millimetres per hour. Therefore, from a terrestrial and remote observation location, information on the mechanical state of the snow pack can be gathered on a slope wide scale. Recent campaigns in the Swiss Alps showed the potential of snow deformation measurements with a portable, interferometric real aperture radar operating at 17.2 GHz (1.76 cm wavelength). Common error sources for the radar interferometric measurement of snow pack displacements are decorrelation of the snow pack at different conditions, the influence of atmospheric disturbances on the interferometric phase and transition effects from cold/dry snow to warm/wet snow. Therefore, a critical assessment of those parameters has to be considered in order to reduce phase noise effects and retrieve accurate displacement measurements. The most recent campaign in spring 2015 took place in Davos Dorf/GR, Switzerland and its objective was to observe snow glide activity on the Dorfberg slope. A validation campaign using total station measurements showed good agreement to the radar interferometric line of sight displacement measurements in the range of 0.5 mm/h. The refinement of the method led to the detection of numerous gliding

  12. Brine-Wetted Snow on the Surface of Sea Ice: A Potentially Vast and Overlooked Microbial Habitat

    NASA Astrophysics Data System (ADS)

    Deming, J. W.; Ewert, M.; Bowman, J. S.; Colangelo-Lillis, J.; Carpenter, S. D.

    2010-12-01

    On the hemispheric scale, snow on the surface of sea ice significantly impacts the exchange of mass and energy across the ocean-ice-atmosphere interface. The snow cover over Arctic sea ice plays a central role in Arctic photochemistry, including atmospheric depletion events at the onset of spring, and in ecosystem support, by determining the availability of photosynthetically active radiation for algal primary production at the bottom of the ice. Among the non-uniformities of snow relevant to its larger-scale roles is salt content. When snow is deposited on the surface of new sea ice, brine expelled onto the ice surface during ice formation wicks into the snow by capillary action, forming a brine-wetted or saline snow layer at the ice-snow interface. A typical salinity for this basal snow layer in the Arctic (measured on a 3-cm depth interval of melted snow) is about 20 (ppt by optical salinometer), with maxima approaching 30 ppt, thus higher than the salinity of melted surface sea ice (< 12 ppt). Although the physical-chemical properties of this brine-wetted layer have been examined in recent years, and the (assumed) air-derived microbial content of overlying low-salinity snow is known to be low in winter, basal saline snow is essentially unexplored as a microbial habitat. As part of an NSF-supported project on frost flowers, we investigated snow overlying coastal sea ice off Barrow, Alaska, in February 2010 (since snow buries frost flowers). Sterile (ethanol-rinsed) tools were used to open snow pits 60 cm wide, record temperature by thermoprobe at 3-cm depth intervals, and collect samples from newly exposed snow walls for salinity (3-cm intervals) and biological measurements (6-cm intervals). The latter included counts of bacterial abundance by epifluorescence microscopy and assays of extracellular polysaccharide substances (EPS). We also sampled snow on a larger scale to extract sufficient DNA to analyze microbial community composition (ongoing work), as well as

  13. Air Temperature estimation from Land Surface temperature and solar Radiation parameters

    NASA Astrophysics Data System (ADS)

    Lazzarini, Michele; Eissa, Yehia; Marpu, Prashanth; Ghedira, Hosni

    2013-04-01

    Air Temperature (AirT) is a fundamental parameter in a wide range of applications such as climate change studies, weather forecast, energy balance modeling, efficiency of Photovoltaic (PV) solar cells, etc. Air temperature data are generally obtained through regular measurements from meteorological stations. The distribution of these stations is normally sparse, so the spatial pattern of this parameter cannot be accurately estimated by interpolation methods. This work investigated the relationship between Air Temperature measured at meteorological stations and spatially contiguous measurements derived from Remote Sensing techniques, such as Land Surface Temperature (LST) maps, emissivity maps and shortwave radiation maps with the aim of creating a continuous map of AirT. For LST and emissivity, MSG-SEVIRI LST product from Land Surface Analysis Satellite Applications Facility (LSA-SAF) has been used. For shortwave radiation maps, an Artificial Neural Networks ensemble model has been developed and previously tested to create continuous maps from Global Horizontal Irradiance (GHI) point measurements, utilizing six thermal channels of MSG-SEVIRI. The testing sites corresponded to three meteorological stations located in the United Arab Emirates (UAE), where in situ measurements of Air Temperature were available. From the starting parameters, energy fluxes and net radiation have been calculated, in order to have information on the incoming and outgoing long-wave radiation and the incoming short-wave radiation. The preliminary analysis (day and Night measurements, cloud free) showed a strong negative correlation (0.92) between Outgoing long-wave radiation - GHI and LST- AirT, with a RMSE of 1.84 K in the AirT estimation from the initial parameters. Regression coefficients have been determined and tested on all the ground stations. The analysis also demonstrated the predominant impact of the incoming short-wave radiation in the AirT hourly variation, while the incoming

  14. Sensitivity of New England Stream Temperatures to Air Temperature and Precipitation Under Projected Climate

    NASA Astrophysics Data System (ADS)

    Huang, T.; Samal, N. R.; Wollheim, W. M.; Stewart, R. J.; Zuidema, S.; Prousevitch, A.; Glidden, S.

    2015-12-01

    The thermal response of streams and rivers to changing climate will influence aquatic habitat. This study examines the impact that changing climate has on stream temperatures in the Merrimack River, NH/MA USA using the Framework for Aquatic Modeling in the Earth System (FrAMES), a spatially distributed river network model driven by air temperature, air humidity, wind speed, precipitation, and solar radiation. Streamflow and water temperatures are simulated at a 45-second (latitude x longitude) river grid resolution for 135 years under historical and projected climate variability. Contemporary streamflow (Nash-Sutcliffe Coefficient = 0.77) and river temperatures (Nash-Sutcliffe Coefficient = 0.89) matched at downstream USGS gauge data well. A suite of model runs were made in combination with uniformly increased daily summer air temperatures by 2oC, 4 oC and 6 oC as well as adjusted precipitation by -40%, -30%, -20%, -10% and +10% as a sensitivity analysis to explore a broad range of potential future climates. We analyzed the summer stream temperatures and the percent of river length unsuitable for cold to warm water fish habitats. Impacts are greatest in large rivers due to the accumulation of river temperature warming throughout the entire river network. Cold water fish (i.e. brook trout) are most strongly affected while, warm water fish (i.e. largemouth bass) aren't expected to be impacted. The changes in stream temperatures under various potential climate scenarios will provide a better understanding of the specific impact that air temperature and precipitation have on aquatic thermal regimes and habitat.

  15. On extreme rainfall intensity increases with air temperature

    NASA Astrophysics Data System (ADS)

    Molnar, Peter; Fatichi, Simone; Paschalis, Athanasios; Gaal, Ladislav; Szolgay, Jan; Burlando, Paolo

    2016-04-01

    The water vapour holding capacity of air increases at about 7% per degree C according to the Clausius-Clapeyron (CC) relation. This is one of the arguments why a warmer future atmosphere, being able to hold more moisture, will generate higher extreme precipitation intensities. However, several empirical studies have recently demonstrated an increase in extreme rain intensities with air temperature above CC rates, in the range 7-14% per degree C worldwide (called super-CC rates). This was observed especially for shorter duration rainfall, i.e. in hourly and finer resolution data (e.g. review in Westra et al., 2014). The super-CC rate was attributed to positive feedbacks between water vapour and the updraft dynamics in convective clouds and lateral supply (convergence) of moisture. In addition, mixing of storm types was shown to be potentially responsible for super-CC rates in empirical studies. Assuming that convective events are accompanied by lightning, we will show on a large rainfall dataset in Switzerland (30 year records of 10-min and 1-hr data from 59 stations) that while the average rate of increase in extreme rainfall intensity (95th percentile) is 6-7% in no-lightning events and 8-9% in lightning events, it is 11-13% per degree C when all events are combined (Molnar et al., 2015). These results are relevant for climate change studies which predict shifts in storm types in a warmer climate in some parts of the world. The observation that extreme rain intensity and air temperature are positively correlated has consequences for the stochastic modelling of rainfall. Most current stochastic models do not explicitly include a direct rain intensity-air temperature dependency beyond applying factors of change predicted by climate models to basic statistics of precipitation. Including this dependency explicitly in stochastic models will allow, for example in the nested modelling approach of Paschalis et al. (2014), the random cascade disaggregation routine to be

  16. The effect of forced ventilation through snow on the stable water isotope content of the vapor and the snow - an experiment

    NASA Astrophysics Data System (ADS)

    Berben, Sarah; Steen-Larsen, Hans Christian; Johnsen, Sigfus

    2010-05-01

    The stable water isotope signal throughout an ice core is a well known and often used proxy for past temperature reconstructions and is important in our understanding of the climate system. The knowledge about the post depositional processes influencing the isotope signal within the snowpack is therefore important. As wind blow across the snow surface micro high and low pressure areas arise because of sastrugies. These pressure differences create forced ventilation through the snowpack which then affect the interstitial mass exchange between water vapor and snow crystals and therefore the climatic signal stored in the snow. In order of understanding the physics behind this ongoing exchange, a combination of modeling and a controlled experiment has been set up. The process of forced ventilation -as it is believed to occur on Greenland and Antarctica- has then been simulated. The snow within this experiment is collected in Greenland during the new deep drilling project in NW Greenland (NEEM). Within this experiment, air with a known amount of moisture is pulled through a snow sample of different thicknesses. This sample has a known isotopic content and is kept at different sub-zero temperatures. The flow rate of the air has been controlled between 0,01 and 0,5 cm/s. After the interaction between the water vapor and the ice crystals the changes in both humidity and isotope signal are been studied. New in this research are the measurements of the isotope content with a Picarro WS-CRDS analyzer of the water vapour before and after the snow sample. Eventually, to estimate the magnitude of the effect of ventilation through snow on the stable isotope content of the water vapor, the results of the experiment are compared with the output from the computer model. This research will quantify the effect of forced ventilation on the mean isotope signal in the snow and its implications for the derived temperature signal from the water isotope ratio of the ice core as well as

  17. Linking geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppala, Annika

    ERA-40 and ECMWF operational surface level air temperature (SAT) data sets from 1957 to 2006 were used to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the Ap index. Previous modelling work has suggested that NOx produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in polar SATs. We find that during winter months, ERA-40 and ECMWF polar SATs in years with high Ap index are different than in years with low Ap index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, de-pending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings are excluded. Solar irradiance variations were taken into account in the analysis. Although using the re-analysis and operational data sets it was not possible to conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating polar wintertime surface air temperature patterns. The SAT results were tested against variation in the Quasi Biennial Oscillation (QBO), the El Niño Southern Oscillation (ENSO) and the Southern Annular Mode n (SAM). The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode (NAM) and we could not robustly exclude a chance linkage between sea surface temperature (SST) variability and geomagnetic activity. Examining the physical link between geomagnetic activity and polar surface temperature variability patterns using atmospheric models is an ongoing task.

  18. Generation of low-temperature air plasma for food processing

    NASA Astrophysics Data System (ADS)

    Stepanova, Olga; Demidova, Maria; Astafiev, Alexander; Pinchuk, Mikhail; Balkir, Pinar; Turantas, Fulya

    2015-11-01

    The project is aimed at developing a physical and technical foundation of generating plasma with low gas temperature at atmospheric pressure for food industry needs. As known, plasma has an antimicrobial effect on the numerous types of microorganisms, including those that cause food spoilage. In this work an original experimental setup has been developed for the treatment of different foods. It is based on initiating corona or dielectric-barrier discharge in a chamber filled with ambient air in combination with a certain helium admixture. The experimental setup provides various conditions of discharge generation (including discharge gap geometry, supply voltage, velocity of gas flow, content of helium admixture in air and working pressure) and allows for the measurement of the electrical discharge parameters. Some recommendations on choosing optimal conditions of discharge generation for experiments on plasma food processing are developed.

  19. Atmospheric response to soil-frost and snow in Alaska in March

    NASA Astrophysics Data System (ADS)

    Mölders, N.; Walsh, J. E.

    A hydro-thermodynamic soil-vegetation model including soil freezing/thawing (soil-frost) and snow-metamorphism has been integrated into the PennState/NCAR Mesoscale Meteorological Model MM5 in a two-way coupled mode. A hierarchy of simulations with and without the soil-frost module, each combined with and without the snow module, shows the influence of snow-cover and soil-frost on weather in Alaska. Herein the landscape is featured as it is typically by mesoscale models. Theoretical considerations suggest that organic soil types should be considered in mesoscale modeling because of their different thermal and hydrological behavior as compared to mineral soils. The Ludwig-Soret and Dufour effects are small, but increase appreciably during freezing/thawing and snow-melt. The snow and soil-frost processes have a demonstrable impact on the surface thermal and hydrological regimes and on the near-surface atmospheric conditions even on the short (synoptic) timescales. The presence of snow-cover results in a highly stable stratification. In cloud-free areas, the enhanced loss of radiant energy and cooling of the air over snow-cover lead to a positive feedback to relatively colder, drier conditions. In cloudy areas, a positive feedback to warmer, moister conditions develops over snow-cover. As the changes in atmospheric humidity and temperature caused by snow-cover propagate into the pressure field, sea level pressure is lower by more than 1hPa in the simulations with snow-cover. Although the effect of soil-frost alone is an order of magnitude smaller, the soil-frost snow system leads to an increase of the pressure difference to 1.2hPa. The changes in the pressure field alter wind speed and direction slightly. Soil-frost results in soil temperature differences of 2-5K in the upper soil layers, while snow results in differences of 3-10K. Soil-frost has a notably greater impact in cloud-free than cloudy areas. When a snow-cover is present, frozen soil enhances the insulating

  20. The Trends of Soil Temperature Change Associated with Air Temperature Change in Korea from 1973 to 2012

    NASA Astrophysics Data System (ADS)

    Lee, Bo-Hyun; Park, Byeong-Hak; Koh, Eun-Hee; Lee, Kang-Kun

    2015-04-01

    Examining long-term trends of the soil temperature can contribute to assessing subsurface thermal environment. The recent 40-year (1973-2012) meteorological data from 14 Korea Meteorological Administration (KMA) stations was analyzed in this study to estimate the temporal variations of air and soil temperatures (at depths 0.5 and 1.0m) in Korea and their relations. The information on regional characteristics of study sites was also collected to investigate the local and regional features influencing the soil temperature. The long-term increasing trends of both air and soil temperatures were estimated by using simple linear regression analysis. The air temperature rise and soil temperature rise were compared for every site to reveal the relation between air and soil temperature changes. In most sites, the proportion of soil temperature rise to air temperature rise was nearly one to one except a few sites. The difference between the air and soil temperature trends at those sites may be attributed to the combined effect of soil properties such as thermal diffusivity and soil moisture content. The impact of urbanization on the air and soil temperature was also investigated in this study. Establishment of the relationship between the air and soil temperatures can help predicting the soil temperature change in a region where no soil temperature data is obtained by using air temperature data. For rigorous establishment of the relationship between soil and air temperatures, more thorough investigation on the soil thermal properties is necessary through additional monitoring and accompanied validation of the proposed relations. Keywords : Soil temperature, Air temperature, Cross-correlation analysis, Soil thermal diffusivity, Urbanization effect Acknowledgement This work was supported by the research project of "Advanced Technology for Groundwater Development and Application in Riversides (Geowater+)" in "Water Resources Management Program (code 11 Technology Innovation C05

  1. The thermoinsulation effect of snow cover within a climate model

    NASA Astrophysics Data System (ADS)

    Cook, Benjamin I.; Bonan, Gordon B.; Levis, Samuel; Epstein, Howard E.

    2008-07-01

    We use a state of the art climate model (CAM3 CLM3) to investigate the sensitivity of surface climate and land surface processes to treatments of snow thermal conductivity. In the first set of experiments, the thermal conductivity of snow at each grid cell is set to that of the underlying soil (SC-SOIL), effectively eliminating any insulation effect. This scenario is compared against a control run (CTRL), where snow thermal conductivity is determined as a prognostic function of snow density. In the second set of experiments, high (SC-HI) and low (SC-LO) thermal conductivity values for snow are prescribed, based on upper and lower observed limits. These two scenarios are used to envelop model sensitivity to the range of realistic observed thermal conductivities. In both sets of experiments, the high conductivity/low insulation cases show increased heat exchange, with anomalous heat fluxes from the soil to the atmosphere during the winter and from the atmosphere to the soil during the summer. The increase in surface heat exchange leads to soil cooling of up to 20 K in the winter, anomalies that persist (though damped) into the summer season. The heat exchange also drives an asymmetric seasonal response in near-surface air temperatures, with boreal winter anomalies of +6 K and boreal summer anomalies of -2 K. On an annual basis there is a net loss of heat from the soil and increases in ground ice, leading to reductions in infiltration, evapotranspiration, and photosynthesis. Our results show land surface processes and the surface climate within CAM3 CLM3 are sensitive to the treatment of snow thermal conductivity.

  2. Interdecadal changes in snow depth on Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Webster, Melinda A.; Rigor, Ignatius G.; Nghiem, Son V.; Kurtz, Nathan T.; Farrell, Sinead L.; Perovich, Donald K.; Sturm, Matthew

    2014-08-01

    Snow plays a key role in the growth and decay of Arctic sea ice. In winter, it insulates sea ice from cold air temperatures, slowing sea ice growth. From spring to summer, the albedo of snow determines how much insolation is absorbed by the sea ice and underlying ocean, impacting ice melt processes. Knowledge of the contemporary snow depth distribution is essential for estimating sea ice thickness and volume, and for understanding and modeling sea ice thermodynamics in the changing Arctic. This study assesses spring snow depth distribution on Arctic sea ice using airborne radar observations from Operation IceBridge for 2009-2013. Data were validated using coordinated in situ measurements taken in March 2012 during the Bromine, Ozone, and Mercury Experiment (BROMEX) field campaign. We find a correlation of 0.59 and root-mean-square error of 5.8 cm between the airborne and in situ data. Using this relationship and IceBridge snow thickness products, we compared the recent results with data from the 1937, 1954-1991 Soviet drifting ice stations. The comparison shows thinning of the snowpack, from 35.1 ± 9.4 to 22.2 ± 1.9 cm in the western Arctic, and from 32.8 ± 9.4 to 14.5 ± 1.9 cm in the Beaufort and Chukchi seas. These changes suggest a snow depth decline of 37 ± 29% in the western Arctic and 56 ± 33% in the Beaufort and Chukchi seas. Thinning is negatively correlated with the delayed onset of sea ice freezeup during autumn.

  3. Identifying Modes of Temperature Variability Using AIRS Data.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Aumann, H. H.; Yung, Y.

    2007-12-01

    We use the Atmospheric Infrared Sounder (AIRS) and Advance Microwave Sounding Unit (AMSU) data obtained on Aqua spacecraft to study mid-tropospheric temperature variability between 2002-2007. The analysis is focused on daily zonal means of the AIRS channel at 2388 1/cm in the CO2 R-branch and the AMSU channel #5 in the 57 GHz Oxygen band, both with weighting function peaking in the mid-troposphere (400 mb) and the matching sea surface temperature from NCEP (Aumann et al., 2007). Taking into account the nonlinear and non- stationary behavior of the temperature we apply the Empirical Mode Decomposition (Huang et al., 1998) to better separate modes of variability. All-sky (cloudy) and clear sky, day and night data are analyzed. In addition to the dominant annual variation, which is nonlinear and latitude dependent, we identified the modes with higher frequency and inter-annual modes. Some trends are visible and we apply stringent criteria to test their statistical significance. References: Aumann, H. H., D. T. Gregorich, S. E. Broberg, and D. A. Elliott, Geophys. Res. Lett., 34, L15813, doi:10.1029/2006GL029191, 2007. Huang, N. E. Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, Proc. R. Soc. Lond., A 454, 903-995, 1998.

  4. Snow particle speeds in drifting snow

    NASA Astrophysics Data System (ADS)

    Nishimura, Kouichi; Yokoyama, Chika; Ito, Yoichi; Nemoto, Masaki; Naaim-Bouvet, Florence; Bellot, Hervé; Fujita, Koji

    2014-08-01

    Knowledge of snow particle speeds is necessary for deepening our understanding of the internal structures of drifting snow. In this study, we utilized a snow particle counter (SPC) developed to observe snow particle size distributions and snow mass flux. Using high-frequency signals from the SPC transducer, we obtained the sizes of individual particles and their durations in the sampling area. Measurements were first conducted in the field, with more precise measurements being obtained in a boundary layer established in a cold wind tunnel. The obtained results were compared with the results of a numerical analysis. Data on snow particle speeds, vertical velocity profiles, and their dependence on wind speed obtained in the field and in the wind tunnel experiments were in good agreement: both snow particle speed and wind speed increased with height, and the former was always 1 to 2 m s-1 less than the latter below a height of 1 m. Thus, we succeeded in obtaining snow particle speeds in drifting snow, as well as revealing the dependence of particle speed on both grain size and wind speed. The results were verified by similar trends observed using random flight simulations. However, the difference between the particle speed and the wind speed in the simulations was much greater than that observed under real conditions. Snow transport by wind is an aeolian process. Thus, the findings presented here should be also applicable to other geophysical processes relating to the aeolian transport of particles, such as blown sand and soil.

  5. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  6. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  7. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  8. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  9. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  10. Decadal power in land air temperatures: Is it statistically significant?

    NASA Astrophysics Data System (ADS)

    Thejll, Peter A.

    2001-12-01

    The geographical distribution and properties of the well-known 10-11 year signal in terrestrial temperature records is investigated. By analyzing the Global Historical Climate Network data for surface air temperatures we verify that the signal is strongest in North America and is similar in nature to that reported earlier by R. G. Currie. The decadal signal is statistically significant for individual stations, but it is not possible to show that the signal is statistically significant globally, using strict tests. In North America, during the twentieth century, the decadal variability in the solar activity cycle is associated with the decadal part of the North Atlantic Oscillation index series in such a way that both of these signals correspond to the same spatial pattern of cooling and warming. A method for testing statistical results with Monte Carlo trials on data fields with specified temporal structure and specific spatial correlation retained is presented.

  11. Testing the recent snow drought as an analog for climate warming sensitivity of Cascades snowpacks

    NASA Astrophysics Data System (ADS)

    Cooper, Matthew G.; Nolin, Anne W.; Safeeq, Mohammad

    2016-08-01

    Record low snowpack conditions were observed at Snow Telemetry stations in the Cascades Mountains, USA during the winters of 2014 and 2015. We tested the hypothesis that these winters are analogs for the temperature sensitivity of Cascades snowpacks. In the Oregon Cascades, the 2014 and 2015 winter air temperature anomalies were approximately +2 °C and +4 °C above the climatological mean. We used a spatially distributed snowpack energy balance model to simulate the sensitivity of multiple snowpack metrics to a +2 °C and +4 °C warming and compared our modeled sensitivities to observed values during 2014 and 2015. We found that for each +1 °C warming, modeled basin-mean peak snow water equivalent (SWE) declined by 22%–30%, the date of peak SWE (DPS) advanced by 13 days, the duration of snow cover (DSC) shortened by 31–34 days, and the snow disappearance date (SDD) advanced by 22–25 days. Our hypothesis was not borne out by the observations except in the case of peak SWE; other snow metrics did not resemble predicted values based on modeled sensitivities and thus are not effective analogs of future temperature sensitivities. Rather than just temperature, it appears that the magnitude and phasing of winter precipitation events, such as large, late spring snowfall, controlled the DPS, SDD, and DSC.

  12. Air-snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS - Part 1: In-snow bromine activation and its impact on ozone

    NASA Astrophysics Data System (ADS)

    Toyota, K.; McConnell, J. C.; Staebler, R. M.; Dastoor, A. P.

    2013-08-01

    To provide a theoretical framework towards better understanding of ozone depletion events (ODEs) and atmospheric mercury depletion events (AMDEs) in the polar boundary layer, we have developed a one-dimensional model that simulates multiphase chemistry and transport of trace constituents from porous snowpack and through the atmospheric boundary layer (ABL) as a unified system. In this paper, we describe a general configuration of the model and the results of simulations related to reactive bromine release from the snowpack and ODEs during the Arctic spring. The model employs a chemical mechanism adapted from the one previously used for the simulation of multiphase halogen chemistry involving deliquesced sea-salt aerosols in the marine boundary layer. A common set of aqueous-phase reactions describe chemistry both in the liquid-like (or brine) layer on the grain surface of the snowpack and in "haze" aerosols mainly composed of sulfate in the atmosphere. The process of highly soluble/reactive trace gases, whether entering the snowpack from the atmosphere or formed via gas-phase chemistry in the snowpack interstitial air (SIA), is simulated by the uptake on brine-covered snow grains and subsequent reactions in the aqueous phase while being traveled vertically within the SIA. A "bromine explosion", by which, in a conventional definition, HOBr formed in the ambient air is deposited and then converted heterogeneously to Br2, is a dominant process of reactive bromine formation in the top 1 mm (or less) layer of the snowpack. Deeper in the snowpack, HOBr formed within the SIA leads to an in-snow bromine explosion, but a significant fraction of Br2 is also produced via aqueous radical chemistry in the brine on the surface of the snow grains. These top- and deeper-layer productions of Br2 both contribute to the Br2 release into the atmosphere, but the deeper-layer production is found to be more important for the net outflux of reactive bromine. Although ozone is removed via

  13. Snow in the city as a spore bank of potentially pathogenic fungi.

    PubMed

    Ejdys, Elżbieta; Biedunkiewicz, Anna; Dynowska, Maria; Sucharzewska, Ewa

    2014-02-01

    This study evaluates the role of snow as a specific ecological niche and a vector in fungal spreading with particular emphasis on potential pathogens in seasonally and daily changing conditions. The experimental material was fungi isolated from the atmospheric air, snow cover, and fragments of ice and soil from underneath the snow cover. The total count of microfungi in the air before snowfall, i.e. in the autumn, reached 1756.1 CFU/m(3) on average. After the first snowfalls, it dropped to 85.2 CFU/m(3). The analyzed samples of snow cover contained from 101.6 to 8500.0 CFU/m(3) of fungi. Furthermore, 26 species of yeast and yeast-like fungi were isolated from the experimental material. Amongst the analyzed species, 13 were potential anthropopathogens. Though another three species were isolated from organ ontocenoses, i.e. Candida intermedia, Saccharomyces bayanus and Zygosaccharomyces rouxii, their pathogenic potential has not yet been explicitly confirmed. The results of the presented study may be applied in predicting concentrations of fungal spores responsible for mycoses. The first snowfalls significantly reduced the number of colony-forming units of fungi in the air. Under conditions of temperate climate, snow becomes a temporary bank of yeast-like fungi spores and while it melts cells of deposited microfungi migrate to the atmosphere. Hence, individuals with impaired immunity or in the course of immunosuppression or recovery should avoid long walks during periods of snow melting. The count of fungi in urban bioaerosol during the melt may be reduced through systematic removal of snow cover, which is a significant reservoir of potential pathogens. In addition, it should be noted that even a typical psychrophilic strain, capable of surviving at a temperature of 37°C, may bear a significant pathogenic potential. PMID:24176713

  14. Change point analysis of mean annual air temperature in Iran

    NASA Astrophysics Data System (ADS)

    Shirvani, A.

    2015-06-01

    The existence of change point in the mean of air temperature is an important indicator of climate change. In this study, Student's t parametric and Mann-Whitney nonparametric Change Point Models (CPMs) were applied to test whether a change point has occurred in the mean of annual Air Temperature Anomalies Time Series (ATATS) of 27 synoptic stations in different regions of Iran for the period 1956-2010. The Likelihood Ratio Test (LRT) was also applied to evaluate the detected change points. The ATATS of all stations except Bandar Anzali and Gorgan stations, which were serially correlated, were transformed to produce an uncorrelated pre-whitened time series as an input file for the CPMs and LRT. Both the Student's t and Mann-Whitney CPMs detected the change point in the ATATS of (a) Tehran Mehrabad, Abadan, Kermanshah, Khoramabad and Yazd in 1992, (b) Mashhad and Tabriz in 1993, (c) Bandar Anzali, Babolsar and Ramsar in 1994, (d) Kerman and Zahedan in 1996 at 5% significance level. The likelihood ratio test shows that the ATATS before and after detected change points in these 12 stations are normally distributed with different means. The Student's t and Mann-Whitney CPMs suggested different change points for individual stations in Bushehr, Bam, Shahroud, and Gorgan. However, the LRT confirmed the change points in these four stations as 1997, 1996, 1993, and 1996, respectively. No change points were detected in the remaining 11 stations.

  15. Photochemical chlorine and bromine activation from artificial saline snow

    NASA Astrophysics Data System (ADS)

    Wren, S. N.; Donaldson, D. J.; Abbatt, J. P. D.

    2013-05-01

    The activation of reactive halogen species - particularly Cl2 - from sea ice and snow surfaces is not well understood. In this study, we used a photochemical snow reactor coupled to a chemical ionization mass spectrometer to investigate the production of Br2, BrCl and Cl2 from NaCl/NaBr-doped artificial snow samples. At temperatures above the NaCl-water eutectic, illumination of samples (λ > 310 nm) in the presence of gas phase O3 led to the accelerated release of Br2, BrCl and the release of Cl2 in a process that was significantly enhanced by acidity, high surface area and additional gas phase Br2. Cl2 production was only observed when both light and ozone were present. The total halogen release depended on [O3] and pre-freezing [NaCl]. Our observations support a "halogen explosion" mechanism occurring within the snowpack which is initiated by heterogeneous oxidation, and propagated by Br2 or BrCl photolysis and by recycling of HOBr and HOCl into the snowpack. Our study implicates an important role for active chemistry occurring within the interstitial air of aged (i.e., acidic) snow for halogen activation at polar sunrise.

  16. Photochemical chlorine and bromine activation from artificial saline snow

    NASA Astrophysics Data System (ADS)

    Wren, S. N.; Donaldson, D. J.; Abbatt, J. P. D.

    2013-10-01

    The activation of reactive halogen species - particularly Cl2 - from sea ice and snow surfaces is not well understood. In this study, we used a photochemical snow reactor coupled to a chemical ionization mass spectrometer to investigate the production of Br2, BrCl and Cl2 from NaCl/NaBr-doped artificial snow samples. At temperatures above the NaCl-water eutectic, illumination of samples (λ > 310 nm) in the presence of gas phase O3 led to the accelerated release of Br2, BrCl and the release of Cl2 in a process that was significantly enhanced by acidity, high surface area and additional gas phase Br2. Cl2 production was only observed when both light and ozone were present. The total halogen release depended on [ozone] and pre-freezing [NaCl]. Our observations support a "halogen explosion" mechanism occurring within the snowpack, which is initiated by heterogeneous oxidation and propagated by Br2 or BrCl photolysis and by recycling of HOBr and HOCl into the snowpack. Our study implicates this important role of active chemistry occurring within the interstitial air of aged (i.e. acidic) snow for halogen activation at polar sunrise.

  17. Erosion and entrainment of snow and ice by pyroclastic density currents: some outstanding questions (Invited)

    NASA Astrophysics Data System (ADS)

    Walder, J. S.

    2010-12-01

    A pyroclastic density current moving over snow is likely to transform to a lahar if the pyroclasts incorporate enough (melting) snow and meltwater to bring the bulk water content of the mixture to about 35% by volume. However, the processes by which such a mixture forms are still not well understood. Walder (Bull. Volcanol., v. 62, 2000) showed experimentally the existence of an erosion mechanism that functions even in the absence of relative shear motion between pyroclasts and snow substrate: a portion of the snow melted by a blanket of pyroclasts is vaporized; the flux of water vapor upward through the pyroclasts may be enough to fluidize the pyroclasts, which then convect, rapidly scour the snow substrate and transform into a slurry. But these experiments do not tell us how moving pyroclasts would erode snow, and simply releasing a hot grain flow over a snow surface in the lab gives misleading results owing to improper scaling of τ/σ , the ratio of the shear stress τ exerted by the pyroclastic flow to the shear strength σ of snow. There seems to be no way around this problem for experiments with actual snow. However, it may be possible to circumvent the scaling problem by replacing the snow substrate by a gas-fluidized particle bed: by varying the gas flux, the apparent shear strength of the particle bed can be varied. Such an investigation of erosional processes could be done at room temperature. Snow-avalanche studies (for example, Gauer and Issler, Ann. Glaciol. v. 38, 2003) may provide some insight into snow erosion by a pyroclastic density current. Snow is eroded at the base of a dense snow avalanche by abrasion, particle impacts, and—at the avalanche head—by plowing and a “blasting” mechanism associated with compression of the snowpack and expulsion of pore fluid (air). Erosion at the avalanche head seems to be particularly important. Similar processes are likely to occur when the over-riding flow comprises hot grains. The laboratory release of

  18. Effect of Ambient Design Temperature on Air-Cooled Binary Plant Output

    SciTech Connect

    Dan Wendt; Greg Mines

    2011-10-01

    Air-cooled binary plants are designed to provide a specified level of power production at a particular air temperature. Nominally this air temperature is the annual mean or average air temperature for the plant location. This study investigates the effect that changing the design air temperature has on power generation for an air-cooled binary plant producing power from a resource with a declining production fluid temperature and fluctuating ambient temperatures. This analysis was performed for plants operating both with and without a geothermal fluid outlet temperature limit. Aspen Plus process simulation software was used to develop optimal air-cooled binary plant designs for specific ambient temperatures as well as to rate the performance of the plant designs at off-design operating conditions. Results include calculation of annual and plant lifetime power generation as well as evaluation of plant operating characteristics, such as improved power generation capabilities during summer months when electric power prices are at peak levels.

  19. Land-atmosphere coupling associated with snow cover

    NASA Astrophysics Data System (ADS)

    Dutra, Emanuel; Schär, Christoph; Viterbo, Pedro; Miranda, Pedro M. A.

    2011-08-01

    This study investigates the role of interannual snow cover variability in controlling the land-atmosphere coupling and its relation with near surface (T2M) and soil temperature (STL1). Global atmospheric simulations are carried out with the EC-EARTH climate model using climatological sea surface temperature and sea ice distributions. Snow climatology, derived from a control run (COUP), is used to replace snow evolution in the snow-uncoupled simulation (UNCOUP). The snow cover and depth variability explains almost 60% of the winter T2M variability in predominantly snow-covered regions. During spring the differences in interannual variability of T2M are more restricted to the snow line regions. The variability of soil temperature is also damped in UNCOUP. However, there are regions with a pronounced signal in STL1 with no counterpart in T2M. These regions are characterized by a significant interannual variability in snow depth, rather than snow cover (almost fully snow covered during winter). These results highlight the importance of both snow cover and snow depth in decoupling the soil temperature evolution from the overlying atmosphere.

  20. Assessing surface air temperature variability using quantile regression

    NASA Astrophysics Data System (ADS)

    Timofeev, A. A.; Sterin, A. M.

    2014-12-01

    Many researches in climate change currently involve linear trends, based on measured variables. And many of them only consider trends in mean values, whereas it is clear, that not only means, but also whole shape of distribution changes over time and requires careful assessment. For example extreme values including outliers may get bigger, while median has zero slope.Quantile regression provides a convenient tool, that enables detailed analysis of changes in full range of distribution by producing a vector of quantile trends for any given set of quantiles.We have applied quantile regression to surface air temperature observations made at over 600 weather stations across Russian Federation during last four decades. The results demonstrate well pronounced regions with similar values of significant trends in different parts of temperature value distribution (left tail, middle part, right tail). The uncertainties of quantile trend estimations for several spatial patterns of trends over Russia are estimated and analyzed for each of four seasons.For temperature trend estimation over vast territories, quantile regression is an effort consuming approach, but is more informative than traditional instrument, to assess decadal evolution of temperature values, including evolution of extremes.Partial support of ERA NET RUS ACPCA joint project between EU and RBRF 12-05-91656-ЭРА-А is highly appreciated.

  1. Changing Snow Cover and Stream Discharge in the Western United States - Wind River Range, Wyoming

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Barton, Jonathan S.; Riggs, George A.

    2011-01-01

    Earlier onset of springtime weather has been documented in the western United States over at least the last 50 years. Because the majority (>70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack has important implications for the management of water resources. We studied ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover products, 40 years of stream discharge and meteorological station data and 30 years of snow-water equivalent (SWE) SNOw Telemetry (SNOTEL) data in the Wind River Range (WRR), Wyoming. Results show increasing air temperatures for.the 40-year study period. Discharge from streams in WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades. Changes in streamflow may be related to increasing air temperatures which are probably contributing to a reduction in snow cover, although no trend of either increasingly lower streamflow or earlier snowmelt was observed within the decade of the 2000s. And SWE on 1 April does not show an expected downward trend from 1980 to 2009. The extent of snow cover derived from the lowest-elevation zone of the WRR study area is strongly correlated (r=0.91) with stream discharge on 1 May during the decade of the 2000s. The strong relationship between snow cover and streamflow indicates that MODIS snow-cover maps can be used to improve management of water resources in the drought-prone western U.S.

  2. Detecting Falling Snow from Space

    NASA Technical Reports Server (NTRS)

    Jackson, Gail Skofronick; Johnson, Ben; Munchak, Joe

    2012-01-01

    There is an increased interest in detecting and estimating the amount of falling snow reaching the Earth's surface in order to fully capture the atmospheric water cycle. An initial step toward global spaceborne falling snow algorithms includes determining the thresholds of detection for various active and passive sensor channel configurations, snow event cloud structures and microphysics, snowflake particle electromagnetic properties, and surface types. In this work, cloud resolving model simulations of a lake effect and synoptic snow event were used to determine the minimum amount of snow (threshold) that could be detected by the following instruments: the W -band radar of CloudSat, Global Precipitation Measurement (GPM) Dual-frequency Precipitation Radar (DPR) Ku and Ka band, and the GPM Microwave Imager (GMI) channels from 10 to 183 plus or minus 7 GHz. Eleven different snowflake shapes were used to compute radar reflectivities and passive brightness temperatures. Notable results include: (1) the W-Band radar has detection thresholds more than an order of magnitude lower than the future GPM sensors, (2) the cloud structure macrophysics influences the thresholds of detection for passive channels, (3) the snowflake microphysics plays a large role in the detection threshold for active and passive instruments, (4) with reasonable assumptions, "the passive 166 GHz channel has detection threshold values comparable to the GPM DPR Ku and Ka band radars with approximately 0.05 g per cubic meter detected at the surface, or an approximately 0.5-1 millimeter per hr. melted snow rate (equivalent to 0.5-2 centimeters per hr. solid fluffy snowflake rate). With detection levels of falling snow known, we can focus current and future retrieval efforts on detectable storms and concentrate advances on achievable results. We will also have an understanding of the light snowfall events missed by the sensors and not captured in the global estimates.

  3. Simulation of snow cover in two non-monitored Andean catchments using VIC hydrological model with remote sensing validation

    NASA Astrophysics Data System (ADS)

    Vargas, Ximena; Paez, Felipe

    2014-05-01

    Snow plays a key role in the hydrologic cycle over mountainous areas of Central Chile. Its principal function is to store a large amount of water during winter season and release it in spring creating a time gap between precipitation and streamflow. Surface observations of snow like snow pillows or snow depths measurements are unable to capture fully the spatial and temporal variability of snow. Moreover, in this area is easy to find volcanoes and mountains over 6000 masl, but registers are found generally under 3000 masl. Nevertheless, additional information about snow can be obtained from hydrological models that are forced with surface meteorological variables (precipitation, air temperature, wind, etc.) and represent the effects of topography, soil and vegetation on snow processes, but these forcing registers are equally poor across this area. In this work, a combined in situ measurement and MODIS land surface temperature images were related to create daily maximum and minimum air temperature maps for two catchments of Central Chile located in Los Andes mountains, Colorado antes Junta Olivares and Olivares antes Junta Colorado, without any meteorological records available. To overcome the lack of this information we used the results of WRF (Weather Research and Forecasting) for wind and a vicinity gauge for precipitation. The aim of this work was to validate the dynamics of snow cover comparing MODIS snow cover images with hydrological model results once streamflow calibration was performed. In this case, a gridded or "checkerboard type" model was required to compare both results. The chosen model was the Variable Infiltration Capacity (VIC) because it grids spatially the results and recently was released the "Data Set Global VIC Input Parameters at 0.5-Degree Resolution" reducing calibration effort time. However, VIC model has been used to assess water availability on continental and global scales using mainly 0.125 to 2 degree resolutions, a very low

  4. Air Surface Temperature Correlation with Greenhouse Gases by Using Airs Data Over Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Rajab, Jasim Mohammed; MatJafri, M. Z.; Lim, H. S.

    2014-08-01

    The main objective of this study is to develop algorithms for calculating the air surface temperature (AST). This study also aims to analyze and investigate the effects of greenhouse gases (GHGs) on the AST value in Peninsular Malaysia. Multiple linear regression is used to achieve the objectives of the study. Peninsular Malaysia has been selected as the research area because it is among the regions of tropical Southeast Asia with the greatest humidity, pockets of heavy pollution, rapid economic growth, and industrialization. The predicted AST was highly correlated ( R = 0.783) with GHGs for the 6-year data (2003-2008). Comparisons of five stations in 2009 showed close agreement between the predicted AST and the observed AST from AIRS, especially in the wet season (within 1.3 K). The in situ data ranged from 1 to 2 K. Validation results showed that AST ( R = 0.776-0.878) has values nearly the same as the observed AST from AIRS. We found that O3 during the wet season was indicated by a strongly positive beta coefficient (0.264-0.992) with AST. The CO2 yields a reasonable relationship with temperature with low to moderate beta coefficient (-0.065 to 0.238). The O3, CO2, and environmental variables experienced different seasonal fluctuations that depend on weather conditions and topography. The concentration of gases and pollution were the highest over industrial zones and overcrowded cities, and the dry season was more polluted compared with the wet season. These results indicate the advantage of using the satellite AIRS data and a correlation analysis to investigate the effect of atmospheric GHGs on AST over Peninsular Malaysia. An algorithm that is capable of retrieving Peninsular Malaysian AST in all weather conditions with total uncertainties ranging from 1 to 2 K was developed.

  5. Snow: a reliable indicator for global warming in the future?

    NASA Astrophysics Data System (ADS)

    Jacobi, H.-W.

    2012-03-01

    The cryosphere consists of water in the solid form at the Earth's surface and includes, among others, snow, sea ice, glaciers and ice sheets. Since the 1990s the cryosphere and its components have often been considered as indicators of global warming because rising temperatures can enhance the melting of solid water (e.g. Barry et al 1993, Goodison and Walker 1993, Armstrong and Brun 2008). Changes in the cryosphere are often easier to recognize than a global temperature rise of a couple of degrees: many locals and tourists have hands-on experience in changes in the extent of glaciers or the duration of winter snow cover on the Eurasian and North American continents. On a more scientific basis, the last IPCC report left no doubt: the amount of snow and ice on Earth is decreasing (Lemke et al 2007). Available data showed clearly decreasing trends in the sea ice and frozen ground extent of the Northern Hemisphere (NH) and the global glacier mass balance. However, the trend in the snow cover extent (SCE) of the NH was much more ambiguous; a result that has since been confirmed by the online available up-to-date analysis of the SCE performed by the Rutgers University Global Snow Lab (climate.rutgers.edu/snowcover/). The behavior of snow is not the result of a simple cause-and-effect relationship between air temperature and snow. It is instead related to a rather complex interplay between external meteorological parameters and internal processes in the snowpack. While air temperature is of course a crucial parameter for snow and its melting, precipitation and radiation are also important. Further physical properties like snow grain size and the amount of absorbing impurities in the snow determine the fraction of absorbed radiation. While all these parameters affect the energy budget of the snowpack, each of these variables can dominate depending on the season or, more generally, on environmental conditions. As a result, the reduction in SCE in spring and summer in the

  6. Seasonal and altitudinal variations in snow algal communities on an Alaskan glacier (Gulkana glacier in the Alaska range)

    NASA Astrophysics Data System (ADS)

    Takeuchi, Nozomu

    2013-09-01

    Snow and ice algae are cold tolerant algae growing on the surface of snow and ice, and they play an important role in the carbon cycles for glaciers and snowfields in the world. Seasonal and altitudinal variations in seven major taxa of algae (green algae and cyanobacteria) were investigated on the Gulkana glacier in Alaska at six different elevations from May to September in 2001. The snow algal communities and their biomasses changed over time and elevation. Snow algae were rarely observed on the glacier in May although air temperature had been above 0 ° C since the middle of the month and surface snow had melted. In June, algae appeared in the lower areas of the glacier, where the ablation ice surface was exposed. In August, the distribution of algae was extended to the upper parts of the glacier as the snow line was elevated. In September, the glacier surface was finally covered with new winter snow, which terminated algal growth in the season. Mean algal biomass of the study sites continuously increased and reached 6.3 × 10 μl m-2 in cell volume or 13 mg carbon m-2 in September. The algal community was dominated by Chlamydomonas nivalis on the snow surface, and by Ancylonema nordenskiöldii and Mesotaenium berggrenii on the ice surface throughout the melting season. Other algae were less abundant and appeared in only a limited area of the glacier. Results in this study suggest that algae on both snow and ice surfaces significantly contribute to the net production of organic carbon on the glacier and substantially affect surface albedo of the snow and ice during the melting season.

  7. The importance of observed gradients of air temperature and precipitation for modelling water supply projections of a glacierised watershed in the Nepalese Himalayas

    NASA Astrophysics Data System (ADS)

    Immerzeel, W. W.; Pellicciotti, F.; Bierkens, M. F.

    2012-12-01

    Precipitation and temperature vary strongly over short horizontal distances in mountain environments, yet observations are scarce and mostly limited to small numbers of valley stations. The scarcity of meteorological observations at high altitude is particularly problematic in the Himalayas, which play an essential role in the water supply of millions of people downstream. Water supply projections depend on hydrological models, ideally forced by spatial fields of precipitation and air temperature for the accurate simulation of rain and melt runoff. Hydrological models can easily be fitted with seemingly high accuracy to observed runoff, even when meteorological inputs are of poor quality, with detrimental effects, however, on the representation of processes. In this study we use the results of a field campaign conducted during the 2012 monsoon season in the Langtang glacierised catchment in the greater Himalaya of Nepal to illustrate the importance of observations of gradients of air temperature and precipitation in projections of mass balance, seasonal snow and runoff. During the field campaign temperature loggers, tipping buckets and a high altitude pluviometer and snow depth gauge were installed and the data are used to force and recalibrate a high resolution glacio-hydrological model. The results are compared to a model run forced and calibrated using data from a single meteorological station. We show that optimal calibrated parameters vary in response to the quality of input data used, and that internal processes are reproduced differently. It is concluded that short-term campaigns to monitor horizontal and vertical gradients in air temperature and precipitation have the potential to improve the correct process representation in glacio-hydrological models, contribute to an accurate definition of model parameters and subsequently improve the quality of projections of future water supply.

  8. Cyclic Oxidation of High-Temperature Alloy Wires in Air

    NASA Technical Reports Server (NTRS)

    Reigel, Marissa M.

    2004-01-01

    High-temperature alloy wires are proposed for use in seal applications for future re-useable space vehicles. These alloys offer the potential for improved wear resistance of the seals. The wires must withstand the high temperature environments the seals are subjected to as well as maintain their oxidation resistance during the heating and cooling cycles of vehicle re-entry. To model this, the wires were subjected to cyclic oxidation in stagnant air. of this layer formation is dependent on temperature. Slow growing oxides such as chromia and alumina are desirable. Once the oxide is formed it can prevent the metal from further reacting with its environment. Cyclic oxidation models the changes in temperature these wires will undergo in application. Cycling the temperature introduces thermal stresses which can cause the oxide layer to break off. Re-growth of the oxide layer consumes more metal and therefore reduces the properties and durability of the material. were used for cyclic oxidation testing. The baseline material, Haynes 188, has a Co base and is a chromia former while the other two alloys, Kanthal A1 and PM2000, both have a Fe base and are alumina formers. Haynes 188 and Kanthal A1 wires are 250 pm in diameter and PM2000 wires are 150 pm in diameter. The coiled wire has a total surface area of 3 to 5 sq cm. The wires were oxidized for 11 cycles at 1204 C, each cycle containing a 1 hour heating time and a minimum 20 minute cooling time. Weights were taken between cycles. After 11 cycles, one wire of each composition was removed for analysis. The other wire continued testing for 70 cycles. Post-test analysis includes X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) for phase identification and morphology.

  9. Dust-on-snow and the Timing of Peak Streamflow in the Upper Rio Grande

    NASA Astrophysics Data System (ADS)

    Steele, C. M.; Elias, E.; Moffitt, A.; Beltran, I.; Rango, A.

    2015-12-01

    Dust radiative forcing on high elevation snowpack is well-documented in the southern Rockies. Various field studies show that dust deposits decrease snow albedo and increase absorption of solar radiation, leading to earlier snowmelt and peak stream flows. These findings have implications for the use of temperature-index snow runoff models (such as the Snowmelt Runoff Model [SRM]) for predicting streamflow. In previous work, we have used SRM to simulate historical streamflow from 26 Upper Rio Grande sub-basins. Because dust radiative forcing can alter the relation between temperature and snowmelt, we wanted to find out if there is evidence of dust radiative forcing and earlier snowmelt in our study basins, particularly for those years where SRM was less successful in simulating streamflow. To accomplish this we have used openly-available data such as EPA air quality station measurements of particulate matter up to 10 micrometers (PM10); streamflow data from the USGS National Water Information System and Colorado Division of Water Resources; temperature, precipitation and snow water equivalent (SWE) from NRCS SNOTEL stations and remotely sensed data products from the MODIS sensor. Initial analyses indicate that a connection between seasonal dust concentration and streamflow timing (date of onset of warm-season snowmelt, date of streamflow center-of-volume) can be detected. This is further supported by time series analysis of MODIS-derived estimates of snow albedo and dust radiative-forcing in alpine and open subalpine snow fields.

  10. The Winter Environment: Snow

    ERIC Educational Resources Information Center

    Murphy, James E.

    1974-01-01

    Discusses the structure and formation of snow crystals, outlines the history of snow removal, and describes techniques that can be used by students for studying snowflakes and relating their structure to the conditions under which they were formed. (JR)

  11. Camping in the Snow.

    ERIC Educational Resources Information Center

    Brown, Constance

    1979-01-01

    Describes the experience of winter snow camping. Provides suggestions for shelter, snow kitchens, fires and stoves, cooking, latrines, sleeping warm, dehydration prevention, and clothing. Illustrated with full color photographs. (MA)

  12. Air temperature, radiation budget and area changes of Quisoquipina glacier in the Cordillera Vilcanota (Peru)

    NASA Astrophysics Data System (ADS)

    Suarez, Wilson; Macedo, Nicolás; Montoya, Nilton; Arias, Sandro; Schauwecker, Simone; Huggel, Christian; Rohrer, Mario; Condom, Thomas

    2015-04-01

    The Peruvian Andes host about 71% of all tropical glaciers. Although several studies have focused on glaciers of the largest glaciered mountain range (Cordillera Blanca), other regions have received little attention to date. In 2011, a new program has been initiated with the aim of monitoring glaciers in the centre and south of Peru. The monitoring program is managed by the Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI) and it is a joint project together with the Universidad San Antonio Abad de Cusco (UNSAAC) and the Autoridad Nacional del Agua (ANA). In Southern Peru, the Quisoquipina glacier has been selected due to its representativeness for glaciers in the Cordillera Vilcanota considering area, length and orientation. The Cordillera Vilcanota is the second largest mountain range in Peru with a glaciated area of approximately 279 km2 in 2009. Melt water from glaciers in this region is partly used for hydropower in the dry season and for animal breeding during the entire year. Using Landsat 5 images, we could estimate that the area of Quisoquipina glacier has decreased by approximately 11% from 3.66 km2 in 1990 to 3.26 km2 in 2010. This strong decrease is comparable to observations of other tropical glaciers. In 2011, a meteorological station has been installed on the glacier at 5180 m asl., measuring air temperature, wind speed, relative humidity, net short and longwave radiation and atmospheric pressure. Here, we present a first analysis of air temperature and the radiation budget at the Quisoquipina glacier for the first three years of measurements. Additionally, we compare the results from Quisoquipina glacier to results obtained by the Institut de recherche pour le développement (IRD) for Zongo glacier (Bolivia) and Antizana glacier (Ecuador). For both, Quisoquipina and Zongo glacier, net shortwave radiation may be the most important energy source, thus indicating the important role of albedo in the energy balance of the glacier

  13. Using a Support Vector Machine and a Land Surface Model to Estimate Large-Scale Passive Microwave Temperatures over Snow-Covered Land in North America

    NASA Technical Reports Server (NTRS)

    Forman, Barton A.; Reichle, Rolf Helmut

    2014-01-01

    A support vector machine (SVM), a machine learning technique developed from statistical learning theory, is employed for the purpose of estimating passive microwave (PMW) brightness temperatures over snow-covered land in North America as observed by the Advanced Microwave Scanning Radiometer (AMSR-E) satellite sensor. The capability of the trained SVM is compared relative to the artificial neural network (ANN) estimates originally presented in [14]. The results suggest the SVM outperforms the ANN at 10.65 GHz, 18.7 GHz, and 36.5 GHz for both vertically and horizontally-polarized PMW radiation. When compared against daily AMSR-E measurements not used during the training procedure and subsequently averaged across the North American domain over the 9-year study period, the root mean squared error in the SVM output is 8 K or less while the anomaly correlation coefficient is 0.7 or greater. When compared relative to the results from the ANN at any of the six frequency and polarization combinations tested, the root mean squared error was reduced by more than 18 percent while the anomaly correlation coefficient was increased by more than 52 percent. Further, the temporal and spatial variability in the modeled brightness temperatures via the SVM more closely agrees with that found in the original AMSR-E measurements. These findings suggest the SVM is a superior alternative to the ANN for eventual use as a measurement operator within a data assimilation framework.

  14. Study of Ram-air Heat Exchangers for Reducing Turbine Cooling-air Temperature of a Supersonic Aircraft Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Diaguila, Anthony J; Livingood, John N B; Eckert, Ernst R G

    1956-01-01

    The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude of 70,000 feet. A compressor-bleed-air weight flow of 2.7 pounds per second was assumed for the coolant; ram air was considered as the other fluid. Pressure drops and inlet states of both fluids were prescribed, and ranges of compressor-bleed-air temperature reductions and of the ratio of compressor-bleed to ram-air weight flows were considered.

  15. Monitoring global snow cover

    NASA Technical Reports Server (NTRS)

    Armstrong, Richard; Hardman, Molly

    1991-01-01

    A snow model that supports the daily, operational analysis of global snow depth and age has been developed. It provides improved spatial interpolation of surface reports by incorporating digital elevation data, and by the application of regionalized variables (kriging) through the use of a global snow depth climatology. Where surface observations are inadequate, the model applies satellite remote sensing. Techniques for extrapolation into data-void mountain areas and a procedure to compute snow melt are also contained in the model.

  16. Daily Cycle of Air Temperature and Surface Temperature in Stone Forest

    NASA Astrophysics Data System (ADS)

    Wang, K.; Li, Y.; Wang, X.; Yuan, M.

    2013-12-01

    Urbanization is one of the most profound human activities that impact on climate change. In cities, where are highly artificial areas, the conflict between human activity and natural climate is particularly prominent. Urban areas always have the larger area of impervious land, the higher consumption of greenhouse gases, more emissions of anthropogenic heat and air pollution, all contribute to the urban warming phenomena. Understanding the mechanisms causing a variety of phenomena involved in the urban warming is critical to distinguish the anthropogenic effect and natural variation in the climate change. However, the exact dynamics of urban warming were poorly understood, and effective control strategies are not available. Here we present a study of the daily cycle of air temperature and surface temperature in Stone Forest. The specific heat of the stones in the Stone Forest and concrete of the man-made structures within the cities are approximate. Besides, the height of the Stone Forest and the height of buildings within the city are also similar. As a scenic area, the Stone Forest is being preserved and only opened for sightseeing. There is no anthropogenic heat, as well air pollution within the Stone Forest. The thermal environment in Stone Forest can be considered to be a simulation of thermal environment in the city, which can reveal the effect of man-made structures on urban thermal environment. We conducted the field studies and numerical analysis in the Stone Forest for 4 typical urban morphology and environment scenarios, including high-rise compact cities, low-rise sparse cities, garden cities and isolated single stone. Air temperature and relative humidity were measured every half an hour in 15 different locations, which within different spatial distribution of stones and can represent the four urban scenarios respectively. At the same time, an infrared camera was used to take thermal images and get the hourly surface temperatures of stones and

  17. Seasonal Snow Extent and Snow Volume in South America Using SSM/I Passive Microwave Data

    NASA Technical Reports Server (NTRS)

    Foster, James L.; Chang, A. T. C.; Hall, D. K.; Kelly, R.; Houser, Paul (Technical Monitor)

    2001-01-01

    Seasonal snow cover in South America was examined in this study using passive microwave satellite data from the Special Sensor Microwave Imagers (SSM/I) on board Defense Meteorological Satellite Program (DMSP) satellites. For the period from 1992-1998, both snow cover extent and snow depth (snow mass) were investigated during the winter months (May-August) in the Patagonia region of Argentina. Since above normal temperatures in this region are typically above freezing, the coldest winter month was found to be not only the month having the most extensive snow cover but also the month having the deepest snows. For the seven-year period of this study, the average snow cover extent (May-August) was about 0.46 million sq km and the average monthly snow mass was about 1.18 x 10(exp 13) kg. July 1992 was the month having the greatest snow extent (nearly 0.8 million sq km) and snow mass (approximately 2.6 x 10(exp 13) kg).

  18. Impacts of wind farms on surface air temperatures

    PubMed Central

    Baidya Roy, Somnath; Traiteur, Justin J.

    2010-01-01

    Utility-scale large wind farms are rapidly growing in size and numbers all over the world. Data from a meteorological field campaign show that such wind farms can significantly affect near-surface air temperatures. These effects result from enhanced vertical mixing due to turbulence generated by wind turbine rotors. The impacts of wind farms on local weather can be minimized by changing rotor design or by siting wind farms in regions with high natural turbulence. Using a 25-y-long climate dataset, we identified such regions in the world. Many of these regions, such as the Midwest and Great Plains in the United States, are also rich in wind resources, making them ideal candidates for low-impact wind farms. PMID:20921371

  19. Subseasonal variability of North American wintertime surface air temperature

    NASA Astrophysics Data System (ADS)

    Lin, Hai

    2015-09-01

    Using observational pentad data of the recent 34 Northern Hemisphere extended winters, subseasonal variability of surface air temperature (SAT) over North America is analyzed. The four leading modes of subseasonal SAT variability, that are identified with an empirical orthogonal function (EOF) analysis, account for about 60% of the total variance. The first (EOF1) and second (EOF2) modes are independent of other modes, and thus are likely controlled by distinct processes. The third (EOF3) and fourth (EOF4) modes, however, tend to have a phase shift to each other in space and time, indicating that part of their variability is related to a common process and represent a propagating pattern over North America. Lagged regression analysis is conducted to identify the precursors of large-scale atmospheric circulation for each mode a few pentads in advance, and to understand the processes that influence the subseasonal SAT variability and the predictability signal sources. EOF1 is found to be closely related to the Pacific-North American (PNA) circulation pattern and at least part of its variability is preceded by the East Asian cold surge. The cold surge leads to low-level convergence and enhanced convection in the tropical central Pacific which in turn induces the PNA. EOF2 tends to oscillate at a period of about 70 days, and is influenced by the low-frequency component of the Madden-Julian Oscillation (MJO). On the other hand, EOF3 and EOF4 are connected to the high-frequency part of the MJO which has a period range of 30-50 days. These findings would help understanding the mechanisms of subseasonal surface air temperature variability in North America and improving weather predictions on a subseasonal time scale.

  20. Snow Bank Detectives

    ERIC Educational Resources Information Center

    Olson, Eric A.; Rule, Audrey C.; Dehm, Janet

    2005-01-01

    In the city where the authors live, located on the shore of Lake Ontario, children have ample opportunity to interact with snow. Water vapor rising from the relatively warm lake surface produces tremendous "lake effect" snowfalls when frigid winter winds blow. Snow piles along roadways after each passing storm, creating impressive snow banks. When…

  1. Measured Black Carbon Deposition on the Sierra Nevada Snow Pack and Implication for Snow Pack Retreat

    SciTech Connect

    Hadley, O.L.; Corrigan, C.E.; Kirchstetter, T.W.; Cliff, S.S.; Ramanathan, V.

    2010-01-12

    Modeling studies show that the darkening of snow and ice by black carbon deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition to the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain at a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.

  2. Effect of production microclimate on female thermal state with increased temperature and air humidity

    NASA Technical Reports Server (NTRS)

    Machablishvili, O. G.

    1980-01-01

    The thermal state of women during the effect of high air temperature and relative humidity with a varying degree of physical loads was studied. Parameters for air temperature, relative humidity, and air movement were established. It was established that in women the thermo-regulatory stress occurs at lower air temperatures and with lower physical loads than in men. The accumulation of heat in women was revealed with lower air temperature than in men. It is concluded that to preserve the normal physiological state of the female organism it is necessary to create more favorable microclimate conditions and decrease the physical loads.

  3. MASiN: Toward a calibrationless snow cover model for hydrological studies

    NASA Astrophysics Data System (ADS)

    Mas, Alexandre; Baraer, Michel; Arsenault, Richard; Poulin, Annie

    2016-04-01

    Most hydrological models simulate snowmelt using a degree day or simplified energy balance method which usually requires a calibration of the model parameters using discharge data. This method is recognized as promoting equifinalities in models having a high number of parameters to be calibrated as this is the case in distributed models. In addition, calibrating parameters that control snow pack evolution by the mean of discharge data leads to empirical relations which are not proven to remain valid in a changing climate. We here introduce an original physically based snow pack model suitable for hydrological modeling and whose simulation process does not require calibration. The snowpack is modeled using a multi-layer approach. The model called MASiN computes the energy and mass balance of each layer using hourly meteorological data: air temperature, relative humidity, wind velocity and precipitation. Initial parameterization is performed based on published values and a sensitivity analysis. The MASIN simulated snow depth is compared against measurements and simulation from three other models calibrated at each study sites: the snow module of the hydrological model Hydrotel and two empirical snow model at different locations where available data range from nine to twenty one years. MASIN showed good ability to simulate snow depth evolution at every location with Nash Sutcliffe coefficients ranging from 0.684 to 0.873. It gives better results than the calibrated Hydrotel snow module at most location with a mean improvement of the Nash Sutcliffe coefficient by 7 % and is slightly less good than the two calibrated empirical models with a mean Nash Sutcliffe coefficient difference of 6.5 % between MASiN and the best model. MASiN is also the model which shows the smallest mean offset between the simulated and real disappearance of the snow pack. Those results proved the model to be a promising tool for hydrological studies especially where calibration data are lacking.

  4. Estimating Air Temperature over the Tibetan Plateau Using MODIS Data

    NASA Astrophysics Data System (ADS)

    Huang, Fangfang; Ma, Weiqiang; Ma, Yaoming; Li, Maoshan; Hu, Zeyong

    2016-04-01

    Time series of MODIS land surface temperature (LST) data and normalized difference vegetation index (NDVI) data, combined with digital elevation model (DEM) and meterological data for 2001-2012, were used to estimate and map the spatial distribution of monthly mean air temperature over the Tibatan Plateau (TP). Time series and regression analysis of monthly mean land surface temperature (Ts) and air temperature (Ta) were both conducted by ordinary liner regression (OLR) and geographical weighted regression (GWR) methods. Analysis showed that GWR method had much better result (Adjusted R2 > 0.79, root mean square error (RMSE) is between 0.51° C and 1.12° C) for estimating Ta than OLR method. The GWR model, with MODIS LST, NDVI and altitude as independent variables, was used to estimate Ta over the Tibetan Plateau. All GWR models in each month were tested by F-test with significant level of α=0.01 and the regression coefficients were all tested by T-test with significant level of α=0.01. This illustrated that Ts, NDVI and altitude play an important role on estimating Ta over the Tibetan Plateau. Finally, the major conclusions are as follows: (1) GWR method has higher accuracy for estimating Ta than OLR (Adjusted R2=0.40˜0.78, RMSE=1.60˜4.38° C), and the Ta control precision can be up to 1.12° C. (2) Over the Northern TP, the range of Ta variation in January is -29.28 ˜ -5.0° C, and that in July is -0.53 ˜ 14.0° C. Ta in summer half year (from May to October) is between -15.92 ˜ 14.0° C. From October on, 0° C isothermal level is gradually declining from the altitude of 4˜5 kilometers, and hits the bottom with altitude of 3200 meters in December, and Ta is all under 0° C in January. 10° C isothermal level gradually starts rising from the altitude of 3200 meters from May, and reaches the highest level with altitude of 4˜5 kilometers in July. In addition, Ta in south slope of the Tanggula Mountains is obviously higher than that in the north slope. Ta

  5. Features of Duration and Borders of the Bedding of Snow Cover in the Conditions of Climatic Changes in the Territory of Northern Kazakhstan According to Land and Space Monitoring

    NASA Astrophysics Data System (ADS)

    Salnikov, Vitaliy; Turulina, Galina; Polyakova, Svetlana; Muratova, Nadiya; Kauazov, Azamat; Abugalieva, Aigul; Tazhibayeva, Tamara

    2014-05-01

    Precipitation and air temperature datasets from 34 meteorological stations were analyzed to reveal the regional climate changes at the territory in North Kazakhstan over the last 58 years (i.e., 1950-2008). Peculiarities and conditions of snow cover formation and melting have been analyzed at territory of Northern Kazakhstan using surface and space monitoring data. Methods of both the geo-informational processing of remote probing data and statistical processing of databases on snow cover, air temperature and precipitations have been used. Analysis of snow cover observations data for territory of Northern Kazakhstan has shown that the stable snow cover might be observed since the middle of November till the beginning of April. In a few last decades the tendency is observed for longevity decrease of snow cover bedding that appears to be on the background air temperature increase and insignificant increase of cold period precipitations due to the later bedding of the snow cover and its earlier destruction. Peculiarities of atmospheric circulation in Atlantic-Eurasian sector of Northern Semi sphere and their influence of formation of snow cover at territory of Northern Kazakhstan. The higher longevity of the snow cover bedding is defined by the predominance of E form circulation and lower longevity - by the predominance of W+C circulation form. Analysis conducted of the highest height of snow cover bedding has shown that for period of 1936-2012 in the most cases the statistically reliable decreasing trends are observed with the linear trend coefficients of 0,50 - 0,60 cm/year. The method is offered for determination of probable characteristics of the snow cover decade height. Using data of space monitoring are allocated the frontiers of snow cover bedding for the period of snow melting 1982-2008 and the snow cover melting maps are developed. The results further confirm the proposition that snow cover availability is an important and limiting factor in the generation

  6. A satellite snow depth multi-year average derived from SSM/I for the high latitude regions

    USGS Publications Warehouse

    Biancamaria, S.; Mognard, N.M.; Boone, A.; Grippa, M.; Josberger, E.G.

    2008-01-01

    The hydrological cycle for high latitude regions is inherently linked with the seasonal snowpack. Thus, accurately monitoring the snow depth and the associated aerial coverage are critical issues for monitoring the global climate system. Passive microwave satellite measurements provide an optimal means to monitor the snowpack over the arctic region. While the temporal evolution of snow extent can be observed globally from microwave radiometers, the determination of the corresponding snow depth is more difficult. A dynamic algorithm that accounts for the dependence of the microwave scattering on the snow grain size has been developed to estimate snow depth from Special Sensor Microwave/Imager (SSM/I) brightness temperatures and was validated over the U.S. Great Plains and Western Siberia. The purpose of this study is to assess the dynamic algorithm performance over the entire high latitude (land) region by computing a snow depth multi-year field for the time period 1987-1995. This multi-year average is compared to the Global Soil Wetness Project-Phase2 (GSWP2) snow depth computed from several state-of-the-art land surface schemes and averaged over the same time period. The multi-year average obtained by the dynamic algorithm is in good agreement with the GSWP2 snow depth field (the correlation coefficient for January is 0.55). The static algorithm, which assumes a constant snow grain size in space and time does not correlate with the GSWP2 snow depth field (the correlation coefficient with GSWP2 data for January is - 0.03), but exhibits a very high anti-correlation with the NCEP average January air temperature field (correlation coefficient - 0.77), the deepest satellite snow pack being located in the coldest regions, where the snow grain size may be significantly larger than the average value used in the static algorithm. The dynamic algorithm performs better over Eurasia (with a correlation coefficient with GSWP2 snow depth equal to 0.65) than over North America

  7. Topographic and spatial impacts of temperature inversions on air quality using mobile air pollution surveys.

    PubMed

    Wallace, Julie; Corr, Denis; Kanaroglou, Pavlos

    2010-10-01

    We investigated the spatial and topographic effects of temperature inversions on air quality in the industrial city of Hamilton, located at the western tip of Lake Ontario, Canada. The city is divided by a 90-m high topographic scarp, the Niagara Escarpment, and dissected by valleys which open towards Lake Ontario. Temperature inversions occur frequently in the cooler seasons, exacerbating the impact of emissions from industry and traffic. This study used pollution data gathered from mobile monitoring surveys conducted over a 3-year period, to investigate whether the effects of the inversions varied across the city. Temperature inversions were identified with vertical temperature data from a meteorological tower located within the study area. We divided the study area into an upper and lower zone separated by the Escarpment and further into six zones, based on location with respect to the Escarpment and industrial and residential areas, to explore variations across the city. The results identified clear differences in the responses of nitrogen dioxide (NO(2)) and fine particulate matter (PM2.5) to temperature inversions, based on the topographic and spatial criteria. We found that pollution levels increased as the inversion strengthened, in the lower city. However, the results also suggested that temperature inversions identified in the lower city were not necessarily experienced in the upper city with the same intensity. Further, pollution levels in the upper city appeared to decrease as the inversion deepened in the lower city, probably because of an associated change in prevailing wind direction and lower wind speeds, leading to decreased long-range transport of pollutants. PMID:20705328

  8. Using snowboards and lysimeters to constrain snow model choices in a rain-snow transitional environment

    NASA Astrophysics Data System (ADS)

    Wayand, N. E.; Massmann, A.; Clark, M. P.; Lundquist, J. D.

    2015-12-01

    Physically based models of the hydrological cycle are critical for testing our understanding of the natural world and enabling forecasting of extreme events. Previous intercomparison studies (i.e. SNOWMIP I & II, PILPS) of existing snow models that vary in complexity have been hampered by multiple differences in model structure. Recent efforts to encompass multiple model hypothesizes into a single framework (i.e. the Structure for Understanding Multiple Modeling Alternatives [SUMMA] model), have provided the tools necessary for a more rigorous validation of process representation. However, there exist few snow observatories that measure sufficient physical states and fluxes to fully constrain the possible combinations within these multiple model frameworks. In practice, observations of bulk snow states, such as the snow water equivalent (SWE) or snow depth, are most commonly available. The downfall of calibrating a snow model using such single bulk variables can lead to parameter equanimity and compensatory errors, which ultimately impacts the skill of a model as a predictive tool. This study provides two examples of diagnosing modeled snow processes through novel error source identification. Simulations were performed at a recently upgraded (Oct. 2012) snow study site located at Snoqualmie Pass (917 m), in the Washington Cascades, USA. We focused on two physical processes, new snow accumulation and snowpack outflow during mid-winter rain-on-snow events, for their importance towards controlling runoff and flooding in this rain-snow transitional basin. Main results were: 1) modifying the snow model structure to match what was actually observed (i.e. a snow board), allowed the attribution of daily errors in model new snow accumulation to either partitioning, new snow density, or compaction. 2) Observed snow pit temperature profiles from infrared cameras and manual thermometers found that cold biases in the model snowpack temperature prior to rain-on-snow events could

  9. Modelling snow properties in Kautokeino, Northern Norway

    NASA Astrophysics Data System (ADS)

    Vikhamar-Schuler, D.; Dish Mathiesen, S.; Hanssen-Bauer, I.

    2010-09-01

    Hard snow layers deteriorate the grazing situation for reindeers during winter. By modelling the snowpack evolution in Kautokeino over the period 1966-2009, we analyse the weather situations that favor the formation of high-density snow. This work is part of the IPY project EALAT (http://icr.arcticportal.org/en/ealat). We used daily meteorological observations to drive the Swiss multi-layer model SNOWPACK to simulate the evolution of snow cover stratigraphy in terms of density, temperature and grain size. Results are evaluated using direct snow pack observations made during the winter seasons 2007-2010. Furthermore, we compare the modelled snowpack 1966-2010 with historical records of difficult grazing conditions reported by reindeer herders. In particular, the considerable losses of animal lives during the winter 1967/68 was caused by the occurrence of ground ice in conjunction to the long snow cover duration. This unfavorable coincidence is well reproduced by our model results.

  10. <