Science.gov

Sample records for air temperature snow

  1. Air Temperature and Radiation Depressions Associated with a Snow Cover.

    NASA Astrophysics Data System (ADS)

    Baker, Donald G.; Ruschy, David L.; Skaggs, Richard H.; Wall, David B.

    1992-03-01

    An analysis of air temperature and radiation regimes an days with and without a snow cover at the St. Paul, Minnesota, climatological observatory was made based on a 16 December-15 March 23-yr temperature record and a solar and longwave radiation record for 11 of those 23 years. In addition, an overlapping 41-yr temperature record of the Minneapolis-St. Paul National Weather Service Station (MSP) was analyzed for corroboration of the St. Paul temperature results.It was found that both the average maximum and average minimum air temperatures for winter days with a 10-cm or greater snow cover were 8.4°C lower than on the snow-free days. For days with intermediate-depth snow (>0 and <10 cm deep) the depressions of the maximum and minimum temperatures averaged about 2°C less. The temperature depressions at MSP were about 2°C less than at St. Paul for both snow-cover depths, a difference believed to be due to the more urban surroundings at MSP.A difference in the depression of the winter month temperatures was observed at MSP but not at the St. Paul observatory. The St. Paul results were unexpected, since it has been suggested that a greater maximum temperature depression, due to a higher sun, would occur in March than in December.The air temperature depressions compare favorably with the mean 16 December- 15 March radiometrically determined surface temperatures, which indicated that the intermediate snow depth and the 10-cm snow depth were 1O° and 15°C, respectively, colder than the surface free of snow. The mean longwave radiation loss was 3.94 MJ m2 day1 greater from the snow-free surface than from a 10-cm or greater snow cover.

  2. Pan-Arctic linkages between snow accumulation and growing season air temperature, soil moisture and vegetation

    NASA Astrophysics Data System (ADS)

    Luus, K. A.; Gel, Y.; Lin, J. C.; Kelly, R. E. J.; Duguay, C. R.

    2013-01-01

    Arctic field studies have indicated that the air temperature, soil moisture and vegetation at a site influence the quantity of snow accumulated, and that snow accumulation can alter growing season soil moisture and vegetation. Climate change is predicted to bring about warmer air temperatures, greater snow accumulation and northward movements of the shrub and tree lines. Understanding the response of northern environments to changes in snow and growing season land surface characteristics requires: (1) insights into the present-day linkages between snow and growing season land surface characteristics; and (2) the ability to continue to monitor these associations over time across the vast pan-Arctic. The objective of this study was therefore to examine the pan-Arctic (north of 60° N) linkages between two temporally distinct data products created from AMSR-E satellite passive microwave observations: GlobSnow snow water equivalent, and NTSG (growing season air temperature, soil moisture and vegetation transmissivity). Due to the complex and interconnected nature of processes determining snow and growing season land surface characteristics, these associations were analyzed using the modern non-parametric technique of Alternating Conditional Expectations (ACE), as this approach does not impose a predefined analytic form. Findings indicate that regions with lower vegetation transmissivity (more biomass) at the start and end of the growing season tend to accumulate less snow at the start and end of the snow season, possibly due to interception and shading. Warmer air temperatures at the start and end of the growing season were associated with diminished snow accumulation at the start and end of the snow season. High latitude sites with warmer mean annual growing season temperatures tended to accumulate more snow, probably due to the greater availability of water vapor for snow season precipitation at warmer locations. Regions with drier soils preceding snow onset tended

  3. Regional change in snow water equivalent-surface air temperature relationship over Eurasia during boreal spring

    NASA Astrophysics Data System (ADS)

    Wu, Renguang; Chen, Shangfeng

    2016-10-01

    Present study investigates local relationship between surface air temperature and snow water equivalent (SWE) change over mid- and high-latitudes of Eurasia during boreal spring. Positive correlation is generally observed around the periphery of snow covered region, indicative of an effect of snow on surface temperature change. In contrast, negative correlation is usually found over large snow amount area, implying a response of snow change to wind-induced surface temperature anomalies. With the seasonal retreat of snow covered region, region of positive correlation between SWE and surface air temperature shifts northeastward from March to May. A diagnosis of surface heat flux anomalies in April suggests that the snow impact on surface air temperature is dominant in east Europe and west Siberia through modulating surface shortwave radiation. In contrast, atmospheric effect on SWE is important in Siberia and Russia Far East through wind-induced surface sensible heat flux change. Further analysis reveals that atmospheric circulation anomalies in association with snowmelt over east Siberia may be partly attributed to sea surface temperature anomalies in the North Atlantic and the atmospheric circulation anomaly pattern associated with snowmelt over Russia Far East has a close association with the Arctic Oscillation.

  4. Snow removal and ambient air temperature effects on forest soil temperatures in northern Vermont

    NASA Astrophysics Data System (ADS)

    Wang, D.; Decker, K. L.; Waite, C.; Scherbatskoy, T.

    2003-12-01

    We measured deciduous forest soil temperatures under control (unmanipulated) and snow-free (where snow is manually removed) conditions for four winters (at three soil depths) to determine effects of a snow cover reduction such as may occur as a result of climate change on Vermont forest soils. The four winters we studied were characterized as:`cold and snowy', `warm with low snow', `cold with low snow', and `cool with low snow'. Snow-free soils were colder than controls at 5 and 15 cm depth for all years, and at all depths in the two cold winters. Soil thermal variability generally decreased with both increased snow cover and soil depth. The effect of snow cover on soil freeze-thaw events was highly dependent on both the depth of snow and the soil temperature. Snow kept the soil warm and reduced soil temperature variability, but often this caused soil to remain near 0 deg C, resulting in more freeze-thaw events under snow at one or more soil depths. During the `cold snowy' winter, soils under snow had daily averages consistently >0 deg C, whereas snow-free soil temperatures commonly dropped below -3 deg C. During the `warm' year, temperatures of soil under snow were often lower than those of snow-free soils. The warmer winter resulted in less snow cover to insulate soil from freezing in the biologically active top 30 cm. The possible consequences of increased soil freezing include more root mortality and nutrient loss which would potentially alter ecosystem dynamics, decrease productivity of some tree species, and increase sugar maple mortality in northern hardwood forests.

  5. Modeling subcanopy incoming longwave radiation to seasonal snow using air and tree trunk temperatures

    NASA Astrophysics Data System (ADS)

    Webster, Clare; Rutter, Nick; Zahner, Franziska; Jonas, Tobias

    2016-02-01

    Data collected at three Swiss alpine forested sites over a combined 11 year period were used to evaluate the role of air temperature in modeling subcanopy incoming longwave radiation to the snow surface. Simulated subcanopy incoming longwave radiation is traditionally partitioned into that from the sky and that from the canopy, i.e., a two-part model. Initial uncertainties in predicting longwave radiation using the two-part model resulted from vertical differences in measured air temperature. Above-canopy (35 m) air temperatures were higher than those within (10 m) and below (2 m) canopy throughout four snow seasons (December-April), demonstrating how the forest canopy can act as a cold sink for air. Lowest model root-mean-square error (RMSE) was using above-canopy air temperature. Further investigation of modeling subcanopy longwave radiation using above-canopy air temperature showed underestimations, particularly during periods of high insolation. In order to explicitly account for canopy temperatures in modeling longwave radiation, the two-part model was improved by incorporating a measured trunk view component and trunk temperature. Trunk temperature measurements were up to 25°C higher than locally measured air temperatures. This three-part model reduced the RMSE by up to 7.7 W m-2 from the two-part air temperature model at all sensor positions across the 2014 snowmelt season and performed particularly well during periods of high insolation when errors from the two-part model were up to 40 W m-2. A parameterization predicting tree trunk temperatures using measured air temperature and incoming shortwave radiation demonstrate a simple method that can be applied to provide input to the three-part model across midlatitude coniferous forests.

  6. The influence of snow depth and surface air temperature on satellite-derived microwave brightness temperature. [central Russian steppes, and high plains of Montana, North Dakota, and Canada

    NASA Technical Reports Server (NTRS)

    Foster, J. L.; Hall, D. K.; Chang, A. T. C.; Rango, A.; Allison, L. J.; Diesen, B. C., III

    1980-01-01

    Areas of the steppes of central Russia, the high plains of Montana and North Dakota, and the high plains of Canada were studied in an effort to determine the relationship between passive microwave satellite brightness temperature, surface air temperature, and snow depth. Significant regression relationships were developed in each of these homogeneous areas. Results show that sq R values obtained for air temperature versus snow depth and the ratio of microwave brightness temperature and air temperature versus snow depth were not as the sq R values obtained by simply plotting microwave brightness temperature versus snow depth. Multiple regression analysis provided only marginal improvement over the results obtained by using simple linear regression.

  7. Near-surface air temperature and snow skin temperature comparison from CREST-SAFE station data with MODIS land surface temperature data

    NASA Astrophysics Data System (ADS)

    Pérez Díaz, C. L.; Lakhankar, T.; Romanov, P.; Muñoz, J.; Khanbilvardi, R.; Yu, Y.

    2015-08-01

    Land Surface Temperature (LST) is a key variable (commonly studied to understand the hydrological cycle) that helps drive the energy balance and water exchange between the Earth's surface and its atmosphere. One observable constituent of much importance in the land surface water balance model is snow. Snow cover plays a critical role in the regional to global scale hydrological cycle because rain-on-snow with warm air temperatures accelerates rapid snow-melt, which is responsible for the majority of the spring floods. Accurate information on near-surface air temperature (T-air) and snow skin temperature (T-skin) helps us comprehend the energy and water balances in the Earth's hydrological cycle. T-skin is critical in estimating latent and sensible heat fluxes over snow covered areas because incoming and outgoing radiation fluxes from the snow mass and the air temperature above make it different from the average snowpack temperature. This study investigates the correlation between MODerate resolution Imaging Spectroradiometer (MODIS) LST data and observed T-air and T-skin data from NOAA-CREST-Snow Analysis and Field Experiment (CREST-SAFE) for the winters of 2013 and 2014. LST satellite validation is imperative because high-latitude regions are significantly affected by climate warming and there is a need to aid existing meteorological station networks with the spatially continuous measurements provided by satellites. Results indicate that near-surface air temperature correlates better than snow skin temperature with MODIS LST data. Additional findings show that there is a negative trend demonstrating that the air minus snow skin temperature difference is inversely proportional to cloud cover. To a lesser extent, it will be examined whether the surface properties at the site are representative for the LST properties within the instrument field of view.

  8. Pan-Arctic linkages between snow accumulation and growing-season air temperature, soil moisture and vegetation

    NASA Astrophysics Data System (ADS)

    Luus, K. A.; Gel, Y.; Lin, J. C.; Kelly, R. E. J.; Duguay, C. R.

    2013-11-01

    Arctic field studies have indicated that the air temperature, soil moisture and vegetation at a site influence the quantity of snow accumulated, and that snow accumulation can alter growing-season soil moisture and vegetation. Climate change is predicted to bring about warmer air temperatures, greater snow accumulation and northward movements of the shrub and tree lines. Understanding the responses of northern environments to changes in snow and growing-season land surface characteristics requires: (1) insights into the present-day linkages between snow and growing-season land surface characteristics; and (2) the ability to continue to monitor these associations over time across the vast pan-Arctic. The objective of this study was therefore to examine the pan-Arctic (north of 60° N) linkages between two temporally distinct data products created from AMSR-E satellite passive microwave observations: GlobSnow snow water equivalent (SWE), and NTSG growing-season AMSR-E Land Parameters (air temperature, soil moisture and vegetation transmissivity). Due to the complex and interconnected nature of processes determining snow and growing-season land surface characteristics, these associations were analyzed using the modern nonparametric technique of alternating conditional expectations (ACE), as this approach does not impose a predefined analytic form. Findings indicate that regions with lower vegetation transmissivity (more biomass) at the start and end of the growing season tend to accumulate less snow at the start and end of the snow season, possibly due to interception and sublimation. Warmer air temperatures at the start and end of the growing season were associated with diminished snow accumulation at the start and end of the snow season. High latitude sites with warmer mean annual growing-season temperatures tended to accumulate more snow, probably due to the greater availability of water vapor for snow season precipitation at warmer locations. Regions with drier

  9. The impact of land initialization on seasonal forecasts of surface air temperature: role of snow data assimilation in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Lin, P.; Wei, J.; Zhang, Y.; Yang, Z. L.

    2015-12-01

    Land initializations (i.e., snow, soil moisture, leaf area index) have been recognized as important sources of seasonal climate predictability besides ocean and atmosphere initializations. However, studies focusing on assessing how land data assimilation (DA) contributes to seasonal forecast skills are still lacking due to the limited number of large-scale land DA studies. In this study, taking advantage of the snow outputs from a multivariate global land DA system (i.e., DART/CLM), we systematically investigated the role of large-scale snow DA in influencing seasonal forecasts of surface air temperature. Three suites of ensemble seasonal forecast experiments were performed using the Community Earth System Model (CESM v1.2.1), in which three different snow initialization datasets were used. They are (1) CLM4 simulation without DA, (2) CLM4 simulation with MODIS snow cover DA, and (3) CLM4 simulation with joint GRACE and MODIS snow DA. Each suite of the experiment starts from multiple initialization dates of eight years from 2003 to 2010 and has three-month lead times. All experiments used the same atmosphere initializations from ERA-Interim (perturbed to get 8 ensembles) and the same prescribed SSTs. Our results show that snow DA plays an important role in surface air temperature predictions in regions such as Europe, western Canada, northern Alaska, Mongolia Plateau, Tibetan Plateau, and the Rocky Mountains. The analyses also account for multiple lead times as snow can influence the atmosphere through immediate snow-albedo effect and through delayed snow hydrological effect after snow melts and wets the soil. This is a first study to quantify the impacts of snow initializations on seasonal forecasts of surface air temperature with an emphasis on large-scale snow DA. The insights are helpful to both land DA studies as well as research on seasonal climate forecasts.

  10. An observation-based assessment of the influences of air temperature and snow depth on soil temperature in Russia

    NASA Astrophysics Data System (ADS)

    Park, Hotaek; Sherstiukov, Artem B.; Fedorov, Alexander N.; Polyakov, Igor V.; Walsh, John E.

    2014-05-01

    This study assessed trends in the variability of soil temperature (TSOIL) using spatially averaged observation records from Russian meteorological land stations. The contributions of surface air temperature (SAT) and snow depth (SND) to TSOIL variation were quantitatively evaluated. Composite time series of these data revealed positive trends during the period of 1921-2011, with accelerated increases since the 1970s. The TSOIL warming rate over the entire period was faster than the SAT warming rate in both permafrost and non-permafrost regions, suggesting that SND contributes to TSOIL warming. Statistical analysis revealed that the highest correlation between SND and TSOIL was in eastern Siberia, which is underlain by permafrost. SND in this region accounted for 50% or more of the observed variation in TSOIL. TSOIL in the non-permafrost region of western Siberia was significantly correlated with changes in SAT. Thus, the main factors associated with TSOIL variation differed between permafrost and non-permafrost regions. This finding underscores the importance of including SND data when assessing historical and future variations and trends of permafrost in the Northern Hemisphere.

  11. Tomography-based characterization of ice-air interface dynamics of temperature gradient snow metamorphism under advective conditions

    NASA Astrophysics Data System (ADS)

    Ebner, Pirmin Philipp; Andreoli, Christian; Schneebeli, Martin; Steinfeld, Aldo

    2015-12-01

    Snow at or close to the surface commonly undergoes temperature gradient metamorphism under advective flow, which alters its microstructure and physical properties. A functional understanding of this process is essential for many disciplines, from modeling the effects of snow on regional and global climate to assessing avalanche formation. Time-lapse X-ray microtomography was applied to investigate the structural dynamics of temperature gradient snow metamorphism exposed to an advective airflow in controlled laboratory conditions. Experiments specifically analyzed sublimation and deposition of water vapor on the ice structure. In addition, an analysis of the ice-air interface dynamics was carried out using a macroscopic equivalent model of heat and water vapor transport through a snow layer. The results indicate that sublimation of the ice matrix dominated for flow rates < 10-6 m3 s-1 while during increased mass flow rates the water vapor deposition supplied by the advective flow counteracted sublimation. A flow rate dependence of water vapor deposition at the ice interface was observed, asymptotically approaching an average estimated maximum deposition rate on the whole sample of 1.05 · 10-4 kg m-3 s-1. The growth of microsized whisker-like crystals on larger ice crystals was detected on microscope photographs, leading to an increase of the specific surface area and thus suggest a change of the physical and optical properties of the snow. The estimated values of the curvature effect of the ice crystals and the interface kinetic coefficient are in good agreement with previously published values.

  12. Snow and the ground temperature record of climate change

    NASA Astrophysics Data System (ADS)

    Bartlett, Marshall G.; Chapman, David S.; Harris, Robert N.

    2004-12-01

    Borehole temperature-depth profiles contain a record of surface ground temperature (SGT) changes with time and complement surface air temperature (SAT) analysis to infer climate change over multiple centuries. Ground temperatures are generally warmer than air temperatures due to solar radiation effects in the summer and the insulating effect of snow cover during the winter. The low thermal diffusivity of snow damps surface temperature variations; snow effectively acts as an insulator of the ground during the coldest part of the year. A numerical model of snow-ground thermal interactions is developed to investigate the effect of seasonal snow cover on annual ground temperatures. The model is parameterized in terms of three snow event parameters: onset time of the annual snow event, duration of the event, and depth of snow during the event. These parameters are commonly available from meteorological and remotely sensed data making the model broadly applicable. The model is validated using SAT, subsurface temperature from a depth of 10 cm, and snow depth data from the 6 years of observations at Emigrant Pass climate observatory in northwestern Utah and 217 station years of National Weather Service data from sites across North America. Measured subsurface temperature-time series are compared to changes predicted by the model. The model consistently predicts ground temperature changes that compare well with those observed. Sensitivity analysis of the model leads to a nonlinear relationship between the three snow event parameters (onset, duration, and depth of the annual snow event) and the influence snow has on mean annual SGT.

  13. Photoreducible Mercury Loss from Arctic Snow Is Influenced by Temperature and Snow Age.

    PubMed

    Mann, Erin A; Mallory, Mark L; Ziegler, Susan E; Avery, Trevor S; Tordon, Rob; O'Driscoll, Nelson J

    2015-10-20

    Mercury (Hg) is an important environmental contaminant, due to its neurotoxicity and ability to bioaccumulate. The Arctic is a mercury-sensitive region, where organisms can accumulate high Hg concentrations. Snowpack mercury photoredox reactions may control how much Hg is transported with melting Arctic snow. This work aimed to (1) determine the significance of temperature combined with UV irradiation intensity and snow age on Hg(0) flux from Arctic snow and (2) elucidate the effect of temperature on snowpack Hg photoreduction kinetics. Using a Teflon flux chamber, snow temperature, UV irradiation, and snow age were found to significantly influence Hg(0) flux from Arctic snow. Cross-correlation analysis results suggest that UV radiation has a direct effect on Hg(0)flux, while temperature may indirectly influence flux. Laboratory experiments determined that temperature influenced Hg photoreduction kinetics when snow approached the melting point (>-2 °C), where the pseudo-first-order reduction rate constant, k, decreased twofold, and the photoreduced Hg amount, Hg(II)red, increased 10-fold. This suggests that temperature influences Hg photoreduction kinetics indirectly, likely by altering the solid:liquid water ratio. These results imply that large mass transfers of Hg from snow to air may take place during the Arctic snowmelt period, altering photoreducible Hg retention and transport with snow meltwater.

  14. Limitations of using a thermal imager for snow pit temperatures

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Jamieson, B.

    2014-03-01

    Driven by temperature gradients, kinetic snow metamorphism plays an import role in avalanche formation. When gradients based on temperatures measured 10 cm apart appear to be insufficient for kinetic metamorphism, faceting close to a crust can be observed. Recent studies that visualised small-scale (< 10 cm) thermal structures in a profile of snow layers with an infrared (IR) camera produced interesting results. The studies found melt-freeze crusts to be warmer or cooler than the surrounding snow depending on the large-scale gradient direction. However, an important assumption within these studies was that a thermal photo of a freshly exposed snow pit was similar enough to the internal temperature of the snow. In this study, we tested this assumption by recording thermal videos during the exposure of the snow pit wall. In the first minute, the results showed increasing gradients with time, both at melt-freeze crusts and artificial surface structures such as shovel scours. Cutting through a crust with a cutting blade or shovel produced small concavities (holes) even when the objective was to cut a planar surface. Our findings suggest there is a surface structure dependency of the thermal image, which was only observed at times during a strong cooling/warming of the exposed pit wall. We were able to reproduce the hot-crust/cold-crust phenomenon and relate it entirely to surface structure in a temperature-controlled cold laboratory. Concave areas cooled or warmed more slowly compared with convex areas (bumps) when applying temperature differences between snow and air. This can be explained by increased radiative and/or turbulent energy transfer at convex areas. Thermal videos suggest that such processes influence the snow temperature within seconds. Our findings show the limitations of using a thermal camera for measuring pit-wall temperatures, particularly during windy conditions, clear skies and large temperature differences between air and snow. At crusts or other

  15. Using Air Temperature to Quantitatively Predict the MODIS Fractional Snow Cover Retrieval Errors over the Continental US (CONUS)

    NASA Technical Reports Server (NTRS)

    Dong, Jiarui; Ek, Mike; Hall, Dorothy K.; Peters-Lidard, Christa; Cosgrove, Brian; Miller, Jeff; Riggs, George A.; Xia, Youlong

    2013-01-01

    In the middle to high latitude and alpine regions, the seasonal snow pack can dominate the surface energy and water budgets due to its high albedo, low thermal conductivity, high emissivity, considerable spatial and temporal variability, and ability to store and then later release a winters cumulative snowfall (Cohen, 1994; Hall, 1998). With this in mind, the snow drought across the U.S. has raised questions about impacts on water supply, ski resorts and agriculture. Knowledge of various snow pack properties is crucial for short-term weather forecasts, climate change prediction, and hydrologic forecasting for producing reliable daily to seasonal forecasts. One potential source of this information is the multi-institution North American Land Data Assimilation System (NLDAS) project (Mitchell et al., 2004). Real-time NLDAS products are used for drought monitoring to support the National Integrated Drought Information System (NIDIS) and as initial conditions for a future NCEP drought forecast system. Additionally, efforts are currently underway to assimilate remotely-sensed estimates of land-surface states such as snowpack information into NLDAS. It is believed that this assimilation will not only produce improved snowpack states that better represent snow evolving conditions, but will directly improve the monitoring of drought.

  16. Winter stream temperature in the rain-on-snow zone

    NASA Astrophysics Data System (ADS)

    Leach, J. A.; Moore, R. D.

    2012-12-01

    Stream temperature is a principal determinant of aquatic ecosystem composition and productivity. There are increasing concerns that changes in land cover and climatic conditions could produce changes in stream thermal regimes that would be deleterious to existing aquatic communities. Most stream temperature research has focused on summer periods and few studies have examined winter periods despite the growing recognition of its biological importance. The winter thermal regimes of Pacific Northwest headwater streams, which provide vital winter habitat for salmonids and their food sources, may be particularly sensitive to changes in climate because they can remain ice-free throughout the year and are often located in rain-on-snow zones. This study examined winter stream temperature patterns and controls in small headwater catchments within the rain-on-snow zone at the Malcolm Knapp Research Forest, near Vancouver, British Columbia, Canada. Two working hypotheses were addressed by this study: (1) winter stream temperatures are primarily controlled by advective fluxes associated with runoff processes and (2) stream temperatures should be depressed during rain-on-snow events, compared to rain on bare ground, due to the cooling effect of rain passing through the snowpack prior to infiltrating the soil or being delivered to the stream as saturation-excess overland flow. These hypotheses were tested statistically using historical stream temperature data and modelled snowpack dynamics for a forested headwater catchment. When snow was not present, daily stream temperature during winter rain events tended to increase with increasing air temperature. However, when snow was present, stream temperature was capped at about 5 °C, regardless of air temperature. This historical analysis was complemented with detailed field data collected during the winter of 2011-2012 from an ongoing field study in a partially logged catchment. Stream temperature response to a large rain-on-snow

  17. Air-snow exchange of nitrate: a modelling approach to investigate physicochemical processes in surface snow at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Bock, Josué; Savarino, Joël; Picard, Ghislain

    2016-04-01

    Snowpack is a multiphase (photo)chemical reactor that strongly influences the air composition in polar and snow-covered regions. Snowpack plays a special role in the nitrogen cycle, as it has been shown that nitrate undergoes numerous recycling stages (including photolysis) in the snow before being permanently buried in the firn. However, the current understanding of these physicochemical processes remains very poor. Several modelling studies have attempted to reproduce (photo)chemical reactions inside snow grains, but these required strong assumptions to characterise snow reactive properties, which are not well defined. Physical processes such as adsorption, solid state diffusion and co-condensation also affect snow chemical composition. We developed a model including a physically based parameterisation of these air-snow exchange processes for nitrate. This modelling study divides into two distinct parts: firstly, surface concentration of nitrate adsorbed onto snow is calculated using existing isotherm parametrisation. Secondly, bulk concentration of nitrate in solid solution into the ice matrix is modelled. In this second approach, solid state diffusion drives the evolution of nitrate concentration inside a layered spherical snow grain. A physically-based parameterisation defining the concentration at the air-snow interface was developed to account for the the co-condensation process. The model uses as input a one-year long time series of atmospheric nitrate concentration measured at Dome C, Antarctica. The modelled nitrate concentration in surface snow is compared to field measurements. We show that on the one hand, the adsorption of nitric acid on the surface of the snow grains fails to fit the observed variations. During winter and spring, the modelled adsorbed concentration of nitrate is 2.5 and 8.3-fold higher than the measured one, respectively. A strong diurnal variation driven by the temperature cycle and a peak occurring in early spring are two other

  18. Temperature Control Method in the Snow Road Construction

    NASA Astrophysics Data System (ADS)

    Serebrenikova, Yu; Lysyannikov, A.; Kaizer, Yu; Zhelykevich, R.; Plakhotnikova, M.; Lysyannikova, N.; Merko, M.; Merko, I.

    2016-06-01

    The paper substantiates the process of heat treatment before the snow compaction in snow road construction. The methods to measure the temperature of snow as a moving dispersed material have been considered in the paper.

  19. Interaction between temperature, precipitation and snow cover trends in Norway

    NASA Astrophysics Data System (ADS)

    Rizzi, Jonathan; Brox Nilsen, Irene; Stagge, James Howard; Gisnås, Kjersti; Merete Tallaksen, Lena

    2016-04-01

    Northern latitudes are experiencing faster warming than other regions, partly due to the snow--albedo feedback. A reduction in snow cover, which has a strong positive feedback on the energy balance, leads to a lowering of the albedo and thus, an amplification of the warming signal. Norway, in particular, can be considered a "cold climate laboratory" with large gradients in geography and climate that allows studying the effect of changing temperature and precipitation on snow in highly varying regions. Previous research showed that during last decades there has been an increase in air temperature for the entire country and a concurrent reduction in the land surface area covered by snow. However, these studies also demonstrate the sensitivity of the trend analysis to the period of record, to the start and end of the period, and to the presence of extreme years. In this study, we analyse several variables and their spatial and temporal variability across Norway, including mean, minimum and maximum daily temperature, daily precipitation, snow covered area and total snow water equivalent. Climate data is retrieved from seNorge (http://www.senorge.no), an operationally gridded dataset for Norway with a resolution of 1 km2. Analysis primarily focused on three overlapping 30-year periods (i.e., 1961-1990, 1971-2000, 1981-2010), but also tested trend sensitivity by varying period lengths. For each climate variable the Theil-Sen trend was calculated for each 30-year period along with the difference between 30-year mean values. In addition, indices specific to each variable were calculated (e.g. the number of days with a shift from negative to positive temperature values). The analysis was performed for the whole of Norway as well as for separate climatological regions previously defined based on temperature, precipitation and elevation. Results confirm a significant increase in mean daily temperatures and accelerating warming trends, especially during winter and spring

  20. Air-snow exchange of nitrate: a modelling approach to investigate physicochemical processes in surface snow at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Bock, Josué; Savarino, Joël; Picard, Ghislain

    2016-10-01

    Snowpack is a multiphase (photo)chemical reactor that strongly influences the air composition in polar and snow-covered regions. Snowpack plays a special role in the nitrogen cycle, as it has been shown that nitrate undergoes numerous recycling stages (including photolysis) in the snow before being permanently buried in the ice. However, the current understanding of these physicochemical processes remains very poor. Several modelling studies have attempted to reproduce (photo)chemical reactions inside snow grains, but these have relied on strong assumptions to characterise snow reactive properties, which are not well defined. Air-snow exchange processes such as adsorption, solid-state diffusion, or co-condensation also affect snow chemical composition. Here, we present a physically based model of these processes for nitrate. Using as input a 1-year-long time series of atmospheric nitrate concentration measured at Dome C, Antarctica, our model reproduces with good agreement the nitrate measurements in the surface snow. By investigating the relative importance of the main exchange processes, this study shows that, on the one hand, the combination of bulk diffusion and co-condensation allows a good reproduction of the measurements (correlation coefficient r = 0.95), with a correct amplitude and timing of summer peak concentration of nitrate in snow. During winter, nitrate concentration in surface snow is mainly driven by thermodynamic equilibrium, whilst the peak observed in summer is explained by the kinetic process of co-condensation. On the other hand, the adsorption of nitric acid on the surface of the snow grains, constrained by an already existing parameterisation for the isotherm, fails to fit the observed variations. During winter and spring, the modelled concentration of adsorbed nitrate is respectively 2.5 and 8.3-fold higher than the measured one. A strong diurnal variation driven by the temperature cycle and a peak occurring in early spring are two other

  1. Quasi-steady temperature gradient metamorphism in idealized, dry snow

    SciTech Connect

    Christon, M. . Methods Development Group); Burns, P.J. . Dept. of Mechanical Engineering); Sommerfeld, R.A. )

    1994-03-01

    A three-dimensional model for heat and mass transport in microscale ice lattices of dry snow is formulated consistent with conservation laws and solid-vapor interface constraints. A finite element model that employs continuous mesh deformation is developed, and calculation of the effective diffusion rates in snow, metamorphosing under a temperature gradient, is performed. Results of the research provide basic insight into the movement of heat and water vapor in seasonal snowcovers. Agreement between the numerical results and measured data of effective thermal conductivity is excellent. The enhancement to the water vapor diffusion rate in snow is bracketed in the range of 1.05--2.0 times that of water vapor in dry air.

  2. Approximating snow surface temperature from standard temperature and humidity data: new possibilities for snow model and remote sensing validation (Invited)

    NASA Astrophysics Data System (ADS)

    Raleigh, M. S.; Landry, C.; Hayashi, M.; Quinton, W. L.; Lundquist, J. D.

    2013-12-01

    The snow surface skin temperature (Ts) is important in the snowmelt energy balance, land-atmosphere interactions, weak layer formation (avalanche risk), and winter recreation, but is rarely measured at observational networks. Reliable Ts datasets are needed to validate remote sensing and distributed modeling, in order to represent land-atmosphere feedbacks. Previous research demonstrated that the dew point temperature (Td) close to the snow surface approximates Ts well because air is saturated immediately above snow. However, standard height (2 to 4 m) measurements of the saturation temperatures, Td and wet-bulb temperature (Tw), are much more readily available than measurements of Ts or near-surface Td. There is limited understanding of how these standard height variables approximate Ts, and how the approximations vary with climate, seasonality, time of day, and atmospheric conditions (stability and radiation). We used sub-daily measurements from seven sites in varying snow climates and environments to test Ts approximations with standard height temperature and moisture. Td produced the lowest bias (-2.2 °C to +2.6 °C) and root mean squared error (RMSE) when approximating mean daily Ts, but tended to underestimate daily extremes in Ts. For comparison, air temperature (Ta) was biased +3.2 °C to +6.8 °C. Ts biases increased with increasing frequency in nighttime stability and daytime clear sky conditions. We illustrate that mean daily Td can be used to detect systematic input data bias in physically-based snowmelt modeling, a useful tool when validating spatially distributed snow models in data sparse regions. Thus, improved understanding of Td variations can advance understanding of Ts in space and time, providing a simple yet robust measure of surface feedback to the atmospheric energy budget.

  3. The role of mercury redox reactions in snow on snow-to-air mercury transfer.

    PubMed

    Lalonde, Janick D; Poulain, Alexandre J; Amyot, Marc

    2002-01-15

    Wet deposition of Hg in snow represents a major air-to-land flux of Hg in temperate and polar environments. However, the chemical speciation of Hg in snow and its chemical and physical behavior after deposition are poorly understood. To investigate Hg dynamics in snow, we followed Hg0 and total Hg concentrations in a snowpack above a frozen lake over 1 month. Our results indicate that newly deposited Hg is highly labile in snowpacks. On average, Hg levels in particular snow episodes decrease by 54% within 24 h after deposition. We hypothesize that Hg depletion in snow could be caused by a rapid snow-to-air Hg transfer resulting from Hg(II) photoinduced reduction to volatile Hg0. Both snowmelt incubated under a UV lamp at 17 degrees C and solid snow incubated under the sun at -10 degrees C in clear reaction vessels yielded a statistically significant increase in Hg0(aq) with time of exposure, while the Hg0(aq) levels remained constant in the dark controls. The snow-to-air Hg transfer we observed in this study suggests that the massive Hg deposition events observed in springtime in northern environments may have less impact than previously anticipated, since once deposited, Hg could be rapidly reduced and re-emitted.

  4. Metamorphism during temperature gradient with undersaturated advective airflow in a snow sample

    NASA Astrophysics Data System (ADS)

    Ebner, Pirmin Philipp; Schneebeli, Martin; Steinfeld, Aldo

    2016-04-01

    Snow at or close to the surface commonly undergoes temperature gradient metamorphism under advective flow, which alters its microstructure and physical properties. Time-lapse X-ray microtomography is applied to investigate the structural dynamics of temperature gradient snow metamorphism exposed to an advective airflow in controlled laboratory conditions. Cold saturated air at the inlet was blown into the snow samples and warmed up while flowing across the sample with a temperature gradient of around 50 K m-1. Changes of the porous ice structure were observed at mid-height of the snow sample. Sublimation occurred due to the slight undersaturation of the incoming air into the warmer ice matrix. Diffusion of water vapor opposite to the direction of the temperature gradient counteracted the mass transport of advection. Therefore, the total net ice change was negligible leading to a constant porosity profile. However, the strong recrystallization of water molecules in snow may impact its isotopic or chemical content.

  5. The association between extremes in North American snow cover extent and United States temperatures

    SciTech Connect

    Leathers, D.J. ); Robinson, D.A. )

    1993-07-01

    The association between satellite-derived North American snow cover extent and United States winter (December, January, February) temperature is examined. The results indicate that winter months evidencing extreme position (negative) values of North American snow cover extent are associated with below- (above) normal temperatures across the majority of the United States. The area evidencing the largest temperatures departures during both positive and negative North American snow cover extremes is located across the central United States, roughly from the Dakotas south through the southern plains, and from the Rocky Mountains east the Mississippi Valley. This area is collocated with the largest variations in snow cover frequency. No consistently strong association is indicated east of the Appalachians or west of the Rocky Mountains. During December, strong 500-mb height anomalies are collocated with the area of maximum snow cover frequency deviations and the largest temperature departures. This is not the case in January and February. During these months the snow cover frequency and temperature anomaly fields are not in close proximity to strong areas of 500-mb deviations. Evidence is presented to suggest that continental snow cover anomalies produce remote temperature perturbations away from the area of local snow cover variations, through the large-scale modification of air masses. In addition, a brief climatology of North American snow cover is presented. 38 refs., 5 figs., 1 tab.

  6. Seasonal evolution of snow permeability under equi-temperature and temperature-gradient conditions

    NASA Astrophysics Data System (ADS)

    Domine, F.; Morin, S.; Brun, E.; Lafaysse, M.; Carmagnola, C. M.

    2013-12-01

    The permeability (K) of snow to air flow affects the transfer of energy, water vapor and chemical species between the snow and the atmosphere. Yet today little is known about the temporal evolution of snow permeability as a function of metamorphic regime. Furthermore, our ability to simulate snow permeability over the seasonal evolution of a snowpack has not been tested. Here we have measured the evolution of snow permeability in a subarctic snowpack subject to high temperature-gradient (TG) metamorphism. We have also measured the evolution of the same snowpack deposited over tables so that it evolved in the equi-temperature (ET) regime. Permeability varies in the range 31 × 10-10 (ET regime) to 650 × 10-10 m2 (TG regime). Permeability increases over time in TG conditions and decreases under ET conditions. Using measurements of density ρ and of specific surface area (SSA), from which the equivalent sphere radius r is determined, we show that the equation linking SSA, density ρ and permeability, K = 3.0 r2 e(-0.013 ρ) (with K in m2, r in m and ρ in kg m-3) obtained in a previous study adequately predicts permeability values. The detailed snowpack model Crocus is used to simulate the physical properties of the TG and ET snowpacks. For the most part, all variables are well reproduced. Simulated permeabilities are up to a factor of two greater than measurements for depth hoar layers, which we attribute to snow microstructure and its aerodynamic properties. Finally, the large difference in permeabilities between ET and TG metamorphic regimes will impact atmosphere-snow energy and mass exchanges. These effects deserve consideration in predicting the effect of climate change on snow properties and snow-atmosphere interactions.

  7. Influence of wet conditions on snow temperature diurnal variations: An East Antarctic sea-ice case study

    NASA Astrophysics Data System (ADS)

    Lecomte, O.; Toyota, T.

    2016-09-01

    A one-dimensional snow-sea-ice model is used to simulate the evolution of temperature profiles in dry and wet snow over a diurnal cycle, at locations where associated observations collected during the Sea Ice Physics and Ecosystem eXperiment (SIPEX-II) are available. The model is used at two sites, corresponding to two of the field campaign's sea-ice stations (2 and 6), and under two configurations: dry and wet snow conditions. In the wet snow model setups, liquid water may refreeze internally into the snow. At station 6, this releases latent heat to the snow and results in temperature changes at the base of the snow pack of a magnitude comparing to the model-observation difference (1 - 2 ° C). As the temperature gradient across the snow is in turn weakened, the associated conductive heat flux through snow decreases. At station 2, internal refreezing also occurs but colder air temperatures and the competing process of strengthened heat conduction in snow concurrent to snow densification maintain a steady temperature profile. However, both situations share a common feature and show that the conductive heat flux through the snow may significantly be affected (by 10-20% in our simulations) as a result of the liquid water refreezing in snow, either through thermal conductivity enhancement or direct temperature gradient alteration. This ultimately gives motivation for further investigating the impacts of these processes on the sea-ice mass balance in the framework of global scale model simulations.

  8. Data set: 31 years of spatially distributed air temperature, humidity, precipitation amount and precipitation phase from a mountain catchment in the rain-snow transition zone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty one years of spatially distributed air temperature, relative humidity, dew point temperature, precipitation amount, and precipitation phase data are presented for the Reynolds Creek Experimental Watershed. The data are spatially distributed over a 10m Lidar-derived digital elevation model at ...

  9. Winter stream temperature in the rain-on-snow zone of the Pacific northwest: influences of hillslope runoff and transient snow cover

    NASA Astrophysics Data System (ADS)

    Leach, J. A.; Moore, R. D.

    2013-10-01

    Stream temperature dynamics during winter are less well studied than summer thermal regimes, but the winter season thermal regime can be critical for fish growth and development in coastal catchments. The winter thermal regimes of Pacific Northwest headwater streams, which provide vital winter habitat for salmonids and their food sources, may be particularly sensitive to changes in climate because they can remain ice-free throughout the year and are often located in rain-on-snow zones. This study examined winter stream temperature patterns and controls in small headwater catchments within the rain-on-snow zone at the Malcolm Knapp Research Forest, near Vancouver, British Columbia, Canada. Two hypotheses were addressed by this study: (1) winter stream temperatures are primarily controlled by advective fluxes associated with runoff processes and (2) stream temperatures should be depressed during rain-on-snow events, compared to rain-on-bare-ground, due to the cooling effect of rain passing through the snowpack prior to infiltrating the soil or being delivered to the stream as saturation-excess overland flow. A reach-scale energy budget analysis of two winter seasons revealed that the advective energy input associated with hillslope runoff overwhelms the effects of energy exchanges at the stream surface during rain and rain-on-snow events. Historical stream temperature data and modelled snowpack dynamics were used to explore the influence of transient snow cover on stream temperature over 13 winters. When snow was not present, daily stream temperature during winter rain events tended to increase with increasing air temperature. However, when snow was present, stream temperature was capped at about 5 °C, regardless of air temperature. The stream energy budget modelling and historical analysis support both of our hypotheses. A key implication is that climatic warming may generate higher winter stream temperatures in the rain-on-snow zone due to both increased rain

  10. Interannual changes in snow cover and its impact on ground surface temperatures in Livingston Island (Antarctica)

    NASA Astrophysics Data System (ADS)

    Nieuwendam, Alexandre; Ramos, Miguel; Vieira, Gonçalo

    2015-04-01

    In permafrost areas the seasonal snow cover is an important factor on the ground thermal regime. Snow depth and timing are important in ground insulation from the atmosphere, creating different snow patterns and resulting in spatially variable ground temperatures. The aim of this work is to characterize the interactions between ground thermal regimes and snow cover and the influence on permafrost spatial distribution. The study area is the ice-free terrains of northwestern Hurd Peninsula in the vicinity of the Spanish Antarctic Station "Juan Carlos I" and Bulgarian Antarctic Station "St. Kliment Ohridski". Air and ground temperatures and snow thickness data where analysed from 4 sites along an altitudinal transect in Hurd Peninsula from 2007 to 2012: Nuevo Incinerador (25 m asl), Collado Ramos (110 m), Ohridski (140 m) and Reina Sofia Peak (275 m). The data covers 6 cold seasons showing different conditions: i) very cold with thin snow cover; ii) cold with a gradual increase of snow cover; iii) warm with thick snow cover. The data shows three types of periods regarding the ground surface thermal regime and the thickness of snow cover: a) thin snow cover and short-term fluctuation of ground temperatures; b) thick snow cover and stable ground temperatures; c) very thick snow cover and ground temperatures nearly constant at 0°C. a) Thin snow cover periods: Collado Ramos and Ohridski sites show frequent temperature variations, alternating between short-term fluctuations and stable ground temperatures. Nuevo Incinerador displays during most of the winter stable ground temperatures; b) Cold winters with a gradual increase of the snow cover: Nuevo Incinerador, Collado Ramos and Ohridski sites show similar behavior, with a long period of stable ground temperatures; c) Thick snow cover periods: Collado Ramos and Ohridski show long periods of stable ground, while Nuevo Incinerador shows temperatures close to 0°C since the beginning of the winter, due to early snow cover

  11. Microwave emission from snow and glacier ice. [brightness temperature for snow fields

    NASA Technical Reports Server (NTRS)

    Chang, T. C.; Gloersen, P.; Schmugge, T.; Wilheit, T. T.; Zwally, H. J.

    1975-01-01

    The microwave brightness temperature for snow fields was studied assuming that the snow cover consists of closely packed scattering spheres which do not interact coherently. The Mie scattering theory was used to compute the volume scattering albedo. It is shown that in the wavelength range from 0.8 to 2.8 cm, most of the micro-radiation emanates from a layer 10 meters or less in thickness. It is concluded that it is possible to determine snow accumulation rates as well as near-surface temperature.

  12. Thermal diffusivity of seasonal snow determined from temperature profiles

    NASA Astrophysics Data System (ADS)

    Oldroyd, H. J.; Higgins, C. W.; Huwald, H.; Selker, J. S.; Parlange, M. B.

    2013-05-01

    Thermal diffusivity of snow is an important thermodynamic property associated with key hydrological phenomena such as snow melt and heat and water vapor exchange with the atmosphere. Direct determination of snow thermal diffusivity requires coupled point measurements of thermal conductivity and density, which continually change due to snow metamorphism. Traditional methods for determining these two quantities are generally limited by temporal resolution. In this study we present a method to determine the thermal diffusivity of snow with high temporal resolution using snow temperature profile measurements. High resolution (between 2.5 and 10 cm at 1 min) temperature measurements from the seasonal snow pack at the Plaine-Morte glacier in Switzerland are used as initial conditions and Neumann (heat flux) boundary conditions to numerically solve the one-dimensional heat equation and iteratively optimize for thermal diffusivity. The implementation of Neumann boundary conditions and a t-test, ensuring statistical significance between solutions of varied thermal diffusivity, are important to help constrain thermal diffusivity such that spurious high and low values as seen with Dirichlet (temperature) boundary conditions are reduced. The results show that time resolved thermal diffusivity can be determined from temperature measurements of seasonal snow and support density-based empirical parameterizations for thermal conductivity.

  13. Developing Temperature Forcing for Snow and Ice Melt Runoff Models in High Mountain Regions

    NASA Astrophysics Data System (ADS)

    Barrett, A. P.; Armstrong, R. L.; Brodzik, M. J.; Khalsa, S. J. S.; Raup, B. H.; Rittger, K.

    2014-12-01

    Glaciers and snow cover are natural storage reservoirs that delay runoff on seasonal and longer time-scales. Glacier wastage and reduced snow packs will impact the volume and timing of runoff from mountain basins. Estimates of the contributions of glacier and snow melt to runoff in river systems draining mountain regions are critical for water resources planning. The USAID funded CHARIS project aims to estimate the contributions of glacier and snow melt to streamflow in the Ganges, Indus, Brahmaputra, Amu Darya and Syr Darya rivers. Most efforts to estimate glacier and snow melt contributions use temperature-index or degree-day approaches. Near-surface air temperature is a key forcing variable for such models. As with all mountain regions, meteorological stations are sparse and may have short records. Few stations exist at high elevations, with most stations located in valleys below the elevations of glaciers and seasonal snow cover. Reanalyses offer an alternative source of temperature data. However, reanalyses have coarse resolution and simplified topography, especially in the Himalaya. Surface fields are often biased. Any reanalysis product must be both bias-corrected and "downscaled" to the resolution of the melt-runoff model. We present a combined empirically-based bias-correction and downscaling procedure that uses near-surface air temperature from global atmospheric reanalyses to generate near-surface temperature forcing fields for the five river basins in the CHARIS study area. We focus on three 3rd Generation reanalyses; NASA MERRA, NCEP CFSR and ECMWF ERA-Interim. Evaluation of reanalysis temperature fields reveals differences between seasonal means of 500 hPa air temperatures for the three products are of the order of 1 °C, indicating choice of reanalysis can impact model results. The procedure accounts for these seasonal variations in biases of the reanalysis products and in lapse rates.

  14. Winter stream temperature in the rain-on-snow zone of the Pacific Northwest: influences of hillslope runoff and transient snow cover

    NASA Astrophysics Data System (ADS)

    Leach, J. A.; Moore, R. D.

    2014-02-01

    Stream temperature dynamics during winter are less well studied than summer thermal regimes, but the winter season thermal regime can be critical for fish growth and development in coastal catchments. The winter thermal regimes of Pacific Northwest headwater streams, which provide vital winter habitat for salmonids and their food sources, may be particularly sensitive to changes in climate because they can remain ice-free throughout the year and are often located in rain-on-snow zones. This study examined winter stream temperature patterns and controls in small headwater catchments within the rain-on-snow zone at the Malcolm Knapp Research Forest, near Vancouver, British Columbia, Canada. Two hypotheses were addressed by this study: (1) winter stream temperatures are primarily controlled by advective fluxes associated with runoff processes and (2) stream temperatures should be depressed during rain-on-snow events, compared to rain-on-bare-ground events, due to the cooling effect of rain passing through the snowpack prior to infiltrating the soil or being delivered to the stream as saturation-excess overland flow. A reach-scale energy budget analysis of two winter seasons revealed that the advective energy input associated with hillslope runoff overwhelms vertical energy exchanges (net radiation, sensible and latent heat fluxes, bed heat conduction, and stream friction) and hyporheic energy fluxes during rain and rain-on-snow events. Historical stream temperature data and modelled snowpack dynamics were used to explore the influence of transient snow cover on stream temperature over 13 winters. When snow was not present, daily stream temperature during winter rain events tended to increase with increasing air temperature. However, when snow was present, stream temperature was capped at about 5 °C, regardless of air temperature. The stream energy budget modelling and historical analysis support both of our hypotheses. A key implication is that climatic warming may

  15. Remotely sensed ground surface temperature variations over Arctic during summer and winter (under snow cover) periods

    NASA Astrophysics Data System (ADS)

    Royer, A.; Marchand, N.; Ottle, C.; Krinner, G.; Roy, A.

    2015-12-01

    Projected future warming is particularly strong in northern high latitudes. Permafrost present in those areas contains high quantities of "frozen carbon" that could be released in the atmosphere. This communication will present different improved approaches to monitor the land-surface temperature (LST) variations in summer (without snow) and in winter (under snow cover), using microwave brightness temperatures. For the summer period, the method combines 37 GHz passive microwave and thermal infrared data to estimate LST during summer snow-free periods calibrated at a pixel-based scale, leading to a new LST dataset provided at 25 km scale and at an hourly time step during the ten-year analysis period (2000-2011). This product was locally evaluated at five experimental sites of the EU-PAGE21 project against air temperature measurements and meteorological model reanalysis, and compared to the MODIS LST product at both local and circumpolar scale. The results giving a mean RMSE of the order of 2.2 K demonstrate the usefulness of the microwave product, which is unaffected by clouds as opposed to thermal infrared products and offers a better resolution compared to model reanalysis. The snow impact on ground temperature, due to its insulation properties modified by the climate changes, must also be monitored. For the winter period, we use satellite data (MODIS "LST" and passive microwave AMSR-E "Tb") assimilated in a climate land surface scheme (CLASS) driven by reanalysis meteorological data and coupled with a radiative transfer model (HUT) in order to generate a daily Tb corresponding the simulated soil and snow conditions. The land surface scheme is adjusted to minimize the simulated Tbs against the measured Tbs. We show that the retrieved simulated ground-temperatures under the simulated modified snow cover is improved by up to 2 to 4 K when using satellite data compared to the simulated ground temperatures using the model (alone) without constraint.

  16. Comparison of AMSR-E derived Antarctic snow-ice interface temperatures with previous surface observations

    NASA Astrophysics Data System (ADS)

    Lewis, M.; Ackley, S. F.; Xie, H.; Cicek, B.

    2006-12-01

    The AMSR-E Sea Ice Temperature (L3 25 km) data product derived from passive microwave emissions at 6.9 GHz is available from the National Snow and Ice Data Center. The Sea Ice Temperature data represents the temperature at the surface of the sea ice, or the temperature corresponding to the snow-ice interface. Antarctic sea ice images from 2005 were obtained at approximate 5-day intervals corresponding to typical days of the four seasons, winter, spring, summer and fall. Available measurements conducted during previous field campaigns were obtained from the literature. The field data of snow-ice interface temperatures roughly corresponding to the typical days of the four seasons, albeit over much more limited areas of ice cover and at times different from the satellite images, were utilized for comparison. The field measurements give insight into the physical behavior of the Antarctic ice surface temperature. These field data show: 1) during the summer season, mean ice surface temperatures invariably range from 0 to -2ºC, corresponding to an isothermal snowpack or surface flooded with ocean water; 2) during the spring season, mean ice surface temperatures are generally above -8ºC, as increases in air temperature and solar radiation result in interface temperatures that lie between the air temperature (mean above -10ºC) and the seawater temperature at the ice-water interface (-1.8ºC); 3) during fall and winter seasons, warmest interface temperatures are found beneath the deepest snow cover, which either better insulates the surface from colder air temperatures than thin snow cover or causes surface flooding from the increased overburden, leading to sea ice interface temperatures near -1.8ºC. While the field data are not a validation sensu strictu, the AMSR-E product appears to conflict with several of these generally observed properties. The coldest interface temperatures from the satellite data are reported for spring and summer, which are lower than winter

  17. Use of low-temperature scanning electron microscopy to compare and characterize three classes of snow cover.

    PubMed

    Foster, James; Kelly, Richard; Rango, Albert; Armstrong, Richard; Erbe, Eric F; Pooley, Christopher; Wergin, William P

    2006-01-01

    This study, which uses low-temperature scanning electron microscopy (LTSEM), systematically sampled and characterized snow crystals that were collected from three unique classes of snow cover: prairie, taiga, and alpine. These classes, which were defined in previous field studies, result from exposure to unique climatic variables relating to wind, precipitation, and air temperature. Snow samples were taken at 10 cm depth intervals from the walls of freshly excavated snow pits. The depth of the snow pits for the prairie, taiga, and alpine covers were 28, 81, and 110 cm, respectively. Visual examination revealed that the prairie snow cover consisted of two distinct layers whereas the taiga and alpine covers had four distinct layers. Visual measurements were able to establish the range of crystal sizes that occurred in each layer, the temperature within the pit, and the snow density. The LTSEM observations revealed the detailed structures of the types of crystals that occurred in the snow covers, and documented the metamorphosis that transpired in the descending layers. Briefly, the top layers from two of the snow covers consisted of freshly fallen snow crystals that could be readily distinguished as plates and columns (prairie) or graupel (taiga). Alternatively, the top layer in the alpine cover consisted of older dendritic crystal fragments that had undergone early metamorphosis, that is, they had lost their sharp edges and had begun to show signs of joining or bonding with neighboring crystals. A unique layer, known as sun crust, was found in the prairie snow cover; however, successive samplings from all three snow covers showed similar stages of metamorphism that led to the formation of depth hoar crystals. These changes included the gradual development of large, three-dimensional crystals having clearly defined flat faces, sharp edges, internal depressions, and facets. The study, which indicates that LTSEM can be used to enhance visual data by systematically

  18. Comparison of Three Models for Snow Microwave Brightness Temperature Simulation

    NASA Astrophysics Data System (ADS)

    Royer, A.; Roy, A.; Montpetit, B.; Picard, G.; Brucker, L.; Langlois, A.

    2015-12-01

    This presentation compares three microwave radiative transfer models commonly used for snow brightness temperature (TB) simulations, namely: Dense Media Radiative Transfer - Multi Layers (DMRT-ML), Microwave Emission Model of Layered Snowpacks (MEMLS) and Helsinki University of Technology n-layers (HUT n-layers). Using the same new comprehensive sets of measured detailed snowpack physical properties (input data), we compared simulated TBs at 11, 19 and 37 GHz from these 3 models based on different electromagnetic approaches using three different snow grain metrics, i.e. respectively measured specific surface area (SSA), calculated correlation length using the Debye relationship and measured maximum extent. Comparison with surface-based radiometric measurements for different types of snow (in southern Québec, and in subarctic and arctic areas) shows similar averaged root mean square errors in the range of 10 K or less between measured and simulated TBs when simulations are optimized using scaling factors applied on these metrics. This means that, in practice, the different approaches of these models (physical to empirical) converge to similar results when driven with appropriate scaled in-situ measurements. We discuss the results relatively to the uncertainties in snow microstructure measurements. In particular, we show that the scaling factor to be applied on the SSA measurements in order to minimize the DMRT-ML simulated TBs compared to measured TBs is not due to uncertainty in SSA measurements.

  19. Microwave brightness temperatures of laboratory-grown undeformed first-year ice with an evolving snow cover

    SciTech Connect

    Lohanick, A.W. )

    1993-03-15

    A laboratory experiment was performed to study a case in which a snow cover introduced on an established saline ice sheet resulted in physical processes that significantly affected the microwave brightness temperature over a period of a few weeks. Saline ice was grown to a thickness of 240 mm in an outdoor pool at ambient air temperatures. Precipitation was allowed by use of a movable roof. Brightness temperatures were measured at 10 and 85 GHz before and for several weeks after one snowfall. During the same period, the vertical temperature profile and crystallography of the snow column, as well as ice structure and salinity at the original ice surface, were monitored. The 10-GHz brightness temperature dropped by as much as 100 K from bare ice values during the first few days after the snow fell, because of a saline slush layer which formed at the bottom of the snow. The saline water in the slush layer apparently was forced up through the unbroken ice by the added snow load. The slush layer eventually froze into an added highly emissive frazil ice layer which raised the 10-GHz brightness temperature to above its bare ice values. The frazil ice layer was similar to superimposed frazil ice observed on freezing leads in high-latitude ice packs. The 85-GHz brightness temperature did not change from bare ice values soon after the snowfall but dropped by about 40 K over the following 20 days. We use a simple dielectric model to qualitatively test the dependence of 10-GHz brightness temperature on relevant physical conditions at the bottom of the snow. At 85 GHz the snow layer was optically thick, and the brightness temperature drop was probably the result of increased volume scatter from the growing snow grains. 24 refs., 7 figs.

  20. Scattering properties of a stratified air/snow/sea ice medium. Small slope approximation

    NASA Astrophysics Data System (ADS)

    Dusséaux, Richard; Afifi, Saddek; Dechambre, Monique

    2016-11-01

    The sea-ice thickness, a key parameter in Arctic studies, is derived from radar altimeter height measurements of the freeboard, taking into account not only snow load, but also the penetration depth of the electromagnetic waves inside the snow-this is the not generally the case. Within the framework of the small slope approximation method, we study in Ku-band (f = 13 GHz, λ = 2.31 cm in the air) the electromagnetic signature of an air/snow/sea ice rough layered medium. The snow is inhomogeneous and is represented as a stack of several layers with different relative permittivities. We show that the electromagnetic response is very sensitive to the isotropy factor of the air/snow interface and to the cross-correlation parameters of interfaces. xml:lang="fr"

  1. Collecting, shipping, storing, and imaging snow crystals and ice grains with low-temperature scanning electron microscopy

    USGS Publications Warehouse

    Erbe, E.F.; Rango, A.; Foster, J.; Josberger, E.G.; Pooley, C.; Wergin, W.P.

    2003-01-01

    Methods to collect, transport, and store samples of snow and ice have been developed that enable detailed observations of these samples with a technique known as low-temperature scanning electron microscopy (LTSEM). This technique increases the resolution and ease with which samples of snow and ice can be observed, studied, and photographed. Samples are easily collected in the field and have been shipped to the electron microscopy laboratory by common air carrier from distances as far as 5,000 miles. Delicate specimens of snow crystals and ice grains survive the shipment procedures and have been stored for as long as 3 years without undergoing any structural changes. The samples are not subjected to the melting or sublimation artifacts. LTSEM allows individual crystals to be observed for several hours with no detectable changes. Furthermore, the instrument permits recording of photographs containing the parallax information necessary for three-dimensional imaging of the true shapes of snowflakes, snow crystals, snow clusters, ice grains, and interspersed air spaces. This study presents detailed descriptions of the procedures that have been used successfully in the field and the laboratory to collect, ship, store, and image snow crystals and ice grains. Published 2003 Wiley-Liss, Inc.

  2. Tomography-based observation of sublimation and snow metamorphism under temperature gradient and advective flow

    NASA Astrophysics Data System (ADS)

    Ebner, P. P.; Schneebeli, M.; Steinfeld, A.

    2015-09-01

    Snow at or close to the surface commonly undergoes temperature gradient metamorphism under advective flow, which alters its microstructure and physical properties. Time-lapse X-ray micro-tomography is applied to investigate the structural dynamics of temperature gradient snow metamorphism exposed to an advective airflow in controlled laboratory conditions. The sublimation of water vapor for saturated air flowing across the snow sample was experimentally determined via variations of the porous ice structure. The results showed that the exothermic gas-to-solid phase change is favorable vis-a-vis the endothermic solid-to-gas phase change, thus leading to more ice deposition than ice sublimation. Sublimation has a marked effect on the structural change of the ice matrix but diffusion of water vapor in the direction of the temperature gradient counteracted the mass transport of advection. Therefore, the total net ice change was negligible leading to a constant porosity profile. However, the strong reposition process of water molecules on the ice grains is relevant for atmospheric chemistry.

  3. Research on Using the Naturally Cold Air and the Snow for Data Center Air-conditioning, and Humidity Control

    NASA Astrophysics Data System (ADS)

    Tsuda, Kunikazu; Tano, Shunichi; Ichino, Junko

    To lower power consumption has becomes a worldwide concern. It is also becoming a bigger area in Computer Systems, such as reflected by the growing use of software-as-a-service and cloud computing whose market has increased since 2000, at the same time, the number of data centers that accumulates and manages the computer has increased rapidly. Power consumption at data centers is accounts for a big share of the entire IT power usage, and is still rapidly increasing. This research focuses on the air-conditioning that occupies accounts for the biggest portion of electric power consumption by data centers, and proposes to develop a technique to lower the power consumption by applying the natural cool air and the snow for control temperature and humidity. We verify those effectiveness of this approach by the experiment. Furthermore, we also examine the extent to which energy reduction is possible when a data center is located in Hokkaido.

  4. Study on Air Temperature Estimation and Snowmelt Modeling over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Zhang, Hongbo

    2016-04-01

    Accumulation and melting of snow are important hydrological processes over the Tibetan Plateau (TP). Accurate and reasonable simulation of snowmelt is useful for water resources management and planning. This study firstly developed a product of daily mean air temperatures over the TP by comprehensively integrating satellite data and field observations. Accumulation and melting of snow over TP was then simulated and analyzed using a distributed degree-day model based on the air temperature data. The proposed air temperature estimation method can reduce the cloud blockage dramatically by integrating all the available MODIS land surface data (LST) at four pass times dynamically and in the meantime keep relatively high estimating accuracies. Through zonal calibration and validation for snow cover modeling, the daily processes of snow accumulation and melting over TP can be successfully simulated. The results indicate that (1) during 2005-2010, annual precipitation over TP was ~442 mm/yr among which ~88 mm/yr was snow fall with approximately 56 mm/yr melted; (2) snow melt mostly happened in spring over TP, with spring snow melt dominating and accounting for about 53% of the full-year snow melts; and (3) the locations with higher snow melt were mainly in south and east TP and the spatial pattern of snow melts is basically in accordance with that of precipitation.

  5. Using continuous measurements of near-surface atmospheric water vapor isotopes to document snow-air interactions

    NASA Astrophysics Data System (ADS)

    Steen-Larsen, Hans Christian; Masson-Delmotte, Valerie; Hirabayashi, Motohiro; Winkler, Renato; Satow, Kazuhide; Prie, Frederic; Bayou, Nicolas; Brun, Eric; Cuffey, Kurt; Dahl-Jensen, Dorthe; Dumont, Marie; Guillevic, Myriam; Kipfstuhl, Sepp; Landais, Amaelle; Popp, Trevor; Risi, Camille; Steffen, Konrad; Stenni, Barbara; Sveinbjornsdottir, Arny

    2014-05-01

    Water stable isotope data from Greenland ice cores provide key paleoclimatic information. However, post-depositional processes linked with snow metamorphism remain poorly documented. For this purpose, a monitoring of the isotopic composition δ18O and δD at several height levels (up to 13 meter) of near-surface water vapor, precipitation and snow in the first 0.5 cm from the surface has been conducted during three summers (2010-2012) at NEEM, NW Greenland. We observe a clear diurnal cycle in both the value and gradient of the isotopic composition of the water vapor above the snow surface. The diurnal amplitude in δD is found to be ~15‰. The diurnal isotopic composition follows the absolute humidity cycle. This indicates a large flux of vapor from the snow surface to the atmosphere during the daily warming and reverse flux during the daily cooling. The isotopic measurements of the flux of water vapor above the snow give new insights into the post depositional processes of the isotopic composition of the snow. During nine 1-5 days periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and near-surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated using the CROCUS snow model that 6 to 20% of the surface snow mass is exchanged with the atmosphere. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or deposition. Comparisons with atmospheric models show that day-to-day variations in near-surface vapor isotopic composition are driven by synoptic variations and changes in air mass trajectories and distillation histories. We suggest that, in-between precipitation events, changes in the surface snow isotopic composition are driven by these changes in near-surface vapor isotopic composition. This is consistent with an estimated 60% mass turnover of surface snow per day driven by snow

  6. [Effects of snow cover on soil temperature in broad-leaved Korean pine forest in Changbai Mountains].

    PubMed

    Yu, Xiao-zhou; Yuan, Feng-hui; Wang, An-zhi; Wu, Jia-bing; Guan, De-xin

    2010-12-01

    A snow-shading experiment was conducted in a broad-leaved Korean pine forest in Changbai Mountains from 2004 to 2007 to observe the soil temperature with and without snow cover. Snow cover played an important buffering role in the change of soil temperature, namely, slowed down the change process of soil temperature. The effect of snow cover on preserving soil heat was quite obvious in shallow soil layer (0-20 cm), and enhanced with increasing snow depth. When the snow depth increased from 10 to 20 cm, the effect enhanced significantly. However, when the snow depth exceeded 30 cm, the increasing trend turned to indistinctive. In the period of snow-melting, soil temperature kept around 0 degrees C for some time, and after then, increased gradually. The length of the period keeping soil temperature around 0 degrees C was determined by snow depth and the duration of snow cover.

  7. Mesoscale modeling of lake effect snow over Lake Erie - sensitivity to convection, microphysics and the water temperature

    NASA Astrophysics Data System (ADS)

    Theeuwes, N. E.; Steeneveld, G. J.; Krikken, F.; Holtslag, A. A. M.

    2010-03-01

    Lake effect snow is a shallow convection phenomenon during cold air advection over a relatively warm lake. A severe case of lake effect snow over Lake Erie on 24 December 2001 was studied with the MM5 and WRF mesoscale models. This particular case provided over 200 cm of snow in Buffalo (NY), caused three casualties and 10 million of material damage. Hence, the need for a reliable forecast of the lake effect snow phenomenon is evident. MM5 and WRF simulate lake effect snow successfully, although the intensity of the snowbelt is underestimated. It appears that significant differences occur between using a simple and a complex microphysics scheme. In MM5, the use of the simple-ice microphysics scheme results in the triggering of the convection much earlier in time than with the more sophisticated Reisner-Graupel-scheme. Furthermore, we find a large difference in the maximum precipitation between the different nested domains: Reisner-Graupel produces larger differences in precipitation between the domains than "simple ice". In WRF, the sophisticated Thompson microphysics scheme simulates less precipitation than the simple WSM3 scheme. Increased temperature of Lake Erie results in an exponential growth in the 24-h precipitation. Regarding the convection scheme, the updated Kain-Fritsch scheme (especially designed for shallow convection during lake effect snow), gives only slight differences in precipitation between the updated and the original scheme.

  8. First investigation of an original device dedicated to the determination of gaseous mercury in interstitial air in snow.

    PubMed

    Dommergue, Aurélien; Ferrari, Christophe P; Boutron, Claude F

    2003-01-01

    The GAMAS (gaseous mercury in interstitial air in snow) instrument developed in our laboratory is a new device devoted to sampling and determination of gaseous mercury concentration in interstitial air in snow. Sampling probes inserted in the snowpack, coupled with a Gardis mercury vapour analyser, provide reliable and original data of vertical profiles of both snow temperature and gaseous mercury concentration at several depths in a snow mantle. This instrument has been tested successfully in Station Nord in Greenland in February-March 2002. A description of this instrument, of the sampling area and its setting up is presented with precise details. Illustrations of the first investigations are given showing a rapid decrease of gaseous mercury concentration simultaneously with depth. A concentration of 0.10 ng/m(3) is reached at 120 cm depth. It may be the result of fast oxidation processes occurring within the snowpack. Gaseous mercury behaviour in the snowpack is a central parameter to elucidate the fate of deposited mercury after mercury depletion events in polar regions. With our new device, we have now the opportunity to determine this key parameter.

  9. Constraining snowmelt in a temperature-index model using simulated snow densities

    NASA Astrophysics Data System (ADS)

    Bormann, Kathryn J.; Evans, Jason P.; McCabe, Matthew F.

    2014-09-01

    Current snowmelt parameterisation schemes are largely untested in warmer maritime snowfields, where physical snow properties can differ substantially from the more common colder snow environments. Physical properties such as snow density influence the thermal properties of snow layers and are likely to be important for snowmelt rates. Existing methods for incorporating physical snow properties into temperature-index models (TIMs) require frequent snow density observations. These observations are often unavailable in less monitored snow environments. In this study, previous techniques for end-of-season snow density estimation (Bormann et al., 2013) were enhanced and used as a basis for generating daily snow density data from climate inputs. When evaluated against 2970 observations, the snow density model outperforms a regionalised density-time curve reducing biases from -0.027 g cm-3 to -0.004 g cm-3 (7%). The simulated daily densities were used at 13 sites in the warmer maritime snowfields of Australia to parameterise snowmelt estimation. With absolute snow water equivalent (SWE) errors between 100 and 136 mm, the snow model performance was generally lower in the study region than that reported for colder snow environments, which may be attributed to high annual variability. Model performance was strongly dependent on both calibration and the adjustment for precipitation undercatch errors, which influenced model calibration parameters by 150-200%. Comparison of the density-based snowmelt algorithm against a typical temperature-index model revealed only minor differences between the two snowmelt schemes for estimation of SWE. However, when the model was evaluated against snow depths, the new scheme reduced errors by up to 50%, largely due to improved SWE to depth conversions. While this study demonstrates the use of simulated snow density in snowmelt parameterisation, the snow density model may also be of broad interest for snow depth to SWE conversion. Overall, the

  10. Trends and projections of temperature, precipitation, and snow cover during snow cover-observed period over southwestern Iran

    NASA Astrophysics Data System (ADS)

    Zarenistanak, Mohammad; Dhorde, Amit G.; Kripalani, R. H.; Dhorde, Anargha A.

    2015-11-01

    In the present study, tendencies in temperature, precipitation, and snow cover area over the southwestern part of Iran have been assessed. The research mainly focused on snow cover-observed period which included the months of December, January, February, March, and April in the area. This research has been divided into two parts. First part consists of an analysis of the trends in temperature, precipitation, and snow cover area during the above months. Trends in these parameters were tested by linear regression, and significance was determined by t test. Mann-Kendall rank test (MK test) was also employed to confirm the results of linear regression. Sequential Mann-Kendall test (SQ-MK test) was applied for change point detection in the series. For snow cover analysis, remote sensing images from National Oceanic and Atmospheric Administration (NOAA) satellite with advanced very high resolution radiometer (AVHRR) sensor for the period 1987-2007 were used. The second part of the research involved future projections based on four models under B1 and A1B emission scenarios. The models used were centre national de recherches meteorologiques (CNRM), European Center Hamburg model (ECHAM), Model for Interdisciplinary Research on Climate (MIROCH) and United Kingdom Meteorological Office (UKMOC) under the Intergovernmental Panel on Climate Change (IPCC) AR4. The analysis of temperature trends revealed a significant increase during February and April. Temperature projections showed that temperature may increase between 1.12 to 7.87 °C by 2100 in the study area. The results of precipitation series indicated that majority of the stations registered insignificant trends during the twentieth century. However, precipitation may decrease according to most of the models under both scenarios, but the decrease may not be large, except according to MIROCH model. The results of trend analysis of snow cover area indicated that no significant trends were detected by any statistical tests

  11. Evolution of the Specific Surface Area of Snow in a High Temperature Gradient Metamorphism

    NASA Astrophysics Data System (ADS)

    Wang, X.; Baker, I.

    2014-12-01

    The structural evolution of low-density snow under a high temperature gradient over a short period usually takes place in the surface layers during diurnal recrystallization or on a clear, cold night. To relate snow microstructures with their thermal properties, we combined X-ray computed microtomography (micro-CT) observations with numerical simulations. Different types of snow were tested over a large range of TGs (100 K m-1- 500 K m-1). The Specific Surface Area (SSA) was used to characterize the temperature gradient metamorphism (TGM). The magnitude of the temperature gradient and the initial snow type both influence the evolution of SSA. The SSA evolution under TGM was dominated by grain growth and the formation of complex surfaces. Fresh snow experienced a logarithmic decrease of SSA with time, a feature been observed previously by others [Calonne et al., 2014; Schneebeli and Sokratov, 2004; Taillandier et al., 2007]. However, for initial rounded and connected snow structures, the SSA will increase during TGM. Understanding the SSA increase is important in order to predict the enhanced uptake of chemical species by snow or increase in snow albedo. Calonne, N., F. Flin, C. Geindreau, B. Lesaffre, and S. Rolland du Roscoat (2014), Study of a temperature gradient metamorphism of snow from 3-D images: time evolution of microstructures, physical properties and their associated anisotropy, The Cryosphere Discussions, 8, 1407-1451, doi:10.5194/tcd-8-1407-2014. Schneebeli, M., and S. A. Sokratov (2004), Tomography of temperature gradient metamorphism of snow and associated changes in heat conductivity, Hydrological Processes, 18(18), 3655-3665, doi:10.1002/hyp.5800. Taillandier, A. S., F. Domine, W. R. Simpson, M. Sturm, and T. A. Douglas (2007), Rate of decrease of the specific surface area of dry snow: Isothermal and temperature gradient conditions, Journal of Geophysical Research: Earth Surface (2003-2012), 112(F3), doi: 10.1029/2006JF000514.

  12. Coupled snow dynamics, soil moisture, and soil temperatures in complex terrain of a semi-arid mountainous watershed

    NASA Astrophysics Data System (ADS)

    Bryden, S.; Link, T. E.; Seyfried, M. S.; McNamara, J. P.

    2011-12-01

    Mid-elevation regions characterized by transient or relatively brief seasonal snow covers are likely to experience large hydrologic impacts from warming trends as these regions transition from snow to rain-dominated precipitation in winter. These regions in the western United States are often comprised of complex terrain, including a range of slopes, aspects, elevation, vegetation, geology, and soils over multiple scales. How snow dynamics (e.g. distribution and timing) are coupled with soil moisture and soil temperature in complex terrain is a topic that needs to be explored in order to better understand how climate variations and trends will alter the hydrologic states and fluxes in these mid-elevation transition zones. To address this question, automated hydrometeorological stations were installed in Johnston Draw, a subbasin of the Reynolds Creek Experimental Watershed in southwestern Idaho. In addition to long-term precipitation records for the area, individual meteorological stations were installed on opposing north and south-facing slopes in the drainage at 50 meter elevation intervals, from 1550 to 1750 m amsl. Each station provides air temperature and vapor pressure, wind speed and direction, snow depth, and a profile of soil moisture and temperature at 5cm, 20cm, 35cm, and 50 cm depths, with some profiles extending to approximately 2 m where soils are deepest. Prior to a major mid-winter melt event in January 2011 snow depths averaged 45 cm on north-facing slopes and only 3 cm on south-facing slopes. Soil moisture was depleted near the surface and soil temperatures were just above freezing at all elevations and aspects. In mid-January, air temperatures rapidly increased from below freezing to daily averages from 3-6 °C for six consecutive days, coupled with very high wind speeds, and followed by a pulse of increased streamflow. This event completely ablated the snowpack on south-facing slopes and reduced the snowpack depth on north-facing slopes by 24 cm

  13. Variation of POP concentrations in fresh-fallen snow and air on an Alpine glacier (Monte Rosa).

    PubMed

    Finizio, A; Villa, S; Raffaele, F; Vighi, M

    2006-01-01

    To understand better the mechanisms ruling the fate of POPs (persistent organic pollutants) in cold environments, a field campaign sampling fresh-fallen snow and air on an Alpine glacier was carried out during Summer 2003. The concentrations of all analyzed chemicals in fresh-fallen snow show a sharp decrease over time, particularly for the more volatile POPs, confirming the rather limited literature evidence of a rapid decline of such substances from the snowpack and/or ice. Even if the results presented here are preliminary and should be confirmed by further studies, some evidence of the influence of a night/day cycle of temperature on POP deposition and revolatilization mechanisms has been highlighted. Finally, the role of cold condensation and long-range atmospheric transport in the contamination of higher altitudes in this Alpine system has been substantiated, particularly for OC pesticides.

  14. Influence of temperature and precipitation variability on near-term snow trends

    NASA Astrophysics Data System (ADS)

    Mankin, Justin S.; Diffenbaugh, Noah S.

    2015-08-01

    Snow is a vital resource for a host of natural and human systems. Global warming is projected to drive widespread decreases in snow accumulation by the end of the century, potentially affecting water, food, and energy supplies, seasonal heat extremes, and wildfire risk. However, over the next few decades, when the planning and implementation of current adaptation responses are most relevant, the snow response is more uncertain, largely because of uncertainty in regional and local precipitation trends. We use a large (40-member) single-model ensemble climate model experiment to examine the influence of precipitation variability on the direction and magnitude of near-term Northern Hemisphere snow trends. We find that near-term uncertainty in the sign of regional precipitation change does not cascade into uncertainty in the sign of regional snow accumulation change. Rather, temperature increases drive statistically robust consistency in the sign of future near-term snow accumulation trends, with all regions exhibiting reductions in the fraction of precipitation falling as snow, along with mean decreases in late-season snow accumulation. However, internal variability does create uncertainty in the magnitude of hemispheric and regional snow changes, including uncertainty as large as 33 % of the baseline mean. In addition, within the 40-member ensemble, many mid-latitude grid points exhibit at least one realization with a statistically significant positive trend in net snow accumulation, and at least one realization with a statistically significant negative trend. These results suggest that the direction of near-term snow accumulation change is robust at the regional scale, but that internal variability can influence the magnitude and direction of snow accumulation changes at the local scale, even in areas that exhibit a high signal-to-noise ratio.

  15. A Micro-Structural Phase-Field Model for Snow Metamorphism and First Experimental Validations using Migrating Air Inclusions in Ice

    NASA Astrophysics Data System (ADS)

    Kaempfer, T. U.; Plapp, M.; Johnson, J. B.; Sturm, M.

    2007-12-01

    Snow is a highly porous medium consisting of an ice matrix and porous space containing water vapor. Moreover, snow undergoes metamorphism as heat flow and interface effects induce mass flow and thus profoundly change the microstructure, i.e., the distribution of ice and pores. Reciprocally, this evolution influences the thermophysical, chemical, and mechanical properties of snow. In particular, the microstructure of snow influences the heat conductivity as heat transport consists in (i) heat conduction in the ice and pores, (ii) heat transport related to water vapor diffusion in the pores, and (iii) latent heat release and gain due to phase changes at the ice-pore interfaces Recently, detailed image series of metamorphosing snow using computed X-ray micro-tomography (micro-CT) became available and models for heat conduction through a steady state ice and pore network emerged. We present a phase-field model to solve the coupled heat and mass transport problem including phase-change processes in an evolving ice-pore network. The model considers mass fluxes that are induced by temperature gradients in the snow as well as by curvature effects and handles topological changes of the microstructure implicitly. We apply the model to 3D micro-CT data of snow. The simulations agree qualitatively well with laboratory observations and underline the strong link between microstructure and heat conductivity of snow. In order to validate the model quantitatively and to constrain the model parameters, simpler experiments than snow metamorphism observations by micro-CT are needed. We designed a relatively simple experimental apparatus to observe the migration of air inclusions in ice subjected to a temperature gradient. Considerable insulation and good temperature control at the hot and cold sides of an ice block allow us to impose a nearly constant and mono-dimensional temperature gradient. Small air inclusions can be inserted into the ice for example by drilling. The advantage of

  16. Threshold temperatures mediate the impact of reduced snow cover on overwintering freeze-tolerant caterpillars

    NASA Astrophysics Data System (ADS)

    Marshall, Katie E.; Sinclair, Brent J.

    2012-01-01

    Decreases in snow cover due to climate change could alter the energetics and physiology of ectothermic animals that overwinter beneath snow, yet how snow cover interacts with physiological thresholds is unknown. We applied numerical simulation of overwintering metabolic rates coupled with field validation to determine the importance of snow cover and freezing to the overwintering lipid consumption of the freeze-tolerant Arctiid caterpillar Pyrrharctia isabella. Caterpillars that overwintered above the snow experienced mean temperatures 1.3°C lower than those below snow and consumed 18.36 mg less lipid of a total 68.97-mg reserve. Simulations showed that linear temperature effects on metabolic rate accounted for only 30% of the difference in lipid consumption. When metabolic suppression by freezing was included, 93% of the difference between animals that overwintered above and below snow was explained. Our results were robust to differences in temperature sensitivity of metabolic rate, changes in freezing point, and the magnitude of metabolic suppression by freezing. The majority of the energy savings was caused by the non-continuous reduction in metabolic rate due to freezing, the first example of the importance of temperature thresholds in the lipid use of overwintering insects.

  17. Effects of different temperature treatments on biological ice nuclei in snow samples

    NASA Astrophysics Data System (ADS)

    Hara, Kazutaka; Maki, Teruya; Kakikawa, Makiko; Kobayashi, Fumihisa; Matsuki, Atsushi

    2016-09-01

    The heat tolerance of biological ice nucleation activity (INA) depends on their types. Different temperature treatments may cause varying degrees of inactivation on biological ice nuclei (IN) in precipitation samples. In this study, we measured IN concentration and bacterial INA in snow samples using a drop freezing assay, and compared the results for unheated snow and snow treated at 40 °C and 90 °C. At a measured temperature of -7 °C, the concentration of IN in untreated snow was 100-570 L-1, whereas the concentration in snow treated at 40 °C and 90 °C was 31-270 L-1 and 2.5-14 L-1, respectively. In the present study, heat sensitive IN inactivated by heating at 40 °C were predominant, and ranged 23-78% of IN at -7 °C compared with untreated samples. Ice nucleation active Pseudomonas strains were also isolated from the snow samples, and heating at 40 °C and 90 °C inactivated these microorganisms. Consequently, different temperature treatments induced varying degrees of inactivation on IN in snow samples. Differences in the concentration of IN across a range of treatment temperatures might reflect the abundance of different heat sensitive biological IN components.

  18. Threshold temperatures mediate the impact of reduced snow cover on overwintering freeze-tolerant caterpillars.

    PubMed

    Marshall, Katie E; Sinclair, Brent J

    2012-01-01

    Decreases in snow cover due to climate change could alter the energetics and physiology of ectothermic animals that overwinter beneath snow, yet how snow cover interacts with physiological thresholds is unknown. We applied numerical simulation of overwintering metabolic rates coupled with field validation to determine the importance of snow cover and freezing to the overwintering lipid consumption of the freeze-tolerant Arctiid caterpillar Pyrrharctia isabella. Caterpillars that overwintered above the snow experienced mean temperatures 1.3°C lower than those below snow and consumed 18.36 mg less lipid of a total 68.97-mg reserve. Simulations showed that linear temperature effects on metabolic rate accounted for only 30% of the difference in lipid consumption. When metabolic suppression by freezing was included, 93% of the difference between animals that overwintered above and below snow was explained. Our results were robust to differences in temperature sensitivity of metabolic rate, changes in freezing point, and the magnitude of metabolic suppression by freezing. The majority of the energy savings was caused by the non-continuous reduction in metabolic rate due to freezing, the first example of the importance of temperature thresholds in the lipid use of overwintering insects.

  19. A snow extent time series assimilation using MODIS images and temperature data, case study Koohrang, Iran

    NASA Astrophysics Data System (ADS)

    Abdollahi, K.; Batelaan, O.

    2012-04-01

    A unique advantage of satellite data is the possibility for delineation of snow line and calculation of snow cover area. Recent availability of remote sensing data offers promise for better performance of hydrological models, which contain a snow component. The near-daily coverage of Moderate Resolution Imaging Spectrometer (MODIS) data and its moderate resolution provide a powerful capability for time series analysis of snow cover area. However, because of several reasons like cloud cover, technical problems, etc., images are not available or usable. This paper suggests a regional solution to fill the gap of missing data for purpose of snow cover assessment. In this study 27 images of MODIS from NASA have been used to calculate basin scale snow cover area by applying NDSI technique. Also a temperature dataset was collected from the Koohrang station, which was measured by the Iranian meteorological organization for the period 2004-2008. The elevation of the Koohrang station is 2285 m above sea level and geographically it is located at latitude 32 26' and longitude 50 07'. The study considered snow cover derived from satellite imagery as dependent variable and temperature as independent variable. To find a relationship between snow extent and temperature we used the CURVEEXPERT 1.4 package. This program uses the Levenberg-Marquardt algorithm to solve nonlinear regressions by combination of steepest-descent method and a Taylor series technique. Our methodology is applied each time when snow extent is not available and it estimates snow extend based on the remaining data. A wide range of built in models were tested for this purpose but finally a Logistic, Exponential, Richards, Gompertz, Linear Fit and Exponential model were adopted because of high correlation relationship and low variance.

  20. Evolution of the specific surface area of snow during high-temperature gradient metamorphism

    NASA Astrophysics Data System (ADS)

    Wang, Xuan; Baker, Ian

    2014-12-01

    The structural evolution of low-density snow under a high-temperature gradient over a short period usually takes place in the surface layers on clear, cold nights. In this paper, X-ray computed microtomography (microCT) was combined with numerical simulations to investigate the temperature gradient metamorphism (TGM) on different types of snow. Precipitation particles (PP), small rounded particles (RGsr), and large rounded particles (RGlr) were each observed in high-temperature gradients (100-500 K m-1) at a mean temperature of -4°C. The specific surface area (SSA) was used to characterize the TGM, which were influenced by both the magnitude of the temperature gradient and the initial snow structures. PP samples experienced a logarithmic decrease of SSA with time, and the depth hoar structures created under high TGM (500 K m-1) have higher SSA compared to those under lower TGM. Unlike previous observations, for initial rounded and connected structures, like RGlr samples, the SSA increased during TGM. Simulated normal vapor flux distributions for different snow types were used to help understand the structural evolution under TGM. Understanding the SSA increase is important in order to predict the enhanced uptake of chemical species by snow or increase in snow albedo.

  1. A room temperature operating cryogenic cell for in vivo monitoring of dry snow metamorphism by X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Calonne, N.; Flin, F.; Lesaffre, B.; Dufour, A.; Roulle, J.; Puglièse, P.; Philip, A.; Lahoucine, F.; Rolland du Roscoat, S.; Geindreau, C.

    2013-12-01

    Three-dimensional (3D) images of snow offer the possibility of studying snow metamorphism at the grain scale by analysing the time evolution of its complex microstructure. Such images are also particularly useful for providing physical effective properties of snow arising in macroscopic models. In the last 15 years, several experiments have been developed in order to get 3D images of snow by X-ray microtomography. Up to now, two different approaches have been used: a static and an in vivo approach. The static method consists in imaging a snow sample whose structural evolution has been stopped by impregnation and/or very cold temperature conditions. The sample is placed in a cryogenic cell that can operate at the ambient temperature of the tomograph room (e.g. Brzoska et al., 1999, Coléou et al., 2001). The in vivo technique uses a non impregnated sample which continues to undergo structural evolutions and is put in a cell that controls the temperature conditions at the boundaries of the sample. This kind of cell requires a cold environnement and the whole tomographic acquisition process takes place in a cold room (e.g. Schneebeli and Sokratov, 2004, Pinzer and Schneebeli, 2009). The 2nd approach has the major advantage to provide the time evolution of the microstructure of a same snow sample but requires a dedicated cold-room tomographic scanner, whereas the static method can be used with any tomographic scanner operating at ambient conditions. We developed a new in vivo cryogenic cell which benefits from the advantages of each of the above methods: it (1) allows to follow the evolution of the same sample with time and (2) is usable with a wide panel of tomographic scanners provided with large cabin sizes, which has many advantages in terms of speed, resolution, and availability of new technologies. The thermal insulation between the snow sample and the outside is ensured by a double wall vacuum system of thermal conductivity of about 0.0015 Wm-1K-1. An air

  2. Modelling basin-scale effects of shrub expansion on snow distribution, turbulent fluxes and soil temperature

    NASA Astrophysics Data System (ADS)

    Ménard, Cécile; Essery, Richard; Pomeroy, John

    2013-04-01

    The interactions between shrubs, snow and soil are at the core of feedback loops affecting the water, energy and carbon budget at high latitude. Many studies, providing evidence from plot scale measurements to pan-Arctic satellite observations, have shown that shrubs are colonizing higher grounds, both latitudinally and altitudinally, in all countries circling the Arctic. It is therefore critical to understand how these changes may affect snow distribution, water equivalent and soil temperature. Given that shrubs colonize bare ground through the expansion of existing shrub patches, the potential effect of shrub expansion was investigated by selecting a site where shrubs are already in the landscape. Modelled snow distribution, water equivalent, turbulent fluxes and soil temperature under the current vegetation cover was compared to those of runs where cover was modified by 1/ removing all vegetation ("no-shrub") 2/ increasing shrub cover and height as a function of their respective neighbouring cell values ("shrub+"). The study was performed in the Granger Basin, Yukon Territory, Canada, which is situated within a sub-alpine ecozone and characterised by a shrub-tundra landscape. A distributed land surface model which calculates the energy balance over three sources (snow - shrub - ground) within each gridbox was used to investigate these processes. Although much of the snow distribution in the basin is topographically driven, increasing shrub cover and height reduced the spatial variability of snow depth and increased the snow cover fraction. Despite the heat advection from shrubs to snow patches, the basin became snow-free earlier in the control run than in the shrub+ run because of the shading effect of denser canopies. Removing shrubs caused higher latent heat fluxes across the basin both on snow and snow-free tiles whereas adding shrubs homogenized latent heat fluxes and soil temperatures across the basin, following the homogenization of the snow depth. The

  3. Atmospheric Thickness Variability During Air Mass Conditions and Winter Snow Events at Albany, NY: 2002-2012

    NASA Astrophysics Data System (ADS)

    Dubbs, A. M.; Swift, S.; Godek, M. L.

    2014-12-01

    A winter weather parameter that is underutilized in the prediction of Northeast snowfall events is critical thickness. Knowledge of atmospheric thickness values during snowfall can benefit the accuracy of winter forecasts, especially if thickness layer ranges at times without precipitation are known. This investigation aims to better understand atmospheric thickness variations in the 1000-500, 1000-700, and 1000-850 hPa layers at Albany, New York during snowfall with differing air mass conditions. Since snow can occur alongside a variety of air mass environments, distinctions in layer thickness between air mass types and critical levels will be examined. Pairing air mass information with an improved understanding of thicknesses may allow forecasters to determine normal snowfall conditions of the atmosphere and decipher when anomalous conditions are occurring alongside heavier snows. Daily geopotential height data are examined alongside Spatial Synoptic Classification weather types over the past decade. Air mass frequencies are computed and baseline thicknesses are established for non-snow days, days with snow and liquid precipitation, and days with only snowfall. Thicknesses are compared to those computed for seven air mass types and differences layers are examined for continuity. For the three air masses identified as prevalent during heavy snow, light-to-heavy and early-to-late season snowfall categories are established and thickness variations are evaluated against non-snow days for significant differences. Results indicate that the differences in layer thicknesses are comparable for all precipitation and non-snow days but around 40 geopotential meters less for pure-snow days. For air masses present during snow, layer thicknesses can vary by over 100 gpm with type. Isolating polar varieties, approximately 50 gpm thickness differences are found in pure-snow days. Comparable differences are detected between the moderate and polar types and the continuity between

  4. An empirical technique for estimating near-surface air temperature trends in central Greenland from SSM/I brightness temperatures

    SciTech Connect

    Shuman, C.A.; Alley, R.B.; Anandakrishnan, S.; Stearns, C.R.

    1995-02-01

    In central Greenland, near-surface air temperatures can be estimated from long-term satellite passive microwave brightness temperatures supported by limited air-temperature data from automatic weather stations. In this region, brightness temperature depends on snow emissivity, which varies slowly over time, and on snow temperature, which varies more rapidly and is controlled by air temperature. The air temperature and brightness temperature data define an emissivity trend which can be modeled as an annual sinusoid. An air temperature trend can then be derived from the brightness temperature and modeled emissivity information. The estimated air temperature values represent an integrated near-surface value that defines the overall temperature trend at the Greenland Summit. The modeled emissivity cycle allows daily-average air temperatures to be estimated across significant gaps in weather station records, as well as quality control of their temperature data. The technique also generates annual trends of emissivity which can be used to evaluate radiative transfer models of microwave emissivity from dry firn.

  5. Impacts of snow and organic soils parameterization on northern Eurasian soil temperature profiles simulated by the ISBA land surface model

    NASA Astrophysics Data System (ADS)

    Decharme, Bertrand; Brun, Eric; Boone, Aaron; Delire, Christine; Le Moigne, Patrick; Morin, Samuel

    2016-04-01

    In this study we analyzed how an improved representation of snowpack processes and soil properties in the multilayer snow and soil schemes of the Interaction Soil-Biosphere-Atmosphere (ISBA) land surface model impacts the simulation of soil temperature profiles over northern Eurasian regions. For this purpose, we refine ISBA's snow layering algorithm and propose a parameterization of snow albedo and snow compaction/densification adapted from the detailed Crocus snowpack model. We also include a dependency on soil organic carbon content for ISBA's hydraulic and thermal soil properties. First, changes in the snowpack parameterization are evaluated against snow depth, snow water equivalent, surface albedo, and soil temperature at a 10 cm depth observed at the Col de Porte field site in the French Alps. Next, the new model version including all of the changes is used over northern Eurasia to evaluate the model's ability to simulate the snow depth, the soil temperature profile, and the permafrost characteristics. The results confirm that an adequate simulation of snow layering and snow compaction/densification significantly impacts the snowpack characteristics and the soil temperature profile during winter, while the impact of the more accurate snow albedo computation is dominant during the spring. In summer, the accounting for the effect of soil organic carbon on hydraulic and thermal soil properties improves the simulation of the soil temperature profile. Finally, the results confirm that this last process strongly influences the simulation of the permafrost active layer thickness and its spatial distribution.

  6. Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region

    NASA Astrophysics Data System (ADS)

    Wang, Wenli; Rinke, Annette; Moore, John C.; Ji, Duoying; Cui, Xuefeng; Peng, Shushi; Lawrence, David M.; McGuire, A. David; Burke, Eleanor J.; Chen, Xiaodong; Decharme, Bertrand; Koven, Charles; MacDougall, Andrew; Saito, Kazuyuki; Zhang, Wenxin; Alkama, Ramdane; Bohn, Theodore J.; Ciais, Philippe; Delire, Christine; Gouttevin, Isabelle; Hajima, Tomohiro; Krinner, Gerhard; Lettenmaier, Dennis P.; Miller, Paul A.; Smith, Benjamin; Sueyoshi, Tetsuo; Sherstiukov, Artem B.

    2016-08-01

    A realistic simulation of snow cover and its thermal properties are important for accurate modelling of permafrost. We analyse simulated relationships between air and near-surface (20 cm) soil temperatures in the Northern Hemisphere permafrost region during winter, with a particular focus on snow insulation effects in nine land surface models, and compare them with observations from 268 Russian stations. There are large cross-model differences in the simulated differences between near-surface soil and air temperatures (ΔT; 3 to 14 °C), in the sensitivity of soil-to-air temperature (0.13 to 0.96 °C °C-1), and in the relationship between ΔT and snow depth. The observed relationship between ΔT and snow depth can be used as a metric to evaluate the effects of each model's representation of snow insulation, hence guide improvements to the model's conceptual structure and process parameterisations. Models with better performance apply multilayer snow schemes and consider complex snow processes. Some models show poor performance in representing snow insulation due to underestimation of snow depth and/or overestimation of snow conductivity. Generally, models identified as most acceptable with respect to snow insulation simulate reasonable areas of near-surface permafrost (13.19 to 15.77 million km2). However, there is not a simple relationship between the sophistication of the snow insulation in the acceptable models and the simulated area of Northern Hemisphere near-surface permafrost, because several other factors, such as soil depth used in the models, the treatment of soil organic matter content, hydrology and vegetation cover, also affect the simulated permafrost distribution.

  7. Study of a temperature gradient metamorphism of snow from 3-D images: time evolution of microstructures, physical properties and their associated anisotropy

    NASA Astrophysics Data System (ADS)

    Calonne, N.; Flin, F.; Geindreau, C.; Lesaffre, B.; Rolland du Roscoat, S.

    2014-02-01

    We carried out a study to monitor the time evolution of microstructural and physical properties of snow during a temperature gradient metamorphism: a snow slab was subjected to a constant temperature gradient along the vertical during three weeks in a cold-room, and regularly sampled in order to obtain a set of 3-D images using X-ray microtomography. A large panel of properties was then computed from this series of 3-D images: density, specific surface area, correlation length, mean and Gaussian curvature distributions, air and ice tortuosities, effective thermal conductivity, and intrinsic permeability. Whenever possible, a specific attention was paid to assess these properties along the vertical and horizontal directions, and an anisotropy coefficient defined as the ratio of the vertical over the horizontal values was deduced. The time evolution of these properties, as well as their anisotropy coefficients, was investigated, showing the development of a strong anisotropic behavior during the experiment. Most of the computed physical properties of snow were then compared with two analytical models (Self consistent estimates and Dilutes bed of spheroids) based on the snow density, and the size and anisotropy of the grains through the correlation lengths. These models, which require only basic microstructural information, offer rather good estimates of the properties and anisotropy coefficients for our experiment without any fitting parameters. Our results highlight the interplay between the microstructure and physical properties, showing that the physical properties of snow subjected to a temperature gradient cannot be described accurately using only isotropic parameters such as the density and require more refined information. Furthermore, this study constitutes a detailed database on the evolution of snow properties under a temperature gradient, which can be used as a guideline and a validation tool for snow metamorphism models at the micro or macro scale.

  8. Study of a temperature gradient metamorphism of snow from 3-D images: time evolution of microstructures, physical properties and their associated anisotropy

    NASA Astrophysics Data System (ADS)

    Calonne, N.; Flin, F.; Geindreau, C.; Lesaffre, B.; Rolland du Roscoat, S.

    2014-12-01

    We carried out a study to monitor the time evolution of microstructural and physical properties of snow during temperature gradient metamorphism: a snow slab was subjected to a constant temperature gradient in the vertical direction for 3 weeks in a cold room, and regularly sampled in order to obtain a series of three-dimensional (3-D) images using X-ray microtomography. A large set of properties was then computed from this series of 3-D images: density, specific surface area, correlation lengths, mean and Gaussian curvature distributions, air and ice tortuosities, effective thermal conductivity, and intrinsic permeability. Whenever possible, specific attention was paid to assess these properties along the vertical and horizontal directions, and an anisotropy coefficient defined as the ratio of the vertical over the horizontal values was deduced. The time evolution of these properties, as well as their anisotropy coefficients, was investigated, showing the development of a strong anisotropic behavior during the experiment. Most of the computed physical properties of snow were then compared with two analytical estimates (self-consistent estimates and dilute beds of spheroids) based on the snow density, and the size and anisotropy of the microstructure through the correlation lengths. These models, which require only basic microstructural information, offer rather good estimates of the properties and anisotropy coefficients for our experiment without any fitting parameters. Our results highlight the interplay between the microstructure and physical properties, showing that the physical properties of snow subjected to a temperature gradient cannot be described accurately using only isotropic parameters such as the density and require more refined information. Furthermore, this study constitutes a detailed database on the evolution of snow properties under a temperature gradient, which can be used as a guideline and a validation tool for snow metamorphism models at the

  9. A new soil-temperature module for SWAT application in regions with seasonal snow cover

    NASA Astrophysics Data System (ADS)

    Qi, Junyu; Li, Sheng; Li, Qiang; Xing, Zisheng; Bourque, Charles P.-A.; Meng, Fan-Rui

    2016-07-01

    Accurate estimates of soil temperature are important for quantifying hydrological and biological processes in hydrological models. Soil temperature predictions in the widely used Soil and Water Assessment Tool (SWAT) have large prediction errors when applied to regions with significant snow cover during winter. In this study, a new physically-based soil-temperature module is developed as an alternative to the empirical soil-temperature module currently used in SWAT. The physically-based module ​simulates soil temperature in different soil layers as a result of energy transfer between the atmosphere and soil (or snow) interface. The modified version of SWAT with the new soil-temperature module in place, introduces only three new parameters over the original soil-temperature module. Both the original and new soil-temperature modules are tested against field data from the Black Brook Watershed, a small watershed in Atlantic Canada. The results indicate that both versions of soil-temperature module ​are able to provide acceptable predictions of temperature in different layers of the soil during non-winter seasons. However, the original module severely underestimates soil temperatures in winter (within -10 to -20 °C), while the new module produces results that are more consistent with field measurements (within -2 to 2 °C). In addition, unlike its counterpart, the new module ​is able to simulate freeze-thaw cycles in the soil profile. Ice-water content variations in winter are reasonably simulated by the new module for different snow cover scenarios. In general, modified-SWAT improves prediction accuracy on baseflow discharge compared with the original-SWAT, due to improved estimates of soil temperature during winter. The new physically-based soil-temperature module has greatly improved the ability of SWAT to predict soil temperatures under seasonal snow cover, which is essential to the application of the model in regions like Atlantic Canada.

  10. Analysis of snow-cap pollution for air quality assessment in the vicinity of an oil refinery.

    PubMed

    Krastinyte, Viktorija; Baltrenaite, Edita; Lietuvninkas, Arvydas

    2013-01-01

    Snow-cap can be used as a simple and effective indicator of industrial air pollution. In this study snow-cap samples were collected from 11 sites located in the vicinity of an oil refinery in Mazeikiai, a region in the north-west of Lithuania, in the winter of 2011. Analysis of snowmelt water and snow-dust was used to determine anthropogenic pollutants such as: sulphates and chlorides, nitrites, nitrates, ammonium nitrogen, total carbon, total nitrogen; heavy metals: lead (Pb), copper (Cu), chromium (Cr), cadmium (Cd). Concentrations of heavy metals in snow-dust were detected thousands of times higher than those in the snowmelt water. In this study, analysis of heavy metal concentration was conducted considering different distances and the wind direction within the impact zone of the oil refinery. The sequence of heavy metals according to their mean concentrations in the snow-dust samples was the following: Pb > Cr > Cu > Cd. Heavy metals highly correlated among each other. The load of snow-dust was evaluated to determine the pollution level in the study area. The highest daily load of snow-dust was 45.81 +/- 12.35 mg/m2 in the north-western direction from the oil refinery. According to classification of the daily load of snow-dust a lower than medium-risk level of pollution was determined in the vicinity of the oil refinery.

  11. Trace elements and common ions in southeastern Idaho snow: Regional air pollutant tracers for source area emissions

    USGS Publications Warehouse

    Abbott, M.; Einerson, J.; Schuster, P.; Susong, D.; Taylor, H.E.; ,

    2004-01-01

    Snow sampling and analysis methods which produce accurate and ultra-low measurements of trace elements and common ion concentration in southeastern Idaho snow, were developed. Snow samples were collected over two winters to assess trace elements and common ion concentrations in air pollutant fallout across the southeastern Idaho. The area apportionment of apportionment of fallout concentrations measured at downwind location were investigated using pattern recognition and multivariate statistical technical techniques. Results show a high level of contribution from phosphates processing facilities located outside Pocatello in the southern portion of the Eastern Snake River Plain, and no obvious source area profiles other than at Pocatello.

  12. Neutral Poly/Per-Fluoroalkyl Substances in Air from the Atlantic to the Southern Ocean and in Antarctic Snow.

    PubMed

    Wang, Zhen; Xie, Zhiyong; Mi, Wenying; Möller, Axel; Wolschke, Hendrik; Ebinghaus, Ralf

    2015-07-01

    The oceanic scale occurrences of typical neutral poly/per-fluoroalkyl substances (PFASs) in the atmosphere across the Atlantic, as well as their air-snow exchange at the Antarctic Peninsula, were investigated. Total concentrations of the 12 PFASs (∑PFASs) in gas phase ranged from 2.8 to 68.8 pg m(-3) (mean: 23.5 pg m(-3)), and the levels in snow were from 125 to 303 pg L(-1) (mean: 209 pg L(-1)). Fluorotelomer alcohols (FTOHs) were dominant in both air and snow. The differences of specific compounds to ∑PFASs were not significant between air and snow. ∑PFASs were higher above the northern Atlantic compared to the southern Atlantic, and the levels above the southern Atlantic <30°S was the lowest. High atmospheric PFAS levels around the Antarctic Peninsula were the results of a combination of air mass, weak elimination processes and air-snow exchange of PFASs. Higher ratios of 8:2 to 10:2 to 6:2 FTOH were observed in the southern hemisphere, especially around the Antarctic Peninsula, suggesting that PFASs in the region were mainly from the long-range atmospheric transport. No obvious decrease of PFASs was observed in the background marine atmosphere after 2005.

  13. Effects of soil temperature and snow cover on the mortality of overwintering pupae of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae).

    PubMed

    Huang, Jian

    2016-07-01

    Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is one of the most damaging insect pests in the world. However, little is known about the effects of snow cover and soil temperature on the overwintering pupae of H. armigera. A field experiment was conducted from November 2, 2012 to April 24, 2013 at the agrometeorological experimental station in Wulanwusu, China. Overwintering pupae were embedded into the soil at depths of 5, 10, and 15 cm in the following four treatments: without snow cover, snow cover, and increased temperatures from 600 and 1200 W infrared lights. The results showed that snow cover and rising temperatures could all markedly increase soil temperatures, which was helpful in improving the survival of the overwintering pupae of H. armigera. The mortality of overwintering pupae (MOP) at a depth of 15 cm was the highest, and the MOP at a depth of 5 cm followed. The lower accumulated temperature (≤0 °C) (AT ≤ °C) led to the higher MOP, and the lower diurnal soil temperature range (DSTR) likely led to the lower MOP. After snowmelt, the MOPs at the depths of 5 and 10 cm increased as the soil temperature increased, especially in April. The AT of the soil (≤0 °C) was the factor with the strongest effect on MOP. The soil moisture content was not a major factor affecting the MOP in this semiarid region because precipitation was 45 mm over the entire experimental period. With climate warming, the MOP will likely decrease, and the overwintering boundary air temperatures of H. armigera should be expanded due to higher soil temperatures and increased snow cover.

  14. Effects of soil temperature and snow cover on the mortality of overwintering pupae of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae)

    NASA Astrophysics Data System (ADS)

    Huang, Jian

    2016-07-01

    Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is one of the most damaging insect pests in the world. However, little is known about the effects of snow cover and soil temperature on the overwintering pupae of H. armigera. A field experiment was conducted from November 2, 2012 to April 24, 2013 at the agrometeorological experimental station in Wulanwusu, China. Overwintering pupae were embedded into the soil at depths of 5, 10, and 15 cm in the following four treatments: without snow cover, snow cover, and increased temperatures from 600 and 1200 W infrared lights. The results showed that snow cover and rising temperatures could all markedly increase soil temperatures, which was helpful in improving the survival of the overwintering pupae of H. armigera. The mortality of overwintering pupae (MOP) at a depth of 15 cm was the highest, and the MOP at a depth of 5 cm followed. The lower accumulated temperature (≤0 °C) (AT ≤ °C) led to the higher MOP, and the lower diurnal soil temperature range (DSTR) likely led to the lower MOP. After snowmelt, the MOPs at the depths of 5 and 10 cm increased as the soil temperature increased, especially in April. The AT of the soil (≤0 °C) was the factor with the strongest effect on MOP. The soil moisture content was not a major factor affecting the MOP in this semiarid region because precipitation was 45 mm over the entire experimental period. With climate warming, the MOP will likely decrease, and the overwintering boundary air temperatures of H. armigera should be expanded due to higher soil temperatures and increased snow cover.

  15. Distinguishing snow and ice melt contributions using daily MODIS and a temperature index melt model in the Hunza River basin

    NASA Astrophysics Data System (ADS)

    Rittger, Karl; Brodzik, Mary J.; Racoviteanu, Adina; Barrett, Andrew; Jodha Kalsa, Siri; Armstrong, Richard

    2015-04-01

    In mountainous regions of High Asia, snow and ice both contribute to streamflow, but few in-situ observations exist that can help distinguish between the two components of melt. Our goal is to develop a melt model that can distinguish between seasonal snow and glacier ice melt at a continental scale. We use a combination of MODIS-derived data sets to distinguish three surface types at daily resolution: 1) exposed glacier ice, 2) snow over ice and 3) snow over land. We use MODICE to map glacier area and then distinguish areas of exposed ice from snow over ice using thresholds on MODIS-derived albedo or grain size products. We map snow over land using the daily MODSCAG fractional snow cover product, and use the time series of three surface types as input to a temperature index melt model. The model outputs melt volumes from exposed glacier ice, snow over ice and snow over land, respectively. To partition the glacier surface into exposed glacier ice versus snow over ice, we threshold MODIS albedo or grain size based on higher-resolution Landsat 8 imagery. During the ablation period, the high elevation mid-latitude snowpack receives intense incoming solar radiation resulting in surface albedo decreases and snow grain growth. We compare differences in modeled melt using two albedo products (Terra Daily Snow Cover algorithm (MOD10A1) and Surface Reflectance BRDF/Albedo (MCD43)) and two grain size products (MODIS Snow Covered Area and Grain Size Model (MODSCAG) and MODIS Dust Radiative Forcing in Snow (MODDRFS)). For the Hunza basin, a sub-basin of the Upper Indus basin, for the years 2001-2004, the modeled melt from exposed glacier ice accounts for: 26-44% (MOD10A1 albedo), 24-32% (MCD43 albedo), 17-28% (MODSCAG grain size) or 23-26% (MODDRFS grain size) of the combined melt from all three surface areas.

  16. Modeling snow season controls on northern net ecosystem exchange

    NASA Astrophysics Data System (ADS)

    Luus, K. A.; Lin, J. C.; Kelly, R. E.

    2011-12-01

    Recent field studies have indicated that the timing of snow melt and snow fall, the quantity of snow, and soil temperature are important controls on snow season net ecosystem exchange (NEE). The low thermal conductivity of snow reduces soil heat loss, thereby enabling a greater rate of subnivean respiration under deeper snowpacks, whereas snow melt and snow fall alter the seasonal timing of photosynthetic uptake. Although a substantial portion of annual NEE in northern regions occurs during the snow season, model estimates have not previously included representations of snow season controls on NEE. The objective of this study was therefore to 1) incorporate remotely sensed estimates of snow water equivalent, soil temperature, and the timing of initial snow fall and final snow melt into model estimates of northern NEE; and 2) examine whether incorporating representations of key snow season variables reduces model uncertainty. NEE was estimated using the Vegetation Photosynthesis Respiration Model (VPRM), a simple diagnostic biosphere model that relies on a remote sensing based approach. Findings indicate that a potential exists to improve northern estimates of NEE by incorporating information on snow season controls from remote sensing observations. Soil respiration can be better assessed using soil temperature rather than surface air temperature. The influence of changes in snow water equivalent on soil temperature dynamics can be assessed using remotely sensed estimates of snow water equivalent. Incorporating remotely sensed estimates of snow cover area can improve the timing of seasonal changes in photosynthetic uptake. Furthermore, including snow season controls on northern NEE can enable experiments to be run analyzing the influence of changes in snowpack dynamics, the frequency of extreme winter warming events, and the timing of the snow season on northern NEE.

  17. Evolution of the snow area index of the subarctic snowpack in central Alaska over a whole season. consequences for the air to snow transfer of pollutants.

    PubMed

    Taillandier, A S; Domine, F; Simpson, W R; Sturm, M; Douglas, T A; Severin, K

    2006-12-15

    The detailed physical characteristics of the subarctic snowpack must be known to quantify the exchange of adsorbed pollutants between the atmosphere and the snow cover. For the first time, the combined evolutions of specific surface area (SSA), snow stratigraphy, temperature, and density were monitored throughout winter in central Alaska. We define the snow area index (SAI) as the vertically integrated surface area of snow crystals, and this variable is used to quantify pollutants' adsorption. Intense metamorphism generated by strong temperature gradients formed a thick depth hoar layer with low SSA (90 cm(2) g-1) and density (200 kg m(-3)), resulting in a low SAI. After snowpack buildup in autumn, the winter SAI remained around 1000 m(2)/m(2) of ground, much lower than the SAI of the Arctic snowpack, 2500 m(2) m-(2). With the example of PCBs 28 and 180, we calculate that the subarctic snowpack is a smaller reservoir of adsorbed pollutants than the Arctic snowpack and less efficiently transfers adsorbed pollutants from the atmosphere to ecosystems. The difference is greater for the more volatile PCB 28. With climate change, snowpack structure will be modified, and the snowpack's ability to transfer adsorbed pollutants from the atmosphere to ecosystems may be reduced, especially for the more volatile pollutants. PMID:17256489

  18. Surface Temperature variability from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Dang, V. T.; Aumann, H. H.

    2015-12-01

    To address the existence and possible causes of the climate hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014for the day and night conditions. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We compare the satellite data with the new surface data produced by Karl et al. (2015) who denies the reality of the climate hiatus. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The day-night difference is an indicator of the anthropogenic trend. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  19. Snow modeling using SURFEX with the CROCUS snow scheme for Norway

    NASA Astrophysics Data System (ADS)

    Vikhamar-Schuler, D.; Müller, K.

    2012-04-01

    In 2010 a research project was initiated with the aim to investigate methods to establish a regional snow avalanche forecasting system for Norway. A part of this project concerns snow models that simulate snow stratigraphy and physical parameters in the snow pack. For this purpose we have used the CROCUS snow scheme within the land surface model SURFEX for the location of 18 weather stations in Norway. We have carried out a sensitivity study of available meteorological data. Few weather stations have measurements of all the parameters used by the model on an hourly basis. Therefore it is interesting to investigate if certain parameters can be replaced by short-term prognoses from the operational weather prediction models (Unified Model-4 km, HARMONIE-4 km and postprocessed prognoses of temperature and precipitation). This study indicates that short-term prognoses of radiation, air humidity, wind and air pressure may replace observations without loosing the quality of the snow simulations. For all stations the modeled snow depth is validated with the observed snow depth for the last 2-3 winter seasons. Our results show that the modeled snow depth is most sensitive to precipitation and air temperature. Overall, very good estimates of the snow depth are obtained using the CROCUS snow scheme, except for very wind exposed stations. Temperatures within the snowpack were compared with observations of snow temperature at the Filefjell station, showing promising results. A cold bias was observed, but daily variations were reasonably modeled. During the winter 2011/2012 a series of snow stratigraphy observations from the Filefjell station is carried out for validation purposes of other intra-snowpack physical properties (density, liquid water content, temperature, grain type).

  20. Comparison of Air Temperature Calibrations

    NASA Astrophysics Data System (ADS)

    Heinonen, M.; Anagnostou, M.; Bartolo, J.; Bell, S.; Benyon, R.; Bergerud, R. A.; Bojkovski, J.; Böse, N.; Dinu, C.; Smorgon, D.; Flakiewicz, K.; Martin, M. J.; Nedialkov, S.; Nielsen, M. B.; Oğuz Aytekin, S.; Otych, J.; Pedersen, M.; Rujan, M.; Testa, N.; Turzó-András, E.; Vilbaste, M.; White, M.

    2014-07-01

    European national metrology institutes use calibration systems of various types for calibrating thermometers in air. These were compared to each other for the first time in a project organized by the European Association of National Metrology Institutes (EURAMET). This EURAMET P1061 comparison project had two main objectives: (1) to study the equivalence of calibrations performed by different laboratories and (2) to investigate correlations between calibration methods and achievable uncertainties. The comparison was realized using a pair of 100 platinum resistance thermometer probes connected to a digital thermometer bridge as the transfer standard. The probes had different dimensions and surface properties. The measurements covered the temperature range between and , but each laboratory chose a subrange most relevant to its scope and performed measurements at five nominal temperature points covering the subrange. To enable comparison between the laboratories, comparison reference functions were determined using weighted least-squares fitting. Various effects related to variations in heat transfer conditions were demonstrated but clear correlations to specific characteristics of calibration system were not identified. Calibrations in air and liquid agreed typically within at and . Expanded uncertainties determined by the participants ranged from to and they were shown to be realistic in most cases.

  1. An Air Temperature Cloud Height Precipitation Phase Determination Scheme for Surface Based Modeling

    NASA Astrophysics Data System (ADS)

    Feiccabrino, J. M.

    2015-12-01

    Many hydrological and ecological models use simple surface temperature threshold equations rather than coupling with a complex meteorological model to determine if precipitation is rain or snow. Some comparative studies have found, the most common rain/snow threshold variable, air temperature to have more precipitation phase error than dew-point or wet-bulb temperature, which account for the important secondary role of humidity in the melting and sublimation processes. However, just like surface air temperature, surface humidity is often effected by soil conditions and vegetation and is therefore not always representative of the atmospheric humidity precipitation falls through. A viable alternative to using surface humidity as a proxy for atmospheric moisture would be to adjust the rain snow threshold for changes in cloud height. The height of a cloud base above the ground gives the depth of an unsaturated layer. An unsaturated atmospheric layer should have much different melting and sublimation rates than a saturated cloud layer. Therefore, rain and snow percentages at a given surface air temperature should change with the height of the lowest cloud base. This study uses hourly observations from 12 U.S. manually augmented meteorological stations located in the Great Plains and Midwest upwind or away from major water bodies in relatively flat areas in an attempt to limit geographical influences. The surface air temperature threshold for the ground to 200 feet (under 100m) was 0.0°C, 0.6°C for 300-600 feet (100-200m), 1.1°C for 700-1200 feet (300-400m), 1.7°C for 1300-2000 feet (500-600m), and 2.2°C for 2100-3300 feet (700-1000m). Total precipitation error for these cloud height air temperature thresholds reduced the error from the single air temperature threshold 1.1°C by 15% from 14% to 12% total error between -2.2°C and 3.9°C. These air temperature cloud height thresholds resulted in 1.5% less total error than the dew-point temperature threshold 0.0

  2. Cold air outbreaks along a non-frozen sea channel: effects of wind on snow bands

    NASA Astrophysics Data System (ADS)

    Savijärvi, Hannu

    2015-08-01

    Wintertime cold air outbreaks along a non-frozen sea channel or a long lake can become destructive if the related bands of heavy snowfall hit onto land. The forcing for such bands is studied with a 2D numerical model set across an east-west sea channel at 60oN (`Gulf of Finland'), varying the basic geostrophic wind V g. Without any V g opposite coastal land breezes emerge with convergence. This results in a quasi-steady rising motion w max ~ 7.5 cm/s at 600 m in the middle of the gulf, which can force a snow band. During weak V g, the rising motion is reduced but least so for winds from 60o to 80o (~ENE), when modest alongshore bands could exist near the downstream (Estonian) coast. During V g of 4-6 m/s from any direction, the land breezes and rising motions are reduced more effectively, so snow bands are not expected during moderate basic flow. In contrast, during a strong V g of 20-25 m/s from 110o to 120o (~ESE) the land breeze perturbations are intense with w max up to 15-18 cm/s. The induced alongshore bands of heavy snowfall are located in these cases at the sea but quite close to the downstream (Finnish) coast. They can suddenly make a landfall if the basic wind turns clockwise.

  3. Influence of the melting temperature on the measurement of the mass concentration and size distribution of black carbon in snow

    NASA Astrophysics Data System (ADS)

    Kinase, Takeshi; Kita, Kazuyuki; Tsukagawa-Ogawa, Yoshimi; Goto-Azuma, Kumiko; Kawashima, Hiroto

    2016-04-01

    The influence of temperature and time of snow sample melting on the measurement of mass concentration and size distribution of black carbon (BC) in snow was evaluated experimentally. In the experiments, fresh (Shirouma) and aged (Hakusan) snow samples were melted at different temperatures or at different time lengths, and the BC mass concentration and size distribution in the melted snow samples were measured using a nebulizer and a single-particle soot photometer (SP2). In the experiment where melting temperature was varied, the BC mass concentration in the liquid decreased at a melting temperature of 70 °C. This decrease was 8.0 % for the Shirouma sample and 46.4 % for the Hakusan sample and depended on BC particle size, with a significant decrease found at BC diameters less than 350 nm. A similar decrease in BC mass concentration was found when the Hakusan snow sample that had been melted at 5 °C was heated to 70 °C. The experiment in which melting time was varied indicated that BC mass concentration in the liquid did not change for the Shirouma sample but decreased significantly with a longer melting time for the Hakusan sample (38.6 %). These results indicate that melting of snow samples at high temperatures or over long time periods can significantly affect the measurement of BC mass and its size distribution, especially for aged snow samples.

  4. Investigating the Thermophysical Properties of the Ice-Snow Interface Under a Controlled Temperature Gradient

    NASA Astrophysics Data System (ADS)

    Hammonds, Kevin; Lieb-Lappen, Ross; Baker, Ian; Wang, Xuan; Courville, Zoe

    2015-04-01

    Of critical importance for avalanche forecasting, is the ability to draw meaningful conclusions from a handful of field observations. To this end, it is common for avalanche forecasters to not only have to rely on these sparse data, but also to use their own intuitive understanding of how these observations are correlated with the complex physical processes that produce mechanical instabilities within a snowpack. One such example of this is the long-held notion that kinetic snow metamorphism does not occur at bulk temperature gradients of less than -10°C/m. Although this may be true for the homogeneous case, it has become a point of contention as to whether or not this guideline should be applied to the more representative case of a heavily stratified and anisotropic snowpack. As an idealized case for our initial laboratory investigations, we have studied how an artificially created ice layer or "lens" would affect the thermophysical state of the snow layers adjacent to the ice lens and the ice lens itself, while being held under a controlled temperature gradient. Our findings have shown, via in-situ micro-thermocouple measurements, that a super-temperature gradient many times greater than the imposed bulk temperature gradient can exist within a millimeter above and below the surface of the ice lens. Furthermore, microstructural analysis via time-lapse X-ray Micro-Computed Tomography and environmental SEM imaging has been performed. Results from this analysis show new ice crystal growth and kinetic snow metamorphism occurring simultaneously on or near the ice lens itself with the connectivity density at the ice-snow interface increasing markedly more below the ice lens than above.

  5. Evolution of the surface area of a snow layer

    SciTech Connect

    Hanot, L.; Domine, F.

    1999-12-01

    Atmospheric trace gases can partition between the atmosphere and the snow surface. Because snow has a large surface-to-volume ratio, an important interaction potential between ice and atmospheric trace gases exists. Quantifying this partitioning requires the knowledge of the surface area (SA) of snow. Eleven samples were taken from a 50 cm thick snow fall at Col de Porte, near Grenoble (French Alps) between January 20 and February 4, 1998. Fresh snow and 3, 8, and 15-day-old snow were sampled at three different depths. Surface hoar, formed after the fall, was also sampled. Air and surface snow temperature, snow density, and snow fall rate were measured. Snow temperature always remained below freezing. Snow SA was measured using methane adsorption at 77.15 K. Values ranged from 2.25 m{sup 2}/g for fresh snow to 0.25 m{sup 2}/g for surface hoar and surface snow after 15 days. These values are much too high to be explained by the macroscopic aspect of snow crystals, and microstructures such as small rime droplets must have been present. Large decrease in SA with time were observed. The first meter of snowpack had a total surface area of about 50,000 m{sup 2} per m{sup 2} of ground. Reduction in SA will lead to the emission of adsorbed species by the snowpack, with possible considerable increase in atmospheric concentrations.

  6. A passive microwave snow depth algorithm with a proxy for snow metamorphism

    USGS Publications Warehouse

    Josberger, E.G.; Mognard, N.M.

    2002-01-01

    Passive microwave brightness temperatures of snowpacks depend not only on the snow depth, but also on the internal snowpack properties, particularly the grain size, which changes through the winter. Algorithms that assume a constant grain size can yield erroneous estimates of snow depth or water equivalent. For snowpacks that are subject to temperatures well below freezing, the bulk temperature gradient through the snowpack controls the metamorphosis of the snow grains. This study used National Weather Service (NWS) station measurements of snow depth and air temperature from the Northern US Great Plains to determine temporal and spatial variability of the snow depth and bulk snowpack temperature gradient. This region is well suited for this study because it consists primarily of open farmland or prairie, has little relief, is subject to very cold temperatures, and has more than 280 reporting stations. A geostatistical technique called Kriging was used to grid the randomly spaced snow depth measurements. The resulting snow depth maps were then compared with the passive microwave observations from the Special Sensor Microwave Imager (SSM/I). Two snow seasons were examined: 1988-89, a typical snow year, and 1996-97, a record year for snow that was responsible for extensive flooding in the Red River Basin. Inspection of the time series of snow depth and microwave spectral gradient (the difference between the 19 and 37 GHz bands) showed that while the snowpack was constant, the spectral gradient continued to increase. However, there was a strong correlation (0.6 < R2 < 0.9) between the spectral gradient and the cumulative bulk temperature gradient through the snowpack (TGI). Hence, TGI is an index of grain size metamorphism that has occurred within the snowpack. TGI time series from 21 representative sites across the region and the corresponding SSM/I observations were used to develop an algorithm for snow depth that requires daily air temperatures. Copyright ?? 2002

  7. A review of air-ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow

    NASA Astrophysics Data System (ADS)

    Bartels-Rausch, T.; Jacobi, H.-W.; Kahan, T. F.; Thomas, J. L.; Thomson, E. S.; Abbatt, J. P. D.; Ammann, M.; Blackford, J. R.; Bluhm, H.; Boxe, C.; Domine, F.; Frey, M. M.; Gladich, I.; Guzmán, M. I.; Heger, D.; Huthwelker, Th.; Klán, P.; Kuhs, W. F.; Kuo, M. H.; Maus, S.; Moussa, S. G.; McNeill, V. F.; Newberg, J. T.; Pettersson, J. B. C.; Roeselová, M.; Sodeau, J. R.

    2014-02-01

    Snow in the environment acts as a host to rich chemistry and provides a matrix for physical exchange of contaminants within the ecosystem. The goal of this review is to summarise the current state of knowledge of physical processes and chemical reactivity in surface snow with relevance to polar regions. It focuses on a description of impurities in distinct compartments present in surface snow, such as snow crystals, grain boundaries, crystal surfaces, and liquid parts. It emphasises the microscopic description of the ice surface and its link with the environment. Distinct differences between the disordered air-ice interface, often termed quasi-liquid layer, and a liquid phase are highlighted. The reactivity in these different compartments of surface snow is discussed using many experimental studies, simulations, and selected snow models from the molecular to the macro-scale. Although new experimental techniques have extended our knowledge of the surface properties of ice and their impact on some single reactions and processes, others occurring on, at or within snow grains remain unquantified. The presence of liquid or liquid-like compartments either due to the formation of brine or disorder at surfaces of snow crystals below the freezing point may strongly modify reaction rates. Therefore, future experiments should include a detailed characterisation of the surface properties of the ice matrices. A further point that remains largely unresolved is the distribution of impurities between the different domains of the condensed phase inside the snowpack, i.e. in the bulk solid, in liquid at the surface or trapped in confined pockets within or between grains, or at the surface. While surface-sensitive laboratory techniques may in the future help to resolve this point for equilibrium conditions, additional uncertainty for the environmental snowpack may be caused by the highly dynamic nature of the snowpack due to the fast metamorphism occurring under certain environmental

  8. Effects of snow accumulation on soil temperature and change of salinity in frozen soil from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Harada, K.; Sato, E.; Ishii, M.; Nemoto, M.; Mochizuki, S.

    2008-12-01

    In order to clarify the effect of snow depth on the ground temperature, snowfalls were occurred on soil samples using an artificial snowfall machine in the laboratory and variations of soil temperatures up to 30cm were measured during snowfall. The snow types used here were dendrites (type A) and sphere (type B). The snow depths on the soil surface were 10cm and 30cm for each snow type, so four deferent experimental results were obtained. At each experiment, two samples with deferent initial volumetric water content were prepared, about 10% and 20%. The initial soil temperature was set to 5°C and temperature in the laboratory was kept at -10°C. Soil temperatures were measured at the depths of 0cm, 10cm, 20cm and 30cm during the snowfall, and continuous measurements were conducted for ten hours after the stop of snowfall. From the experiments, it is confirmed that the soil temperature strongly depended on the depths of snow on the surface, density and water content. The soil sample using the type A with the depth of 30cm snow accumulation had the highest temperature at the surface, followed by the type A with 10cm snow, type B with 30cm snow and type B with 10cm snow. It was also pointed that temperature of the high water content samples showed the high temperature decrease compared with the low water one due to the high heat capacity except for the sample using type A with 10cm snow. Numerical calculation will be needed to explain these results. In addition, another experiment will be carried out to clarify the change of salinity during soil freezing with snow accumulation. The method to measure the salinity of soil is to measure the electrical conductivity of soil and volumetric water content at the same depth. The temperature condition in the cooling bath is ranged between -10 and 5°C and changed in 24 hours. Firstly, the temperature profiles will be measured to detect the frozen front, then measurements will start and discuss the results.

  9. Incorporating cold-air pooling into downscaled climate models increases potential refugia for snow-dependent species within the Sierra Nevada Ecoregion, CA.

    PubMed

    Curtis, Jennifer A; Flint, Lorraine E; Flint, Alan L; Lundquist, Jessica D; Hudgens, Brian; Boydston, Erin E; Young, Julie K

    2014-01-01

    We present a unique water-balance approach for modeling snowpack under historic, current and future climates throughout the Sierra Nevada Ecoregion. Our methodology uses a finer scale (270 m) than previous regional studies and incorporates cold-air pooling, an atmospheric process that sustains cooler temperatures in topographic depressions thereby mitigating snowmelt. Our results are intended to support management and conservation of snow-dependent species, which requires characterization of suitable habitat under current and future climates. We use the wolverine (Gulo gulo) as an example species and investigate potential habitat based on the depth and extent of spring snowpack within four National Park units with proposed wolverine reintroduction programs. Our estimates of change in spring snowpack conditions under current and future climates are consistent with recent studies that generally predict declining snowpack. However, model development at a finer scale and incorporation of cold-air pooling increased the persistence of April 1st snowpack. More specifically, incorporation of cold-air pooling into future climate projections increased April 1st snowpack by 6.5% when spatially averaged over the study region and the trajectory of declining April 1st snowpack reverses at mid-elevations where snow pack losses are mitigated by topographic shading and cold-air pooling. Under future climates with sustained or increased precipitation, our results indicate a high likelihood for the persistence of late spring snowpack at elevations above approximately 2,800 m and identify potential climate refugia sites for snow-dependent species at mid-elevations, where significant topographic shading and cold-air pooling potential exist. PMID:25188379

  10. Incorporating Cold-Air Pooling into Downscaled Climate Models Increases Potential Refugia for Snow-Dependent Species within the Sierra Nevada Ecoregion, CA

    PubMed Central

    Curtis, Jennifer A.; Flint, Lorraine E.; Flint, Alan L.; Lundquist, Jessica D.; Hudgens, Brian; Boydston, Erin E.; Young, Julie K.

    2014-01-01

    We present a unique water-balance approach for modeling snowpack under historic, current and future climates throughout the Sierra Nevada Ecoregion. Our methodology uses a finer scale (270 m) than previous regional studies and incorporates cold-air pooling, an atmospheric process that sustains cooler temperatures in topographic depressions thereby mitigating snowmelt. Our results are intended to support management and conservation of snow-dependent species, which requires characterization of suitable habitat under current and future climates. We use the wolverine (Gulo gulo) as an example species and investigate potential habitat based on the depth and extent of spring snowpack within four National Park units with proposed wolverine reintroduction programs. Our estimates of change in spring snowpack conditions under current and future climates are consistent with recent studies that generally predict declining snowpack. However, model development at a finer scale and incorporation of cold-air pooling increased the persistence of April 1st snowpack. More specifically, incorporation of cold-air pooling into future climate projections increased April 1st snowpack by 6.5% when spatially averaged over the study region and the trajectory of declining April 1st snowpack reverses at mid-elevations where snow pack losses are mitigated by topographic shading and cold-air pooling. Under future climates with sustained or increased precipitation, our results indicate a high likelihood for the persistence of late spring snowpack at elevations above approximately 2,800 m and identify potential climate refugia sites for snow-dependent species at mid-elevations, where significant topographic shading and cold-air pooling potential exist. PMID:25188379

  11. Incorporating cold-air pooling into downscaled climate models increases potential refugia for snow-dependent species within the Sierra Nevada Ecoregion, CA

    USGS Publications Warehouse

    Curtis, Jennifer A.; Flint, Lorraine E.; Flint, Alan L.; Lundquist, Jessica D.; Hudgens, Brian; Boydston, Erin E.; Young, Julie K.

    2014-01-01

    We present a unique water-balance approach for modeling snowpack under historic, current and future climates throughout the Sierra Nevada Ecoregion. Our methodology uses a finer scale (270 m) than previous regional studies and incorporates cold-air pooling, an atmospheric process that sustains cooler temperatures in topographic depressions thereby mitigating snowmelt. Our results are intended to support management and conservation of snow-dependent species, which requires characterization of suitable habitat under current and future climates. We use the wolverine (Gulo gulo) as an example species and investigate potential habitat based on the depth and extent of spring snowpack within four National Park units with proposed wolverine reintroduction programs. Our estimates of change in spring snowpack conditions under current and future climates are consistent with recent studies that generally predict declining snowpack. However, model development at a finer scale and incorporation of cold-air pooling increased the persistence of April 1st snowpack. More specifically, incorporation of cold-air pooling into future climate projections increased April 1st snowpack by 6.5% when spatially averaged over the study region and the trajectory of declining April 1st snowpack reverses at mid-elevations where snow pack losses are mitigated by topographic shading and cold-air pooling. Under future climates with sustained or increased precipitation, our results indicate a high likelihood for the persistence of late spring snowpack at elevations above approximately 2,800 m and identify potential climate refugia sites for snow-dependent species at mid-elevations, where significant topographic shading and cold-air pooling potential exist.

  12. Comparison of Satellite-Derived and In-Situ Observations of Ice and Snow Surface Temperatures over Greenland

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Box, Jason E.; Casey, Kimberly A.; Hook, Simon J.; Shuman, Christopher A.; Steffen, Konrad

    2008-01-01

    The most practical way to get a spatially broad and continuous measurements of the surface temperature in the data-sparse cryosphere is by satellite remote sensing. The uncertainties in satellite-derived LSTs must be understood to develop internally-consistent decade-scale land-surface temperature (LST) records needed for climate studies. In this work we assess satellite-derived "clear-sky" LST products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and LSTs derived from the Enhanced Thematic Mapper Plus (ETM+) over snow and ice on Greenland. When possible, we compare satellite-derived LSTs with in-situ air-temperature observations from Greenland Climate Network (GC-Net) automatic-weather stations (AWS). We find that MODIS, ASTER and ETM+ provide reliable and consistent LSTs under clear-sky conditions and relatively-flat terrain over snow and ice targets over a range of temperatures from -40 to 0 C. The satellite-derived LSTs agree within a relative RMS uncertainty of approx.0.5 C. The good agreement among the LSTs derived from the various satellite instruments is especially notable since different spectral channels and different retrieval algorithms are used to calculate LST from the raw satellite data. The AWS record in-situ data at a "point" while the satellite instruments record data over an area varying in size from: 57 X 57 m (ETM+), 90 X 90 m (ASTER), or to 1 X 1 km (MODIS). Surface topography and other factors contribute to variability of LST within a pixel, thus the AWS measurements may not be representative of the LST of the pixel. Without more information on the local spatial patterns of LST, the AWS LST cannot be considered valid ground truth for the satellite measurements, with RMS uncertainty approx.2 C. Despite the relatively large AWS-derived uncertainty, we find LST data are characterized by high accuracy but have uncertain absolute precision.

  13. Arctic tundra shrub invasion and soot deposition: Consequences for spring snowmelt and near-surface air temperatures

    NASA Astrophysics Data System (ADS)

    Strack, John E.

    Invasive shrubs and soot pollution both have the potential to alter the surface energy balance and timing of snow melt in the Arctic. Shrubs reduce the amount of snow lost to sublimation on the tundra during the winter leading to a deeper end-of-winter snowpack. The shrubs also enhance the absorption of energy by the snowpack during the melt season, by converting incoming solar radiation to longwave radiation and sensible heat. This results in a faster rate of snow melt, warmer near-surface air temperatures, and a deeper boundary layer. Soot deposition lowers the albedo of the snow allowing it to more effectively absorb incoming solar radiation and thus melt faster. This study uses the Colorado State University Regional Atmospheric Modeling System version 4.4 (CSU-RAMS 4.4), equipped with an enhanced snow model, to investigate the effects of shrub encroachment and soot deposition on the atmosphere and snowpack in the Kuparuk Basin of Alaska during the May-June melt period. The results of the simulations suggest that a complete invasion of the tundra by shrubs leads to a 1.5 degree C warming of 2-m air temperatures, 17 watts per meter square increase in surface sensible heat flux, and a 108 m increase in boundary layer depth during the melt period. The snow free-date also occurred 11 days earlier despite having a larger initial snowpack. The results also show that a decrease in the snow albedo of 0.1, due to soot pollution, caused the snow-free date to occur five days earlier. The soot pollution caused a 0.5 degree C warming of 2-m air temperatures and a 2 watts per meter square increase in surface sensible heat flux. In addition, the boundary layer averaged 25 m deeper in the polluted snow simulation.

  14. Simulations of a Canadian snowpack brightness temperatures using SURFEX-Crocus for Snow Water Equivalent (SWE) retrievals

    NASA Astrophysics Data System (ADS)

    Larue, Fanny; Royer, Alain; De Sève, Danielle; Langlois, Alexandre; Roy, Alexandre; Saint-Jean-Rondeau, Olivier

    2016-04-01

    In Quebec, the water associated to snowmelt represents 30% of the annual electricity production so that the snow cover evaluation in real time is of primary interest. The key variable is snow water equivalent (SWE) which describes the evolution of a global seasonal snow cover. However, the sparse distribution of meteorological stations in northern Québec generates great uncertainty in the extrapolation of SWE. On the contrary, the spatial and temporal coverage of satellite data offer a source of information with a high potential when considered as an alternative to the poor spatial distribution of in-situ information. Thus, this project aims to improve the prediction of SWE by assimilation of satellite passive microwave brightness temperatures (Tb) observations, independently of any ground observations. The snowpack evolution is simulated by the French snow model SURFEX-Crocus, driven by the Canadian atmospheric model GEM with a spatial resolution of 10 km. The bias of the atmospheric model and the impact of initialization errors on the simulated SWE were quantified from our ground measurements. To assimilate satellite observations, the multi-layered snow model is first coupled with a radiative transfer model using the Dense Media Radiative transfer theory (the DMRT-ML model) to estimate the microwave snow emission of the simulated snowpack. In order to retrieve simulated Tb in frequencies of interest (i.e. sensitive to snow dielectric properties), the snow microstructure needs to be well parameterized. It was shown in previous studies that the specific surface area (SSA) of snow grains is a well-defined parameter to describe the size and the shape of snow grains and which allows reproducible field measurements. SURFEX-Crocus estimates a SSA for each simulated snow layer, however, the snow microstructure in DMRT-ML is defined per layer by monodisperse optical radius of grain (~ 1/SSA) and by the stickiness which is not known. It thus becomes necessary to introduce

  15. Role of snow cover on urban heat island intensity investigated by urban canopy model with snow effects

    NASA Astrophysics Data System (ADS)

    Sato, T.; Mori, K.

    2015-12-01

    Urban heat islands have been investigated around the world including snowy regions. However, the relationship between urban heat island and snow cover remains unclear. This study examined the effect of snow cover in urban canopy on energy budget in urban areas of Sapporo, north Japan by 1km mesh WRF experiments. The modified urban canopy model permits snow cover in urban canopy by the modification of surface albedo, surface emissivity, and thermal conductivity for roof and road according to snow depth and snow water equivalent. The experiments revealed that snow cover in urban canopy decreases urban air temperature more strongly for daily maximum temperature (0.4-0.6 K) than for daily minimum temperature (0.1-0.3 K). The high snow albedo reduces the net radiation at building roof, leading to decrease in sensible heat flux. Interestingly, the cooling effect of snow cover compensates the warming effect by anthropogenic heat release in Sapporo, suggesting the importance of snow cover treatment in urban canopy model as well as estimating accurate anthropogenic heat distributions. In addition, the effect of road snow clearance tends to increase nocturnal surface air temperature in urban areas. A possible role of snow cover on urban heat island intensity was evaluated by two experiments with snow cover (i.e., realistic condition) and without snow cover in entire numerical domain. The snow cover decreases surface air temperature more in rural areas than in urban areas, which was commonly seen throughout a day, with stronger magnitude during nighttime than daytime, resulting in intensifying urban heat island by 4.0 K for daily minimum temperature.

  16. Assessment of the temperature variability at the snow-ground interface - concept and first results

    NASA Astrophysics Data System (ADS)

    Hiller, Clemens; Keuschnig, Markus; Hartmeyer, Ingo; Götz, Joachim

    2014-05-01

    Bottom temperatures of the winter snow cover (BTS) represent the thermal conditions at the snow-ground interface and serve as a proxy for local permafrost ocurrence. The BTS method has been used in numerous studies to investigate local permafrost evidence and to validate larger scale permafrost distribution models. However, former studies have shown a relatively strong scattering between single measurements indicating that BTS values are sensitive to further factors. In order to identify the spatial and temporal variability and mentioned sources of irritation and to better understand their influence we applied repeated BTS measurements on a small scale test site situated below the Maurerkogel (2990 m) nearby the Kitzsteinhorn, Hohe Tauern Range, Austria. The site (c. 2000 m2) shows fairly homogenous surface conditions in terms of roughness and morphometry (bedrock with thin layer of fine-grained talus, slightly inclined to N). The measurement setup consists of a BTS grid with a minimum spacing of 5 m. Four campaigns with a total of 94 measurements were carried out from March 2012 to April 2013. Universal Temperature Logger (UTL), snow profiles and meteorological data from automatic weather stations are used to interpret the BTS values. The standard deviations of BTS values for each campaign range between 0.4 and 0.9 °C. The mean BTS value within the overall period is -3.1 °C. The near surface temperature logger shows a mean temperature of -3.7 °C in 10 cm depth covering four campaign days. Both, the correlation between near surface temperatures and BTS values as well as the low standard deviation between the BTS values demonstrate the applicability of the method under appropriate conditions.

  17. Aquarius Brightness Temperature Variations at Dome C and Snow Metamorphism at the Surface. [29

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Dinnat, Emmanuel Phillippe; Picard, Ghislain; Champollion, Nicolas

    2014-01-01

    The Antarctic Plateau is a promising site to monitor microwave radiometers' drift, and to inter-calibrate microwave radiometers, especially 1.4 GHz (L-band) radiometers on board the Soil Moisture and Ocean Salinity (SMOS), and AquariusSAC-D missions. The Plateau is a thick ice cover, thermally stable in depth, with large dimensions, and relatively low heterogeneities. In addition, its high latitude location in the Southern Hemisphere enables frequent observations by polar-orbiting satellites, and no contaminations by radio frequency interference. At Dome C (75S, 123E), on the Antarctic Plateau, the substantial amount of in-situ snow measurements available allows us to interpret variations in space-borne microwave brightness temperature (TB) (e.g. Macelloni et al., 2007, 2013, Brucker et al., 2011, Champollion et al., 2013). However, to analyze the observations from the Aquarius radiometers, whose sensitivity is 0.15 K, the stability of the snow layers near the surface that are most susceptible to rapidly change needs to be precisely assessed. This study focuses on the spatial and temporal variations of the Aquarius TB over the Antarctic Plateau, and at Dome C in particular, to highlight the impact of snow surface metamorphism on the TB observations at L-band.

  18. L-Band Brightness Temperature Variations at Dome C and Snow Metamorphism at the Surface

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Dinnat, Emmanuel; Picard, Ghislain; Champollion, Nicolas

    2014-01-01

    The Antarctic Plateau is a promising site to monitor microwave radiometers' drift, and to inter-calibrate microwave radiometers, especially 1.4 GigaHertz (L-band) radiometers on board the Soil Moisture and Ocean Salinity (SMOS), and AquariusSAC-D missions. The Plateau is a thick ice cover, thermally stable in depth, with large dimensions, and relatively low heterogeneities. In addition, its high latitude location in the Southern Hemisphere enables frequent observations by polar-orbiting satellites, and no contaminations by radio frequency interference. At Dome C (75S, 123E), on the Antarctic Plateau, the substantial amount of in-situ snow measurements available allows us to interpret variations in space-borne microwave brightness temperature (TB) (e.g. Macelloni et al., 2007, 2013, Brucker et al., 2011, Champollion et al., 2013). However, to analyze the observations from the Aquarius radiometers, whose sensitivity is 0.15 K, the stability of the snow layers near the surface that are most susceptible to rapidly change needs to be precisely assessed. This study focuses on the spatial and temporal variations of the Aquarius TB over the Antarctic Plateau, and at Dome C in particular, to highlight the impact of snow surface metamorphism on the TB observations at L-band.

  19. Analysis of snow feedbacks in 14 general circulation models

    NASA Technical Reports Server (NTRS)

    Randall, D. A.; Cess, R. D.; Blanchet, J. P.; Chalita, S.; Colman, R.; Dazlich, D. A.; Del Genio, A. D.; Keup, E.; Lacis, A.; Le Treut, H.

    1994-01-01

    Snow feedbacks produced by 14 atmospheric general circulation models have been analyzed through idealized numerical experiments. Included in the analysis is an investigation of the surface energy budgets of the models. Negative or weak positive snow feedbacks occurred in some of the models, while others produced strong positive snow feedbacks. These feedbacks are due not only to melting snow, but also to increases in boundary temperature, changes in air temperature, changes in water vapor, and changes in cloudiness. As a result, the net response of each model is quite complex. We analyze in detail the responses of one model with a strong positive snow feedback and another with a weak negative snow feedback. Some of the models include a temperature dependence of the snow albedo, and this has significantly affected the results.

  20. Uptake of acetone, ethanol and benzene to snow and ice: effects of surface area and temperature

    NASA Astrophysics Data System (ADS)

    Abbatt, J. P. D.; Bartels-Rausch, T.; Ullerstam, M.; Ye, T. J.

    2008-10-01

    The interactions of gas-phase acetone, ethanol and benzene with smooth ice films and artificial snow have been studied. In one technique, the snow is packed into a cylindrical column and inserted into a low-pressure flow reactor coupled to a chemical-ionization mass spectrometer for gas-phase analysis. At 214 and 228 K, it is found for acetone and ethanol that the adsorbed amounts per surface area match those for adsorption to thin films of ice formed by freezing liquid water, when the specific surface area of the snow (as determined from Kr adsorption at 77 K) and the geometric surface area of the ice films are used. This indicates that freezing thin films of water leads to surfaces that are smooth at the molecular level. Experiments performed to test the effect of film growth on ethanol uptake indicate that uptake is independent of ice growth rate, up to 2.4 µm min-1. In addition, traditional Brunauer-Emmett-Teller (BET) experiments were performed with these gases on artificial snow from 238 to 266.5 K. A transition from a BET type I isotherm indicative of monolayer formation to a BET type II isotherm indicative of multilayer uptake is observed for acetone at T>=263 K and ethanol at T>=255 K, arising from solution formation on the ice. When multilayer formation does not occur, as was the case for benzene at T<=263 K and for acetone at T<=255 K, the saturated surface coverage increased with increasing temperature, consistent with the quasi-liquid layer affecting adsorption prior to full dissolution/multilayer formation.

  1. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James C. R.; Leijnse, Hidde; Steeneveld, Gert-Jan; Horn, Berthold K. P.; Uijlenhoet, Remko

    2014-05-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. It has been shown that a straightforward heat transfer model can be employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. The methodology has been applied to Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree

  2. Watershed geomorphology and snowmelt control stream thermal sensitivity to air temperature

    NASA Astrophysics Data System (ADS)

    Lisi, Peter J.; Schindler, Daniel E.; Cline, Timothy J.; Scheuerell, Mark D.; Walsh, Patrick B.

    2015-05-01

    How local geomorphic and hydrologic features mediate the sensitivity of stream thermal regimes to variation in climatic conditions remains a critical uncertainty in understanding aquatic ecosystem responses to climate change. We used stable isotopes of hydrogen and oxygen to estimate contributions of snow and rainfall to 80 boreal streams and show that differences in snow contribution are controlled by watershed topography. Time series analysis of stream thermal regimes revealed that streams in rain-dominated, low-elevation watersheds were 5-8 times more sensitive to variation in summer air temperature compared to streams draining steeper topography whose flows were dominated by snowmelt. This effect was more pronounced across the landscape in early summer and less distinct in late summer. Thus, the impact of climate warming on freshwater thermal regimes will be spatially heterogeneous across river basins as controlled by geomorphic features. However, thermal heterogeneity may be lost with reduced snowpack and increased ratios of rain to snow in stream discharge.

  3. Work of Breathing into Snow in the Presence versus Absence of an Artificial Air Pocket Affects Hypoxia and Hypercapnia of a Victim Covered with Avalanche Snow: A Randomized Double Blind Crossover Study

    PubMed Central

    2015-01-01

    Presence of an air pocket and its size play an important role in survival of victims buried in the avalanche snow. Even small air pockets facilitate breathing. We hypothesize that the size of the air pocket significantly affects the airflow resistance and work of breathing. The aims of the study are (1) to investigate the effect of the presence of an air pocket on gas exchange and work of breathing in subjects breathing into the simulated avalanche snow and (2) to test whether it is possible to breathe with no air pocket. The prospective interventional double-blinded study involved 12 male volunteers, from which 10 completed the whole protocol. Each volunteer underwent two phases of the experiment in a random order: phase “AP”—breathing into the snow with a one-liter air pocket, and phase “NP”—breathing into the snow with no air pocket. Physiological parameters, fractions of oxygen and carbon dioxide in the airways and work of breathing expressed as pressure-time product were recorded continuously. The main finding of the study is that it is possible to breath in the avalanche snow even with no air pocket (0 L volume), but breathing under this condition is associated with significantly increased work of breathing. The significant differences were initially observed for end-tidal values of the respiratory gases (EtO2 and EtCO2) and peripheral oxygen saturation (SpO2) between AP and NP phases, whereas significant differences in inspiratory fractions occurred much later (for FIO2) or never (for FICO2). The limiting factor in no air pocket conditions is excessive increase in work of breathing that induces increase in metabolism accompanied by higher oxygen consumption and carbon dioxide production. The presence of even a small air pocket reduces significantly the work of breathing. PMID:26666523

  4. Work of Breathing into Snow in the Presence versus Absence of an Artificial Air Pocket Affects Hypoxia and Hypercapnia of a Victim Covered with Avalanche Snow: A Randomized Double Blind Crossover Study.

    PubMed

    Roubík, Karel; Sieger, Ladislav; Sykora, Karel

    2015-01-01

    Presence of an air pocket and its size play an important role in survival of victims buried in the avalanche snow. Even small air pockets facilitate breathing. We hypothesize that the size of the air pocket significantly affects the airflow resistance and work of breathing. The aims of the study are (1) to investigate the effect of the presence of an air pocket on gas exchange and work of breathing in subjects breathing into the simulated avalanche snow and (2) to test whether it is possible to breathe with no air pocket. The prospective interventional double-blinded study involved 12 male volunteers, from which 10 completed the whole protocol. Each volunteer underwent two phases of the experiment in a random order: phase "AP"--breathing into the snow with a one-liter air pocket, and phase "NP"--breathing into the snow with no air pocket. Physiological parameters, fractions of oxygen and carbon dioxide in the airways and work of breathing expressed as pressure-time product were recorded continuously. The main finding of the study is that it is possible to breath in the avalanche snow even with no air pocket (0 L volume), but breathing under this condition is associated with significantly increased work of breathing. The significant differences were initially observed for end-tidal values of the respiratory gases (EtO2 and EtCO2) and peripheral oxygen saturation (SpO2) between AP and NP phases, whereas significant differences in inspiratory fractions occurred much later (for FIO2) or never (for FICO2). The limiting factor in no air pocket conditions is excessive increase in work of breathing that induces increase in metabolism accompanied by higher oxygen consumption and carbon dioxide production. The presence of even a small air pocket reduces significantly the work of breathing.

  5. Work of Breathing into Snow in the Presence versus Absence of an Artificial Air Pocket Affects Hypoxia and Hypercapnia of a Victim Covered with Avalanche Snow: A Randomized Double Blind Crossover Study.

    PubMed

    Roubík, Karel; Sieger, Ladislav; Sykora, Karel

    2015-01-01

    Presence of an air pocket and its size play an important role in survival of victims buried in the avalanche snow. Even small air pockets facilitate breathing. We hypothesize that the size of the air pocket significantly affects the airflow resistance and work of breathing. The aims of the study are (1) to investigate the effect of the presence of an air pocket on gas exchange and work of breathing in subjects breathing into the simulated avalanche snow and (2) to test whether it is possible to breathe with no air pocket. The prospective interventional double-blinded study involved 12 male volunteers, from which 10 completed the whole protocol. Each volunteer underwent two phases of the experiment in a random order: phase "AP"--breathing into the snow with a one-liter air pocket, and phase "NP"--breathing into the snow with no air pocket. Physiological parameters, fractions of oxygen and carbon dioxide in the airways and work of breathing expressed as pressure-time product were recorded continuously. The main finding of the study is that it is possible to breath in the avalanche snow even with no air pocket (0 L volume), but breathing under this condition is associated with significantly increased work of breathing. The significant differences were initially observed for end-tidal values of the respiratory gases (EtO2 and EtCO2) and peripheral oxygen saturation (SpO2) between AP and NP phases, whereas significant differences in inspiratory fractions occurred much later (for FIO2) or never (for FICO2). The limiting factor in no air pocket conditions is excessive increase in work of breathing that induces increase in metabolism accompanied by higher oxygen consumption and carbon dioxide production. The presence of even a small air pocket reduces significantly the work of breathing. PMID:26666523

  6. Controlled-Temperature Hot-Air Gun

    NASA Technical Reports Server (NTRS)

    Munoz, M. C.

    1986-01-01

    Materials that find applications in wind tunnels first tested in laboratory. Hot-Air Gun differs from commercial units in that flow rate and temperature monitored and controlled. With typical compressed-airsupply pressure of 25 to 38 psi (170 to 260 kPa), flow rate and maximum temperature are 34 stdft3/min (0.96 stdm3/min) and 1,090 degrees F (590 degrees C), respectively. Resembling elaborate but carefully regulated hot-air gun, setup used to apply blasts of air temperatures above 1,500 degrees F (815 degrees C) to test specimens.

  7. Surface and Atmospheric Contributions to Passive Microwave Brightness Temperatures for Falling Snow Events

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Johnson, Benjamin T.

    2011-01-01

    Physically based passive microwave precipitation retrieval algorithms require a set of relationships between satellite -observed brightness temperatures (TBs) and the physical state of the underlying atmosphere and surface. These relationships are nonlinear, such that inversions are ill ]posed especially over variable land surfaces. In order to elucidate these relationships, this work presents a theoretical analysis using TB weighting functions to quantify the percentage influence of the TB resulting from absorption, emission, and/or reflection from the surface, as well as from frozen hydrometeors in clouds, from atmospheric water vapor, and from other contributors. The percentage analysis was also compared to Jacobians. The results are presented for frequencies from 10 to 874 GHz, for individual snow profiles, and for averages over three cloud-resolving model simulations of falling snow. The bulk structure (e.g., ice water path and cloud depth) of the underlying cloud scene was found to affect the resultant TB and percentages, producing different values for blizzard, lake effect, and synoptic snow events. The slant path at a 53 viewing angle increases the hydrometeor contributions relative to nadir viewing channels. Jacobians provide the magnitude and direction of change in the TB values due to a change in the underlying scene; however, the percentage analysis provides detailed information on how that change affected contributions to the TB from the surface, hydrometeors, and water vapor. The TB percentage information presented in this paper provides information about the relative contributions to the TB and supplies key pieces of information required to develop and improve precipitation retrievals over land surfaces.

  8. Evaluation of distributed hydrologic impacts of temperature-index and energy-based snow models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proper characterizations of snow melt and accumulation processes in the snow-dominated mountain environment are needed to understand and predict spatiotemporal distribution of water cycle components. Two commonly used strategies in modeling of snow accumulation and melt are the full energy based and...

  9. Study on the conditions necessary for blowing snow to occur in which multiple meteorological elements are considered

    NASA Astrophysics Data System (ADS)

    Omiya, S.; Takechi, H.; Kokubu, T.; Harada, Y.; Matsuzawa, M.

    2015-12-01

    Elucidation of the conditions under which blowing snow occurs is important not only in mitigating snowstorm-related disasters but also in discussing the mass balance of water. The major factor for the occurrence of blowing snow is strong winds. However, the conditions that cause blowing snow are complicated, because temperature, the condition of the snow surface, and the presence or absence of falling snow affect blowing snow occurrence. We created a formula for determining the conditions under which blowing snow will occur, based on multiple meteorological elements. In this presentation, we report the results of analysis on the occurrence conditions of blowing snow without concurrent falling snow. The observation data used in the analysis were obtained in Hokkaido, northern Japan, from December 2012 to April 2013. The observed items were air temperature, wind velocity, intensity of solar radiation, snow depth and the mass flux of blowing snow particles. In addition to the above, videos were taken to determine the presence of blowing snow. After the blowing snow events were extracted, each meteorological element was compared with the frequency of blowing snow occurrence. The analysis found that the frequency tended to be low when 12 or more hours had passed after a snowfall event or when the maximum air temperature exceeded 2 °C. It is thought that the snow particles sinter together and the surface of the snow pack hardens, and that such sintering makes it difficult for the particles fly off from the snow surface. It was shown that the frequency of blowing snow occurrence is high when large amounts of fresh snow are on the ground. Based on the above examinations, a formula for determining the occurrence of blowing snow was created using the discriminate analysis method. An accuracy verification test found the formula to have a hit ratio of 92.3%. The verification test showed the formula to be useful in determining the occurrence of blowing snow.

  10. Influence of the seasonal snow cover on the ground thermal regime: An overview

    NASA Astrophysics Data System (ADS)

    Zhang, Tingjun

    2005-12-01

    The presence of seasonal snow cover during the cold season of the annual air temperature cycle has significant influence on the ground thermal regime in cold regions. Snow has high albedo and emissivity that cool the snow surface, high absorptivity that tends to warm the snow surface, low thermal conductivity so that a snow layer acts as an insulator, and high latent heat due to snowmelt that is a heat sink. The overall impact of snow cover on the ground thermal regime depends on the timing, duration, accumulation, and melting processes of seasonal snow cover; density, structure, and thickness of seasonal snow cover; and interactions of snow cover with micrometeorological conditions, local microrelief, vegetation, and the geographical locations. Over different timescales either the cooling or warming impact of seasonal snow cover may dominate. In the continuous permafrost regions, impact of seasonal snow cover can result in an increase of the mean annual ground and permafrost surface temperature by several degrees, whereas in discontinuous and sporadic permafrost regions the absence of seasonal snow cover may be a key factor for permafrost development. In seasonally frozen ground regions, snow cover can substantially reduce the seasonal freezing depth. However, the influence of seasonal snow cover on seasonally frozen ground has received relatively little attention, and further study is needed. Ground surface temperatures, reconstructed from deep borehole temperature gradients, have increased by up to 4°C in the past centuries and have been widely used as evidence of paleoclimate change. However, changes in air temperature alone cannot account for the changes in ground temperatures. Changes in seasonal snow conditions might have significantly contributed to the ground surface temperature increase. The influence of seasonal snow cover on soil temperature, soil freezing and thawing processes, and permafrost has considerable impact on carbon exchange between the

  11. Air separation with temperature and pressure swing

    DOEpatents

    Cassano, Anthony A.

    1986-01-01

    A chemical absorbent air separation process is set forth which uses a temperature swing absorption-desorption cycle in combination with a pressure swing wherein the pressure is elevated in the desorption stage of the process.

  12. Air Temperature in the Undulator Hall

    SciTech Connect

    Not Available

    2010-12-07

    Various analyses have been performed recently to estimate the performance of the air conditioning (HVAC) system planned for the Undulator Hall. This reports summarizes the results and provides an upgrade plan to be used if new requirements are needed in the future. The estimates predict that with the planned loads the tunnel air temperature will be well within the allowed tolerance during normal operation.

  13. Snow molds: A group of fungi that prevail under snow.

    PubMed

    Matsumoto, Naoyuki

    2009-01-01

    Snow molds are a group of fungi that attack dormant plants under snow. In this paper, their survival strategies are illustrated with regard to adaptation to the unique environment under snow. Snow molds consist of diverse taxonomic groups and are divided into obligate and facultative fungi. Obligate snow molds exclusively prevail during winter with or without snow, whereas facultative snow molds can thrive even in the growing season of plants. Snow molds grow at low temperatures in habitats where antagonists are practically absent, and host plants deteriorate due to inhibited photosynthesis under snow. These features characterize snow molds as opportunistic parasites. The environment under snow represents a habitat where resources available are limited. There are two contrasting strategies for resource utilization, i.e., individualisms and collectivism. Freeze tolerance is also critical for them to survive freezing temperatures, and several mechanisms are illustrated. Finally, strategies to cope with annual fluctuations in snow cover are discussed in terms of predictability of the habitat.

  14. Inhomogeneous snow distribution and depletion patterns at grid scale in a shallow snowpack region

    NASA Astrophysics Data System (ADS)

    Li, H.; Wang, J.; Tang, Z.; Wang, J.

    2012-10-01

    Understanding inhomogeneous snow processes at the grid scale is crucial for distributed snow hydrology research. Many studies on inhomogeneous snow processes focus on the annual similarity of snow distribution and depletion and the roles of topography and other environmental conditions. In contrast, this study examines the snow distribution and depletion patterns at a small grid scale in a shallow snowpack region and analyzes how meteorological factors influence these patterns by using the SNOWPACK model for scenario simulations. These simulations enable quantification of the role of three main meteorological factors: shortwave radiation, longwave radiation, and air temperature. The study region is located in the Northeastern Qinghai-Tibet plateau. The results of the study indicate the following two points. (1) During different snowmelt periods, spatial similarity exists between the periodical cumulative snow distributions, and the relationships between snow cover fraction and mean snow water equivalent are similar. However, this similarity is not applicable to the period before snowmelt. (2) Shortwave radiation has a~major impact on the snow distribution and depletion patterns at the small grid scale. Increasing shortwave radiation can greatly promote the heterogeneity of the snow distribution. The contributions of longwave radiation and air temperature to the heterogeneity of snow distribution are minor. Moreover, there are similarities between the simulated snow distributions when considering the scenarios of increases in longwave radiation or in air temperature.

  15. Suppression of rain and snow by urban and industrial air pollution

    PubMed

    Rosenfeld

    2000-03-10

    Direct evidence demonstrates that urban and industrial air pollution can completely shut off precipitation from clouds that have temperatures at their tops of about -10 degrees C over large areas. Satellite data reveal plumes of reduced cloud particle size and suppressed precipitation originating from major urban areas and from industrial facilities such as power plants. Measurements obtained by the Tropical Rainfall Measuring Mission satellite reveal that both cloud droplet coalescence and ice precipitation formation are inhibited in polluted clouds.

  16. Nowcasting daily minimum air and grass temperature

    NASA Astrophysics Data System (ADS)

    Savage, M. J.

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient ( b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  17. Perfluorinated acids in air, rain, snow, surface runoff, and lakes: relative importance of pathways to contamination of urban lakes.

    PubMed

    Kim, Seung-Kyu; Kannan, Kurunthachalam

    2007-12-15

    Concentrations of perfluorinated acids (PFAs) were measured in various environmental matrices (air, rain, snow, surface runoff water, and lake water) in an urban area, to enable identification of sources and pathways of PFAs to urban water bodies. Total PFA concentrations ranged from 8.28 to 16.0 pg/ m3 (mean 11.3) in bulk air (sum of vapor and particulate phases), 0.91 to 13.2 ng/L (6.19) in rainwater, 0.91 to 23.9 ng/L (7.98) in snow, 1.11-81.8 ng/L (15.1 ng/L) in surface runoff water (SRW), and 9.49 to 35.9 ng/L (21.8) in lake water. Perfluorooctanoic acid (PFOA) was the predominant compound, accounting for > 35% of the total PFA concentrations, in all environmental matrices analyzed. Concentrations and relative compositions of PFAs in SRW were similar to those found for urban lakes. SRW contributes to contamination by PFOA in urban lakes. The measured concentration ratios of FTOH to PFOA in air were 1-2 orders of magnitude lower than the ratios calculated based on an assumption of exclusive atmospheric oxidation of FTOHs. Nevertheless, the mass balance analysis suggested the presence of an unknown input pathway that could contribute to a significant amount of total PFOA loadings to the lake. Flux estimates of PFOA at the air-water interface in the urban lake suggest net volatilization from water.

  18. Turbulence-induced pressure fluctuations in snow and their effect on heat and moisture transport

    NASA Astrophysics Data System (ADS)

    Huwald, H.; Higgins, C. W.; Drake, S.; Nolin, A. W.; Parlange, M. B.

    2010-12-01

    Accurate measurement of the heat and moisture flux components of the energy budget of a snow pack is difficult, and to date no generally satisfying solutions exist. In particular, little quantitative knowledge exists on heat and water vapor exchange associated to dynamically driven air movement in the snow pack as a consequence of atmospheric turbulence. This so-called wind-pumping constitutes a mechanism for forced release of saturated air form the snow pack and thus determines evaporation or sublimation rates from the snow and consequently affects the turbulent latent heat flux. A unique experiment and measurement system has been developed and deployed in the field to investigate and quantify the influence of atmospheric turbulence on heat and moisture transport across the snow-air interface. To this end, high-frequency measurements of 3-dimensional wind components, air temperature, and water vapor fluctuations above the snow surface were taken simultaneously together with differential air pressure fluctuations at several depths in the snow pack. The analysis addresses changes in frequency, amplitude, and penetration depth of the pressure fluctuations with depth, and the relationship of turbulence intensity to attenuation characteristics of the pressure within the snow pack. Finally, the study aims at understanding how turbulence-induced air pressure dynamics within the snow pack impacts on the heat budget of the snow pack and the turbulent sensible and latent heat flux above the snow surface.

  19. Modeling monthly mean air temperature for Brazil

    NASA Astrophysics Data System (ADS)

    Alvares, Clayton Alcarde; Stape, José Luiz; Sentelhas, Paulo Cesar; de Moraes Gonçalves, José Leonardo

    2013-08-01

    Air temperature is one of the main weather variables influencing agriculture around the world. Its availability, however, is a concern, mainly in Brazil where the weather stations are more concentrated on the coastal regions of the country. Therefore, the present study had as an objective to develop models for estimating monthly and annual mean air temperature for the Brazilian territory using multiple regression and geographic information system techniques. Temperature data from 2,400 stations distributed across the Brazilian territory were used, 1,800 to develop the equations and 600 for validating them, as well as their geographical coordinates and altitude as independent variables for the models. A total of 39 models were developed, relating the dependent variables maximum, mean, and minimum air temperatures (monthly and annual) to the independent variables latitude, longitude, altitude, and their combinations. All regression models were statistically significant ( α ≤ 0.01). The monthly and annual temperature models presented determination coefficients between 0.54 and 0.96. We obtained an overall spatial correlation higher than 0.9 between the models proposed and the 16 major models already published for some Brazilian regions, considering a total of 3.67 × 108 pixels evaluated. Our national temperature models are recommended to predict air temperature in all Brazilian territories.

  20. Undulator Hall Air Temperature Fault Scenarios

    SciTech Connect

    Sevilla, J.; Welch, J.; /SLAC

    2010-11-17

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  1. What is the role of wind pumping on heat and mass transfer rates at the air-snow interface?

    NASA Astrophysics Data System (ADS)

    Helgason, W.; Pomeroy, J. W.

    2010-12-01

    Accurate prediction of the turbulent exchange of sensible heat and water vapour between the atmosphere and snowpack remains a challenging task under all but the most ideal conditions. Heat and mass transfer coefficients that recognize the unique properties of the snow surface are warranted. A particular area requiring improvement concerns the role of the porous nature of snow which provides a large surface area for heat and mass exchange with the atmosphere. Wind-pumping has long been considered as a viable mechanism for incorporating aerosols into snowpacks; however these processes are not considered in parameterization schemes for heat and mass transfer near the surface. This study attempts to determine the degree to which wind pumping can increase the rates of heat and mass transfer to snow, and to ascertain which structural properties of the snowpack are needed for inclusion in heat and mass transfer coefficients that reflect wind pumping processes. Based upon a review of recent geophysical and engineering literature where porous surfaces are exploited for their ability to augment heat and mass transfer rates, a technical analysis was conducted. Numerous conceptual mechanisms of wind pumping were considered: topographically-induced flow; barometric pressure changes; high frequency pressure fluctuations at the surface; and steady flow in the interfacial region. A sensitivity analysis was performed, subjecting each conceptual model to varying thermal and hydraulic conditions at the air-snow interface, as well as variable micro-structural properties of snow. It is shown that the rate of heat and mass exchange is most sensitive to the interfacial thermal conditions and factors controlling the energy balance of the uppermost snow grains. The effect upon the thermal regime of the snowpack was found to be most significant for mechanisms of wind pumping that result in shorter flow paths near the surface, rather than those caused by low frequency pressure changes. In

  2. Acidobacteria dominate the active bacterial communities of Arctic tundra with widely divergent winter-time snow accumulation and soil temperatures.

    PubMed

    Männistö, Minna K; Kurhela, Emilia; Tiirola, Marja; Häggblom, Max M

    2013-04-01

    The timing and extent of snow cover is a major controller of soil temperature and hence winter-time microbial activity and plant diversity in Arctic tundra ecosystems. To understand how snow dynamics shape the bacterial communities, we analyzed the bacterial community composition of windswept and snow-accumulating shrub-dominated tundra heaths of northern Finland using DNA- and RNA-based 16S rRNA gene community fingerprinting (terminal restriction fragment polymorphism) and clone library analysis. Members of the Acidobacteria and Proteobacteria dominated the bacterial communities of both windswept and snow-accumulating habitats with the most abundant phylotypes corresponding to subdivision (SD) 1 and 2 Acidobacteria in both the DNA- and RNA-derived community profiles. However, different phylotypes within Acidobacteria were found to dominate at different sampling dates and in the DNA- vs. RNA-based community profiles. The results suggest that different species within SD1 and SD2 Acidobacteria respond to environmental conditions differently and highlight the wide functional diversity of these organisms even within the SD level. The acidic tundra soils dominated by ericoid shrubs appear to select for diverse stress-tolerant Acidobacteria that are able to compete in the nutrient poor, phenolic-rich soils. Overall, these communities seem stable and relatively insensitive to the predicted changes in the winter-time snow cover.

  3. Influence of stress, temperature and crystal morphology on isothermal densification and specific surface area decrease of new snow

    NASA Astrophysics Data System (ADS)

    Schleef, S.; Löwe, H.; Schneebeli, M.

    2014-10-01

    Laboratory-based, experimental data for the microstructural evolution of new snow are scarce, though applications would benefit from a quantitative characterization of the main influences. To this end, we have analyzed the metamorphism and concurrent densification of new snow under isothermal conditions by means of X-ray microtomography and compiled a comprehensive data set of 45 time series. In contrast to previous measurements on isothermal metamorphism on time scales of weeks to months, we analyzed the initial 24-48 h of snow evolution at a high temporal resolution of 3 hours. The data set comprised natural and laboratory-grown snow, and experimental conditions included systematic variations of overburden stress, temperature and crystal habit to address the main influences on specific surface area (SSA) decrease rate and densification rate in a snowpack. For all conditions, we found a linear relation between density and SSA, indicating that metamorphism has an immediate influence for the densification of new snow. The slope of the linear relation, however, depends on the other parameters which were analyzed individually to derive a best-fit parameterization for the SSA decrease rate and densification rate. In the investigated parameter range, we found that the initial value of the SSA constituted the main morphological influence on the SSA decrease rate. In turn, the SSA decrease rate constituted the main influence on the densification rate.

  4. Snow depth on Arctic and Antarctic sea ice derived from autonomous (Snow Buoy) measurements

    NASA Astrophysics Data System (ADS)

    Nicolaus, Marcel; Arndt, Stefanie; Hendricks, Stefan; Heygster, Georg; Huntemann, Marcus; Katlein, Christian; Langevin, Danielle; Rossmann, Leonard; Schwegmann, Sandra

    2016-04-01

    The snow cover on sea ice received more and more attention in recent sea ice studies and model simulations, because its physical properties dominate many sea ice and upper ocean processes. In particular; the temporal and spatial distribution of snow depth is of crucial importance for the energy and mass budgets of sea ice, as well as for the interaction with the atmosphere and the oceanic freshwater budget. Snow depth is also a crucial parameter for sea ice thickness retrieval algorithms from satellite altimetry data. Recent time series of Arctic sea ice volume only use monthly snow depth climatology, which cannot take into account annual changes of the snow depth and its properties. For Antarctic sea ice, no such climatology is available. With a few exceptions, snow depth on sea ice is determined from manual in-situ measurements with very limited coverage of space and time. Hence the need for more consistent observational data sets of snow depth on sea ice is frequently highlighted. Here, we present time series measurements of snow depths on Antarctic and Arctic sea ice, recorded by an innovative and affordable platform. This Snow Buoy is optimized to autonomously monitor the evolution of snow depth on sea ice and will allow new insights into its seasonality. In addition, the instruments report air temperature and atmospheric pressure directly into different international networks, e.g. the Global Telecommunication System (GTS) and the International Arctic Buoy Programme (IABP). We introduce the Snow Buoy concept together with technical specifications and results on data quality, reliability, and performance of the units. We highlight the findings from four buoys, which simultaneously drifted through the Weddell Sea for more than 1.5 years, revealing unique information on characteristic regional and seasonal differences. Finally, results from seven snow buoys co-deployed on Arctic sea ice throughout the winter season 2015/16 suggest the great importance of local

  5. Shielding with Martian snow: suitable temperature and water vapor for possible living organisms

    NASA Astrophysics Data System (ADS)

    Horvath, Andras; Berczi, Szaniszlo; Kereszturi, Akos; Pocs, Tamas; Sik, Andras; Szathmary, Eors

    Periodic favorable conditions on Mars may exist at the Polar Regions during local spring, when elevated temperature and water ice on the surface is present. Based on our previous works, ideal microhabitats could be present at the Dark Dune Spots, where thin H2 O and the topmost mineral layer provide shielding against UV radiation. Here we outline two recently implemented new elements of our model. 1. A heat insulator layer may form inside wintertime H2 O frost, if a fraction of it accumulated as snowflakes, as Phoenix lander observed it. In springtime H2 O molecules sublime away at the "warmest" part of the snow layer: at the bottom where insolation heated grains are present. These vapor molecules diffuse through the snow and freeze at the coldest upper part. This process enlarges vapor filled voids at the bottom, and produces a closed frost layer above, serving as heat insulator and maintaining elevated vapor concentration below. 2. Another new element is to decrease the long-term damage against solar particle events and galactic cosmic rays. This ionizing radiation could sterilize the upper meter of the Martian surface in long term, but organisms with periodic biogenic activity could repair the damage, except if very long inactive phases separate the active periods. Because of the climatic changes on Mars, the distribution of ice coverage at the Polar Region changes, and may result periods when all year long water ice layer exists. During this case phases with photosynthetic activity are missing, but the accumulated ice on the surface lowers the cumulative radiation damage.

  6. Shrub canopies influence soil temperatures but not nutrient dynamics: An experimental test of tundra snow-shrub interactions.

    PubMed

    Myers-Smith, Isla H; Hik, David S

    2013-10-01

    Shrubs are the largest plant life form in tundra ecosystems; therefore, any changes in the abundance of shrubs will feedback to influence biodiversity, ecosystem function, and climate. The snow-shrub hypothesis asserts that shrub canopies trap snow and insulate soils in winter, increasing the rates of nutrient cycling to create a positive feedback to shrub expansion. However, previous work has not been able to separate the abiotic from the biotic influences of shrub canopies. We conducted a 3-year factorial experiment to determine the influences of canopies on soil temperatures and nutrient cycling parameters by removing ∼0.5 m high willow (Salix spp.) and birch (Betula glandulosa) shrubs, creating artificial shrub canopies and comparing these manipulations to nearby open tundra and shrub patches. Soil temperatures were 4-5°C warmer in January, and 2°C cooler in July under shrub cover. Natural shrub plots had 14-33 cm more snow in January than adjacent open tundra plots. Snow cover and soil temperatures were similar in the manipulated plots when compared with the respective unmanipulated treatments, indicating that shrub canopy cover was a dominant factor influencing the soil thermal regime. Conversely, we found no strong evidence of increased soil decomposition, CO2 fluxes, or nitrate or ammonia adsorbtion under artificial shrub canopy treatments when compared with unmanipulated open tundra. Our results suggest that the abiotic influences of shrub canopy cover alone on nutrient dynamics are weaker than previously asserted.

  7. Snow Micro-Structure Model

    2014-06-25

    PIKA is a MOOSE-based application for modeling micro-structure evolution of seasonal snow. The model will be useful for environmental, atmospheric, and climate scientists. Possible applications include application to energy balance models, ice sheet modeling, and avalanche forecasting. The model implements physics from published, peer-reviewed articles. The main purpose is to foster university and laboratory collaboration to build a larger multi-scale snow model using MOOSE. The main feature of the code is that it is implementedmore » using the MOOSE framework, thus making features such as multiphysics coupling, adaptive mesh refinement, and parallel scalability native to the application. PIKA implements three equations: the phase-field equation for tracking the evolution of the ice-air interface within seasonal snow at the grain-scale; the heat equation for computing the temperature of both the ice and air within the snow; and the mass transport equation for monitoring the diffusion of water vapor in the pore space of the snow.« less

  8. Snow Micro-Structure Model

    SciTech Connect

    Micah Johnson, Andrew Slaughter

    2014-06-25

    PIKA is a MOOSE-based application for modeling micro-structure evolution of seasonal snow. The model will be useful for environmental, atmospheric, and climate scientists. Possible applications include application to energy balance models, ice sheet modeling, and avalanche forecasting. The model implements physics from published, peer-reviewed articles. The main purpose is to foster university and laboratory collaboration to build a larger multi-scale snow model using MOOSE. The main feature of the code is that it is implemented using the MOOSE framework, thus making features such as multiphysics coupling, adaptive mesh refinement, and parallel scalability native to the application. PIKA implements three equations: the phase-field equation for tracking the evolution of the ice-air interface within seasonal snow at the grain-scale; the heat equation for computing the temperature of both the ice and air within the snow; and the mass transport equation for monitoring the diffusion of water vapor in the pore space of the snow.

  9. Phase-field modeling of dry snow metamorphism.

    PubMed

    Kaempfer, Thomas U; Plapp, Mathis

    2009-03-01

    Snow on the ground is a complex three-dimensional porous medium consisting of an ice matrix formed by sintered snow crystals and a pore space filled with air and water vapor. If a temperature gradient is imposed on the snow, a water vapor gradient in the pore space is induced and the snow microstructure changes due to diffusion, sublimation, and resublimation: the snow metamorphoses. The snow microstructure, in turn, determines macroscopic snow properties such as the thermal conductivity of a snowpack. We develop a phase-field model for snow metamorphism that operates on natural snow microstructures as observed by computed x-ray microtomography. The model takes into account heat and mass diffusion within the ice matrix and pore space, as well as phase changes at the ice-air interfaces. Its construction is inspired by phase-field models for alloy solidification, which allows us to relate the phase-field to a sharp-interface formulation of the problem without performing formal matched asymptotics. To overcome the computational difficulties created by the large difference between diffusional and interface-migration time scales, we introduce a method for accelerating the numerical simulations that formally amounts to reducing the heat- and mass-diffusion coefficients while maintaining the correct interface velocities. The model is validated by simulations for simple one- and two-dimensional test cases. Furthermore, we perform qualitative metamorphism simulations on natural snow structures to demonstrate the potential of the approach.

  10. Phase-field modeling of dry snow metamorphism.

    PubMed

    Kaempfer, Thomas U; Plapp, Mathis

    2009-03-01

    Snow on the ground is a complex three-dimensional porous medium consisting of an ice matrix formed by sintered snow crystals and a pore space filled with air and water vapor. If a temperature gradient is imposed on the snow, a water vapor gradient in the pore space is induced and the snow microstructure changes due to diffusion, sublimation, and resublimation: the snow metamorphoses. The snow microstructure, in turn, determines macroscopic snow properties such as the thermal conductivity of a snowpack. We develop a phase-field model for snow metamorphism that operates on natural snow microstructures as observed by computed x-ray microtomography. The model takes into account heat and mass diffusion within the ice matrix and pore space, as well as phase changes at the ice-air interfaces. Its construction is inspired by phase-field models for alloy solidification, which allows us to relate the phase-field to a sharp-interface formulation of the problem without performing formal matched asymptotics. To overcome the computational difficulties created by the large difference between diffusional and interface-migration time scales, we introduce a method for accelerating the numerical simulations that formally amounts to reducing the heat- and mass-diffusion coefficients while maintaining the correct interface velocities. The model is validated by simulations for simple one- and two-dimensional test cases. Furthermore, we perform qualitative metamorphism simulations on natural snow structures to demonstrate the potential of the approach. PMID:19391945

  11. First steps toward development of a stable isotope forward model for tropical ice cores: cold air incursions and snow days at Quelccaya Ice Cap, Peru

    NASA Astrophysics Data System (ADS)

    Hurley, J. V.; Vuille, M. F.; Hardy, D. R.; Burns, S. J.

    2014-12-01

    We are working towards a forward-model reconstruction of the South American Summer Monsoon (SASM) for the last millennium from the Quelccaya Ice Cap (QIC) d18O record. QIC receives precipitation almost exclusively during the SASM season. Initial efforts focus on dynamics that yield precipitation at this receding tropical ice cap, and how they relate to the hydrogen and oxygen stable isotopes. We present over a decade of daily snow-height change observations from the summit of QIC. Accumulation of snow (~2 m yr-1) at the summit occurs October through April, peaking in December. Net monthly snow-height change is negative May through September, though positive snow height change days do occur throughout the year. Snow height change time-series are used to develop d18O age-models for annual snow collected in vertical profiles near the summit of QIC since 2003. Snow d18O decreases during austral summer from about -17 to -24 per mil VSMOW. Post-depositional alteration of late summer snow during austral winter elevates d18O from about -24 to about -15 per mil VSMOW. Timing of 90thpercentile positive snow-height change events at QIC corresponds with regional precipitation and outgoing longwave radiation (OLR) anomalies that are dynamically triggered by cold air incursions propagating from the midlatitudes east of the Andes into the Amazon Basin. Precipitation and OLR anomalies migrate northwest in about 2-3 days from near Rio de la Plata to central Peru. The convective anomalies are the result of southerly horizontal wind anomalies in the lower troposphere that advect cold extratropical air equatorward. Composite analysis of satellite measurements shows that cold air incursions are associated with negative water vapor dD (~ -40 per mil) anomalies at QIC. We expect that snow stable isotope values from QIC are thus not only records of the deep overturning component of the monsoon circulation but also of synoptic scale monsoon disturbances. Cold air incursions into the South

  12. Spatiotemporal variations of snow cover in northeast China based on flexible multiday combinations of moderate resolution imaging spectroradiometer snow cover products

    NASA Astrophysics Data System (ADS)

    Chen, Shengbo; Yang, Qian; Xie, Hongjie; Zhang, Haijun; Lu, Peng; Zhou, Chao

    2014-01-01

    Daily moderate resolution imaging spectroradiometer (MODIS) (Terra and Aqua) snow cover products are used to produce flexible multiday combinations for each hydrological year between October 2003 and September 2013 in northeast China. Compared with in situ observations, the daily and flexible multiday combinations achieve overall accuracy of 47.51 and 76.52%, respectively, which is >34.45% of MODIS Terra and 30.57% of MODIS Aqua under all-sky conditions. Snow cover fraction, snow cover day map (SCD), snow cover onset date map (SCOD), snow cover end date map (SCED), and snow cover index (SCI) are then generated. The highest SCD, earliest SCOD, and latest SCED are always located in the southern edge of Da Hinggan Mountain and Changbai Mountain, followed by Xiao Hinggan Mountain. SCI negatively correlated with air temperature, with a correlation coefficient of -0.73 (p<0.05) in snowfall season; SCI positively correlated with precipitation, but is insignificant at the 95% level. This suggests that snow cover is more sensitive to air temperature than precipitation. In other words, continuous increase in air temperature due to global warming in the long term will result in continuous reducing of snow cover, a gracious water resource for northeast China, although a relative decrease in air temperature in the recent 10 years has resulted in snow cover increase.

  13. Modeled mass and temperature effects of released and entrained snow on the lubricated flow regime of avalanches at bird hill, southcentral Alaska

    NASA Astrophysics Data System (ADS)

    Wikstrom Jones, Katreeen

    The unpredictable effects of entrained snow on avalanche flow make the tasks of assessing avalanche run-out distances and deciding on road closures very difficult. At Bird Hill in southcentral Alaska, snow entrainment has caused small release volumes (< 25,000 m3) to develop into surprisingly large and far-running avalanches which have endangered the highway and railroad located at the terminus of the slopes. In this project, the dynamical avalanche run-out model RAMMS was implemented to examine how mass and temperature of released and entrained snow affect development of lubricated flow regime and impact run-out distances at Bird Hill. The results showed that temperature was more critical than mass in determining flow regime, with a close correlation between meltwater production and long run-out distances. Meltwater lubricates the avalanche at the base, drastically reducing basal friction and allowing it to glide over the ground. Bird Hill's large drop height (1000 m) and rough terrain (due to shallow snow cover) contributed to the warming of the avalanche core in the simulations. The entrained snow temperature appeared critical in determining the effects of released and entrained snow volumes. Cold releases (-5°C, -8°C), constrained by the "Wet snow" RKE regime in RAMMS, regardless of volume, only generated long run-outs with entrained snow of ≥ -1°C. Depending on the entrained snow temperature, small (< 10,000 m3) medium warm (-3°C) releases warmed up quickly and became lubricated, or remained cold and starved early. Despite cold entrained snow, larger sized (> 15,000 m3) medium warm releases produced meltwater due to dissipated heat from random kinetic energy produced in the upper elevations. Monitoring of warming snow cover temperatures and mapping of terrain features that could affect avalanche flow may help avalanche forecasters better understand the variability of run-out distances.

  14. Snow Conditions Near Barrow in Spring 2012

    NASA Astrophysics Data System (ADS)

    Webster, M.; Rigor, I.; Nghiem, S. V.; Sturm, M.; Kurtz, N. T.; Farrell, S. L.; Gleason, E.; Lieb-Lappen, R.; Saiet, E.

    2012-12-01

    Snow has a dual role in the growth and decay of Arctic sea ice. It provides insulation from colder air temperatures during the winter, which hinders sea ice formation. Snow is highly reflective and, as a result, it delays the surface ice melt during the spring. Summer snow melt influences the formation and location of melt ponds on sea ice, which further modifies heat transport into sea ice and the underlying ocean. Identifying snow thickness and extent is of key importance in understanding the surface heat budget, particularly during the early spring when the maximum snowfall has surpassed, and surface melt has not yet occurred. Regarding Arctic atmospheric chemical processes, snow may sustain or terminate halogen chemical recycling and distribution, depending on the state of the snow cover. Therefore, an accurate assessment of the snow cover state in the changing Arctic is important to identify subsequent impacts of snow change on both physical and chemical processes in the Arctic environment. In this study, we assess the springtime snow conditions near Barrow, Alaska using coordinated airborne and in situ measurements taken during the NASA Operation IceBridge and BRomine, Ozone, and Mercury EXperiment (BROMEX) field campaigns in March 2012, and compare these to climatological records. Operation IceBridge was conceived to bridge the gap between satellite retrievals ice thickness by ICESat which ceased operating in 2009 and ICESat-2 which is planned for launch in 2016. As part of the IceBridge mission, snow depth may be estimated by taking the difference between the snow/air surface and the snow/ice interface measured by University of Kansas's snow radar installed on a P-3 Orion and the measurements have an approximate spatial resolution of 40 m along-track and 16 m across-track. The in situ snow depth measurements were measured by an Automatic Snow Depth Probe (Magnaprobe), which has an accuracy of 0.5 cm. Samples were taken every one-to-two meters at two sites

  15. [Characteristics of mercury exchange flux between soil and atmosphere under the snow retention and snow melting control].

    PubMed

    Zhang, Gang; Wang, Ning; Ai, Jian-Chao; Zhang, Lei; Yang, Jing; Liu, Zi-Qi

    2013-02-01

    Jiapigou gold mine, located in the upper Songhua River, was once the largest mine in China due to gold output, where gold extraction with algamation was widely applied to extract gold resulting in severe mercury pollution to ambient environmental medium. In order to study the characteristics of mercury exchange flux between soil (snow) and atmosphere under the snow retention and snow melting control, sampling sites were selected in equal distances along the slope which is situated in the typical hill-valley terrain unit. Mercury exchange flux between soil (snow) and atmosphere was determined with the method of dynamic flux chamber and in all sampling sites the atmosphere concentration from 0 to 150 cm near to the earth in the vertical direction was measured. Furthermore, the impact factors including synchronous meteorology, the surface characteristics under the snow retention and snow melting control and the mercury concentration in vertical direction were also investigated. The results are as follows: During the period of snow retention and melting the air mercury tends to gather towards valley bottom along the slope and an obvious deposit tendency process was found from air to the earth's surface under the control of thermal inversion due to the underlying surface of cold source (snow surface). However, during the period of snow melting, mercury exchange flux between the soil and atmosphere on the surface of the earth with the snow being melted demonstrates alternative deposit and release processes. As for the earth with snow covered, the deposit level of mercury exchange flux between soil and atmosphere is lower than that during the period of snow retention. The relationship between mercury exchange flux and impact factors shows that in snow retention there is a remarkable negative linear correlation between mercury exchange flux and air mercury concentration as well as between the former and the air temperature. In addition, in snow melting mercury exchange

  16. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  17. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  18. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  19. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  20. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  1. [Effects of snow pack removal on the dynamics of winter-time soil temperature, carbon, nitrogen, and phosphorus in alpine forests of west Sichuan].

    PubMed

    Tan, Bo; Wu, Fu-zhong; Yang, Wan-qin; Yang, Yu-lian; Wang, Ao; Kang, Li-na

    2011-10-01

    The dynamic changes of snow pack as affected by global warming might have strong effects on the ecological processes in alpine forests. To understand the responses of soil ecological processes in the alpine forests of west Sichuan to the decreasing snow pack under global warming, a snow-shading experiment was conducted in a primary fir forest from October 19, 2009 to May 18, 2010, with the effects of snow pack removal on the dynamics of soil temperature, carbon, nitrogen, and phosphorus investigated. The results showed that snow pack removal increased the diurnal variation amplitude of soil temperature and the frequency of freeze-thaw cycle, and advanced the time of soil frozen and melt as well as the peak time of soil dissolved carbon and nitrogen, available P, NH4(+)-N, and NO3(-)-N. Snow pack removal increased the concentrations of soil dissolved carbon and nitrogen and NO3(-)-N but decreased the concentrations of soil available P and NH4(+)-N, and changed the ratios of soil dissolved carbon and nitrogen, available P, NH4(+)-N, and NO3(-)-N in the period of snow cover and snow melt. The decreased snow pack in winter time in the alpine forests of west Sichuan as affected by global warming could alter the soil exterior environment, and further, affect the processes of soil carbon, nitrogen and phosphorus.

  2. Arctic tundra shrub invasion and soot deposition: Consequences for spring snowmelt and near-surface air temperatures

    NASA Astrophysics Data System (ADS)

    Strack, John E.; Pielke, Roger A.; Liston, Glen E.

    2007-12-01

    Invasive shrubs and soot pollution both have the potential to alter the surface energy balance and timing of snow melt in the Arctic. Shrubs reduce the amount of snow lost to sublimation on the tundra during the winter leading to a deeper end-of-winter snowpack. The shrubs also enhance the absorption of energy by the snowpack during the melt season by converting incoming solar radiation to longwave radiation and sensible heat. Soot deposition lowers the albedo of the snow, allowing it to more effectively absorb incoming solar radiation and thus melt faster. This study uses the Colorado State University Regional Atmospheric Modeling System version 4.4 (CSU-RAMS 4.4), equipped with an enhanced snow model, to investigate the effects of shrub encroachment and soot deposition on the atmosphere and snowpack in the Kuparuk Basin of Alaska during the May-June melt period. The results of the simulations suggest that a complete invasion of the tundra by shrubs leads to a 2.2°C warming of 3 m air temperatures and a 108 m increase in boundary layer depth during the melt period. The snow-free date also occurred 11 d earlier despite having a larger initial snowpack. The results also show that a decrease in the snow albedo of 0.1, owing to soot pollution, caused the snow-free date to occur 5 d earlier. The soot pollution caused a 1.0°C warming of 3 m air temperatures and a 25 m average deepening of the boundary layer.

  3. Idiosyncratic responses of high Arctic plants to changing snow regimes.

    PubMed

    Rumpf, Sabine B; Semenchuk, Philipp R; Dullinger, Stefan; Cooper, Elisabeth J

    2014-01-01

    The Arctic is one of the ecosystems most affected by climate change; in particular, winter temperatures and precipitation are predicted to increase with consequent changes to snow cover depth and duration. Whether the snow-free period will be shortened or prolonged depends on the extent and temporal patterns of the temperature and precipitation rise; resulting changes will likely affect plant growth with cascading effects throughout the ecosystem. We experimentally manipulated snow regimes using snow fences and shoveling and assessed aboveground size of eight common high arctic plant species weekly throughout the summer. We demonstrated that plant growth responded to snow regime, and that air temperature sum during the snow free period was the best predictor for plant size. The majority of our studied species showed periodic growth; increases in plant size stopped after certain cumulative temperatures were obtained. Plants in early snow-free treatments without additional spring warming were smaller than controls. Response to deeper snow with later melt-out varied between species and categorizing responses by growth forms or habitat associations did not reveal generic trends. We therefore stress the importance of examining responses at the species level, since generalized predictions of aboveground growth responses to changing snow regimes cannot be made.

  4. The impact of clouds, land use and snow cover on climate in the Canadian Prairies

    NASA Astrophysics Data System (ADS)

    Betts, Alan K.; Desjardins, Raymond L.; Worth, Devon E.

    2016-03-01

    This study uses 55 years of hourly observations of air temperature, relative humidity, daily precipitation, snow cover and cloud cover from 15 climate stations across the Canadian Prairies to analyze biosphere-atmosphere interactions. We will provide examples of the coupling between climate, snow cover, clouds, and land use. Snow cover acts as a fast climate switch. With the first snow fall, air temperature falls by 10 °C, and a similar increase in temperature occurs with snow melt. Climatologically, days with snow cover are 10 °C cooler than days with no snow cover in Alberta. However the interannual variability has a larger range, so that for every 10 % decrease in days with snow cover, the mean October to April climate is warmer by 1.4 to 1.5 °C. Snow cover also transforms the coupling between clouds and the diurnal cycle of air temperature from a boundary layer regime dominated by shortwave cloud forcing in the warm season to one dominated by longwave cloud forcing with snow cover. Changing agricultural land use in the past thirty years, specifically the reduction of summer fallowing, has cooled and moistened the growing season climate and increased summer precipitation. These hourly climate data provide a solid observational basis for understanding land surface coupling, which can be used to improve the representation of clouds and land-surface processes in atmospheric models.

  5. A coupled melt-freeze temperature index approach in a one-layer model to predict bulk volumetric liquid water content dynamics in snow

    NASA Astrophysics Data System (ADS)

    Avanzi, Francesco; Yamaguchi, Satoru; Hirashima, Hiroyuki; De Michele, Carlo

    2016-04-01

    Liquid water in snow rules runoff dynamics and wet snow avalanches release. Moreover, it affects snow viscosity and snow albedo. As a result, measuring and modeling liquid water dynamics in snow have important implications for many scientific applications. However, measurements are usually challenging, while modeling is difficult due to an overlap of mechanical, thermal and hydraulic processes. Here, we evaluate the use of a simple one-layer one-dimensional model to predict hourly time-series of bulk volumetric liquid water content in seasonal snow. The model considers both a simple temperature-index approach (melt only) and a coupled melt-freeze temperature-index approach that is able to reconstruct melt-freeze dynamics. Performance of this approach is evaluated at three sites in Japan. These sites (Nagaoka, Shinjo and Sapporo) present multi-year time-series of snow and meteorological data, vertical profiles of snow physical properties and snow melt lysimeters data. These data-sets are an interesting opportunity to test this application in different climatic conditions, as sites span a wide latitudinal range and are subjected to different snow conditions during the season. When melt-freeze dynamics are included in the model, results show that median absolute differences between observations and predictions of bulk volumetric liquid water content are consistently lower than 1 vol%. Moreover, the model is able to predict an observed dry condition of the snowpack in 80% of observed cases at a non-calibration site, where parameters from calibration sites are transferred. Overall, the analysis show that a coupled melt-freeze temperature-index approach may be a valid solution to predict average wetness conditions of a snow cover at local scale.

  6. Climatology and Real-Data Simulations of Snow Bands over the English Channel and Irish Sea during Cold-Air Outbreaks

    NASA Astrophysics Data System (ADS)

    Norris, J.; Vaughan, G.; Schultz, D. M.

    2012-04-01

    During the winters of 2009—2010 and 2010—2011, anti-cyclonic blocking over the north Atlantic led to cold, dry air being advected over the UK from the north and east, generating widespread snow depths not seen since the early 1980s. The societal and economical impacts of this snow were severe and diverse, including those on transport, industry, commerce, emergency services, and retail. The most distinctive precipitation features during these winters formed over the English Channel and Irish Sea, where convection frequently organised into bands, as diagnosed from Met Office NIMROD precipitation radar images, forming along the major axis of each body of water (hereafter, sea) when the boundary-layer flow was roughly parallel to each of those axes (hereafter, along-sea). In this study, we address the atmospheric conditions, diagnosed from soundings from suitable locations, at times when bands were observed and at times that they were not, during the cold-air outbreaks in these winters. We find that, for both seas, a band was present the majority of times that the 850-hPa flow was along-sea. We subsequently find that, of these times of along-sea flow, for both seas, 850-hPa wind speed and surface-to-850-hPa temperature difference were significantly greater when bands were present than when they were not. Real-data simulations using the Weather Research and Forecasting (WRF) model are then presented for a typical band over each sea and the model is found to be accurate in reproducing the structures observed on radar. Output from control runs for each band is compared to that in which topography, surface heat fluxes, and land-sea borders are each removed in turn in order to investigate how the low-level flow evolves to generate the observed bands.

  7. Relating temperature, snow height and glacier characteristics to streamflow trends in Western Austria

    NASA Astrophysics Data System (ADS)

    Kormann, Christoph; Morin, Efrat; Renner, Maik; Francke, Till; Bronstert, Axel

    2014-05-01

    The results of streamflow trend studies are often characterised by mostly insignificant trends. This applies especially for trends of annually averaged runoff: In our study region, Western Austria, we found that there is a trend gradient from high-altitude to low-altitude stations, i.e. a pattern of mostly positive annual trends at higher stations and negative ones at lower stations. At mid-altitudes, trends are mostly insignificant. The trends were most probably caused by the following two main processes: On the one hand, melting glaciers produce excess runoff at high-altitude watersheds. On the other hand, increasing evapotranspiration results in decreasing trends at low-altitude watersheds. However, these patterns are masked at mid-altitudes because the resulting positive and negative trends balance each other. To verify these theories, we attributed the detected trends to specific causes. For this purpose, we analysed trends on a daily basis, as the causes for these changes might be restricted to a smaller temporal scale than the annual one. The daily trends were assessed by calculating 30-day moving average subsets and then estimating significance and magnitude. This allowed for the explicit pointing out of the exact days of year (DOY) when certain streamflow trends emerge and then relating them to the according DOYs of trends and annual cycles of other observed variables, e.g. the DOYs when snow height trends occur or the DOY when temperature crosses the freezing point in spring. Concerning trends caused by increased glacial melt, we applied correlation analyses between glacier area and trend magnitudes during the corresponding DOYs. As a result, the positive trends in spring were attributed to an earlier and more intense snow melt. The ones that follow in late spring at upper stations could be related to increased glacial melt. The negative trends in summertime that turn up earlier at low-altitude stations and later at high-altitude stations are most

  8. Influence of stress, temperature and crystal habit on isothermal densification and specific surface area decrease of new snow

    NASA Astrophysics Data System (ADS)

    Schleef, S.; Löwe, H.; Schneebeli, M.

    2014-03-01

    Laboratory-based, experimental data for the microstructural evolution of new snow is scarce, though applications would benefit from a quantitative characterization of the main mechanism underlying the initial microstructural changes. To this end we have analyzed the metamorphism and concurrent densification of new snow under isothermal conditions by means of X-ray microtomography and compiled a comprehensive data set of 45 time series covering the practically relevant short time behavior within the first 24-48 h in high temporal resolution. The data set comprises natural and laboratory grown snow and experimental conditions include systematic variations of overburden stress, temperature and crystal habit to address the main influences on specific surface area (SSA) decrease rate and densification rate in a natural snowpack. For all conditions we find a linear increase of the density with the SSA, indicating that metamorphism has a key influence for the densification of new snow. Corroborated by the analysis of the individual influences of external conditions we derive a best-fit parametrization for the SSA decrease rate and the densification rate as required for applications.

  9. Trace Elements and Common Ions in Southeastern Idaho Snow: Regional Air Pollutant Tracers for Source Area Emissions

    SciTech Connect

    Abbott, Michael Lehman; Einerson, Jeffrey James; Schuster, Paul; Susong, David D.

    2002-09-01

    Snow samples were collected in southeastern Idaho over two winters to assess trace elements and common ions concentrations in air pollutant fallout across the region. The objectives were to: 1) develop sampling and analysis techniques that would produce accurate measurements of a broad suite of elements and ions in snow, 2) identify the major elements in regional fallout and their spatial and temporal trends, 3) determine if there are unique combinations of elements that are characteristic to the major source areas in the region (source profiles), and 4) use pattern recognition and multivariate statistical techniques (principal component analysis and classical least squares regression) to investigate source apportionment of the fallout to the major source areas. In the winter of 2000-2001, 250 snow samples were collected across the region over a 4-month period and analyzed in triplicate using inductively-coupled plasma mass spectrometry (ICP-MS) and ion chromatography (IC). Thirty-nine (39) trace elements and 9 common ions were positively identified in most samples. The data were analyzed using pattern recognition tools in the software, Pirouette® (Infometrix, Inc.). These results showed a large crustal component (Al, Zn, Mn, Ba, and rare earth elements), an overwhelming contribution from phosphate processing facilities located outside Pocatello in the southern portion of the ESRP, some changes in concentrations over time, and no obvious source area profiles (unique chemical signatures) other than at Pocatello. Concentrations near a major U.S. Department of Energy industrial complex on the Idaho National Engineering and Environmental Laboratory (INEEL) were lower than those observed at major downwind communities. In the winter of 2001-2002, we tried a new sampling design (and collected 135 additional samples) in an attempt to estimate pure emission profiles from the major source areas in the region and used classical least squares regression (CLS) to source

  10. Environmental radiological monitoring of air, rain, and snow on and near the Hanford Site, 1945-1957

    SciTech Connect

    Hanf, R.W.; Thiede, M.E.

    1994-03-01

    This report is a result of the Hanford Environmental Dose Reconstruction (HEDR) Project. The goal of the HEDR Project is to estimate the radiation dose that individuals could have received from emissions since 1944 at the Hanford Site near Richland, Washington. Members of the HEDR Project`s Environmental Monitoring Data Task have developed databases of historical environmental measurements of such emissions. Hanford documents were searched for information on the radiological monitoring of air, rain, and snow at and near the Hanford Site in Richland, Washington. The monitoring information was reviewed and summarized. The end product is a yearly overview of air, rain, and snow samples as well as ambient radiation levels in the air that were measured from 1945 through 1957. The following information is provided in each annual summary: the media sampled, the constituents (radionuclides) measured/reported, the sampling locations, the sampling frequencies, the sampling methods, and the document references. For some years a notes category is included that contains additional useful information. For the years 1948 through 1957, tables summarizing the sampling locations for the various sample media are also included in the appendix. A large number of documents were reviewed to obtain the information in this report. A reference list is attached to the end of each annual summary. All of the information summarized here was obtained from reports originating at Hanford. These reports are all publicly available and can be found in the Richland Operations Office (RL) public reading room. The information in this report has been compiled without analysis and should only be used as a guide to the original documents.

  11. Variable temperature effects of Open Top Chambers at polar and alpine sites explained by irradiance and snow depth.

    PubMed

    Bokhorst, Stef; Huiskes, Ad; Aerts, Rien; Convey, Peter; Cooper, Elisabeth J; Dalen, Linda; Erschbamer, Brigitta; Gudmundsson, Jón; Hofgaard, Annika; Hollister, Robert D; Johnstone, Jill; Jónsdóttir, Ingibjörg S; Lebouvier, Marc; Van de Vijver, Bart; Wahren, Carl-Henrik; Dorrepaal, Ellen

    2013-01-01

    Environmental manipulation studies are integral to determining biological consequences of climate warming. Open Top Chambers (OTCs) have been widely used to assess summer warming effects on terrestrial biota, with their effects during other seasons normally being given less attention even though chambers are often deployed year-round. In addition, their effects on temperature extremes and freeze-thaw events are poorly documented. To provide robust documentation of the microclimatic influences of OTCs throughout the year, we analysed temperature data from 20 studies distributed across polar and alpine regions. The effects of OTCs on mean temperature showed a large range (-0.9 to 2.1 °C) throughout the year, but did not differ significantly between studies. Increases in mean monthly and diurnal temperature were strongly related (R(2)  = 0.70) with irradiance, indicating that PAR can be used to predict the mean warming effect of OTCs. Deeper snow trapped in OTCs also induced higher temperatures at soil/vegetation level. OTC-induced changes in the frequency of freeze-thaw events included an increase in autumn and decreases in spring and summer. Frequency of high-temperature events in OTCs increased in spring, summer and autumn compared with non-manipulated control plots. Frequency of low-temperature events was reduced by deeper snow accumulation and higher mean temperatures. The strong interactions identified between aspects of ambient environmental conditions and effects of OTCs suggest that a detailed knowledge of snow depth, temperature and irradiance levels enables us to predict how OTCs will modify the microclimate at a particular site and season. Such predictive power allows a better mechanistic understanding of observed biotic response to experimental warming studies and for more informed design of future experiments. However, a need remains to quantify OTC effects on water availability and wind speed (affecting, for example, drying rates and water stress

  12. Changes in Snow Cover Characteristics Over the Russian Territory in Recent Decades

    NASA Astrophysics Data System (ADS)

    Bulygina, O. N.; Razuvaev, V. N.; Groisman, P. Y.

    2007-12-01

    The state of snow cover is one of the most important characteristics of the Northern Eurasia climate. The present work sheds light on the snow variations by using empirical and statistical analysis of time series of daily snow depth over Russia. For 400 Russian stations, time series of the daily snow depth and of the extent to which the near-station territory is covered by snow have been prepared in RIHMI-WDC for the period 1951-2006. Our analyses revealed the following regional features in the change of snow cover characteristics. Increases in winter precipitation and surface air temperature affected the variability of snow characteristics. In particular, tendencies towards the increase in the average snow depth over the Russian territory are prevailing, while only a few Russian regions show a decrease in winter snow depth. The largest variations in the average snow depth occur in the late winter - early spring period. In the recent three decades a substantial part of the Russian territory exhibits a shorter snow-cover period. The regionally-averaged snow cover characteristics were analyzed across the seven quasi-homogeneous climatic regions of Russia as well as for the entire nation. In the European part of Russia and in the Russian Far East, the increase in the average snow depth is controlled by winter and autumn precipitation growth. Time series of the number of days with different snow depths have been derived from daily snow depth observations. In the past decades, the number of days with the snow depth above 1 cm tends to decrease in the west of European Russia, in the Urals, Siberia and the Chukotka Peninsula (i.e., over most of Russia), while the number of days with significant snow depth (above 20 cm) tends to increase slightly. Taking into account that the Russian territory dominates the snow-covered areas of Eurasia, we conclude that across most of Northern Eurasia the snowy season became shorter but more "intense".

  13. Air-ice drag coefficients in the western Weddell Sea: 2. A model based on form drag and drifting snow

    NASA Astrophysics Data System (ADS)

    Andreas, Edgar L.

    1995-03-01

    In part 1 (Andreas and Claffey, this issue) we observed some characteristics of the neutral stability air-ice drag coefficient at a reference height of 10 m (CDN10) that had not been documented before. Our main conclusion was that wind-driven snow continually alters the sea ice surface; the resulting snowdrifts determine how large CDN10 is. In particular, part 1 reported three observations that I would like to explain. (1) CDN10 is near 1.5×10-3 when the wind is well aligned with the drifted snow. (2) CDN10 is near 2.5×10-3 when the wind makes a large angle with the dominant orientation of the snowdrifts. (3) CDN10 can increase by 20% if, after being well aligned with the drift patterns, the mean wind direction shifts by as little as 20°. To investigate this behavior of CDN10 here I adapt a model developed by Raupach (1992) that partitions the total surface stress into contributions from form drag and skin friction. An essential part of this development was extending Raupach's model to the more complex geometry of sastrugi-like roughness elements. Assuming that 10-cm high sastrugi cover 15% of the surface, this physically based model reproduces the three main observations listed above. Thus the model seems to include the basic physics of air-ice momentum exchange. The main conclusion from this modeling is that 10-cm, sastrugilike snowdrifts, rather than pressure ridges, sustain most of the form drag over compact sea ice in the western Weddell Sea. Secondly, the modeling suggests that skin friction accounts for about 60% of the surface stress when the wind is well aligned with the sastrugi; but when the wind is not well aligned, form drag accounts for about 80% of the stress. The sastrugi are thus quite effective in streamlining the surface.

  14. The influence of air temperature inversions on snowmelt and glacier mass-balance simulations, Ammassalik island, SE Greenland

    SciTech Connect

    Mernild, Sebastian Haugard; Liston, Glen

    2009-01-01

    In many applications, a realistic description of air temperature inversions is essential for accurate snow and glacier ice melt, and glacier mass-balance simulations. A physically based snow-evolution modeling system (SnowModel) was used to simulate eight years (1998/99 to 2005/06) of snow accumulation and snow and glacier ice ablation from numerous small coastal marginal glaciers on the SW-part of Ammassalik Island in SE Greenland. These glaciers are regularly influenced by inversions and sea breezes associated with the adjacent relatively low temperature and frequently ice-choked fjords and ocean. To account for the influence of these inversions on the spatiotemporal variation of air temperature and snow and glacier melt rates, temperature inversion routines were added to MircoMet, the meteorological distribution sub-model used in SnowModel. The inversions were observed and modeled to occur during 84% of the simulation period. Modeled inversions were defined not to occur during days with strong winds and high precipitation rates due to the potential of inversion break-up. Field observations showed inversions to extend from sea level to approximately 300 m a.s.l., and this inversion level was prescribed in the model simulations. Simulations with and without the inversion routines were compared. The inversion model produced air temperature distributions with warmer lower elevation areas and cooler higher elevation areas than without inversion routines due to the use of cold sea-breeze base temperature data from underneath the inversion. This yielded an up to 2 weeks earlier snowmelt in the lower areas and up to 1 to 3 weeks later snowmelt in the higher elevation areas of the simulation domain. Averaged mean annual modeled surface mass-balance for all glaciers (mainly located above the inversion layer) was -720 {+-} 620 mm w.eq. y{sup -1} for inversion simulations, and -880 {+-} 620 mm w.eq. y{sup -1} without the inversion routines, a difference of 160 mm w.eq. y

  15. Trends in Surface Temperature from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Aumann, H. H.

    2014-12-01

    To address possible causes of the current hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We find a monotonic positive trend for the land temperature but not for the ocean temperature. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The results are compared with the model studies. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  16. Future Change of Snow Water Equivalent over Japan

    NASA Astrophysics Data System (ADS)

    Hara, M.; Kawase, H.; Kimura, F.; Fujita, M.; Ma, X.

    2012-12-01

    Western side of Honshu Island and Hokkaido Island in Japan are ones of the heaviest snowfall areas in the world. Although a heavy snowfall often brings disaster, snow is one of the major sources for agriculture, industrial, and house-use in Japan. Even during the winter, the monthly mean of the surface air temperature often exceeds 0 C in large parts of the heavy snow areas along the Sea of Japan. Thus, snow cover may be seriously reduced in these areas as a result of the global warming, which is caused by an increase in greenhouse gases. The change in seasonal march of snow water equivalent, e.g., snowmelt season and amount will strongly influence to social-economic activities. We performed a series of numerical experiments including present and future climate simulations and much-snow and less-snow cases using a regional climate model. Pseudo-Global-Warming (PGW) method (Kimura and Kitoh, 2008) is applied for the future climate simulations. MIROC 3.2 medres 2070s output under IPCC SRES A2 scenario and 1990s output under 20c3m scenario used for PGW method. The precipitation, snow depth, and surface air temperature of the hindcast simulations show good agreement with the AMeDAS station data. In much-snow cases, The decreasing rate of maximum total snow water equivalent over Japan due to climate change was 49%. Main cause of the decrease of the total snow water equivalent is the air temperature rise due to global climate change. The difference in the precipitation amount between the present and the future simulations is small.

  17. An electrostatic charge measurement of blowing snow particles focusing on collision frequency to the snow surface

    NASA Astrophysics Data System (ADS)

    Omiya, S.; Sato, A.

    2010-12-01

    the fixed fetch (12m). The number of collisions of particle was converted from the wind velocity using an equation obtained by Kosugi et al. (2004). Blowing snow particles tend to accumulate negative charges gradually with increase of the number of collisions to the snow surface. As a result, it is demonstrated that the gaps between the field values and the wind tunnel ones were due to difference of the collision frequency of snow particles. Assuming a logarithmic relationship as first approximation between the measured charges and the number of collisions, the charge-to-mass ratios will reach roughly the same value which was obtained in the field with several hundreds collisions. For instance, fetch is needed roughly 200m for blowing snow particles to gain -30 μC/kg under the following conditions: air temperature -20 degrees Celsius, wind velocity 7m/s and hard snow surface. REFERENCE: Kosugi et al., (2004): Dependence of drifting snow saltation length on snow surface hardness. Cold Reg. Sci. Technol., 39, 133-139.

  18. Is Air Temperature Enough to Predict Lake Surface Temperature?

    NASA Astrophysics Data System (ADS)

    Piccolroaz, S.; Toffolon, M.; Majone, B.

    2014-12-01

    Lake surface water (LST) is a key factor that controls most of the physical and ecological processes occurring in lakes. Reliable estimates are especially important in the light of recent studies, which revealed that inland water bodies are highly sensitive to climate, and are rapidly warming throughout the world. However, an accurate estimation of LST usually requires a significant amount of information that is not always available. In this work, we present an application of air2water, a lumped model that simulates LST as a function of air temperature only. In addition, air2water allows for a qualitative evaluation of the depth of the epilimnion during the annual stratification cycle. The model consists in a simplification of the complete heat budget of the well-mixed surface layer, and has a few parameters (from 4 to 8 depending on the version) that summarize the role of the different heat flux components. Model calibration requires only air and water temperature data, possibly covering sufficiently long historical periods in order to capture inter-annual variability and long-term trends. During the calibration procedure, the information included in input data is retrieved to directly inform model parameters, which can be used to classify the thermal behavior of the lake. In order to investigate how thermal dynamics are related to morphological features, the model has been applied to 14 temperate lakes characterized by different morphological and hydrological conditions, by different sources of temperature data (buoys, satellite), and by variable frequency of acquisition. A good agreement between observed and simulated LST has been achieved, with a RMSE in the order of 1°C, which is fully comparable to the performances of more complex process-based models. This application allowed for a deeper understanding of the thermal response of lakes as a function of their morphology, as well as for specific analyses as for example the investigation of the exceptional

  19. An instrumented sample holder for time-lapse microtomography measurements of snow under advective airflow

    NASA Astrophysics Data System (ADS)

    Ebner, P. P.; Grimm, S. A.; Schneebeli, M.; Steinfeld, A.

    2014-09-01

    An instrumented sample holder was developed for time-lapse microtomography of snow samples to enable in situ nondestructive spatial and temporal measurements under controlled advective airflows, temperature gradients, and air humidities. The design was aided by computational fluid dynamics simulations to evaluate the airflow uniformity across the snow sample. Morphological and mass transport properties were evaluated during a 4-day test run. This instrument allows the experimental characterization of metamorphism of snow undergoing structural changes with time.

  20. Microwave emissions from snow

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.

    1984-01-01

    The radiation emitted from dry and wet snowpack in the microwave region (1 to 100 GHz) is discussed and related to ground observations. Results from theoretical model calculations match the brightness temperatures obtained by truck mounted, airborne and spaceborne microwave sensor systems. Snow wetness and internal layer structure complicate the snow parameter retrieval algorithm. Further understanding of electromagnetic interaction with snowpack may eventually provide a technique to probe the internal snow properties

  1. X-ray computed microtomography of sea ice - comment on "A review of air-ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow" by Bartels-Rausch et al. (2014)

    NASA Astrophysics Data System (ADS)

    Obbard, R. W.

    2015-07-01

    This comment addresses a statement made in "A review of air-ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow" by Bartels-Rausch et al. (Atmos. Chem. Phys., 14, 1587-1633, doi:10.5194/acp-14-1587-2014, 2014). Here we rebut the assertion that X-ray computed microtomography of sea ice fails to reveal liquid brine inclusions by discussing the phases present at the analysis temperature.

  2. Historical Air Temperatures Across the Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Kagawa-Viviani, A.; Giambelluca, T. W.

    2015-12-01

    This study focuses on an analysis of daily temperature from over 290 ground-based stations across the Hawaiian Islands from 1905-2015. Data from multiple stations were used to model environmental lapse rates by fitting linear regressions of mean daily Tmax and Tmin on altitude; piecewise regressions were also used to model the discontinuity introduced by the trade wind inversion near 2150m. Resulting time series of both model coefficients and lapse rates indicate increasing air temperatures near sea level (Tmax: 0.09°C·decade-1 and Tmin: 0.23°C·decade-1 over the most recent 65 years). Evaluation of lapse rates during this period suggest Tmax lapse rates (~0.6°C·100m-1) are decreasing by 0.006°C·100m-1decade-1 due to rapid high elevation warming while Tmin lapse rates (~0.8°C·100m-1) are increasing by 0.002°C·100m-1decade-1 due to the stronger increase in Tmin at sea level versus at high elevation. Over the 110 year period, temperatures tend to vary coherently with the PDO index. Our analysis verifies warming trends and temperature variability identified earlier by analysis of selected index stations. This method also provides temperature time series we propose are more robust to station inhomogeneities.

  3. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  4. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  5. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  6. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  7. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  8. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  9. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  10. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  11. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  12. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  13. ‘As simple as possible but not simpler': What is useful in a temperature-based snow-accounting routine? Part 1 - Comparison of six snow accounting routines on 380 catchments

    NASA Astrophysics Data System (ADS)

    Valéry, Audrey; Andréassian, Vazken; Perrin, Charles

    2014-09-01

    This paper analyzes the behavior of hydrological snow accounting routines (SARs) used in combination with hydrological models to simulate streamflow at the catchment scale. To reach conclusions as general as possible, we compare the performance of six existing SARs combined with two different precipitation-runoff models. The SARs are temperature-based, have different levels of complexity (understood here as the number of optimized parameters and model functions), include various processes and also differ by the way they account for the spatial heterogeneity of snow cover. The SARs were tested on a set of 380 catchments significantly affected by snow and located in four countries (France, Switzerland, Sweden and Canada), showing different climatic conditions and altitude ranges. The value of each SAR is evaluated solely in terms of flow simulation quality at the catchment outlet. Several efficiency criteria are used, some of them specifically focusing on the time periods affected by snow accumulation and melt. As expected, the use of a snow accounting routine on snow-affected catchments significantly improves model efficiency, and this is true even for the simplest SARs. More interestingly, our results show that the most complex SAR does not yield the highest performance. Surprisingly, a lumped routine (i.e. without distribution in elevation bands) appears to be the most efficient on average on the whole catchment set. Results seem particularly sensitive to the spatial variability of processes in the snowpack and to the determination of the precipitation phase (solid or liquid). One critical point remains the identification of the solid precipitation correction factor necessary to compensate for snowfall measurement errors. In the companion article, we further investigate the sensitivity of model results to the description of snow processes in the SAR and try to identify the most important components of a parsimonious and general SAR.

  14. What controls the isotopic composition of Greenland surface snow?

    NASA Astrophysics Data System (ADS)

    Steen-Larsen, H. C.; Masson-Delmotte, V.; Hirabayashi, M.; Winkler, R.; Satow, K.; Prié, F.; Bayou, N.; Brun, E.; Cuffey, K. M.; Dahl-Jensen, D.; Dumont, M.; Guillevic, M.; Kipfstuhl, S.; Landais, A.; Popp, T.; Risi, C.; Steffen, K.; Stenni, B.; Sveinbjörnsdottír, A. E.

    2014-02-01

    Water stable isotopes in Greenland ice core data provide key paleoclimatic information, and have been compared with precipitation isotopic composition simulated by isotopically enabled atmospheric models. However, post-depositional processes linked with snow metamorphism remain poorly documented. For this purpose, monitoring of the isotopic composition (δ18O, δD) of near-surface water vapor, precipitation and samples of the top (0.5 cm) snow surface has been conducted during two summers (2011-2012) at NEEM, NW Greenland. The samples also include a subset of 17O-excess measurements over 4 days, and the measurements span the 2012 Greenland heat wave. Our observations are consistent with calculations assuming isotopic equilibrium between surface snow and water vapor. We observe a strong correlation between near-surface vapor δ18O and air temperature (0.85 ± 0.11‰ °C-1 (R = 0.76) for 2012). The correlation with air temperature is not observed in precipitation data or surface snow data. Deuterium excess (d-excess) is strongly anti-correlated with δ18O with a stronger slope for vapor than for precipitation and snow surface data. During nine 1-5-day periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and near-surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated using the CROCUS snow model that 6 to 20% of the surface snow mass is exchanged with the atmosphere. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or deposition. Comparisons with atmospheric models show that day-to-day variations in near-surface vapor isotopic composition are driven by synoptic variations and changes in air mass trajectories and distillation histories. We suggest that, in between precipitation events, changes in the surface snow isotopic composition are driven by these changes in near-surface vapor

  15. What controls the isotopic composition of Greenland surface snow?

    NASA Astrophysics Data System (ADS)

    Steen-Larsen, H. C.; Masson-Delmotte, V.; Hirabayashi, M.; Winkler, R.; Satow, K.; Prié, F.; Bayou, N.; Brun, E.; Cuffey, K. M.; Dahl-Jensen, D.; Dumont, M.; Guillevic, M.; Kipfstuhl, J.; Landais, A.; Popp, T.; Risi, C.; Steffen, K.; Stenni, B.; Sveinbjörnsdottír, A.

    2013-10-01

    Water stable isotopes in Greenland ice core data provide key paleoclimatic information, and have been compared with precipitation isotopic composition simulated by isotopically-enabled atmospheric models. However, post-deposition processes linked with snow metamorphism remain poorly documented. For this purpose, a monitoring of the isotopic composition (δ18O, δD) of surface water vapor, precipitation and samples of top (0.5 cm) snow surface has been conducted during two summers (2011-2012) at NEEM, NW Greenland. The measurements also include a subset of 17O-excess measurements over 4 days, and the measurements span the 2012 Greenland heat wave. Our observations are consistent with calculations assuming isotopic equilibrium between surface snow and water vapor. We observe a strong correlation between surface vapor δ18O and air temperature (0.85 ± 0.11 ‰ °C-1 (R = 0.76) for 2012). The correlation with air temperature is not observed in precipitation data or surface snow data. Deuterium excess (d-excess) is strongly anti-correlated with δ18O with a stronger slope for vapor than for precipitation and snow surface data. During nine 1-5 days periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated that 6 to 20% of the surface snow mass is exchanged with the atmosphere using the CROCUS snow model. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or condensation. Comparisons with atmospheric models show that day-to-day variations in surface vapor isotopic composition are driven by synoptic weather and changes in air mass trajectories and distillation histories. We suggest that, in-between precipitation events, changes in the surface snow isotopic composition are driven by these changes in surface vapor isotopic composition. This

  16. Spring Snow Depth on Arctic Sea Ice using the IceBridge Snow Depth Product (Invited)

    NASA Astrophysics Data System (ADS)

    Webster, M.; Rigor, I. G.; Nghiem, S. V.; Kurtz, N. T.; Farrell, S. L.

    2013-12-01

    Snow has dual roles in the growth and decay of Arctic sea ice. In winter, it insulates sea ice from colder air temperatures, slowing its growth. From spring into summer, the albedo of snow determines how much insolation is transmitted through the sea ice and into the underlying ocean, ultimately impacting the progression of the summer ice melt. Knowing the snow thickness and distribution are essential for understanding and modeling sea ice thermodynamics and the surface heat budget. Therefore, an accurate assessment of the snow cover is necessary for identifying its impacts in the changing Arctic. This study assesses springtime snow conditions on Arctic sea ice using airborne snow thickness measurements from Operation IceBridge (2009-2012). The 2012 data were validated with coordinated in situ measurements taken in March 2012 during the BRomine, Ozone, and Mercury EXperiment field campaign. We find a statistically significant correlation coefficient of 0.59 and RMS error of 5.8 cm. The comparison between the IceBridge snow thickness product and the 1937, 1954-1991 Soviet drifting ice station data suggests that the snow cover has thinned by 33% in the western Arctic and 44% in the Beaufort and Chukchi Seas. A rudimentary estimation shows that a thinner snow cover in the Beaufort and Chukchi Seas translates to a mid-December surface heat flux as high as 81 W/m2 compared to 32 W/m2. The relationship between the 2009-2012 thinner snow depth distribution and later sea ice freeze-up is statistically significant, with a correlation coefficient of 0.59. These results may help us better understand the surface energy budget in the changing Arctic, and may improve our ability to predict the future state of the sea ice cover.

  17. Year-round record of gaseous mercury in air and snow: new insights into mercury reactivity in Central Antarctica (Dome C)

    NASA Astrophysics Data System (ADS)

    Angot, Hélène; Dommergue, Aurélien; Magand, Olivier; Helmig, Detlev; Pirrone, Nicola; Sprovieri, Francesca

    2015-04-01

    For the first time on the Antarctic continent, gaseous elemental mercury (Hg(0)) was monitored year-round in both snowpack interstitial air and the overlying atmosphere at Dome C (75°S, 123°E, and 3250 m a.s.l.). Along with Hg(0) measurements at various heights (0.10, 0.25, 0.50, 2.10 and 10.70 m) and depths (-0.10, - 0.30, -0.50, and -0.70 m), total mercury was analyzed in surface snow samples collected weekly. A very dynamic and daily cycling of Hg(0) was observed under high solar irradiation with concentrations ranging from 0.10 to 2.99 ng/m3. Measurements showed new evidence of: i) a high atmospheric oxidative capacity during the sunlit period, ii) formation of Hg(2+) species subsequently deposited onto snowpack, and iii) photochemically driven reduction of Hg(2+) species in surface snow leading to revolatilization of Hg(0) to the atmosphere. This daily cycling of reemission/oxidation between snowpack and the atmosphere occurring under high solar irradiation was further evidenced by high total mercury concentrations measured in surface snow samples in summer (up to 73.8 ng/L). Although daily Hg(0) concentrations peaked around midday in the near-surface air in summer, they reached a minimum around midday under lower solar irradiation suggesting a daily Hg(0) loss due to snow induced oxidation pathways. During the dark period a linear decreasing trend was observed in both near-surface and ambient air Hg(0) concentrations - 1.01±0.09 ng/m3 in ambient air in May, 0.75±0.08 ng/m3 in August - suggesting a dark oxidation in ambient air and near-surface snow/surface hoar. A mercury depletion event driven by air-masses originating from sea-ice surface was observed after polar sunrise while the occurrence of stratosphere-to-troposphere exchange and its influence on Hg(0) concentrations was investigated. This unique data set provides considerable insight into the cycling of mercury over the Antarctic plateau and highlights both surface processes involving snow

  18. The sublimation temperature of the cometary nucleus Observational evidence for H2O snows

    NASA Technical Reports Server (NTRS)

    Delsemme, A. H.

    1985-01-01

    It is shown that information on the chemical composition of cometary snows can be inferred from the distance r(0) between sublimating states in the cometary nucleus. Consideration is given to three techniques for measuring r(0): estimation of the dependence on distance of non-gravitational forces (NGF); estimation of the dependence on distance of molecular emissions; and (3), analysis of the cometary light curve. The dependence on distance of the NGFs suggests that the observed sublimations of short-period coments are determined by water snow. Light curves of newly discovered comets appear to confirm this result. The large production rates of H and OH in cometary atmospheres suggest that they are due to dissociation of H2O in the vapor states. Estimates of r(0) for eleven different comets are given in a table.

  19. The level of air pollution in the impact zone of coal-fired power plant (Karaganda City) using the data of geochemical snow survey (Republic of Kazakhstan)

    NASA Astrophysics Data System (ADS)

    Adil'bayeva, T. E.; Talovskaya, A. V.; Yazikov, Ye G.; Matveenko, I. A.

    2016-09-01

    Coal-fired power plants emissions impact the air quality and human health. Of great significance is assessment of solid airborne particles emissions from those plants and distance of their transportation. The article presents the results of air pollution assessment in the zone of coal-fired power plant (Karaganda City) using snow survey. Based on the mass of solid airborne particles deposited in snow, time of their deposition on snow at the distance from 0.5 to 4.5 km a value of dust load has been determined. It is stated that very high level of pollution is observed at the distance from 0.5 to 1 km. there is a trend in decrease of dust burden value with the distance from the stacks of coal-fired power plant that may be conditioned by the particle size and washing out smaller ash particles by ice pellets forming at freezing water vapour in stacks of the coal-fired power plant. Study in composition of solid airborne particles deposited in snow has shown that they mainly contain particulates of underburnt coal, Al-Si- rich spheres, Fe-rich spheres, and coal dust. The content of the particles in samples decreases with the distance from the stacks of the coal-fired power plant.

  20. Macroscopic modeling of heat and water vapor transfer with phase change in dry snow based on an upscaling method: Influence of air convection

    NASA Astrophysics Data System (ADS)

    Calonne, N.; Geindreau, C.; Flin, F.

    2015-12-01

    At the microscopic scale, i.e., pore scale, dry snow metamorphism is mainly driven by the heat and water vapor transfer and the sublimation-deposition process at the ice-air interface. Up to now, the description of these phenomena at the macroscopic scale, i.e., snow layer scale, in the snowpack models has been proposed in a phenomenological way. Here we used an upscaling method, namely, the homogenization of multiple-scale expansions, to derive theoretically the macroscopic equivalent modeling of heat and vapor transfer through a snow layer from the physics at the pore scale. The physical phenomena under consideration are steady state air flow, heat transfer by conduction and convection, water vapor transfer by diffusion and convection, and phase change (sublimation and deposition). We derived three different macroscopic models depending on the intensity of the air flow considered at the pore scale, i.e., on the order of magnitude of the pore Reynolds number and the Péclet numbers: (A) pure diffusion, (B) diffusion and moderate convection (Darcy's law), and (C) strong convection (nonlinear flow). The formulation of the models includes the exact expression of the macroscopic properties (effective thermal conductivity, effective vapor diffusion coefficient, and intrinsic permeability) and of the macroscopic source terms of heat and vapor arising from the phase change at the pore scale. Such definitions can be used to compute macroscopic snow properties from 3-D descriptions of snow microstructures. Finally, we illustrated the precision and the robustness of the proposed macroscopic models through 2-D numerical simulations.

  1. Climate Sensitivity to Realistic Solar Heating of Snow and Ice

    NASA Astrophysics Data System (ADS)

    Flanner, M.; Zender, C. S.

    2004-12-01

    Snow and ice-covered surfaces are highly reflective and play an integral role in the planetary radiation budget. However, GCMs typically prescribe snow reflection and absorption based on minimal knowledge of snow physical characteristics. We performed climate sensitivity simulations with the NCAR CCSM including a new physically-based multi-layer snow radiative transfer model. The model predicts the effects of vertically resolved heating, absorbing aerosol, and snowpack transparency on snowpack evolution and climate. These processes significantly reduce the model's near-infrared albedo bias over deep snowpacks. While the current CCSM implementation prescribes all solar radiative absorption to occur in the top 2 cm of snow, we estimate that about 65% occurs beneath this level. Accounting for the vertical distribution of snowpack heating and more realistic reflectance significantly alters snowpack depth, surface albedo, and surface air temperature over Northern Hemisphere regions. Implications for the strength of the ice-albedo feedback will be discussed.

  2. Decadal trend of precipitation and temperature patterns and impacts on snow-related variables in a semiarid region, Sierra Nevada, Spain.

    NASA Astrophysics Data System (ADS)

    José Pérez-Palazón, María; Pimentel, Rafael; Herrero, Javier; José Polo, María

    2016-04-01

    In the current context of global change, mountainous areas constitute singular locations in which these changes can be traced. Early detection of significant shifts of snow state variables in semiarid regions can help assess climate variability impacts and future snow dynamics in northern latitudes. The Sierra Nevada mountain range, in southern Spain, is a representative example of snow areas in Mediterranean-climate regions and both monitoring and modelling efforts have been performed to assess this variability and its significant scales. This work presents a decadal trend analysis throughout the 50-yr period 1960-2010 performed on some snow-related variables over Sierra Nevada, in Spain, which is included in the global climate change observatories network around the world. The study area comprises 4583 km2 distributed throughout the five head basins influenced by these mountains, with altitude values ranging from 140 to 3479 m.a.s.l., just 40 km from the Mediterranean coastline. Meteorological variables obtained from 44 weather stations from the National Meteorological Agency were studied and further used as input to the distributed hydrological model WiMMed (Polo et al., 2010), operational at the study area, to obtain selected snow variables. Decadal trends were obtained, together with their statistical significance, over the following variables, averaged over the whole study area: (1) annual precipitation; (2) annual snowfall; annual (3) mean, (4) maximum and (5) minimum daily temperature; annual (6) mean and (7) maximum daily fraction of snow covered areas; (8) annual number of days with snow cover; (9) mean and (10) maximum daily snow water equivalent; (11) annual number of extreme precipitation events; and (12) mean intensity of the annual extreme precipitation events. These variables were also studied over each of the five regions associated to each basin in the range. Globally decreasing decadal trends were obtained for all the meteorological variables

  3. Snow-atmosphere coupling and extremes over North America in the Canadian Regional Climate Model (CRCM5)

    NASA Astrophysics Data System (ADS)

    Diro, G. T.; Sushama, L.; Huziy, O.

    2015-12-01

    Given the importance of land in the climate system, we investigate the influence of land surface, in particular the variation in snow characteristics, on climate variability and extremes over North America using the fifth generation of Canadian Regional Climate Model (CRCM5). To this end, we carried out two CRCM5 simulations driven by ERA-Interim reanalysis, where snow is either prescribed (uncoupled) or evolves interactively (coupled) during the model integration. Results indicate a systematic influence of snow on the inter-annual variability of air and surface temperature throughout the winter and spring seasons. In the coupled simulations, where the snow depth and snow cover were allowed to evolve freely, the inter-annual variability of surface and near surface air temperatures were found to be larger. Comparison with the uncoupled simulation suggests that snow depth/cover variability accounts for about 70% of the total surface temperature variability over the northern Great Plains and Canadian Prairies for the winter and spring seasons. The snow-atmosphere coupling is stronger in spring than in winter, since in spring season both the albedo and the latent heat flux contribute to the variability in temperature. Snow is also found to modulate extreme temperature events such as the number of cold days over Prairies during weak La-Nina episodes. These results suggest that initializing forecast models with realistic snow condition could potentially help to improve seasonal/sub-seasonal prediction skill over these snow-atmosphere coupling hotspot regions.

  4. Long-term experimental manipulation of winter snow regime and summer temperature in arctic and alpine tundra

    USGS Publications Warehouse

    Walker, M.D.; Walker, D. A.; Welker, J.M.; Arft, A.M.; Bardsley, T.; Brooks, P.D.; Fahnestock, J.T.; Jones, M.H.; Losleben, M.; Parsons, A.N.; Seastedt, T.R.; Turner, P.L.

    1999-01-01

    Three 60 m long, 2.8 m high snowfences have been erected to study long-term effects of changing winter snow conditions on arctic and alpine tundra. This paper describes the experimental design and short-term effects. Open-top fiberglass warming chambers are placed along the experimental snow gradients and in controls areas outside the fences; each warming plot is paired with an unwarmed plot. The purpose of the experiment is to examine short- and long-term changes to the integrated physical-biological systems under simultaneous changes of winter snow regime and summer temperature, as part of the Long-Term Ecological Research network and the International Tundra Experiment. The sites were at Niwot Ridge, Colorado, a temperate high altitude site in the Colorado Rockies, and Toolik Lake, Alaska, a high-latitude site. Initial results indicate that although experimental designs are essentially identical at the arctic and alpine sites, experimental effects are different. The drift at Niwot Ridge lasts much longer than do the Toolik Lake drifts, so that the Niwot Ridge fence affects both summer and winter conditions, whereas the Toolik Lake fence affects primarily winter conditions. The temperature experiment also differs in effect between the sites. Although the average temperature increase at the two sites is similar (daily increase 1.5??C at Toolik and 1.9??C at Niwot Ridge), at Toolik Lake there is only minor diurnal variation, whereas at Niwot Ridge the daytime increases are extreme on sunny days (as much as 7-10??C), and minimum nighttime temperatures in the chambers are often slightly cooler than ambient (by about 1??C). The experimental drifts resulted in wintertime increases in temperature and CO2 flux. Temperatures under the deep drifts were much more consistent and warmer than in control areas, and at Niwot Ridge remained very close to 0??C all winter. These increased temperatures were likely responsible for observed increases in system carbon loss. Initial

  5. Snow distribution, soil temperature and late winter CO2 efflux from soils at the Arctic treeline in northwest Alaska

    NASA Astrophysics Data System (ADS)

    Sullivan, P.

    2009-12-01

    The Arctic treeline is advancing in many areas and changes in ecosystem-atmosphere energy and CO2 exchange are anticipated. Differences in surface energy exchange between arctic tundra and treeline forests are well known and a positive feedback between treeline advance and regional warming is expected. Differences in CO2 exchange across the Arctic treeline are less well known and contrasting conclusions have been drawn from studies that used different approaches. Measurements of CO2 exchange in tundra and an adjacent treeline forest showed the forest was a greater carbon (C) sink during the growing season in northern Canada. There is reason to expect forests may lose more C than tundra during the wintertime, as forests may accumulate and retain more snow. Deeper snow insulates the soil and warmer soils should lead to greater rates of CO2 efflux. In this study, I tested the hypotheses that treeline forests maintain a deeper snowpack, have warmer soils and lose more C during the winter than adjacent tundra at the Arctic treeline in northwest Alaska. Estimates of CO2 efflux through the snowpack were made at five forest and two treeline sites in late winter when soil temperatures were near their annual minima in three consecutive winters. Snow depth, soil temperature and CO2 efflux were greater in the forest than at the treeline, particularly in years with greater snowfall. A simple modeling exercise showed differences in winter C loss between the treeline and forest could be sufficient to offset greater C gain by the forest during the summer.

  6. Landscape heterogeneity controls growth variability of alder, willow, and birch shrubs in response to observed increases in temperature and snow

    NASA Astrophysics Data System (ADS)

    Tape, K. D.; Hallinger, M.; Buras, A.; Wilmking, M.

    2013-12-01

    Over the last decade, evidence has emerged for a circumarctic trend of increasing shrub cover in tundra regions. On the Alaskan tundra, repeat photography has shown spatial differences in shrub patch dynamics: since 1950, most patches expanded while some remained stable. In this study we explore the underpinnings of this landscape heterogeneity by sampling the three dominant shrubs of the Alaskan tundra--alder, willow and birch--and creating shrub ring width chronologies to determine the influence of climate variability on shrub growth. Shrubs of expanding patches of all three species grew at higher rates than shrubs of stable patches. Alder and willow shrubs in expanding patches exhibited mainly positive growth trends, while their counterparts in stable patches exhibited mainly negative growth trends. Birch shrub growth declined in expanding and stable patches. Alder and willow shrub growth rates and responses to climate were controlled more by soil characteristics than by their genus; expanding alder and willow shrubs showed significant positive correlations with spring and summer temperatures, whereas alder and willow shrubs of stable patches were negatively influenced by winter precipitation. The widely-scattered stable shrub patches sampled here are considered ';moist tussock tundra,' which covers 13.4% of the low arctic landscape. In moist tussock tundra, and presumably also wet tussock tundra, the negative influence of deeper snow on shrubs outweighed the positive influence of deeper snow on ground temperature and nutrient stocks articulated by the snow-shrub-microbe hypothesis. Thus, while shrubs of expanding patches have generally profited from warmer summers, shrubs of stable patches have suffered from increased soil moisture resulting from increased snowmelt water. These results underscore the spatial and temporal complexity in shrub-climate dynamics, which will require considerable finesse to appropriately integrate into modeling efforts.

  7. Possible Economies in Air-Conditioning by Accepting Temperature Swings.

    ERIC Educational Resources Information Center

    Loudon, A. G.; Petherbridge, P.

    Public building air conditioning systems, which use constant and varying heat and cooling loads, are compared and investigated. Experiments indicated that constant temperature controls based on outside air temperature alone were inefficient. Ventilating a building with outside air and the methods of doing so are cited as being the most economical…

  8. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  9. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  10. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  11. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  12. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  13. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  14. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  15. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  16. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  17. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  18. Temperature dependence of photosynthesis and thylakoid lipid composition in the red snow alga Chlamydomonas cf. nivalis (Chlorophyceae).

    PubMed

    Lukeš, Martin; Procházková, Lenka; Shmidt, Volha; Nedbalová, Linda; Kaftan, David

    2014-08-01

    Here, we report an effect of short acclimation to a wide span of temperatures on photosynthetic electron transfer, lipid and fatty acid composition in the snow alga Chlamydomonas cf. nivalis. The growth and oxygen evolution capacity were low at 2 °C yet progressively enhanced at 10 °C and were significantly higher at temperatures from 5 to 15 °C in comparison with the mesophilic control Chlamydomonas reinhardtii. In search of the molecular mechanisms responsible for the adaptation of photosynthesis to low temperatures, we have found unprecedented high rates of QA to QB electron transfer. The thermodynamics of the process revealed the existence of an increased structural flexibility that we explain with the amino acid changes in the D1 protein combined with the physico-chemical characteristics of the thylakoid membrane composed of > 80% negatively charged phosphatidylglycerol.

  19. Laboratory Study of the Diffusivity of NOx and HONO in Snow.

    NASA Astrophysics Data System (ADS)

    Kerbrat, M.; Pinzer, B.; Huthwelker, T.; Schneebeli, M.; Ammann, M.

    2008-12-01

    The migration of NOx and HONO through the air/snow interface was experimentally investigated using a unique combination of techniques namely, X-ray micro-tomography and nitrogen oxides labeled with the short-lived radioactive tracer 13N in a snow diffusion chamber. The experimental set up allows blowing a gas mixture containing NO, NO2 or HONO into the headspace over a snow sample to mimic low wind air/snow interactions. The overall loss into the snow can be determined using a chemiluminescence detector at the outlet of the headspace. The concentration of HONO entering the headspace is moreover monitored by a long path absorption photometer (LOPAP). The migration of the labeled nitrogen oxide molecules along the snow sample can be observed by two γ-detectors, which can move along the sample during the experiment. The snow used for the experiment was produced artificially in a specially designed snow maker. The micro structure of the artificially produce snow is measured and visualized by micro-tomography and is identical to natural snow. For the experiment presented here, two types of snow were used, fresh snow and rounded snow. The rounded snow was obtained from a fresh snow sample which was kept during more than a month at -~10°C to allow for isothermal metamorphism. For NO and NO2 the observed profiles were consistent with gas phase diffusion through the open volume of the snow without any significant interaction with the ice surface, e.g. through heterogeneous hydrolysis of NO2. In the case of HONO, the strong interaction with the ice led to a reduced penetration of the molecules into the snow sample. The observed temperature dependence of the depth of penetration and of the apparent Henry constant, i.e., the ratio gas phase to snow phase of HONO and the clear difference seen between the different snow samples is a strong indication that bulk diffusion in the ice phase is the dominant process involved in the migration and that it takes place mainly into grain

  20. Influence of topographic and environmental variability on model uncertainty: a case study on snow and ground temperatures in mountain regions

    NASA Astrophysics Data System (ADS)

    Gubler, S.; Gruber, S.; Purves, R.; Endrizzi, S.

    2012-12-01

    A variety of physically based models to predict and understand the spatio-temporal behaviour of snow and ground temperatures have been developed in recent years. Model evaluation including the analysis of model uncertainty and validation is widely accepted as fundamental in enhancing trust in decisions that are based on model simulations. Due to constraints on resources or lack of distributed validation data, model evaluation is often restricted to one or few locations only, even if the model is applied to make predictions for large spatial areas and time periods. Thus, conclusions about model behaviour entail the tacit assumption that validation at one point can inform decisions about model performance in different environmental conditions. The effect of this assumption on model application and development when modeling phenomena in highly variable terrain or over large distances has rarely been studied. This study is focused on a sensitivity and uncertainty analysis of an energy and mass balance model that simulates snow and ground temperatures. It serves as a case study examining the role of topography and soil on parametric model uncertainty and sensitivity. A sensitivity analysis on individual parameters and a Monte Carlo based uncertainty study are performed at a variety of locations covering the range of topographic and environmental variability typically found in mountain regions. The results indicate that model uncertainties and sensitivities vary strongly under differing environmental conditions. This demonstrates that model evaluation (validation, sensitivity and uncertainty analyses) benefits strongly from the consideration of differing variables and, especially, the environmental variation of their behaviour.

  1. Snow cover and land surface temperature assessment of Gangotri basin in the Indian Himalayan Region (IHR) using MODIS satellite data for climate change inferences

    NASA Astrophysics Data System (ADS)

    Krishna, Akhouri P.; Sharma, Anurag

    2013-10-01

    Climate change has become a cause of concern as well as the challenge of this century. Himalayan mountain ranges with high snow fields and numerous valley glaciers may bear the brunt of such changes already being reported including Intergovernmental Panel on Climate Change (IPCC). Gangotri is one of the most prominent snow-fed catchments of Indian Himalayan Region (IHR) due to origin of river Ganga situated within it. Spatio-temporal changes in snow covered area of this basin were examined for melting seasons of the years 2006 to 2010 and a latest reference year of 2012 as a special test case. Standard snow data products (MOD10A2) of Moderate Resolution Imaging Spectroradiometer (MODIS)-Terra sensor with spatial resolution of 500 m were used. For all the years of reference, snow covered area percentage was derived for respective months representing usual ablation or melting periods. Snow depletion curves (SDCs) were generated for such periods of the respective years. CARTOSAT digital elevation model (DEM) was used for topographic information of terrain. Relationship of SDCs with the land surface temperatures (LST) of the basin was worked upon using MODIS-Terra LST (MOD11A2) product (version 5) with 1 km resolution at 8-day interval for the day time temperature for respective months of above reference years. Thereafter, interpolation and simulation of snow covered areas was carried out on the basis of LST data. The study thus produced snow cover maps for the years of reference as well as their relationship with LST for climate change inferences.

  2. Sea Ice SAR Signature Dependence on Thaw and Refreeze Event in the Snow Cover

    NASA Astrophysics Data System (ADS)

    Hudier, E. J.; Tolszczuk-Leclerc, S.

    2010-12-01

    As a result of the dependence of microwaves on the dielectric properties of the material they interfere with, the microwave signature of sea ice changes dramatically with the seasons as well as overnight when the snow layer is at the freezing point While pure ice and dry snow do not cause significant scattering and can be considered transparent throughout the winter season, the presence of liquid water, later on at spring, on air-ice or air-snow interfaces or within the snow cover turns the snow layer into an opaque medium and makes the air-snow interface the main contributor of the microwave backscattered to the SAR antenna. The availability of liquid water in the snow is the result of a shift in the thermodynamic balance of the snow layer and sea ice sheet. At spring, with the irradiance and air temperature increasing, the snow media quickly becomes isothermal. The snow layer is then a tri-phasic medium in which water changes state to balance radiations (short and long waves) and conductive heat fluxes variations. As a consequence, the surface layer of the snow cover is subject to a diurnal cycle of thaw during day time and refreeze at night which translates into a parallel diurnal cycle on snow wetness content. This cycle is of major relevance to microwave remote sensing applications and specifically to sea ice morphological features extraction. Using the output of a thermodynamic model of an isothermal snow cover forced by incoming L↓ and outgoing L↑ long-wave radiations, incident S↓ and reflected S↑ short-wave radiations and a turbulent atmospheric heat flux Qatm, an evaluation of the volume and surface components of a backscattered SAR is computed as a function of the SAR incident angle. We observe that when heat fluxes (irradiative and conductive) are positive, liquid water available in the top layer of the snow cover turns the air-snow interface into a specular reflector. Conversely, with wetness decreasing overnight, more energy can penetrate the

  3. Impact of autumn SST in the Japan Sea on winter rainfall and air temperature in Northeast China

    NASA Astrophysics Data System (ADS)

    Shi, Xiaomeng; Sun, Jilin; Wu, Dexing; Yi, Li; Wei, Dongni

    2015-08-01

    We studied the impact of sea surface temperature anomaly (SSTA) in the Japan Sea and the sea area east of Japan on the winter rainfall and air temperature in Northeast (NE) China using the singular value decomposition (SVD) and empirical orthogonal function (EOF). The monthly-mean rainfall data observed at 160 stations in China, monthly-mean sea surface temperature (SST) of the Hadley Center for Climate Prediction and Research and monthly-mean air temperature from the NCEP reanalysis during 1960-2011 were used. Correlation analysis indicates that the SSTAs in the Japan Sea in September may last for three or four months and are an important index for forecasting the winter rainfall and air temperature in NE China. Positive SSTAs in the central Japan Sea and in the sea area east of Tokyo correspond to positive rainfall anomaly and negative air temperature anomaly in NE China. With the rise of SST in the Japan Sea, a weak cyclone appears over the Japan Sea. The northeasterly wind transports water vapor from the Okhotsk to NE China, resulting in more rainfall and lower air temperature. Negative SSTA years are accompanied by warmer air temperature and less snow in NE China. The 1000 hPa geopotential height anomaly and wind anomaly fields are simulated by IAP-9L model, which supports the analysis results.

  4. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  5. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  6. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  7. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  8. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  9. Are lichens active under snow in continental Antarctica?

    PubMed

    Pannewitz, Stefan; Schlensog, Mark; Green, T G Allan; Sancho, Leopoldo G; Schroeter, Burkhard

    2003-03-01

    Photosynthetic activity, detected as chlorophyll a fluorescence, was measured for lichens under undisturbed snow in continental Antarctica using fibre optics. The fibre optics had been buried by winter snowfall after being put in place the previous year under snow-free conditions. The fibre optics were fixed in place using specially designed holding devices so that the fibre ends were in close proximity to selected lichens. Several temperature and PPFD (photosynthetic photon flux density) sensors were also installed in or close to the lichens. By attaching a chlorophyll a fluorometer to the previously placed fibre optics it proved possible to measure in vivo potential photosynthetic activity of continental Antarctic lichens under undisturbed snow. The snow cover proved to be a very good insulator for the mosses and lichens but, in contrast to the situation reported for the maritime Antarctic, it retained the severe cold of the winter and prevented early warming. Therefore, the lichens and mosses under snow were kept inactive at subzero temperatures for a prolonged time, even though the external ambient air temperatures would have allowed metabolic activity. The results suggest that the major activity period of the lichens was at the time of final disappearance of the snow and lasted about 10-14 days. The activation of lichens under snow by high air humidity appeared to be very variable and species specific. Xanthoria mawsonii was activated at temperatures below -10 degrees C through absorption of water from high air humidity. Physcia dubia showed some activation at temperatures around -5 degrees C but only became fully activated at thallus temperatures of 0 degrees C through liquid water. Candelariella flava stayed inactive until thallus temperatures close to zero indicated that liquid water had become available. Although the snow cover represented the major water supply for the lichens, lichens only became active for a brief time at or close to the time the snow

  10. An improved snow cover scheme for high-resolution numerical weather prediction models.

    NASA Astrophysics Data System (ADS)

    Bellaire, S.; Sauter, T.; Rotach, M. W.

    2015-12-01

    accurately modeled snow surface temperature and snow height it has also the potential to improve the NWP performance, e.g. in predicting the near surface air temperature during snow covered periods.

  11. 50 years of snow stratigraphy observations

    NASA Astrophysics Data System (ADS)

    Johansson, C.; Pohjola, V.; Jonasson, C.; Challagan, T. V.

    2012-04-01

    With start in autumn 1961 the Abisko Scientific Research Station (ASRS) located in the Swedish sub Arctic has performed snow stratigraphy observations, resulting in a unique 50 year long time series of data. The data set contains grain size, snow layer hardness, grain compactness and snow layer dryness, observed every second week during the winter season. In general snow and snow cover are important factors for the global radiation budget, and the earth's climate. On a more local scale the layered snowpack creates a relatively mild microclimate for Arctic plants and animals, and it also determines the water content of the snowpack (snow water equivalent) important for e.g. hydrological applications. Analysis of the snow stratigraphy data, divided into three consecutive time periods, show that there has been a change in the last time period. The variable most affected is the snow layer hardness, which shows an increase in hardness of the snowpack. The number of observations with a very hard snow layer/ice at ground level increased three-fold between the first two time periods and the last time period. The thickness of the bottom layer in the snowpack is also highly affected. There has been a 60% increase in layers thinner than 10 cm in the last time period, resulting in a mean reduction in the thickness of the bottom layer from 14 cm to 11 cm. Hence the living conditions for plants and animals at the ground surface have been highly changed. The changes in the snowpack are correlated to an increased mean winter air temperature. Thus, continued increasing, or temperatures within the same ranges as in the last time period, is likely to create harder snow condition in the future. These changes are likely to affect animals that live under the snow such as lemmings and voles or animals that graze sub-Arctic vegetation in winter (e.g. reindeer that would potentially require increased supplementary feeding that incurs financial costs to Sami reindeer herders). Any decrease

  12. Air-snow transfer of nitrate on the East Antarctic Plateau - Part 2: An isotopic model for the interpretation of deep ice-core records

    NASA Astrophysics Data System (ADS)

    Erbland, J.; Savarino, J.; Morin, S.; France, J. L.; Frey, M. M.; King, M. D.

    2015-10-01

    Unraveling the modern budget of reactive nitrogen on the Antarctic Plateau is critical for the interpretation of ice-core records of nitrate. This requires accounting for nitrate recycling processes occurring in near-surface snow and the overlying atmospheric boundary layer. Not only concentration measurements but also isotopic ratios of nitrogen and oxygen in nitrate provide constraints on the processes at play. However, due to the large number of intertwined chemical and physical phenomena involved, numerical modeling is required to test hypotheses in a quantitative manner. Here we introduce the model TRANSITS (TRansfer of Atmospheric Nitrate Stable Isotopes To the Snow), a novel conceptual, multi-layer and one-dimensional model representing the impact of processes operating on nitrate at the air-snow interface on the East Antarctic Plateau, in terms of concentrations (mass fraction) and nitrogen (δ15N) and oxygen isotopic composition (17O excess, Δ17O) in nitrate. At the air-snow interface at Dome C (DC; 75° 06' S, 123° 19' E), the model reproduces well the values of δ15N in atmospheric and surface snow (skin layer) nitrate as well as in the δ15N profile in DC snow, including the observed extraordinary high positive values (around +300 ‰) below 2 cm. The model also captures the observed variability in nitrate mass fraction in the snow. While oxygen data are qualitatively reproduced at the air-snow interface at DC and in East Antarctica, the simulated Δ17O values underestimate the observed Δ17O values by several per mill. This is explained by the simplifications made in the description of the atmospheric cycling and oxidation of NO2 as well as by our lack of understanding of the NOx chemistry at Dome C. The model reproduces well the sensitivity of δ15N, Δ17O and the apparent fractionation constants (15ϵapp, 17Eapp) to the snow accumulation rate. Building on this development, we propose a framework for the interpretation of nitrate records

  13. Air-snow transfer of nitrate on the East Antarctic plateau - Part 2: An isotopic model for the interpretation of deep ice-core records

    NASA Astrophysics Data System (ADS)

    Erbland, J.; Savarino, J.; Morin, S.; France, J. L.; Frey, M. M.; King, M. D.

    2015-03-01

    Unraveling the modern budget of reactive nitrogen on the Antarctic plateau is critical for the interpretation of ice core records of nitrate. This requires accounting for nitrate recycling processes occurring in near surface snow and the overlying atmospheric boundary layer. Not only concentration measurements, but also isotopic ratios of nitrogen and oxygen in nitrate, provide constraints on the processes at play. However, due to the large number of intertwined chemical and physical phenomena involved, numerical modelling is required to test hypotheses in a quantitative manner. Here we introduce the model "TRansfer of Atmospheric Nitrate Stable Isotopes To the Snow" (TRANSITS), a novel conceptual, multi-layer and one-dimensional model representing the impact of processes operating on nitrate at the air-snow interface on the East Antarctic plateau, in terms of concentrations (mass fraction) and the nitrogen (δ15N) and oxygen isotopic composition (17O}-excess, Δ17O) in nitrate. At the air-snow interface at Dome C (DC, 75°06' S, 123°19' E), the model reproduces well the values of δ15N in atmospheric and surface snow (skin layer) nitrate as well as in the δ15N profile in DC snow including the observed extraordinary high positive values (around +300 ‰) below 20 unit{cm}. The model also captures the observed variability in nitrate mass fraction in the snow. While oxygen data are qualitatively reproduced at the air-snow interface at DC and in East Antarctica, the simulated Δ17O values underestimate the observed Δ17O values by a few ‰. This is explained by the simplifications made in the description of the atmospheric cycling and oxidation of NO2. The model reproduces well the sensitivity of δ15N, Δ17O and the apparent fractionation constants (15ϵapp, 17Eapp) to the snow accumulation rate. Building on this development, we propose a framework for the interpretation of nitrate records measured from ice cores. Measurement of nitrate mass fractions

  14. Urban soil moisture affecting local air temperature

    NASA Astrophysics Data System (ADS)

    Wiesner, Sarah; Ament, Felix; Eschenbach, Annette

    2015-04-01

    of urban land use is not found to be definite. Air temperature (Ta) anomalies of the suburban sites from the inner city site are analysed for several periods and seasons. During daytime a significant annual mean deviation is observed above unsealed, vegetated surfaces from a sealed site during selected relevant days. Remarkably, about a fifth of the variance of the diurnal Ta span, i.e. increase of Ta during the day, is found to be explained by normalized Θ for selected meteorological situations. In this contribution this observed relation between topsoil moisture and air temperature increase during daytime at suburban sites will be presented after describing the local conditions and soil hydrological heterogeneities at the observed urban sites.

  15. Appalachia Snow

    Atmospheric Science Data Center

    2014-05-15

    ... on December 4 and 5, 2002, also brought the season's first snow to parts of the south and southern Appalachia. The extent of snow cover over central Kentucky, eastern Tennessee, western North Carolina and ...

  16. An instrumented sample holder for time-lapse micro-tomography measurements of snow under advective airflow

    NASA Astrophysics Data System (ADS)

    Ebner, P. P.; Grimm, S. A.; Schneebeli, M.; Steinfeld, A.

    2014-06-01

    An instrumented sample holder was developed for time-lapse micro-tomography of snow samples to enable in-situ nondestructive spatial and temporal measurements under controlled advective airflows, temperature gradients, and air humidities. The design was aided by computational fluid dynamics simulations to evaluate the airflow uniformity across the snow sample. Morphological and mass transport properties were evaluated during a 4 day test run. This instrument allows the experimental characterization of metamorphism of snow undergoing structural changes with time.

  17. Simulation of air and ground temperatures in PMIP3/CMIP5 last millennium simulations: implications for climate reconstructions from borehole temperature profiles

    NASA Astrophysics Data System (ADS)

    García-García, A.; Cuesta-Valero, F. J.; Beltrami, H.; Smerdon, J. E.

    2016-04-01

    For climate models to simulate the continental energy storage of the Earth’s energy budget they must capture the processes that partition energy across the land-atmosphere boundary. We evaluate herein the thermal consequences of these processes as simulated by models in the third phase of the paleoclimate modelling intercomparison project and the fifth phase of the coupled model intercomparison project (PMIP3/CMIP5). We examine air and ground temperature tracking at decadal and centennial time-scales within PMIP3 last-millennium simulations concatenated to historical simulations from the CMIP5 archive. We find a strong coupling between air and ground temperatures during the summer from 850 to 2005 CE. During the winter, the insulating effect of snow and latent heat exchanges produce a decoupling between the two temperatures in the northern high latitudes. Additionally, we use the simulated ground surface temperatures as an upper boundary condition to drive a one-dimensional conductive model in order to derive synthetic temperature-depth profiles for each PMIP3/CMIP5 simulation. Inversion of these subsurface profiles yields temperature trends that retain the low-frequency variations in surface air temperatures over the last millennium for all the PMIP3/CMIP5 simulations regardless of the presence of seasonal decoupling in the simulations. These results demonstrate the robustness of surface temperature reconstructions from terrestrial borehole data and their interpretation as indicators of past surface air temperature trends and continental energy storage.

  18. Global Snow-Cover Evolution from Twenty Years of Satellite Passive Microwave Data

    USGS Publications Warehouse

    Mognard, N.M.; Kouraev, A.V.; Josberger, E.G.

    2003-01-01

    Starting in 1979 with the SMMR (Scanning Multichannel Microwave Radiometer) instrument onboard the satellite NIMBUS-7 and continuing since 1987 with the SSMI (Special Sensor Microwave Imager) instrument on board the DMSP (Defence Meteorological Satellite Program) series, more then twenty years of satellite passive microwave data are now available. This dataset has been processed to analyse the evolution of the global snow cover. This work is part of the AICSEX project from the 5th Framework Programme of the European Community. The spatio-temporal evolution of the satellite-derived yearly snow maximum extent and the timing of the spring snow melt were estimated and analysed over the Northern Hemisphere. Significant differences between the evolution of the yearly maximum snow extent in Eurasia and in North America were found. A positive correlation between the maximum yearly snow cover extent and the ENSO index was obtained. High interannual spatio-temporal variability characterises the timing of snow melt in the spring. Twenty-year trends in the timing of spring snow melt have been computed and compared with spring air temperature trends for the same period and the same area. In most parts of Eurasia and in the central and western parts of North America the tendency has been for earlier snow melt. In northeastern Canada, a large area of positive trends, where snow melt timing starts later than in the early 1980s, corresponds to a region of positive trends of spring air temperature observed over the same period.

  19. Effects of seasonal snow on the growing season of temperate vegetation in China.

    PubMed

    Yu, Zhen; Liu, Shirong; Wang, Jingxin; Sun, Pengsen; Liu, Weiguo; Hartley, Damon S

    2013-07-01

    Variations in seasonal snowfall regulate regional and global climatic systems and vegetation growth by changing energy budgets of the lower atmosphere and land surface. We investigated the effects of snow on the start of growing season (SGS) of temperate vegetation in China. Across the entire temperate region in China, the winter snow depth increased at a rate of 0.15 cm yr(-1) (P = 0.07) during the period 1982-1998, and decreased at a rate of 0.36 cm yr(-1) (P = 0.09) during the period 1998-2005. Correspondingly, the SGS advanced at a rate of 0.68 day yr(-1) (P < 0.01) during 1982-1998, and delayed at a rate of 2.13 day yr(-1) (P = 0.07) during 1998-2005, against a warming trend throughout the entire study period of 1982-2005. Spring air temperature strongly regulated the SGS of both deciduous broad-leaf and coniferous forests, whereas the winter snow had a greater impact on the SGS of grassland and shrubs. Snow depth variation combined with air temperature contributed to the variability in the SGS of grassland and shrubs, as snow acted as an insulator and modulated the underground thermal conditions. In addition, differences were seen between the impacts of winter snow depth and spring snow depth on the SGS; as snow depths increased, the effect associated went from delaying SGS to advancing SGS. The observed thresholds for these effects were snow depths of 6.8 cm (winter) and 4.0 cm (spring). The results of this study suggest that the response of the vegetation's SGS to seasonal snow change may be attributed to the coupling effects of air temperature and snow depth associated with the underground thermal conditions.

  20. Effects of seasonal snow on the growing season of temperate vegetation in China.

    PubMed

    Yu, Zhen; Liu, Shirong; Wang, Jingxin; Sun, Pengsen; Liu, Weiguo; Hartley, Damon S

    2013-07-01

    Variations in seasonal snowfall regulate regional and global climatic systems and vegetation growth by changing energy budgets of the lower atmosphere and land surface. We investigated the effects of snow on the start of growing season (SGS) of temperate vegetation in China. Across the entire temperate region in China, the winter snow depth increased at a rate of 0.15 cm yr(-1) (P = 0.07) during the period 1982-1998, and decreased at a rate of 0.36 cm yr(-1) (P = 0.09) during the period 1998-2005. Correspondingly, the SGS advanced at a rate of 0.68 day yr(-1) (P < 0.01) during 1982-1998, and delayed at a rate of 2.13 day yr(-1) (P = 0.07) during 1998-2005, against a warming trend throughout the entire study period of 1982-2005. Spring air temperature strongly regulated the SGS of both deciduous broad-leaf and coniferous forests, whereas the winter snow had a greater impact on the SGS of grassland and shrubs. Snow depth variation combined with air temperature contributed to the variability in the SGS of grassland and shrubs, as snow acted as an insulator and modulated the underground thermal conditions. In addition, differences were seen between the impacts of winter snow depth and spring snow depth on the SGS; as snow depths increased, the effect associated went from delaying SGS to advancing SGS. The observed thresholds for these effects were snow depths of 6.8 cm (winter) and 4.0 cm (spring). The results of this study suggest that the response of the vegetation's SGS to seasonal snow change may be attributed to the coupling effects of air temperature and snow depth associated with the underground thermal conditions. PMID:23532953

  1. Sensitivity of Alpine Snow and Streamflow Regimes to Climate Changes

    NASA Astrophysics Data System (ADS)

    Rasouli, K.; Pomeroy, J. W.; Marks, D. G.; Bernhardt, M.

    2014-12-01

    Understanding the sensitivity of hydrological processes to climate change in alpine areas with snow dominated regimes is of paramount importance as alpine basins show both high runoff efficiency associated with the melt of the seasonal snowpack and great sensitivity of snow processes to temperature change. In this study, meteorological data measured in a selection of alpine headwaters basins including Reynolds Mountain East, Idaho, USA, Wolf Creek, Yukon in Canada, and Zugspitze Mountain, Germany with climates ranging from arctic to continental temperate were used to study the snow and streamflow sensitivity to climate change. All research sites have detailed multi-decadal meteorological and snow measurements. The Cold Regions Hydrological Modelling platform (CRHM) was used to create a model representing a typical alpine headwater basin discretized into hydrological response units with physically based representations of snow redistribution by wind, complex terrain snowmelt energetics and runoff processes in alpine tundra. The sensitivity of snow hydrology to climate change was investigated by changing air temperature and precipitation using weather generating methods based on the change factors obtained from different climate model projections for future and current periods. The basin mean and spatial variability of peak snow water equivalent, sublimation loss, duration of snow season, snowmelt rates, streamflow peak, and basin discharge were assessed under varying climate scenarios and the most sensitive hydrological mechanisms to the changes in the different alpine climates were detected. The results show that snow hydrology in colder alpine climates is more resilient to warming than that in warmer climates, but that compensatory factors to warming such as reduced blowing snow sublimation loss and reduced melt rate should also be assessed when considering climate change impacts on alpine hydrology.

  2. Rain-on-Snow Flooding and the Sensitivity of Mountain Snowcovers to Temperature, Humidity, and Phase Change in a Warming Climate

    NASA Astrophysics Data System (ADS)

    Marks, D. G.

    2015-12-01

    Devastating floods in mountain regions of the western US and Canada can result from rapid snowmelt during mid-winter rain-on-snow (ROS) events. Key components of snowmelt flooding during ROS are conditions prior to the storm, the combination of temperature, humidity and wind during the event, and the extent to which the snowcover is exposed to the wind. The critical antecedent condition is the extension of the snowcover to lower elevations. In mountain basins this significantly increases the snow-covered area (SCA) and volume of water stored in the snowcover. During ROS events the elevation of the rain/snow transition can rise, resulting in rain over large snow-covered areas. During typical conditions the mountain snowcover is generally cooled by evaporation (latent heat flux), and warmed by sensible heat flux, such that the turbulent fluxes tend to balance, and have only modest effect on the energy state of the snowcover. However, during ROS higher humidity results in condensation on the snow, increasing melt energy by 50 - 100 times such that most of the energy for snowmelt comes from the combination of sensible and latent heat exchange. If SCA is extensive and exposed to the wind, the surface water input (SWI) can be more than doubled by the addition of melt to the rain. Data indicate that as the climate warms, higher temperatures and more humid conditions during storms may result in more frequent flooding events from mountain regions.

  3. Observations of Precipitation Size and Fall Speed Characteristics within Coexisting Rain and Wet Snow

    NASA Technical Reports Server (NTRS)

    Yuter, Sandra E.; Kingsmill, David E.; Nance, Louisa B.; Loeffler-Mang, Martin

    2006-01-01

    Ground-based measurements of particle size and fall speed distributions using a Particle Size and Velocity (PARSIVEL) disdrometer are compa red among samples obtained in mixed precipitation (rain and wet snow) and rain in the Oregon Cascade Mountains and in dry snow in the Rock y Mountains of Colorado. Coexisting rain and snow particles are distinguished using a classification method based on their size and fall sp eed properties. The bimodal distribution of the particles' joint fall speed-size characteristics at air temperatures from 0.5 to 0 C suggests that wet-snow particles quickly make a transition to rain once mel ting has progressed sufficiently. As air temperatures increase to 1.5 C, the reduction in the number of very large aggregates with a diame ter > 10 mm coincides with the appearance of rain particles larger than 6 mm. In this setting. very large raindrops appear to be the result of aggregates melting with minimal breakup rather than formation by c oalescence. In contrast to dry snow and rain, the fall speed for wet snow has a much weaker correlation between increasing size and increasing fall speed. Wet snow has a larger standard deviation of fall spee d (120%-230% relative to dry snow) for a given particle size. The ave rage fall speed for observed wet-snow particles with a diameter great er than or equal to 2.4 mm is 2 m/s with a standard deviation of 0.8 m/s. The large standard deviation is likely related to the coexistence of particles of similar physical size with different percentages of melting. These results suggest that different particle sizes are not required for aggregation since wet-snow particles of the same size can have different fall speeds. Given the large standard deviation of fa ll speeds in wet snow, the collision efficiency for wet snow is likely larger than that of dry snow. For particle sizes between 1 and 10 mm in diameter within mixed precipitation, rain constituted I % of the particles by volume within the isothermal layer

  4. Deciphering influences of temperature, moisture sources, post-deposition effects and stratospheric inputs in records of stable isotopes in East Antarctic snow

    NASA Astrophysics Data System (ADS)

    Touzeau, Alexandra; Fourré, Elise; Baroni, Mélanie; Curran, Mark; Ekaykin, Alexey; Magand, Olivier; Moy, Andrew; McConnell, Joe; Landais, Amaelle

    2015-04-01

    The oxygen and deuterium isotopic composition of ice represent a prodigal source of information for the reconstruction of past climate. Their widespread use relies upon the straightforward relationship between the oxygen or deuterium isotopic composition in the snow precipitated and the inversion temperature (or the local temperature). However, between the precipitation of the snow and the solidification of ice, several mechanisms may affect the initial composition of the snow, thereby rendering the climatic signal less perceptible. During deposition or shortly after deposition, the wind may blow away and redeposit the uncompact snow, and therefore affect the chronology of the record. Various origins of the moisture source, including possible stratospheric inputs in very low accumulation sites, may also affect water isotopic composition. Finally, after deposition, the isotopic signal is also modified by diffusion of isotopes in the solid phase, local sublimation and condensation with associated fractionation, and water vapor transport between snow layers. In order to assess the effect of these mechanisms on the snow isotopic composition, we compare the results of the analysis of five snow pits from the East Antarctica plateau: two from Vostok, one from Dome C, one from S2 and one from Aurora Basin (ABN). For each snow pit, snow was sampled every three cm over a depth of about three meters. The ratios of 18O/16O, 17O/16O and D/H were determined for each sample and additional 10Be profiles were obtained for some profiles. Because the different water isotopes are affected differently by equilibrium and diffusive processes and because stratospheric inputs are expected to leave a significant signature in 10Be and 17Oexcess, the combination of the different isotopic profiles is a useful tool for inferring the origin of δ18O or δD variations in the top 3 m of the ice sheet. Using the relationships observed between δ18O, d-excess, 17O-excess and 10Be, we are able to

  5. Validation of snow characteristics and snow albedo feedback in the Canadian Regional Climate Model simulations over North America

    NASA Astrophysics Data System (ADS)

    Fang, B.; Sushama, L.; Diro, G. T.

    2015-12-01

    Snow characteristics and snow albedo feedback (SAF) over North America, as simulated by the fifth-generation Canadian Regional Climate Model (CRCM5), when driven by ERA-40/ERA-Interim, CanESM2 and MPI-ESM-LR at the lateral boundaries, are analyzed in this study. Validation of snow characteristics is performed by comparing simulations against available observations from MODIS, ISCCP and CMC. Results show that the model is able to represent the main spatial distribution of snow characteristics with some overestimation in snow mass and snow depth over the Canadian high Arctic. Some overestimation in surface albedo is also noted for the boreal region which is believed to be related to the snow unloading parameterization, as well as the overestimation of snow albedo. SAF is assessed both in seasonal and climate change contexts when possible. The strength of SAF is quantified as the amount of additional net shortwave radiation at the top of the atmosphere as surface albedo decreases in association with a 1°C increase in surface temperature. Following Qu and Hall (2007), this is expressed as the product of the variation in planetary albedo with surface albedo and the change in surface albedo for 1°C change in surface air temperature during the season, which in turn is determined by the strength of the snow cover and snowpack metamorphosis feedback loops. Analysis of the latter term in the seasonal cycle suggests that for CRCM5 simulations, the snow cover feedback loop is more dominant compared to the snowpack metamorphosis feedback loop, whereas for MODIS, the two feedback loops have more or less similar strength. Moreover, the SAF strength in the climate change context appears to be weaker than in the seasonal cycle and is sensitive to the driving GCM and the RCP scenario.

  6. NOAA's National Snow Analyses

    NASA Astrophysics Data System (ADS)

    Carroll, T. R.; Cline, D. W.; Olheiser, C. M.; Rost, A. A.; Nilsson, A. O.; Fall, G. M.; Li, L.; Bovitz, C. T.

    2005-12-01

    NOAA's National Operational Hydrologic Remote Sensing Center (NOHRSC) routinely ingests all of the electronically available, real-time, ground-based, snow data; airborne snow water equivalent data; satellite areal extent of snow cover information; and numerical weather prediction (NWP) model forcings for the coterminous U.S. The NWP model forcings are physically downscaled from their native 13 km2 spatial resolution to a 1 km2 resolution for the CONUS. The downscaled NWP forcings drive an energy-and-mass-balance snow accumulation and ablation model at a 1 km2 spatial resolution and at a 1 hour temporal resolution for the country. The ground-based, airborne, and satellite snow observations are assimilated into the snow model's simulated state variables using a Newtonian nudging technique. The principle advantages of the assimilation technique are: (1) approximate balance is maintained in the snow model, (2) physical processes are easily accommodated in the model, and (3) asynoptic data are incorporated at the appropriate times. The snow model is reinitialized with the assimilated snow observations to generate a variety of snow products that combine to form NOAA's NOHRSC National Snow Analyses (NSA). The NOHRSC NSA incorporate all of the available information necessary and available to produce a "best estimate" of real-time snow cover conditions at 1 km2 spatial resolution and 1 hour temporal resolution for the country. The NOHRSC NSA consist of a variety of daily, operational, products that characterize real-time snowpack conditions including: snow water equivalent, snow depth, surface and internal snowpack temperatures, surface and blowing snow sublimation, and snowmelt for the CONUS. The products are generated and distributed in a variety of formats including: interactive maps, time-series, alphanumeric products (e.g., mean areal snow water equivalent on a hydrologic basin-by-basin basis), text and map discussions, map animations, and quantitative gridded products

  7. Siberia snow depth climatology derived from SSM/I data using a combined dynamic and static algorithm

    USGS Publications Warehouse

    Grippa, M.; Mognard, N.; Le, Toan T.; Josberger, E.G.

    2004-01-01

    One of the major challenges in determining snow depth (SD) from passive microwave measurements is to take into account the spatiotemporal variations of the snow grain size. Static algorithms based on a constant snow grain size cannot provide accurate estimates of snow pack thickness, particularly over large regions where the snow pack is subjected to big spatial temperature variations. A recent dynamic algorithm that accounts for the dependence of the microwave scattering on the snow grain size has been developed to estimate snow depth from the Special Sensor Microwave/Imager (SSM/I) over the Northern Great Plains (NGP) in the US. In this paper, we develop a combined dynamic and static algorithm to estimate snow depth from 13 years of SSM/I observations over Central Siberia. This region is characterised by extremely cold surface air temperatures and by the presence of permafrost that significantly affects the ground temperature. The dynamic algorithm is implemented to take into account these effects and it yields accurate snow depths early in the winter, when thin snowpacks combine with cold air temperatures to generate rapid crystal growth. However, it is not applicable later in the winter when the grain size growth slows. Combining the dynamic algorithm to a static algorithm, with a temporally constant but spatially varying coefficient, we obtain reasonable snow depth estimates throughout the entire snow season. Validation is carried out by comparing the satellite snow depth monthly averages to monthly climatological data. We show that the location of the snow depth maxima and minima is improved when applying the combined algorithm, since its dynamic portion explicitly incorporate the thermal gradient through the snowpack. The results obtained are presented and evaluated for five different vegetation zones of Central Siberia. Comparison with in situ measurements is also shown and discussed. ?? 2004 Elsevier Inc. All rights reserved.

  8. Snow: a reliable indicator for global warming in the future?

    NASA Astrophysics Data System (ADS)

    Jacobi, H.-W.

    2012-03-01

    The cryosphere consists of water in the solid form at the Earth's surface and includes, among others, snow, sea ice, glaciers and ice sheets. Since the 1990s the cryosphere and its components have often been considered as indicators of global warming because rising temperatures can enhance the melting of solid water (e.g. Barry et al 1993, Goodison and Walker 1993, Armstrong and Brun 2008). Changes in the cryosphere are often easier to recognize than a global temperature rise of a couple of degrees: many locals and tourists have hands-on experience in changes in the extent of glaciers or the duration of winter snow cover on the Eurasian and North American continents. On a more scientific basis, the last IPCC report left no doubt: the amount of snow and ice on Earth is decreasing (Lemke et al 2007). Available data showed clearly decreasing trends in the sea ice and frozen ground extent of the Northern Hemisphere (NH) and the global glacier mass balance. However, the trend in the snow cover extent (SCE) of the NH was much more ambiguous; a result that has since been confirmed by the online available up-to-date analysis of the SCE performed by the Rutgers University Global Snow Lab (climate.rutgers.edu/snowcover/). The behavior of snow is not the result of a simple cause-and-effect relationship between air temperature and snow. It is instead related to a rather complex interplay between external meteorological parameters and internal processes in the snowpack. While air temperature is of course a crucial parameter for snow and its melting, precipitation and radiation are also important. Further physical properties like snow grain size and the amount of absorbing impurities in the snow determine the fraction of absorbed radiation. While all these parameters affect the energy budget of the snowpack, each of these variables can dominate depending on the season or, more generally, on environmental conditions. As a result, the reduction in SCE in spring and summer in the

  9. Snow cover and ground surface temperature on a talus slope affected by mass movements. Veleta cirque, Sierra Nevada, Spain

    NASA Astrophysics Data System (ADS)

    Tanarro, L. M.; Palacios, D.; Gómez-Ortiz, A.; Salvador-Franch, F.

    2012-04-01

    This paper analyses the thermal ground behaviour on an alpine talus slope located at the foot of the north wall of the glacial cirque on the Pico del Veleta (3398 m, 37°03'21''N, 3°21'57''W, MAAT: -0,4°C) in Sierra Nevada, SE Spain. There are frequent mass movements on this talus slope, particularly in its central section, caused by the abundant presence of fine-grained sediment and by the water from snowmelt and/or ice degradation in the ground or permafrost (Gómez et al., 2003). To determine the snowmelt pattern and ocurrence of permafrost, a continuous ground surface temperature was kept by installing 6 mini-loggers (HOBO Pendant) along the descending profile of the central talus, which is 170 m long with altitudes ranging from 3180 m at the higher end to 3085 m at the lower end. A thermal borehole was also installed at a depth of 2 m at the base of the slope on an active rock glacier. The results obtained for the period October 2008 - September 2009 show that, in contrast to alpine talus slopes (Luetschg et. al., 2004; Lambiel and Pieracci, 2008), the upper part of the slope is characterized by mean annual ground surface temperatures (MAGST) lower than at the base of the talus, possibly due to the effect of the shadow of the cirque wall. The MAGST oscillate between 0.592°C at the station near the slope apex (S2) and 1.836°C at the station near the base (S5). In winter-spring, when the talus slope is covered with snow, the GST are stabilized at all stations between mid-October and early November. The minimum GST, which express the BTS conditions, oscillate between 0.232 and 0.01°C, depending on the month, with lowest values recorded during the month of April. Only one station (S3, mid-slope) recorded negative values (max. value : - 0.549°C in December and - 0.211 in April ). In summer, the snow disappears fairly quickly between mid- and late July on the intermediate stretch of the talus slope (S3, S4, S6), where the majority of the flows detected occur

  10. Detection of ice crust formation on snow with satellite data

    NASA Astrophysics Data System (ADS)

    Bartsch, Annett; Bulygina, Olga N.; Kumpula, Timo; Forbes, Bruce; Stammler, Florian

    2010-05-01

    Short term thawing of the snow surface and subsequent refreeze can lead to the formation of ice crusts. These events are related to specific meteorological conditions such us rain-on-snow events and/or temporary increase of air temperature above zero degree Celsius. The structure change in the snow pack has adverse effect especially on wild life and also the local community related to reindeer herding. Active microwave satellite data can be used to monitor changes of snow related to thawing. So far they have been mostly employed for spring thaw detection. Coarse spatial resolution sensors such as scatterometer feature short revisit intervals. Seawinds QuikScat (Ku-band, 25km, 1999-2009) acquired data several times per day at high latitudes. This allows precise detection of the timing of thaw events. Also the change of structure in the snow itself impacts the backscatter. Values increase significantly. A method has been developed to monitor these events at high latitudes (>60°N) on circumpolar scale. Validation is carried out based on air temperature records and snow course data over Northern Eurasia. Events during midwinter of the last nine years (November - February 2000/1 - 2008/9) have been frequent in northern Europe, European Russia and Alaska. They have occurred up to once a year in central Siberia, the Russian Far East and most of northern Canada. Monitoring is important as such events are discussed in relation to climate change especially over Northern Eurasia.

  11. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

  12. Are We Biologically Safe with Snow Precipitation? A Case Study in Beijing

    PubMed Central

    Shen, Fangxia; Yao, Maosheng

    2013-01-01

    In this study, the bacterial and fungal abundances, diversities, conductance levels as well as total organic carbon (TOC) were investigated in the snow samples collected from five different snow occurrences in Beijing between January and March, 2010. The collected snow samples were melted and cultured at three different temperatures (4, 26 and 37°C). The culturable bacterial concentrations were manually counted and the resulting colony forming units (CFUs) at 26°C were further studied using V3 region of 16 S rRNA gene-targeted polymerase chain reaction -denaturing gradient gel electrophoresis (PCR-DGGE). The clone library was constructed after the liquid culturing of snow samples at 26°C. And microscopic method was employed to investigate the fungal diversity in the samples. In addition, outdoor air samples were also collected using mixed cellulose ester (MCE) filters and compared with snow samples with respect to described characteristics. The results revealed that snow samples had bacterial concentrations as much as 16000 CFU/ml for those cultured at 26°C, and the conductance levels ranged from 5.6×10−6 to 2.4×10−5 S. PCR-DGGE, sequencing and microscopic analysis revealed remarkable bacterial and fungal diversity differences between the snow samples and the outdoor air samples. In addition, DGGE banding profiles for the snow samples collected were also shown distinctly different from one another. Absent from the outdoor air, certain human, plant, and insect fungal pathogens were found in the snow samples. By calculation, culturable bacteria accounted for an average of 3.38% (±1.96%) of TOC for the snow samples, and 0.01% for that of outdoor air samples. The results here suggest that snow precipitations are important sources of fungal pathogens and ice nucleators, thus could affect local climate, human health and agriculture security. PMID:23762327

  13. Are we biologically safe with snow precipitation? A case study in beijing.

    PubMed

    Shen, Fangxia; Yao, Maosheng

    2013-01-01

    In this study, the bacterial and fungal abundances, diversities, conductance levels as well as total organic carbon (TOC) were investigated in the snow samples collected from five different snow occurrences in Beijing between January and March, 2010. The collected snow samples were melted and cultured at three different temperatures (4, 26 and 37°C). The culturable bacterial concentrations were manually counted and the resulting colony forming units (CFUs) at 26°C were further studied using V3 region of 16 S rRNA gene-targeted polymerase chain reaction -denaturing gradient gel electrophoresis (PCR-DGGE). The clone library was constructed after the liquid culturing of snow samples at 26°C. And microscopic method was employed to investigate the fungal diversity in the samples. In addition, outdoor air samples were also collected using mixed cellulose ester (MCE) filters and compared with snow samples with respect to described characteristics. The results revealed that snow samples had bacterial concentrations as much as 16000 CFU/ml for those cultured at 26°C, and the conductance levels ranged from 5.6×10(-6) to 2.4×10(-5) S. PCR-DGGE, sequencing and microscopic analysis revealed remarkable bacterial and fungal diversity differences between the snow samples and the outdoor air samples. In addition, DGGE banding profiles for the snow samples collected were also shown distinctly different from one another. Absent from the outdoor air, certain human, plant, and insect fungal pathogens were found in the snow samples. By calculation, culturable bacteria accounted for an average of 3.38% (±1.96%) of TOC for the snow samples, and 0.01% for that of outdoor air samples. The results here suggest that snow precipitations are important sources of fungal pathogens and ice nucleators, thus could affect local climate, human health and agriculture security.

  14. Low temperature air with high IAQ for dry climates

    SciTech Connect

    Scofield, C.M. ); Des Champs, N.H. )

    1995-01-01

    This article describes how low temperature supply air and air-to-air heat exchangers can furnish 100% outdoor air with reduced peak energy demands. The use of low temperature supply air systems in arid climates greatly simplifies the air-conditioning design. Risks associated with moisture migration and sweating of duct and terminal equipment are reduced. Insulation and vapor barrier design requirements are not nearly as critical as they are in the humid, ambient conditions that exist in the eastern United States. The introduction of outdoor air to meet ASHRAE Standard 62-1989 becomes far less taxing on the mechanical cooling equipment because of the lower enthalpy levels of the dry western climate. Energy costs to assure indoor air quality (IAQ) are lower than for more tropical climates. In arid regions, maintaining acceptable indoor relative humidity (RH) levels becomes a major IAQ concern. For the western United States, coupling an air-to-air heat exchanger to direct (adiabatic) evaporative coolers can greatly reduce low temperature supply air refrigeration energy requirements and winter humidification costs while ensuring proper ventilation.

  15. Snow Art

    ERIC Educational Resources Information Center

    Kraus, Nicole

    2012-01-01

    It was nearing the end of a very long, rough winter with a lot of snow and too little time to play outside. The snow had formed small hills and valleys over the bushes and this was at the perfect height for the students to paint. In this article, the author describes how her transitional first-grade students created snow art paintings. (Contains 1…

  16. Interdecadal component variation characteristics in heavy winter snow intensity in North-Eastern China and its response to sea surface temperatures

    NASA Astrophysics Data System (ADS)

    Zhao, Chun-Yu; Fang, Yi-He; Luo, Yong; Wang, Ji

    2016-11-01

    Based on daily precipitation data from 208 weather stations, monthly NCEP/NCAR reanalysis data, and sea surface temperature data reconstructed by NOAA between 1961 and 2012, the heavy winter snow intensity in North-Eastern China was defined; its spatiotemporal variation characteristics were analyzed; the physical mechanisms of the relations between key sea surface temperature (SST) regions and heavy winter snow intensity were studied. Results showed that, in terms of temporal variation characteristics: heavy winter snow intensity in North-Eastern China has been rising, with obvious interdecadal variations during the study interval. In terms of spatial variation characteristics: the first empirical orthogonal function (EOF) mode of the interdecadal component in heavy winter snow intensity showed consistent anomaly characteristics throughout the region; the second mode exhibited opposite variation characteristics between the south and north; and the third mode exhibited opposite variation characteristics between the northwest and southeast. In terms of physical mechanisms underlying the effects of SST on heavy winter snow intensity, the key SST region of the first EOF mode was the Oyashio, the interdecadal component of the autumn Oyashio SST was abnormally high, which corresponded to a higher winter 500 hPa height field in the northern section of the North Pacific. This condition led to a blocking situation and was associated with a weaker East Asian winter monsoon (EAMW), which resulted in a stronger interdecadal component of heavy winter snow intensity and vice versa. The second mode was closely related to the Pacific Decadal Oscillation (PDO): the interdecadal component of the autumn PDO was abnormal, which induced the teleconnection pattern of the winter Pacific-North America (PNA) pattern. The PNA pattern may have been related to the second EOF mode through its association with the Mongolian high.

  17. A Warming Surface but a Cooling Top of Atmosphere Associated with Warm, Moist Air Mass Advection over the Ice and Snow Covered Arctic

    NASA Astrophysics Data System (ADS)

    Sedlar, J.

    2015-12-01

    Atmospheric advection of heat and moisture from lower latitudes to the high-latitude Arctic is a critical component of Earth's energy cycle. Large-scale advective events have been shown to make up a significant portion of the moist static energy budget of the Arctic atmosphere, even though such events are typically infrequent. The transport of heat and moisture over surfaces covered by ice and snow results in dynamic changes to the boundary layer structure, stability and turbulence, as well as to diabatic processes such as cloud distribution, microphysics and subsequent radiative effects. Recent studies have identified advection into the Arctic as a key mechanism for modulating the melt and freeze of snow and sea ice, via modification to all-sky longwave radiation. This paper examines the radiative impact during summer of such Arctic advective events at the top of the atmosphere (TOA), considering also the important role they play for the surface energy budget. Using infrared sounder measurements from the AIRS satellite, the summer frequency of significantly stable and moist advective events from 2003-2014 are characterized; justification of AIRS profiles over the Arctic are made using radiosoundings during a 3-month transect (ACSE) across the Eastern Arctic basin. One such event was observed within the East Siberian Sea in August 2014 during ACSE, providing in situ verification on the robustness and capability of AIRS to monitor advective cases. Results will highlight the important surface warming aspect of stable, moist instrusions. However a paradox emerges as such events also result in a cooling at the TOA evident on monthly mean TOA radiation. Thus such events have a climatic importance over ice and snow covered surfaces across the Arctic. ERA-Interim reanalyses are examined to provide a longer term perspective on the frequency of such events as well as providing capability to estimate meridional fluxes of moist static energy.

  18. Air-snow transfer of nitrate on the East Antarctic Plateau - Part 1: Isotopic evidence for a photolytically driven dynamic equilibrium

    NASA Astrophysics Data System (ADS)

    Erbland, J.; Vicars, W. C.; Savarino, J.; Morin, S.; Frey, M. M.; Frosini, D.; Vince, E.; Martins, J. M. F.

    2012-10-01

    Here we report the measurement of the comprehensive isotopic composition (δ15N, Δ17O and δ18O) of nitrate at the air-snow interface at Dome C, Antarctica (DC, 75° 06' S, 123° 19' E) and in snow pits along a transect across the East Antarctic Ice Sheet (EAIS) between 66° S and 78° S. For each of the East Antarctic snow pits in most of which nitrate loss is observed, we derive apparent fractionation constants associated with this loss as well as asymptotic values of nitrate concentration and isotopic ratios below the photic zone. Nitrate collected from snow pits on the plateau have average apparent fractionation constants of (-59±10)‰, (+2.0±1.0)‰ and (+8.7±2.4)‰, for δ15N, Δ17O and δ18O, respectively. In contrast, snow pits sampled on the coast show distinct isotopic signatures with average apparent fractionation constants of (-16±14)‰, (-0.2±1.5)‰ and (+3.1±5.8)‰, for δ15N, Δ17O and δ18O, respectively. From a lab experiment carried out at DC in parallel to the field investigations, we find that the 15N/14N fractionation associated with the physical release of nitrate is (-8.5±2.5)‰, a value significantly different from the modelled estimate previously found for photolysis (-48‰, Frey et al., 2009) when assuming a Rayleigh-type process. Our observations corroborate that photolysis is the dominant nitrate loss process on the East Antarctic Plateau, while on the coast the loss is less pronounced and could involve both physical release and photochemical processes. Year-round isotopic measurements at DC show a close relationship between the Δ17O of atmospheric nitrate and Δ17O of nitrate in skin layer snow, suggesting a photolytically-driven isotopic equilibrium imposed by nitrate recycling at this interface. The 3-4 weeks shift observed for nitrate concentration in these two compartments may be explained by the different sizes of the nitrate reservoirs and by deposition from the atmosphere to the snow. Atmospheric nitrate

  19. Northern-Hemisphere snow cover patterns and formation conditions in winter 2007 and 2012

    NASA Astrophysics Data System (ADS)

    Cui, Hongyan; Qiao, Fangli; Shu, Qi; Yu, Long

    2016-06-01

    The Arctic sea ice minimum records appeared in the Septembers of 2007 and 2012, followed by high snow cover areas in the Northern Hemisphere winters. The snow cover distributions show different spatial patterns in these two years: increased snow cover in Central Asia and Central North America in 2007, while increased snow cover in East Asia and northwestern Europe in 2012. The high snow cover anomaly shifted to higher latitudes in winter of 2012 compared to 2007. It is noticed that the snow cover had positive anomaly in 2007 and 2012 with the following conditions: the negative geopotential height and the related cyclonic wind anomaly were favorable for upwelling, and, with the above conditions, the low troposphere and surface air temperature anomaly and water vapor anomaly were favorable for the formation and maintenance of snowfalls. The negative geopotential height, cyclonic wind and low air temperature conditions were satisfied in different locations in 2007 and 2012, resulting in different spatial snow cover patterns. The cross section of lower air temperature move to higher latitudes in winter of 2012 compared to 2007.

  20. Are there evidences of altitudinal effects of air temperature trends in the European Alps 1820-2013?

    NASA Astrophysics Data System (ADS)

    Schoener, W.; Auer, I.; Chimani, B.; Garnekind, M.; Haslinger, K.

    2013-12-01

    We use the HISTALP data set (www.zamg.ac.at/histalp) in order to assess the elevation dependency of air temperature trends within the European Alps. The evidence of altitudinal effects of the climate warming (with higher sensitivity of high mountain regions to warming) is a key statement, or at least key hypothesis, in many studies. The high relevance of such statement resp. hypothesis is obvious if one consider the impacts resulting from such fact, such as snow- and glacier melting and related effects for mountain hydrology. The HISTALP data set stands out with respect to its series lengths and its high level of homogenisation. Interestingly, the HISTALP temperature data show no clear altitudinal dependency of warming or cooling trends within the period 1820-2013. Additionally, a rather homogenous temporal trend could be observed within the entire Greater Alpine Region (GAR). Because HISTALP include also air pressure and vapour pressure series, we could compare our measured air temperatures with mean-column air temperatures, computed by the barometric formula, which were derived from the independently measured air pressure data (using vapour pressure to account for the atmospheric water content) at low resp. high elevations. Computed mean column temperatures are in good agreement with observed temperatures, indicating generally homogenous temporal temperature trend behaviour at different elevations. Our finding contradicts several results from climate modelling attempts and also other studies investigating Alpine temperature trends. We conclude that, whereas modelling results are still limited in the assessment of altitudinal effect of temperature trends from missing atmospheric processes captured by the models, the difference of the trend behaviour compared to other analyses of instrumental air temperatures comes from the seasonal base taken as the basis for trend estimation. It appears that opposite trend in spring and autumn for the period 1980

  1. Simulation of Air and Ground Temperatures in PMIP3/CMIP5 Last Millennium Simulations: Implications for Climate Reconstructions from Borehole Temperature Profiles

    NASA Astrophysics Data System (ADS)

    Beltrami, Hugo; García-García, Almudena; José Cuesta-Valero, Francisco; Smerdon, Jason

    2016-04-01

    For General Circulation Models (GCMs) to simulate the continental energy storage of the Earth's energy budget it is crucial that they correctly capture the processes that partition energy across the land-atmosphere boundary. We evaluate herein the characteristics of these processes as simulated by models in the third phase of the Paleoclimate Modelling Intercomparison Project and the fifth phase of the Coupled Model Intercomparison Project (PMIP3/CMIP5). We examine the seasonal differences between air and ground temperatures within PMIP3 last-millennium simulations concatenated with historical simulations from the CMIP5 archive. We find a strong air-ground coupling during the summer from 850 to 2000 CE. During the winter, the insulating effect of snow and latent heat exchanges produce a decoupling between air and ground temperatures in the northern high latitudes. Additionally, we use the simulated temperature trends as an upper boundary condition to force a one-dimensional conductive model to derive synthetic temperature-depth profiles for each PMIP3/CMIP5 simulation. The inversions of these subsurface profiles yield temperature trends that retain the surface temperature variations of the last millennium for all the PMIP3/CMIP5 simulations. These results support the use of underground temperatures to reconstruct past changes in ground surface temperature and to estimate the continental energy storage.

  2. A consideration on the electric field formed by blowing snow particles

    NASA Astrophysics Data System (ADS)

    Omiya, Satoshi; Sato, Atsushi

    2013-04-01

    Fluctuations of the atmospheric electric field strength have been reported during blowing snow events. A primary factor of this phenomenon is the electrification of the blowing snow particles. Electric force applied to the blowing snow particles may be a contributing factor in the formation of snow drifts and snow cornices and changing particles' trajectory motion. These can cause natural disaster such as an avalanche and visibility deterioration. Therefore, charging phenomenon of the blowing snow particles is an important issue in terms of not only precise understanding of the particle motion but disaster prevention. The purpose of this study was to clarify the fluctuation characteristics of the electric field. In previous studies, some numerical models have been proposed; however, these models did not consider the dependency of the particle charges on the particle diameter or the height dependency of the horizontal mass flux. Taking into account those dependencies, we estimated the vertical electric field distribution. In this study, an experimental equation (Omiya et al., 2011), which can estimate the individual particle charge from the particle diameter and the air temperature, was used. In addition, the approximation equations of the vertical distribution of wind speed, the horizontal mass flux, and the average particle diameter were also used. A hot-wire anemometer was used to measure the wind speed. A snow particle counter (SPC) was used to measure the horizontal mass flux and the particle diameter distribution. This experiment was conducted in a cold wind tunnel (Ice and Snow Research Center, NIED, JAPAN) at an air temperature of -10 degree Celsius. In this calculation, for simplicity, some assumptions were considered; 1) The particle diameter and the particle number density are horizontally constant and uniform. (The electric field formed by the blowing snow particles is uniform horizontally.) 2) All the blowing snow particles are electrified negatively

  3. Influence of temperature changes on ambient air NOx chemiluminescence measurements.

    PubMed

    Miñarro, Marta Doval; Ferradás, Enrique González; Martínez, Francisco J Marzal

    2012-09-01

    Users of automatic air pollution monitors are largely unaware of how certain parameters, like temperature, can affect readings. The present work examines the influence of temperature changes on chemiluminescence NO(x) measurements made with a Thermo Scientific 42i analyzer, a model widely used in air monitoring networks and air pollution studies. These changes are grouped into two categories according to European Standard EN 14211: (1) changes in the air surrounding the analyzers and (2) changes in the sampled air. First, the sensitivity tests described in Standard EN 14211 were performed to determine whether the analyzer performance was adapted to the requirements of the standard. The analyzer met the performance criteria of both tests; however, some differences were detected in readings with temperature changes even though the temperature compensator was on. Sample temperature changes were studied more deeply as they were the most critical (they cannot be controlled and differences of several tens of degrees can be present in a single day). Significant differences in readings were obtained when changing sample temperature; however, maximum deviations were around 3% for temperature ranges of 15°C. If other possible uncertainty contributions are controlled and temperature variations with respect to the calibration temperature are not higher than 15°C, the effect of temperature changes could be acceptable and no data correction should have to be applied. PMID:21964932

  4. Solar Eclipse Effect on Shelter Air Temperature

    NASA Technical Reports Server (NTRS)

    Segal, M.; Turner, R. W.; Prusa, J.; Bitzer, R. J.; Finley, S. V.

    1996-01-01

    Decreases in shelter temperature during eclipse events were quantified on the basis of observations, numerical model simulations, and complementary conceptual evaluations. Observations for the annular eclipse on 10 May 1994 over the United States are presented, and these provide insights into the temporal and spatial changes in the shelter temperature. The observations indicated near-surface temperature drops of as much as 6 C. Numerical model simulations for this eclipse event, which provide a complementary evaluation of the spatial and temporal patterns of the temperature drops, predict similar decreases. Interrelationships between the temperature drop, degree of solar irradiance reduction, and timing of the peak eclipse are also evaluated for late spring, summer, and winter sun conditions. These simulations suggest that for total eclipses the drops in shelter temperature in midlatitudes can be as high as 7 C for a spring morning eclipse.

  5. Quantification and control of the spatiotemporal gradients of air speed and air temperature in an incubator.

    PubMed

    Van Brecht, A; Aerts, J M; Degraeve, P; Berckmans, D

    2003-11-01

    Around the optimal incubator air temperature only small spatiotemporal deviations are allowed. However, air speed and air temperature are not uniformly distributed in the total volume of the incubator due to obstruction of the eggs and egg trays. The objectives of this research were (1) to quantify the spatiotemporal gradients in temperature and velocity and (2) to develop and validate a control algorithm to increase the uniformity in temperature during the entire incubation process. To improve the uniformity of air temperature, the airflow pattern and the air quality need to be controlled more optimally. These data show that the air temperature between the eggs at a certain position in a large incubator is the result of (1) the mean air temperature of the incubator; (2) the exchange of heat between the egg and its micro-environment, which is affected by the air speed at that certain position; (3) the time-variable heat production of the embryo; and (4) the heat influx or efflux as a result from the movement of hot or cold air in the incubator toward that position, which is affected by the airflow pattern. This implies that the airflow pattern needs to be controlled in a more optimal way. To maximize the uniformity of air temperature, an active and adaptive control of the three-dimensional (3-D) airflow pattern has been developed and tested. It was found to improve the spatiotemporal temperature distribution. The chance of having a temperature reading in the interval from 37.5 to 38.1 degrees C increased by 3% compared to normal operating conditions.

  6. Comparison of MODIS Land Surface Temperature and Air Temperature over the Continental USA Meteorological Stations

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Bounoua, Lahouari; Imhoff, Marc L.; Wolfe, Robert E.; Thome, Kurtis

    2014-01-01

    The National Land Cover Database (NLCD) Impervious Surface Area (ISA) and MODIS Land Surface Temperature (LST) are used in a spatial analysis to assess the surface-temperature-based urban heat island's (UHIS) signature on LST amplitude over the continental USA and to make comparisons to local air temperatures. Air-temperature-based UHIs (UHIA), calculated using the Global Historical Climatology Network (GHCN) daily air temperatures, are compared with UHIS for urban areas in different biomes during different seasons. NLCD ISA is used to define urban and rural temperatures and to stratify the sampling for LST and air temperatures. We find that the MODIS LST agrees well with observed air temperature during the nighttime, but tends to overestimate it during the daytime, especially during summer and in nonforested areas. The minimum air temperature analyses show that UHIs in forests have an average UHIA of 1 C during the summer. The UHIS, calculated from nighttime LST, has similar magnitude of 1-2 C. By contrast, the LSTs show a midday summer UHIS of 3-4 C for cities in forests, whereas the average summer UHIA calculated from maximum air temperature is close to 0 C. In addition, the LSTs and air temperatures difference between 2006 and 2011 are in agreement, albeit with different magnitude.

  7. Retrieval of air temperatures from crowd-sourced battery temperatures of cell phones

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James; Leijnse, Hidde; Uijlenhoet, Remko; Steeneveld, Gert-Jan; Horn, Berthold K. P.

    2013-04-01

    Accurate air temperature observations are important for urban meteorology, for example to study the urban heat island and adverse effects of high temperatures on human health. The number of available temperature observations is often relatively limited. A new development is presented to derive temperature information for the urban canopy from an alternative source: cell phones. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. Results are presented for Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree Celsius. This shows that monitoring air temperatures employing an Android application holds great promise. Since 75% of the world's population has a cell phone, 20% of the land surface of the earth has cellular telephone coverage, and 500 million devices use the Android operating system, there is a huge potential for measuring air temperatures employing cell phones. This could eventually lead to real-time world-wide temperature maps.

  8. A Comparison of Sea Ice Type, Sea Ice Temperature, and Snow Thickness Distributions in the Arctic Seasonal Ice Zones with the DMSP SSM/I

    NASA Technical Reports Server (NTRS)

    St.Germain, Karen; Cavalieri, Donald J.; Markus, Thorsten

    1997-01-01

    Global climate studies have shown that sea ice is a critical component in the global climate system through its effect on the ocean and atmosphere, and on the earth's radiation balance. Polar energy studies have further shown that the distribution of thin ice and open water largely controls the distribution of surface heat exchange between the ocean and atmosphere within the winter Arctic ice pack. The thickness of the ice, the depth of snow on the ice, and the temperature profile of the snow/ice composite are all important parameters in calculating surface heat fluxes. In recent years, researchers have used various combinations of DMSP SSMI channels to independently estimate the thin ice type (which is related to ice thickness), the thin ice temperature, and the depth of snow on the ice. In each case validation efforts provided encouraging results, but taken individually each algorithm gives only one piece of the information necessary to compute the energy fluxes through the ice and snow. In this paper we present a comparison of the results from each of these algorithms to provide a more comprehensive picture of the seasonal ice zone using passive microwave observations.

  9. Associations of endothelial function and air temperature in diabetic subjects

    EPA Science Inventory

    Background and Objective: Epidemiological studies consistently show that air temperature is associated with changes in cardiovascular morbidity and mortality. However, the biological mechanisms underlying the association remain largely unknown. As one index of endothelial functio...

  10. Microwave snow emission model using a long-term field experiment

    NASA Astrophysics Data System (ADS)

    Munoz-Barreto, Jonathan

    Microwave remote sensing has shown great potential in estimating snowpack properties such as: snow depth and Snow Water Equivalent (SWE). However, other snow properties like density, wetness and grain size, which are variable in space and time, largely impact the microwave signal scattering, still need to be investigated and understood. With the objective to improve our understanding of the effect of changing snow characteristics (grain size, snow wetness, density, temperature) under various meteorological conditions on the microwave emission of snow, the CREST-Snow Analysis and Field Experiment (CREST-SAFE) was established at the research site of the National Weather Service office, Caribou, ME, USA. In this ground experiment, 37 and 89 GHz dual polarized microwave observations are conducted continuously, along with detailed synchronous observations of snowpack physical properties. The first part of this work provides an overview of the field experiment, the snow pack and other environmental parameters which are routinely measured at the station both automatically and manually. The measurement programme includes microwave observations, meteorological observations (air temperature, snow skin-temperature, humidity, wind speed and direction, precipitation, incoming and outgoing radiations), along with the measurements of the snow pack bulk physical properties (snow depth, grain size, shape, hardness, and density) and vertical temperature profiles. The detailed analysis of microwave observations collected during the last three years along with the observed and simulated snowpack properties are presented. The second component of this work focuses on the development of a new approach to estimate the snow wetness (liquid water content) using information on the snow grain size and temperature. The objective of these efforts is to directly assimilate the predicted snow wetness in the HUT (Helsinki University of Technology) microwave emission model. The modified version of

  11. High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to

  12. Heliotropic leaf movements in common beans controlled by air temperature.

    PubMed

    Fu, Q A; Ehleringer, J R

    1989-11-01

    Heliotropic leaf movements were examined in common beans (Phaseolus vulgaris cv Blue Lake Bush) under outdoor and laboratory conditions. Heliotropic leaf movements in well-watered plants were partly controlled by temperature, and appeared to be independent of atmospheric humidity and CO(2) concentration. When environmental conditions were held constant in the laboratory, increased air temperature caused bean leaves to orient more obliquely to a light source. Ambient CO(2), intercellular CO(2), and net photosynthesis were not correlated with the temperature-induced changes in heliotropic movements, nor did they significantly affect these movements directly. The effect of air temperature on leaf movements need not be mediated through a change in leaf water potential, transpiration, or leaf conductance. Air temperature modified laminar orientation in light through its effect on tissue temperature in the pulvinal region, not that of the lamina or petiole. However, under darkness the temperature effects on leaf movements were not expressed. Active heliotropic movements in response to air temperature allowed lamina temperature to remain close to the thermal optimum of photosynthesis. This temperature effect underlies a commonly observed pattern of leaf movements under well-watered conditions: a tendency for leaves to face the sun more obliquely on hot days than cool days. PMID:16667127

  13. ‘As simple as possible but not simpler': What is useful in a temperature-based snow-accounting routine? Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments

    NASA Astrophysics Data System (ADS)

    Valéry, Audrey; Andréassian, Vazken; Perrin, Charles

    2014-09-01

    This paper investigates the degree of complexity required in a snow accounting routine to ultimately simulate flows at the catchment outlet. We present a simple, parsimonious and general snow accounting routine (SAR), called Cemaneige, that can be associated with any precipitation-runoff model to simulate discharge at the catchment scale. To get results of general applicability, this SAR was tested on a large set of 380 catchments from four countries (France, Switzerland, Sweden and Canada) and combined with four different hydrological models. Our results show that five basic features provide a good reliability and robustness to the SAR, namely considering: (1) a transition range of temperature for the determination of the solid fraction of precipitation; (2) five altitudinal bands of equal area for snow accumulation; (3) the cold-content of the snowpack (with a parameter controlling snowpack inertia); (4) a degree-day factor controlling snowmelt; (5) uneven snow distribution in each band. This general SAR includes two internal states (the snowpack and its cold-content). Results also indicate that only two free parameters (snowmelt factor and cold-content factor) are warranted in a SAR at the daily time step and that further complexity is not supported by improvements in flow simulation efficiency. To justify the reasons for considering the five features above, a sensitivity analysis comparing Cemaneige with other SAR versions is performed. It analyses the snow processes which should be selected or not to bring significant improvement in model performances. Compared with the six existing SARs presented in the companion article (Valéry et al., 2014) on the 380 catchments set, Cemaneige shows better performance on average than five of these six SARs. It provides performance similar to the sixth SAR (MORD4) but with only half its number of free parameters. However, CemaNeige still appears perfectible on mountainous catchments (France and Switzerland) where the lumped

  14. Ecohydrological and Topographical Controls on Soil Moisture and Soil Temperature for a Snow-dominated Watershed in Pacific Northwest of North America

    NASA Astrophysics Data System (ADS)

    Chatanantavet, P.; Maneta, M. P.; Wilcox, A. C.; Silverman, N. L.

    2014-12-01

    In mountainous, snow-dominated watersheds, the relative influence of and interactions among factors controlling the spatio-temporal distributions of soil moisture and soil temperature, including slope, elevation, precipitation magnitude and type, incoming solar radiation, and vegetation, are poorly understood at the watershed scale. We investigated these processes by using the Weather Research and Forecasting model to dynamically downscale the Global Forecast System model to a 4 km resolution for western Montana for years 2000-2006. We used the resulting regional climate data to force a physics-based ecohydrologic model, ECH2O, over the Bitterroot River basin (6,500 km2). The model was run at daily time steps in a 250-m resolution grid and was calibrated against measured streamflow and snow water equivalent, as well as satellite-derived snow covered distribution, gross primary production, evapotranspiration, leaf area index, and land-surface temperature. Soil moisture, soil temperature, runoff, and other ecohydrologic variables were simulated. We focus on analyzing the sensitivity of soil moisture and soil temperature to elevation by studying soil moisture-temperature curves for six elevation intervals spanning the elevation range of ~ 2 km. Results show that as elevation increases, the ranges of variation for depth-averaged soil moisture and soil temperature throughout the year evolve differently. A negative correlation between soil temperature and soil moisture is apparent at all elevations, being stronger in the valley bottom and at low altitudes. The spatial variability of soil moisture and soil temperature increases from the valley bottom toward low and moderate elevations due to more transient and complex patterns of snow cover. A stronger hysteresis between these two variables was also detected as elevation increases with two loops, one corresponding to late summer and fall precipitation and the other to the onset of spring snowmelt. The soil moisture-temperature

  15. Ice core evidence of rapid air temperature increases since 1960 in alpine areas of the Wind River Range, Wyoming, United States

    USGS Publications Warehouse

    Naftz, D.L.; Susong, D.D.; Schuster, P.F.; Cecil, L.D.; Dettinger, M.D.; Michel, R.L.; Kendall, C.

    2002-01-01

    Site-specific transfer functions relating delta oxygen 18 (??18O) values in snow to the average air temperature (TA) during storms on Upper Fremont Glacier (UFG) were used in conjunction with ??18O records from UFG ice cores to reconstruct long-term trends in air temperature from alpine areas in the Wind River Range, Wyoming. Transfer functions were determined by using data collected from four seasonal snowpacks (1989-1990, 1997-1998, 1998-1999, and 1999-2000). The timing and amount of each storm was determined from an automated snowpack telemetry (SNOTEL) site, 22 km northeast of UFG, and ???1060 m in elevation below UFG. Statistically significant and positive correlations between ??18O values in the snow and TA were consistently found in three of the four seasonal snowpacks. The snowpack with the poor correlation was deposited in 1997-1998 during the 1997-1998 El Nin??o Southern Oscillation (ENSO). An ultrasonic snow-depth sensor installed on UFG provided valuable insights into site-specific storms and postdepositional processes that occur on UFG. The timing of storms recorded at the UFG and Cold Springs SNOTEL sites were similar; however, selected storms did not correlate. Snow from storms occurring after mid-October and followed by high winds was most susceptible to redeposition of snow. This removal of lower temperature snowfall could potentially bias the ??18O values preserved in ice core records to environmental conditions reflecting higher air temperatures and lower wind speeds. Transfer functions derived from seasonal snow cover on UFG were used to reconstruct TA values from ??18O values determined from two ice cores collected from UFG. Reconstructed air temperatures from the ice core data indicate an increase in TA of ???3.5??C from the mid-1960s to the early 1990s in the alpine areas of northwestern Wyoming. Reconstructed TA from the ice core records between the end of the Little Ice Age (LIA), mid-1800s, and the early 1990s indicate a TA increase of

  16. Lessons Learned from AIRS: Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2011-01-01

    This slide presentation reviews the use of shortwave channels available to the Atmospheric Infrared Sounder (AIRS) to improve the determination of surface and atmospheric temperatures. The AIRS instrument is compared with the Infrared Atmospheric Sounding Interferometer (IASI) on-board the MetOp-A satellite. The objectives of the AIRS/AMSU were to (1) provide real time observations to improve numerical weather prediction via data assimilation, (2) Provide observations to measure and explain interannual variability and trends and (3) Use of AIRS product error estimates allows for QC optimized for each application. Successive versions in the AIRS retrieval methodology have shown significant improvement.

  17. Effect of Initial Mixture Temperature on Flame Speed of Methane-Air, Propane-Air, and Ethylene-Air Mixtures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L

    1952-01-01

    Flame speeds based on the outer edge of the shadow cast by the laminar Bunsen cone were determined as functions of composition for methane-air mixtures at initial mixture temperatures ranging from -132 degrees to 342 degrees c and for propane-air and ethylene-air mixtures at initial mixture temperatures ranging from -73 degrees to 344 degrees c. The data showed that maximum flame speed increased with temperature at an increasing rate. The percentage change in flame speed with change in initial temperature for the three fuels followed the decreasing order, methane, propane, and ethylene. Empirical equations were determined for maximum flame speed as a function of initial temperature over the temperature range covered for each fuel. The observed effect of temperature on flame speed for each of the fuels was reasonably well predicted by either the thermal theory as presented by Semenov or the square-root law of Tanford and Pease.

  18. Air - Ground - Bedrock Temperature Coupling, Its Monitoring at Borehole Climate Observatories

    NASA Astrophysics Data System (ADS)

    Cermák, V.

    2012-04-01

    Reconstructing ground surface temperature (GST) histories from present-day temperature-depth logs is now generally accepted as one of the independent and physically justified method to obtain information about the past climate history on the time scale of hundreds to thousands years. Any temperature change at the Earth`s surface slowly propagates downward and deeper we go farther back in time the measured temperature carries certain memory on what has happened on the surface in the past. Due to diffusive character of the process, however, the resolution quickly decreases for the remote events and the reconstructed GST at a given moment is a weighted average of temperature over a certain period of time. For better understanding of the temperature state in the subsurface T(z) logs can be suitably completed with long-run temperature-time monitoring at selected depth intervals, namely within the near-surface active layer affected by seasonal temperature variations (usually uppermost 30-40 m). In addition to GST inversions applied on deep T(z) profiles existing all over the world, several permanent borehole climate observatories were actually established in the last two decades to test the validity of the assumption that GST variations track the SAT (surface air temperature) changes as well as to study various environmental/local effects, such as the vegetation cover type/change, rain/snow precipitation, thawing/melting/freezing, etc. which controls the whole heat transfer process. Long-term monitoring of the shallow subsurface temperature field in suitably geographically located sites may additionally also help to understand the different conditions in e.g. urban vs. countryside environments and to assess the potential anthropogenic contribution to the present-day warming rate within the natural climate variability. This presentation summarizes main results obtained at the Czech borehole sites since 1992 completed with brief comparison of similar results collected

  19. The impact of spring subsurface soil temperature and snow anomaly in the Western U.S. on Southern U.S. summer precipitation and the Texas drought 2011

    NASA Astrophysics Data System (ADS)

    Xue, Y.; Vasic, R.; Li, S.; Oaida, C. M.; De Sales, F.; Robinson, D. A.; Janjic, Z.; Liu, Y.; Chu, P. C.

    2012-12-01

    The impact of spring subsurface soil temperature and snow anomaly in the Western U.S. on Southern U.S. summer precipitation and the Texas drought 2011 Yongkang Xue1,2, Ratko Vasic3, Suosuo Li1, Catalina Oaida2, David Robinson4, Fernando De Sales1, Zavisa Janjic3, Y. M. Liu5, and Peter C. Chu6 Abstract The observational evidence has indicated that the conditions with heavy snow cover and cold subsurface soil temperature (SUBT) in the western U.S. in the spring have high probably to associate with drier condition in southern U.S., including Texas. Based on these observed based associations, this study explores the impact of spring SUBT and snow anomaly in the Western U.S. on southern U.S. summer precipitation, especially the Texas Drought 2011, and possible mechanisms using two regional climate models (RCM) and a general circulation model (GCM). The GCM produces the lateral boundary condition (LBC) for the RCMs. The study has found that the snow effect is greatly enhanced though the SUBT anomaly memory. In the first experiment, two initial SUBT conditions (one cold and another warm) on May 1st were assigned for the GCM runs and the corresponding RCM runs, to explore the SUBT effect. The results suggest that antecedent May 1st warm (cold) initial SUBT in the Western U.S. contributes positive (negative) June precipitation over the southern U.S. and less (more) precipitation to the north, consistent with the observed anomalies between a year with a warm spring and a year with a cold spring in the Western U.S. The anomalous cyclone induced by the surface heating due to SUBT anomaly propagated eastward through Rossby waves in westerly mean flow. In addition, the steering flow also contributed to the dissipation of perturbation in the northeastern U.S. and its enhancement in southeastern U.S. However, these results were obtained only when the RCM model run was driven by the corresponding GCM run. When the same reanalysis data were applied for both (cold and warm initial

  20. Temperature distribution of air source heat pump barn with different air flow

    NASA Astrophysics Data System (ADS)

    He, X.; Li, J. C.; Zhao, G. Q.

    2016-08-01

    There are two type of airflow form in tobacco barn, one is air rising, the other is air falling. They are different in the structure layout and working principle, which affect the tobacco barn in the distribution of temperature field and velocity distribution. In order to compare the temperature and air distribution of the two, thereby obtain a tobacco barn whose temperature field and velocity distribution are more uniform. Taking the air source heat pump tobacco barn as the investigated subject and establishing relevant mathematical model, the thermodynamics of the two type of curing barn was analysed and compared based on Fluent. Provide a reasonable evidence for chamber arrangement and selection of outlet for air source heat pump tobacco barn.

  1. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations

    PubMed Central

    Wang, Tao; Peng, Shushi; Krinner, Gerhard; Ryder, James; Li, Yue; Dantec-Nédélec, Sarah; Ottlé, Catherine

    2015-01-01

    Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation) into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique) improve the simulation accuracy of mean seasonal (October throughout May) snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the magnitude of

  2. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations.

    PubMed

    Wang, Tao; Peng, Shushi; Krinner, Gerhard; Ryder, James; Li, Yue; Dantec-Nédélec, Sarah; Ottlé, Catherine

    2015-01-01

    Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation) into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique) improve the simulation accuracy of mean seasonal (October throughout May) snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the magnitude of

  3. Drought and Snow: Analysis of Drivers, Processes and Impacts of Streamflow Droughts in Snow-Dominated Regions

    NASA Astrophysics Data System (ADS)

    Van Loon, A.; Laaha, G.; Van Lanen, H.; Parajka, J.; Fleig, A. K.; Ploum, S.

    2015-12-01

    Around the world, drought events with severe socio-economic impacts seem to have a link with winter snowpack. That is the case for the current California drought, but analysing historical archives and drought impact databases for the US and Europe we found many impacts that can be attributed to snowpack anomalies. Agriculture and electricity production (hydropower) were found to be the sectors that are most affected by drought related to snow. In this study, we investigated the processes underlying hydrological drought in snow-dominated regions. We found that drought drivers are different in different regions. In Norway, more than 90% of spring streamflow droughts were preceded by below-average winter precipitation, while both winter air temperature and spring weather were indifferent. In Austria, however, spring streamflow droughts could only be explained by a combination of factors. For most events, winter and spring air temperatures were above average (70% and 65% of events, respectively), and winter and spring precipitation was below average (75% and 80%). Because snow storage results from complex interactions between precipitation and temperature and these variables vary strongly with altitude, snow-related drought drivers have a large spatial variability. The weather input is subsequently modified by land properties. Multiple linear regression between drought severity variables and a large number of catchment characteristics for 44 catchments in Austria showed that storage influences both drought duration and deficit volume. The seasonal storage of water in snow and glaciers was found to be a statistically important variable explaining streamflow drought deficit. Our drought impact analysis in Europe also showed that 40% of the selected drought impacts was caused by a combination of snow-related and other drought types. For example, the combination of a winter drought with a preceding or subsequent summer drought was reported to have a large effect on

  4. Drought and Snow: Analysis of Drivers, Processes and Impacts of Streamflow Droughts in Snow-Dominated Regions

    NASA Astrophysics Data System (ADS)

    Van Loon, Anne; Laaha, Gregor; Van Lanen, Henny; Parajka, Juraj; Fleig, Anne; Ploum, Stefan

    2016-04-01

    Around the world, drought events with severe socio-economic impacts seem to have a link with winter snowpack. That is the case for the current California drought, but analysing historical archives and drought impact databases for the US and Europe we found many impacts that can be attributed to snowpack anomalies. Agriculture and electricity production (hydropower) were found to be the sectors that are most affected by drought related to snow. In this study, we investigated the processes underlying hydrological drought in snow-dominated regions. We found that drought drivers are different in different regions. In Norway, more than 90% of spring streamflow droughts were preceded by below-average winter precipitation, while both winter air temperature and spring weather were indifferent. In Austria, however, spring streamflow droughts could only be explained by a combination of factors. For most events, winter and spring air temperatures were above average (70% and 65% of events, respectively), and winter and spring precipitation was below average (75% and 80%). Because snow storage results from complex interactions between precipitation and temperature and these variables vary strongly with altitude, snow-related drought drivers have a large spatial variability. The weather input is subsequently modified by land properties. Multiple linear regression between drought severity variables and a large number of catchment characteristics for 44 catchments in Austria showed that storage influences both drought duration and deficit volume. The seasonal storage of water in snow and glaciers was found to be a statistically important variable explaining streamflow drought deficit. Our drought impact analysis in Europe also showed that 40% of the selected drought impacts was caused by a combination of snow-related and other drought types. For example, the combination of a winter drought with a preceding or subsequent summer drought was reported to have a large effect on

  5. Impact of the variability of the seasonal snow cover on the ground surface regimes in Hurd Peninsula (Livingston Island, Antarctic)

    NASA Astrophysics Data System (ADS)

    Nieuwendam, Alexandre; Ramos, Miguel; Vieira, Gonçalo

    2014-05-01

    Seasonally snow cover has a great impact on the thermal regime of the active layer and permafrost. Ground temperatures over a year are strongly affected by the timing, duration, thickness, structure and physical and thermal properties of snow cover. The purpose of this communication is to characterize the shallow ground thermal regimes, with special reference to the understanding of the influence snow cover in permafrost spatial distribution, in the ice-free areas of the north western part of Hurd Peninsula in the vicinity of the Spanish Antarctic Station "Juan Carlos I" and Bulgarian Antarctic Station "St. Kliment Ohridski". We have analyzed and ground temperatures as well as snow thickness data in four sites distributed along an altitudinal transect in Hurd Peninsula from 2007 to 2013: Nuevo Incinerador (25 m asl), Collado Ramos (110 m), Ohridski (140 m) and Reina Sofia Peak (275 m). At each study site, data loggers were installed for the monitoring of air temperatures (at 1.5 m high), ground temperatures (5, 20 and 40 cm depth) and for snow depth (2, 5, 10, 20, 40, 80 and 160 cm) at 4-hour intervals. The winter data suggests the existence of three types of seasonal stages regarding the ground surface thermal regime and the thickness of snow cover: (a) shallow snow cover with intense ground temperatures oscillations; (b) thick snow cover and low variations of soil temperatures; and (c) stability of ground temperatures. Ground thermal conditions are also conditioned by a strong variability. Winter data indicates that Nuevo Incinerador site experiences more often thicker snow cover with higher ground temperatures and absence of ground temperatures oscillations. Collado Ramos and Ohridski show frequent variations of snow cover thickness, alternating between shallow snow cover with high ground temperature fluctuation and thick snow cover and low ground temperature fluctuation. Reina Sofia in all the years has thick snow cover with little variations in soil

  6. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  7. Improving Forecast Skill by Assimilation of AIRS Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The AIRS Version 5 retrieval algorithm, is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates delta T(p) for retrieved quantities and the use of these error estimates for Quality Control. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 deg. latitude X 0.67 deg longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates delta (p) were used as the uncertainty for each measurement in the data assimilation process. We compared forecasts analyses generated from the analyses done by assimilation of AIRS temperature profiles with three different sets of thresholds; Standard, Medium, and Tight. Assimilation of Quality Controlled AIRS temperature profiles significantly improve 5-7 day forecast skill compared to that obtained without the benefit of AIRS data in all of the cases studied. In addition, assimilation of Quality Controlled AIRS temperature soundings performs better than assimilation of AIRS observed radiances. Based on the experiments shown, Tight Quality Control of AIRS temperature profile performs best

  8. Time budgets of Snow Geese Chen caerulescens and Ross's Geese Chen rossii in mixed flocks: Implications of body size, ambient temperature and family associations

    USGS Publications Warehouse

    Jonsson, J.E.; Afton, A.D.

    2009-01-01

    Body size affects foraging and forage intake rates directly via energetic processes and indirectly through interactions with social status and social behaviour. Ambient temperature has a relatively greater effect on the energetics of smaller species, which also generally are more vulnerable to predator attacks than are larger species. We examined variability in an index of intake rates and an index of alertness in Lesser Snow Geese Chen caerulescens caerulescens and Ross's Geese Chen rossii wintering in southwest Louisiana. Specifically we examined variation in these response variables that could be attributed to species, age, family size and ambient temperature. We hypothesized that the smaller Ross's Geese would spend relatively more time feeding, exhibit relatively higher peck rates, spend more time alert or raise their heads up from feeding more frequently, and would respond to declining temperatures by increasing their proportion of time spent feeding. As predicted, we found that Ross's Geese spent more time feeding than did Snow Geese and had slightly higher peck rates than Snow Geese in one of two winters. Ross's Geese spent more time alert than did Snow Geese in one winter, but alert rates differed by family size, independent of species, in contrast to our prediction. In one winter, time spent foraging and walking was inversely related to average daily temperature, but both varied independently of species. Effects of age and family size on time budgets were generally independent of species and in accordance with previous studies. We conclude that body size is a key variable influencing time spent feeding in Ross's Geese, which may require a high time spent feeding at the expense of other activities. ?? 2008 The Authors.

  9. Seasonal snow cover and glacier change impact on water and energy cycle of Central Asia Endorheic Basin

    NASA Astrophysics Data System (ADS)

    Eisen, Vladimir; Eisen, Elena

    2010-05-01

    High mountains of Central Asia Endorheic Basin (CAEB) hold one of the greatest in the World concentration of snow and glacier ice water resources at mid- latitudes thousands of miles from the oceans providing up to 80% of total river runoff. The total external atmospheric moisture flow over the CAEB comprises approximately 200 billion cubic meters per year. The glaciers of CAEB receive and retain annually up to 10% of moisture transferred over the mountains. However, the area of seasonal snow and glaciers has declining rapidly as result of recent climatic change causes by increase in air temperature and precipitation partitioning between snow and rain, and evaporation fluxes. Based on remote sensing data CAEB glaciers shrunk by 5% between the middle of 1940th and 1970th and 10% during the next 30 years. Evaluation of seasonal snow cover for the same period revealed 20% seasonal snow covered area reduction. During the last thirty years, the duration of snow melt reduced by 30 days from the date of maximum snow cover to the date of its disappearance. Further decrease in seasonal snow cover will be accelerated due to increase of rainfall instead of snowfall in early spring months at high elevations, and consequently a lesser heat expenditure for snowmelt. At high mountains, about 40% of snow ablated during the penultimate 10 days of snow cover. During ablation season, the amount of energy used to melt snow and glacier ice is in the same order as the combination of other components of the heat budget (e.g., heat associated with atmospheric advection, radiation balance and turbulent heat exchange). Heating of the air would have been 3 times higher if snow and glacier ice melt had not occurred. Analysis of shallow ice-cores from high elevation snow/ice fields of CAEB has helped determining the climatic processes controlling hydrological regimes via the changes in global and regional atmospheric circulation patterns and simulates impact of these changes on water and

  10. Dynamic interactions of snow and plants in the boreal forest, winter 2011-2012 revealed by time-lapse photography and LiDAR

    NASA Astrophysics Data System (ADS)

    Filhol, S. V.; Sturm, M.

    2012-12-01

    The winter blanket of snow in the boreal forest is anything but still. In winter 2011-2012 we followed the evolution of a snowpack on a boreal forest plot (0.5 ha) from first snowfall to the beginning of the melt in springtime. We used multiple methods such as time-lapse ground-based LiDAR (Light Detection and Ranging), time-lapse photography, imagery from a suspended cableway, snow-depth sensors, and frequent manual snow-pits. The experimental site is located near Fairbanks, Alaska, a typical boreal forest underlain by permafrost with sparse black spruce, larch, willow, and dwarf birch. We observed snowpack properties to be greatly affected by the vegetation substrate. Interactions between snow and plants are mainly dependent on falling snow properties (rate, wetness), plant heights and stiffness, plant canopy structure (leaves, number of branches, density), succession of weather events (wind before or after snow, thaw events) and pre-existing snow depth. Time-lapse imagery shows interception of snow by trees and shrubs controlled by air-temperature and wind events. LiDAR and snow pit measurements show one class of flexible shrubs (i.e. dwarf birch) bending under load, while a second class (willows) were far stiffer and resisted bending. Where dwarf birch branches were dense, it prevented snow from reaching the ground, leaving a significant air space under the snowpack. This vertical air gap can be as high as 10% of the total snow depth by the end of winter. Improving our understanding of the dynamic relationships between plants and snow is a fundamental key for studying boreal snow physics and snow ecology.

  11. Temperature and concentration transients in the aluminum-air battery

    SciTech Connect

    Homsy, R.V.

    1981-08-26

    Coupled conservation equations of heat and mass transfer are solved, that predict temperature and concentration of the electrolyte of an aluminum-air battery system upon start-up and shutdown. Results of recent laboratory studies investigating the crystallization kinetics and solubility of the caustic-aluminate electrolyte system are used in the predictions. Temperature and concentration start-up transients are short, while during standby conditions, temperature increases to a maximum and decreases slowly.

  12. CellDyM: A room temperature operating cryogenic cell for the dynamic monitoring of snow metamorphism by time-lapse X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Calonne, N.; Flin, F.; Lesaffre, B.; Dufour, A.; Roulle, J.; Puglièse, P.; Philip, A.; Lahoucine, F.; Geindreau, C.; Panel, J.-M.; Roscoat, S. Rolland; Charrier, P.

    2015-05-01

    Monitoring the time evolution of snow microstructure in 3-D is crucial for a better understanding of snow metamorphism. We, therefore, designed a cryogenic cell that precisely controls the experimental conditions of a sample while it is scanned by X-ray tomography. Based on a thermoelectrical regulation and a vacuum insulation, the cell operates at room temperature. It is, thus, adaptable to diverse scanners, offering advantages in terms of imaging techniques, resolution, and speed. Three-dimensional time-lapse series were obtained under equitemperature and temperature gradient conditions at a 7.8 μm precision. The typical features of each metamorphism and the anisotropic faceting behavior between the basal and prismatic planes, known to occur close to -2°C, were observed in less than 30 h. These results are consistent with the temperature fields expected from heat conduction simulations through the cell. They confirm the cell's accuracy and the interest of relatively short periods to study snow metamorphism.

  13. Assessing wet snow avalanche activity using detailed physics based snowpack simulations

    NASA Astrophysics Data System (ADS)

    Wever, N.; Vera Valero, C.; Fierz, C.

    2016-06-01

    Water accumulating on microstructural transitions inside a snowpack is often considered a prerequisite for wet snow avalanches. Recent advances in numerical snowpack modeling allow for an explicit simulation of this process. We analyze detailed snowpack simulations driven by meteorological stations in three different climate regimes (Alps, Central Andes, and Pyrenees), with accompanying wet snow avalanche activity observations. Predicting wet snow avalanche activity based on whether modeled water accumulations inside the snowpack locally exceed 5-6% volumetric liquid water content is providing a higher prediction skill than using thresholds for daily mean air temperature, or the daily sum of the positive snow energy balance. Additionally, the depth of the maximum water accumulation in the simulations showed a significant correlation with observed avalanche size. Direct output from detailed snow cover models thereby is able to provide a better regional assessment of dangerous slope aspects and potential avalanche size than traditional methods.

  14. Comparison of Local Scale Measured and Modeled Brightness Temperatures and Snow Parameters from the CLPX 2003 by Means of a Dense Medium Radiative Transfer Theory Model

    NASA Technical Reports Server (NTRS)

    Tedescol, Marco; Kim, Edward J.; Cline, Don; Graf, Tobias; Koike, Toshio; Armstrong, Richard; Brodzik, Mary J.; Hardy, Janet

    2004-01-01

    Microwave remote sensing offers distinct advantages for observing the cryosphere. Solar illumination is not required, and spatial and temporal coverage are excellent from polar-orbiting satellites. Passive microwave measurements are sensitive to the two most useful physical quantities for many hydrological applications: physical temperature and water content/state. Sensitivity to the latter is a direct result of the microwave sensitivity to the dielectric properties of natural media, including snow, ice, soil (frozen or thawed), and vegetation. These considerations are factors motivating the development of future cryospheric satellite remote sensing missions, continuing and improving on a 26-year microwave measurement legacy. Perhaps the biggest issues regarding the use of such satellite measurements involve how to relate parameter values at spatial scales as small as a hectare to observations with sensor footprints that may be up to 25 x 25 km. The NASA Cold-land Processes Field Experiment (CLPX) generated a dataset designed to enhance understanding of such scaling issues. CLPX observations were made in February (dry snow) and March (wet snow), 2003 in Colorado, USA, at scales ranging from plot scale to 25 x 25 km satellite footprints. Of interest here are passive microwave observations from ground-based, airborne, and satellite sensors, as well as meteorological and snowpack measurements that will enable studies of the effects of spatial heterogeneity of surface conditions on the observations. Prior to performing such scaling studies, an evaluation of snowpack forward modelling at the plot scale (least heterogeneous scale) is in order. This is the focus of this paper. Many forward models of snow signatures (brightness temperatures) have been developed over the years. It is now recognized that a dense medium radiative transfer (DMRT) treatment represents a high degree of physical fidelity for snow modeling, yet dense medium models are particularly sensitive to

  15. Monitoring snow cover and its effect on runoff regime in the Jizera Mountains

    NASA Astrophysics Data System (ADS)

    Kulasova, Alena

    2015-04-01

    The Jizera Mountains in the northern Bohemia are known by its rich snow cover. Winter precipitation represents usually a half of the precipitation in the hydrological year. Gradual snow accumulation and melt depends on the course of the particular winter period, the topography of the catchments and the type of vegetation. During winter the snow depth, and especially the snow water equivalent, are affected by the changing character of the falling precipitation, air and soil temperatures and the wind. More rapid snowmelt occurs more on the slopes without forest oriented to the South, while a gradual snowmelt occurs on the locations turned to the North and in forest. Melting snow recharges groundwater and affects water quality in an important way. In case of extreme situation the snowmelt monitoring is important from the point of view of flood protection of communities and property. Therefore the immediate information on the amount of water in snow is necessary. The way to get this information is the continuous monitoring of the snow depth and snow water equivalent. In the Jizera Mountains a regular monitoring of snow cover has been going on since the end of the 19th century. In the 80s of the last century the Jizera Mountains were affected by the increased fallout of pollutants in the air. There followed a gradual dieback of the forest cover and cutting down the upper part of the ridges. In order to get data for the quantification of runoff regime changes in the changing natural environment, the Czech Hydrometeorological Institute (CHMI) founded in the upper part of the Mountains several experimental catchments. One of the activities of the employees of the experimental basis is the regular measurement of snow cover at selected sites from 1982 up to now. At the same time snow cover is being observed using snow pillows, where its mass is monitored with the help of pressure sensors. In order to improve the reliability of the continuous measurement of the snow water

  16. Low temperature induced defence gene expression in winter wheat in relation to resistance to snow moulds and other wheat diseases.

    PubMed

    Gaudet, D A; Wang, Y; Frick, M; Puchalski, B; Penniket, C; Ouellet, T; Robert, L; Singh, J; Laroche, A

    2011-01-01

    Cold hardening of winter wheat at 2 °C for 1-6 wks increased resistance to the snow mould pathogens LTB, Typhula incarnata, and Microdochium nivale as well as to powdery mildew (Blumaria graminis f. sp. graminis) and stripe rust (Puccinia striiformis). Using microarrays and hardening of winter wheat for 0.25, 0.5, 1, 7, 21 and 49 d, an upregulation of a wide range of stress-response genes that include defence-related and abiotic stress-related genes, transcription factors including several lipoxygenases and ethylene responsive factors, and WRKY genes was observed. For the majority of these genes, the upregulation occurred later in the 21-49 d hardening treatments and coincided with the highest expression levels of snow mould resistance. Defence-related sequences were upregulated to a greater extent and were more numerous in the snow mould resistant line CI14106 compared to cold hardy DH+268. Transcript profiling of candidate defence and other stress-related genes under prolonged conditions at -3 °C with or without snow mould infection showed that there was a decline in transcripts of the defence-related genes PR1.1b and NPR3 during the 12wks incubation. Additionally, 14 d hardening was insufficient to permit full expression of the jasmonic acid synthesis gene, allene oxide synthase (AOS) and the fructan degrading enzyme β-fructofuranosidase compared the 42 d hardening treatment. The snow mould resistant line CI14106 was able to maintain higher transcript levels of AOS for longer conditions compared to the susceptible line Norstar under artificial snow mould conditions. These results explain the nature of cold-induced resistance to snow moulds and provide direction on establishing selection criteria for improving resistance and cold tolerance in winter wheat.

  17. Sodankylä manual snow survey program

    NASA Astrophysics Data System (ADS)

    Leppänen, L.; Kontu, A.; Hannula, H.-R.; Sjöblom, H.; Pulliainen, J.

    2015-12-01

    The manual snow survey program of the Arctic Research Centre of Finnish Meteorological Institute (FMI-ARC) consists of numerous observations of natural seasonal taiga snowpack in Sodankylä, northern Finland. The easily accessible measurement areas represent the typical forest and soil types in the boreal forest zone. Systematic snow measurements began in 1909 with snow depth (SD) and snow water equivalent (SWE); however some older records of the snow and ice cover exists. In 2006 the manual snow survey program expanded to cover snow macro- and microstructure from regular snow pits at several sites using both traditional and novel measurement techniques. Present-day measurements include observations of SD, SWE, temperature, density, horizontal layers of snow, grain size, specific surface area (SSA), and liquid water content (LWC). Regular snow pit measurements are performed weekly during the snow season. Extensive time series of manual snow measurements are important for the monitoring of temporal and spatial changes in seasonal snowpack. This snow survey program is an excellent base for the future research of snow properties.

  18. Heat tolerance of higher plants cenosis to damaging air temperatures

    NASA Astrophysics Data System (ADS)

    Ushakova, Sofya; Shklavtsova, Ekaterina

    Designing sustained biological-technical life support systems (BTLSS) including higher plants as a part of a photosynthesizing unit, it is important to foresee the multi species cenosis reaction on either stress-factors. Air temperature changing in BTLSS (because of failure of a thermoregulation system) up to the values leading to irreversible damages of photosynthetic processes is one of those factors. However, it is possible to increase, within the certain limits, the plant cenosis tolerance to the unfavorable temperatures’ effect due to the choice of the higher plants possessing resistance both to elevated and to lowered air temperatures. Besides, the plants heat tolerance can be increased when subjecting them during their growing to the hardening off temperatures’ effect. Thus, we have come to the conclusion that it is possible to increase heat tolerance of multi species cenosis under the damaging effect of air temperature of 45 (°) СC.

  19. AIRS Sea Surface Temperature and Pacific Decadal Oscillation

    NASA Astrophysics Data System (ADS)

    Chen, L. L.

    2015-12-01

    Atmospheric Infrared Sounder (AIRS) has been providing necessary measurements for long term atmospheric and surface processes aboard NASA' s Aqua polar orbiter since May 2002. Here, we use time series of AIRS sea surface temperature (SST) anomalies to show the time evolution of Pacific Decadal Oscillation (PDO) in the Gulf of Alaska (lon:-144.5, lat:54.5) from 2003 to 2014. PDO is connected to the first mode of North Pacific SST variability and is tele-connected to ENSO in the tropics. Further analysis of AIRS data can provide clarification of Pacific climate variability.

  20. Snow and glaciers in the tropics: the importance of snowfall level and snow line altitude in the Peruvian Cordilleras

    NASA Astrophysics Data System (ADS)

    Schauwecker, Simone; Rohrer, Mario; Huggel, Christian; Salzmann, Nadine; Montoya, Nilton; Endries, Jason; Perry, Baker

    2016-04-01

    The snow line altitude, defined as the line separating snow from ice or firn surfaces, is among the most important parameters in the glacier mass and energy balance of tropical glaciers, since it determines net shortwave radiation via surface albedo. Therefore, hydroglaciological models require estimations of the melting layer during precipitation events, as well as parameterisations of the transient snow line. Typically, the height of the melting layer is implemented by simple air temperature extrapolation techniques, using data from nearby meteorological stations and constant lapse rates. Nonetheless, in the Peruvian mountain ranges, stations at the height of glacier tongues (>5000 m asl.) are scarce and the extrapolation techniques must use data from distant and much lower elevated stations, which need prior careful validation. Thus, reliable snowfall level and snow line altitude estimates from multiple data sets are necessary. Here, we assemble and analyse data from multiple sources (remote sensing, in-situ station data, reanalysis data) in order to assess their applicability in estimating both, the melting layer and snow line altitude. We especially focus on the potential of radar bright band data from TRMM and CloudSat satellite data for its use as a proxy for the snow/rain transition height. As expected for tropical regions, the seasonal and regional variability in the snow line altitude is comparatively low. During the course of the dry season, Landsat satellite as well as webcam images show that the transient snow line is generally increasing, interrupted by light snowfall or graupel events with low precipitation amounts and fast decay rates. We show limitations and possibilities of different data sources as well as their applicability to validate temperature extrapolation methods. Further on, we analyse the implications of the relatively low variability in seasonal snow line altitude on local glacier mass balance gradients. We show that the snow line

  1. Effects of snow condition on microbial respiration of Scots pine needle litter in a boreal forest

    NASA Astrophysics Data System (ADS)

    Ohnuki, Masataka; Domisch, Timo; Dannoura, Masako; Ataka, Mioko; Finér, Leena; Repo, Tapani; Osawa, Akira

    2016-04-01

    Climate warming scenarios predict decreasing snow depths and increasing winter precipitation in boreal forests ("rain on snow"). I These conditions may affect the decomposition and the microbial respiration of leaf litter, contributing a major part of tree litters, To understand how different snow conditions during winter would affect the microbial respiration of Scots pine needle litter in a boreal forest, we conducted a laboratory experiment using needle litter of two age classes (newly dropped and older litter). The experiment simulated four different winter treatments, followed by spring and early summer : (1) ambient snow cover (SNOW), (2) Compressed snow and ice encasement (ICE), (3) frozen flood (FLOOD) and (4) no snow cover at all (NO SNOW). The experiment was carried out in four walk-in dasotrons (n=3) with soil temperatures of -2° C and air temperatures of 2° C during winter and increased to 15° C and 20° C during spring, respectively . Needle litter samples were collected three times (prior to the winter, just after winter and at the end of the experiment). We evaluated the microbial respiration from the litter at several temperatures (-5° C, 0° C, 5° C and 12° C), the SIR index (an index estimating the microbial biomass), and the C/N ratio .And we calculated Q10 value (index of microbial respiration activity) using microbial respiration data. We found significant differences in microbial respiration between the newly dropped and older litter at the beginning and at the end of the experiment. However, there were no significant differences in Q10 value and the SIR (index of microbial biomass) between the different winter treatments. All samples showed decrease of microbial activity with time. Finally, we conclude that the winter snow conditions with mild air temperatures as used in our experiment, are not detrimentally affecting the Scots pine needle litter decomposition and its respiration.

  2. Passive radiative cooling below ambient air temperature under direct sunlight.

    PubMed

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day.

  3. Passive radiative cooling below ambient air temperature under direct sunlight.

    PubMed

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day. PMID:25428501

  4. Modelling snow cover duration improves predictions of functional and taxonomic diversity for alpine plant communities

    PubMed Central

    Carlson, Bradley Z.; Choler, Philippe; Renaud, Julien; Dedieu, Jean-Pierre; Thuiller, Wilfried

    2015-01-01

    Background and Aims Quantifying relationships between snow cover duration and plant community properties remains an important challenge in alpine ecology. This study develops a method to estimate spatial variation in energy availability in the context of a topographically complex, high-elevation watershed, which was used to test the explanatory power of environmental gradients both with and without snow cover in relation to taxonomic and functional plant diversity. Methods Snow cover in the French Alps was mapped at 15-m resolution using Landsat imagery for five recent years, and a generalized additive model (GAM) was fitted for each year linking snow to time and topography. Predicted snow cover maps were combined with air temperature and solar radiation data at daily resolution, summed for each year and averaged across years. Equivalent growing season energy gradients were also estimated without accounting for snow cover duration. Relationships were tested between environmental gradients and diversity metrics measured for 100 plots, including species richness, community-weighted mean traits, functional diversity and hyperspectral estimates of canopy chlorophyll content. Key Results Accounting for snow cover in environmental variables consistently led to improved predictive power as well as more ecologically meaningful characterizations of plant diversity. Model parameters differed significantly when fitted with and without snow cover. Filtering solar radiation with snow as compared without led to an average gain in R2 of 0·26 and reversed slope direction to more intuitive relationships for several diversity metrics. Conclusions The results show that in alpine environments high-resolution data on snow cover duration are pivotal for capturing the spatial heterogeneity of both taxonomic and functional diversity. The use of climate variables without consideration of snow cover can lead to erroneous predictions of plant diversity. The results further indicate that

  5. Variability of Winter Air Temperature in Mid-Latitude Europe

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Ardizzone, J.; Atlas, R.; Bungato, D.; Cierniewski, J.; Jusem, J. C.; Przybylak, R.; Schubert, S.; Starr, D.; Walczewski, J.

    2002-01-01

    The aim of this paper is to report extreme winter/early-spring air temperature (hereinafter temperature) anomalies in mid-latitude Europe, and to discuss the underlying forcing to these interannual fluctuations. Warm advection from the North Atlantic in late winter controls the surface-air temperature, as indicated by the substantial correlation between the speed of the surface southwesterlies over the eastern North Atlantic (quantified by a specific Index Ina) and the 2-meter level air temperatures (hereinafter Ts) over Europe, 45-60 deg N, in winter. In mid-March and subsequently, the correlation drops drastically (quite often it is negative). This change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature: absorption of insolation replaces the warm advection as the dominant control. This forcing by maritime-air advection in winter was demonstrated in a previous publication, and is re-examined here in conjunction with extreme fluctuations of temperatures in Europe. We analyze here the interannual variability at its extreme by comparing warm-winter/early-spring of 1989/90 with the opposite scenario in 1995/96. For these two December-to-March periods the differences in the monthly mean temperature in Warsaw and Torun, Poland, range above 10 C. Short-term (shorter than a month) fluctuations of the temperature are likewise very strong. We conduct pentad-by-pentad analysis of the surface-maximum air temperature (hereinafter Tmax), in a selected location, examining the dependence on Ina. The increased cloudiness and higher amounts of total precipitable water, corollary effects to the warm low-level advection. in the 1989/90 winter, enhance the positive temperature anomalies. The analysis of the ocean surface winds is based on the Special Sensor Microwave/Imager (SSM/I) dataset; ascent rates, and over land wind data are from the European Centre for Medium-Range Weather Forecasts (ECMWF); maps of 2-m temperature, cloud

  6. Temperature Measurement in Microhollow Cathode Discharges in Atmospheric Air

    NASA Astrophysics Data System (ADS)

    Block, Rolf; Toedter, Olaf; Schoenbach, Karl H.

    1998-10-01

    By reducing the diameter of the cathode opening in hollow cathode discharge geometry to values on the order of one hundred micrometers we were able to operate the discharges in a direct current mode at atmospheric pressure in air. The possibility to operate microhollow cathode discharges (MHCD) in parallel [1] in atmospheric air opens a wide range of applications. At atmospheric pressures, the electric power of a single discharge was measured as 8W. The power density in the microhollow exceeds 1MW/cm^3. This leads to strong thermal loading of the electrodes. In order to study the thermal properties of the discharge we have used a method based on emission spectroscopy. The rotational structure of the emitted lines corresponding to the second positive system of nitrogen contains information on the neutral gas temperature. Taking the apparatus profile into account the temperature of the rotational excited molecules can be estimated by a comparison of simulated and measured data. Measurements on MHCD up to atmospheric pressure show an increase in the neutral gas temperature to values exceeding 1000K. In addition to the gas temperature the electrode temperatures were measured and the thermodynamic behavior of the electrode configuration was calculated. [1] W. Shi, K.H. Schoenbach Parallel Operation of Microhollow Cathode Discharges, ICOPS98, Raleigh, NC, USA, 1998 This work was funded by the Air Force Office of Scientific Research (AFOSR) in cooperation with the DDR&E Air Plasma Ramparts MURI program, and by the Department of Energy, Advanced Energy Division.

  7. Evaluation of the SMAP model-simulated snow internal physical properties at Sapporo, Japan from 2005 to 2015

    NASA Astrophysics Data System (ADS)

    Niwano, Masashi; Aoki, Teruo; Kuchiki, Katsuyuki; Matoba, Sumito; Kodama, Yuji; Tanikawa, Tomonori

    2016-04-01

    Temporal evolution of snow internal physical properties such as grain size, density, temperature, and water content are controlled by changes in meteorological conditions. On the other hand, in a snow covered area, surface atmospheric conditions are modulated in response to variations of snow albedo, which is affected by (optically equivalent) snow grain size as well as mass concentration of snow impurities such as black carbon and dust. Therefore, it is necessary for snowpack models incorporated in climate models to simulate realistic snow internal physical properties to perform accurate future climate prediction especially in the cryosphere. In this study, we evaluated snow internal physical properties at Sapporo (43° 05'N, 141° 21'E, 15 m a.s.l.), Japan from 2005 to 2015 simulated with a 1-D multilayered physical snowpack model SMAP (Snow Metamorphism and Albedo Process). The model was driven by quality controlled 30-min averaged data for air temperature, relative humidity, wind speed, surface pressure, snow depth, downward and upward shortwave radiant flux, downward longwave radiant flux, and ground surface soil heat flux. Simulation results were compared against the data obtained from snow pit works performed twice a week at Sapporo. First of all, the model-simulated column integrated SWE (snow water equivalent) were compared against in-situ measurements (273 data were available during the 10 winters). The results show that the model tends to underestimate SWE (mean error; ME was -19 mm); however, root mean square error (RMSE) was 34 mm, and these scores are better than those for simulations driven by not snow depth but precipitation (ME was less than -25 mm and RMSE was more than 40 mm). It suggests that the correction technique for precipitation measurements considering catch efficiency of a rain gauge is still insufficient. Next, the model-simulated profiles for snow density and snow temperature were compared against in-situ measurements. For this purpose

  8. Evaluation of the SMAP model-simulated snow internal physical properties at Sapporo, Japan from 2005 to 2015

    NASA Astrophysics Data System (ADS)

    Niwano, Masashi; Aoki, Teruo; Kuchiki, Katsuyuki; Matoba, Sumito; Kodama, Yuji; Tanikawa, Tomonori

    2016-04-01

    Temporal evolution of snow internal physical properties such as grain size, density, temperature, and water content are controlled by changes in meteorological conditions. On the other hand, in a snow covered area, surface atmospheric conditions are modulated in response to variations of snow albedo, which is affected by (optically equivalent) snow grain size as well as mass concentration of snow impurities such as black carbon and dust. Therefore, it is necessary for snowpack models incorporated in climate models to simulate realistic snow internal physical properties to perform accurate future climate prediction especially in the cryosphere. In this study, we evaluated snow internal physical properties at Sapporo (43° 05'N, 141° 21'E, 15 m a.s.l.), Japan from 2005 to 2015 simulated with a 1-D multilayered physical snowpack model SMAP (Snow Metamorphism and Albedo Process). The model was driven by quality controlled 30-min averaged data for air temperature, relative humidity, wind speed, surface pressure, snow depth, downward and upward shortwave radiant flux, downward longwave radiant flux, and ground surface soil heat flux. Simulation results were compared against the data obtained from snow pit works performed twice a week at Sapporo. First of all, the model-simulated column integrated SWE (snow water equivalent) were compared against in-situ measurements (273 data were available during the 10 winters). The results show that the model tends to underestimate SWE (mean error; ME was -19 mm); however, root mean square error (RMSE) was 34 mm, and these scores are better than those for simulations driven by not snow depth but precipitation (ME was less than -25 mm and RMSE was more than 40 mm). It suggests that the correction technique for precipitation measurements considering catch efficiency of a rain gauge is still insufficient. Next, the model-simulated profiles for snow density and snow temperature were compared against in-situ measurements. For this purpose

  9. Snow-atmosphere coupling in current and future climates over North America in the Canadian Regional Climate Model (CRCM5)

    NASA Astrophysics Data System (ADS)

    Tefera Diro, Gulilat; Sushama, Laxmi

    2016-04-01

    The influence of snow variation on climate variability over North America is assessed using the fifth generation of Canadian Regional Climate Model (CRCM5). For this, we first carried out a suite of CRCM5 simulations driven by ERA-Interim reanalysis, whereby the snow was either prescribed (uncoupled) or allowed to evolve interactively (coupled) during the model integration. Results indicate a systematic influence of snow on the inter-annual variability of air and surface temperature throughout winter and spring seasons. In the coupled simulations, where the snow depth and snow cover were allowed to evolve freely, the inter-annual variability of surface and near surface air temperatures were found to be larger and explains up to 70% of the surface temperature variation over northern Great Plains and Canadian Prairies. The impact of snow is found to be stronger in spring than in winter, since in spring season both albedo and hydrological effects contribute to the variability in temperature. To study projected changes to snow-atmosphere coupling in future climate, coupled and uncoupled CRCM5 simulations, driven by coupled GCMs, were performed, for current (1981-2010) and future (2071-2100) climates. Coupling regions in the GCM-driven current climate simulations are similar to those obtained with ERA-Interim driven CRCM5 simulations discussed above. In future climate, snow-temperature coupling shows some change in spatial structures and in magnitudes. These results suggest that accurate initialization of snow condition could potentially be helpful to improve seasonal prediction skill over these snow-atmosphere coupling hotspot regions.

  10. Pulsed positive streamer discharges in air at high temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Kamakura, Taku

    2016-08-01

    Atmospheric-pressure air pulsed positive streamer discharges are generated in a 13 mm point-plane gap in the temperature range of 293 K–1136 K, and the effect of temperature on the streamer discharges is studied. When the temperature is increased, the product of applied voltage and temperature VT proportional to the reduced electric field can be used as a primary parameter that determines some discharge parameters regardless of temperature. For a given VT, the transferred charge per pulse, streamer diameter, product of discharge energy and temperature, and length of secondary streamer are almost constant regardless of T, whereas the streamer velocity decreases with increasing T and the decay rate of the discharge current is proportional to 1/T. The N2(C) emission intensity is approximately determined by the discharge energy independent of T. These results are useful to predict the streamer discharge and its reactive species production when the ambient temperature is increased.

  11. Pulsed positive streamer discharges in air at high temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Kamakura, Taku

    2016-08-01

    Atmospheric-pressure air pulsed positive streamer discharges are generated in a 13 mm point-plane gap in the temperature range of 293 K-1136 K, and the effect of temperature on the streamer discharges is studied. When the temperature is increased, the product of applied voltage and temperature VT proportional to the reduced electric field can be used as a primary parameter that determines some discharge parameters regardless of temperature. For a given VT, the transferred charge per pulse, streamer diameter, product of discharge energy and temperature, and length of secondary streamer are almost constant regardless of T, whereas the streamer velocity decreases with increasing T and the decay rate of the discharge current is proportional to 1/T. The N2(C) emission intensity is approximately determined by the discharge energy independent of T. These results are useful to predict the streamer discharge and its reactive species production when the ambient temperature is increased.

  12. Effects of air flow directions on composting process temperature profile

    SciTech Connect

    Kulcu, Recep; Yaldiz, Osman

    2008-07-01

    In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO{sub 2} and O{sub 2} ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperature distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2.

  13. Temperature gradients and clear-air turbulence probabilities

    NASA Technical Reports Server (NTRS)

    Bender, M. A.; Panofsky, H. A.; Peslen, C. A.

    1976-01-01

    In order to forecast clear-air turbulence (CAT) in jet aircraft flights, a study was conducted in which the data from a special-purpose instrument aboard a Boeing 747 jet airliner were compared with satellite-derived radiance gradients, conventional temperature gradients from analyzed maps, and temperature gradients obtained from a total air temperature sensor on the plane. The advantage of making use of satellite-derived data is that they are available worldwide without the need for radiosonde observations, which are scarce in many parts of the world. Major conclusions are that CAT probabilities are significantly higher over mountains than flat terrain, and that satellite radiance gradients appear to discriminate between CAT and no CAT better than conventional temperature gradients over flat lands, whereas the reverse is true over mountains, the differences between the two techniques being not large over mountains.

  14. Temperature variations recorded during interinstitutional air shipments of laboratory mice.

    PubMed

    Syversen, Eric; Pineda, Fernando J; Watson, Julie

    2008-01-01

    Despite extensive guidelines and regulations that govern most aspects of rodent shipping, few data are available on the physical environment experienced by rodents during shipment. To document the thermal environment experienced by mice during air shipments, we recorded temperatures at 1-min intervals throughout 103 routine interinstitutional shipments originating at our institution. We found that 49.5% of shipments were exposed to high temperatures (greater than 29.4 degrees C), 14.6% to low temperatures (less than 7.2 degrees C), and 61% to temperature variations of 11 degrees C or more. International shipments were more likely than domestic shipments to experience temperature extremes and large variations in temperature. Freight forwarders using passenger airlines rather than their own airplanes were more likely to have shipments that experienced temperature extremes or variations. Temperature variations were most common during stopovers. Some airlines were more likely than others to experience inflight temperature extremes or swings. Most domestic shipments lasted at least 24 h, whereas international shipments lasted 48 to 72 h. Despite exposure to high and low temperatures, animals in all but 1 shipment arrived alive. We suggest that simple measures, such as shipping at night during hot weather, provision of nesting material in shipping crates, and specifying aircraft cargo-hold temperatures that are suitable for rodents, could reduce temperature-induced stress. Measures such as additional training for airport ground crews, as previously recommended by the American Veterinary Medical Association, could further reduce exposure of rodents to extreme ambient temperatures during airport stopovers.

  15. Coupling Between Air and Ground Temperatures in PMIP3/CMIP5 Last Millennium Simulations and the Implications for Climate Reconstructions from Borehole Temperature Profiles

    NASA Astrophysics Data System (ADS)

    Beltrami, H.; García-García, A.; Cuesta-Valero, F. J.; Smerdon, J. E.

    2015-12-01

    The continental energy storage for the second half of the 20th20^{th} century has been estimated from geothermal data to be about 7±1×1021J7 ± 1 × 10^{21} J under the assumption that there exists a long-term coupling between the lower atmosphere and the continental subsurface. For General Circulation Models (GCMs) to simulate the continental energy storage of the Earth's energy budget, however, it is crucial that they correctly capture the processes that partition energy across the land-atmosphere boundary. We evaluate herein the characteristics of these processes as simulated by models in the third phase of the Paleoclimate Modelling Intercomparison Project and the fifth phase of the Coupled Model Intercomparison Project (PMIP33/CMIP55). We examine the seasonal differences between air and ground temperatures within PMIP3 last-millennium simulations concatenated with historical simulations from the CMIP5 archive. We find a strong air-ground coupling during the summer from 850850 to 20002000 CE. During the winter, the insulating effect of snow and latent heat exchanges produce a decoupling between air and ground temperatures in the northern high latitudes. These seasonal differences decrease with depth, supporting the central assumption of climate reconstructions from borehole temperature profiles. Additionally, we use the simulated temperature trends as an upper boundary condition to force a one-dimensional conductive model to derive synthetic temperature-depth profiles for each PMIP3/CMIP5 simulation. The inversions of these subsurface profiles yield temperature trends that retain the surface temperature variations of the last millennium for all the PMIP3/CMIP5 simulations. These results support the use of underground temperatures to reconstruct past changes in ground surface temperature and to estimate the continental energy storage. Results also provide guidance for improving the land-surface components of GCMs.

  16. Geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppälä, A.; Randall, C. E.; Clilverd, M. A.; Rozanov, E.; Rodger, C. J.

    2009-10-01

    Here we use the ERA-40 and ECMWF operational surface level air temperature data sets from 1957 to 2006 to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the A p index. Previous modeling work has suggested that NO x produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in surface air temperatures (SATs). We find that during winter months, polar SATs in years with high A p index are different than in years with low A p index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, depending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings (SSWs) are excluded. We take into account solar irradiance variations, unlike previous analyses of geomagnetic effects in ERA-40 and operational data. Although we cannot conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating wintertime surface air temperatures. We tested our SAT results against variation in the Quasi Biennial Oscillation, the El Niño Southern Oscillation and the Southern Annular Mode. The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode, and we cannot robustly exclude a chance linkage between sea surface temperature variability and geomagnetic activity.

  17. The Role of Terrestrial Snow Cover in the Climate System

    NASA Astrophysics Data System (ADS)

    Vavrus, S. J.

    2005-12-01

    Snow cover is known to exert a strong influence on the overlying atmosphere and underlying soil, but quantifying this impact is difficult. Besides its well-accepted ability to cool locally, snow cover can also force climate remotely in complex ways by inducing changes in the atmospheric circulation. Most research on the impact of snow cover has focused on the regional rather than global scale. By contrast, this study investigates the global impact of terrestrial snow cover in the present climate by comparing a pair of Community Climate System Model (CCSM3) simulations run with prognostic snow cover (control case) and with all snow cover on land eliminated (NOSNOWCOVER). In this experiment all snowfall over land was converted into liquid water-equivalent upon reaching the surface. Compared with the control run, NOSNOWCOVER produces mean-annual surface air temperatures up to 5 K higher over northern North America and Eurasia and 8 to 9 K greater in these regions during winter. The global-mean warming of 0.8 K in NOSNOWCOVER is nearly 1/3 as large as the simulated 2 x CO2 response. This pronounced surface heating dramatically increases geopotential heights throughout the troposphere: annual increases of up to 50 m occur at the 250 hPa level, along with even larger inflations during winter. Despite the large surface warming, the absence of an insulating snow pack causes soil temperatures in NOSNOWCOVER to fall throughout northern Asia and Canada, including extreme wintertime cooling of more than 20 K in Siberia and a 5 to 10o equatorward expansion of simulated permafrost. The absence of local melt-water percolation causes significantly drier soils over northern boreal regions and a consequent decrease in cloudiness. The removal of snow cover also drastically affects extreme weather in middle latitudes. Extreme cold-air outbreaks (CAOs), defined relative to the control simulation, essentially disappear in NOSNOWCOVER. The loss of CAOs appears to stem from both the local

  18. High variability of Greenland surface temperature over the past 4000 years estimated from trapped air in an ice core

    NASA Astrophysics Data System (ADS)

    Kobashi, Takuro; Kawamura, Kenji; Severinghaus, Jeffrey P.; Barnola, Jean-Marc; Nakaegawa, Toshiyuki; Vinther, Bo M.; Johnsen, Sigfús J.; Box, Jason E.

    2011-11-01

    Greenland recently incurred record high temperatures and ice loss by melting, adding to concerns that anthropogenic warming is impacting the Greenland ice sheet and in turn accelerating global sea-level rise. Yet, it remains imprecisely known for Greenland how much warming is caused by increasing atmospheric greenhouse gases versus natural variability. To address this need, we reconstruct Greenland surface snow temperature variability over the past 4000 years at the GISP2 site (near the Summit of the Greenland ice sheet; hereafter referred to as Greenland temperature) with a new method that utilises argon and nitrogen isotopic ratios from occluded air bubbles. The estimated average Greenland snow temperature over the past 4000 years was -30.7°C with a standard deviation of 1.0°C and exhibited a long-term decrease of roughly 1.5°C, which is consistent with earlier studies. The current decadal average surface temperature (2001-2010) at the GISP2 site is -29.9°C. The record indicates that warmer temperatures were the norm in the earlier part of the past 4000 years, including century-long intervals nearly 1°C warmer than the present decade (2001-2010). Therefore, we conclude that the current decadal mean temperature in Greenland has not exceeded the envelope of natural variability over the past 4000 years, a period that seems to include part of the Holocene Thermal Maximum. Notwithstanding this conclusion, climate models project that if anthropogenic greenhouse gas emissions continue, the Greenland temperature would exceed the natural variability of the past 4000 years sometime before the year 2100.

  19. Interannual Variability of Snow Water Equivalent (SWE) over Western Himalayas

    NASA Astrophysics Data System (ADS)

    Tiwari, Sarita; Kar, Sarat C.; Bhatla, R.

    2016-04-01

    Considering the importance of snow and glaciers in the Himalayas for understanding the water cycle and for water resource management of the rivers originating from the Himalayan, interannual variability of snow accumulation process over Himalayas and surrounding region has been studied using snow water equivalent (SWE) data. Remote sensing data from National Snow and Ice Data Centre have been used. These data have been compared against ground (in situ) observations of SWE measured at several gauge stations in the Indian part of the Satluj River basin. Accumulated SWE from remote sensing data and ground observations in the Satluj River basin have good and significant correlation. These data have also been compared against the Climate Forecast System Reanalysis and the European Centre for Medium Range Weather Forecast reanalysis-Interim (ERA-I). Upper air and surface data from the reanalyses have also been used to examine the atmospheric conditions when snowfall occurs and snow accumulates for the season. In this study, it is found that there is large interannual variation in SWE over western Himalayas and Satluj River basin (domain of interest). During excess years of snowfall, strong westerly winds are observed at 500 hPa over India. In wind anomaly, a cyclonic circulation is seen over northern parts of India with a deep trough along Pakistan, Rajasthan and Gujarat region. As a consequence of this trough, a moisture convergence zone is established in the region leading to more amount of snowfall. At the same time, during excess snow accumulation years, the air temperature from the surface to 500 hPa is colder than other years enabling the fallen snow to accumulate through the season.

  20. Advances in Fast Response Acoustically Derived Air Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Bogoev, Ivan; Jacobsen, Larry; Horst, Thomas; Conrad, Benjamin

    2016-04-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity. The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  1. Sodankylä manual snow survey program

    NASA Astrophysics Data System (ADS)

    Leppänen, Leena; Kontu, Anna; Hannula, Henna-Reetta; Sjöblom, Heidi; Pulliainen, Jouni

    2016-05-01

    The manual snow survey program of the Arctic Research Centre of the Finnish Meteorological Institute (FMI-ARC) consists of numerous observations of natural seasonal taiga snowpack in Sodankylä, northern Finland. The easily accessible measurement areas represent the typical forest and soil types in the boreal forest zone. Systematic snow measurements began in 1909 with snow depth (HS) and snow water equivalent (SWE). In 2006 the manual snow survey program expanded to cover snow macro- and microstructure from regular snow pits at several sites using both traditional and novel measurement techniques. Present-day snow pit measurements include observations of HS, SWE, temperature, density, stratigraphy, grain size, specific surface area (SSA) and liquid water content (LWC). Regular snow pit measurements are performed weekly during the snow season. Extensive time series of manual snow measurements are important for the monitoring of temporal and spatial changes in seasonal snowpack. This snow survey program is an excellent base for the future research of snow properties.

  2. New Energy-efficient Snow production

    NASA Astrophysics Data System (ADS)

    Rhyner, H.

    2009-04-01

    Artificial snow making is widely used in the Alps, mainly to compensate for missing snow cover. Since snow production requires both water and energy, it is necessary to develop new technologies in this field that optimise the production process. In particular in terms of energy consumption, new technologies are developed to minimize the use of energy and costs. The aims of this paper are to model the process of artificial snow making in the Swiss Alps. Several field and laboratory campaigns will be presented. The actual process of snow produciton, as it exits the snow canons and snow hoses and acummulates on the ground is modelled and validated with field and laboratory experiments. Amongst other techniques, infra-red meausurements show detailed temperature distributions. Techniques are demonstrated on how snow-making can be optimised.

  3. Forward-looking Assimilation of MODIS-derived Snow Covered Area into a Land Surface Model

    NASA Technical Reports Server (NTRS)

    Zaitchik, Benjamin F.; Rodell, Matthew

    2008-01-01

    Snow cover over land has a significant impact on the surface radiation budget, turbulent energy fluxes to the atmosphere, and local hydrological fluxes. For this reason, inaccuracies in the representation of snow covered area (SCA) within a land surface model (LSM) can lead to substantial errors in both offline and coupled simulations. Data assimilation algorithms have the potential to address this problem. However, the assimilation of SCA observations is complicated by an information deficit in the observation SCA indicates only the presence or absence of snow, and not snow volume and by the fact that assimilated SCA observations can introduce inconsistencies with atmospheric forcing data, leading to non-physical artifacts in the local water balance. In this paper we present a novel assimilation algorithm that introduces MODIS SCA observations to the Noah LSM in global, uncoupled simulations. The algorithm utilizes observations from up to 72 hours ahead of the model simulation in order to correct against emerging errors in the simulation of snow cover while preserving the local hydrologic balance. This is accomplished by using future snow observations to adjust air temperature and, when necessary, precipitation within the LSM. In global, offline integrations, this new assimilation algorithm provided improved simulation of SCA and snow water equivalent relative to open loop integrations and integrations that used an earlier SCA assimilation algorithm. These improvements, in turn, influenced the simulation of surface water and energy fluxes both during the snow season and, in some regions, on into the following spring.

  4. Anisotropy of seasonal snow measured by polarimetric phase differences in radar time series

    NASA Astrophysics Data System (ADS)

    Leinss, Silvan; Löwe, Henning; Proksch, Martin; Lemmetyinen, Juha; Wiesmann, Andreas; Hajnsek, Irena

    2016-08-01

    The snow microstructure, i.e., the spatial distribution of ice and pores, generally shows an anisotropy which is driven by gravity and temperature gradients and commonly determined from stereology or computer tomography. This structural anisotropy induces anisotropic mechanical, thermal, and dielectric properties. We present a method based on radio-wave birefringence to determine the depth-averaged, dielectric anisotropy of seasonal snow with radar instruments from space, air, or ground. For known snow depth and density, the birefringence allows determination of the dielectric anisotropy by measuring the copolar phase difference (CPD) between linearly polarized microwaves propagating obliquely through the snowpack. The dielectric and structural anisotropy are linked by Maxwell-Garnett-type mixing formulas. The anisotropy evolution of a natural snowpack in Northern Finland was observed over four winters (2009-2013) with the ground-based radar instrument "SnowScat". The radar measurements indicate horizontal structures for fresh snow and vertical structures in old snow which is confirmed by computer tomographic in situ measurements. The temporal evolution of the CPD agreed in ground-based data compared to space-borne measurements from the satellite TerraSAR-X. The presented dataset provides a valuable basis for the development of new snow metamorphism models which include the anisotropy of the snow microstructure.

  5. The mass and speed dependence of meteor air plasma temperatures.

    PubMed

    Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  6. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  7. CARS Temperature and Species Measurements For Air Vehicle Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Gord, James R.; Grisch, Frederic; Klimenko, Dmitry; Clauss, Walter

    2005-01-01

    The coherent anti-Stokes Raman spectroscopy (CARS) method has recently been used in the United States and Europe to probe several different types of propulsion systems for air vehicles. At NASA Langley Research Center in the United States, CARS has been used to simultaneously measure temperature and the mole fractions of N2, O2 and H2 in a supersonic combustor, representative of a scramjet engine. At Wright- Patterson Air Force Base in the United States, CARS has been used to simultaneously measure temperature and mole fractions of N2, O2 and CO2, in the exhaust stream of a liquid-fueled, gas-turbine combustor. At ONERA in France and the DLR in Germany researchers have used CARS to measure temperature and species concentrations in cryogenic LOX-H2 rocket combustion chambers. The primary aim of these measurements has been to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.

  8. Microwave temperature profiler for clear air turbulence prediction

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    1992-01-01

    A method is disclosed for determining Richardson Number, Ri, or its reciprocal, RRi, for clear air prediction using measured potential temperature and determining the vertical gradient of potential temperature, d(theta)/dz. Wind vector from the aircraft instrumentation versus potential temperature, dW/D(theta), is determined and multiplies by d(theta)/dz to obtain dW/dz. Richardson number or its reciprocal is then determined from the relationship Ri = K(d theta)/dz divided by (dW/dz squared) for use in detecting a trend toward a threshold value for the purpose of predicting clear air turbulence. Other equations for this basic relationship are disclosed together with the combination of other atmospheric observables using multiple regression techniques.

  9. Impact of climate warming on snow processes in Ny-Ålesund, a polar maritime site at Svalbard

    NASA Astrophysics Data System (ADS)

    López-Moreno, J. I.; Boike, J.; Sanchez-Lorenzo, A.; Pomeroy, J. W.

    2016-11-01

    The impact of observed changes in air temperature and precipitation from 1969 to 2013 and climate projections for 2050 and 2080 at Ny-Ålesund, an arctic research station on Spitzbergen Island in the Svalbard Archipelago on snow hydrological processes, were analyzed using snow accumulation and ablation algorithms in the physically based Cold Regions Hydrological Modelling platform (CRHM). The climate projections were obtained from phase 5 of the Coupled Model Intercomparison Project (CMIP5), with a focus on the snow-dominated period (October to June). To identify the potential effects of increasing temperature and precipitation, a model sensitivity analysis (1 °C to 5 °C), with and without a 25% increase in precipitation, was run on CRHM snow processes. The results indicated that the greatest observed warming was during the early snow season (October-February), with increases of 0.8 and 0.9 °C decade- 1 for maximum (Tmax) and minimum (Tmin) temperatures, respectively. There was also a significant increase in annual and winter precipitation (24 mm decade- 1). The late snow season (March-June) also had a marked increase in temperature (0.5 and 0.69 °C decade- 1 for Tmax and Tmin respectively), but no significant change in precipitation. These changes lead to a significant increase in the number of days with rainfall rather than snowfall. The sensitivity analysis indicated that mean snow water equivalent snowpack will decrease by 10.2% (early snow season) and 11.1% (late snow season) per degree of increased air temperature. For each degree of temperature increase, the modelled peak snow-water-equivalent (SWE) declined by 6.9%, duration of snowpack declined 11 days, and the number of days with rain increased 43% for the early snow season and 12.8% for the late snow season. A warmer climate also leads to markedly decreased surface snow sublimation and the fraction of snowfall eroded and transported by blowing snow. For most snowpack parameters analyzed, the response

  10. The Effects of Air Pollution and Temperature on COPD

    PubMed Central

    Hansel, Nadia N.; McCormack, Meredith C.; Kim, Victor

    2016-01-01

    Chronic Obstructive Pulmonary Disease (COPD) affects 12–16 million people in the United States and is the third-leading cause of death. In developed countries, smoking is the greatest risk factor for the development of COPD, but other exposures also contribute to the development and progression of the disease. Several studies suggest, though are not definitive, that outdoor air pollution exposure is linked to the prevalence and incidence of COPD. Among individuals with COPD, outdoor air pollutants are associated with loss of lung function and increased respiratory symptoms. In addition, outdoor air pollutants are also associated with COPD exacerbations and mortality. There is much less evidence for the impact of indoor air on COPD, especially in developed countries in residences without biomass exposure. The limited existing data suggests that indoor particulate matter and nitrogen dioxide concentrations are linked to increased respiratory symptoms among patients with COPD. In addition, with the projected increases in temperature and extreme weather events in the context of climate change there has been increased attention to the effects of heat exposure. Extremes of temperature—both heat and cold—have been associated with increased respiratory morbidity in COPD. Some studies also suggest that temperature may modify the effect of pollution exposure and though results are not conclusive, understanding factors that may modify susceptibility to air pollution in patients with COPD is of utmost importance. PMID:26683097

  11. Spatial interpolation of monthly mean air temperature data for Latvia

    NASA Astrophysics Data System (ADS)

    Aniskevich, Svetlana

    2016-04-01

    Temperature data with high spatial resolution are essential for appropriate and qualitative local characteristics analysis. Nowadays the surface observation station network in Latvia consists of 22 stations recording daily air temperature, thus in order to analyze very specific and local features in the spatial distribution of temperature values in the whole Latvia, a high quality spatial interpolation method is required. Until now inverse distance weighted interpolation was used for the interpolation of air temperature data at the meteorological and climatological service of the Latvian Environment, Geology and Meteorology Centre, and no additional topographical information was taken into account. This method made it almost impossible to reasonably assess the actual temperature gradient and distribution between the observation points. During this project a new interpolation method was applied and tested, considering auxiliary explanatory parameters. In order to spatially interpolate monthly mean temperature values, kriging with external drift was used over a grid of 1 km resolution, which contains parameters such as 5 km mean elevation, continentality, distance from the Gulf of Riga and the Baltic Sea, biggest lakes and rivers, population density. As the most appropriate of these parameters, based on a complex situation analysis, mean elevation and continentality was chosen. In order to validate interpolation results, several statistical indicators of the differences between predicted values and the values actually observed were used. Overall, the introduced model visually and statistically outperforms the previous interpolation method and provides a meteorologically reasonable result, taking into account factors that influence the spatial distribution of the monthly mean temperature.

  12. The value of snow cover

    NASA Astrophysics Data System (ADS)

    Sokratov, S. A.

    2009-04-01

    Snow is the natural resource, like soil and water. It has specific properties which allow its use not just for skiing but also for houses cooling in summer (Swedish experience), for air fields construction (Arctic and Antarctic), for dams (north of Russia), for buildings (not only snow-houses of some Polar peoples but artistic hotel attracting tourists in Sweden), and as art material (Sapporo snow festival, Finnish events), etc. "Adjustment" of snow distribution and amount is not only rather common practice (avalanche-protection constructions keeping snow on slopes) but also the practice with long history. So-called "snow irrigation" was used in Russia since XIX century to protect winter crop. What is now named "artificial snow production", is part of much larger pattern. What makes it special—it is unavoidable in present climate and economy situation. 5% of national income in Austria is winter tourism. 50% of the economy in Savoy relay on winter tourism. In terms of money this can be less, but in terms of jobs and income involved this would be even more considerable in Switzerland. As an example—the population of Davos is 14000 in Summer and 50000 in Winter. Skiing is growing business. In present time you can find ski slopes in Turkey and Lebanon. To keep a cite suitable for attracting tourists you need certain amount of sunny days and certain amount of snow. The snow cannons are often the only way to keep a place running. On the other hand, more artificial snow does not necessary attract more tourists, while heavy natural snowfall does attract them. Artificial snow making is costly and requires infrastructure (ponds and electric lines) with very narrow range of weather conditions. Related companies are searching for alternatives and one of them can be "weather regulation" by distribution of some chemical components in clouds. It did not happen yet, but can happen soon. The consequences of such interference in Nature is hardly known. The ski tourism is not the

  13. Can air temperature be used to project influences of climate change on stream temperature?

    USGS Publications Warehouse

    Arismendi, Ivan; Safeeq, Mohammad; Dunham, Jason B.; Johnson, Sherri L.

    2014-01-01

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To address this knowledge gap, we examined the performance of two widely used linear and nonlinear regression models that predict stream temperatures based on air temperatures. We evaluated model performance and temporal stability of model parameters in a suite of regulated and unregulated streams with 11–44 years of stream temperature data. Although such models may have validity when predicting stream temperatures within the span of time that corresponds to the data used to develop them, model predictions did not transfer well to other time periods. Validation of model predictions of most recent stream temperatures, based on air temperature–stream temperature relationships from previous time periods often showed poor performance when compared with observed stream temperatures. Overall, model predictions were less robust in regulated streams and they frequently failed in detecting the coldest and warmest temperatures within all sites. In many cases, the magnitude of errors in these predictions falls within a range that equals or exceeds the magnitude of future projections of climate-related changes in stream temperatures reported for the region we studied (between 0.5 and 3.0 °C by 2080). The limited ability of regression-based statistical models to accurately project stream temperatures over time likely stems from the fact that underlying processes at play, namely the heat budgets of air and water, are distinctive in each medium and vary among localities and through time.

  14. Snow hydrology in a general circulation model

    NASA Technical Reports Server (NTRS)

    Marshall, Susan; Roads, John O.; Glatzmaier, Gary

    1994-01-01

    A snow hydrology has been implemented in an atmospheric general circulation model (GCM). The snow hydrology consists of parameterizations of snowfall and snow cover fraction, a prognostic calculation of snow temperature, and a model of the snow mass and hydrologic budgets. Previously, only snow albedo had been included by a specified snow line. A 3-year GCM simulation with this now more complete surface hydrology is compared to a previous GCM control run with the specified snow line, as well as with observations. In particular, the authors discuss comparisons of the atmospheric and surface hydrologic budgets and the surface energy budget for U.S. and Canadian areas. The new snow hydrology changes the annual cycle of the surface moisture and energy budgets in the model. There is a noticeable shift in the runoff maximum from winter in the control run to spring in the snow hydrology run. A substantial amount of GCM winter precipitation is now stored in the seasonal snowpack. Snow cover also acts as an important insulating layer between the atmosphere and the ground. Wintertime soil temperatures are much higher in the snow hydrology experiment than in the control experiment. Seasonal snow cover is important for dampening large fluctuations in GCM continental skin temperature during the Northern Hemisphere winter. Snow depths and snow extent show good agreement with observations over North America. The geographic distribution of maximum depths is not as well simulated by the model due, in part, to the coarse resolution of the model. The patterns of runoff are qualitatively and quantitatively similar to observed patterns of streamflow averaged over the continental United States. The seasonal cycles of precipitation and evaporation are also reasonably well simulated by the model, although their magnitudes are larger than is observed. This is due, in part, to a cold bias in this model, which results in a dry model atmosphere and enhances the hydrologic cycle everywhere.

  15. Historical changes in air temperature are evident in temperature fluxes measured in the sub-soil.

    NASA Astrophysics Data System (ADS)

    Fraser, Fiona; McCormick, Benjamin; Hallett, Paul; Wookey, Philip; Hopkins, David

    2013-04-01

    Warming trends in soil temperature have implications for a plethora of soil processes, including exacerbated climate change through the net release of greenhouse gases. Whereas long-term datasets of air temperature changes are abundant, a search of scientific literature reveals a lack of information on soil temperature changes and their specific consequences. We analysed five long-term data series collected in the UK (Dundee and Armagh) and Canada (Charlottetown, Ottawa and Swift Current). They show that the temperatures of soils at 5 - 20 cm depth, and sub-soils at 30 - 150 cm depth, increased in line with air temperature changes over the period 1958 - 2003. Differences were found, however, between soil and air temperatures when data were sub-divided into seasons. In spring, soil temperature warming ranged from 0.19°C at 30 cm in Armagh to 4.30°C at 50 cm in Charlottetown. In summer, however, the difference was smaller and ranged from 0.21°C at 10 cm in Ottawa to 3.70°C at 50 cm in Charlottetown. Winter temperatures were warmer in soil and ranged from 0.45°C at 5 cm in Charlottetown to 3.76°C at 150 cm in Charlottetown. There were significant trends in changes to soil temperature over time, whereas air temperature trends tended only to be significant in winter (changes range from 1.27°C in Armagh to 3.35°C in Swift Current). Differences in the seasonal warming patterns between air and soil temperatures have potential implications for the parameterization of models of biogeochemical cycling.

  16. Potential of a low-cost sensor network to understand the spatial and temporal dynamics of a mountain snow cover

    NASA Astrophysics Data System (ADS)

    Pohl, Stefan; Garvelmann, Jakob; Wawerla, Jens; Weiler, Markus

    2014-03-01

    The spatial and temporal dynamics of seasonal snow covers play a critical role for many hydrological, ecological, and climatic processes. This paper presents a new, innovative approach to continuously monitor these dynamics using numerous low-cost, standalone snow monitoring stations (SnoMoS). These stations provide snow and related meteorological data with a high temporal and spatial resolution. Data collected by SnoMoS include: snow depth, surface temperature, air temperature and humidity, total precipitation, global radiation, wind speed, and barometric pressure. A total of 99 sensors were placed over the winters 2010/2011 and 2011/2012 at multiple locations within three 40-180 km2 basins in the Black Forest region of Southern Germany. The locations were chosen to cover a wide range of slopes, elevations, and expositions in a stratified sampling design. Furthermore, "paired stations" located in close proximity to each other, one in the open and one underneath various forest canopies, were set up to investigate the influence of vegetation on snow dynamics. The results showed that considerable differences in snow depth and, therefore, snow water equivalent (SWE) are present within the study area despite its moderate temperatures and medium elevation range (400-1500 m). The relative impact of topographical factors like elevation, aspect, and of different types of forest vegetation were quantified continuously and were found to change considerably over the winter period. The recorded differences in SWE and snow cover duration were large enough that they should be considered in hydrologic and climate models.

  17. A 7-year dataset for driving and evaluating snow models at an Arctic site (Sodankylä, Finland)

    NASA Astrophysics Data System (ADS)

    Essery, Richard; Kontu, Anna; Lemmetyinen, Juha; Dumont, Marie; Ménard, Cécile B.

    2016-06-01

    Datasets derived from measurements at Sodankylä, Finland, for driving and evaluating snow models are presented. This is the first time that such complete datasets have been made available for a site in the Arctic. The continuous October 2007-September 2014 driving data comprise all of the meteorological variables required as inputs for physically based snow models at hourly intervals: incoming solar and longwave radiation, snowfall and rainfall rates, air temperature, humidity, wind speed and atmospheric pressure. Two versions of the driving data are provided: one using radiation and wind speed measurements made above the height of the trees around the clearing where the evaluation data were measured and one with adjustments for the influence of the trees on conditions close to the ground. The available evaluation data include automatic and manual measurements of bulk snow depth and snow water equivalent, and profiles of snow temperature, snow density and soil temperature. A physically based snow model is driven and evaluated with the datasets to illustrate their utility. Shading by trees is found to extend the duration of both modelled and observed snow cover on the ground by several days a year.

  18. Changes in Snow Cover Characteristics over Northern Eurasia since 1966

    NASA Astrophysics Data System (ADS)

    Bulygina, Olga; Groisman, Pavel; Razuvaev, Vyacheslav; Korshunova, Natalia

    2010-05-01

    Data. In addition to a standard suite of snow observations across Northern Eurasia and its surroundings, we used in our study the national snow survey data set archived at the Russian Institute for Hydrometeorological Information. The last dataset has routine snow surveys run throughout the cold season each decade (during the intense snowmelt, each 5 days) at all meteorological stations of the former USSR, thereafter, in Russia since 1966. Prior to 1966 snow surveys are also available but the methodology of observations has substantially changed at that year. Therefore, this analysis includes only data of more than1000 Russian stations from 1966 to 2009 that have a minimal number of missing observations. Surveys run separately along all types of environment typical for the site for 1 to 2 km, describing the current snow cover properties such as snow density, depth, water equivalent, and characteristics of snow and ice crust. Background. During the past 128 years (since 1881), the annual surface air temperature in Northern Eurasia has increased by 1.5° C and in the winter season by 3° C. Nearby to the north in the Arctic Ocean, the late summer sea ice extent decreased by 40% exposing a near-infinite source of water vapor for the dry Arctic atmosphere in early cold season months. As a result of these processes the following changes in snow cover characteristics have been observed: (a) in autumn the dates of the onset of snow cover have not changed noticeably despite the strong temperature increase in this season; (b) in late spring, snow cover extent has decreased, retreating by 1 to 2 weeks earlier during the past 40 years; and (c) in the cold season maximum snow depth and SWE (at open areas) have increased over most of Russia. In the western half of Eurasian continent days with thaw became more frequent. Snowmelt duration and ice crust changes. Over Northern Eurasia, the snowmelt process can be lengthy but even the first such melt initiates a process of snow

  19. Snow multivariable data assimilation for hydrological predictions in mountain areas

    NASA Astrophysics Data System (ADS)

    Piazzi, Gaia; Campo, Lorenzo; Gabellani, Simone; Rudari, Roberto; Castelli, Fabio; Cremonese, Edoardo; Morra di Cella, Umberto; Stevenin, Hervé; Ratto, Sara Maria

    2016-04-01

    The seasonal presence of snow on alpine catchments strongly impacts both surface energy balance and water resource. Thus, the knowledge of the snowpack dynamics is of critical importance for several applications, such as water resource management, floods prediction and hydroelectric power production. Several independent data sources provide information about snowpack state: ground-based measurements, satellite data and physical models. Although all these data types are reliable, each of them is affected by specific flaws and errors (respectively dependency on local conditions, sensor biases and limitations, initialization and poor quality forcing data). Moreover, there are physical factors that make an exhaustive reconstruction of snow dynamics complicated: snow intermittence in space and time, stratification and slow phenomena like metamorphism processes, uncertainty in snowfall evaluation, wind transportation, etc. Data Assimilation (DA) techniques provide an objective methodology to combine observational and modeled information to obtain the most likely estimate of snowpack state. Indeed, by combining all the available sources of information, the implementation of DA schemes can quantify and reduce the uncertainties of the estimations. This study presents SMASH (Snow Multidata Assimilation System for Hydrology), a multi-layer snow dynamic model, strengthened by a robust multivariable data assimilation algorithm. The model is physically based on mass and energy balances and can be used to reproduce the main physical processes occurring within the snowpack: accumulation, density dynamics, melting, sublimation, radiative balance, heat and mass exchanges. The model is driven by observed forcing meteorological data (air temperature, wind velocity, relative air humidity, precipitation and incident solar radiation) to provide a complete estimate of snowpack state. The implementation of an Ensemble Kalman Filter (EnKF) scheme enables to assimilate simultaneously ground

  20. Air Temperature Estimation over the Third Pole Using MODIS LST

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Zhang, F.; Ye, M.; Che, T.

    2015-12-01

    The Third Pole is centered on the Tibetan Plateau (TP), which is the highest large plateau around the world with extremely complex terrain and climate conditions, resulting in very scarce meteorological stations especially in the vast west region. For these unobserved areas, the remotely sensed land surface temperature (LST) can greatly contribute to air temperature estimation. In our research we utilized the MODIS LST production from both TERRA and AQUA to estimate daily mean air temperature over the TP using multiple statistical models. Other variables used in the models include longitudes, latitudes, Julian day, solar zenith, NDVI and elevation. To select a relatively optimal model, we chose six popular and representative statistical models as candidate models including the multiple linear regression (MLR), the partial least squares regression (PLS), back propagate neural network (BPNN), support vector regression (SVR), random forests (RF) and Cubist regression (CR). The performances of the six models were compared for each possible combination of LSTs at four satellite pass times and two quality situations. Eventually a ranking table consisting of optimal models for each LST combination and quality situation was built up based on the validation results. By this means, the final production is generated providing daily mean air temperature with the least cloud blockage and acceptable accuracy. The average RMSEs of cross validation are mostly around 2℃. Stratified validations were also performed to test the expansibility to unobserved and high-altitude areas of the final models selected.

  1. Snow metamorphism: A fractal approach.

    PubMed

    Carbone, Anna; Chiaia, Bernardino M; Frigo, Barbara; Türk, Christian

    2010-09-01

    Snow is a porous disordered medium consisting of air and three water phases: ice, vapor, and liquid. The ice phase consists of an assemblage of grains, ice matrix, initially arranged over a random load bearing skeleton. The quantitative relationship between density and morphological characteristics of different snow microstructures is still an open issue. In this work, a three-dimensional fractal description of density corresponding to different snow microstructure is put forward. First, snow density is simulated in terms of a generalized Menger sponge model. Then, a fully three-dimensional compact stochastic fractal model is adopted. The latter approach yields a quantitative map of the randomness of the snow texture, which is described as a three-dimensional fractional Brownian field with the Hurst exponent H varying as continuous parameters. The Hurst exponent is found to be strongly dependent on snow morphology and density. The approach might be applied to all those cases where the morphological evolution of snow cover or ice sheets should be conveniently described at a quantitative level.

  2. Snow metamorphism: A fractal approach.

    PubMed

    Carbone, Anna; Chiaia, Bernardino M; Frigo, Barbara; Türk, Christian

    2010-09-01

    Snow is a porous disordered medium consisting of air and three water phases: ice, vapor, and liquid. The ice phase consists of an assemblage of grains, ice matrix, initially arranged over a random load bearing skeleton. The quantitative relationship between density and morphological characteristics of different snow microstructures is still an open issue. In this work, a three-dimensional fractal description of density corresponding to different snow microstructure is put forward. First, snow density is simulated in terms of a generalized Menger sponge model. Then, a fully three-dimensional compact stochastic fractal model is adopted. The latter approach yields a quantitative map of the randomness of the snow texture, which is described as a three-dimensional fractional Brownian field with the Hurst exponent H varying as continuous parameters. The Hurst exponent is found to be strongly dependent on snow morphology and density. The approach might be applied to all those cases where the morphological evolution of snow cover or ice sheets should be conveniently described at a quantitative level. PMID:21230135

  3. Heat generation during metamorphic processes in snow

    NASA Astrophysics Data System (ADS)

    Tyagunin, A. V.; Koposov, G. D.

    2016-09-01

    The research analyzes known metamorphic processes in the snow from the point of view of energy approach. A list of these processes is complemented with the processes associated with runoff of a quasi-liquid layer from snow granules. The experimental results of studying the heat generation from the snow cover and the temperature gradient at the depth of the snow cover are presented. It is emphasized that snow cover is not merely a passive conductor of heat but also it is a heat generating medium.

  4. Effects of air temperature, humidity, and air movement on thermal comfort under hot and humid conditions

    SciTech Connect

    Tanabe, Shinichi; Kimura, Kenichi

    1994-12-31

    The purpose of this paper is to review and summarize the effects of air temperature, humidity, and air movement on thermal comfort under hot and humid conditions with a view toward energy conservation. Recently, ASHRAE published a new comfort envelope in Standard 55-1992. In that standard, the upper limit of relative humidity (RH) was wet at 60%. In hot and humid regions, humidity levels higher than 60% may often be observed. This upper limit of humidity is discussed based on their subjective data. In addition, the results show that under hot and humid conditions, air movement may be one of the least expensive methods of providing thermal comfort. The effect of air movement is also described in this paper.

  5. Comparison of AMSR-E and SSM/I snow parameter retrievals over the Ob river basin

    USGS Publications Warehouse

    Mognard, N.M.; Grippa, M.; LeToan, T.; Kelly, R.E.J.; Chang, A.T.C.; Josberger, E.G.

    2004-01-01

    Passive microwave observations from the Advanced Microwave Scanning Radiometer - EOS (AMSR-E) and from the Special Sensor Microwave Imager (SSM/I) are used to analyse the evolution of the snow pack in the Ob river basin during the snow season of 2002-03. The Ob river is the biggest Russian river with respect to its watershed area (2 975 000 km2). The Ob originates in the Altai mountains and flows northward across the vast West Siberian lowland towards the Arctic Ocean. The majority of snow cover is contained in the lowlands rather than in mountainous regions and persists for six months or more. During the snow season, surface air temperatures are very cold. Therefore, the combination of cold dry snow and large areas of uniform topography is ideal for snowpack extent and water equivalent retrievals from passive microwave observations. The thermal gradient through the snow pack is estimated and used to model the growth of the snow grain size and to compute the evolution of the passive microwave derived snow depth over the region. A comparison between the AMSR-E and SSM/I estimates is performed and the differences between the snow parameters from the two satellite instruments are analysed.

  6. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect

    Waye, S.; Musselman, M.; King, C.

    2014-09-01

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  7. Progress in AMSR Snow Algorithm Development

    NASA Technical Reports Server (NTRS)

    Chang, Alfred; Koike, Toshio

    1998-01-01

    Advanced Microwave Scanning Radiometer (AMSR) will be flown on-board of the Japanese Advanced Earth Observing Satellite-II (ADEOS-II) and United States Earth Observation System (EOS) PM-1 satellite. AMSR is a passive microwave radiometer with frequency ranges from 6.9 GHz to 89 GHz. It scans conically with a constant incidence angle of 55 deg at the Earth's surface. The swath width is about 1600 km. With a large antenna, AMSR will provide the best spatial resolution of multi-frequency radiometer from space. This provides us an opportunity to improve the snow parameter retrieval. Accurate determination of snow parameters from space is a challenging effort. Over the years, many different techniques have been used to account for the complicated snow parameters such as the density, stratigraphy, snow grain size, temperature variation of the snow-pack. Forest type, fractional forest cover and land use type also need to be considered in developing an improved retrieval algorithm. However, snow is such a dynamic variable, snow-pack parameter keeps changing once the snow is deposited on the earth surface. Currently, NASDA and NASA are developing AMSR snow retrieval algorithms. These algorithms are now being carefully tested and evaluated using the SSM/I data. Due to limited snow-pack data available for comparison, this activity is progressing slowly. However, it is clear that in order to improve the snow retrieval algorithm, it is necessary to model the metamorphism history of the snow-pack.

  8. A review of reaction rates in high temperature air

    NASA Technical Reports Server (NTRS)

    Park, Chul

    1989-01-01

    The existing experimental data on the rate coefficients for the chemical reactions in nonequilibrium high temperature air are reviewed and collated, and a selected set of such values is recommended for use in hypersonic flow calculations. For the reactions of neutral species, the recommended values are chosen from the experimental data that existed mostly prior to 1970, and are slightly different from those used previously. For the reactions involving ions, the recommended rate coefficients are newly chosen from the experimental data obtained more recently. The reacting environment is assumed to lack thermal equilibrium, and the rate coefficients are expressed as a function of the controlling temperature, incorporating the recent multitemperature reaction concept.

  9. Association Between Air Temperature and Cancer Death Rates in Florida

    PubMed Central

    2015-01-01

    Proponents of global warming predict adverse events due to a slight warming of the planet in the last 100 years. This ecological study tests one of the possible arguments that might support the global warming theory – that it may increase cancer death rates. Thus, average daily air temperature is compared to cancer death rates at the county level in a U.S. state, while controlling for variables of smoking, race, and land elevation. The study revealed that lower cancer death rates were associated with warmer temperatures. Further study is indicated to verify these findings. PMID:26674418

  10. Industrial applications of MHD high temperature air heater technology

    NASA Astrophysics Data System (ADS)

    Saari, D. P.; Fenstermacher, J. E.; White, L. R.; Marksberry, C. L.

    1981-12-01

    The MHD high temperature air heater (HTAH) requires technology beyond the current state-of-the-art of industrial regenerative heaters. Specific aspects of HTAH technology which may find other application include refractory materials and valves resistant to the high temperature, corrosive, slag-bearing gas, materials resistant to cyclic thermal stresses, high temperature support structures for the cored brick bed, regenerative heater operating techniques for preventing accumulation of slag in the heater, and analytical tools for computing regenerative heater size, cost, and performance. Areas where HTAH technology may find application include acetylene/ethylene production processes, flash pyrolysis of coal, high temperature gas reactors, coal gasification processes, various metallurgical processes, waste incineration, and improvements to existing regenerator technology such as blast furnace stoves and glass tank regenerators.

  11. Time-Lapse Micro-Tomography Measurements and Determination of Effective Transport Properties of Snow Metamorphism Under Advective Conditions

    NASA Astrophysics Data System (ADS)

    Ebner, P. P.; Grimm, S.; Steen-Larsen, H. C.; Schneebeli, M.; Steinfeld, A.

    2014-12-01

    The metamorphism of snow under advective air flow, with and without temperature gradient, was never experimentally investigated. We developed a new sample holder where metamorphism under advective conditions can be observed and measured using time-lapse micro-tomography [1]. Long-term experiments were performed and direct pore-level simulation (DPLS) [2,3] was directly applied on the extracted 3D digital geometry of the snow to calculate the effective transport properties by solving the governing fluid flow equations. The results showed no effect of isothermal advection, compared to rates typical for isothermal metamorphism. Appling a temperature gradient, the results showed increased snow metamorphism compared to rates typical for temperature gradient metamorphism. However, for both cases a change in the isotopic composition in the air as well as in the snow sample could be observed. These measurements could be influential to better understand snow-air exchange processes relevant for atmospheric chemistry and isotopic composition. REFERENCES[1] Ebner P. P., Grimm S., Schneebeli M., and Steinfeld A.: An instrumented sample holder for time-lapse micro-tomography measurements of snow under advective airflow. Geoscientific Instrumentation, Methods and Data Systems 4(2014), 353-373. [2] Zermatten E., Haussener S., Schneebeli M., and Steinfeld A.: Tomography-based determination of permeability and Dupuit-Forchheimer coefficient of characteristic snow samples. Journal of Glaciology 57(2011), 811-816. [3] Zermatten E., Schneebeli M., Arakawa H., and Steinfeld A.: Tomography-based determination of porosity, specific area and permeability of snow and comparison with measurements. Cold Regions Science and Technology 97 (2014), 33-40. Fig. 1: 3-D surface rendering of a refrozen wet snow sample with fluid flow streamline.

  12. Antarctic Sea ice variations and seasonal air temperature relationships

    NASA Technical Reports Server (NTRS)

    Weatherly, John W.; Walsh, John E.; Zwally, H. J.

    1991-01-01

    Data through 1987 are used to determine the regional and seasonal dependencies of recent trends of Antarctic temperature and sea ice. Lead-lag relationships involving regional sea ice and air temperature are systematically evaluated, with an eye toward the ice-temperature feedbacks that may influence climatic change. Over the 1958-1087 period the temperature trends are positive in all seasons. For the 15 years (l973-l987) for which ice data are available, the trends are predominantly positive only in winter and summer, and are most strongly positive over the Antarctic Peninsula. The spatially aggregated trend of temperature for this latter period is small but positive, while the corresponding trend of ice coverage is small but negative. Lag correlations between seasonal anomalies of the two variables are generally stronger with ice lagging the summer temperatures and with ice leading the winter temperatures. The implication is that summer temperatures predispose the near-surface waters to above-or below-normal ice coverage in the following fall and winter.

  13. THE ROLE OF COLD-AIR DRAINAGE IN EXPLAINING SPATIAL PATTERNS OF TEMPERATURE TRENDS IN THE WESTERN U.S

    NASA Astrophysics Data System (ADS)

    Pepin, N. C.; Daly, C.; Lundquist, J. D.

    2009-12-01

    Understanding spatial patterns of climate change in the western U.S. is of fundamental importance to understanding impacts on the landscape. Because much of the western U.S. is topographically complex, and shows distinct microclimates, there is no reason therefore to expect past or future patterns of change to be spatially smooth. In particular cold air drainage in mountain valleys causes decoupling of the temperature regime in many locations from the free atmosphere. This is a major feature of the western U.S. climate which is often dominated by relatively cloud-free high pressure conditions. We investigate here whether this decoupling has seen significant temporal change in the past, and the implications of such a change for patterns of warming observed across the western U.S. We analyse temperature trends from 494 long-term weather stations in the western U.S. for the period 1948-2006, from the GHCNv2 dataset, supplemented by additional COOP stations. There is a range of topographic incision and elevation in the sites chosen. At each location we derive monthly synoptic indices representative of the degree of anticyclonicity vs cyclonicity using NCEP/NCAR 700 mb reanalysis pressure fields. The number of anticyclonic days minus the number of cyclonic days (A-C) is strongly related to temperature anomalies at exposed convex sites and hilltops where the free atmosphere controls the temperature signal. At cold air drainage sites which tend to be in topographic concavities the relationship is much weaker. We use the gradient of the A-C/temperature relationship to represent a coupling index which is high at exposed free-air locations and low at cold-air drainage locations. There are clear relationships between the past rate of warming and this coupling index across the western U.S. but these are seasonally determined. On a mean annual basis there are no strong relationships between temperature trend magnitude, elevation, the degree of topographic incision or the

  14. Potential for Monitoring Snow Cover in Boreal Forests by Combining MODIS Snow Cover and AMSR-E SWE Maps

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.; Foster, James L.

    2009-01-01

    through the seasons. A blended snow product, the Air Force Weather Agency and NASA (ANSA) snow algorithm and product has recently been developed. The ANSA algorithm blends the MODIS snow cover and AMSR-E SWE products into a single snow product that has been shown to improve the performance of snow cover mapping. In this study components of the ANSA snow algorithm are used along with additional MODIS data to monitor daily changes in snow cover over the period of 1 February to 30 June 2008.

  15. Spatial estimates of snow water equivalent from reconstruction

    NASA Astrophysics Data System (ADS)

    Rittger, Karl; Bair, Edward H.; Kahl, Annelen; Dozier, Jeff

    2016-08-01

    Operational ground-based measurements of snow water equivalent (SWE) do not adequately explain spatial variability in mountainous terrain. To address this problem, we combine satellite-based retrievals of fractional snow cover for the period 2000 to 2011 with spatially distributed energy balance calculations to reconstruct SWE values throughout each melt season in the Sierra Nevada of California. Modeled solar radiation, longwave radiation, and air temperature from NLDAS drive the snowmelt model. The modeled solar radiation compares well to ground observations, but modeled longwave radiation is slightly lower than observations. Validation of reconstructed SWE with snow courses and our own snow surveys shows that the model can accurately estimate SWE at the sampled locations in a variety of topographic settings for a range of wet to dry years. The relationships of SWE with elevation and latitude are significantly different for wet, mean and dry years as well as between drainages. In all the basins studied, the relationship between remaining SWE and snow-covered area (SCA) becomes increasingly correlated from March to July as expected because SCA is an important model input. Though the SWE is calculated retrospectively SCA observations are available in near-real time and combined with historical reconstructions may be sufficient for estimating SWE with more confidence as the melt season progresses.

  16. The impact of snow cover on nutrients dynamics in Western Siberia territories

    NASA Astrophysics Data System (ADS)

    Nikitich, Polina; Bredoire, Felix; Alvarez, Gaël; Barsukov, Pavel; Bakker, Mark; Buée, Marc; Derrien, Delphine; Fontaine, Sebastien; Kayler, Zachary; Rusalimova, Olga; Vaishlya, Olga; Zeller, Bernd

    2015-04-01

    Monitoring of climate parameters performed in Siberia over the last decades has revealed a general increase in temperature and an increase in winter precipitation leading to a thicker snow pack. Climate models predict an amplification of these trends and indicate that the huge territory of the western Siberian plains will become suitable for agriculture. However, these projections do not consider soil fertility -- a key issue for agricultural sustainability. The intention of our study is to test whether the predicted increase in snow precipitation will change soil water fluxes, soil organic matter (SOM) decomposition, and the rate of nutrient release in relation to reduced soil freezing. Investigations were performed in forests and grasslands both in the steppe-forest zone (Barnaul) and in the subtaiga zone (Tomsk). Average air temperatures in Barnaul and Tomsk are 2.6°C and 0.9°C and amounts of precipitation are 495 mm and 568 mm, respectively. A pair plot experiment was conducted in winter 2013-2014 to investigate the effect of snow thickness on soil temperature, moisture, and on the release of nutrients during SOM decomposition. Snow cover was artificially increased in the treatment plots and was undisturbed in the control plots. The impact of snow thickness on soil moisture and temperature has been continuously monitored over one year. Permanent snow cover occurred not before late December 2013. It reached about 60 cm in control plots and 1 m in the treatment plots, for a period of time expanding from mid-February to mid-March 2014. In spring, the snow cover persisted two weeks longer in treatment plots than in control plots. The minimum air temperature reached -35°C end of January 2014 at Tomsk and Barnaul, while minimum soil temperature at 5 cm depth was -1°C at Tomsk and -8°C at Barnaul. During winter, soil temperatures were slightly higher in the plot with additional snow compared to the control plot, indicating an insulate effect of the snow cover. At

  17. Controls of air temperature variability over an Alpine Glacier

    NASA Astrophysics Data System (ADS)

    Shaw, Thomas; Brock, Ben; Ayala, Álvaro; Rutter, Nick

    2016-04-01

    Near surface air temperature (Ta) is one of the most important controls on energy exchange between a glacier surface and the overlying atmosphere. However, not enough detail is known about the controls on Ta across a glacier due to sparse data availability. Recent work has provided insights into variability of Ta along glacier centre-lines in different parts of the world, yet there is still a limited understanding of off-centreline variability in Ta and how best to estimate it from distant off-glacier locations. We present a new dataset of distributed 2m Ta records for the Tsanteleina Glacier in Northwest Italy from July-September, 2015. Data provide detailed information of lateral (across-glacier) and centre-line variations in Ta, with ~20,000 hourly observations from 17 locations. The suitability of different vertical temperature gradients (VTGs) in estimating air temperature is considered under a range of meteorological conditions and from different forcing locations. A key finding is that local VTGs account for a lot of Ta variability under a broad range of climatic conditions. However, across-glacier variability is found to be significant, particularly for high ambient temperatures and for localised topographic depressions. The relationship of spatial Ta patterns with regional-scale reanalysis data and alternative Ta estimation methodologies are also presented. This work improves the knowledge of local scale Ta variations and their importance to melt modelling.

  18. Brilliant Colours from a White Snow Cover

    ERIC Educational Resources Information Center

    Vollmer, Michael; Shaw, Joseph A

    2013-01-01

    Surprisingly colourful views are possible from sparkling white snow. It is well known that similarly colourful features can exist in the sky whenever appropriate ice crystals are around. However, the transition of light reflection and refraction from ice crystals in the air to reflection and refraction from those in snow on the ground is not…

  19. MODIS Snow and Sea Ice Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.

    2004-01-01

    In this chapter, we describe the suite of Earth Observing System (EOS) Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua snow and sea ice products. Global, daily products, developed at Goddard Space Flight Center, are archived and distributed through the National Snow and Ice Data Center at various resolutions and on different grids useful for different communities Snow products include binary snow cover, snow albedo, and in the near future, fraction of snow in a 5OO-m pixel. Sea ice products include ice extent determined with two different algorithms, and sea ice surface temperature. The algorithms used to develop these products are described. Both the snow and sea ice products, available since February 24,2000, are useful for modelers. Validation of the products is also discussed.

  20. Sensitivity of New England Stream Temperatures to Air Temperature and Precipitation Under Projected Climate

    NASA Astrophysics Data System (ADS)

    Huang, T.; Samal, N. R.; Wollheim, W. M.; Stewart, R. J.; Zuidema, S.; Prousevitch, A.; Glidden, S.

    2015-12-01

    The thermal response of streams and rivers to changing climate will influence aquatic habitat. This study examines the impact that changing climate has on stream temperatures in the Merrimack River, NH/MA USA using the Framework for Aquatic Modeling in the Earth System (FrAMES), a spatially distributed river network model driven by air temperature, air humidity, wind speed, precipitation, and solar radiation. Streamflow and water temperatures are simulated at a 45-second (latitude x longitude) river grid resolution for 135 years under historical and projected climate variability. Contemporary streamflow (Nash-Sutcliffe Coefficient = 0.77) and river temperatures (Nash-Sutcliffe Coefficient = 0.89) matched at downstream USGS gauge data well. A suite of model runs were made in combination with uniformly increased daily summer air temperatures by 2oC, 4 oC and 6 oC as well as adjusted precipitation by -40%, -30%, -20%, -10% and +10% as a sensitivity analysis to explore a broad range of potential future climates. We analyzed the summer stream temperatures and the percent of river length unsuitable for cold to warm water fish habitats. Impacts are greatest in large rivers due to the accumulation of river temperature warming throughout the entire river network. Cold water fish (i.e. brook trout) are most strongly affected while, warm water fish (i.e. largemouth bass) aren't expected to be impacted. The changes in stream temperatures under various potential climate scenarios will provide a better understanding of the specific impact that air temperature and precipitation have on aquatic thermal regimes and habitat.

  1. Air Temperature estimation from Land Surface temperature and solar Radiation parameters

    NASA Astrophysics Data System (ADS)

    Lazzarini, Michele; Eissa, Yehia; Marpu, Prashanth; Ghedira, Hosni

    2013-04-01

    Air Temperature (AirT) is a fundamental parameter in a wide range of applications such as climate change studies, weather forecast, energy balance modeling, efficiency of Photovoltaic (PV) solar cells, etc. Air temperature data are generally obtained through regular measurements from meteorological stations. The distribution of these stations is normally sparse, so the spatial pattern of this parameter cannot be accurately estimated by interpolation methods. This work investigated the relationship between Air Temperature measured at meteorological stations and spatially contiguous measurements derived from Remote Sensing techniques, such as Land Surface Temperature (LST) maps, emissivity maps and shortwave radiation maps with the aim of creating a continuous map of AirT. For LST and emissivity, MSG-SEVIRI LST product from Land Surface Analysis Satellite Applications Facility (LSA-SAF) has been used. For shortwave radiation maps, an Artificial Neural Networks ensemble model has been developed and previously tested to create continuous maps from Global Horizontal Irradiance (GHI) point measurements, utilizing six thermal channels of MSG-SEVIRI. The testing sites corresponded to three meteorological stations located in the United Arab Emirates (UAE), where in situ measurements of Air Temperature were available. From the starting parameters, energy fluxes and net radiation have been calculated, in order to have information on the incoming and outgoing long-wave radiation and the incoming short-wave radiation. The preliminary analysis (day and Night measurements, cloud free) showed a strong negative correlation (0.92) between Outgoing long-wave radiation - GHI and LST- AirT, with a RMSE of 1.84 K in the AirT estimation from the initial parameters. Regression coefficients have been determined and tested on all the ground stations. The analysis also demonstrated the predominant impact of the incoming short-wave radiation in the AirT hourly variation, while the incoming

  2. Simulation of Snow Dynamics in Response to Climate Variability

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Wang, S.; Trishchenko, A.

    2004-05-01

    Snow dynamics not only affects the energy dissipation in northern ecosystems during non-growing season, but also affects plant growth through its impact on the soil water conditions of early growing season. To better simulate the snow and soil dynamics, a multiple-layer snow and soil interaction module has been recently developed within the Ecological Assimilation of Land and Climate Observations (EALCO) model. Up to 6 snow layers and 6 soil layers with flexible depth are currently represented in the module. Soil or snow skin temperature is obtained by numerically solving the surface energy balance equation. Energy dissipation to latent, sensible and soil/snow surface heat fluxes are thus calculated. Snow density is simulated in consideration of both compaction and destructive metamorphism, which depends on snow age, temperature and the residing weight above. The snow surface albedo, thermal and water properties and change of snow depth are updated in each time step and snow layers are re-calculated accordingly. The temperatures of snow and soil layers are implicitly solved in a tridiagonal linear system for thermal conduction equations. Freezing and thawing are computed according to the solved layer temperature and the existing water phase in the layer. Water movement between snow layers is computed according to the liquid water content and water holding capacity. Soil Water movement is simulated using Richard's equation and Darcy's law. The soil water content of each layer is thus implicitly solved as for temperatures. The model runs in half-hourly time step and main outputs include snow depth, snow water equivalent, and the temperature and water profiles for both snow and soil. In this study, the model was tested using data collected from several Canadian sites in the prairie and boreal forest region. The observed snow depth and temperature were compared with the corresponding model outputs. Sensitivities of snow cover change and soil thermal and moisture regime

  3. On extreme rainfall intensity increases with air temperature

    NASA Astrophysics Data System (ADS)

    Molnar, Peter; Fatichi, Simone; Paschalis, Athanasios; Gaal, Ladislav; Szolgay, Jan; Burlando, Paolo

    2016-04-01

    The water vapour holding capacity of air increases at about 7% per degree C according to the Clausius-Clapeyron (CC) relation. This is one of the arguments why a warmer future atmosphere, being able to hold more moisture, will generate higher extreme precipitation intensities. However, several empirical studies have recently demonstrated an increase in extreme rain intensities with air temperature above CC rates, in the range 7-14% per degree C worldwide (called super-CC rates). This was observed especially for shorter duration rainfall, i.e. in hourly and finer resolution data (e.g. review in Westra et al., 2014). The super-CC rate was attributed to positive feedbacks between water vapour and the updraft dynamics in convective clouds and lateral supply (convergence) of moisture. In addition, mixing of storm types was shown to be potentially responsible for super-CC rates in empirical studies. Assuming that convective events are accompanied by lightning, we will show on a large rainfall dataset in Switzerland (30 year records of 10-min and 1-hr data from 59 stations) that while the average rate of increase in extreme rainfall intensity (95th percentile) is 6-7% in no-lightning events and 8-9% in lightning events, it is 11-13% per degree C when all events are combined (Molnar et al., 2015). These results are relevant for climate change studies which predict shifts in storm types in a warmer climate in some parts of the world. The observation that extreme rain intensity and air temperature are positively correlated has consequences for the stochastic modelling of rainfall. Most current stochastic models do not explicitly include a direct rain intensity-air temperature dependency beyond applying factors of change predicted by climate models to basic statistics of precipitation. Including this dependency explicitly in stochastic models will allow, for example in the nested modelling approach of Paschalis et al. (2014), the random cascade disaggregation routine to be

  4. Linking geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppala, Annika

    ERA-40 and ECMWF operational surface level air temperature (SAT) data sets from 1957 to 2006 were used to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the Ap index. Previous modelling work has suggested that NOx produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in polar SATs. We find that during winter months, ERA-40 and ECMWF polar SATs in years with high Ap index are different than in years with low Ap index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, de-pending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings are excluded. Solar irradiance variations were taken into account in the analysis. Although using the re-analysis and operational data sets it was not possible to conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating polar wintertime surface air temperature patterns. The SAT results were tested against variation in the Quasi Biennial Oscillation (QBO), the El Niño Southern Oscillation (ENSO) and the Southern Annular Mode n (SAM). The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode (NAM) and we could not robustly exclude a chance linkage between sea surface temperature (SST) variability and geomagnetic activity. Examining the physical link between geomagnetic activity and polar surface temperature variability patterns using atmospheric models is an ongoing task.

  5. Assimilation of AMSR-E snow products with optimized snow parameters in mountainous basins

    NASA Astrophysics Data System (ADS)

    Lin, C.; Li, X.; Tsang, L.; Josberger, E. G.; Lettenmaier, D. P.

    2012-12-01

    Of the factors that affect microwave emissions of snowpacks, and in turn recoveries of snow radiative temperature, the snow pack grain size is among the most important. In an attempt to improve the ability to retrieve snow water equivalent from satellite passive microwave observations, we attempt first to improve estimates of the radiative temperature of the snow pack, and then use data assimilation techniques in a forward model. First, we partition the snow accumulation season based on the snow accumulation rate. For each period we calculate the brightness temperature (TB) of bare snow from AMSR-E observations, corrected for the forest cover fraction of each AMSR-E footprint. Given the observed snow depth (SD) and snow water equivalent (SWE), we then calculate the snow density and absorption coefficient (κa) of the snow. The optimal scattering coefficient (κs) is determined using Dense Media Radiative Transfer (DMRT) model of QCA and also of the bicontinuous medium. Finally, the optimal grain size is determined with respect to the optimal scattering coefficient. We verify the approach using field measurements from the Stanley Basin, Idaho. Finally, we assimilate the AMSR-E satellite observations of brightness temperature into the Variable Infiltration Capacity (VIC) hydrologic model. Combination of the VIC SWE simulation with the DMRT output using optimal physical parameters is expected to improve satellite-based SWE estimates in the mountainous region.

  6. 'Snow Queen' Animation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This animation consists of two close-up images of 'Snow Queen,' taken several days apart, by the Robotic Arm Camera (RAC) aboard NASA's Phoenix Mars Lander.

    Snow Queen is the informal name for a patch of bright-toned material underneath the lander.

    Thruster exhaust blew away surface soil covering Snow Queen when Phoenix landed on May 25, 2008, exposing this hard layer comprising several smooth rounded cavities beneath the lander. The RAC images show how Snow Queen visibly changed between June 15, 2008, the 21st Martian day, or sol, of the mission and July 9, 2008, the 44th sol.

    Cracks as long as 10 centimeters (about four inches) appeared. One such crack is visible at the left third and the upper third of the Sol 44 image. A seven millimeter (one-third inch) pebble or clod appears just above and slightly to the right of the crack in the Sol 44 image. Cracks also appear in the lower part of the left third of the image. Other pieces noticeably shift, and some smooth texture has subtly roughened.

    The Phoenix team carefully positioned and focused RAC the same way in both images. Each image is about 60 centimeters, or about two feet, wide. The object protruding in from the top on the right half of the images is Phoenix's thermal and electrical conductivity probe.

    Snow Queen and other ice exposed by Phoenix landing and trenching operations on northern polar Mars is the first time scientists have been able to monitor Martian ice at a place where temperatures are cold enough that the ice doesn't immediately sublimate, or vaporize, away.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Snow crystal imaging using scanning electron microscopy: III. Glacier ice, snow and biota

    USGS Publications Warehouse

    Rango, A.; Wergin, W.P.; Erbe, E.F.; Josberger, E.G.

    2000-01-01

    Low-temperature scanning electron microscopy (SEM) was used to observe metamorphosed snow, glacial firn, and glacial ice obtained from South Cascade Glacier in Washington State, USA. Biotic samples consisting of algae (Chlamydomonas nivalis) and ice worms (a species of oligochaetes) were also collected and imaged. In the field, the snow and biological samples were mounted on copper plates, cooled in liquid nitrogen, and stored in dry shipping containers which maintain a temperature of -196??C. The firn and glacier ice samples were obtained by extracting horizontal ice cores, 8 mm in diameter, at different levels from larger standard glaciological (vertical) ice cores 7.5 cm in diameter. These samples were cooled in liquid nitrogen and placed in cryotubes, were stored in the same dry shipping container, and sent to the SEM facility. In the laboratory, the samples were sputter coated with platinum and imaged by a low-temperature SEM. To image the firn and glacier ice samples, the cores were fractured in liquid nitrogen, attached to a specimen holder, and then imaged. While light microscope images of snow and ice are difficult to interpret because of internal reflection and refraction, the SEM images provide a clear and unique view of the surface of the samples because they are generated from electrons emitted or reflected only from the surface of the sample. In addition, the SEM has a great depth of field with a wide range of magnifying capabilities. The resulting images clearly show the individual grains of the seasonal snowpack and the bonding between the snow grains. Images of firn show individual ice crystals, the bonding between the crystals, and connected air spaces. Images of glacier ice show a crystal structure on a scale of 1-2 mm which is considerably smaller than the expected crystal size. Microscopic air bubbles, less than 15 ??m in diameter, clearly marked the boundaries between these crystal-like features. The life forms associated with the glacier were

  8. Regional analysis of changes in snow pack in mountainous basins in the central Danube region

    NASA Astrophysics Data System (ADS)

    Balint, Gabor; Juričeková, Katarina; Gauzer, Balazs; Hlavčová, Kamila; Kohnová, Silvia; Szolgay, Jan; Zsideková, Beata

    2013-04-01

    Accurate estimation of the volume of water stored in the snow pack and its rate of release is essential to predict the flow during the snowmelt period. In mountainous drainage basins water stored in the snow pack represents an important component of the water budget. Two modelling tools are compared. The first, HOLV snowmelt model is developed by the Hungarian National Hydrological Forecasting Service (VITUKI NHFS) for regional assessment of snow accumulation and ablation of the central Danube. The model originates from the early 80's and it is under continuous development, while its recent distributed version over a grid with 0.1 degree resolution is in use. The snowmelt model has a flexible structure; it is able to change its own structure in function of data availability. In case when only precipitation and air temperature data are available temperature index method is used. When also other data are accessible (cloudiness, dew point, wind speed) using of energy balance model is to be preferred. If there are suitable data available for calculation of the energy terms, the energy balance method can be applied. The second semi-distributed Hron model, developed at the Slovak University of Technology was applied to a smaller sub-basin to represent spatial distribution of snow cover by simulated snow water equivalent. The upper Hron river basin with an area of 1766 km2 is located in central Slovakia. The conceptual semi-distributed tool applied contains three basic storage components with 15 calibrated parameters, as the flow routing component the cascade of linear reservoirs is used as opposed to the original simple triangular routing function. The snow sub-model uses the temperature index (degree-day) method for snow accumulation and snowmelt calculations. Uncertainty of model parameters was reduced by multi-calibration on the mean daily discharges in the basin outlet and measured stations data of snow water equivalent. Changes in the model parameters during the

  9. Generation of low-temperature air plasma for food processing

    NASA Astrophysics Data System (ADS)

    Stepanova, Olga; Demidova, Maria; Astafiev, Alexander; Pinchuk, Mikhail; Balkir, Pinar; Turantas, Fulya

    2015-11-01

    The project is aimed at developing a physical and technical foundation of generating plasma with low gas temperature at atmospheric pressure for food industry needs. As known, plasma has an antimicrobial effect on the numerous types of microorganisms, including those that cause food spoilage. In this work an original experimental setup has been developed for the treatment of different foods. It is based on initiating corona or dielectric-barrier discharge in a chamber filled with ambient air in combination with a certain helium admixture. The experimental setup provides various conditions of discharge generation (including discharge gap geometry, supply voltage, velocity of gas flow, content of helium admixture in air and working pressure) and allows for the measurement of the electrical discharge parameters. Some recommendations on choosing optimal conditions of discharge generation for experiments on plasma food processing are developed.

  10. Why on the snow? Winter emergence strategies of snow-active Chironomidae (Diptera) in Poland.

    PubMed

    Soszyńska-Maj, Agnieszka; Paasivirta, Lauri; Giłka, Wojciech

    2016-10-01

    A long-term study of adult non-biting midges (Chironomidae) active in winter on the snow in mountain areas and lowlands in Poland yielded 35 species. The lowland and mountain communities differed significantly in their specific composition. The mountain assemblage was found to be more diverse and abundant, with a substantial contribution from the subfamily Diamesinae, whereas Orthocladiinae predominated in the lowlands. Orthocladius wetterensis Brundin was the most characteristic and superdominant species in the winter-active chironomid communities in both areas. Only a few specimens and species of snow-active chironomids were recorded in late autumn and early winter. The abundance of chironomids peaked in late February in the mountain and lowland areas with an additional peak in the mountain areas in early April. However, this second peak of activity consisted mainly of Orthocladiinae, as Diamesinae emerged earliest in the season. Most snow-active species emerged in mid- and late winter, but their seasonal patterns differed between the 2 regions as a result of the different species composition and the duration of snow cover in these regions. Spearman's rank correlation coefficient tests yielded positive results between each season and the number of chironomid individuals recorded in the mountain area. A positive correlation between air temperature, rising to +3.5 °C, and the number of specimens recorded on the snow in the mountain community was statistically significant. The winter emergence and mate-searching strategies of chironomids are discussed in the light of global warming, and a brief compilation of most important published data on the phenomena studied is provided.

  11. Potential transition from seasonal to ephemeral snow in Great Lakes watersheds in a warming climate

    NASA Astrophysics Data System (ADS)

    Durand, M. T.; Rine, M.

    2013-12-01

    Snow cover in many regions is a primary contributor to the hydrologic cycle and has significant surface energy balance, biogeochemical, ecological, and societal impacts. This study uses weather stations in Canada (using Environment Canada (EC) data) and the United States (using the Midwest Regional Climate Center (MRCC) data) to characterize climatological snow cover in the Great Lakes basins, and its sensitivity to future winter temperature increases. Much of this region is dominated by an ephemeral snow cover, where snow comes and goes throughout the winter months, having no significant seasonal duration. We defined "expected duration" as the uninterrupted number of days with snow cover on the ground in a typical winter. The number of days of snow cover (as opposed to the expected duration) are also analyzed; the expected duration is a better metric of whether a snowcover is ephemeral or seasonal, since it ties more directly to snowpack residence times and seasonality of runoff. We estimated the snowcover expected duration at 448 weather stations throughout the Great Lakes basins. We defined ephemeral snowcover to have an expected duration of 60 days or greater per winter, which corresponds to a latitude north of approximately 44°, in this area. We found that average winter temperature can be used to predict duration of snowcover expected duration, to first order. The ephemeral snow line in the Great Lakes basins corresponds to an average winter temperature of approximately -4 to -5° C. The statistical model relating snowcover expected duration and average winter air temperature indicates approximately a 22 day decrease in snowcover expected duration with an increase of 2° degree C. This estimate of duration sensitivity to temperature was used to identify seasonal and ephemeral watershed changes for 2° C increase in temperature. Our analysis shows that approximately 25 percent of the snow cover in the Great Lakes Basins will shift from a seasonal to an

  12. Identifying Modes of Temperature Variability Using AIRS Data.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Aumann, H. H.; Yung, Y.

    2007-12-01

    We use the Atmospheric Infrared Sounder (AIRS) and Advance Microwave Sounding Unit (AMSU) data obtained on Aqua spacecraft to study mid-tropospheric temperature variability between 2002-2007. The analysis is focused on daily zonal means of the AIRS channel at 2388 1/cm in the CO2 R-branch and the AMSU channel #5 in the 57 GHz Oxygen band, both with weighting function peaking in the mid-troposphere (400 mb) and the matching sea surface temperature from NCEP (Aumann et al., 2007). Taking into account the nonlinear and non- stationary behavior of the temperature we apply the Empirical Mode Decomposition (Huang et al., 1998) to better separate modes of variability. All-sky (cloudy) and clear sky, day and night data are analyzed. In addition to the dominant annual variation, which is nonlinear and latitude dependent, we identified the modes with higher frequency and inter-annual modes. Some trends are visible and we apply stringent criteria to test their statistical significance. References: Aumann, H. H., D. T. Gregorich, S. E. Broberg, and D. A. Elliott, Geophys. Res. Lett., 34, L15813, doi:10.1029/2006GL029191, 2007. Huang, N. E. Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, Proc. R. Soc. Lond., A 454, 903-995, 1998.

  13. Coastal Greenland air temperature extremes 1890-2010

    NASA Astrophysics Data System (ADS)

    Mernild, Sebastian H.; Hanna, Edward; Cappelen, John

    2013-04-01

    We use observed air temperature data series from fourteen meteorological stations in coastal Greenland (located all around the Greenland Ice Sheet (GrIS)) for 1960-2010, where long-term records for five of the stations extend back to 1890, to illustrate the annual and monthly temporal and spatial distribution of temperature extremes. We find that the 2000s (2001-2010) had the highest number of mean annual air temperature (MAAT) warm extremes, and the 1890s (1891-1900) the highest number of cold extremes. For the 2000s the number of warm extremes was significantly higher by around 50% than the number in the 1940s (the Early Twentieth Century Warm Period): the decade with the second highest occurrence of MAAT warm extremes. Since 1960, based on MAAT the number of cold extremes has decreased on the decadal timescale, while warm extremes have increased leading to a higher occurrence of extremes (cold plus warm extremes): an almost similar pattern occurred on mean monthly and on monthly mean daily maximum and minimum scales. Further, a division of Greenland into east and west sectors shows that the occurrence of cold (warm) extremes was more pronounced in the East than in the West in the 1960s and 1970s (mid-1980s to the 2000s).

  14. 14 CFR 139.313 - Snow and ice control.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Positioning snow off the movement area surfaces so all air carrier aircraft propellers, engine pods, rotors... portion of the movement area; (3) Selection and application of authorized materials for snow and ice... contain methods and procedures for snow and ice control equipment, materials, and removal that...

  15. 14 CFR 139.313 - Snow and ice control.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Positioning snow off the movement area surfaces so all air carrier aircraft propellers, engine pods, rotors... portion of the movement area; (3) Selection and application of authorized materials for snow and ice... contain methods and procedures for snow and ice control equipment, materials, and removal that...

  16. 14 CFR 139.313 - Snow and ice control.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Positioning snow off the movement area surfaces so all air carrier aircraft propellers, engine pods, rotors... portion of the movement area; (3) Selection and application of authorized materials for snow and ice... contain methods and procedures for snow and ice control equipment, materials, and removal that...

  17. 14 CFR 139.313 - Snow and ice control.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Positioning snow off the movement area surfaces so all air carrier aircraft propellers, engine pods, rotors... portion of the movement area; (3) Selection and application of authorized materials for snow and ice... contain methods and procedures for snow and ice control equipment, materials, and removal that...

  18. 14 CFR 139.313 - Snow and ice control.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Positioning snow off the movement area surfaces so all air carrier aircraft propellers, engine pods, rotors... portion of the movement area; (3) Selection and application of authorized materials for snow and ice... contain methods and procedures for snow and ice control equipment, materials, and removal that...

  19. Reconstructing solid precipitation from snow depth measurements and a land surface model

    NASA Astrophysics Data System (ADS)

    Cherry, Jessie Ellen; Tremblay, L. Bruno; DéRy, Stephen J.; Stieglitz, Marc

    2005-09-01

    The amount and distribution of snowfall in the Arctic has significant effects on global climate. However, measurements of snowfall from gauges are strongly biased. A new method is described for reconstructing snowfall from observed snow depth records, meteorological observations, and running the NASA Seasonal-to-Interannual Prediction Project Catchment Land Surface Model (NSIPP CLSM) in an inverse mode. This method is developed and tested with observations from Reynolds Creek Experimental Watershed. Results show snowfall can be accurately reconstructed on the basis of how much snow must have fallen to produce the observed snow depth. The mean cumulative error (bias) of the reconstructed precipitation for 11 snow seasons is 29 mm snow water equivalent (SWE) for the corrected gauge measurement compared to ‒77 mm SWE for the precipitation from the corrected snow gauges. This means the root-mean-square error of reconstructed solid precipitation is 30% less than that of gauge corrections. The intended application of this method is the pan-Arctic landmass, where estimates of snowfall are highly uncertain but where more than 60 years of historical snow depth and air temperature records exist.

  20. Reconstructing solid precipitation from snow depth measurements and a land surface model

    NASA Astrophysics Data System (ADS)

    Cherry, Jessie Ellen; Tremblay, L. Bruno; Déry, Stephen J.; Stieglitz, Marc

    2005-09-01

    The amount and distribution of snowfall in the Arctic has significant effects on global climate. However, measurements of snowfall from gauges are strongly biased. A new method is described for reconstructing snowfall from observed snow depth records, meteorological observations, and running the NASA Seasonal-to-Interannual Prediction Project Catchment Land Surface Model (NSIPP CLSM) in an inverse mode. This method is developed and tested with observations from Reynolds Creek Experimental Watershed. Results show snowfall can be accurately reconstructed on the basis of how much snow must have fallen to produce the observed snow depth. The mean cumulative error (bias) of the reconstructed precipitation for 11 snow seasons is 29 mm snow water equivalent (SWE) for the corrected gauge measurement compared to -77 mm SWE for the precipitation from the corrected snow gauges. This means the root-mean-square error of reconstructed solid precipitation is 30% less than that of gauge corrections. The intended application of this method is the pan-Arctic landmass, where estimates of snowfall are highly uncertain but where more than 60 years of historical snow depth and air temperature records exist.

  1. Future change in seasonal march of snow water equivalent due to global climate change

    NASA Astrophysics Data System (ADS)

    Hara, M.; Kawase, H.; Ma, X.; Wakazuki, Y.; Fujita, M.; Kimura, F.

    2012-04-01

    Western side of Honshu Island in Japan is one of the heaviest snowfall areas in the world, although the location is relatively lower latitude than other heavy snowfall areas. Snowfall is one of major source for agriculture, industrial, and house-use in Japan. The change in seasonal march of snow water equivalent, e.g., snowmelt season and amount will strongly influence to social-economic activities (ex. Ma et al., 2011). We performed the four numerical experiments including present and future climate simulations and much-snow and less-snow cases using a regional climate model. Pseudo-Global-Warming (PGW) method (Kimura and Kitoh, 2008) is applied for the future climate simulations. NCEP/NCAR reanalysis is used for initial and boundary conditions in present climate simulation and PGW method. MIROC 3.2 medres 2070s output under IPCC SRES A2 scenario and 1990s output under 20c3m scenario used for PGW method. In much-snow cases, Maximum total snow water equivalent over Japan, which is mostly observed in early February, is 49 G ton in the present simulation, the one decreased 26 G ton in the future simulation. The decreasing rate of snow water equivalent due to climate change was 49%. Main cause of the decrease of the total snow water equivalent is strongly affected by the air temperature rise due to global climate change. The difference in present and future precipitation amount is little.

  2. Monitoring snow melt characteristics on the Greenland ice sheet using a new MODIS land surface temperature and emissivity product (MOD21)

    NASA Astrophysics Data System (ADS)

    Hulley, G. C.; Hall, D. K.; Hook, S. J.

    2013-12-01

    Land Surface Temperature (LST) and emissivity are sensitive energy-balance parameters that control melt and energy exchange between the surface and the atmosphere. MODIS LST is currently used to monitor melt zones on glaciers and can be used for glacier or ice sheet mass balance calculations. Much attention has been paid recently to the warming of the Arctic in the context of global warming, with a focus on the Greenland ice sheet because of its importance with sea-level rise. Various researchers have shown a steady decline in the extent of the Northern Hemisphere sea ice, both the total extent and the extent of the perennial or multiyear ice. Surface melt characteristics over the Greenland ice sheet have been traditionally monitored using the MODIS LST and albedo products (e.g. MOD11 and MOD10A1). Far fewer studies have used thermal emissivity data to monitor surface melt characteristics due to the lack of suitable data. In theory, longwave emissivity combined with LST information should give a more direct measure of snow melt characteristics since the emissivity is an intrinsic property of the surface, whereas the albedo is dependent on other factors such as solar zenith angle, and shadowing effects. Currently no standard emissivity product exists that can dynamically retrieve changes in longwave emissivity consistently over long time periods. This problem has been addressed with the new MOD21 product, which uses the ASTER TES algorithm to dynamically retrieve LST and spectral emissivity (bands 29, 31, 32) at 1-km resolution. In this study we show that using a new proposed index termed the snow emissivity difference index (SEDI) derived from the MOD21 longwave emissivity product, combined with the LST, will improve our understanding of snow melt and freezeup dynamics on ice sheets such as Greenland. The results also suggest that synergistic use of both thermal-based and albedo data will help to improve our understanding of snow melt dynamics on glaciers and ice

  3. Possible effects of ongoing and predicted climate change on snow avalanche activity in western Norway

    NASA Astrophysics Data System (ADS)

    Laute, Katja; Beylich, Achim A.

    2016-04-01

    As snow avalanche formation is mainly governed by meteorological conditions as, e.g., air temperature fluctuations, heavy precipitation and wind conditions, it is likely that the frequency and magnitude of both ordinary and extreme snow avalanche events is modified through the documented effects of current and future climate change. In the Northern Hemisphere, 1983-2013 was likely the warmest 30-year period of the last 1400 years (IPCC, 2013). Meteorological records of western Norway show the general trend that the last 100 years, especially the last three decades, have been warmer and wetter than the time periods before. However, it is not evident that snow avalanche activity will increase in the near future. Today, the number of studies assessing the impact of climate change on the occurrence and magnitude of snow avalanches is limited. This work focuses on recent and possible future effects of climate change on snow avalanche activity along the western side of the Jostedalsbreen ice cap representing one of the areas with the highest snow avalanche activity in entire Norway. We have analyzed long-term homogenized meteorological data from five meteorological stations in different elevations above sea level, three of them with a long-term record of 120 years (1895-2015). In addition to the statistical analyses of long-term datasets, gained results and insights from a four-year (2009-2012) high-resolution snow avalanche monitoring study conducted in the same study area are incorporated. The statistical analyses of mean monthly air temperature, monthly precipitation sums and mean monthly snow depths showed that there is a trend of increasing air temperatures and precipitation sums whereas no clear trend was found for mean snow depths. Magnitude-frequency analyses conducted for three defined time intervals (120, 90, 60 years) of monthly precipitation sums exhibit an increase of precipitation especially during the last 30 years with the tendency that more precipitation

  4. Model-based estimation of changes in air temperature seasonality

    NASA Astrophysics Data System (ADS)

    Barbosa, Susana; Trigo, Ricardo

    2010-05-01

    Seasonality is a ubiquitous feature in climate time series. Climate change is expected to involve not only changes in the mean of climate parameters but also changes in the characteristics of the corresponding seasonal cycle. Therefore the identification and quantification of changes in seasonality is a highly relevant topic in climate analysis, particularly in a global warming context. However, the analysis of seasonality is far from a trivial task. A key challenge is the discrimination between long-term changes in the mean and long-term changes in the seasonal pattern itself, which requires the use of appropriate statistical approaches in order to be able to distinguish between overall trends in the mean and trends in the seasons. Model based approaches are particularly suitable for the analysis of seasonality, enabling to assess uncertainties in the amplitude and phase of seasonal patterns within a well defined statistical framework. This work addresses the changes in the seasonality of air temperature over the 20th century. The analysed data are global air temperature values close to surface (2m above ground) and mid-troposphere (500 hPa geopotential height) from the recently developed 20th century reanalysis. This new 3-D Reanalysis dataset is available since 1891, considerably extending all other Reanalyses currently in use (e.g. NCAR, ECWMF), and was obtained with the Ensemble Filter (Compo et al., 2006) by assimilation of pressure observations into a state-of-the-art atmospheric general circulation model that includes the radiative effects of historical time-varying CO2 concentrations, volcanic aerosol emissions and solar output variations. A modeling approach based on autoregression (Barbosa et al, 2008; Barbosa, 2009) is applied within a Bayesian framework for the estimation of a time varying seasonal pattern and further quantification of changes in the amplitude and phase of air temperature over the 20th century. Barbosa, SM, Silva, ME, Fernandes, MJ

  5. Extracting changes in air temperature using acoustic coda phase delays.

    PubMed

    Marcillo, Omar; Arrowsmith, Stephen; Whitaker, Rod; Morton, Emily; Scott Phillips, W

    2014-10-01

    Blast waves produced by 60 high-explosive detonations were recorded at short distances (few hundreds of meters); the corresponding waveforms show charge-configuration independent coda-like features (i.e., similar shapes, amplitudes, and phases) lasting several seconds. These features are modeled as reflected and/or scattered waves by acoustic reflectors/scatters surrounding the explosions. Using explosion pairs, relative coda phase delays are extracted and modeled as changes in sound speed due to changes in air temperature. Measurements from nearby weather towers are used for validation. PMID:25324115

  6. The role of snow cover in ground thermal conditions in three sites with contrasted topography in Sierra Nevada (Spain)

    NASA Astrophysics Data System (ADS)

    Oliva, Marc; Salvador, Ferran; Gómez Ortiz, Antonio; Salvà, Montserrat

    2014-05-01

    Snow cover has a high capacity to insulate the soil from the external thermal influences. In regions of high snowfall, such as the summit areas of the highest Iberian mountain ranges, the presence of a thick snow cover may condition the existence or inexistence of permafrost conditions. In order to analyze the impact of the thickness, duration and interannual variability of snow cover on the ground thermal regime in the massif of Sierra Nevada, we have analyzed soil temperatures at a depth of 2 cm for the period 2006-2012 in three sites of contrasting topography as well as air temperatures for the same period: (a) Corral del Veleta (3100 m) in a rock glacier located in the northern Veleta cirque, with high and persistent snow cover. (b) Collado de los Machos (3300 m), in a summit area with relict stone circles, with little snow accumulation due to wind effect. (c) Río Seco (3000 m), in a solifluction lobe located in this southern glacial cirque with moderate snowfall. Considering the air and 2 cm depth soil temperature records, the freezing degree-days were calculated for each year from November to May in order to characterize the role of snow as a thermal insulator of the ground during the cold season (Frauenfeld et al., 2007). In all cases, the highest values of freezing degree-days correspond to years with little snowfall (2006-2007, 2007-2008, 2011-2012), while in years with a thicker snow cover (2008-2009, 2009-2010, 2010-2011) the total freezing degree-days were significantly lower. The accumulation of freezing degree-days is maximum at the wind-exposed site of Collado de los Machos, where the wind redistributes snow and favours the penetration of cold into the ground. The opposite pattern occurs in the Veleta cirque, where most persistent snow cover conditions determine lower accumulated freezing degree-days than in Collado de los Machos and Rio Seco.

  7. Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations

    SciTech Connect

    Qian, Yun; Gustafson, William I.; Leung, Lai-Yung R.; Ghan, Steven J.

    2009-02-14

    Radiative forcing induced by soot on snow is a major anthropogenic forcing affecting the global climate. However, it is uncertain how the soot-induced snow albedo perturbation affects regional snowpack and the hydrological cycle. In this study we simulated the deposition of soot aerosol on snow and investigated the resulting impact on snowpack and the surface water budget in the western United States. A yearlong simulation was performed using the chemistry version of the Weather Research and Forecasting model (WRF-Chem) to determine an annual budget of soot deposition, followed by two regional climate simulations using WRF in meteorology-only mode, with and without the soot-induced snow albedo perturbations. The chemistry simulation shows large spatial variability in soot deposition that reflects the localized emissions and the influence of the complex terrain. The soot-induced snow albedo perturbations increase the net solar radiation flux at the surface during late winter to early spring, increase the surface air temperature, reduce snow water equivalent amount, and lead to reduced snow accumulation and less spring snowmelt. These effects are stronger over the central Rockies and southern Alberta, where soot deposition and snowpack overlap the most. The indirect forcing of soot accelerates snowmelt and alters stream flows, including a trend toward earlier melt dates in the western United States. The soot-induced albedo reduction initiates a positive feedback process whereby dirty snow absorbs more solar radiation, heating the surface and warming the air. This warming causes reduced snow depth and fraction, which further reduces the regional surface albedo for the snow covered regions. Our simulations indicate that the change of maximum snow albedo induced by soot on snow contributes to 60% of the net albedo reduction over the central Rockies. Snowpack reduction accounts for the additional 40%.

  8. Snow Avalanches

    NASA Astrophysics Data System (ADS)

    Ancey, C.

    Over the last century, mountain ranges in Europe and North America have seen substantial development due to the increase in recreational activities, transportation, construction in high altitude areas, etc. In these mountain ranges, avalanches often threaten man's activities and life. Typical examples include recent disasters, such as the avalanche at Val d'Isère in 1970 (39 people were killed in a hostel) or the series of catastrophic avalanches throughout the Northern Alps in February 1999 (62 residents killed). The rising demand for higher safety measures has given new impetus to the development of mitigation technology and has given rise to a new scientific area entirely devoted to snow and avalanches. This paper summarises the paramount features of avalanches (formation and motion) and outlines the main approaches used for describing their movement. We do not tackle specific problems related to snow mechanics and avalanche forecasting. For more information on the subject, the reader is referred to the main textbooks published in Alpine countries [1-8].

  9. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  10. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  11. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  12. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  13. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  14. Effect of Ambient Design Temperature on Air-Cooled Binary Plant Output

    SciTech Connect

    Dan Wendt; Greg Mines

    2011-10-01

    Air-cooled binary plants are designed to provide a specified level of power production at a particular air temperature. Nominally this air temperature is the annual mean or average air temperature for the plant location. This study investigates the effect that changing the design air temperature has on power generation for an air-cooled binary plant producing power from a resource with a declining production fluid temperature and fluctuating ambient temperatures. This analysis was performed for plants operating both with and without a geothermal fluid outlet temperature limit. Aspen Plus process simulation software was used to develop optimal air-cooled binary plant designs for specific ambient temperatures as well as to rate the performance of the plant designs at off-design operating conditions. Results include calculation of annual and plant lifetime power generation as well as evaluation of plant operating characteristics, such as improved power generation capabilities during summer months when electric power prices are at peak levels.

  15. Change point analysis of mean annual air temperature in Iran

    NASA Astrophysics Data System (ADS)

    Shirvani, A.

    2015-06-01

    The existence of change point in the mean of air temperature is an important indicator of climate change. In this study, Student's t parametric and Mann-Whitney nonparametric Change Point Models (CPMs) were applied to test whether a change point has occurred in the mean of annual Air Temperature Anomalies Time Series (ATATS) of 27 synoptic stations in different regions of Iran for the period 1956-2010. The Likelihood Ratio Test (LRT) was also applied to evaluate the detected change points. The ATATS of all stations except Bandar Anzali and Gorgan stations, which were serially correlated, were transformed to produce an uncorrelated pre-whitened time series as an input file for the CPMs and LRT. Both the Student's t and Mann-Whitney CPMs detected the change point in the ATATS of (a) Tehran Mehrabad, Abadan, Kermanshah, Khoramabad and Yazd in 1992, (b) Mashhad and Tabriz in 1993, (c) Bandar Anzali, Babolsar and Ramsar in 1994, (d) Kerman and Zahedan in 1996 at 5% significance level. The likelihood ratio test shows that the ATATS before and after detected change points in these 12 stations are normally distributed with different means. The Student's t and Mann-Whitney CPMs suggested different change points for individual stations in Bushehr, Bam, Shahroud, and Gorgan. However, the LRT confirmed the change points in these four stations as 1997, 1996, 1993, and 1996, respectively. No change points were detected in the remaining 11 stations.

  16. The impact of snow nitrate photolysis on boundary layer chemistry and the recycling and redistribution of reactive nitrogen across Antarctica and Greenland in a global chemical transport model

    NASA Astrophysics Data System (ADS)

    Zatko, Maria; Geng, Lei; Alexander, Becky; Sofen, Eric; Klein, Katarina

    2016-03-01

    The formation and recycling of reactive nitrogen (NO, NO2, HONO) at the air-snow interface has implications for air quality and the oxidation capacity of the atmosphere in snow-covered regions. Nitrate (NO3-) photolysis in snow provides a source of oxidants (e.g., hydroxyl radical) and oxidant precursors (e.g., nitrogen oxides) to the overlying boundary layer, and alters the concentration and isotopic (e.g., δ15N) signature of NO3- preserved in ice cores. We have incorporated an idealized snowpack with a NO3- photolysis parameterization into a global chemical transport model (Goddard Earth Observing System (GEOS) Chemistry model, GEOS-Chem) to examine the implications of snow NO3- photolysis for boundary layer chemistry, the recycling and redistribution of reactive nitrogen, and the preservation of ice-core NO3- in ice cores across Antarctica and Greenland, where observations of these parameters over large spatial scales are difficult to obtain. A major goal of this study is to examine the influence of meteorological parameters and chemical, optical, and physical snow properties on the magnitudes and spatial patterns of snow-sourced NOx fluxes and the recycling and redistribution of reactive nitrogen across Antarctica and Greenland. Snow-sourced NOx fluxes are most influenced by temperature-dependent quantum yields of NO3- photolysis, photolabile NO3- concentrations in snow, and concentrations of light-absorbing impurities (LAIs) in snow. Despite very different assumptions about snowpack properties, the range of model-calculated snow-sourced NOx fluxes are similar in Greenland (0.5-11 × 108 molec cm-2 s-1) and Antarctica (0.01-6.4 × 108 molec cm-2 s-1) due to the opposing effects of higher concentrations of both photolabile NO3- and LAIs in Greenland compared to Antarctica. Despite the similarity in snow-sourced NOx fluxes, these fluxes lead to smaller factor increases in mean austral summer boundary layer mixing ratios of total nitrate (HNO3+ NO3-), NOx, OH

  17. Assessing surface air temperature variability using quantile regression

    NASA Astrophysics Data System (ADS)

    Timofeev, A. A.; Sterin, A. M.

    2014-12-01

    Many researches in climate change currently involve linear trends, based on measured variables. And many of them only consider trends in mean values, whereas it is clear, that not only means, but also whole shape of distribution changes over time and requires careful assessment. For example extreme values including outliers may get bigger, while median has zero slope.Quantile regression provides a convenient tool, that enables detailed analysis of changes in full range of distribution by producing a vector of quantile trends for any given set of quantiles.We have applied quantile regression to surface air temperature observations made at over 600 weather stations across Russian Federation during last four decades. The results demonstrate well pronounced regions with similar values of significant trends in different parts of temperature value distribution (left tail, middle part, right tail). The uncertainties of quantile trend estimations for several spatial patterns of trends over Russia are estimated and analyzed for each of four seasons.For temperature trend estimation over vast territories, quantile regression is an effort consuming approach, but is more informative than traditional instrument, to assess decadal evolution of temperature values, including evolution of extremes.Partial support of ERA NET RUS ACPCA joint project between EU and RBRF 12-05-91656-ЭРА-А is highly appreciated.

  18. Snow economics and the NOHRSC Snow Information System (SNOW-INFO) for the United States

    NASA Astrophysics Data System (ADS)

    Carroll, T.; Cline, D.; Berkowitz, E.; Savage, D.

    2003-04-01

    .7 trillion (16%) of the Nation's GDP related to the water contained in seasonal snowpacks, reliable snow information is critical to the management of the U.S. economy. In addition to helping improve river and flood forecasts and water supply forecasts, NOHRSC snow information has the potential also to support better decision making and improved efficiency in manufacturing, mining, agriculture, and thermo- and hydroelectric power generation. A 0.1% improvement in revenue resulting from reliable snow information results in an economic benefit to the Nation of 1.7 billion each year (in 2002 dollars). In an effort to provide snow information to support hydrologic forecasting operations in the NWS as well as to enhance the national economy, the NOHRSC has developed and implemented a Snow Information System (SNOW-INFO) that generates and distributes a variety of snow cover products in a variety of formats for the coterminous U.S. SNOW-INFO provides several new products that include: modeled snowpack characteristics such as snow ripeness, melt rates, mean snowpack temperature, and sublimation losses in a variety of alphanumeric, gridded, map, and time-series representations. SNOW-INFO products and data sets are available in near real-time to end-users from the NOHRSC web site (www.nohrsc.nws.gov) and FTP. A variety of SNOW-INFO products and maps from the 2003 snow season depicting simulated and assimilated snow model state variables for the coterminous U.S. are presented.

  19. Snowpack displacement measured by terrestrial radar interferometry as precursor for wet snow avalanches

    NASA Astrophysics Data System (ADS)

    Caduff, Rafael; Wiesmann, Andreas; Bühler, Yves

    2016-04-01

    Wet snow and full depth gliding avalanches commonly occur on slopes during springtime when air temperatures rise above 0°C for longer time. The increase in the liquid water content changes the mechanical properties of the snow pack. Until now, forecasts of wet snow avalanches are mainly done using weather data such as air and snow temperatures and incoming solar radiation. Even tough some wet snow avalanche events are indicated before the release by the formation of visible signs such as extension cracks or compressional bulges in the snow pack, a large number of wet snow avalanches are released without any previously visible signs. Continuous monitoring of critical slopes by terrestrial radar interferometry improves the scale of reception of differential movement into the range of millimetres per hour. Therefore, from a terrestrial and remote observation location, information on the mechanical state of the snow pack can be gathered on a slope wide scale. Recent campaigns in the Swiss Alps showed the potential of snow deformation measurements with a portable, interferometric real aperture radar operating at 17.2 GHz (1.76 cm wavelength). Common error sources for the radar interferometric measurement of snow pack displacements are decorrelation of the snow pack at different conditions, the influence of atmospheric disturbances on the interferometric phase and transition effects from cold/dry snow to warm/wet snow. Therefore, a critical assessment of those parameters has to be considered in order to reduce phase noise effects and retrieve accurate displacement measurements. The most recent campaign in spring 2015 took place in Davos Dorf/GR, Switzerland and its objective was to observe snow glide activity on the Dorfberg slope. A validation campaign using total station measurements showed good agreement to the radar interferometric line of sight displacement measurements in the range of 0.5 mm/h. The refinement of the method led to the detection of numerous gliding

  20. Air Surface Temperature Correlation with Greenhouse Gases by Using Airs Data Over Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Rajab, Jasim Mohammed; MatJafri, M. Z.; Lim, H. S.

    2014-08-01

    The main objective of this study is to develop algorithms for calculating the air surface temperature (AST). This study also aims to analyze and investigate the effects of greenhouse gases (GHGs) on the AST value in Peninsular Malaysia. Multiple linear regression is used to achieve the objectives of the study. Peninsular Malaysia has been selected as the research area because it is among the regions of tropical Southeast Asia with the greatest humidity, pockets of heavy pollution, rapid economic growth, and industrialization. The predicted AST was highly correlated ( R = 0.783) with GHGs for the 6-year data (2003-2008). Comparisons of five stations in 2009 showed close agreement between the predicted AST and the observed AST from AIRS, especially in the wet season (within 1.3 K). The in situ data ranged from 1 to 2 K. Validation results showed that AST ( R = 0.776-0.878) has values nearly the same as the observed AST from AIRS. We found that O3 during the wet season was indicated by a strongly positive beta coefficient (0.264-0.992) with AST. The CO2 yields a reasonable relationship with temperature with low to moderate beta coefficient (-0.065 to 0.238). The O3, CO2, and environmental variables experienced different seasonal fluctuations that depend on weather conditions and topography. The concentration of gases and pollution were the highest over industrial zones and overcrowded cities, and the dry season was more polluted compared with the wet season. These results indicate the advantage of using the satellite AIRS data and a correlation analysis to investigate the effect of atmospheric GHGs on AST over Peninsular Malaysia. An algorithm that is capable of retrieving Peninsular Malaysian AST in all weather conditions with total uncertainties ranging from 1 to 2 K was developed.

  1. Temporal evolution of the snow density near the surface at Dome C on Antarctica Plateau

    NASA Astrophysics Data System (ADS)

    Champollion, N.; Picard, G.; Arnaud, L.; Macelloni, G.; Remy, F.

    2014-12-01

    Snow density near the surface, i.e. the first 5 - 10 first centimeters, is essential for surface mass balance retrieval from satellite or stakes, thermal diffusion for surface energy budget, firn densification for ice-core interpretation and air / snow chemistry exchange on ice sheets. It is related to the local meteorological conditions such as precipitation, wind and temperature (metamorphism). A long term temporal and spatial evolution of the snow density near the surface on ice sheets could be use to monitor climate evolution. Passive and active microwave offer the possibility to study recent climate evolution with respectively 30 and 20 years of measurements, a very good temporal repeatability and a large spatial coverage. The aim of this paper is (1) to derive the snow density near the surface, called "surface snow density", from AMSR-E passive microwave observations and ENVISAT radar altimetry measurements, and (2) to study the temporal evolution of this density. Surface snow density is also jointly estimated from passive microwave observations and radar altimetry measurements by two independent methods. For both methods, the estimation of density is based on the surface reflection of electromagnetic wave in the microwave domain, which mainly depends on dielectric contrast between air and snow. For passive microwave observations, the polarization ratio is derived in order to be most sensitive to snow density variations near the surface. Then, the Dense Media Radiative Transfer theory is used for modeling and quantify the relationship between polarization ratio and surface snow density. For radar altimetry measurements, the total microwave backscatter coefficient is used because it depends on surface snow density and roughness. Validation of the surface snow density estimations is performed at Dome C on the Antarctica Plateau from in situ measurements of snow density. Uncertainties about the two retrieval methods (from AMSR-E and ENVISAT observations) are

  2. Snow Cover Variability in the Black Forest Region as an Example of a German Low Mountain Range under the Influence of Climate Change

    NASA Astrophysics Data System (ADS)

    Schoenbein, J.; Schneider, C.

    2003-04-01

    During the last decades high snow cover variability was observed in the German low mountain ranges. In addition, average snow cover periods have decreased at most localities. This process involves a strong economic impact on skiing resorts of low mountain ranges. Based on data sets from weather stations of the German meteorological service (Deutscher Wetterdienst (DWD)) which cover up to the last 60 years, the temporal development of the mean seasonal snow cover period in the low mountain ranges of Black Forest (south-west), Harz (north), and Bavarian Forest (south-east) of Germany was examined. Mean wintertime air temperature in the low mountain ranges is increasing more rapidly compared to the annual mean air temperature. Additionally the south west is the warmest region in Germany. Therefore, the snow cover of the Black Forest is much more susceptible to an increase in air temperature than in the other low mountain ranges in Germany. In the Black Forest region air temperatures near the melting point are observed even in January. Snow cover in the Bavarian Forest region with its much more continental climate is less affected by temperature variations but subject to variations in wintertime precipitation. Seasonal snow cover in the Harz region starts about two weeks earlier compared to Bavarian Forest and the Black Forest. The future snow cover development of Black Forest was examined using Intergovernmental Panel on Climate Change (IPCC) prognosis of future air temperature development and trend analysis within observed time series at low mountain range weather stations. The IPCC scenarios were adopted specifically with respect to region, season and altitude and afterwards compared to the observed trend. A transfer function describes the relation between seasonal air temperature change and snow cover duration. A mean reduction of snow cover duration until 2025 for each mountain range is approximated. For instance, the period of a snow cover with a minimum height

  3. Cyclic Oxidation of High-Temperature Alloy Wires in Air

    NASA Technical Reports Server (NTRS)

    Reigel, Marissa M.

    2004-01-01

    High-temperature alloy wires are proposed for use in seal applications for future re-useable space vehicles. These alloys offer the potential for improved wear resistance of the seals. The wires must withstand the high temperature environments the seals are subjected to as well as maintain their oxidation resistance during the heating and cooling cycles of vehicle re-entry. To model this, the wires were subjected to cyclic oxidation in stagnant air. of this layer formation is dependent on temperature. Slow growing oxides such as chromia and alumina are desirable. Once the oxide is formed it can prevent the metal from further reacting with its environment. Cyclic oxidation models the changes in temperature these wires will undergo in application. Cycling the temperature introduces thermal stresses which can cause the oxide layer to break off. Re-growth of the oxide layer consumes more metal and therefore reduces the properties and durability of the material. were used for cyclic oxidation testing. The baseline material, Haynes 188, has a Co base and is a chromia former while the other two alloys, Kanthal A1 and PM2000, both have a Fe base and are alumina formers. Haynes 188 and Kanthal A1 wires are 250 pm in diameter and PM2000 wires are 150 pm in diameter. The coiled wire has a total surface area of 3 to 5 sq cm. The wires were oxidized for 11 cycles at 1204 C, each cycle containing a 1 hour heating time and a minimum 20 minute cooling time. Weights were taken between cycles. After 11 cycles, one wire of each composition was removed for analysis. The other wire continued testing for 70 cycles. Post-test analysis includes X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) for phase identification and morphology.

  4. Yeah!!! A Snow Day!

    ERIC Educational Resources Information Center

    Cone, Theresa Purcell; Cone, Stephen L.

    2006-01-01

    As children see the first snowflake fall from the sky, they are filled with anticipation of playing in the snow. The snowy environment presents a wonderful opportunity for presenting interdisciplinary activities that connect snow play, snow formation, and snow stories with manipulative activities, gymnastic balances, and dance sequences. In this…

  5. A numerical modelling experiment to simulate snow-canopy processes on a virtual mountain

    NASA Astrophysics Data System (ADS)

    Strasser, U.; Warscher, M.

    2009-04-01

    Mountain forests are primarily composed of evergreen conifer species which retain their needles throughout the year and, therefore, intercept snow efficiently throughout the winter. Snow interception and sublimation in a canopy have been identified as important hydrological processes with complex mass and energy exchanges. The processes affecting a snow cover beneath a forest canopy are distinct from those in the open: on one hand, the meteorological conditions relevant for the energy transfer at the snow surface beneath the canopy are different, and on the other hand, a certain amount of precipitation is retained in the interception storage of stems, branches and needles. Snow that is intercepted in the canopy can melt, fall down, or sublimate into the air masses above the canopy. This latter process leads to a reduction of precipitation accumulated and stored in the ground snowpack. A forest canopy can have opposing effects on the snow cover beneath the trees, depending on many factors such as canopy density, gap size and distribution, geographical position and meteorological conditions. The canopy alters both the shortwave and the longwave radiation balance of the snow cover and affects the turbulent fluxes of sensible and latent heat by re¬ducing the wind speed at the snow surface. Likewise, humidity and temperature underneath a canopy differ from those in the open. Since vegetation canopies strongly affect the snow surface energy balance, the result can be a modified amount of SWE at a certain date, and a change in the duration of snow coverage. All the snow-canopy interaction processes have significant effects on the amount and timing of meltwater release from forested areas which can cover significant portions of the area of mountainous catchments. In our modelling exercise we have constructed a cone-shaped, virtual mountain covered with a geometrically regular pattern of forest stands and clearings. The meteorological data we use to drive the snow

  6. Study of Ram-air Heat Exchangers for Reducing Turbine Cooling-air Temperature of a Supersonic Aircraft Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Diaguila, Anthony J; Livingood, John N B; Eckert, Ernst R G

    1956-01-01

    The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude of 70,000 feet. A compressor-bleed-air weight flow of 2.7 pounds per second was assumed for the coolant; ram air was considered as the other fluid. Pressure drops and inlet states of both fluids were prescribed, and ranges of compressor-bleed-air temperature reductions and of the ratio of compressor-bleed to ram-air weight flows were considered.

  7. Interdecadal changes in snow depth on Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Webster, Melinda A.; Rigor, Ignatius G.; Nghiem, Son V.; Kurtz, Nathan T.; Farrell, Sinead L.; Perovich, Donald K.; Sturm, Matthew

    2014-08-01

    Snow plays a key role in the growth and decay of Arctic sea ice. In winter, it insulates sea ice from cold air temperatures, slowing sea ice growth. From spring to summer, the albedo of snow determines how much insolation is absorbed by the sea ice and underlying ocean, impacting ice melt processes. Knowledge of the contemporary snow depth distribution is essential for estimating sea ice thickness and volume, and for understanding and modeling sea ice thermodynamics in the changing Arctic. This study assesses spring snow depth distribution on Arctic sea ice using airborne radar observations from Operation IceBridge for 2009-2013. Data were validated using coordinated in situ measurements taken in March 2012 during the Bromine, Ozone, and Mercury Experiment (BROMEX) field campaign. We find a correlation of 0.59 and root-mean-square error of 5.8 cm between the airborne and in situ data. Using this relationship and IceBridge snow thickness products, we compared the recent results with data from the 1937, 1954-1991 Soviet drifting ice stations. The comparison shows thinning of the snowpack, from 35.1 ± 9.4 to 22.2 ± 1.9 cm in the western Arctic, and from 32.8 ± 9.4 to 14.5 ± 1.9 cm in the Beaufort and Chukchi seas. These changes suggest a snow depth decline of 37 ± 29% in the western Arctic and 56 ± 33% in the Beaufort and Chukchi seas. Thinning is negatively correlated with the delayed onset of sea ice freezeup during autumn.

  8. The thermoinsulation effect of snow cover within a climate model

    NASA Astrophysics Data System (ADS)

    Cook, Benjamin I.; Bonan, Gordon B.; Levis, Samuel; Epstein, Howard E.

    2008-07-01

    We use a state of the art climate model (CAM3 CLM3) to investigate the sensitivity of surface climate and land surface processes to treatments of snow thermal conductivity. In the first set of experiments, the thermal conductivity of snow at each grid cell is set to that of the underlying soil (SC-SOIL), effectively eliminating any insulation effect. This scenario is compared against a control run (CTRL), where snow thermal conductivity is determined as a prognostic function of snow density. In the second set of experiments, high (SC-HI) and low (SC-LO) thermal conductivity values for snow are prescribed, based on upper and lower observed limits. These two scenarios are used to envelop model sensitivity to the range of realistic observed thermal conductivities. In both sets of experiments, the high conductivity/low insulation cases show increased heat exchange, with anomalous heat fluxes from the soil to the atmosphere during the winter and from the atmosphere to the soil during the summer. The increase in surface heat exchange leads to soil cooling of up to 20 K in the winter, anomalies that persist (though damped) into the summer season. The heat exchange also drives an asymmetric seasonal response in near-surface air temperatures, with boreal winter anomalies of +6 K and boreal summer anomalies of -2 K. On an annual basis there is a net loss of heat from the soil and increases in ground ice, leading to reductions in infiltration, evapotranspiration, and photosynthesis. Our results show land surface processes and the surface climate within CAM3 CLM3 are sensitive to the treatment of snow thermal conductivity.

  9. Lake Effect Snow Covers Buffalo

    NASA Technical Reports Server (NTRS)

    2002-01-01

    An average of one foot of snow per day has fallen on Buffalo, New York, since Christmas Eve, resulting in a total of up to 5 feet from December 24-28. The snow fell very heavily, with accumulations of up to 3 inches per hour. Cold winds blowing along the surface of Lake Erie pick up warmth and moisture, which falls as snow as the warm air rises. This image was acquired by the Geostationary Operational Environmental Satellite (GOES), operated by NOAA, on December 27, 2001, at 12:32 p.m. EST. The scene shows thick bands of clouds extending from the eastern tip of Lake Erie and over Buffalo. The arrows show the wind direction, which is blowing down the length of the lake. Image and animation by Robert Simmon, based on data from the NASA GOES Project Science Office.

  10. Evaluating Snow Melt Onset Date in the United States using Satellite Observation of Passive Microwave Temperature Brightness

    NASA Astrophysics Data System (ADS)

    Osborne, D.; Hunsaker, A. G.; Jacobs, J. M.; Vuyovich, C.

    2015-12-01

    The timing and magnitude of Spring snowmelt events impact riverine flooding and inform reservoir operations. While the melt water volume is a primary concern, the timing of the snowmelt is also important. Melt timing determination is challenging because snowpack ripening observations are seldom available. Diurnal Amplitude Variation (DAV) is a method that uses remotely sensed passive microwave observations to determine snowpack ripening and snowmelt onset. Previous studies have successfully used the DAV method in northern latitudes. This study evaluates the ability of the DAV approach to be used to determine melt onset dates in mid-latitudes. The analysis is conducted for 675 Soil Climate Analysis Network (SCAN) and Snow Telemetry (SNOTEL) stations in the United States. The Special Sensor Microwave Imager (SSM/I) and Advanced Microwave Scanning Radiometer - EOS (AMSR-E) products are used to calculate the DAV signal at each location. Methods for determining the melt onset date at each station are presented and applied to all pixels in the United States. Preliminary results will also be presented which characterize the DAV derived melt onset timing for the United States using the long-term SSM/I record.

  11. Air temperature, radiation budget and area changes of Quisoquipina glacier in the Cordillera Vilcanota (Peru)

    NASA Astrophysics Data System (ADS)

    Suarez, Wilson; Macedo, Nicolás; Montoya, Nilton; Arias, Sandro; Schauwecker, Simone; Huggel, Christian; Rohrer, Mario; Condom, Thomas

    2015-04-01

    The Peruvian Andes host about 71% of all tropical glaciers. Although several studies have focused on glaciers of the largest glaciered mountain range (Cordillera Blanca), other regions have received little attention to date. In 2011, a new program has been initiated with the aim of monitoring glaciers in the centre and south of Peru. The monitoring program is managed by the Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI) and it is a joint project together with the Universidad San Antonio Abad de Cusco (UNSAAC) and the Autoridad Nacional del Agua (ANA). In Southern Peru, the Quisoquipina glacier has been selected due to its representativeness for glaciers in the Cordillera Vilcanota considering area, length and orientation. The Cordillera Vilcanota is the second largest mountain range in Peru with a glaciated area of approximately 279 km2 in 2009. Melt water from glaciers in this region is partly used for hydropower in the dry season and for animal breeding during the entire year. Using Landsat 5 images, we could estimate that the area of Quisoquipina glacier has decreased by approximately 11% from 3.66 km2 in 1990 to 3.26 km2 in 2010. This strong decrease is comparable to observations of other tropical glaciers. In 2011, a meteorological station has been installed on the glacier at 5180 m asl., measuring air temperature, wind speed, relative humidity, net short and longwave radiation and atmospheric pressure. Here, we present a first analysis of air temperature and the radiation budget at the Quisoquipina glacier for the first three years of measurements. Additionally, we compare the results from Quisoquipina glacier to results obtained by the Institut de recherche pour le développement (IRD) for Zongo glacier (Bolivia) and Antizana glacier (Ecuador). For both, Quisoquipina and Zongo glacier, net shortwave radiation may be the most important energy source, thus indicating the important role of albedo in the energy balance of the glacier

  12. Impacts of wind farms on surface air temperatures

    PubMed Central

    Baidya Roy, Somnath; Traiteur, Justin J.

    2010-01-01

    Utility-scale large wind farms are rapidly growing in size and numbers all over the world. Data from a meteorological field campaign show that such wind farms can significantly affect near-surface air temperatures. These effects result from enhanced vertical mixing due to turbulence generated by wind turbine rotors. The impacts of wind farms on local weather can be minimized by changing rotor design or by siting wind farms in regions with high natural turbulence. Using a 25-y-long climate dataset, we identified such regions in the world. Many of these regions, such as the Midwest and Great Plains in the United States, are also rich in wind resources, making them ideal candidates for low-impact wind farms. PMID:20921371

  13. Improving the snow physics of WEB-DHM and its point evaluation at two SnowMIP alpine sites

    NASA Astrophysics Data System (ADS)

    Shrestha, M.; Wang, L.; Koike, T.; Xue, Y.; Hirabayashi, Y.

    2010-06-01

    The snow physics of a distributed biosphere hydrological model, referred to as the Water and Energy Budget based Distributed Hydrological Model (WEB-DHM) is improved by incorporating the three-layer physically based energy balance snowmelt model of Simplified Simple Biosphere 3 (SSiB3) and the Biosphere-Atmosphere Transfer Scheme (BATS) albedo scheme. WEB-DHM with improved snow physics (WEB-DHM-S) can simulate the variability of snow density, snow depth and snow water equivalent, liquid water and ice content in each layer, prognostic snow albedo, diurnal variation in snow surface temperature, thermal heat due to conduction and liquid water retention. The performance of WEB-DHM-S is evaluated at two alpine sites of the Snow Model Intercomparison Project with different climate characteristics: Col de Porte in France and Weissfluhjoch in Switzerland. The simulation results of the snow depth, snow water equivalent, surface temperature, snow albedo and snowmelt runoff reveal that WEB-DHM-S is capable of simulating the internal snow process better than the original WEB-DHM, with the root mean square error and bias error being remarkably reduced. Although WEB-DHM-S is only evaluated at a point scale for the simulation of snow processes, this study provides a benchmark for the application of WEB-DHM-S in cold regions in the assessment of the basin-scale snow water equivalent and seasonal discharge simulation for water resources management.

  14. Subseasonal variability of North American wintertime surface air temperature

    NASA Astrophysics Data System (ADS)

    Lin, Hai

    2015-09-01

    Using observational pentad data of the recent 34 Northern Hemisphere extended winters, subseasonal variability of surface air temperature (SAT) over North America is analyzed. The four leading modes of subseasonal SAT variability, that are identified with an empirical orthogonal function (EOF) analysis, account for about 60% of the total variance. The first (EOF1) and second (EOF2) modes are independent of other modes, and thus are likely controlled by distinct processes. The third (EOF3) and fourth (EOF4) modes, however, tend to have a phase shift to each other in space and time, indicating that part of their variability is related to a common process and represent a propagating pattern over North America. Lagged regression analysis is conducted to identify the precursors of large-scale atmospheric circulation for each mode a few pentads in advance, and to understand the processes that influence the subseasonal SAT variability and the predictability signal sources. EOF1 is found to be closely related to the Pacific-North American (PNA) circulation pattern and at least part of its variability is preceded by the East Asian cold surge. The cold surge leads to low-level convergence and enhanced convection in the tropical central Pacific which in turn induces the PNA. EOF2 tends to oscillate at a period of about 70 days, and is influenced by the low-frequency component of the Madden-Julian Oscillation (MJO). On the other hand, EOF3 and EOF4 are connected to the high-frequency part of the MJO which has a period range of 30-50 days. These findings would help understanding the mechanisms of subseasonal surface air temperature variability in North America and improving weather predictions on a subseasonal time scale.

  15. Testing the recent snow drought as an analog for climate warming sensitivity of Cascades snowpacks

    NASA Astrophysics Data System (ADS)

    Cooper, Matthew G.; Nolin, Anne W.; Safeeq, Mohammad

    2016-08-01

    Record low snowpack conditions were observed at Snow Telemetry stations in the Cascades Mountains, USA during the winters of 2014 and 2015. We tested the hypothesis that these winters are analogs for the temperature sensitivity of Cascades snowpacks. In the Oregon Cascades, the 2014 and 2015 winter air temperature anomalies were approximately +2 °C and +4 °C above the climatological mean. We used a spatially distributed snowpack energy balance model to simulate the sensitivity of multiple snowpack metrics to a +2 °C and +4 °C warming and compared our modeled sensitivities to observed values during 2014 and 2015. We found that for each +1 °C warming, modeled basin-mean peak snow water equivalent (SWE) declined by 22%-30%, the date of peak SWE (DPS) advanced by 13 days, the duration of snow cover (DSC) shortened by 31-34 days, and the snow disappearance date (SDD) advanced by 22-25 days. Our hypothesis was not borne out by the observations except in the case of peak SWE; other snow metrics did not resemble predicted values based on modeled sensitivities and thus are not effective analogs of future temperature sensitivities. Rather than just temperature, it appears that the magnitude and phasing of winter precipitation events, such as large, late spring snowfall, controlled the DPS, SDD, and DSC.

  16. Testing the recent snow drought as an analog for climate warming sensitivity of Cascades snowpacks

    NASA Astrophysics Data System (ADS)

    Cooper, Matthew G.; Nolin, Anne W.; Safeeq, Mohammad

    2016-08-01

    Record low snowpack conditions were observed at Snow Telemetry stations in the Cascades Mountains, USA during the winters of 2014 and 2015. We tested the hypothesis that these winters are analogs for the temperature sensitivity of Cascades snowpacks. In the Oregon Cascades, the 2014 and 2015 winter air temperature anomalies were approximately +2 °C and +4 °C above the climatological mean. We used a spatially distributed snowpack energy balance model to simulate the sensitivity of multiple snowpack metrics to a +2 °C and +4 °C warming and compared our modeled sensitivities to observed values during 2014 and 2015. We found that for each +1 °C warming, modeled basin-mean peak snow water equivalent (SWE) declined by 22%–30%, the date of peak SWE (DPS) advanced by 13 days, the duration of snow cover (DSC) shortened by 31–34 days, and the snow disappearance date (SDD) advanced by 22–25 days. Our hypothesis was not borne out by the observations except in the case of peak SWE; other snow metrics did not resemble predicted values based on modeled sensitivities and thus are not effective analogs of future temperature sensitivities. Rather than just temperature, it appears that the magnitude and phasing of winter precipitation events, such as large, late spring snowfall, controlled the DPS, SDD, and DSC.

  17. Effect of production microclimate on female thermal state with increased temperature and air humidity

    NASA Technical Reports Server (NTRS)

    Machablishvili, O. G.

    1980-01-01

    The thermal state of women during the effect of high air temperature and relative humidity with a varying degree of physical loads was studied. Parameters for air temperature, relative humidity, and air movement were established. It was established that in women the thermo-regulatory stress occurs at lower air temperatures and with lower physical loads than in men. The accumulation of heat in women was revealed with lower air temperature than in men. It is concluded that to preserve the normal physiological state of the female organism it is necessary to create more favorable microclimate conditions and decrease the physical loads.

  18. Observed soil temperature trends associated with climate change in Canada

    NASA Astrophysics Data System (ADS)

    Qian, Budong; Gregorich, Edward G.; Gameda, Sam; Hopkins, David W.; Wang, Xiaolan L.

    2011-01-01

    Trends in soil temperature are important, but rarely reported, indicators of climate change. On the basis of the soil temperature data from 30 climate stations across Canada during 1958-2008, trends in soil temperatures at 5, 10, 20, 50, 100, and 150 cm depths were analyzed, together with atmospheric variables, such as air temperature, precipitation, and depth of snow on the ground, observed at the same locations. There was a significant positive trend with soil temperatures in spring and summer means, but not for the winter and annual means. A positive trend with time in soil temperature was detected at about two-thirds of the stations at all depths below 5 cm. A warming trend of 0.26-0.30°C/decade was consistently detected in spring (March-April-May) at all depths between 1958 and 2008. The warming trend in soil temperatures was associated with trends in air temperatures and snow cover depth over the same period. A significant decreasing trend in snow cover depth in winter and spring was associated with increasing air temperatures. The combined effects of the higher air temperature and reduced snow depth probably resulted in an enhanced increasing trend in spring soil temperatures, but no significant trends in winter soil temperatures. The thermal insulation by snow cover appeared to play an important role in the response of soil temperatures to climate change and must be accounted for in projecting future soil-related impacts of climate change.

  19. Air-snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS - Part 1: In-snow bromine activation and its impact on ozone

    NASA Astrophysics Data System (ADS)

    Toyota, K.; McConnell, J. C.; Staebler, R. M.; Dastoor, A. P.

    2013-08-01

    To provide a theoretical framework towards better understanding of ozone depletion events (ODEs) and atmospheric mercury depletion events (AMDEs) in the polar boundary layer, we have developed a one-dimensional model that simulates multiphase chemistry and transport of trace constituents from porous snowpack and through the atmospheric boundary layer (ABL) as a unified system. In this paper, we describe a general configuration of the model and the results of simulations related to reactive bromine release from the snowpack and ODEs during the Arctic spring. The model employs a chemical mechanism adapted from the one previously used for the simulation of multiphase halogen chemistry involving deliquesced sea-salt aerosols in the marine boundary layer. A common set of aqueous-phase reactions describe chemistry both in the liquid-like (or brine) layer on the grain surface of the snowpack and in "haze" aerosols mainly composed of sulfate in the atmosphere. The process of highly soluble/reactive trace gases, whether entering the snowpack from the atmosphere or formed via gas-phase chemistry in the snowpack interstitial air (SIA), is simulated by the uptake on brine-covered snow grains and subsequent reactions in the aqueous phase while being traveled vertically within the SIA. A "bromine explosion", by which, in a conventional definition, HOBr formed in the ambient air is deposited and then converted heterogeneously to Br2, is a dominant process of reactive bromine formation in the top 1 mm (or less) layer of the snowpack. Deeper in the snowpack, HOBr formed within the SIA leads to an in-snow bromine explosion, but a significant fraction of Br2 is also produced via aqueous radical chemistry in the brine on the surface of the snow grains. These top- and deeper-layer productions of Br2 both contribute to the Br2 release into the atmosphere, but the deeper-layer production is found to be more important for the net outflux of reactive bromine. Although ozone is removed via

  20. Air-snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS - Part 1: In-snow bromine activation and its impact on ozone

    NASA Astrophysics Data System (ADS)

    Toyota, K.; McConnell, J. C.; Staebler, R. M.; Dastoor, A. P.

    2014-04-01

    To provide a theoretical framework towards a better understanding of ozone depletion events (ODEs) and atmospheric mercury depletion events (AMDEs) in the polar boundary layer, we have developed a one-dimensional model that simulates multiphase chemistry and transport of trace constituents from porous snowpack and through the atmospheric boundary layer (ABL) as a unified system. This paper constitutes Part 1 of the study, describing a general configuration of the model and the results of simulations related to reactive bromine release from the snowpack and ODEs during the Arctic spring. A common set of aqueous-phase reactions describes chemistry both within the liquid-like layer (LLL) on the grain surface of the snowpack and within deliquesced "haze" aerosols mainly composed of sulfate in the atmosphere. Gas-phase reactions are also represented by the same mechanism in the atmosphere and in the snowpack interstitial air (SIA). Consequently, the model attains the capacity of simulating interactions between chemistry and mass transfer that become particularly intricate near the interface between the atmosphere and the snowpack. In the SIA, reactive uptake on LLL-coated snow grains and vertical mass transfer act simultaneously on gaseous HOBr, a fraction of which enters from the atmosphere while another fraction is formed via gas-phase chemistry in the SIA itself. A "bromine explosion", by which HOBr formed in the ambient air is deposited and then converted heterogeneously to Br2, is found to be a dominant process of reactive bromine formation in the top 1 mm layer of the snowpack. Deeper in the snowpack, HOBr formed within the SIA leads to an in-snow bromine explosion, but a significant fraction of Br2 is also produced via aqueous radical chemistry in the LLL on the surface of the snow grains. These top- and deeper-layer productions of Br2 both contribute to the release of Br2 to the atmosphere, but the deeper-layer production is found to be more important for the

  1. Snow Radiance Assimilation Studies

    NASA Astrophysics Data System (ADS)

    Kim, E. J.; Durand, M. T.; Toure, A.; Margulis, S. A.; Goita, K.; Royer, A.; Lu, H.

    2009-12-01

    Passive microwave-based retrievals of terrestrial snow parameters from satellite observations form a 30-year global record which will continue for the forseeable future. So far, these snow retrievals have been generated primarily by regression-based empirical “inversion” methods based on snapshots in time, and are limited to footprints around 25 km in diameter. Assimilation of microwave radiances into physical land surface models may be used to create a retrieval framework that is inherently self-consistent with respect to model physics as well as a more physically-based approach vs. legacy retrieval/inversion methods. This radiance assimilation approach has been used for years for atmospheric parameters by the operational weather forecasting community with great success, and represents one motivation for our work. A radiance assimilation scheme for snow requires a snowpack land surface model (LSM) coupled to a radiative transfer model (RTM). In previous local-scale studies, Durand, Kim, & Margulis (2008) explored the requirements on LSM model fidelity (i.e., snowpack state information) required in order for the RTM to produce brightness temperatures suitable for radiance assimilation purposes at a local scale, using the well-known Microwave Emission Model for Layered Snowpacks (MEMLS) as the RTM and a combination of Simple SIB (SSiB) and Snow Atmosphere (SAST) as the LSM. They also demonstrated improvement of simulated snow depth through the use of an ensemble Kalman filter scheme at this local scale (2009). This modeling framework reflects another motivation—namely, possibilities for downscaling. Our focus at this stage has been at the local scale where high-quality ground truth data is available in order to evaluate radiance assimilation under a “best case scenario.” The quantitative results then form a benchmark for future assessment of effects such as sparse forcing data, upscaling/downscaling, forest attenuation, and model details. Field data from

  2. Estimating Air Temperature over the Tibetan Plateau Using MODIS Data

    NASA Astrophysics Data System (ADS)

    Huang, Fangfang; Ma, Weiqiang; Ma, Yaoming; Li, Maoshan; Hu, Zeyong

    2016-04-01

    Time series of MODIS land surface temperature (LST) data and normalized difference vegetation index (NDVI) data, combined with digital elevation model (DEM) and meterological data for 2001-2012, were used to estimate and map the spatial distribution of monthly mean air temperature over the Tibatan Plateau (TP). Time series and regression analysis of monthly mean land surface temperature (Ts) and air temperature (Ta) were both conducted by ordinary liner regression (OLR) and geographical weighted regression (GWR) methods. Analysis showed that GWR method had much better result (Adjusted R2 > 0.79, root mean square error (RMSE) is between 0.51° C and 1.12° C) for estimating Ta than OLR method. The GWR model, with MODIS LST, NDVI and altitude as independent variables, was used to estimate Ta over the Tibetan Plateau. All GWR models in each month were tested by F-test with significant level of α=0.01 and the regression coefficients were all tested by T-test with significant level of α=0.01. This illustrated that Ts, NDVI and altitude play an important role on estimating Ta over the Tibetan Plateau. Finally, the major conclusions are as follows: (1) GWR method has higher accuracy for estimating Ta than OLR (Adjusted R2=0.40˜0.78, RMSE=1.60˜4.38° C), and the Ta control precision can be up to 1.12° C. (2) Over the Northern TP, the range of Ta variation in January is -29.28 ˜ -5.0° C, and that in July is -0.53 ˜ 14.0° C. Ta in summer half year (from May to October) is between -15.92 ˜ 14.0° C. From October on, 0° C isothermal level is gradually declining from the altitude of 4˜5 kilometers, and hits the bottom with altitude of 3200 meters in December, and Ta is all under 0° C in January. 10° C isothermal level gradually starts rising from the altitude of 3200 meters from May, and reaches the highest level with altitude of 4˜5 kilometers in July. In addition, Ta in south slope of the Tanggula Mountains is obviously higher than that in the north slope. Ta

  3. Snow in the city as a spore bank of potentially pathogenic fungi.

    PubMed

    Ejdys, Elżbieta; Biedunkiewicz, Anna; Dynowska, Maria; Sucharzewska, Ewa

    2014-02-01

    This study evaluates the role of snow as a specific ecological niche and a vector in fungal spreading with particular emphasis on potential pathogens in seasonally and daily changing conditions. The experimental material was fungi isolated from the atmospheric air, snow cover, and fragments of ice and soil from underneath the snow cover. The total count of microfungi in the air before snowfall, i.e. in the autumn, reached 1756.1 CFU/m(3) on average. After the first snowfalls, it dropped to 85.2 CFU/m(3). The analyzed samples of snow cover contained from 101.6 to 8500.0 CFU/m(3) of fungi. Furthermore, 26 species of yeast and yeast-like fungi were isolated from the experimental material. Amongst the analyzed species, 13 were potential anthropopathogens. Though another three species were isolated from organ ontocenoses, i.e. Candida intermedia, Saccharomyces bayanus and Zygosaccharomyces rouxii, their pathogenic potential has not yet been explicitly confirmed. The results of the presented study may be applied in predicting concentrations of fungal spores responsible for mycoses. The first snowfalls significantly reduced the number of colony-forming units of fungi in the air. Under conditions of temperate climate, snow becomes a temporary bank of yeast-like fungi spores and while it melts cells of deposited microfungi migrate to the atmosphere. Hence, individuals with impaired immunity or in the course of immunosuppression or recovery should avoid long walks during periods of snow melting. The count of fungi in urban bioaerosol during the melt may be reduced through systematic removal of snow cover, which is a significant reservoir of potential pathogens. In addition, it should be noted that even a typical psychrophilic strain, capable of surviving at a temperature of 37°C, may bear a significant pathogenic potential.

  4. Modeling the snow cover in climate studies: 2. The sensitivity to internal snow parameters and interface processes

    NASA Astrophysics Data System (ADS)

    Loth, Bettina; Graf, Hans-F.

    1998-05-01

    In order to find an optimal complexity for snow-cover models in climate studies, the influence of single snow processes on both the snow mass balance and the energy fluxes between snow surface and atmosphere has been investigated. Using a sophisticated model, experiments were performed under several different atmospheric and regional conditions (Arctic, midlatitudes, alpine regions). A high simulation quality can be achieved with a multilayered snow-cover model resolving the internal snow processes (cf. part 1,[Loth and Graf, this issue]). Otherwise, large errors can occur, mostly in zones which are of paramount importance for the entire climate dynamics. Owing to simplifications of such a model, the mean energy balance of the snow cover, the turbulent heat fluxes, and the long-wave radiation at the snow surface may alter by between 1 W/m2 and 8 W/m2. The snow-surface temperatures can be systematically changed by about 10 K.

  5. Snow particle speeds in drifting snow

    NASA Astrophysics Data System (ADS)

    Nishimura, Kouichi; Yokoyama, Chika; Ito, Yoichi; Nemoto, Masaki; Naaim-Bouvet, Florence; Bellot, Hervé; Fujita, Koji

    2014-08-01

    Knowledge of snow particle speeds is necessary for deepening our understanding of the internal structures of drifting snow. In this study, we utilized a snow particle counter (SPC) developed to observe snow particle size distributions and snow mass flux. Using high-frequency signals from the SPC transducer, we obtained the sizes of individual particles and their durations in the sampling area. Measurements were first conducted in the field, with more precise measurements being obtained in a boundary layer established in a cold wind tunnel. The obtained results were compared with the results of a numerical analysis. Data on snow particle speeds, vertical velocity profiles, and their dependence on wind speed obtained in the field and in the wind tunnel experiments were in good agreement: both snow particle speed and wind speed increased with height, and the former was always 1 to 2 m s-1 less than the latter below a height of 1 m. Thus, we succeeded in obtaining snow particle speeds in drifting snow, as well as revealing the dependence of particle speed on both grain size and wind speed. The results were verified by similar trends observed using random flight simulations. However, the difference between the particle speed and the wind speed in the simulations was much greater than that observed under real conditions. Snow transport by wind is an aeolian process. Thus, the findings presented here should be also applicable to other geophysical processes relating to the aeolian transport of particles, such as blown sand and soil.

  6. Topographic and spatial impacts of temperature inversions on air quality using mobile air pollution surveys.

    PubMed

    Wallace, Julie; Corr, Denis; Kanaroglou, Pavlos

    2010-10-01

    We investigated the spatial and topographic effects of temperature inversions on air quality in the industrial city of Hamilton, located at the western tip of Lake Ontario, Canada. The city is divided by a 90-m high topographic scarp, the Niagara Escarpment, and dissected by valleys which open towards Lake Ontario. Temperature inversions occur frequently in the cooler seasons, exacerbating the impact of emissions from industry and traffic. This study used pollution data gathered from mobile monitoring surveys conducted over a 3-year period, to investigate whether the effects of the inversions varied across the city. Temperature inversions were identified with vertical temperature data from a meteorological tower located within the study area. We divided the study area into an upper and lower zone separated by the Escarpment and further into six zones, based on location with respect to the Escarpment and industrial and residential areas, to explore variations across the city. The results identified clear differences in the responses of nitrogen dioxide (NO(2)) and fine particulate matter (PM2.5) to temperature inversions, based on the topographic and spatial criteria. We found that pollution levels increased as the inversion strengthened, in the lower city. However, the results also suggested that temperature inversions identified in the lower city were not necessarily experienced in the upper city with the same intensity. Further, pollution levels in the upper city appeared to decrease as the inversion deepened in the lower city, probably because of an associated change in prevailing wind direction and lower wind speeds, leading to decreased long-range transport of pollutants. PMID:20705328

  7. A tentative climatology of the snow load on Arctic sea ice based on satellite

    NASA Astrophysics Data System (ADS)

    Schroeder, T. M.; Pedersen, L. T.; Tonboe, R. T.

    2007-12-01

    Having a firm grasp of the sea ice extent carries over to the understanding of poleward energy transport, atmospheric heat exchange and high-latitude ocean dynamics at large. One reason to investigate the snow load is the insulation against exchange of heat. Another, regarding the intrinsic value of remote sensing, is that snow constitutes the greatest unknown in sea ice altimetry. The properties of snow can modify how deeply into the snow-ice system the altimeter signal penetrates. While Cryosat views to the ice surface, Icesat views to the snow surface. The freeboard cannot be measured and converted to ice thickness properly without compensation for the thickness and density of the snow cover. To identify the satellite channels with most information on the scenery, we made the standard assumption that the inversion of measured brightness temperature to physical parameters is sufficiently linear to converge for Gauss-Newtonian iteration. An optimal estimation scheme has been adopted and the information content in the averaging kernel matrix scrutinized for the parameters at stake. The a priori covariance and initial guess on parameters was computed by feeding the snow-ice model Memls with ERA40 atmospheric reanalysis over a range of locations, winters, and type of ice as having grown from either scratch (first-year) or not (multiyear). Each of the currently flown passive sounders under consideration, the Advanced Microwave Scanning Radiometer (AMSR), the Advanced Microwave Sounding Unit (AMSU), and the Microwave Humidity Sounder (MHS), is modelled with a measurement error taken as the sum of sensitivity and accuracy prior to launch. Covariance between the channels has been neglected. Simulation of the actual measurement discretizes the snow pack into ten numerical layers to resolve the steep temperature gradient and applies the model Rttov to represent the air column. Snow is taken to be fresh and dry, a valid assumption until melt sets in, and the density of

  8. Changing Snow Cover and Stream Discharge in the Western United States - Wind River Range, Wyoming

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Barton, Jonathan S.; Riggs, George A.

    2011-01-01

    Earlier onset of springtime weather has been documented in the western United States over at least the last 50 years. Because the majority (>70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack has important implications for the management of water resources. We studied ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover products, 40 years of stream discharge and meteorological station data and 30 years of snow-water equivalent (SWE) SNOw Telemetry (SNOTEL) data in the Wind River Range (WRR), Wyoming. Results show increasing air temperatures for.the 40-year study period. Discharge from streams in WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades. Changes in streamflow may be related to increasing air temperatures which are probably contributing to a reduction in snow cover, although no trend of either increasingly lower streamflow or earlier snowmelt was observed within the decade of the 2000s. And SWE on 1 April does not show an expected downward trend from 1980 to 2009. The extent of snow cover derived from the lowest-elevation zone of the WRR study area is strongly correlated (r=0.91) with stream discharge on 1 May during the decade of the 2000s. The strong relationship between snow cover and streamflow indicates that MODIS snow-cover maps can be used to improve management of water resources in the drought-prone western U.S.

  9. Photochemical chlorine and bromine activation from artificial saline snow

    NASA Astrophysics Data System (ADS)

    Wren, S. N.; Donaldson, D. J.; Abbatt, J. P. D.

    2013-05-01

    The activation of reactive halogen species - particularly Cl2 - from sea ice and snow surfaces is not well understood. In this study, we used a photochemical snow reactor coupled to a chemical ionization mass spectrometer to investigate the production of Br2, BrCl and Cl2 from NaCl/NaBr-doped artificial snow samples. At temperatures above the NaCl-water eutectic, illumination of samples (λ > 310 nm) in the presence of gas phase O3 led to the accelerated release of Br2, BrCl and the release of Cl2 in a process that was significantly enhanced by acidity, high surface area and additional gas phase Br2. Cl2 production was only observed when both light and ozone were present. The total halogen release depended on [O3] and pre-freezing [NaCl]. Our observations support a "halogen explosion" mechanism occurring within the snowpack which is initiated by heterogeneous oxidation, and propagated by Br2 or BrCl photolysis and by recycling of HOBr and HOCl into the snowpack. Our study implicates an important role for active chemistry occurring within the interstitial air of aged (i.e., acidic) snow for halogen activation at polar sunrise.

  10. Photochemical chlorine and bromine activation from artificial saline snow

    NASA Astrophysics Data System (ADS)

    Wren, S. N.; Donaldson, D. J.; Abbatt, J. P. D.

    2013-10-01

    The activation of reactive halogen species - particularly Cl2 - from sea ice and snow surfaces is not well understood. In this study, we used a photochemical snow reactor coupled to a chemical ionization mass spectrometer to investigate the production of Br2, BrCl and Cl2 from NaCl/NaBr-doped artificial snow samples. At temperatures above the NaCl-water eutectic, illumination of samples (λ > 310 nm) in the presence of gas phase O3 led to the accelerated release of Br2, BrCl and the release of Cl2 in a process that was significantly enhanced by acidity, high surface area and additional gas phase Br2. Cl2 production was only observed when both light and ozone were present. The total halogen release depended on [ozone] and pre-freezing [NaCl]. Our observations support a "halogen explosion" mechanism occurring within the snowpack, which is initiated by heterogeneous oxidation and propagated by Br2 or BrCl photolysis and by recycling of HOBr and HOCl into the snowpack. Our study implicates this important role of active chemistry occurring within the interstitial air of aged (i.e. acidic) snow for halogen activation at polar sunrise.

  11. Erosion and entrainment of snow and ice by pyroclastic density currents: some outstanding questions (Invited)

    NASA Astrophysics Data System (ADS)

    Walder, J. S.

    2010-12-01

    A pyroclastic density current moving over snow is likely to transform to a lahar if the pyroclasts incorporate enough (melting) snow and meltwater to bring the bulk water content of the mixture to about 35% by volume. However, the processes by which such a mixture forms are still not well understood. Walder (Bull. Volcanol., v. 62, 2000) showed experimentally the existence of an erosion mechanism that functions even in the absence of relative shear motion between pyroclasts and snow substrate: a portion of the snow melted by a blanket of pyroclasts is vaporized; the flux of water vapor upward through the pyroclasts may be enough to fluidize the pyroclasts, which then convect, rapidly scour the snow substrate and transform into a slurry. But these experiments do not tell us how moving pyroclasts would erode snow, and simply releasing a hot grain flow over a snow surface in the lab gives misleading results owing to improper scaling of τ/σ , the ratio of the shear stress τ exerted by the pyroclastic flow to the shear strength σ of snow. There seems to be no way around this problem for experiments with actual snow. However, it may be possible to circumvent the scaling problem by replacing the snow substrate by a gas-fluidized particle bed: by varying the gas flux, the apparent shear strength of the particle bed can be varied. Such an investigation of erosional processes could be done at room temperature. Snow-avalanche studies (for example, Gauer and Issler, Ann. Glaciol. v. 38, 2003) may provide some insight into snow erosion by a pyroclastic density current. Snow is eroded at the base of a dense snow avalanche by abrasion, particle impacts, and—at the avalanche head—by plowing and a “blasting” mechanism associated with compression of the snowpack and expulsion of pore fluid (air). Erosion at the avalanche head seems to be particularly important. Similar processes are likely to occur when the over-riding flow comprises hot grains. The laboratory release of

  12. Temperature Stratification of Underfloor and Ceiling Based Air Heating Distribution System in an Experimental Room

    NASA Astrophysics Data System (ADS)

    Katunský, Dušan; Lopušniak, Martin; Vašková, Anna

    2013-06-01

    Most of air heating and ventilating systems for passive houses inlet air in floors. It is assumed that a natural motion of air is led upwards, and so the right stratification of temperature in the space is ensured. However, in the case of excellently insulated buildings it is possible to assume that an upper inlet of air is also able to ensure the required layering of temperature. Within the experiment an influence of upper and down air inlet for temperature stratification in the space was followed. Night sensors of indoor air temperature are placed for measurement purposes. Measurements are done in the long term. The results from measurements show that both, vertical and horizontal stratification of temperature in rooms of passive houses are equal regardless of the fact, which system of air inlet is used.

  13. Comparative analysis of selected snow cover characteristics in Slovakia within the 1950/1951-1979-1980 and 1980/1981-2009/2010 winters

    NASA Astrophysics Data System (ADS)

    Pecho, Jozef; Faško, Pavel; Mikulová, Katarína; Å¥Astný, Pavel Å.; Nejedlík, Pavol; Košå¥Álová, Júlia

    2010-05-01

    Snow cover and its characteristics are pretty sensitive to any kind of air temperature and precipitation changes. In association with long-term changes of the air temperature as well as precipitation through the last two or three decades (from the beginning of 80s) it would be very interesting to compare a regime of snow cover in the periods 1951-1980 and 1981-2010, respectively. In particular, we have recognized notable snow cover changes in different regions from the beginning of 90s. Slovakia situated in the western part of the Carpathians, has the complex geographical conditions and from this reason there has not been recorded similar snow cover trends even in the similar altitudes. Moreover, some mountainous regions with high altitude (the High and Low Tatras, and especially numerous mid-altitude localities, etc.) show the evidences of existing significantly negative trends of some selected characteristics of snow cover. It is well-known that snow cover and precipitation regime of selected region in Slovakia are substantially influenced by the circulation patterns in wider European space, and furthermore in the Carpathians, analogously to the situation in the Alps, windward as well as leeward effects have also relevant consequences in the mountainous regions. Moreover, climate differences between northern and southern, as well as western and eastern regions in Slovakia also play the crucial role. These factors markedly influence the long-term tendencies of snow cover characteristics in particular localities.

  14. How the Plant Temperature Links to the Air Temperature in the Desert Plant Artemisia ordosica.

    PubMed

    Yu, Ming-Han; Ding, Guo-Dong; Gao, Guang-Lei; Sun, Bao-Ping; Zhao, Yuan-Yuan; Wan, Li; Wang, De-Ying; Gui, Zi-Yang

    2015-01-01

    Plant temperature (Tp) is an important indicator of plant health. To determine the dynamics of plant temperature and self-cooling ability of the plant, we measured Tp in Artemisia ordosica in July, in the Mu Us Desert of Northwest China. Related factors were also monitored to investigate their effects on Tp, including environmental factors, such as air temperature (Ta), relative humidity, wind speed; and physiological factors, such as leaf water potential, sap flow, and water content. The results indicate that: 1) Tp generally changes in conjunction with Ta mainly, and varies with height and among the plant organs. Tp in the young branches is most constant, while it is the most sensitive in the leaves. 2) Correlations between Tp and environmental factors show that Tp is affected mainly by Ta. 3) The self-cooling ability of the plant was effective by midday, with Tp being lower than Ta. 4) Increasing sap flow and leaf water potential showed that transpiration formed part of the mechanism that supported self-cooling. Increased in water conductance and specific heat at midday may be additional factors that contribute to plant cooling ability. Therefore, our results confirmed plant self-cooling ability. The response to high temperatures is regulated by both transpiration speed and an increase in stem water conductance. This study provides quantitative data for plant management in terms of temperature control. Moreover, our findings will assist species selection with taking plant temperature as an index. PMID:26280557

  15. How the Plant Temperature Links to the Air Temperature in the Desert Plant Artemisia ordosica

    PubMed Central

    Yu, Ming-Han; Ding, Guo-Dong; Gao, Guang-Lei; Sun, Bao-Ping; Zhao, Yuan-Yuan; Wan, Li; Wang, De-Ying; Gui, Zi-Yang

    2015-01-01

    Plant temperature (Tp) is an important indicator of plant health. To determine the dynamics of plant temperature and self-cooling ability of the plant, we measured Tp in Artemisia ordosica in July, in the Mu Us Desert of Northwest China. Related factors were also monitored to investigate their effects on Tp, including environmental factors, such as air temperature (Ta), relative humidity, wind speed; and physiological factors, such as leaf water potential, sap flow, and water content. The results indicate that: 1) Tp generally changes in conjunction with Ta mainly, and varies with height and among the plant organs. Tp in the young branches is most constant, while it is the most sensitive in the leaves. 2) Correlations between Tp and environmental factors show that Tp is affected mainly by Ta. 3) The self-cooling ability of the plant was effective by midday, with Tp being lower than Ta. 4) Increasing sap flow and leaf water potential showed that transpiration formed part of the mechanism that supported self-cooling. Increased in water conductance and specific heat at midday may be additional factors that contribute to plant cooling ability. Therefore, our results confirmed plant self-cooling ability. The response to high temperatures is regulated by both transpiration speed and an increase in stem water conductance. This study provides quantitative data for plant management in terms of temperature control. Moreover, our findings will assist species selection with taking plant temperature as an index. PMID:26280557

  16. How the Plant Temperature Links to the Air Temperature in the Desert Plant Artemisia ordosica.

    PubMed

    Yu, Ming-Han; Ding, Guo-Dong; Gao, Guang-Lei; Sun, Bao-Ping; Zhao, Yuan-Yuan; Wan, Li; Wang, De-Ying; Gui, Zi-Yang

    2015-01-01

    Plant temperature (Tp) is an important indicator of plant health. To determine the dynamics of plant temperature and self-cooling ability of the plant, we measured Tp in Artemisia ordosica in July, in the Mu Us Desert of Northwest China. Related factors were also monitored to investigate their effects on Tp, including environmental factors, such as air temperature (Ta), relative humidity, wind speed; and physiological factors, such as leaf water potential, sap flow, and water content. The results indicate that: 1) Tp generally changes in conjunction with Ta mainly, and varies with height and among the plant organs. Tp in the young branches is most constant, while it is the most sensitive in the leaves. 2) Correlations between Tp and environmental factors show that Tp is affected mainly by Ta. 3) The self-cooling ability of the plant was effective by midday, with Tp being lower than Ta. 4) Increasing sap flow and leaf water potential showed that transpiration formed part of the mechanism that supported self-cooling. Increased in water conductance and specific heat at midday may be additional factors that contribute to plant cooling ability. Therefore, our results confirmed plant self-cooling ability. The response to high temperatures is regulated by both transpiration speed and an increase in stem water conductance. This study provides quantitative data for plant management in terms of temperature control. Moreover, our findings will assist species selection with taking plant temperature as an index.

  17. Seasonal and altitudinal variations in snow algal communities on an Alaskan glacier (Gulkana glacier in the Alaska range)

    NASA Astrophysics Data System (ADS)

    Takeuchi, Nozomu

    2013-09-01

    Snow and ice algae are cold tolerant algae growing on the surface of snow and ice, and they play an important role in the carbon cycles for glaciers and snowfields in the world. Seasonal and altitudinal variations in seven major taxa of algae (green algae and cyanobacteria) were investigated on the Gulkana glacier in Alaska at six different elevations from May to September in 2001. The snow algal communities and their biomasses changed over time and elevation. Snow algae were rarely observed on the glacier in May although air temperature had been above 0 ° C since the middle of the month and surface snow had melted. In June, algae appeared in the lower areas of the glacier, where the ablation ice surface was exposed. In August, the distribution of algae was extended to the upper parts of the glacier as the snow line was elevated. In September, the glacier surface was finally covered with new winter snow, which terminated algal growth in the season. Mean algal biomass of the study sites continuously increased and reached 6.3 × 10 μl m-2 in cell volume or 13 mg carbon m-2 in September. The algal community was dominated by Chlamydomonas nivalis on the snow surface, and by Ancylonema nordenskiöldii and Mesotaenium berggrenii on the ice surface throughout the melting season. Other algae were less abundant and appeared in only a limited area of the glacier. Results in this study suggest that algae on both snow and ice surfaces significantly contribute to the net production of organic carbon on the glacier and substantially affect surface albedo of the snow and ice during the melting season.

  18. Constraining snow model choices in a transitional snow environment with intensive observations

    NASA Astrophysics Data System (ADS)

    Wayand, N. E.; Massmann, A.; Clark, M. P.; Lundquist, J. D.

    2014-12-01

    The performance of existing energy balance snow models exhibits a large spread in the simulated snow water equivalent, snow depth, albedo, and surface temperature. Indentifying poor model representations of physical processes within intercomparison studies is difficult due to multiple differences between models as well as non-orthogonal metrics used. Efforts to overcome these obstacles for model development have focused on a modeling framework that allows multiple representations of each physical process within one structure. However, there still exists a need for snow study sites within complex terrain that observe enough model states and fluxes to constrain model choices. In this study we focus on an intensive snow observational site located in the maritime-transitional snow climate of Snoqualmie Pass WA (Figure 1). The transitional zone has been previously identified as a difficult climate to simulate snow processes; therefore, it represents an ideal model-vetting site. From two water years of intensive observational data, we have learned that a more honest comparison with observations requires that the modeled states or fluxes be as similar to the spatial and temporal domain of the instrument, even if it means changing the model to match what is being observed. For example, 24-hour snow board observations do not capture compaction of the underlying snow; therefore, a modeled "snow board" was created that only includes new snow accumulation and new snow compaction. We extend this method of selective model validation to all available Snoqualmie observations to constrain model choices within the Structure for Understanding Multiple Modeling Alternatives (SUMMA) framework. Our end goal is to provide a more rigorous and systematic method for diagnosing problems within snow models at a site given numerous snow observations.

  19. Development of a Compact Snow Crystal Formation Apparatus Based on a Diffusion Method Using a Peltier Device

    NASA Astrophysics Data System (ADS)

    Kojima, Shinsuke; Endo, Hiroshi; Seki, Mitsuo

    We developed a compact snow crystal formation apparatus based on a diffusion method using a Peltier device. This apparatus does not need an assemblage and is small enough to be operated on a desk. Anyone can easily observe snow crystal formation in a normal temperature room. We adopted a diffusion method because the shape enable that several people can simultaneously observe the snow crystal formation from above. To estimate a performance of the apparatus, we investigated temperature profiles in the apparatus by measurement and simulations with (Case 1) and without (Case 2) natural convection. As results of the simulations, Case 1 and Case 2 reached a steady state. In each case, temperature stratification condition was formed in lower part of the apparatus. From the comparison of the results of measurement and simulations, finally, it is concluded that there is a natural convection, but the air current is not so strong as disturbing the temperature stratification condition in the apparatus.

  20. Environmentally sound thermal energy extraction from coal and wastes using high temperature air combustion technology

    SciTech Connect

    Yoshikawa, Kunio

    1999-07-01

    High temperature air combustion is one of promising ways of burning relatively low BTU gas obtained from gasification of low grade coal or wastes. In this report, the author proposes a new power generation system coupled with high temperature air gasification of coal/wastes and high temperature air combustion of the syngas from coal/wastes. This system is realized by employing Multi-staged Enthalpy Extraction Technology (MEET). The basic idea of the MEET system is that coal or wastes are gasified with high temperature air of about 1,000 C, then the generated syngas is cooled in a heat recovery boiler to be cleaned-up in a gas cleanup system (desulfurization, desalinization and dust removal). Part of thermal energy contained in this cleaned-up syngas is used for high temperature air preheating, and the complete combustion of the fuel gas is done using also high temperature air for driving gas turbines or steam generation in a boiler.

  1. Analysis of spanwise temperature distribution in three types of air-cooled turbine blade

    NASA Technical Reports Server (NTRS)

    Livingood, John N B; Brown, W Byron

    1950-01-01

    Methods for computing spanwise blade-temperature distributions are derived for air-cooled hollow blades, air-cooled hollow blades with inserts, and air-cooled blades containing internal cooling fins. Individual and combined effects on spanwise blade-temperature distributions of cooling-air and radial heat conduction are determined. In general, the effects of radiation and radial heat conduction were found to be small and the omission of these variations permitted the construction of nondimensional charts for use in determining spanwise temperature distribution through air-cooled turbine blades. An approximate method for determining the allowable stress-limited blade-temperature distribution is included, with brief accounts of a method for determining the maximum allowable effective gas temperatures and the cooling-air requirements. Numerical examples that illustrate the use of the various temperature-distribution equations and of the nondimensional charts are also included.

  2. Rate acceleration of the heterogeneous reaction of ozone with a model alkene at the air-ice interface at low temperatures.

    PubMed

    Ray, Debajyoti; Malongwe, Joseph K'Ekuboni; Klán, Petr

    2013-07-01

    The kinetics of the ozonation reaction of 1,1-diphenylethylene (DPE) on the surface of ice grains (also called "artificial snow"), produced by shock-freezing of DPE aqueous solutions or DPE vapor-deposition on pure ice grains, was studied in the temperature range of 268 to 188 K. A remarkable and unexpected increase in the apparent ozonation rates with decreasing temperature was evaluated using the Langmuir-Hinshelwood and Eley-Rideal kinetic models, and by estimating the apparent specific surface area of the ice grains. We suggest that an increase of the number of surface reactive sites, and possibly higher ozone uptake coefficients are responsible for the apparent rate acceleration of DPE ozonation at the air-ice interface at lower temperatures. The increasing number of reactive sites is probably related to the fact that organic molecules are displaced more to the top of a disordered interface (or quasi-liquid) layer on the ice surface, which makes them more accessible to the gas-phase reactants. The effect of NaCl as a cocontaminant on ozonation rates was also investigated. The environmental implications of this phenomenon for natural ice/snow are discussed. DPE was selected as an example of environmentally relevant species which can react with ozone. For typical atmospheric ozone concentrations in polar areas (20 ppbv), we estimated that its half-life on the ice surface would decrease from ∼5 days at 258 K to ∼13 h at 188 K at submonolayer DPE loadings.

  3. Detecting Falling Snow from Space

    NASA Technical Reports Server (NTRS)

    Jackson, Gail Skofronick; Johnson, Ben; Munchak, Joe

    2012-01-01

    There is an increased interest in detecting and estimating the amount of falling snow reaching the Earth's surface in order to fully capture the atmospheric water cycle. An initial step toward global spaceborne falling snow algorithms includes determining the thresholds of detection for various active and passive sensor channel configurations, snow event cloud structures and microphysics, snowflake particle electromagnetic properties, and surface types. In this work, cloud resolving model simulations of a lake effect and synoptic snow event were used to determine the minimum amount of snow (threshold) that could be detected by the following instruments: the W -band radar of CloudSat, Global Precipitation Measurement (GPM) Dual-frequency Precipitation Radar (DPR) Ku and Ka band, and the GPM Microwave Imager (GMI) channels from 10 to 183 plus or minus 7 GHz. Eleven different snowflake shapes were used to compute radar reflectivities and passive brightness temperatures. Notable results include: (1) the W-Band radar has detection thresholds more than an order of magnitude lower than the future GPM sensors, (2) the cloud structure macrophysics influences the thresholds of detection for passive channels, (3) the snowflake microphysics plays a large role in the detection threshold for active and passive instruments, (4) with reasonable assumptions, "the passive 166 GHz channel has detection threshold values comparable to the GPM DPR Ku and Ka band radars with approximately 0.05 g per cubic meter detected at the surface, or an approximately 0.5-1 millimeter per hr. melted snow rate (equivalent to 0.5-2 centimeters per hr. solid fluffy snowflake rate). With detection levels of falling snow known, we can focus current and future retrieval efforts on detectable storms and concentrate advances on achievable results. We will also have an understanding of the light snowfall events missed by the sensors and not captured in the global estimates.

  4. Dust-on-snow and the Timing of Peak Streamflow in the Upper Rio Grande

    NASA Astrophysics Data System (ADS)

    Steele, C. M.; Elias, E.; Moffitt, A.; Beltran, I.; Rango, A.

    2015-12-01

    Dust radiative forcing on high elevation snowpack is well-documented in the southern Rockies. Various field studies show that dust deposits decrease snow albedo and increase absorption of solar radiation, leading to earlier snowmelt and peak stream flows. These findings have implications for the use of temperature-index snow runoff models (such as the Snowmelt Runoff Model [SRM]) for predicting streamflow. In previous work, we have used SRM to simulate historical streamflow from 26 Upper Rio Grande sub-basins. Because dust radiative forcing can alter the relation between temperature and snowmelt, we wanted to find out if there is evidence of dust radiative forcing and earlier snowmelt in our study basins, particularly for those years where SRM was less successful in simulating streamflow. To accomplish this we have used openly-available data such as EPA air quality station measurements of particulate matter up to 10 micrometers (PM10); streamflow data from the USGS National Water Information System and Colorado Division of Water Resources; temperature, precipitation and snow water equivalent (SWE) from NRCS SNOTEL stations and remotely sensed data products from the MODIS sensor. Initial analyses indicate that a connection between seasonal dust concentration and streamflow timing (date of onset of warm-season snowmelt, date of streamflow center-of-volume) can be detected. This is further supported by time series analysis of MODIS-derived estimates of snow albedo and dust radiative-forcing in alpine and open subalpine snow fields.

  5. Temporal and spatial assessments of minimum air temperature using satellite surface temperature measurements in Massachusetts, USA.

    PubMed

    Kloog, Itai; Chudnovsky, Alexandra; Koutrakis, Petros; Schwartz, Joel

    2012-08-15

    Although meteorological stations provide accurate air temperature observations, their spatial coverage is limited and thus often insufficient for epidemiological studies. Satellite data expand spatial coverage, enhancing our ability to estimate near surface air temperature (Ta). However, the derivation of Ta from surface temperature (Ts) measured by satellites is far from being straightforward. In this study, we present a novel approach that incorporates land use regression, meteorological variables and spatial smoothing to first calibrate between Ts and Ta on a daily basis and then predict Ta for days when satellite Ts data were not available. We applied mixed regression models with daily random slopes to calibrate Moderate Resolution Imaging Spectroradiometer (MODIS) Ts data with monitored Ta measurements for 2003. Then, we used a generalized additive mixed model with spatial smoothing to estimate Ta in days with missing Ts. Out-of-sample tenfold cross-validation was used to quantify the accuracy of our predictions. Our model performance was excellent for both days with available Ts and days without Ts observations (mean out-of-sample R(2)=0.946 and R(2)=0.941 respectively). Furthermore, based on the high quality predictions we investigated the spatial patterns of Ta within the study domain as they relate to urban vs. non-urban land uses. PMID:22721687

  6. Using a Support Vector Machine and a Land Surface Model to Estimate Large-Scale Passive Microwave Temperatures over Snow-Covered Land in North America

    NASA Technical Reports Server (NTRS)

    Forman, Barton A.; Reichle, Rolf Helmut

    2014-01-01

    A support vector machine (SVM), a machine learning technique developed from statistical learning theory, is employed for the purpose of estimating passive microwave (PMW) brightness temperatures over snow-covered land in North America as observed by the Advanced Microwave Scanning Radiometer (AMSR-E) satellite sensor. The capability of the trained SVM is compared relative to the artificial neural network (ANN) estimates originally presented in [14]. The results suggest the SVM outperforms the ANN at 10.65 GHz, 18.7 GHz, and 36.5 GHz for both vertically and horizontally-polarized PMW radiation. When compared against daily AMSR-E measurements not used during the training procedure and subsequently averaged across the North American domain over the 9-year study period, the root mean squared error in the SVM output is 8 K or less while the anomaly correlation coefficient is 0.7 or greater. When compared relative to the results from the ANN at any of the six frequency and polarization combinations tested, the root mean squared error was reduced by more than 18 percent while the anomaly correlation coefficient was increased by more than 52 percent. Further, the temporal and spatial variability in the modeled brightness temperatures via the SVM more closely agrees with that found in the original AMSR-E measurements. These findings suggest the SVM is a superior alternative to the ANN for eventual use as a measurement operator within a data assimilation framework.

  7. Estimating maritime snow density from seasonal climate variables

    NASA Astrophysics Data System (ADS)

    Bormann, K. J.; Evans, J. P.; Westra, S.; McCabe, M. F.; Painter, T. H.

    2013-12-01

    Snow density is a complex parameter that influences thermal, optical and mechanical snow properties and processes. Depth-integrated properties of snowpacks, including snow density, remain very difficult to obtain remotely. Observations of snow density are therefore limited to in-situ point locations. In maritime snowfields such as those in Australia and in parts of the western US, snow densification rates are enhanced and inter-annual variability is high compared to continental snow regions. In-situ snow observation networks in maritime climates often cannot characterise the variability in snowpack properties at spatial and temporal resolutions required for many modelling and observations-based applications. Regionalised density-time curves are commonly used to approximate snow densities over broad areas. However, these relationships have limited spatial applicability and do not allow for interannual variability in densification rates, which are important in maritime environments. Physically-based density models are relatively complex and rely on empirical algorithms derived from limited observations, which may not represent the variability observed in maritime snow. In this study, seasonal climate factors were used to estimate late season snow densities using multiple linear regressions. Daily snow density estimates were then obtained by projecting linearly to fresh snow densities at the start of the season. When applied spatially, the daily snow density fields compare well to in-situ observations across multiple sites in Australia, and provide a new method for extrapolating existing snow density datasets in maritime snow environments. While the relatively simple algorithm for estimating snow densities has been used in this study to constrain snowmelt rates in a temperature-index model, the estimates may also be used to incorporate variability in snow depth to snow water equivalent conversion.

  8. Past and future of the Austrian snow cover - results from the CC-Snow project

    NASA Astrophysics Data System (ADS)

    Strasser, Ulrich; Marke, Thomas; Hanzer, Florian; Ragg, Hansjörg; Kleindienst, Hannes; Wilcke, Renate; Gobiet, Andreas

    2013-04-01

    This study has the goal to simulate the evolution of the Austrian snow cover from 1971 to 2050 by means of a coupled modelling scheme, and to estimate the effect of climate change on the evolution of the natural snow cover. The model outcomes are interepreted with focus on both the future natural snow conditions, and the effects on winter skiing tourism. Therefore the regional temperature-index snow model SNOWREG is applied, providing snow maps with a spatial resolution of 250 m. The model is trained by means of assimilating local measurements and observed natural snow cover patterns. Meteorological forcing consists of the output of four realizations of the ENSEMBLES project for the A1B emission scenario. The meteorological variables are downscaled and error corrected with a quantile based empirical-statistical method on a daily time basis. The control simulation is 1971-2000, and the scenario simulation 2021-2050. Spatial interpolation is performed on the basis of parameter-elevation relations. We compare the four different global/regional climate model combinations and their effect on the snow modelling, and we explain the patterns of the resulting snow cover by means of regional climatological characteristics. The provinces Tirol and Styria serve as test regions, being typical examples for the two climatic subregions of Austria. To support the interpretation of the simulation results we apply indicators which enable to define meaningful measures for the comparison of the different periods and regions. Results show that the mean duration of the snow cover will decrease by 15 to 30 days per winter season, mostly in elevations between 2000 and 2500 m. Above 3000 m the higher winter precipitation can compensate this effect, and mean snow cover duration may even slightly increase. We also investigate the local scale by application of the physically based mountain snow model AMUNDSEN. This model is capable of producing 50 m resolution output maps for indicators

  9. Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H

    1937-01-01

    Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.

  10. Late Cenozoic strengthening of the forest-tundra-snow albedo feedback with respect to temperature and its role in increasing climatic instability

    NASA Astrophysics Data System (ADS)

    Paiewonsky, P.

    2011-12-01

    Earth's climate system has been marked by a long term cooling trend since the middle Miocene (~15 Mya). A general increase in climatic instability on orbital time scales has accompanied the cooling since at least the mid-Pliocene warm period (MPWP) (~3.3-3.0 Mya) in the form of increasingly rapid transitions between glacial and interglacial conditions as well as a growing contrast between glacials and interglacials in deep ocean temperature and/or global ice volume. An attempt is made to link the increased instability with the long term cooling by way of an increasingly positive forest-tundra-snow albedo feedback with respect to temperature in the mid to high northern latitudes. The more positive feedback is shown to arise, through a conceptual model, due to a more widespread positioning of the tundra-taiga boundary within mainland North America and Eurasia and away from the Arctic Ocean. The movement of the tundra-taiga boundary into more continental locations under cooler conditions is argued to increase the strength of the feedback through several mechanisms-- especially through the increased availability of land for biome conversion and through the movement of the boundary into a region of weaker mean summer surface temperature gradient. It is further argued that the resulting strengthening of the feedback increases the sensitivity of the climate system to orbital forcing in ways that are consistent with previous work. The basic conceptual model can be extended to situations in which other vegetation feedbacks with respect to temperature gain in importance.

  11. Apparatus for supplying conditioned air at a substantially constant temperature and humidity

    NASA Technical Reports Server (NTRS)

    Obler, H. D. (Inventor)

    1980-01-01

    The apparatus includes a supply duct coupled to a source of supply air for carrying the supply air therethrough. A return duct is coupled to the supply duct for carrying return conditioned air therethrough. A temperature reducing device is coupled to the supply duct for decreasing the temperature of the supply and return conditioned air. A by-pass duct is coupled to the supply duct for selectively directing portions of the supply and return conditioned air around the temperature reducing device. Another by-pass duct is coupled to the return duct for selectively directing portions of the return conditioned air around the supply duct and the temperature reduction device. Controller devices selectively control the flow and amount of mixing of the supply and return conditioned air.

  12. A drought index accounting for snow

    NASA Astrophysics Data System (ADS)

    Staudinger, Maria; Stahl, Kerstin; Seibert, Jan

    2015-04-01

    The Standardized Precipitation Index (SPI) is the most widely used index to characterize and monitor droughts that are related to precipitation deficiencies. However, the SPI does not always deliver the relevant information for hydrological drought management when precipitation deficiencies are not the only reason for droughts as it is the case for example in snow influenced catchments. If precipitation is temporarily stored as snow, then there is a significant difference between meteorological and hydrological drought because the delayed release of melt water from the snow accumulation to the stream. In this study we introduce an extension to the SPI, the Standardized Snow Melt and Rain Index (SMRI), that captures both rain and snow melt deficits, which in effect modify streamflow. The SMRI does not require any snow data instead observations of temperature and precipitation are used to model snow. The SMRI is evaluated for seven Swiss catchments with varying degrees of snow influence. In particular for catchments with a larger component of snowmelt in runoff generation, we found the SMRI to be a good complementary index to the SPI to describe streamflow droughts. In a further step, the SPI and the SMRI were compared for the summer drought of 2003 and the spring drought of 2011 for Switzerland, using gridded products of precipitation and temperature including the entire country.

  13. Features of Duration and Borders of the Bedding of Snow Cover in the Conditions of Climatic Changes in the Territory of Northern Kazakhstan According to Land and Space Monitoring

    NASA Astrophysics Data System (ADS)

    Salnikov, Vitaliy; Turulina, Galina; Polyakova, Svetlana; Muratova, Nadiya; Kauazov, Azamat; Abugalieva, Aigul; Tazhibayeva, Tamara

    2014-05-01

    Precipitation and air temperature datasets from 34 meteorological stations were analyzed to reveal the regional climate changes at the territory in North Kazakhstan over the last 58 years (i.e., 1950-2008). Peculiarities and conditions of snow cover formation and melting have been analyzed at territory of Northern Kazakhstan using surface and space monitoring data. Methods of