Science.gov

Sample records for air temperature vapor

  1. Temperature changes in rheumatoid hand treated with nitrogen vapors and cold air.

    PubMed

    Korman, Paweł; Straburzyńska-Lupa, Anna; Romanowski, Wojciech; Trafarski, Andrzej

    2012-10-01

    The aim of the study was the thermovisual comparison of mean temperature of hand surface changes after local cryotherapy with vapors of nitrogen (-160°C) and cold air (-30°C). Forty-seven patients with rheumatoid arthritis (39 women and 8 men; average age 56.2 ± 10.5 years) were included in the study. They had the application of topic cryotherapy using nitrogen vapors or cold air on one hand. Main outcome measure was surface temperature of dorsal sides of the cooled and contralateral hands. Thermal images of both hands were taken before and up to 3 h after the treatment. One minute after application, nitrogen vapors induced decrease in surface skin temperature of the cooled hand from 28.9 ± 1.8°C to 17.9 ± 2.2°C, P < 0.05, whereas cold air from 29.4 ± 2.4°C to 23.1 ± 2.2°C, P < 0.05. However, significantly lower temperature was obtained with vapors of nitrogen (P < 0.05). Just after the treatment, a rapid rewarming occurred and hands reached baseline temperature in 15 min in both applications and they did not differ till the end of the procedure. Both nitrogen vapors and cold air induce similar temperature changes in hands with the exclusion of temperature obtained 1 min after the treatment. Changes in non-cooled hands indicate contralateral reaction.

  2. Characterization of AIRS temperature and water vapor measurement capability using correlative observations

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Eldering, Annmarie; Lee, Sung-Yung

    2005-01-01

    In this presentation we address several fundamental issues in the measurement of temperature and water vapor by AIRS: accuracy, precision, vertical resolution and biases as a function of cloud amount. We use two correlative data sources. First we compare AIRS total water vapor with that from the Advanced microwave Sounding Radiometer for EOS (AMSR-E) instrument, also onboard the Aqua spacecraft. AMSRE uses a mature methodology with a heritage including the operational Special Sensor Microwave Imager (SSM/I) instruments. AIRS and AMSR-E observations are collocated and simultaneous, providing a very large data set for comparison: about 200,000 over-ocean matches daily. We show small cloud-dependent biases between AIRS and AMSR-E total water vapor for several oceanic regions. Our second correlative data source is several hundred dedicated radiosondes launched during AIRS overpasses.

  3. Toward a Merged Temperature and Water vapor Record from AIRS/AMSU and CrIMSS

    NASA Astrophysics Data System (ADS)

    Fetzer, E. J.; Manning, E. M.; Fishbein, E.; Lambrigtsen, B.; Pagano, T. S.

    2015-12-01

    The Atmospheric Infrared Sounder / Advanced Microwave Sounding Unit (AIRS/AMSU) suite on Aqua and the Cross-track Infrared and Microwave Sounding Suite (CrIMSS) on Suomi-NPP provide multi-year records of retrieved atmospheric temperature and water vapor. Similar spectral coverage, similar orbits, and a three-year record for comparison help simplify the merging of retrieved products from AIRS/AMSU and CrIMSS. Challenges include different satellite altitudes, differences in spectral response, regular but infrequent space/time overlaps that will alias natural variability, different retrieval algorithm approaches, and varying states of algorithm development. We describe first efforts to create a merged temperature and water vapor record based on currently available products from both observing systems.

  4. A Comprehensive Analysis of AIRS Near Surface Air Temperature and Water Vapor Over Land and Tropical Ocean

    NASA Astrophysics Data System (ADS)

    Dang, H. V. T.; Lambrigtsen, B.; Manning, E. M.; Fetzer, E. J.; Wong, S.; Teixeira, J.

    2015-12-01

    Version 6 (V6) of the Atmospheric Infrared Sounder's (AIRS) combined infrared and microwave (IR+MW) retrieval of near surface air temperature (NSAT) and water vapor (NSWV) is validated over the United States with the densely populated MESONET data. MESONET data is a collection of surface/near surface meteorological data from many federal and state agencies. The ones used for this analysis are measured from instruments maintained by the National Weather Service (NWS), the Federal Aviation Administration (FAA), and the Interagency Remote Automatic Weather Stations (RAWS), resulting in a little more than four thousand locations throughout the US. Over the Tropical oceans, NSAT and NSWV are compared to a network of moored buoys from the Tropical Atmosphere Ocean/Triangle Trans-Ocean Buoy Network (TAO/TRITON), and the Pilot Research Moored Array in the Tropical Atlantic (PIRATA). With the analysis of AIRS surface and near surface products over ocean, we glean information on how retrieval of NSAT and NSWV over land can be improved and why it needs some adjustments. We also compare AIRS initial guess of near surface products that are trained on fifty days of ECMWF along with AIRS calibrated radiances, to ECMWF analysis data. The comparison is done to show the differing characteristics of AIRS initial guesses from ECMWF.

  5. Usefulness of AIRS-Derived OLR, Temperature, Water vapor and Cloudiness Anomaly Trends for GCM Validation

    NASA Astrophysics Data System (ADS)

    Molnar, G. I.; Susskind, J.; Iredell, L. F.; NASA/Gsfc Sounder Research Team

    2010-12-01

    variability] at the common 1x1 degree GCM grid-scale by creating spatial anomaly “trends” based on the first 7+ years of AIRS Version 5 Level3 data. We suggest that modelers should compare these with their (coupled) GCM’s performance covering the same period. We evaluate temporal variability and interrelations of climatic anomalies on global to regional e.g., deep Tropical Hovmoller diagrams, El-Niño-related variability scales, and show the effects of El-Niño-La Niña activity on tropical anomalies and trends of water vapor cloud cover and OLR. For GCMs to be trusted highly for long-term climate change predictions, they should be able to reproduce findings similar to these. In summary, the AIRS-based climate variability analyses provide high quality, informative and physically plausible interrelationships among OLR, temperature, humidity and cloud cover both on the spatial and temporal scales. GCM validations can use these results even directly, e. g., by creating 1x1 degree trendmaps for the same period in coupled climate simulations.

  6. Usefulness of AIRS-Derived OLR, Temperature, Water Vapor and Cloudiness Anomaly Trends for GCM Validation

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula I.; Susskind, Joel; Iredell, Lena F.

    2010-01-01

    climate variability] at the common 1x1 degree GCM grid-scale by creating spatial anomaly "trends" based on the first 7+ years of AIRS Version 5 Leve13 data. We suggest that modelers should compare these with their (coupled) GCM's performance covering the same period. We evaluate temporal variability and interrelations of climatic anomalies on global to regional e.g., deep Tropical Hovmoller diagrams, El-Nino-related variability scales, and show the effects of El-Nino-La Nina activity on tropical anomalies and trends of water vapor cloud cover and OLR. For GCMs to be trusted highly for long-term climate change predictions, they should be able to reproduce findings similar to these. In summary, the AIRS-based climate variability analyses provide high quality, informative and physically plausible interrelationships among OLR, temperature, humidity and cloud cover both on the spatial and temporal scales. GCM validations can use these results even directly, e. g., by creating 1x1 degree trendmaps for the same period in coupled climate simulations.

  7. Increasing the Upper Temperature Oxidation Limit of Alumina Forming Austenitic Stainless Steels in Air with Water Vapor

    SciTech Connect

    Brady, Michael P; Unocic, Kinga A; Lance, Michael J; Santella, Michael L; Yamamoto, Yukinori; Walker, Larry R

    2011-01-01

    A family of alumina-forming austenitic (AFA) stainless steels is under development for use in aggressive oxidizing conditions from {approx}600-900 C. These alloys exhibit promising mechanical properties but oxidation resistance in air with water vapor environments is currently limited to {approx}800 C due to a transition from external protective alumina scale formation to internal oxidation of aluminum with increasing temperature. The oxidation behavior of a series of AFA alloys was systematically studied as a function of Cr, Si, Al, C, and B additions in an effort to provide a basis to increase the upper-temperature oxidation limit. Oxidation exposures were conducted in air with 10% water vapor environments from 800-1000 C, with post oxidation characterization of the 900 C exposed samples by electron probe microanalysis (EPMA), scanning and transmission electron microscopy, and photo-stimulated luminescence spectroscopy (PSLS). Increased levels of Al, C, and B additions were found to increase the upper-temperature oxidation limit in air with water vapor to between 950 and 1000 C. These findings are discussed in terms of alloy microstructure and possible gettering of hydrogen from water vapor at second phase carbide and boride precipitates.

  8. Released air during vapor and air cavitation

    NASA Astrophysics Data System (ADS)

    Jablonská, Jana; Kozubková, Milada

    2016-06-01

    Cavitation today is a very important problem that is solved by means of experimental and mathematical methods. The article deals with the generation of cavitation in convergent divergent nozzle of rectangular cross section. Measurement of pressure, flow rate, temperature, amount of dissolved air in the liquid and visualization of cavitation area using high-speed camera was performed for different flow rates. The measurement results were generalized by dimensionless analysis, which allows easy detection of cavitation in the nozzle. For numerical simulation the multiphase mathematical model of cavitation consisting of water and vapor was created. During verification the disagreement with the measurements for higher flow rates was proved, therefore the model was extended to multiphase mathematical model (water, vapor and air), due to release of dissolved air. For the mathematical modeling the multiphase turbulence RNG k-ɛ model for low Reynolds number flow with vapor and air cavitation was used. Subsequently the sizes of the cavitation area were verified. In article the inlet pressure and loss coefficient depending on the amount of air added to the mathematical model are evaluated. On the basis of the approach it may be create a methodology to estimate the amount of released air added at the inlet to the modeled area.

  9. Computer modeling of the sensitivity of a laser water vapor sensor to variations in temperature and air speed

    NASA Technical Reports Server (NTRS)

    Tucker, George F.

    1994-01-01

    Currently, there is disagreement among existing methods of determining atmospheric water vapor concentration at dew-points below -40 C. A major source of error is wall effects which result from the necessity of bringing samples into the instruments. All of these instruments also have response times on the order of seconds. NASA Langley is developing a water vapor sensor which utilizes the absorption of the infrared radiation produced by a diode laser to estimate water vapor concentration. The laser beam is directed through an aircraft window to a retroreflector located on an engine. The reflected beam is detected by an infrared detector located near the laser. To maximize signal to noise, derivative signals are analyzed. By measuring the 2f/DC signal and correcting for ambient temperature, atmospheric pressure and air speed (which results in a Doppler shifting of the laser beam), the water vapor concentration can be retrieved. Since this is an in situ measurement there are no wall effects and measurements can be made at a rate of more than 20 per second. This allows small spatial variations of water vapor to be studied. In order to study the sensitivity of the instrument to variations in temperature and air speed, a computer program which generated the 2f, 3f, 4f, DC and 2f/DC signals of the instrument as a function of temperature, pressure and air speed was written. This model was used to determine the effect of errors in measurement of the temperature and air speed on the measured water vapor concentration. Future studies will quantify the effect of pressure measurement errors, which are expected to be very small. As a result of these studied, a retrieval algorithm has been formulated, and will be applied to data taken during the PEM-West atmospheric science field mission. Spectroscopic studies of the water vapor line used by the instrument will be used to refine this algorithm. To prepare for these studies, several lasers have been studied to determine their

  10. Estimating sampling biases and measurement uncertainties of AIRS/AMSU-A temperature and water vapor observations using MERRA reanalysis

    NASA Astrophysics Data System (ADS)

    Hearty, Thomas J.; Savtchenko, Andrey; Tian, Baijun; Fetzer, Eric; Yung, Yuk L.; Theobald, Michael; Vollmer, Bruce; Fishbein, Evan; Won, Young-In

    2014-03-01

    We use MERRA (Modern Era Retrospective-Analysis for Research Applications) temperature and water vapor data to estimate the sampling biases of climatologies derived from the AIRS/AMSU-A (Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A) suite of instruments. We separate the total sampling bias into temporal and instrumental components. The temporal component is caused by the AIRS/AMSU-A orbit and swath that are not able to sample all of time and space. The instrumental component is caused by scenes that prevent successful retrievals. The temporal sampling biases are generally smaller than the instrumental sampling biases except in regions with large diurnal variations, such as the boundary layer, where the temporal sampling biases of temperature can be ± 2 K and water vapor can be 10% wet. The instrumental sampling biases are the main contributor to the total sampling biases and are mainly caused by clouds. They are up to 2 K cold and > 30% dry over midlatitude storm tracks and tropical deep convective cloudy regions and up to 20% wet over stratus regions. However, other factors such as surface emissivity and temperature can also influence the instrumental sampling bias over deserts where the biases can be up to 1 K cold and 10% wet. Some instrumental sampling biases can vary seasonally and/or diurnally. We also estimate the combined measurement uncertainties of temperature and water vapor from AIRS/AMSU-A and MERRA by comparing similarly sampled climatologies from both data sets. The measurement differences are often larger than the sampling biases and have longitudinal variations.

  11. Estimating Sampling Biases and Measurement Uncertainties of AIRS-AMSU-A Temperature and Water Vapor Observations Using MERRA Reanalysis

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas J.; Savtchenko, Andrey K.; Tian, Baijun; Fetzer, Eric; Yung, Yuk L.; Theobald, Michael; Vollmer, Bruce; Fishbein, Evan; Won, Young-In

    2014-01-01

    We use MERRA (Modern Era Retrospective-Analysis for Research Applications) temperature and water vapor data to estimate the sampling biases of climatologies derived from the AIRS/AMSU-A (Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A) suite of instruments. We separate the total sampling bias into temporal and instrumental components. The temporal component is caused by the AIRS/AMSU-A orbit and swath that are not able to sample all of time and space. The instrumental component is caused by scenes that prevent successful retrievals. The temporal sampling biases are generally smaller than the instrumental sampling biases except in regions with large diurnal variations, such as the boundary layer, where the temporal sampling biases of temperature can be +/- 2 K and water vapor can be 10% wet. The instrumental sampling biases are the main contributor to the total sampling biases and are mainly caused by clouds. They are up to 2 K cold and greater than 30% dry over mid-latitude storm tracks and tropical deep convective cloudy regions and up to 20% wet over stratus regions. However, other factors such as surface emissivity and temperature can also influence the instrumental sampling bias over deserts where the biases can be up to 1 K cold and 10% wet. Some instrumental sampling biases can vary seasonally and/or diurnally. We also estimate the combined measurement uncertainties of temperature and water vapor from AIRS/AMSU-A and MERRA by comparing similarly sampled climatologies from both data sets. The measurement differences are often larger than the sampling biases and have longitudinal variations.

  12. Effects of air temperature and water vapor pressure deficit on storage of the predatory mite Neoseiulus californicus (Acari: Phytoseiidae).

    PubMed

    Ghazy, Noureldin Abuelfadl; Suzuki, Takeshi; Amano, Hiroshi; Ohyama, Katsumi

    2012-10-01

    To determine the optimum air temperature and water vapor pressure deficit (VPD) for the storage of the predatory mite, Neoseiulus californicus, 3-day-old mated females were stored at air temperatures of 0, 5, 10, or 15 °C and VPDs of 0.1, 0.3, or 0.5 kPa for 10, 20, or 30 days. At 10 °C and 0.1 kPa, 83 % of females survived after 30 days of storage; this percentage was the highest among all conditions. VPDs of 0.3 and 0.5 kPa regardless of air temperature, and an air temperature of 0 °C regardless of VPD were detrimental to the survival of the females during storage. Since the highest survival was observed at 10 °C and 0.1 kPa, the effect of the storage duration on the post-storage quality of the stored females and their progeny was investigated at 25 °C to evaluate the effectiveness of the storage condition. The oviposition ability of the stored females, hatchability, and sex ratio of their progeny were not affected even when the storage duration was extended to 30 days. Although a slight decrease in the survival during the immature stages of progeny was observed when the storage duration was ≥20 days, the population growth of N. californicus may not be affected when individuals stored in these conditions are applied to greenhouses and agricultural fields. The results indicate that mated N. californicus females can be stored at 10 °C and 0.1 kPa VPD for at least 30 days.

  13. A Study on the Air flow outside Ambient Vaporizer Fin

    NASA Astrophysics Data System (ADS)

    Oh, G.; Lee, T.; Jeong, H.; Chung, H.

    2015-09-01

    In this study, we interpreted Fog's Fluid that appear in the Ambient Vaporizer and predict the point of change Air to Fog. We interpreted using Analysis working fluid was applied to LNG and Air. We predict air flow when there is chill of LNG in the air Temperature and that makes fog. Also, we interpreted based on Summer and Winter criteria in the air temperature respectively. Finally, we can check the speed of the fog when fog excreted.

  14. Process for recovering organic vapors from air

    DOEpatents

    Baker, Richard W.

    1985-01-01

    A process for recovering and concentrating organic vapor from a feed stream of air having an organic vapor content of no more than 20,000 ppm by volume. A thin semipermeable membrane is provided which has a feed side and a permeate side, a selectivity for organic vapor over air of at least 50, as measured by the ratio of organic vapor permeability to nitrogen permeability, and a permeability of organic vapor of at least 3.times.10.sup.-7 cm.sup.3 (STP) cm/cm.sup.2 sec.cm Hg. The feed stream is passed across the feed side of the thin semipermeable membrane while providing a pressure on the permeate side which is lower than the feed side by creating a partial vacuum on the permeate side so that organic vapor passes preferentially through the membrane to form an organic vapor depleted air stream on the feed side and an organic vapor enriched stream on the permeate side. The organic vapor which has passed through the membrane is compressed and condensed to recover the vapor as a liquid.

  15. Experimental study of flash boiling spray vaporization through quantitative vapor concentration and liquid temperature measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Gaoming; Hung, David L. S.; Xu, Min

    2014-08-01

    Flash boiling sprays of liquid injection under superheated conditions provide the novel solutions of fast vaporization and better air-fuel mixture formation for internal combustion engines. However, the physical mechanisms of flash boiling spray vaporization are more complicated than the droplet surface vaporization due to the unique bubble generation and boiling process inside a superheated bulk liquid, which are not well understood. In this study, the vaporization of flash boiling sprays was investigated experimentally through the quantitative measurements of vapor concentration and liquid temperature. Specifically, the laser-induced exciplex fluorescence technique was applied to distinguish the liquid and vapor distributions. Quantitative vapor concentration was obtained by correlating the intensity of vapor-phase fluorescence with vapor concentration through systematic corrections and calibrations. The intensities of two wavelengths were captured simultaneously from the liquid-phase fluorescence spectra, and their intensity ratios were correlated with liquid temperature. The results show that both liquid and vapor phase of multi-hole sprays collapse toward the centerline of the spray with different mass distributions under the flash boiling conditions. Large amount of vapor aggregates along the centerline of the spray to form a "gas jet" structure, whereas the liquid distributes more uniformly with large vortexes formed in the vicinity of the spray tip. The vaporization process under the flash boiling condition is greatly enhanced due to the intense bubble generation and burst. The liquid temperature measurements show strong temperature variations inside the flash boiling sprays with hot zones present in the "gas jet" structure and vortex region. In addition, high vapor concentration and closed vortex motion seem to have inhibited the heat and mass transfer in these regions. In summary, the vapor concentration and liquid temperature provide detailed information

  16. Usefulness of AIRS-Derived OLR, Temperature, Water Vapor and Cloudiness Anomaly Time-series for GCM Validation

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula; Susskind, Joel; Iredell, Lena

    2010-01-01

    The ROBUST nature (biases are not as important as previous GCM-evaluations suggest) of the AIRS-observations-generated ARC-maps and ATs as well as their interrelations suggest that they could be a useful tool to select CGCMs which may be considered the reliable, i.e., to be trusted even for longer-term climate drift/change predictions (even on the regional scale). Get monthly gridded CGCM time-series of atmospheric variables coinciding with the timeframe of the AIRS analyses for at least 5-6 years and do the actual evaluations of ARC-maps and ATs for the coinciding time periods.

  17. High temperature measurement of water vapor absorption

    NASA Technical Reports Server (NTRS)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  18. VaporSense contamination-resistant high temperature uv hygrometer

    SciTech Connect

    Gersh, M.E.; Matthew, M.W.; Bangert, M.D.; Shuck, P.

    1988-01-01

    The use of reliable and accurate hygrometers to monitor and control the operation of drying hoods would result in significant energy savings and improvement in product quality. We have developed such a hygrometer, VaporSense, which operates at high temperature and humidity in environments containing high concentrations of particulates and corrosive vapors. VaporSense uses the differential adsorption of light by water vapor at two ultraviolet wavelengths to determine absolute humidity. A uv fiber-optic probe is inserted into the contaminating environment. Optical surfaces are kept clean by a curtain of dry air. VaporSense prototypes have been installed in a variety of industrial drying sites. Stable, long term, contamination free operation was demonstrated. 11 refs., 19 figs.

  19. Urania vapor composition at very high temperatures

    SciTech Connect

    Pflieger, Rachel; Colle, Jean-Yves; Iosilevskiy, Igor; Sheindlin, Michael

    2011-02-01

    Due to the chemically unstable nature of uranium dioxide its vapor composition at very high temperatures is, presently, not sufficiently studied though more experimental knowledge is needed for risk assessment of nuclear reactors. We used laser vaporization coupled to mass spectrometry of the produced vapor to study urania vapor composition at temperatures in the vicinity of its melting point and higher. The very good agreement between measured melting and freezing temperatures and between partial pressures measured on the temperature increase and decrease indicated that the change in stoichiometry during laser heating was very limited. The evolutions with temperature (in the range 2800-3400 K) of the partial pressures of the main vapor species (UO{sub 2}, UO{sub 3}, and UO{sub 2}{sup +}) were compared with theoretically predicted evolutions for equilibrium noncongruent gas-liquid and gas-solid phase coexistences and showed very good agreement. The measured main relative partial pressure ratios around 3300 K all agree with calculated values for total equilibrium between condensed and vapor phases. It is the first time the three main partial pressure ratios above stoichiometric liquid urania have been measured at the same temperature under conditions close to equilibrium noncongruent gas-liquid phase coexistence.

  20. Vapor Pressure, Vapor Composition and Fractional Vaporization of High Temperature Lavas on Io

    NASA Technical Reports Server (NTRS)

    Fegley, B., Jr.; Schaefer, L.; Kargel, J. S.

    2003-01-01

    Observations show that Io's atmosphere is dominated by SO2 and other sulfur and sulfur oxide species, with minor amounts of Na, K, and Cl gases. Theoretical modeling and recent observations show that NaCl, which is produced volcanically, is a constituent of the atmosphere. Recent Galileo, HST and ground-based observations show that some volcanic hot spots on Io have extremely high temperatures, in the range 1400-1900 K. At similar temperatures in laboratory experiments, molten silicates and oxides have significant vapor pressures of Na, K, SiO, Fe, Mg, and other gases. Thus vaporization of these species from high temperature lavas on Io seems likely. We therefore modeled the vaporization of silicate and oxide lavas suggested for Io. Our results for vapor chemistry are reported here. The effects of fractional vaporization on lava chemistry are given in a companion abstract by Kargel et al.

  1. Characteristics of Water Vapor Under Partially Cloudy Conditions: Observations by the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Fishbein, E.

    2003-12-01

    The variability and quality of tropical water vapor derived from the Atmospheric Infrared Sounder (AIRS) are characterized. Profiles of water vapor, temperature and surface characteristics (states) are derived from coincident Advance Microwave Sounding Unit (AMSU) and 3x3 sets of AIRS footprints. States are obtained under partially cloudy conditions by estimating the radiances emitted from the clear portions of the AIRS footprints. This procedure, referred to as cloud clearing, amplifies the measurement noise, and the amplification increases with cloud amount and uniformity. Cumulus and stratus cloud amount are related to the water vapor saturation, and noise amplification and water vapor amount may be partially correlated. The correlations between the uncertainty of retrieved water vapor, cloudiness and noise amplification are characterized. Retrieved water vapor is generally good when the amplification is less than three. Water vapor profiles are compared with correlative data, such as radiosondes and numerical weather center analyses and are in relatively good agreement in the lower troposphere

  2. Biofiltration of solvent vapors from air

    SciTech Connect

    Oh, Young-sook.

    1993-01-01

    For various industrial solvent vapors, biofiltration promises to offer a cost-effective emission control technology. Exploiting the full potential of this technology will help attain the goals of the Clean Air Act Amendments of 1990. Concentrating on large volumes of volatile industrial solvents, stable multicomponent microbial enrichments capable of growing a mineral medium with solvent vapors as their only source of carbon and energy were obtained from soil and sewage sludge. These consortia were immobilized on an optimized porous solid support (ground peat moss and perlite). The biofilter material was packed in glass columns connected to an array of pumps and flow meters that allowed the independent variation of superficial velocity and solvent vapor concentrations. In various experiments, single solvents, such as methanol, butanol, acetonitrile, hexane and nitrobenzene, and solvent mixtures, such as benzene-toluene-xylene (BTX) and chlorobenzene-o-dichlorobenzene (CB/DCB) were biofiltered with rates ranging from 15 to334 g solvent removed per m[sup 3] filter volume /h. Pressure drops were low to moderate (0-10 mmHg/m) and with periodic replacement of moisture, the biofiltration activity could be maintained for a period of several months. The experimental data on methanol biofiltration were subjected to mathematical analysis and modeling by the group of Dr. Baltzis at NJIT for a better understanding and a possible scale up of solvent vapor biofilters. In the case of chlorobenzenes and nitrobenzene, the biofilter columns had to be operated with water recirculation in a trickling filter mode. To prevent inactivation of the trickling filter by acidity during CB/DCB removal, pH control was necessary, and the removal rate of CB/DCB was strongly influenced by the flow rate of the recyling water. Nitrobenzene removal in a trickling filter did not require pH control, since the nitro group was reduced and volatilized as ammonia.

  3. Vapor pressures of acetylene at low temperatures

    NASA Technical Reports Server (NTRS)

    Masterson, C. M.; Allen, John E., Jr.; Kraus, G. F.; Khanna, R. K.

    1990-01-01

    The atmospheres of many of the outer planets and their satellites contain a large number of hydrocarbon species. In particular, acetylene (C2H2) has been identified at Jupiter, Saturn and its satellite Titan, Uranus and Neptune. In the lower atmospheres of these planets, where colder temperatures prevail, the condensation and/or freezing of acetylene is probable. In order to obtain accurate models of the acetylene in these atmospheres, it is necessary to have a complete understanding of its vapor pressures at low temperatures. Vapor pressures at low temperatures for acetylene are being determined. The vapor pressures are measured with two different techniques in order to cover a wide range of temperatures and pressures. In the first, the acetylene is placed in a sample tube which is immersed in a low temperature solvent/liquid nitrogen slush bath whose temperature is measured with a thermocouple. The vapor pressure is then measured directly with a capacitance manometer. For lower pressures, a second technique which was called the thin-film infrared method (TFIR) was developed. It involves measuring the disappearance rate of a thin film of acetylene at a particular temperature. The spectra are then analyzed using previously determined extinction coefficient values, to determine the disappearance rate R (where R = delta n/delta t, the number of molecules that disappear per unit time). This can be related to the vapor pressure directly. This technique facilitates measurement of the lower temperatures and pressures. Both techniques have been calibrated using CO2, and have shown good agreement with the existing literature data.

  4. MODELING THE EFFECT OF WATER VAPOR ON THE INTERFACIAL BEHAVIOR OF HIGH-TEMPERATURE AIR IN CONTACT WITH Fe20Cr SURFACES

    SciTech Connect

    Chialvo, Ariel A; Brady, Michael P; Keiser, James R; Cole, David R

    2011-01-01

    The purpose of this communication is to provide an atomistic view, via molecular dynamic simulation, of the contrasting interfacial behavior between high temperature dry- and (10-40 vol%) wet-air in contact with stainless steels as represented by Fe20Cr. It was found that H2O preferentially adsorbs and displaces oxygen at the metal/fluid interface. Comparison of these findings with experimental studies reported in the literature is discussed. Keywords: Fe-Cr alloys, metal-fluid interfacial behavior, wet-air, molecular simulation

  5. Validation of AIRS/AMSU-A water vapor and temperature data with in situ aircraft observations from the surface to UT/LS from 87°N-67°S

    NASA Astrophysics Data System (ADS)

    Diao, Minghui; Jumbam, Loayeh; Sheffield, Justin; Wood, Eric F.; Zondlo, Mark A.

    2013-06-01

    Validation of the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU-A) data set with in situ observations provides useful information on its application to climate and weather studies. However, different space/time averaging windows have been used in past studies, and questions remain on the variation of errors in space, such as between land/ocean and the Northern/Southern Hemispheres. In this study, in situ aircraft measurements of water vapor and temperature are compared with the AIRS/AMSU-A retrievals (Version 5 Level 2) from 87°N to 67°S and from the surface to the upper troposphere and lower stratosphere (UT/LS). By using a smaller comparison window (1 h and 22.5 km) than previous studies, we show that the absolute percentage difference of water vapor (|dH2Operc|) is ~20-60% and the absolute temperature difference (|dTemp|) is ~1.0-2.5 K. The land retrievals show improvements versus Version 4 by ~5% in water vapor concentration and ~0.2 K in temperature at 200-800 mbar. The land (ocean) retrievals are colder and drier (warmer and moister) than the in situ observations in the boundary layer, warmer and drier (warmer and moister) at the UT/LS. No significant differences between hemispheres are noted. Overall, future comparisons are suggested to be done within 4 h and 100 km in order to keep the errors from window sizes within ~10%. To constrain the uncertainties in previous validation results, we show that every 22.5 km (or 1 h) increment in window sizes contributes to ~2% |dH2Operc| and ~0.1 K |dTemp| increases.

  6. Ignitability of DMSO vapors at elevated temperature and reduced pressure

    SciTech Connect

    Bergman, W; Ural, E A; Weisgerber, W

    1999-03-08

    Ignitability of DMSO vapors have been evaluated at 664 mm Hg pressure. The minimum temperature at which the DMSO vapors that are in equilibrium with liquid DMSO has been determined using two types of strong ignition sources. This temperature is 172 F for chemical igniters, and 178 F for spark ignition. Numerous tests have been conducted using controlled intensity sparks to define the shape of the minimum ignition energy curve as a function of temperature. The ignition energies spanned four orders of magnitude (approximately from 20,000 to 2 mJ) while the DMSO vapor mixture temperature varied from 185 to 207 F. The Sandia Generator was used to simulate worst case electrostatic sparks that can be produced by the human body. Although it was not designed for air discharges, this device had been used by LLNL for 1 mm spark gap and the resultant spark energy had been measured to fall within the range from 3.2 to 8.8 mJ. CRC tests using this device showed that the minimum ignition temperature strongly depends on the spark gap. The minimum ignition temperature was 207 F at 1 mm spark gap, 203 F at 3 mm spark gap, and 197 F at 6 mm spark gap. This strong dependence on the spark gap is believed to be partly due to the changes in the spark energy as the spark gap changes.

  7. Vapor phase lubrication of high-temperature bearings

    NASA Astrophysics Data System (ADS)

    Graham, E. E.; Nesarikar, Abhijit; Forster, Nelson; Givan, Garry

    1993-09-01

    Results are presented of an experimental investigation in which a ball-on-rod tester was modified to allow tricresylphosphate (TCP) to be vaporized into a carrier gas of air and delivered into the bottom section of the rolling contact tester operated at 3200 rpm. Tests were conducted using M50 rods and M50 balls at a pressure of 3.86 GPa and a temperature of 350 C and with silicon nitride rods and balls at a contact pressure of 5.13 GPa and temperatures of 350 and 680 C. A vaporized stream of 0.5 percent TCP was used to lubricate the rod and balls for test times from 90 min to 8 hr, and a mild polishing occurred on the active bearing surfaces. SEM photographs of the vapor-lubricated surface showed a distinct tenacious deposit on the ball cage, rod, and balls. These results indicate that vapor phase lubrication can be used for high pressure bearing contacts, providing effective lubrication for temperatures up to at least 680 C.

  8. TECHNOLOGY ASSESSMENT OF SOIL VAPOR EXTRACTION AND AIR SPARGING

    EPA Science Inventory

    Air sparging, also called "in situ air stripping and in situ volatilization" injects air into the saturated zone to strip away volatile organic compounds (VOCs) dissolved in groundwater and adsorbed to soil. hese volatile contaminants transfer in a vapor phase to the unsaturated ...

  9. Vapor-modulated heat pipe for improved temperature control

    NASA Technical Reports Server (NTRS)

    Edwards, D. K.; Eninger, J. E.; Ludeke, E. E.

    1978-01-01

    Dryout induced by vapor throttling makes control of equipment temperature less dependent on variations in sink environment. Mechanism controls flow of vapor in heat pipe by using valve in return path to build difference in pressure and also difference in saturation temperature of the vapor. In steady state, valve closes just enough to produce partial dryout that achieves required temperature drop.

  10. Review of Various Air Sampling Methods for Solvent Vapors.

    ERIC Educational Resources Information Center

    Maykoski, R. T.

    Vapors of trichloroethylene, toluene, methyl ethyl ketone, and butyl cellosolve in air were collected using Scotchpac and Tedlar bags, glass prescription bottles, and charcoal adsorption tubes. Efficiencies of collection are reported. (Author/RH)

  11. Reusability study with organic vapor air-purifying respirator cartridges

    SciTech Connect

    Wood, G.O.; Kissane, R.

    1997-11-01

    The question often arises about the reusability of organic vapor adsorption beds, such as air- purifying respirator cartridges, after periods of storage without use (airflow). The extremes of practice are: (1) use once and discard or (2) reuse multiple times assuming the protection is still afforded. The goal is to develop data and a model to provide guidance to decide when reuse is acceptable. They have studied the loss of protection of a commercial organic vapor cartridge after storage for varying periods of time. Three vapors (ethyl acetate, methylene chloride, and hexane) were individually loaded onto test cartridges using a breathing pump. Extents of loading, times of loading, and vapor concentrations were varied. After selected periods of storage the cartridges were again challenged with the same vapor concentration. The increases in concentration of a vapor in the effluent air (simulated breaths) from a cartridge immediately upon reuse depended on the storage period, the extent of loading during initial use, the volatility of the vapor, and the water vapor adsorbed, but not much on the vapor concentration.

  12. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1986-01-01

    Heat transfer coefficients were measured using both dry air and air/water vapor mixtures in the same forced convection cooling test rig (jet array impingement configurations) with mass ratios of water vapor to air up to 0.23. The primary objective was to verify by direct experiment that selected existing methods for evaluation of viscosity and thermal conductivity of air/water vapor mixtures could be used with confidence to predict heat transfer coefficients for such mixtures using as a basis heat transfer data for dry air only. The property evaluation methods deemed most appropriate require as a basis a measured property value at one mixture composition in addition to the property values for the pure components.

  13. Titanium Dioxide Volatility in High Temperature Water Vapor

    NASA Technical Reports Server (NTRS)

    Nguyen, QynhGiao N.

    2008-01-01

    Titanium (Ti) containing materials are of high interest to the aerospace industry due to its high temperature capability, strength, and light weight. As with most metals an exterior oxide layer naturally exists in environments that contain oxygen (i.e. air). At high temperatures, water vapor plays a key role in the volatility of materials including oxide surfaces. This study will evaluate cold pressed titanium dioxide (TiO2) powder pellets at a temperature range of 1400 C - 1200 C in water containing environments to determine the volatile hydroxyl species using the transpiration method. The water content ranged from 0-76 mole% and the oxygen content range was 0-100 mole % during the 20-250 hour exposure times. Preliminary results indicate that oxygen is not a key contributor at these temperatures and the following reaction is the primary volatile equation for all three temperatures: TiO2 (s) + H2O (g) = TiO(OH)2 (g).

  14. Hurricane Isabel, Amount of Atmospheric Water Vapor Observed By AIRS

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] Figure 1

    These false-color images show the amount of atmospheric water vapor observed by AIRS two weeks prior to the passage of Hurricane Isabel, and then when it was a Category 5 storm. The region shown includes parts of South America and the West Indies. Puerto Rico is the large island below the upper left corner.

    Total water vapor represents the depth of a layer if all the water vapor in the atmosphere were to condense and fall to the surface. The color bar on the right sides of the plots give the thickness of this layer in millimeters (mm). The first image, from August 28, shows typical tropical water vapor amounts over the ocean: between roughly 25 and 50 mm, or 1 to 2 inches. The highest values of roughly 80 mm, seen as a red blob over South America, corresponds to intense thunderstorms. Thunderstorms pull in water vapor from surrounding regions and concentrate it, with much of it then falling as rain.

    Figure 1 shows total water during the passage of Hurricane Isabel on September 13. The storm is apparent: the ring of moderate values surrounding a very strong maximum of 100 mm. Total water of more than 80 mm is unusual, and these values correspond to the intense thunderstorms contained within Isabel. The thunderstorms--and the large values of total water--are fed by evaporation from the ocean in the hurricane's high winds. The water vapor near the center of the storm does not remain there long, since hurricane rain rates as high 50 mm (2 inches) per hour imply rapid cycling of the water we observe. Away from the storm the amount of total water vapor is rather low, associated with fair weather where air that ascended near the storm's eye returns to earth, having dropped its moisture as rain. Also seen in the second images are two small regions of about 70 mm of total water over south America. These are yet more thunderstorms, though likely much more benign than those in Isabel.

    The

  15. Oxidation of Ultra High Temperature Ceramics in Water Vapor

    NASA Technical Reports Server (NTRS)

    Nguyen, QuynhGiao N.; Opila, Elizabeth J.; Robinson, Raymond C.

    2004-01-01

    Ultra High Temperature Ceramics (UHTCs) including HfB2 + 20v/0 SiC (HS), ZrB2 + 20v/0 SiC (ZS), and ZrB2 + 30v/0 C + 14v/0 SiC (ZCS) have been investigated for use as potential aeropropulsion engine materials. These materials were oxidized in water vapor (90 percent) using a cyclic vertical furnace at 1 atm. The total exposure time was 10 h at temperatures of 1200, 1300, and 1400 C. CVD SiC was also evaluated as a baseline for comparison. Weight change, X-ray diffraction analyses, surface and cross-sectional SEM and EDS were performed. These results are compared with tests ran in a stagnant air furnace at temperatures of 1327 C for 100 min, and with high pressure burner rig (HPBR) results at 1100 and 1300 C at 6 atm for 50 h. Low velocity water vapor does not make a significant contribution to the oxidation rates of UHTCs when compared to stagnant air. The parabolic rate constants at 1300 C, range from 0.29 to 16.0 mg(sup 2)cm(sup 4)/h for HS and ZCS, respectively, with ZS results between these two values. Comparison of results for UHTCs tested in the furnace in 90 percent water vapor with HPBR results was difficult due to significant sample loss caused by spallation in the increased velocity of the HPBR. Total recession measurements are also reported for the two test environments.

  16. Temperature dependence of the properties of vapor-deposited polyimide

    NASA Astrophysics Data System (ADS)

    Tsai, F. Y.; Blanton, T. N.; Harding, D. R.; Chen, S. H.

    2003-04-01

    The Young's modulus and helium gas permeability of vapor-deposited poly(4,4'-oxydiphenylenepyromellitimide) were measured at cryogenic and elevated temperatures (10-573 K). The Young's modulus decreased with increasing temperature from 5.5 GPa at 10 K to 1.8 GPa at 573 K. The temperature dependency of the permeability followed the Arrhenius' relationship, with different activation energy for permeation for samples imidized under different conditions. The effect of the imidization conditions on the permeation properties could be explained in terms of morphology/crystallinity as determined by x-ray diffraction techniques. Imidizing in air instead of nitrogen increased the permeability while lowering the activation energy for permeation and crystallinity. Imidizing at higher heating rates (in nitrogen) resulted in higher permeability, lower activation energy for permeation, and larger and fewer crystallites with better-aligned lattice planes.

  17. Oxidation of Ultra-High Temperature Ceramics in Water Vapor

    NASA Technical Reports Server (NTRS)

    Nguyen, QuynGiao N.; Robinson, Raymond C.; Opila, Elizabeth J.

    2004-01-01

    Ultra High Temperature Ceramics (UHTCs) including HfB2 + 20% SiC (HS), and ZrB2 + 20% SiC (ZC), and ZrB2 + 30% C + 14% SiC (ZCS) have been investigated for use as potential aeropropolsion engine materials. These materials were oxidized in water vapor (90%) using a cyclic vertical furnace at 1 atm. The total exposure time was 10 hours at temperature of 1200, 1300, and 1400 C. CVD SiC was also evaluate as a baseline for comparison. Weight change, X-ray diffraction analysis, surface and cross-sectional SEM and EDS were performed. These results are compared with tests conducted in a stagnant air furnace at temperatures of 1327 C for 100 minutes, and with high pressure burner rig (HPBR) results at 1100 and 1300 C at 6 atm for 50 h. Total recession measurements are also reported for the two tests environments.

  18. Low Temperature Chemical Vapor Deposition Of Thin Film Magnets

    DOEpatents

    Miller, Joel S.; Pokhodnya, Kostyantyn I.

    2003-12-09

    A thin-film magnet formed from a gas-phase reaction of tetracyanoetheylene (TCNE) OR (TCNQ), 7,7,8,8-tetracyano-P-quinodimethane, and a vanadium-containing compound such as vanadium hexcarbonyl (V(CO).sub.6) and bis(benzene)vanalium (V(C.sub.6 H.sub.6).sub.2) and a process of forming a magnetic thin film upon at least one substrate by chemical vapor deposition (CVD) at a process temperature not exceeding approximately 90.degree. C. and in the absence of a solvent. The magnetic thin film is particularly suitable for being disposed upon rigid or flexible substrates at temperatures in the range of 40.degree. C. and 70.degree. C. The present invention exhibits air-stable characteristics and qualities and is particularly suitable for providing being disposed upon a wide variety of substrates.

  19. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1984-01-01

    Heat transfer coefficients were measured using both dry and humid air in the same forced convection cooling scheme and were compared using appropriate nondimensional parameters (Nusselt, Prandtl and Reynolds numbers). A forced convection scheme with a complex flow field, two dimensional arrays of circular jets with crossflow, was utilized with humidity ratios (mass ratio of water vapor to air) up to 0.23. The dynamic viscosity, thermal conductivity and specific heat of air, steam and air/steam mixtures are examined. Methods for determining gaseous mixture properties from the properties of their pure components are reviewed as well as methods for determining these properties with good confidence. The need for more experimentally determined property data for humid air is discussed. It is concluded that dimensionless forms of forced convection heat transfer data and empirical correlations based on measurements with dry air may be applied to conditions involving humid air with the same confidence as for the dry air case itself, provided that the thermophysical properties of the humid air mixtures are known with the same confidence as their dry air counterparts.

  20. VAPOR SPACE AND LIQUID/AIR INTERFACECORROSION TESTS

    SciTech Connect

    Zapp, P.; Hoffman, E.

    2009-11-09

    The phenomena of vapor space corrosion and liquid/air interface corrosion of carbon steel in simulated liquid waste environments have been investigated. Initial experiments have explored the hypothesis that vapor space corrosion may be accelerated by the formation of a corrosive electrolyte on the tank wall by a process of evaporation of relatively warmer waste and condensation of the vapor on the relatively cooler tank wall. Results from initial testing do not support the hypothesis of electrolyte transport by evaporation and condensation. The analysis of the condensate collected by a steel specimen suspended over a 40 C simulated waste solution showed no measurable concentrations of the constituents of the simulated solution and a decrease in pH from 14 in the simulant to 5.3 in the condensate. Liquid/air interface corrosion was studied as a galvanic corrosion system, where steel at the interface undergoes accelerated corrosion while steel in contact with bulk waste is protected. The zero-resistance-ammeter technique was used to measure the current flow between steel specimens immersed in solutions simulating (1) the high-pH bulk liquid waste and (2) the expected low-pH meniscus liquid at the liquid/air interface. Open-circuit potential measurements of the steel specimens were not significantly different in the two solutions, with the result that (1) no consistent galvanic current flow occurred and (2) both the meniscus specimen and bulk specimen were subject to pitting corrosion.

  1. Thermal design of high temperature alkaline-earth vapor cells

    NASA Astrophysics Data System (ADS)

    Armstrong, Jordan L.; Lemke, Nathan D.; Martin, Kyle W.; Erickson, Christopher J.

    2016-03-01

    Europium doped calcium fluoride is a machinable and alkaline-earth resistant crystal that is suitable for constructing a calcium or strontium vapor cell. However, its heat capacity, emissivity, and high coefficient of thermal expansion make it challenging to achieve optically dense calcium vapors for laser spectroscopy on narrow linewidth transitions. We discuss a low size, weight and power heating package that is under development at the Air Force Research Laboratory.

  2. Combined air stripper/membrane vapor separation systems. Final report

    SciTech Connect

    Wijmans, J.G.; Baker, R.W.; Kamaruddin, H.D.; Kaschemekat, J.; Olsen, R.P.; Rose, M.E.; Segelke, S.V.

    1992-11-01

    Air stripping is an economical and efficient method of removing dissolved volatile organic compounds (VOCs) from contaminated groundwater. Air strippers, however, produce a vent air stream, which must meet the local air quality limits. If the VOC content exceeds the limits, direct discharge is not possible; therefore, a carbon adsorption VOC capture system is used to treat the vent air. This treatment step adds a cost of at least $50/lb of VOC captured. In this program, a combined air stripper/membrane vapor separation system was constructed and demonstrated in the laboratory. The membrane system captures VOCs from the stripper vent stream at a projected cost of $15/lb VOC for a water VOC content of 5 ppmw, and $75/lb VOC for a water VOC content of 1 ppmw. The VOCs are recovered as a small, concentrated liquid fraction for disposal or solvent recycling. The concept has been demonstrated in experiments with a system capable of handling up to 150,000 gpd of water. The existing demonstration system is available for field tests at a DOE facility or remediation site. Replacement of the current short air stripping tower (effective height 3 m) with a taller tower is recommended to improve VOC removal.

  3. Removal of gasoline vapors from air streams by biofiltration

    SciTech Connect

    Apel, W.A.; Kant, W.D.; Colwell, F.S.; Singleton, B.; Lee, B.D.; Andrews, G.F.; Espinosa, A.M.; Johnson, E.G.

    1993-03-01

    Research was performed to develop a biofilter for the biodegradation of gasoline vapors. The overall goal of this effort was to provide information necessary for the design, construction, and operation of a commercial gasoline vapor biofilter. Experimental results indicated that relatively high amounts of gasoline vapor adsorption occur during initial exposure of the biofilter bed medium to gasoline vapors. Biological removal occurs over a 22 to 40[degrees]C temperature range with removal being completely inhibited at 54[degrees]C. The addition of fertilizer to the relatively fresh bed medium used did not increase the rates of gasoline removal in short term experiments. Microbiological analyses indicated that high levels of gasoline degrading microbes are naturally present in the bed medium and that additional inoculation with hydrocarbon degrading cultures does not appreciably increase gasoline removal rates. At lower gasoline concentrations, the vapor removal rates were considerably lower than those at higher gasoline concentrations. This implies that system designs facilitating gasoline transport to the micro-organisms could substantially increase gasoline removal rates at lower gasoline vapor concentrations. Test results from a field scale prototype biofiltration system showed volumetric productivity (i.e., average rate of gasoline degradation per unit bed volume) values that were consistent with those obtained with laboratory column biofilters at similar inlet gasoline concentrations. In addition, total benzene, toluene, ethyl-benzene, and xylene (BTEX) removal over the operating conditions employed was 50 to 55%. Removal of benzene was approximately 10 to 15% and removal of the other members of the BTEX group was much higher, typically >80%.

  4. Removal of gasoline vapors from air streams by biofiltration

    SciTech Connect

    Apel, W.A.; Kant, W.D.; Colwell, F.S.; Singleton, B.; Lee, B.D.; Andrews, G.F.; Espinosa, A.M.; Johnson, E.G.

    1993-03-01

    Research was performed to develop a biofilter for the biodegradation of gasoline vapors. The overall goal of this effort was to provide information necessary for the design, construction, and operation of a commercial gasoline vapor biofilter. Experimental results indicated that relatively high amounts of gasoline vapor adsorption occur during initial exposure of the biofilter bed medium to gasoline vapors. Biological removal occurs over a 22 to 40{degrees}C temperature range with removal being completely inhibited at 54{degrees}C. The addition of fertilizer to the relatively fresh bed medium used did not increase the rates of gasoline removal in short term experiments. Microbiological analyses indicated that high levels of gasoline degrading microbes are naturally present in the bed medium and that additional inoculation with hydrocarbon degrading cultures does not appreciably increase gasoline removal rates. At lower gasoline concentrations, the vapor removal rates were considerably lower than those at higher gasoline concentrations. This implies that system designs facilitating gasoline transport to the micro-organisms could substantially increase gasoline removal rates at lower gasoline vapor concentrations. Test results from a field scale prototype biofiltration system showed volumetric productivity (i.e., average rate of gasoline degradation per unit bed volume) values that were consistent with those obtained with laboratory column biofilters at similar inlet gasoline concentrations. In addition, total benzene, toluene, ethyl-benzene, and xylene (BTEX) removal over the operating conditions employed was 50 to 55%. Removal of benzene was approximately 10 to 15% and removal of the other members of the BTEX group was much higher, typically >80%.

  5. Stratospheric Water Vapor, Tropical Tropopause Temperatures and Tropical Upwelling

    NASA Astrophysics Data System (ADS)

    Rosenlof, K. H.; Neely, R.; Davis, S. M.; Butler, A. H.; Hurst, D. F.

    2015-12-01

    A body of work has shown that there are trends and variability in stratospheric water vapor closely related to variability in tropical tropopause temperatures, upwelling variations, the quasi-biennial oscillation, volcanic aerosol loading and sea surface temperatures. Prior studies have also shown that stratospheric water vapor has a small but non-negligible effect on global radiative forcing; therefore it is key to understand both trends and long-term variations. In this presentation, we will examine both the relationship between tropical tropopause temperatures and stratospheric water for the time period where we have global lower stratosphere water vapor measurements (primarily since the early 1990s), as well as the relationship between tropical tropopause temperatures and assorted atmospheric indices for the longer time period where we only have temperature measurements. We will present results from climate model runs testing the impact of volcanic aerosol loading on UTLS temperatures, stratospheric water vapor and tropical upwelling. Using our climate model runs, we also isolate the impact of the QBO on tropical upwelling in the lower stratosphere. With WACCM, we found that the tropical tropopause temperature annual cycle amplitude was smaller than observed by ~30% in a case run without QBO nudging; in this presentation we explore the reasons for that and its impact on stratospheric water vapor.

  6. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Ferrare, Richard A.; Browell, Edward V.; Kooi, Susan A.; Dunion, Jason P.; Heymsfield, Gerry; Notari, Anthony; Butler, Carolyn F.; Burton, Sharon; Fenn, Marta; Krishnamurti, T. N.; Chen, Gao; Anderson, Bruce

    2010-01-01

    LASE (Lidar Atmospheric Sensing Experiment) on-board the NASA DC-8 measured high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan Air Layer(s) (SAL). Interactions between the SAL and tropical air were observed during the early stages of the TC development. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on AEWs and TCs. Examples of profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in SAL, convection, and clear air regions. LASE data suggest that the SAL suppresses low-altitude convection at the convection-SAL interface region. Mid-level convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on August 20, 2008. This interaction is responsible for the transfer of about 7 x 10(exp 15) J latent heat energy within a day to the SAL. Measurements of lidar extinction-to-backscatter ratios in the range 36+/-5 to 45+/-5 are within the range of measurements from other lidar measurements of dust. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings, respectively.

  7. Effects of vertical distribution of water vapor and temperature on total column water vapor retrieval error

    NASA Technical Reports Server (NTRS)

    Sun, Jielun

    1993-01-01

    Results are presented of a test of the physically based total column water vapor retrieval algorithm of Wentz (1992) for sensitivity to realistic vertical distributions of temperature and water vapor. The ECMWF monthly averaged temperature and humidity fields are used to simulate the spatial pattern of systematic retrieval error of total column water vapor due to this sensitivity. The estimated systematic error is within 0.1 g/sq cm over about 70 percent of the global ocean area; systematic errors greater than 0.3 g/sq cm are expected to exist only over a few well-defined regions, about 3 percent of the global oceans, assuming that the global mean value is unbiased.

  8. Water Vapor-Mediated Volatilization of High-Temperature Materials

    NASA Astrophysics Data System (ADS)

    Meschter, Peter J.; Opila, Elizabeth J.; Jacobson, Nathan S.

    2013-07-01

    Volatilization in water vapor-containing atmospheres is an important and often unexpected mechanism of degradation of high-temperature materials during processing and in service. Thermodynamic properties data sets for key (oxy)hydroxide vapor product species that are responsible for material transport and damage are often uncertain or unavailable. Estimation, quantum chemistry calculation, and measurement methods for thermodynamic properties of these species are reviewed, and data judged to be reliable are tabulated and referenced. Applications of water vapor-mediated volatilization include component and coating recession in turbine engines, oxidation/volatilization of ferritic steels in steam boilers, chromium poisoning in solid-oxide fuel cells, vanadium transport in hot corrosion and degradation of hydrocracking catalysts, Na loss from Na β"-Al2O3 tubes, and environmental release of radioactive isotopes in a nuclear reactor accident or waste incineration. The significance of water vapor-mediated volatilization in these applications is described.

  9. Stability of Materials in High Temperature Water Vapor: SOFC Applications

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Jacobson, N. S.

    2010-01-01

    Solid oxide fuel cell material systems require long term stability in environments containing high-temperature water vapor. Many materials in fuel cell systems react with high-temperature water vapor to form volatile hydroxides which can degrade cell performance. In this paper, experimental methods to characterize these volatility reactions including the transpiration technique, thermogravimetric analysis, and high pressure mass spectrometry are reviewed. Experimentally determined data for chromia, silica, and alumina volatility are presented. In addition, data from the literature for the stability of other materials important in fuel cell systems are reviewed. Finally, methods for predicting material recession due to volatilization reactions are described.

  10. Vapor pressures and vapor compositions in equilibrium with hypostoichiometric plutonium dioxide at high temperatures

    SciTech Connect

    Green, D.W.; Fink, J.K.; Leibowitz, L.

    1982-01-01

    Vapor pressures and vapor compositions have been calculated for 1500 less than or equal to T less than or equal to 4000/sup 0/K. Thermodynamic functions for the condensed phase and for each of the gaseous species were combined with an oxygen-potential model extended into the liquid region to obtain the partial pressures of O/sub 2/, O, Pu, PuO and PuO/sub 2/. The calculated oxygen pressures increase very rapidly as stoichiometry is approached. At least part of this increase is a consequence of the exclusion of Pu/sup 6 +/ from the oxygen-potential model. No reliable method was found to estimate the importance of this ion. As a result of large oxygen potentials at high temperatures, extremely high total pressures that produced unreasonably high vapor densities were calculated. The highest temperature was therefore limited to 400 K, and the range of oxygen-to-metal ratios was limited to 1.994 to 1.70. These calculations show that vapor in equilibrium with hypostoichiometric plutonium dioxide is poorly approximated as PuO/sub 2/ for most of the temperture and composition range of interest. The vapor is much more oxygen-rich than the condensed phase. Implications for the (U,Pu)O/sub 2-x/ system are discussed. (DLC)

  11. High temperature oxidation of molybdenum in water vapor environments

    NASA Astrophysics Data System (ADS)

    Nelson, A. T.; Sooby, E. S.; Kim, Y.-J.; Cheng, B.; Maloy, S. A.

    2014-05-01

    Molybdenum has recently gained attention as a candidate cladding material for use in light water reactors. Its excellent high temperature mechanical properties and stability under irradiation suggest that it could offer benefits to performance under a wide range of reactor conditions, but little is known about its oxidation behavior in water vapor containing atmospheres. The current study was undertaken to elucidate the oxidation behavior of molybdenum in water vapor environments to 1200 °C in order to provide an initial assessment of its feasibility as a light water reactor cladding. Initial observations indicate that at temperatures below 1000 °C, the kinetics of mass loss in water vapor would not be detrimental to cladding integrity during an off-normal event. Above 1000 °C, degradation is more rapid but remains slower than observed for optimized zirconium cladding alloys. The effect of hydrogen-water vapor and oxygen-water vapor mixtures on material loss was also explored at elevated temperatures. Parts-per-million levels of either hydrogen or oxygen will minimally impact performance, but hydrogen contents in excess of 1000 ppm were observed to limit volatilization at 1000 °C.

  12. VAPORIZATION OF TUNGSTEN-METAL IN STEAM AT HIGH TEMPERATURES.

    SciTech Connect

    GREENE,G.A.; FINFROCK,C.C.

    2000-10-01

    The vaporization of tungsten from the APT spallation target dominates the radiological source term for unmitigated target overheating accidents. Chemical reactions of tungsten with steam which persist to tungsten temperatures as low as 800 C result in the formation of a hydrated tungsten-oxide which has a high vapor pressure and is readily convected in a flowing atmosphere. This low-temperature vaporization reaction essentially removes the oxide film that forms on the tungsten-metal surface as soon as it forms, leaving behind a fresh metallic surface for continued oxidation and vaporization. Experiments were conducted to measure the oxidative vaporization rates of tungsten in steam as part of the effort to quantify the MT radiological source term for severe target accidents. Tests were conducted with tungsten rods (1/8 inch diameter, six inches long) heated to temperatures from approximately 700 C to 1350 C in flowing steam which was superheated to 140 C. A total of 19 experiments was conducted. Fifteen tests were conducted by RF induction heating of single tungsten rods held vertical in a quartz glass retort. Four tests were conducted in a vertically-mounted tube furnace for the low temperature range of the test series. The aerosol which was generated and transported downstream from the tungsten rods was collected by passing the discharged steam through a condenser. This procedure insured total collection of the steam along with the aerosol from the vaporization of the rods. The results of these experiments revealed a threshold temperature for tungsten vaporization in steam. For the two tests at the lowest temperatures which were tested, approximately 700 C, the tungsten rods were observed to oxidize without vaporization. The remainder of the tests was conducted over the temperature range of 800 C to 1350 C. In these tests, the rods were found to have lost weight due to vaporization of the tungsten and the missing weight was collected in the downstream condensate

  13. Mechanism of influence water vapor on combustion characteristics of propane-air mixture

    NASA Astrophysics Data System (ADS)

    Larionov, V. M.; Mitrofanov, G. A.; Sachovskii, A. V.; Kozar, N. K.

    2016-01-01

    The article discusses the results of an experimental study of the effect of water vapor at the flame temperature. Propane-butane mixture with air is burning on a modified Bunsen burner. Steam temperature was varied from 180 to 260 degrees. Combustion parameters changed by steam temperature and its proportion in the mixture with the fuel. The fuel-air mixture is burned in the excess air ratio of 0.1. It has been established that the injection of steam changes the characteristics of combustion fuel-air mixture and increase the combustion temperature. The concentration of CO in the combustion products is substantially reduced. Raising the temperature in the combustion zone is associated with increased enthalpy of the fuel by the added steam enthalpy. Reducing the concentration of CO is caused by decrease in the average temperature in the combustion zone by applying steam. Concentration of active hydrogen radicals and oxygen increases in the combustion zone. That has a positive effect on the process of combustion.

  14. Processing of extraterrestrial materials by high temperature vacuum vaporization

    NASA Technical Reports Server (NTRS)

    Grimley, R. T.; Lipschutz, M. E.

    1983-01-01

    It is noted that problems associated with the extraction and concentration of elements and commpounds important for the construction and operation of space habitats have received little attention. High temperature vacuum vaporization is considered a promising approach; this is a technique for which the space environment offers advantages in the form of low ambient pressures and temperatures and the possibility of sustained high temperatures via solar thermal energy. To establish and refine this new technology, experimental determinations must be made of the material release profiles as a function of temperature, of the release kinetics and chemical forms of material being transported, and of the various means of altering release kinetics. Trace element data determined by neutron activation analysis of meteorites heated to 1400 C in vacuum is summarized. The principal tool, high temperature spectrometry, is used to examine the vaporization thermodynamics and kinetics of major and minor elements from complex multicomponent extraterrestrial materials.

  15. A gravimetric approach to providing SI traceability for concentration measurement results of mercury vapor at ambient air levels

    NASA Astrophysics Data System (ADS)

    Ent, Hugo; van Andel, Inge; Heemskerk, Maurice; van Otterloo, Peter; Bavius, Wijnand; Baldan, Annarita; Horvat, Milena; Brown, Richard J. C.; Quétel, Christophe R.

    2014-11-01

    Current measurement and calibration capabilities for mercury vapor in air are maintained at levels of 0.2-40 μg Hg m-3. In this work, a mercury vapor generator has been developed to establish metrological traceability to the international system of units (SI) for mercury vapor measurement results ≤15 ng Hg m-3, i.e. closer to realistic ambient air concentrations (1-2 ng Hg m-3) [1]. Innovations developed included a modified type of diffusion cell, a new measurement method to weigh the loss in (mercury) mass of these diffusion cells during use (ca. 6-8 μg mass difference between successive weighings), and a new housing for the diffusion cells to maximize flow characteristics and to minimize temperature variations and adsorption effects. The newly developed mercury vapor generator system was tested by using diffusion cells generating 0.8 and 16 ng Hg min-1. The results also show that the filter system, to produce mercury free air, is working properly. Furthermore, and most importantly, the system is producing a flow with a stable mercury vapor content. Some additional improvements are still required to allow the developed mercury vapor generator to produce SI traceable mercury vapor concentrations, based upon gravimetry, at much lower concentration levels and reduced measurement uncertainties than have been achieved previously. The challenges to be met are especially related to developing more robust diffusion cells and better mass measurement conditions. The developed mercury vapor generator will contribute to more reliable measurement results of mercury vapor at ambient and background air levels, and also to better safety standards and cost reductions in industrial processes, such as the liquefied natural gas field, where aluminum main cryogenic heat exchangers are used which are particularly prone to corrosion caused by mercury.

  16. Vapor pressures and vapor compositions in equilibrium with hypostoichiometric plutonium dioxide at high temperatures

    SciTech Connect

    Green, D.W.; Fink, J.K.; Leibowitz, L.

    1982-06-01

    Vapor pressures and vapor compositions in equilibrium with a hypostoichiometric plutonium dioxide condensed phase have been calculated for the temperature range 1500 less than or equal to T less than or equal to 4000 K. Thermodynamic functions for the condensed phase and for each of the gaseous species were combined with an oxygen-potential model to obtain the partial pressures of O/sub 2/, O, Pu, PuO, and PuO/sub 2/. New thermodynamic functions for the solid oxide were calculated from available information and from new estimates of the heat capacity of the liquid. Thermodynamic functions for the vapor species were calculated previously. A suitable oxygen-potential model has been used previously for the solid hypostoichiometric plutonium dioxide; this model has been extended into the liquid region using several alternative methods. The effects of these alternatives on the calculated oxygen pressures have been examined in detail.

  17. Oxidation of Ultra-High Temperature Ceramics in Water Vapor

    NASA Technical Reports Server (NTRS)

    Nguyen, QuynhGiao N.; Opila, Elizabeth J.; Robinson, Raymond C.

    2003-01-01

    Ultra high temperature ceramics (UHTCs) including HfB2 + SiC (20% by volume), ZrB2 + SiC (20% by volume) and ZrB2 + SiC (14% by volume) + C (30% by volume) have historically been evaluated as reusable thermal protection systems for hypersonic vehicles. This study investigates UHTCs for use as potential combustion and aeropropulsion engine materials. These materials were oxidized in water vapor (90%) using a cyclic vertical furnace at 1 atm. The total exposure time was 10 hours at temperatures of 1200, 1300, and 1400 C. CVD SiC was also evaluated as a baseline comparison. Weight change measurements, X-ray diffraction analyses, surface and cross-sectional SEM and EDS were performed. These results will be compared with tests ran in static air at temperatures of 1327, 1627, and 1927 C. Oxidation comparisons will also be made to the study by Tripp. A small number of high pressure burner rig (HPBR) results at 1100 and 1300 C will also be discussed. Specific weight changes at all three temperatures along with the SIC results are shown. SiC weight change is negligible at such short duration times. HB2 + SiC (HS) performed the best out of all the tested UHTCS for all exposure temperatures. ZrB2 + Sic (ZS) results indicate a slightly lower oxidation rate than that of ZrBl + SiC + C (ZCS) at 1200 and 1400 C, but a clear distinction can not be made based on the limited number of tested samples. Scanning electron micrographs of the cross-sections of all the UHTCs were evaluated. A representative area for HS is presented at 1400 C for 26 hours which was the composition with the least amount of oxidation. A continuous SiO2 scale is present in the outer most edge of the surface. An image of ZCS is presented at 1400 C for 10 hours, which shows the most degradation of all the compositions studied. Here, the oxide surface is a mixture of ZrSiO4, ZrO2 and SO2.

  18. Temperature dependences of saturated vapor pressure and the enthalpy of vaporization of n-pentyl esters of dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Portnova, S. V.; Krasnykh, E. L.; Levanova, S. V.

    2016-05-01

    The saturated vapor pressures and enthalpies of vaporization of n-pentyl esters of linear C2-C6 dicarboxylic acids are determined by the transpiration method in the temperature range of 309.2-361.2 K. The dependences of enthalpies of vaporization on the number of carbon atoms in the molecule and on the retention indices have been determined. The predictive capabilities of the existing calculation schemes for estimation of enthalpy of vaporization of the studied compounds have been analyzed.

  19. Low temperature air with high IAQ for dry climates

    SciTech Connect

    Scofield, C.M. ); Des Champs, N.H. )

    1995-01-01

    This article describes how low temperature supply air and air-to-air heat exchangers can furnish 100% outdoor air with reduced peak energy demands. The use of low temperature supply air systems in arid climates greatly simplifies the air-conditioning design. Risks associated with moisture migration and sweating of duct and terminal equipment are reduced. Insulation and vapor barrier design requirements are not nearly as critical as they are in the humid, ambient conditions that exist in the eastern United States. The introduction of outdoor air to meet ASHRAE Standard 62-1989 becomes far less taxing on the mechanical cooling equipment because of the lower enthalpy levels of the dry western climate. Energy costs to assure indoor air quality (IAQ) are lower than for more tropical climates. In arid regions, maintaining acceptable indoor relative humidity (RH) levels becomes a major IAQ concern. For the western United States, coupling an air-to-air heat exchanger to direct (adiabatic) evaporative coolers can greatly reduce low temperature supply air refrigeration energy requirements and winter humidification costs while ensuring proper ventilation.

  20. 46 CFR 154.1710 - Exclusion of air from cargo tank vapor spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Exclusion of air from cargo tank vapor spaces. 154.1710 Section 154.1710 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Operating Requirements § 154.1710 Exclusion of air from cargo tank vapor spaces. When a vessel is...

  1. Observed Increase of TTL Temperature and Water Vapor in Polluted Couds over Asia

    SciTech Connect

    Su, Hui; Jiang, Jonathan; Liu, Xiaohong; Penner, J.; Read, William G.; Massie, Steven T.; Schoeberl, Mark R.; Colarco, Peter; Livesey, Nathaniel J.; Santee, Michelle L.

    2011-06-01

    Aerosols can affect cloud particle size and lifetime, which impacts precipitation, radiation and climate. Previous studies1-4 suggested that reduced ice cloud particle size and fall speed due to the influence of aerosols may increase evaporation of ice crystals and/or cloud radiative heating in the tropical tropopause layer (TTL), leading to higher water vapor abundance in air entering the stratosphere. Observational substantiation of such processes is still lacking. Here, we analyze new observations from multiple NASA satellites to show the imprint of pollution influence on stratospheric water vapor. We focus our analysis on the highly-polluted South and East Asia region during boreal summer. We find that "polluted" ice clouds have smaller ice effective radius than "clean" clouds. In the TTL, the polluted clouds are associated with warmer temperature and higher specific humidity than the clean clouds. The water vapor difference between the polluted and clean clouds cannot be explained by other meteorological factors, such as updraft and detrainment strength. Therefore, the observed higher water vapor entry value into the stratosphere in the polluted clouds than in the clean clouds is likely a manifestation of aerosol pollution influence on stratospheric water vapor. Given the radiative and chemical importance of stratospheric water vapor, the increasing emission of aerosols over Asia may have profound impacts on stratospheric chemistry and global energy balance and water cycle.

  2. Surface Temperature variability from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Dang, V. T.; Aumann, H. H.

    2015-12-01

    To address the existence and possible causes of the climate hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014for the day and night conditions. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We compare the satellite data with the new surface data produced by Karl et al. (2015) who denies the reality of the climate hiatus. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The day-night difference is an indicator of the anthropogenic trend. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  3. Low temperature measurement of the vapor pressures of planetary molecules

    NASA Technical Reports Server (NTRS)

    Kraus, George F.

    1989-01-01

    Interpretation of planetary observations and proper modeling of planetary atmospheres are critically upon accurate laboratory data for the chemical and physical properties of the constitutes of the atmospheres. It is important that these data are taken over the appropriate range of parameters such as temperature, pressure, and composition. Availability of accurate, laboratory data for vapor pressures and equilibrium constants of condensed species at low temperatures is essential for photochemical and cloud models of the atmospheres of the outer planets. In the absence of such data, modelers have no choice but to assume values based on an educated guess. In those cases where higher temperature data are available, a standard procedure is to extrapolate these points to the lower temperatures using the Clausius-Clapeyron equation. Last summer the vapor pressures of acetylene (C2H2) hydrogen cyanide (HCN), and cyanoacetylene (HC3N) was measured using two different methods. At the higher temperatures 1 torr and 10 torr capacitance manometers were used. To measure very low pressures, a technique was used which is based on the infrared absorption of thin film (TFIR). This summer the vapor pressure of acetylene was measured the TFIR method. The vapor pressure of hydrogen sulfide (H2S) was measured using capacitance manometers. Results for H2O agree with literature data over the common range of temperature. At the lower temperatures the data lie slightly below the values predicted by extrapolation of the Clausius-Clapeyron equation. Thin film infrared (TFIR) data for acetylene lie significantly below the values predicted by extrapolation. It is hoped to bridge the gap between the low end of the CM data and the upper end of the TFIR data in the future using a new spinning rotor gauge.

  4. Nanosecond Glow and Spark Discharges in Ambient Air and in Water Vapor

    NASA Astrophysics Data System (ADS)

    Laux, Christophe; Rusterholtz, Diane; Sainct, Florent; Xu, Da; Lacoste, Deanna; Stancu, Gabi; Pai, David

    2013-09-01

    Nanosecond repetitively pulsed (NRP) discharges are one of the most energy efficient ways to produce active species in atmospheric pressure gases. In both air and water vapor, three discharge regimes can be obtained: 1) corona, with light emission just around the anode, 2) glow, corresponding to a diffuse nonequilibrium plasma, and 3) spark, characterized by higher temperatures and higher active species densities. The glow regime was initially obtained in air preheated at 2000 K. Based on a model defining the transition between glow and spark, we recently succeeded in obtaining a stable glow in ambient air at 300 K, using a judicious combination of electrode geometry, pulse duration, pulse frequency, and applied voltage. We will present these results and describe the characteristics of the discharge obtained in room air. The spark regime was also studied. NRP sparks induce ultrafast gas heating (about 1000 K in 20 ns) and high oxygen dissociation (up to 50% dissociation of O2) . This phenomenon can be explained by a two-step process involving the excitation of molecular nitrogen followed by exothermic dissociative quenching of molecular oxygen. The characteristics of NRP discharges in water vapor will also be discussed. This work is supported by the ANR PREPA program (grant number ANR-09-BLAN-0043).

  5. Atmospheric absorption model for dry air and water vapor at microwave frequencies below 100 GHz derived from spaceborne radiometer observations

    NASA Astrophysics Data System (ADS)

    Wentz, Frank J.; Meissner, Thomas

    2016-05-01

    The Liebe and Rosenkranz atmospheric absorption models for dry air and water vapor below 100 GHz are refined based on an analysis of antenna temperature (TA) measurements taken by the Global Precipitation Measurement Microwave Imager (GMI) in the frequency range 10.7 to 89.0 GHz. The GMI TA measurements are compared to the TA predicted by a radiative transfer model (RTM), which incorporates both the atmospheric absorption model and a model for the emission and reflection from a rough-ocean surface. The inputs for the RTM are the geophysical retrievals of wind speed, columnar water vapor, and columnar cloud liquid water obtained from the satellite radiometer WindSat. The Liebe and Rosenkranz absorption models are adjusted to achieve consistency with the RTM. The vapor continuum is decreased by 3% to 10%, depending on vapor. To accomplish this, the foreign-broadening part is increased by 10%, and the self-broadening part is decreased by about 40% at the higher frequencies. In addition, the strength of the water vapor line is increased by 1%, and the shape of the line at low frequencies is modified. The dry air absorption is increased, with the increase being a maximum of 20% at the 89 GHz, the highest frequency considered here. The nonresonant oxygen absorption is increased by about 6%. In addition to the RTM comparisons, our results are supported by a comparison between columnar water vapor retrievals from 12 satellite microwave radiometers and GPS-retrieved water vapor values.

  6. Temperature cycling vapor deposition HgI.sub.2 crystal growth

    DOEpatents

    Schieber, Michael M.; Beinglass, Israel; Dishon, Giora

    1977-01-01

    A method and horizontal furnace for vapor phase growth of HgI.sub.2 crystals which utilizes controlled axial and radial airflow to maintain the desired temperature gradients. The ampoule containing the source material is rotated while axial and radial air tubes are moved in opposite directions during crystal growth to maintain a desired distance and associated temperature gradient with respect to the growing crystal, whereby the crystal interface can advance in all directions, i.e., radial and axial according to the crystallographic structure of the crystal. Crystals grown by this method are particularly applicable for use as room-temperature nuclear radiation detectors.

  7. Thermodynamic study of air-cycle and mercury-vapor-cycle systems for refrigerating cooling air for turbines or other components

    NASA Technical Reports Server (NTRS)

    Nachtigall, Alfred J; Freche, John C; Esgar, Jack B

    1956-01-01

    An analysis of air refrigeration systems indicated that air cycles are generally less satisfactory than simple heat exchangers unless high component efficiencies and high values of heat-exchanger effectiveness can be obtained. A system employing a mercury-vapor cycle appears to be feasible for refrigerating air that must enter the system at temperature levels of approximately 1500 degrees R, and this cycle is more efficient than the air cycle. Weight of the systems was not considered. The analysis of the systems is presented in a generalized dimensionless form.

  8. One-Component Pressure-Temperature Phase Diagrams in the Presence of Air

    ERIC Educational Resources Information Center

    Andrade-Gamboa, Julio; Martire, Daniel O.; Donati, Edgardo R.

    2010-01-01

    One-component phase diagrams are good approximations to predict pressure-temperature ("P-T") behavior of a substance in the presence of air, provided air pressure is not much higher than the vapor pressure. However, at any air pressure, and from the conceptual point of view, the use of a traditional "P-T" phase diagram is not strictly correct. In…

  9. Comparison of Air Temperature Calibrations

    NASA Astrophysics Data System (ADS)

    Heinonen, M.; Anagnostou, M.; Bartolo, J.; Bell, S.; Benyon, R.; Bergerud, R. A.; Bojkovski, J.; Böse, N.; Dinu, C.; Smorgon, D.; Flakiewicz, K.; Martin, M. J.; Nedialkov, S.; Nielsen, M. B.; Oğuz Aytekin, S.; Otych, J.; Pedersen, M.; Rujan, M.; Testa, N.; Turzó-András, E.; Vilbaste, M.; White, M.

    2014-07-01

    European national metrology institutes use calibration systems of various types for calibrating thermometers in air. These were compared to each other for the first time in a project organized by the European Association of National Metrology Institutes (EURAMET). This EURAMET P1061 comparison project had two main objectives: (1) to study the equivalence of calibrations performed by different laboratories and (2) to investigate correlations between calibration methods and achievable uncertainties. The comparison was realized using a pair of 100 platinum resistance thermometer probes connected to a digital thermometer bridge as the transfer standard. The probes had different dimensions and surface properties. The measurements covered the temperature range between and , but each laboratory chose a subrange most relevant to its scope and performed measurements at five nominal temperature points covering the subrange. To enable comparison between the laboratories, comparison reference functions were determined using weighted least-squares fitting. Various effects related to variations in heat transfer conditions were demonstrated but clear correlations to specific characteristics of calibration system were not identified. Calibrations in air and liquid agreed typically within at and . Expanded uncertainties determined by the participants ranged from to and they were shown to be realistic in most cases.

  10. Effect of supplementation of water vapor to the environmental characteristics of the combustion of propane-air mixture

    NASA Astrophysics Data System (ADS)

    Larionov, V. M.; Mitrofanov, G. A.; Iovleva, O. V.

    2014-11-01

    To improve the efficiency of combustion of fuel gas and air can be used additive steam. The article presents the results of an experimental study of the influence of water vapor on the combustion of propane-butane mixture with air. Combustion mixture produced in a modified Bunsen burner. Studies carried change of steam temperature of 180 to 260 degrees Celsius, and the change of the specific volume steam in the composition of the fuel mixture. Influence steam on combustion was estimated by the change of temperature of heating the quartz tube. It has been established that the increase of the steam temperature and increasing the specific volume of the heated vapor in the composition of the gaseous fuel increases the temperature of combustion.

  11. Alumina Volatility in Water Vapor at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Myers, Dwight L.

    2003-01-01

    The volatility of alumina in high temperature water vapor was determined by a weight loss technique. Sapphire coupons were exposed at temperatures between 1250 and 1500 C, water partial pressures between 0.15 and 0.68 atm in oxygen, total pressure of 1 atm, and flowing gas velocities of 4.4 cm/s. The pressure dependence of sapphire volatility was consistent with AI(OH)3(g) formation. The enthalpy of reaction to form Al(OH)3(g) from sapphire and water vapor was determined to be 210 +/- 20 kJ/mol, comparing favorably to other studies. Microstructural examination of tested sapphire coupons revealed surface etching features consistent with a volatilization process.

  12. Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation

    NASA Astrophysics Data System (ADS)

    Tobin, David C.; Revercomb, Henry E.; Knuteson, Robert O.; Lesht, Barry M.; Strow, L. Larrabee; Hannon, Scott E.; Feltz, Wayne F.; Moy, Leslie A.; Fetzer, Eric J.; Cress, Ted S.

    2006-05-01

    The Atmospheric Infrared Sounder (AIRS) is the first of a new generation of advanced satellite-based atmospheric sounders with the capability of obtaining high-vertical resolution profiles of temperature and water vapor. The high-accuracy retrieval goals of AIRS (e.g., 1 K RMS in 1 km layers below 100 mbar for air temperature, 10% RMS in 2 km layers below 100 mbar for water vapor concentration), combined with the large temporal and spatial variability of the atmosphere and difficulties in making accurate measurements of the atmospheric state, necessitate careful and detailed validation using well-characterized ground-based sites. As part of ongoing AIRS Science Team efforts and a collaborative effort between the NASA Earth Observing System (EOS) project and the Department of Energy Atmospheric Radiation Measurement (ARM) program, data from various ARM and other observations are used to create best estimates of the atmospheric state at the Aqua overpass times. The resulting validation data set is an ensemble of temperature and water vapor profiles created from radiosondes launched at the approximate Aqua overpass times, interpolated to the exact overpass time using time continuous ground-based profiles, adjusted to account for spatial gradients within the Advanced Microwave Sounding Unit (AMSU) footprints, and supplemented with limited cloud observations. Estimates of the spectral surface infrared emissivity and local skin temperatures are also constructed. Relying on the developed ARM infrastructure and previous and ongoing characterization studies of the ARM measurements, the data set provides a good combination of statistics and accuracy which is essential for assessment of the advanced sounder products. Combined with the collocated AIRS observations, the products are being used to study observed minus calculated AIRS spectra, aimed at evaluation of the AIRS forward radiative transfer model, AIRS observed radiances, and temperature and water vapor profile

  13. Temperature and saturation dependence in the vapor sensing of butterfly wing scales.

    PubMed

    Kertész, K; Piszter, G; Jakab, E; Bálint, Zs; Vértesy, Z; Biró, L P

    2014-06-01

    The sensing of gasses/vapors in the ambient air is the focus of attention due to the need to monitor our everyday environment. Photonic crystals are sensing materials of the future because of their strong light-manipulating properties. Natural photonic structures are well-suited materials for testing detection principles because they are significantly cheaper than artificial photonic structures and are available in larger sizes. Additionally, natural photonic structures may provide new ideas for developing novel artificial photonic nanoarchitectures with improved properties. In the present paper, we discuss the effects arising from the sensor temperature and the vapor concentration in air during measurements with a photonic crystal-type optical gas sensor. Our results shed light on the sources of discrepancy between simulated and experimental sensing behaviors of photonic crystal-type structures. Through capillary condensation, the vapors will condensate to a liquid state inside the nanocavities. Due to the temperature and radius of curvature dependence of capillary condensation, the measured signals are affected by the sensor temperature as well as by the presence of a nanocavity size distribution. The sensing materials used are natural photonic nanoarchitectures present in the wing scales of blue butterflies. PMID:24863219

  14. Temperature and saturation dependence in the vapor sensing of butterfly wing scales.

    PubMed

    Kertész, K; Piszter, G; Jakab, E; Bálint, Zs; Vértesy, Z; Biró, L P

    2014-06-01

    The sensing of gasses/vapors in the ambient air is the focus of attention due to the need to monitor our everyday environment. Photonic crystals are sensing materials of the future because of their strong light-manipulating properties. Natural photonic structures are well-suited materials for testing detection principles because they are significantly cheaper than artificial photonic structures and are available in larger sizes. Additionally, natural photonic structures may provide new ideas for developing novel artificial photonic nanoarchitectures with improved properties. In the present paper, we discuss the effects arising from the sensor temperature and the vapor concentration in air during measurements with a photonic crystal-type optical gas sensor. Our results shed light on the sources of discrepancy between simulated and experimental sensing behaviors of photonic crystal-type structures. Through capillary condensation, the vapors will condensate to a liquid state inside the nanocavities. Due to the temperature and radius of curvature dependence of capillary condensation, the measured signals are affected by the sensor temperature as well as by the presence of a nanocavity size distribution. The sensing materials used are natural photonic nanoarchitectures present in the wing scales of blue butterflies.

  15. Microstructure and water vapor transport properties of temperature sensitive polyurethanes

    NASA Astrophysics Data System (ADS)

    Ding, Xuemei

    Temperature sensitive polyurethane (TS-PU) is one novel type of smart polymers. The water vapor permeability (WVP) of its membrane could undergo a significant increase as temperature increases within a predetermined temperature range. Such smart property enables this material to have a broad range of potential applications to textile industry, medicine, environmental fields and so on. However, based on the literature review, contradicting results were found on some TS-PUs. The aims of this project are to synthesize TS-PU with Tm in the broader temperature range including ambient temperature range, and then investigate systematically the relationships between microstructure and water vapor transport properties of TS-PU. For this purpose, in this project, a series of polyurethanes (PU) were synthesized using five different crystalline polyols with approximately similar molecule weight and three different hydrophilic contents, and dense membranes were prepared accordingly. The microstructure and properties of these PUs were investigated using DSC, WAXD, DMA, FTIR, GPC, POM, TEM, SEM and PALS. Their equilibrium water sorption and water vapor permeability were measured accordingly. Results show that crystal melting of these resulting PUs take place in the temperature range from -10--60°C as desired. Storage modulus (E') drops down quickly in the temperature range of crystal melting, suggesting a great transition in the predetermined temperature range. The decreased HSC as well as regular chemical structure of polyols results in the larger spherulites and higher melting end temperature, and the higher crystallinity induces the more obvious incompatibility of soft segment and hard segment in the PUs. These PUs are proved to have good enough tensile properties for textile application. The mean free volume size and fractional free volume increase more significantly in the temperature range of crystal melting than in other temperature intervals. Finally, as expected, the

  16. Rate of water equilibration in vapor-diffusion crystallization: dependence on the residual pressure of air in the vapor space.

    PubMed

    DeTitta, G T; Luft, J R

    1995-09-01

    The kinetics of water equilibration in vapor-diffusion crystallization experiments are sensitive to the residual pressure of air in the vapor chamber. Experiments with sitting droplets of 10%(w/v) PEG, allowed to equilibrate with reservoirs of 20%(w/v) PEG, were conducted at pressures ranging from 80 to 760 mm Hg. Equilibrations were interrupted after one, four, five and seven days to assess their progress. Even down to the lowest pressures examined it was found that a decrease in pressure leads to an increase in the rate of equilibration. The residual pressure of air in the vapor chamber can be varied to tailor the time course of equilibration in macromolecular crystal growth experiments.

  17. Sewer Gas: An Indoor Air Source of PCE to Consider During Vapor Intrusion Investigations

    PubMed Central

    Pennell, Kelly G.; Scammell, Madeleine Kangsen; McClean, Michael D.; Ames, Jennifer; Weldon, Brittany; Friguglietti, Leigh; Suuberg, Eric M.; Shen, Rui; Indeglia, Paul A.; Heiger-Bernays, Wendy J.

    2013-01-01

    The United States Environmental Protection Agency (USEPA) is finalizing its vapor intrusion guidelines. One of the important issues related to vapor intrusion is background concentrations of volatile organic chemicals (VOCs) in indoor air, typically attributed to consumer products and building materials. Background concentrations can exist even in the absence of vapor intrusion and are an important consideration when conducting site assessments. In addition, the development of accurate conceptual models that depict pathways for vapor entry into buildings is important during vapor intrusion site assessments. Sewer gas, either as a contributor to background concentrations or as part of the site conceptual model, is not routinely evaluated during vapor intrusion site assessments. The research described herein identifies an instance where vapors emanating directly from a sanitary sewer pipe within a residence were determined to be a source of tetrachloroethylene (PCE) detected in indoor air. Concentrations of PCE in the bathroom range from 2.1 to 190 ug/m3 and exceed typical indoor air concentrations by orders of magnitude resulting in human health risk classified as an “Imminent Hazard” condition. The results suggest that infiltration of sewer gas resulted in PCE concentrations in indoor air that were nearly two-orders of magnitude higher as compared to when infiltration of sewer gas was not known to be occurring. This previously understudied pathway whereby sewers serve as sources of PCE (and potentially other VOC) vapors is highlighted. Implications for vapor intrusion investigations are also discussed. PMID:23950637

  18. Temperature/pressure and water vapor sounding with microwave spectroscopy

    NASA Technical Reports Server (NTRS)

    Muhleman, D. O.; Janssen, M. A.; Clancy, R. T.; Gulkis, S.; Mccleese, D. J.; Zurek, R.; Haberle, R. M.; Frerking, M.

    1992-01-01

    Two intense microwave spectra lines exist in the martian atmosphere that allow unique sounding capabilities: water vapor at 183 GHz and the (2-1) rotational line of CO at 230 GHz. Microwave spectra line sounding is a well-developed technique for the Earth's atmosphere for sounding from above from spacecraft and airplanes, and from below from fixed surface sites. Two simple instruments for temperature sounding on Mars (the CO line) and water vapor measurements are described. The surface sounder proposed for the MESUR sites is designed to study the boundary layer water vapor distribution and the temperature/pressure profiles with vertical resolution of 0.25 km up to 1 km with reduced resolution above approaching a scale height. The water channel will be sensitive to a few tenths of a micrometer of water and the temperature profile will be retrieved to an accuracy between 1 and 2 K. The latter is routinely done on the Earth using oxygen lines near 60 GHz. The measurements are done with a single-channel heterodyne receiver looking into a 10-cm mirror that is canned through a range of elevation angles plus a target load. The frequency of the receiver is sweep across the water and CO lines generating the two spectra at about 1-hr intervals throughout the mission. The mass and power for the proposed instrument are 2 kg and 5-8 W continuously. The measurements are completely immune to the atmospheric dust and ice particle loads. It was felt that these measurements are the ultimate ones to properly study the martian boundary layer from the surface to a few kilometers. Sounding from above requires an orbiting spacecraft with multichannel microwave spectrometers such as the instrument proposed for MO by a subset of the authors, a putative MESUR orbiter, and a proposed Discovery mission called MOES. Such an instrument can be built with less than 10 kg and use less than 15 W. The obvious advantage of this approach is that the entire atmosphere can be sounded for temperature and

  19. Characterization of a Microhollow Cathode Discharge Plasma in Helium or Air with Water Vapor

    NASA Astrophysics Data System (ADS)

    Fukuhara, D.; Namba, S.; Kozue, K.; Yamasaki, T.; Takiyama, K.

    2013-02-01

    Microhollow cathode discharge (MHCD) plasmas were generated in gas mixtures containing water vapor at pressures of up to 100 kPa of He or 20 kPa of air. The cathode diameter was 1.0 mm with a length of 2.0 mm. The electrical characteristics showed an abnormal glow mode. Spectroscopic measurements were carried out to examine the plasma and radicals. An analysis of the spectral profile of Hα at 656.3 nm enabled a derivation of the electron densities, namely 2×1014 cm-3 (at 10 kPa) and 6×1014 cm-3 (at 4 kPa) for the helium and air atmospheres, respectively, in the negative glow region. By comparing the observed OH radical spectra with those calculated by the simulation code LIFBASE, the gas temperature was deduced to be 900 K for 4 kPa of He at a discharge current of 50 mA.

  20. The Temperature Dependent Enthalpy of Vaporization of Pure Substances

    NASA Astrophysics Data System (ADS)

    Tian, Jianxiang

    Recently the universal behavior of the temperature dependent enthalpy of vaporization along with the whole liquid-vapor coexistence curve at equilibrium is described and explained by Roman et al.5 The work (called RWVM relation) succeeds in the combination of the linear relation near the triple point and the renormalization group theory result near the critical point. For the convenience of chemical designs and engineering applications, we report its b values yielding the minimum average absolute deviation (AAD) for 74 pure substances from the NIST web-book and compare the results with other correlations. We find that with an adapted b value, the RWVM relation predicts the data of 47 pure substances with an AAD less than 0.0093, with six more than 0.02 and all less than 0.03 except quantum fluid hydrogen, that is clearly better than other correlations. For most pure substances, b covers the range from 0 to 1. Only one negative value stands for the quantum fluid helium because of its enthalpy of vaporization being experimentally not a monotonic function of the temperature in the range near the triple point.

  1. Low temperature photochemical vapor deposition of alloy and mixed metal oxide films

    DOEpatents

    Liu, D.K.

    1992-12-15

    Method and apparatus are described for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure. 7 figs.

  2. Low temperature photochemical vapor deposition of alloy and mixed metal oxide films

    DOEpatents

    Liu, David K.

    1992-01-01

    Method and apparatus for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure.

  3. Temperature-dependent absorption cross sections for hydrogen peroxide vapor

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Wine, P. H.

    1988-01-01

    Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.

  4. Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region

    NASA Technical Reports Server (NTRS)

    Grossmann, Benoist E.; Browell, Edward V.

    1989-01-01

    High-resolution spectroscopic measurements of H2O vapor in the 720-nm wavelength region were conducted to investigate the broadening and shifting of H2O lines by air, nitrogen, oxygen, and argon over a wide range of pressures and temperatures. For each of the buffer gases under study, a linear relationship was found between the widths and the shifts, with the broader lines having the smaller pressure shifts. The pressure shifts measured compared favorably with theoretical values reported by Bykov et al. (1988). The temperature-dependence exponents for air-broadening were found to be J-dependent, with the lower-J lines having the higher exponents.

  5. High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to

  6. Atmospheric Precipitable Water and its association with Surface Air Temperatures over Different Climate Regims

    NASA Astrophysics Data System (ADS)

    Ye, H.; Fetzer, E. J.; Olsene, E. T.; Granger, S. L.; Kahn, B. H.; Fishbein, E. F.; Chen, L.; Teixeira, J.; Lambrigtsen, B. H.

    2008-12-01

    As a greenhouse gas and a key component in the hydrologic cycle, atmospheric water vapor is very important in the earth's climate system. The relationship between air temperature and water vapor content at the surface and in different layers of the atmosphere have been examined in many studies in trying to better understand the magnitude of water vapor feedback in our climate system. Studies have found large spatial variability and large regional and vertical deviations from the Clapeyron-Clausius relation of constant relative humidity. However, there is an ongoing need to understand the climatology of the relationship between the surface air temperature and total column water vapor, and to examine any potential thresholds associated with sudden changes in this relationship as air temperatures continue to increase. This study uses 5-year total precipitable water vapor records measured by the Atmospheric Infrared Sounders (AIRS) and surface air temperature to examine their relationships at tropical to mid latitude conditions found at 60°S- 60°N for winter and summer seasons. In addition, the relationships will be examined for different climate regimes based on Koppen's system. This will help distinguish the geographical regions and physical processes where different relationships are found. This information will improve our understanding of the regional patterns of water vapor feedback associated with warming climate.

  7. ASSESSMENT OF VAPOR INTRUSION USING INDOOR AND SUB-SLAB AIR SAMPLING

    EPA Science Inventory

    The objective of this investigation was to develop a method for evaluating vapor intrusion using indoor and sub-slab air measurement and at the same time directly assist EPA’s New England Regional Office in evaluating vapor intrusion in 15 homes and one business near the former R...

  8. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James C. R.; Leijnse, Hidde; Steeneveld, Gert-Jan; Horn, Berthold K. P.; Uijlenhoet, Remko

    2014-05-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. It has been shown that a straightforward heat transfer model can be employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. The methodology has been applied to Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree

  9. High temperature vaporization and thermodynamics of scandium monophosphide

    SciTech Connect

    Franzen, H.F.; Hariharan, A.V.; Merrick, J.A.

    1980-03-01

    The high temperature vaporization of ScP was investigated by mass spectrometric and target-collection Knudsen effusion techniques in the temperature range 1767-2209/sup 0/K. ScP/sub 1-x/(0 less than or equal to x less than or equal to 0.04) vaporizes congruently to the gaseous species Sc, P, and P/sub 2/. The equilibrium partial pressure of Sc is given by: log P/sub Sc/(atm) = -(28,159 +- 321)/T + (8.10 +- 0.15). The second-law enthalpy and entropy for the atomization reaction, corrected to 298/sup 0/K, are: ..delta..H/sup 0/ = 258.0 +- 2.3 kcal mol/sup -1/, ..delta..S/sup 0/ = 73.4 +- 1.4 eu; and ..delta..H /sub f/,298//sup 0/(ScP(s)) = -87.9 +- 2.5 kcal mol/sup -1/, S/sup 0/(ScP(s)) = 7.3 +- 1.4 eu. A temperature independent third law enthalpy of atomization (..delta..H = 252.2 +- 2.8 kcal mol/sup -1/) and enthalpy of formation (..delta..H/sub f//sup 0/(ScP(s)) = -82.1 +- 3.0 kcal mol) were obtained.

  10. Interactions of Water Vapor with Oxides at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan; Opila, Elizabeth; Copland, Evan; Myers, Dwight

    2003-01-01

    Many volatile metal hydroxides form by reaction of the corresponding metal oxide with water vapor. These reactions are important in a number of high temperature corrosion processes. Experimental methods for studying the thermodynamics of metal hydroxides include: gas leak Knudsen cell mass spectrometry, free jet sampling mass spectrometry, transpiration and hydrogen-oxygen flame studies. The available experimental information is reviewed and the most stable metal hydroxide species are correlated with position in the periodic table. Current studies in our laboratory on the Si-O-H system are discussed.

  11. An alexandrite regenerative amplifier for water vapor and temperature measurements

    NASA Technical Reports Server (NTRS)

    Thro, P.-Y.; Boesenberg, J.; Wulfmeyer, V.

    1992-01-01

    The Differential Absorption Lidar (DIAL) technique is a powerful method for determining meteorological parameters, but it requires high quality of the laser source: high energy, very narrow bandwidth, high wavelength stability, and spectral purity. Although many efforts have been made to improve the lasers in view of these aspects, a satisfactory solution has not been demonstrated up to now. We describe a regenerative amplifier, using a Ti:sapphire laser as master oscillator and an alexandrite laser as slave amplifier, which is expected to meet the requirements for water vapor concentration and temperature measurements.

  12. Advances in Fast Response Acoustically Derived Air Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Bogoev, Ivan; Jacobsen, Larry; Horst, Thomas; Conrad, Benjamin

    2016-04-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity. The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  13. Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau.

    PubMed

    Fu, Rong; Hu, Yuanlong; Wright, Jonathon S; Jiang, Jonathan H; Dickinson, Robert E; Chen, Mingxuan; Filipiak, Mark; Read, William G; Waters, Joe W; Wu, Dong L

    2006-04-11

    During boreal summer, much of the water vapor and CO entering the global tropical stratosphere is transported over the Asian monsoon/Tibetan Plateau (TP) region. Studies have suggested that most of this transport is carried out either by tropical convection over the South Asian monsoon region or by extratropical convection over southern China. By using measurements from the newly available National Aeronautics and Space Administration Aura Microwave Limb Sounder, along with observations from the Aqua and Tropical Rainfall-Measuring Mission satellites, we establish that the TP provides the main pathway for cross-tropopause transport in this region. Tropospheric moist convection driven by elevated surface heating over the TP is deeper and detrains more water vapor, CO, and ice at the tropopause than over the monsoon area. Warmer tropopause temperatures and slower-falling, smaller cirrus cloud particles in less saturated ambient air at the tropopause also allow more water vapor to travel into the lower stratosphere over the TP, effectively short-circuiting the slower ascent of water vapor across the cold tropical tropopause over the monsoon area. Air that is high in water vapor and CO over the Asian monsoon/TP region enters the lower stratosphere primarily over the TP, and it is then transported toward the Asian monsoon area and disperses into the large-scale upward motion of the global stratospheric circulation. Thus, hydration of the global stratosphere could be especially sensitive to changes of convection over the TP.

  14. EFFECT OF FILTER TEMPERATURE ON TRAPPING ZINC VAPOR

    SciTech Connect

    Korinko, P.

    2011-03-25

    To address the {sup 65}Zn contamination issue in the TEF, a multi-task experimental program was initiated. The first experimental task was completed and is reported in Ref. 1. The results of the second experimental task are reported here. This task examined the effect of filter temperature on trapping efficiency and deposit morphology. Based on the first experimental tasks that examined filter pore size and trapping efficiency, stainless steel filter media with a 20 {micro}m pore size was selected. A series of experiments using these filters was conducted during this second task to determine the effect of filter temperature on zinc vapor trapping efficiency, adhesion and morphology. The tests were conducted with the filters heated to 60, 120, and 200 C; the zinc source material was heated to 400 C for all the experiments to provide a consistent zinc source. The samples were evaluated for mass change, deposit adhesion and morphology. As expected from the physical vapor deposition literature, a difference in deposit morphology and appearance was observed between the three filter temperatures. The filter held at 60 C had the largest average mass gain while the 120 and 200 C filters exhibited similar but lower weight gains. The standard deviations were large and suggest that all three temperatures exhibited comparable gains. No zinc was detected on the backside surface of the filters indicating high efficiency for front and internal trapping. A zinc rich deposit was formed on the surface of the 60 C filter. Based on a simple tape adhesion test, the surface zinc was readily removed from the 60 C filter while less zinc deposit was removed from the 120 and 200 C filter samples. It is surmised that the higher temperatures enable the zinc to deposit within the filter media rather than on the surface. Based on the findings that all three statistically trapped the same quantity of zinc vapor and that the higher temperatures resulted in a more adherent/better trapped product

  15. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    SciTech Connect

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  16. Comparison of Upper Tropospheric Water Vapor from AIRS and Cryogenic Frostpoint Hygrometers

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Vomel, Holger

    2004-01-01

    Upper tropospheric water vapor (UTWV) from the Atmospheric Infrared Sounder (AIRS) experiment on NASA's Aqua spacecraft has the potential of addressing several important climate questions. The specified AIRS system measurement uncertainty for water vapor is 20 percent absolute averaged over 2 km layers. Cryogenic frostpoint hygrometers (CFH) are balloon-borne water vapor sensors responsive from the surface into the lower stratosphere. Several dozen coincident, collocated CFH profiles have been obtained for AlRS validation. The combination of CFH sensitivity and sample size offers a statistically compelling picture of AIRS UTWV measurement capability. We present a comparison between CFH observations and AlRS retrievals. We focus on the altitude range from the middle troposphere up to heights at the limits of AlRS sensitivity to water vapor, believed to be around 100-1 50 hPa.

  17. Major Upgrades to the AIRS Version-6 Water Vapor Profile Methodology

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2015-01-01

    This research is a continuation of part of what was shown at the last AIRS Science Team Meeting and the AIRS 2015 NetMeeting. AIRS Version 6 was finalized in late 2012 and is now operational. Version 6 contained many significant improvements in retrieval methodology compared to Version 5. Version 6 retrieval methodology used for the water vapor profile q(p) and ozone profile O3(p) retrievals is basically unchanged from Version 5, or even from Version 4. Subsequent research has made significant improvements in both water vapor and O3 profiles compared to Version 6.

  18. Controlled-Temperature Hot-Air Gun

    NASA Technical Reports Server (NTRS)

    Munoz, M. C.

    1986-01-01

    Materials that find applications in wind tunnels first tested in laboratory. Hot-Air Gun differs from commercial units in that flow rate and temperature monitored and controlled. With typical compressed-airsupply pressure of 25 to 38 psi (170 to 260 kPa), flow rate and maximum temperature are 34 stdft3/min (0.96 stdm3/min) and 1,090 degrees F (590 degrees C), respectively. Resembling elaborate but carefully regulated hot-air gun, setup used to apply blasts of air temperatures above 1,500 degrees F (815 degrees C) to test specimens.

  19. The effect of air permeability and water vapor permeability of cleanroom clothing on physiological responses and wear comfort.

    PubMed

    Chen, Te-Hung; Chen, Wan-Ping; Wang, Mao-Jiun J

    2014-01-01

    The function of cleanroom clothing is to protect the product from contamination by people, and to dissipate electrostatic discharge. People in the cleanroom work environment often complain about the discomforts associated with the wearing of cleanroom clothing. The purpose of this study is to investigate the effect of air permeability and water vapor permeability of cleanroom clothing on the subject's physiological and subjective responses. Five male and five female subjects participated in this study. The experimental goal was to simulate the operator's regular tasks in a semiconductor manufacturing cleanroom. Each subject completed three treatment combinations with three different cleanroom clothing types. A three-factor experiment was designed (significance level p = 0.05). The independent variables included gender, cleanroom clothing, and duration. The dependent measures included heart rate, core temperature, skin temperature, micro-climate relative humidity, micro-climate temperature, and subjective responses. A total of 40 min was involved for each treatment condition. The results indicate that skin temperature, micro-climate temperature and micro-climate relative humidity were lower while wearing cleanroom clothing with high air permeability and high water vapor permeability. The significant gender difference was found in skin temperature. As the task time increased, the micro-climate temperature also increased but the micro-climate relative humidity decreased at first and then increased. In addition, the physiological responses showed significant positive correlations with the subjective perception of clothing comfort. The findings of this study may provide useful information for cleanroom clothing design and selection.

  20. Chemical vapor deposition modeling for high temperature materials

    NASA Technical Reports Server (NTRS)

    Goekoglu, Sueleyman

    1992-01-01

    The formalism for the accurate modeling of chemical vapor deposition (CVD) processes has matured based on the well established principles of transport phenomena and chemical kinetics in the gas phase and on surfaces. The utility and limitations of such models are discussed in practical applications for high temperature structural materials. Attention is drawn to the complexities and uncertainties in chemical kinetics. Traditional approaches based on only equilibrium thermochemistry and/or transport phenomena are defended as useful tools, within their validity, for engineering purposes. The role of modeling is discussed within the context of establishing the link between CVD process parameters and material microstructures/properties. It is argued that CVD modeling is an essential part of designing CVD equipment and controlling/optimizing CVD processes for the production and/or coating of high performance structural materials.

  1. Portable Cathode-Air Vapor-Feed Electrochemical Medical Oxygen Concentrator (OC)

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Ashwin

    2015-01-01

    Missions on the International Space Station and future space exploration will present significant challenges to crew health care capabilities, particularly in the efficient utilization of onboard oxygen resources. Exploration vehicles will require lightweight, compact, and portable oxygen concentrators that can provide medical-grade oxygen from the ambient cabin air. Current pressure-swing adsorption OCs are heavy and bulky, require significant start-up periods, operate in narrow temperature ranges, and require a liquid water feed. Lynntech, Inc., has developed an electrochemical OC that operates with a cathode-air vapor feed, eliminating the need for a bulky onboard water supply. Lynntech's OC is smaller and lighter than conventional pressure-swing OCs, is capable of instant start-up, and operates over a temperature range of 5-80 C. Accomplished through a unique nanocomposite proton exchange membrane and catalyst technology, the unit delivers 4 standard liters per minute of humidified oxygen at 60 percent concentration. The technology enables both ambient-pressure operating devices for portable applications and pressurized (up to 3,600 psi) OC devices for stationary applications.

  2. Design and performance of a trickling air biofilter for chlorobenzene and o-dichlorobenzene vapors.

    PubMed Central

    Oh, Y S; Bartha, R

    1994-01-01

    From contaminated industrial sludge, two stable multistrain microbial enrichments (consortia) that were capable of rapidly utilizing chlorobenzene and o-dichlorobenzene, respectively, were obtained. These consortia were characterized as to their species composition, tolerance range, and activity maxima in order to establish and maintain the required operational parameters during their use in biofilters for the removal of chlorobenzene contaminants from air. The consortia were immobilized on a porous perlite support packed into filter columns. Metered airstreams containing the contaminant vapors were partially humidified and passed through these columns. The vapor concentrations prior to and after biofiltration were measured by gas chromatography. Liquid was circulated concurrently with the air, and the device was operated in the trickling air biofilter mode. The experimental arrangement allowed the independent variation of liquid flow, airflow, and solvent vapor concentrations. Bench-scale trickling air biofilters removed monochlorobenzene, o-dichlorobenzene, and their mixtures at rates of up to 300 g of solvent vapor h(-1) m(-3) filter volume. High liquid recirculation rates and automated pH control were critical for stable filtration performance. When the accumulating NaCl was periodically diluted, the trickling air biofilters continued to remove chlorobenzenes for several months with no loss of activity. The demonstrated high performance and stability of the described trickling air biofilters favor their use in industrial-scale air pollution control. PMID:8085815

  3. Air separation with temperature and pressure swing

    DOEpatents

    Cassano, Anthony A.

    1986-01-01

    A chemical absorbent air separation process is set forth which uses a temperature swing absorption-desorption cycle in combination with a pressure swing wherein the pressure is elevated in the desorption stage of the process.

  4. Air Temperature in the Undulator Hall

    SciTech Connect

    Not Available

    2010-12-07

    Various analyses have been performed recently to estimate the performance of the air conditioning (HVAC) system planned for the Undulator Hall. This reports summarizes the results and provides an upgrade plan to be used if new requirements are needed in the future. The estimates predict that with the planned loads the tunnel air temperature will be well within the allowed tolerance during normal operation.

  5. A survey and new measurements of ice vapor pressure at temperatures between 170 and 250K

    NASA Technical Reports Server (NTRS)

    Marti, James; Mauersberger, Konrad

    1993-01-01

    New measurements of ice vapor pressures at temperatures between 170 and 250 K are presented and published vapor pressure data are summarized. An empirical vapor pressure equation was derived and allows prediction of vapor pressures between 170 k and the triple point of water with an accuracy of approximately 2 percent. Predictions obtained agree, within experimental uncertainty, with the most reliable equation derived from thermodynamic principles.

  6. The Relationship Between Surface Temperature Anomaly Time Series and those of OLR, Water Vapor, and Cloud Cover as Observed Using Nine Years of AIRS Version-5 Level-3 Products

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena

    2011-01-01

    Outline: (1) Comparison of AIRS and CERES anomaly time series of outgoing longwave radiation (OLR) and OLR(sub CLR), i.e. Clear Sky OLR (2) Explanation of recent decreases in global and tropical mean values of OLR (3) AIRS "Short-term" Longwave Cloud Radiative Feedback -- A new product

  7. Purple Crow Lidar Vibrational Raman water vapor mixing ratio and temperature measurements in the Upper Troposphere and Lower Stratosphere

    NASA Astrophysics Data System (ADS)

    Sica, R. J.; Argall, P. S.

    2006-12-01

    Purple Crow Lidar (PCL) measurements of the vibrational Raman-shifted backscatter from water vapor and nitrogen molecules allows height profiles of water vapor mixing ratio to be measured from 500 m to up into the lower stratosphere from the Delaware Observatory near London, Canada. In addition, the Raman nitrogen measurements allow the determination of temperature profiles from about 10 km to 40 km altitude. External calibration of these measurements is necessary to compensate for instrumental effects, uncertainties in our knowledge of the relevant molecular cross sections, and atmospheric transmission. A comparison of the PCL derived water vapor concentration and temperature profiles with routine radiosonde measurements from Detroit and Buffalo on 37 and 141 nights respectively, was undertaken to provide this calibration, which showed mean temperature differences over all flights for altitudes above 9 km of about 0.5 K, with agreement for water vapor below 7 km to within ±12%. Comparisons of the cold point temperature with the coincident water vapor measurements will be presented to investigate the transport of air from the tropics to midlatitudes.

  8. Vapor phase tri-methyl-indium seeding system suitable for high temperature spectroscopy and thermometry

    NASA Astrophysics Data System (ADS)

    Whiddon, R.; Zhou, B.; Borggren, J.; Aldén, M.; Li, Z. S.

    2015-09-01

    Tri-methyl-indium (TMI) is used as an indium transport molecule to introduce indium atoms to reactive hot gas flows/combustion environments for spectroscopic diagnostics. A seeding system was constructed to allow the addition of an inert TMI laden carrier gas into an air/fuel mixture burning consequently on a burner. The amount of the seeded TMI in the carrier gas can be readily varied by controlling the vapor pressure through the temperature of the container. The seeding process was calibrated using the fluorescent emission intensity from the indium 62S1/2 → 52P1/2 and 62S1/2 → 52P3/2 transitions as a function of the calculated TMI seeding concentration over a range of 2-45 ppm. The response was found to be linear over the range 3-22.5 ppm; at concentrations above 25 ppm there is a loss of linearity attributable to self-absorption or loss of saturation of TMI vapor pressure in the carrier gas flow. When TMI was introduced into a post-combustion environment via an inert carrier gas, molecular transition from InH and InOH radicals were observed in the flame emission spectrum. Combined laser-induced fluorescence and absorption spectroscopy were applied to detect indium atoms in the TMI seeded flame and the measured atomic indium concentration was found to be at the ppm level. This method of seeding organometallic vapor like TMI to a reactive gas flow demonstrates the feasibility for quantitative spectroscopic investigations that may be applicable in various fields, e.g., chemical vapor deposition applications or temperature measurement in flames with two-line atomic fluorescence.

  9. Vapor phase tri-methyl-indium seeding system suitable for high temperature spectroscopy and thermometry.

    PubMed

    Whiddon, R; Zhou, B; Borggren, J; Aldén, M; Li, Z S

    2015-09-01

    Tri-methyl-indium (TMI) is used as an indium transport molecule to introduce indium atoms to reactive hot gas flows/combustion environments for spectroscopic diagnostics. A seeding system was constructed to allow the addition of an inert TMI laden carrier gas into an air/fuel mixture burning consequently on a burner. The amount of the seeded TMI in the carrier gas can be readily varied by controlling the vapor pressure through the temperature of the container. The seeding process was calibrated using the fluorescent emission intensity from the indium 6(2)S1/2 → 5(2)P1/2 and 6(2)S1/2 → 5(2)P3/2 transitions as a function of the calculated TMI seeding concentration over a range of 2-45 ppm. The response was found to be linear over the range 3-22.5 ppm; at concentrations above 25 ppm there is a loss of linearity attributable to self-absorption or loss of saturation of TMI vapor pressure in the carrier gas flow. When TMI was introduced into a post-combustion environment via an inert carrier gas, molecular transition from InH and InOH radicals were observed in the flame emission spectrum. Combined laser-induced fluorescence and absorption spectroscopy were applied to detect indium atoms in the TMI seeded flame and the measured atomic indium concentration was found to be at the ppm level. This method of seeding organometallic vapor like TMI to a reactive gas flow demonstrates the feasibility for quantitative spectroscopic investigations that may be applicable in various fields, e.g., chemical vapor deposition applications or temperature measurement in flames with two-line atomic fluorescence. PMID:26429429

  10. Vapor phase tri-methyl-indium seeding system suitable for high temperature spectroscopy and thermometry

    SciTech Connect

    Whiddon, R.; Zhou, B.; Borggren, J.; Aldén, M.; Li, Z. S.

    2015-09-15

    Tri-methyl-indium (TMI) is used as an indium transport molecule to introduce indium atoms to reactive hot gas flows/combustion environments for spectroscopic diagnostics. A seeding system was constructed to allow the addition of an inert TMI laden carrier gas into an air/fuel mixture burning consequently on a burner. The amount of the seeded TMI in the carrier gas can be readily varied by controlling the vapor pressure through the temperature of the container. The seeding process was calibrated using the fluorescent emission intensity from the indium 6{sup 2}S{sub 1/2} → 5{sup 2}P{sub 1/2} and 6{sup 2}S{sub 1/2} → 5{sup 2}P{sub 3/2} transitions as a function of the calculated TMI seeding concentration over a range of 2–45 ppm. The response was found to be linear over the range 3–22.5 ppm; at concentrations above 25 ppm there is a loss of linearity attributable to self-absorption or loss of saturation of TMI vapor pressure in the carrier gas flow. When TMI was introduced into a post-combustion environment via an inert carrier gas, molecular transition from InH and InOH radicals were observed in the flame emission spectrum. Combined laser-induced fluorescence and absorption spectroscopy were applied to detect indium atoms in the TMI seeded flame and the measured atomic indium concentration was found to be at the ppm level. This method of seeding organometallic vapor like TMI to a reactive gas flow demonstrates the feasibility for quantitative spectroscopic investigations that may be applicable in various fields, e.g., chemical vapor deposition applications or temperature measurement in flames with two-line atomic fluorescence.

  11. The impact of temperature vertical structure on trajectory modeling of stratospheric water vapor

    NASA Astrophysics Data System (ADS)

    Wang, T.; Dessler, A. E.; Schoeberl, M. R.; Randel, W. J.; Kim, J.-E.

    2015-03-01

    Lagrangian trajectories driven by reanalysis meteorological fields are frequently used to study water vapor (H2O) in the stratosphere, in which the tropical cold-point temperatures regulate the amount of H2O entering the stratosphere. Therefore, the accuracy of temperatures in the tropical tropopause layer (TTL) is of great importance for understanding stratospheric H2O abundances. Currently, most reanalyses, such as the NASA MERRA (Modern Era Retrospective - analysis for Research and Applications), only provide temperatures with ~ 1.2 km vertical resolution in the TTL, which has been argued to miss finer vertical structure in the tropopause and therefore introduce uncertainties in our understanding of stratospheric H2O. In this paper, we quantify this uncertainty by comparing the Lagrangian trajectory prediction of H2O using MERRA temperatures on standard model levels (traj.MER-T) to those using GPS temperatures at finer vertical resolution (traj.GPS-T), and those using adjusted MERRA temperatures with finer vertical structures induced by waves (traj.MER-Twave). It turns out that by using temperatures with finer vertical structure in the tropopause, the trajectory model more realistically simulates the dehydration of air entering the stratosphere. But the effect on H2O abundances is relatively minor: compared with traj.MER-T, traj.GPS-T tends to dry air by ~ 0.1 ppmv, while traj.MER-Twave tends to dry air by 0.2-0.3 ppmv. Despite these differences in absolute values of predicted H2O and vertical dehydration patterns, there is virtually no difference in the interannual variability in different runs. Overall, we find that a tropopause temperature with finer vertical structure has limited impact on predicted stratospheric H2O.

  12. Effect of gravity waves on the tropopause temperature, height and water vapor in Tibet from COSMIC GPS Radio Occultation observations

    NASA Astrophysics Data System (ADS)

    Khan, Attaullah; Jin, Shuanggen

    2016-02-01

    The tropopause plays an important role in climate change, particularly in Tibet with complex topography and climate change system. In this paper, the temperature and height of the Cold Point Tropopause (CPT) in Tibet are obtained and investigated from COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) GPS Radio Occultation (RO) during June 2006-Feb 2014, which are compared with Lapse Rate Tropopause (LRT) from Atmospheric Infrared Sounder (AIRS/NASA). Furthermore, the impact of Gravity waves (GW) potential energy (Ep) on the CPT-Temperature, CPT-Height, and the variation of stratospheric water vapor with GW Ep variations are presented. Generally the coldest CPT temperature is in June-July-August (JJA) with -76.5 °C, resulting less water vapor into the stratosphere above the cold points. The temperature of the cold point increases up to -69 °C during the winter over the Tibetan Plateau (25-40°N, 70-100°E) that leads to increase in water vapor above the cold points (10 hPa). Mean vertical fluctuations of temperature are calculated as well as the mean gravity wave potential energy Ep for each month from June 2006 to Feb 2014. Monthly Ep is calculated at 5°×5° grids between 17 km and 24 km in altitude for the Tibetan Plateau. The Ep raises from 1.83 J/Kg to 3.4 J/Kg from summer to winter with mean Ep of 2.5 J/Kg for the year. The results show that the gravity waves affect the CPT temperature and water vapor concentration in the stratosphere. Water vapor, CPT temperature and gravity wave (Ep) have good correlation with each other above the cold points, and water vapor increases with increasing Ep.

  13. Nowcasting daily minimum air and grass temperature

    NASA Astrophysics Data System (ADS)

    Savage, M. J.

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient ( b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  14. Temperature admittance spectroscopy of boron doped chemical vapor deposition diamond

    NASA Astrophysics Data System (ADS)

    Zubkov, V. I.; Kucherova, O. V.; Bogdanov, S. A.; Zubkova, A. V.; Butler, J. E.; Ilyin, V. A.; Afanas'ev, A. V.; Vikharev, A. L.

    2015-10-01

    Precision admittance spectroscopy measurements over wide temperature and frequency ranges were carried out for chemical vapor deposition epitaxial diamond samples doped with various concentrations of boron. It was found that the experimentally detected boron activation energy in the samples decreased from 314 meV down to 101 meV with an increase of B/C ratio from 600 to 18000 ppm in the gas reactants. For the heavily doped samples, a transition from thermally activated valence band conduction to hopping within the impurity band (with apparent activation energy 20 meV) was detected at temperatures 120-150 K. Numerical simulation was used to estimate the impurity DOS broadening. Accurate determination of continuously altering activation energy, which takes place during the transformation of conduction mechanisms, was proposed by numerical differentiation of the Arrhenius plot. With increase of boron doping level the gradual decreasing of capture cross section from 3 × 10-13 down to 2 × 10-17 cm2 was noticed. Moreover, for the hopping conduction the capture cross section becomes 4 orders of magnitude less (˜2 × 10-20 cm2). At T > Troom in doped samples the birth of the second conductance peak was observed. We attribute it to a defect, related to the boron doping of the material.

  15. Temperature admittance spectroscopy of boron doped chemical vapor deposition diamond

    SciTech Connect

    Zubkov, V. I. Kucherova, O. V.; Zubkova, A. V.; Ilyin, V. A.; Afanas'ev, A. V.; Bogdanov, S. A.; Vikharev, A. L.; Butler, J. E.

    2015-10-14

    Precision admittance spectroscopy measurements over wide temperature and frequency ranges were carried out for chemical vapor deposition epitaxial diamond samples doped with various concentrations of boron. It was found that the experimentally detected boron activation energy in the samples decreased from 314 meV down to 101 meV with an increase of B/C ratio from 600 to 18000 ppm in the gas reactants. For the heavily doped samples, a transition from thermally activated valence band conduction to hopping within the impurity band (with apparent activation energy 20 meV) was detected at temperatures 120–150 K. Numerical simulation was used to estimate the impurity DOS broadening. Accurate determination of continuously altering activation energy, which takes place during the transformation of conduction mechanisms, was proposed by numerical differentiation of the Arrhenius plot. With increase of boron doping level the gradual decreasing of capture cross section from 3 × 10{sup −13} down to 2 × 10{sup −17} cm{sup 2} was noticed. Moreover, for the hopping conduction the capture cross section becomes 4 orders of magnitude less (∼2 × 10{sup −20} cm{sup 2}). At T > T{sub room} in doped samples the birth of the second conductance peak was observed. We attribute it to a defect, related to the boron doping of the material.

  16. Air-Based Remediation Workshop - Section 2 Soil Vapor Extraction

    EPA Science Inventory

    Pursuant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sties," the USEPA Office of International Affairs Organized a Forced Air Remediation Workshop in Taipei to deliver expert training to the Environ...

  17. Alumina Volatility in Water Vapor at Elevated Temperatures: Application to Combustion Environments

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Myers, Dwight L.

    2003-01-01

    The volatility of alumina in high temperature water vapor was determined by measuring weight loss of sapphire coupons at temperatures between 1250 and 1500 C, water vapor partial pressures between 0.15 and 0.68 atm in oxygen, at one atmosphere total pressure, and a gas velocity of 4.4 centimeters per second. The variation of the volatility with water vapor partial pressure was consistent with Al(OH)3(g) formation. The enthalpy of reaction to form Al(OH)3(g) from alumina and water vapor was found to be 210 plus or minus 20 kJ/mol. Surface rearrangement of ground sapphire surfaces increased with water vapor partial pressure, temperature and volatility rate. Recession rates of alumina due to volatility were determined as a function of water vapor partial pressure and temperature to evaluate limits for use of alumina in long term applications in combustion environments.

  18. Impact of Air Filter Material on Metal Oxide Semiconductor (MOS) Device Characteristics in HF Vapor Environment

    NASA Astrophysics Data System (ADS)

    Hsiao, Chih-Wen; Lou, Jen-Chung; Yeh, Ching-Fa; Hsieh, Chih-Ming; Lin, Shiuan-Jeng; Kusumi, Toshio

    2004-05-01

    Airborne molecular contamination (AMC) is becoming increasingly important as devices are scaled down to the nanometer generation. Optimum ultra low penetration air (ULPA) filter technology can eliminate AMC. In a cleanroom, however, the acid vapor generated from the cleaning process may degrade the ULPA filter, releasing AMC to the air and the surface of wafers, degrading the electrical characteristics of devices. This work proposes the new PTFE ULPA filter, which is resistant to acid vapor corrosion, to solve this problem. Experimental results demonstrate that the PTFE ULPA filter can effectively eliminate the AMC and provide a very clean cleanroom environment.

  19. Dependence of the isobaric specific heat capacity of water vapor on the pressure and temperature

    NASA Astrophysics Data System (ADS)

    Vestfálová, Magda; Šafařík, Pavel

    2016-03-01

    The fundamental base for the calculation of the thermodynamic properties of substances is the thermal equation of state and the dependence of some of the basic specific heat capacities on temperature. Dependence of isobaric specific heat capacity on the pressure can already be deduced from these relations. International standards of the properties of water and steam are based on the new scientific formulation IAPWS-95. The equation is in the form of Helmholtz dimensionless function with very much parameters. The aim of this paper is to design the simple dependence of the isobaric specific heat capacity of water vapor on the pressure and temperature in the range in which the steam occurs in the atmospheric moist air.

  20. Modeling monthly mean air temperature for Brazil

    NASA Astrophysics Data System (ADS)

    Alvares, Clayton Alcarde; Stape, José Luiz; Sentelhas, Paulo Cesar; de Moraes Gonçalves, José Leonardo

    2013-08-01

    Air temperature is one of the main weather variables influencing agriculture around the world. Its availability, however, is a concern, mainly in Brazil where the weather stations are more concentrated on the coastal regions of the country. Therefore, the present study had as an objective to develop models for estimating monthly and annual mean air temperature for the Brazilian territory using multiple regression and geographic information system techniques. Temperature data from 2,400 stations distributed across the Brazilian territory were used, 1,800 to develop the equations and 600 for validating them, as well as their geographical coordinates and altitude as independent variables for the models. A total of 39 models were developed, relating the dependent variables maximum, mean, and minimum air temperatures (monthly and annual) to the independent variables latitude, longitude, altitude, and their combinations. All regression models were statistically significant ( α ≤ 0.01). The monthly and annual temperature models presented determination coefficients between 0.54 and 0.96. We obtained an overall spatial correlation higher than 0.9 between the models proposed and the 16 major models already published for some Brazilian regions, considering a total of 3.67 × 108 pixels evaluated. Our national temperature models are recommended to predict air temperature in all Brazilian territories.

  1. Undulator Hall Air Temperature Fault Scenarios

    SciTech Connect

    Sevilla, J.; Welch, J.; /SLAC

    2010-11-17

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  2. Retrieval of temperature and water vapor from combined satellite and ground based ultra-spectral measurements

    NASA Astrophysics Data System (ADS)

    Jian, Yongxiao

    Ultra-spectrometers with a spectral resolution better than 1 cm-1, such as AIRS on the AQUA, IASI on the Metop-A/B, and CrIS on the Suomi-NPP, have become operational during the past decade. The radiance spectra measured by these satellite-borne spectrometers provide soundings of the atmosphere with relatively high vertical resolution and high accuracy except for the lower atmosphere. Meanwhile, many ground-based ultra-spectrometers based on the Michelson Interferometer have been incorporated into the Department of Energy Atmospheric Radiation Measurement facilities and aboard NOAA research vessels. These instruments provide temperature and water vapor soundings within the planetary boundary layer continuously with very high vertical resolution. This dissertation develops a retrieval procedure which can combine the radiance measured by ground-based spectrometers and coincident observation from satellite-borne instruments to improve retrieval results throughout the lower atmosphere. To verify the feasibility and improved accuracy of the combined retrieval, 90 clear sky cases from four in-situ radiosonde measurement locations or geographical regions, were selected for this study. Each region consists of radiosonde measurements of temperature and water vapor, downwelling radiance spectra measured at approximately the balloon launch time, and upwelling radiance observation by IASI at the location and time coincident with the surface radiance and radiosonde measurements. These cases indicate, that when compared with the retrieval from upwelling radiance or downwelling radiance spectra only, there is a significant improvement of the retrieval using combined upwelling and downwelling radiance spectra is observed. At altitude below the 800 hPa pressure level, the errors using the combined retrieval are about 0.5 -- 1 K in temperature, and 20 -- 40 % for water vapor mixing ratio. These errors are approximately one-third the magnitude of errors for the sounding retrieval

  3. FIELD TEST OF AIR SPARGING COUPLED WITH SOIL VAPOR EXTRACTION

    EPA Science Inventory

    A controlled field study was designed and conducted to assess the performance of air sparging for remediation of petroleum fuel and solvent contamination in a shallow (3-m deep) groundwater aquifer. Sparging was performed in an insolation test cell (5 m by 3 m by 8-m deep). A soi...

  4. A high temperature, plasma-assisted chemical vapor deposition system

    SciTech Connect

    Brusasco, R.M.; Britten, J.A.; Thorsness, C.B.; Scrivener, M.S.; Unites, W.G.; Campbell, J.H. ); Johnson, W.L. )

    1990-02-01

    We have designed and built a high-temperature, plasma-assisted, chemical vapor deposition system to deposit multilayer optical coatings of SiO{sub 2} and doped-SiO{sub 2} flat substrates. The coater concept and design is an outgrowth of our recent work with Schott Glasswerke demonstrating the use of plasma assisted CVD to prepare very high damage threshold optical coatings. The coater is designed to deposit up to several thousand alternating quarterwave layers of SiO{sub 2} and doped SiO{sub 2} substrate at deposition rates up to several microns per minute. The substrate is resistively heated to about 1000{degree}C during the deposition phase of the process. The plasma is driven by a 13.56 MHz RF unit capable of producing power densities of up to 140 W cm{sup {minus}3} in the reaction zone. The coater is designed to be adaptable to microwave generated plasmas, as well as RF. Reactant gas flow rates of up to 10 slm can be achieved at a 10 tar operating pressure. Reactants consist of O{sub 2}, SiCl{sub 4} and a volatile halogenated dopant. These gases react in the plasma volume producing SiO{sub 2} with dopant concentrations of up to a few percent. A variable dopant concentration is used to produce index differences between adjacent optical layers.

  5. DEVELOPMENT OF AN AIR-TO-LEAF VAPOR PHASE TRANSFER FACTOR FOR DIOXINS AND FURANS

    EPA Science Inventory

    Results of an experiment in which grass was grown in a greenhouse and outdoors, and in soils of different concentration levels of dioxins and furans, were used in a modeling exercise to derive an air-to-leaf vapor phase transfer factor. The purpose of the experiment was to under...

  6. 46 CFR 154.1710 - Exclusion of air from cargo tank vapor spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Exclusion of air from cargo tank vapor spaces. 154.1710 Section 154.1710 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... is loaded by maintaining a positive pressure of at least 13.8 kPa gauge (2 psig) by: (1)...

  7. 46 CFR 154.1710 - Exclusion of air from cargo tank vapor spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Exclusion of air from cargo tank vapor spaces. 154.1710 Section 154.1710 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Special Design...

  8. THE ROLE OF AQUEOUS THIN FILM EVAPORATIVE COOLING ON RATES OF ELEMENTAL MERCURY AIR-WATER EXCHANGE UNDER TEMPERATURE DISEQUILIBRIUM CONDITIONS

    EPA Science Inventory

    The technical conununity has only recently addressed the role of atmospheric temperature variations on rates of air-water vapor phase toxicant exchange. The technical literature has documented that: 1) day time rates of elemental mercury vapor phase air-water exchange can exceed ...

  9. Radiative Vaporization of Graphite in the Temperature Range of 4000 to 4500 deg K

    NASA Technical Reports Server (NTRS)

    Lundell, John H.; Dickey, Robert R.

    1976-01-01

    The vaporization of graphite under intense laser radiation is considered both theoretically and experimentally. Under intense radiation, the mass-loss rate can be high enough to cause the flow in the laser plume to be supersonic. Under these conditions, the vaporization process is coupled to the plume gasdynamics. Experimental results are presented for surface temperatures of 3985 to 4555 K and mass-loss rates from 0.52 to 27.0 g/sq cm sec. The data are used to determine the vapor pressure of graphite in a range of 2 to 11 atm, and the results are shown to be in good agreement with the JANAF vapor pressure curve, if the vaporization coefficients are unity. The assumption of unity vaporization coefficients is shown to be reasonable by a comparison of the present results with other recent vapor pressure results for graphite.

  10. On the relationship between water vapor over the oceans and sea surface temperature

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.

    1990-01-01

    Monthly mean precipitable water data obtained from passive microwave radiometry were correlated with the National Meteorological Center (NMC) blended sea surface temperature data. It is shown that the monthly mean water vapor content of the atmosphere above the oceans can generally be prescribed from the sea surface temperature with a standard deviation of 0.36 g/sq cm. The form of the relationship between precipitable water and sea surface temperature in the range T (sub s) greater than 18 C also resembles that predicted from simple arguments based on the Clausius-Clapeyron relationship. The annual cycle of the globally integrated mass of Scanning Multichannel Microwave Radiometer (SMMR) water vapor is shown to differ from analyses of other water vapor data in both phase and amplitude and these differences point to a significant influence of the continents on water vapor. Regional scale analyses of water vapor demonstrate that monthly averaged water vapor data, when contrasted with the bulk sea surface temperature relationship developed in this study, reflect various known characteristics of the time mean large-scale circulation over the oceans. A water vapor parameter is introduced to highlight the effects of large-scale motion on atmospheric water vapor. Based on the magnitude of this parameter, it is shown that the effects of large-scale flow on precipitable water vapor are regionally dependent, but for the most part, the influence of circulation is generally less than about + or - 20 percent of the seasonal mean.

  11. On the relationship between water vapor over the oceans and sea surface temperature

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.

    1989-01-01

    Monthly mean precipitable water data obtained from passive microwave radiometry were correlated with the National Meteorological Center (NMC) blended sea surface temperature data. It is shown that the monthly mean water vapor content of the atmosphere above the oceans can generally be prescribed from the sea surface temperature with a standard deviation of 0.36 g/sq cm. The form of the relationship between precipitable water and sea surface temperature in the range T(sub s) greater than 18 C also resembles that predicted from simple arguments based on the Clausius-Clapeyron relationship. The annual cycle of the globally integrated mass of Scanning Multichannel Microwave Radiometer (SMMR) water vapor is shown to differ from analyses of other water vapor data in both phase and amplitude and these differences point to a significant influence of the continents on water vapor. Regional scale analyses of water vapor demonstrate that monthly averaged water vapor data, when contrasted with the bulk sea surface temperature relationship developed in this study, reflect various known characteristics of the time mean large-scale circulation over the oceans. A water vapor parameter is introduced to highlight the effects of large-scale motion on atmospheric water vapor. Based on the magnitude of this parameter, it is shown that the effects of large-scale flow on precipitable water vapor are regionally dependent, but for the most part, the influence of circulation is generally less than about + or - 20 percent of the seasonal mean.

  12. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  13. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  14. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  15. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  16. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  17. A smart sensor system for trace organic vapor detection using a temperature-controlled array of surface acoustic wave vapor sensors, automated preconcentrator tubes, and pattern recognition

    SciTech Connect

    Grate, J.W.; Rose-Pehrsson, S.L.; Klusty, M.; Wohltjen, H.

    1993-05-01

    A smart sensor system for the detection, of toxic organophosphorus and toxic organosulfur vapors at trace concentrations has been designed, fabricated, and tested against a wide variety of vapor challenges. The key features of the system are: An array of four surface acoustic wave (SAW) vapor sensors, temperature control of the vapor sensors, the use of pattern recognition to analyze the sensor data, and an automated sampling system including thermally-desorbed preconcentrator tubes (PCTs).

  18. Spatial Correlations of Anomalies of Tropospheric Temperature and Water Vapor, Cloud Cover, and OLR with the El Nino Index

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Iredell, Lena; Lee, Jae N.

    2014-01-01

    In this presentation, we will show AIRS Version-6 area weighted anomaly time series over the time period September 2002 through August 2014 of atmospheric temperature and water vapor profiles as a function of height. These anomaly time series show very different behaviors in the stratosphere and in the troposphere. Tropical mean stratospheric temperature anomaly time series are very strongly influenced by the Quasi-Biennial Oscillation (QBO) with large anomalies that propagate downward from 1 mb to 100 mb with a period of about two years. AIRS stratospheric temperature anomalies are in good agreement with those obtained by MLS over a common period. Tropical mean tropospheric temperature profile anomalies appear to be totally disconnected from those of the stratosphere and closely follow El Nino La Nina activity.

  19. Tracer study of oxygen and hydrogen uptake by Mg alloys in air with water vapor

    DOE PAGES

    Brady, M. P.; Fayek, M.; Meyer, H. M.; Leonard, D. N.; Elsentriecy, H. H.; Unocic, K. A.; Anovitz, L. M.; Cakmak, E.; Keiser, J. R.; Song, G. L.; et al

    2015-05-15

    We studied the pure oxidation of Mg, Mg–3Al–1Zn (AZ31B), and Mg–1Zn–0.25Zr–<0.5Nd (ZE10A) at 85 °C in humid air using sequential exposures with H218O and D216O for water vapor. Incorporation of 18O in the hydroxide/oxide films indicated that oxygen from water vapor participated in the reaction. Moreover, penetration of hydrogen into the underlying metal was observed, particularly for the Zr- and Nd-containing ZE10A. Isotopic tracer profiles suggested a complex mixed inward/outward film growth mechanism.

  20. A High Temperature Vapor Phase Lubrication Study Utilizing a Thioether Liquid Lubricant

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo; Graham, E. Earl; Galvin, Thomas

    1997-01-01

    Much of the experimental work on vapor phase lubrication has employed certain organo phosphorous compounds as the vapor phase lubricant. Graham and Klaus, for instance, used tricresyl phosphate (TCP) and tributyl phosphate to vapor phase lubricate a four-ball wear tester using M50 steel balls at 370 C. Makki and Graham were able to vapor phase lubricate a reciprocating pin on plate tribometer using 1018 steel at 280 C with TCP vapor. Although a few organo phosphorous compounds, such as TCP, have been successfully used as vapor phase lubricants in many laboratory experiments, many problems remain unsolved. Two areas of concern relate to the 'durability' of phosphate deposited films and to the ability of the lubricating system to "self-recover" when vapor phase lubricated with an organo phosphorous compound. Durability refers to the ability of the deposited film to provide effective lubrication, for a period of time, after the vapor flow to the lubricating surfaces has been interrupted. Vapor phase lubrication tests, conducted at Cleveland State University with their high temperature tribometer, revealed that when TCP vapor flow to the lubricating surfaces was interrupted the frictional coefficient of the system rapidly increased from a value less than 0.1 to a value of 0.3 which was selected as our failure point. Self-recovery means the ability of the vapor phase lubricant to reduce the frictional coefficient of the lubricating system back down to value less than 0.1 after startup of the interrupted vapor flow. Lubrication tests conducted at Cleveland State University revealed that the high temperature tribometer could not self-recover after startup of the interrupted TCP vapor flow.

  1. A Two-Line Absorption Instrument for Scramjet Temperature and Water Vapor Concentration Measurement in HYPULSE

    NASA Technical Reports Server (NTRS)

    Tsai, C. Y.

    1998-01-01

    A three beam water vapor sensor system has been modified to provide for near simultaneous temperature measurement. The system employs a tunable diode laser to scan spectral line of water vapor. The application to measurements in a scramjet combustor environment of a shock tunnel facility is discussed. This report presents and discusses die initial calibration of the measurement system.

  2. Quasi-dynamical analysis and real-time tissue temperature monitoring during laser vaporization

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Ray, Aditi; Jebens, Dave; Chia, Ray; Hasenberg, Tom

    2014-03-01

    Vaporization and coagulation are two fundamental processes that can be performed during laser-tissue ablation. We demonstrated a method allowing quasi-dynamically observing of the cross-sectional images of tissue response during ablation. The results showed that coagulation depth is relatively constant during vaporization, which supports the excellent hemostasis of green laser benign prostate hyperplasia (BPH) treatment. We also verified a new technology for real-time, in situ tissue temperature monitoring, which may be promising for in vivo tissue vaporization degree feedback during laser ablation to improve the vaporization efficiency and avoid complications.

  3. Data Assimilation of AIRS Water Vapor Profiles: Impact on Precipitation Forecasts for Atmospheric River Cases Affecting the Western of the United States

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay; Zavodsky, Bradley; Jedlovec, Gary; Wick, Gary; Neiman, Paul

    2013-01-01

    Atmospheric rivers are transient, narrow regions in the atmosphere responsible for the transport of large amounts of water vapor. These phenomena can have a large impact on precipitation. In particular, they can be responsible for intense rain events on the western coast of North America during the winter season. This paper focuses on attempts to improve forecasts of heavy precipitation events in the Western US due to atmospheric rivers. Profiles of water vapor derived from from Atmospheric Infrared Sounder (AIRS) observations are combined with GFS forecasts by a three-dimensional variational data assimilation in the Gridpoint Statistical Interpolation (GSI). Weather Research and Forecasting (WRF) forecasts initialized from the combined field are compared to forecasts initialized from the GFS forecast only for 3 test cases in the winter of 2011. Results will be presented showing the impact of the AIRS profile data on water vapor and temperature fields, and on the resultant precipitation forecasts.

  4. Enhanced water vapor separation by temperature-controlled aligned-multiwalled carbon nanotube membranes

    NASA Astrophysics Data System (ADS)

    Jeon, Wonjae; Yun, Jongju; Khan, Fakhre Alam; Baik, Seunghyun

    2015-08-01

    Here we present a new strategy of selectively rejecting water vapor while allowing fast transport of dry gases using temperature-controlled aligned-multiwalled carbon nanotubes (aligned-MWNTs). The mechanism is based on the water vapor condensation at the entry region of nanotubes followed by removing aggregated water droplets at the tip of the superhydrophobic aligned-MWNTs. The first condensation step could be dramatically enhanced by decreasing the nanotube temperature. The permeate-side relative humidity was as low as ~17% and the helium-water vapor separation factor was as high as 4.62 when a helium-water vapor mixture with a relative humidity of 100% was supplied to the aligned-MWNTs. The flow through the interstitial space of the aligned-MWNTs allowed the permeability of single dry gases an order of magnitude higher than the Knudsen prediction regardless of membrane temperature. The water vapor separation performance of hydrophobic polytetrafluoroethylene membranes could also be significantly enhanced at low temperatures. This work combines the membrane-based separation technology with temperature control to enhance water vapor separation performance.Here we present a new strategy of selectively rejecting water vapor while allowing fast transport of dry gases using temperature-controlled aligned-multiwalled carbon nanotubes (aligned-MWNTs). The mechanism is based on the water vapor condensation at the entry region of nanotubes followed by removing aggregated water droplets at the tip of the superhydrophobic aligned-MWNTs. The first condensation step could be dramatically enhanced by decreasing the nanotube temperature. The permeate-side relative humidity was as low as ~17% and the helium-water vapor separation factor was as high as 4.62 when a helium-water vapor mixture with a relative humidity of 100% was supplied to the aligned-MWNTs. The flow through the interstitial space of the aligned-MWNTs allowed the permeability of single dry gases an order of

  5. Using advanced oxidation treatment for biofilm inactivation by varying water vapor content in air plasma

    NASA Astrophysics Data System (ADS)

    Ryota, Suganuma; Koichi, Yasuoka

    2015-09-01

    Biofilms are caused by environmental degradation in food factories and medical facilities. The inactivation of biofilms involves making them react with chemicals including chlorine, hydrogen peroxide, and ozone, although inactivation using chemicals has a potential problem because of the hazardous properties of the residual substance and hydrogen peroxide, which have slow reaction velocity. We successfully performed an advanced oxidation process (AOP) using air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were generated by varying the amount of water vapor supplied to the plasma. By varying the content of the water included in the air, the main product was changed from air plasma. When we increased the water content in the air, hydrogen peroxide was produced, while ozone peroxide was produced when we decreased the water content in the air. By varying the amount of water vapor, we realized a 99.9% reduction in the amount of bacteria in the biofilm when we discharged humidified air only. This work was supported by JSPS KAKENHI Grant Number 25630104.

  6. An Atmospheric Tape Recorder: The Imprint of Tropical Tropopause Temperatures on Stratospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Mote, Philip W.; Rosenlof, Karen H.; McIntyre, Michael E.; Carr, Ewan S.; Gille, John C.; Holton, James R.; Kinnersley, Jonathan S.; Pumphrey, Hugh C.; Russell, James M., III; Waters, Joe W.

    1996-01-01

    We describe observations of tropical stratospheric water vapor q that show clear evidence of large-scale upward advection of the signal from annual fluctuations in the effective 'entry mixing ratio' q(sub E) of air entering the tropical stratosphere. In other words, air is 'marked,' on emergence above the highest cloud tops, like a signal recorded on an upward moving magnetic tape. We define q(sub E) as the mean water vapor mixing ratio, at the tropical tropopause, of air that will subsequently rise and enter the stratospheric 'overworld' at about 400 K. The observations show a systematic phase lag, increasing with altitude, between the annual cycle in q(sub E) and the annual cycle in q at higher altitudes. The observed phase lag agrees with the phase lag calculated assuming advection by the transformed Eulerian-mean vertical velocity of a q(sub E) crudely estimated from 100-hPa temperatures, which we use as a convenient proxy for tropopause temperatures. The phase agreement confirms the overall robustness of the calculation and strongly supports the tape recorder hypothesis. Establishing a quantitative link between q(sub E) and observed tropopause temperatures, however, proves difficult because the process of marking the tape depends subtly on both small- and large-scale processes. The tape speed, or large-scale upward advection speed, has a substantial annual variation and a smaller variation due to the quasi-biennial oscillation, which delays or accelerates the arrival of the signal by a month or two in the middle stratosphere. As the tape moves upward, the signal is attenuated with an e-folding time of about 7 to 9 months between 100 and 50 hPa and about 15 to 18 months between 50 and 20 hPa, constraining possible orders of magnitude both of vertical diffusion K(sub z) and of rates of mixing in from the extratropics. For instance, if there were no mixing in, then K(sub z) would be in the range 0.03-0.09 m(exp 2)/s; this is an upper bound on K(sub z).

  7. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes

    SciTech Connect

    Cummings, James; Withers, Charles; Martin, Eric; Moyer, Neil

    2012-10-01

    This report is a revision of an earlier report titled: Measure Guideline: Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes. Revisions include: Information in the text box on page 1 was revised to reflect the most accurate information regarding classifications as referenced in the 2012 International Residential Code. “Measure Guideline” was dropped from the title of the report. An addition was made to the reference list.

  8. Simulation of the effect of water-vapor increase on temperature in the stratosphere

    NASA Astrophysics Data System (ADS)

    Bi, Yun; Chen, Yuejuan; Zhou, Renjun; Yi, Mingjian; Deng, Shumei

    2011-07-01

    To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional, interactive chemical dynamical radiative model (SOCRATES) of NCAR. The results indicate that increases in stratospheric water vapor lead to stratospheric cooling, with the extent of cooling increasing with height, and that cooling in the middle stratosphere is stronger in Arctic regions. Analysis of the radiation process showed that infrared radiative cooling by water vapor is a pivotal factor in middle-lower stratospheric cooling. However, in the upper stratosphere (above 45 km), infrared radiation is not a factor in cooling; there, cooling is caused by the decreased solar radiative heating rate resulting from ozone decrease due to increased stratospheric water vapor. Dynamical cooling is important in the middle-upper stratosphere, and dynamical feedback to temperature change is more distinct in the Northern Hemisphere middle-high latitudes than in other regions and significantly affects temperature and ozone in winter over Arctic regions. Increasing stratospheric water vapor will strengthen ozone depletion through the chemical process. However, ozone will increase in the middle stratosphere. The change in ozone due to increasing water vapor has an important effect on the stratospheric temperature change.

  9. A simple method to incorporate water vapor absorption in the 15 microns remote temperature sounding

    NASA Technical Reports Server (NTRS)

    Dallu, G.; Prabhakara, C.; Conhath, B. J.

    1975-01-01

    The water vapor absorption in the 15 micron CO2 band, which can affect the remotely sensed temperatures near the surface, are estimated with the help of an empirical method. This method is based on the differential absorption properties of the water vapor in the 11-13 micron window region and does not require a detailed knowledge of the water vapor profile. With this approach Nimbus 4 IRIS radiance measurements are inverted to obtain temperature profiles. These calculated profiles agree with radiosonde data within about 2 C.

  10. A new ozone standard - The vapor pressure of ozone at liquid argon temperatures

    NASA Technical Reports Server (NTRS)

    Mauersberger, K.; Hanson, D.; Morton, J.

    1985-01-01

    The vapor pressure of ozone has been measured at liquid argon temperatures. At the normal boiling point of argon (-185.9 C) an ozone pressure of 0.0405 torr was obtained with an accuracy of + or - 1.5 percent. Increases and decreases in liquid argon temperatures raised and lowered the ozone vapor pressure, respectively. During the vapor pressure measurements the purity of ozone was monitored with a mass spectrometer. The proposed ozone standard will considerably improve the calibration of experiments for atmospheric research, the determination of absorption cross sections and other laboratory ozone studies.

  11. Regional Comparison and Study of Water Vapor as Measured by AIRS and GPS, Using ECMWF Surface Parameters

    NASA Astrophysics Data System (ADS)

    Moore, A. W.; Granger, S. L.; Fishbein, E. F.; Fetzer, E. J.; Owen, S. E.; Webb, F. H.; Fielding, E. J.

    2008-12-01

    We compare tropospheric precipitable water vapor (PWV) measurements from the Atmospheric InfraRed Sounder (AIRS) satellite instrument to those from ground Global Positioning System (GPS) stations on a regional basis, with a mind toward mitigation of atmospheric effects in regional Interferometric Synthetic Aperture Radar (InSAR) studies. AIRS offers superior vertical atmospheric profiles from twice daily passes, whereas GPS-derived PWV estimates are available at high temporal resolution, typically 5 minute intervals. These complementary qualities suggest potential synergistic use in InSAR correction products. Computing GPS PWV from the Zenith Wet Delay (ZWD) estimated in Precise Point Positioning (PPP) analysis requires concurrently measured surface pressure and temperature at the GPS station. We turn to the European Center for Medium-Range Weather Forecasting (ECMWF) model for surface pressure estimates, since dense regional GPS networks do not always feature meteorological equipment co-located with the GPS stations. ECMWF pressures are given at a stated elevation that in the presence of orography may significantly differ from the elevation of a GPS station within the ECMWF grid square; we therefore account for this elevation difference in calculating a GPS station pressure based on the ECMWF surface pressure. We will present results of such regional studies, including the correlation between GPS and AIRS PWV estimates, biases, and dependence on the amount of water vapor in the atmosphere and other parameters. In one study in Southern California, we find the difference between AIRS and GPS PWV estimates calculated with corrected ECMWF pressures is independent of elevation. GPS PWV estimates are slightly drier than AIRS estimates in the relatively dry southern California atmosphere in winter and spring, consistent with previous continental-scale studies.

  12. Cellulose (delta)18O is an index of leaf-to-air vapor pressure difference (VPD) in tropical plants.

    PubMed

    Kahmen, Ansgar; Sachse, Dirk; Arndt, Stefan K; Tu, Kevin P; Farrington, Heraldo; Vitousek, Peter M; Dawson, Todd E

    2011-02-01

    Cellulose in plants contains oxygen that derives in most cases from precipitation. Because the stable oxygen isotope composition, δ(18)O, of precipitation is associated with environmental conditions, cellulose δ(18)O should be as well. However, plant physiological models using δ(18)O suggest that cellulose δ(18)O is influenced by a complex mix of both climatic and physiological drivers. This influence complicates the interpretation of cellulose δ(18)O values in a paleo-context. Here, we combined empirical data analyses with mechanistic model simulations to i) quantify the impacts that the primary climatic drivers humidity (e(a)) and air temperature (T(air)) have on cellulose δ(18)O values in different tropical ecosystems and ii) determine which environmental signal is dominating cellulose δ(18)O values. Our results revealed that e(a) and T(air) equally influence cellulose δ(18)O values and that distinguishing which of these factors dominates the δ(18)O values of cellulose cannot be accomplished in the absence of additional environmental information. However, the individual impacts of e(a) and T(air) on the δ(18)O values of cellulose can be integrated into a single index of plant-experienced atmospheric vapor demand: the leaf-to-air vapor pressure difference (VPD). We found a robust relationship between VPD and cellulose δ(18)O values in both empirical and modeled data in all ecosystems that we investigated. Our analysis revealed therefore that δ(18)O values in plant cellulose can be used as a proxy for VPD in tropical ecosystems. As VPD is an essential variable that determines the biogeochemical dynamics of ecosystems, our study has applications in ecological-, climate-, or forensic-sciences.

  13. Steady-state response of a charcoal bed to radon in flowing air with water vapor

    SciTech Connect

    Blue, T.E.; Jarzemba, M.S.; Fentiman, A.W.

    1995-06-01

    Previously we have developed a mathematical model of radon adsorption in active air with water vapor on small U.S. Environmental Protection Agency charcoal canisters that are used for environmental measurements of radon. The purpose of this paper is to extend this mathematical model to describe the adsorption of radon by large charcoal beds with radon-laden air flowing through them. The resulting model equations are solved analytically to predict the steady-state adsorption of radon by such beds. 14 refs., 3 figs.

  14. High Temperature Corrosion of Silicon Carbide and Silicon Nitride in Water Vapor

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Robinson, Raymond C.; Cuy, Michael D.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Silicon carbide (SiC) and silicon nitride (Si3N4) are proposed for applications in high temperature combustion environments containing water vapor. Both SiC and Si3N4 react with water vapor to form a silica (SiO2) scale. It is therefore important to understand the durability of SiC, Si3N4 and SiO2 in water vapor. Thermogravimetric analyses, furnace exposures and burner rig results were obtained for these materials in water vapor at temperatures between 1100 and 1450 C and water vapor partial pressures ranging from 0.1 to 3.1 atm. First, the oxidation of SiC and Si3N4 in water vapor is considered. The parabolic kinetic rate law, rate dependence on water vapor partial pressure, and oxidation mechanism are discussed. Second, the volatilization of silica to form Si(OH)4(g) is examined. Mass spectrometric results, the linear kinetic rate law and a volatilization model based on diffusion through a gas boundary layer are discussed. Finally, the combined oxidation and volatilization reactions, which occur when SiC or Si3N4 are exposed in a water vapor-containing environment, are presented. Both experimental evidence and a model for the paralinear kinetic rate law are shown for these simultaneous oxidation and volatilization reactions.

  15. A novel membrane device for the removal of water vapor and water droplets from air

    NASA Technical Reports Server (NTRS)

    Ray, Rod; Newbold, David D.; Mccray, Scott B.; Friesen, Dwayne T.; Kliss, Mark

    1992-01-01

    One of the key challenges facing NASA engineers is the development of systems for separating liquids and gases in microgravity environments. In this paper, a novel membrane-based phase separator is described. This device, known as a water recovery heat exchanger (WRHEX), overcomes the inherent deficiencies of current phase-separation technology. Specifically, the WRHEX cools and removes water vapor or water droplets from feed-air streams without the use of a vacuum or centrifugal force. As is shown in this paper, only a low-power air blower and a small stream of recirculated cool water is required for WRHEX operation. This paper presents the results of tests using this novel membrane device over a wide range of operating conditions. The data show that the WRHEX produces a dry air stream containing no entrained or liquid water - even when the feed air contains water droplets or mist. An analysis of the operation of the WRHEX is presented.

  16. Trends in Surface Temperature from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Aumann, H. H.

    2014-12-01

    To address possible causes of the current hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We find a monotonic positive trend for the land temperature but not for the ocean temperature. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The results are compared with the model studies. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  17. Nucleation and droplet growth from supersaturated vapor at temperatures below the triple point temperature

    NASA Astrophysics Data System (ADS)

    Toxvaerd, Søren

    2016-04-01

    In 1897 Ostwald formulated his step rule for formation of the most stable crystal state for a system with crystal polymorphism. The rule describes the irreversible way a system converts to the crystal with lowest free energy. But in fact the irreversible way a supercooled gas below the triple point temperature Ttr.p. crystallizes via a liquid droplet is an example of Ostwald's step rule. The homogeneous nucleation in the supersaturated gas is not to a crystal, but to a liquid-like critical nucleus. We have for the first time performed constant energy (NVE) Molecular Dynamics (MD) of homogeneous nucleation without the use of a thermostat. The simulations of homogeneous nucleation in a Lennard-Jones system from supersaturated vapor at temperatures below Ttr.p. reveal that the nucleation to a liquid-like critical nucleus is initiated by a small cold cluster [S. Toxvaerd, J. Chem. Phys. 143, 154705 (2015)]. The release of latent heat at the subsequent droplet growth increases the temperature in the liquid-like droplet, which for not deep supercooling and/or low supersaturation, can exceed Ttr.p.. The temperature of the liquid-like droplet increases less for a low supersaturation and remains below Ttr.p., but without a crystallization of the droplet for long times. The dissipation of the latent heat into the surrounding gas is affected by a traditional MD thermostat, with the consequence that droplet growth is different for (NVE) MD and constant temperature (NVT) MD.

  18. Determination of vapor pressure-temperature relationships of current-use pesticides and transformation products.

    PubMed

    Goel, Anubha; McConnell, Laura L; Torrents, Alba

    2007-05-01

    Sub-cooled liquid vapor pressures (P(L)(0)) of current-use organochlorine and organophosphate pesticides (chlorothalonil, chlorpyrifos methyl, diazinon, fipronil) and selected transformation products (chlorpyrifos oxon, heptachlor epoxide, oxychlordane, 3,5,6-trichloro-2-pyridinol) were determined at multiple temperatures using the gas chromatography retention time technique. Results were utilized to determine vapor pressure-temperature relationships and to calculate enthalpies of vaporization (DeltaH(vap)). While results for chlorothalonil and diazinon were comparable with published values, the measured value for fipronil (1.82 x 10(-6) Pa) is almost an order of magnitude higher than the reported literature value (3.7 x 10(-7) Pa). The availability of vapor pressure temperature relationships for these chemicals will aid in pesticide risk assessment development and improve the effectiveness of mitigation and remediation efforts.

  19. Advanced fuel hydrocarbon remediation national test location. Demonstration of hot air vapor extraction for fuel hydrocarbon cleanup

    SciTech Connect

    Heath, J.; Lory, E.

    1997-03-01

    Hot air vapor extration (HAVE) is a fast track, innovative environmental cleanup technolgy that uses a combination of thermal, heap pile, and vapor extraction techniques to remove and destroy hydrocarbon contamination in soil. This technology is very effective in cleaning soils contaminated with gasoline, diesel, heavy oil, and polycyclic aromatic hydrocarbons (PAH).

  20. Vaporization of graphite in the temperature range of 4000 to 4500 K

    NASA Technical Reports Server (NTRS)

    Lundell, J. H.; Dickey, R. R.

    1976-01-01

    The vaporization of graphite under intense laser radiation is considered both theoretically and experimentally. Under intense radiation, the mass-loss rate can be high enough to cause the flow in the laser plume to be supersonic. It is shown that under these conditions the vaporization process is coupled to the plume gasdynamics and the mass-loss rate for graphite is 62% of the free vaporization rate. Experimental results are presented for surface temperatures from 3985 to 4555 K and mass-loss rates from 0.56 to 27.0 g per sq cm sec. The results are used to determine the vapor pressure of graphite in a pressure range of 2 to 11 atm, and the values are shown to be in agreement with the JANAF vapor pressure curve.

  1. Is Air Temperature Enough to Predict Lake Surface Temperature?

    NASA Astrophysics Data System (ADS)

    Piccolroaz, S.; Toffolon, M.; Majone, B.

    2014-12-01

    Lake surface water (LST) is a key factor that controls most of the physical and ecological processes occurring in lakes. Reliable estimates are especially important in the light of recent studies, which revealed that inland water bodies are highly sensitive to climate, and are rapidly warming throughout the world. However, an accurate estimation of LST usually requires a significant amount of information that is not always available. In this work, we present an application of air2water, a lumped model that simulates LST as a function of air temperature only. In addition, air2water allows for a qualitative evaluation of the depth of the epilimnion during the annual stratification cycle. The model consists in a simplification of the complete heat budget of the well-mixed surface layer, and has a few parameters (from 4 to 8 depending on the version) that summarize the role of the different heat flux components. Model calibration requires only air and water temperature data, possibly covering sufficiently long historical periods in order to capture inter-annual variability and long-term trends. During the calibration procedure, the information included in input data is retrieved to directly inform model parameters, which can be used to classify the thermal behavior of the lake. In order to investigate how thermal dynamics are related to morphological features, the model has been applied to 14 temperate lakes characterized by different morphological and hydrological conditions, by different sources of temperature data (buoys, satellite), and by variable frequency of acquisition. A good agreement between observed and simulated LST has been achieved, with a RMSE in the order of 1°C, which is fully comparable to the performances of more complex process-based models. This application allowed for a deeper understanding of the thermal response of lakes as a function of their morphology, as well as for specific analyses as for example the investigation of the exceptional

  2. Carbon monoxide and water vapor contamination of compressed breathing air for firefighters and divers.

    PubMed

    Austin, C C; Ecobichon, D J; Dussault, G; Tirado, C

    1997-12-12

    Compressed breathing air, used in self-contained breathing apparatus (SCBA) by firefighters and other categories of workers as well as by recreational and commercial divers, is prepared with the aid of high-pressure compressors operating in the range of 5000 psig. There have been reports of unexplained deaths of SCUBA divers and anecdotal accounts of decreased time to exhaustion in firefighters using SCBAs. Compressed breathing air has been found to contain elevated levels of carbon monoxide (CO) and water vapor that are consistent with carboxyhemoglobin (COHb) poisoning and freezing of the user's regulator on the breathing apparatus. The Coburn-Forster-Kane equation (CFK equation) was used to estimate COHb levels at rest and at maximum exercise when exposed to different levels of CO in contaminated breathing air. The results demonstrated that, at maximum exercise, the COHb ranged from 6.0 to 17% with the use of 1 to 4 SCBA cylinders contaminated by 250 ppm CO. Standard operating procedures have been developed at the Montreal Fire Department to minimize the risk of compressed breathing air contamination. Results of the quality analysis/quality control program indicate that implementation of these procedures has improved the quality of the compressed breathing air. Recommendations are made for improvement of the air testing procedures mandated by the Canadian CAN3 180.1-M85 Standard on Compressed Breathing Air and Systems.

  3. Combined air stripper/membrane vapor separation systems. [Volatile organic compounds

    SciTech Connect

    Wijmans, J.G.; Baker, R.W.; Kamaruddin, H.D.; Kaschemekat, J.; Olsen, R.P.; Rose, M.E.; Segelke, S.V.

    1992-11-01

    Air stripping is an economical and efficient method of removing dissolved volatile organic compounds (VOCs) from contaminated groundwater. Air strippers, however, produce a vent air stream, which must meet the local air quality limits. If the VOC content exceeds the limits, direct discharge is not possible; therefore, a carbon adsorption VOC capture system is used to treat the vent air. This treatment step adds a cost of at least $50/lb of VOC captured. In this program, a combined air stripper/membrane vapor separation system was constructed and demonstrated in the laboratory. The membrane system captures VOCs from the stripper vent stream at a projected cost of $15/lb VOC for a water VOC content of 5 ppmw, and $75/lb VOC for a water VOC content of 1 ppmw. The VOCs are recovered as a small, concentrated liquid fraction for disposal or solvent recycling. The concept has been demonstrated in experiments with a system capable of handling up to 150,000 gpd of water. The existing demonstration system is available for field tests at a DOE facility or remediation site. Replacement of the current short air stripping tower (effective height 3 m) with a taller tower is recommended to improve VOC removal.

  4. Historical Air Temperatures Across the Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Kagawa-Viviani, A.; Giambelluca, T. W.

    2015-12-01

    This study focuses on an analysis of daily temperature from over 290 ground-based stations across the Hawaiian Islands from 1905-2015. Data from multiple stations were used to model environmental lapse rates by fitting linear regressions of mean daily Tmax and Tmin on altitude; piecewise regressions were also used to model the discontinuity introduced by the trade wind inversion near 2150m. Resulting time series of both model coefficients and lapse rates indicate increasing air temperatures near sea level (Tmax: 0.09°C·decade-1 and Tmin: 0.23°C·decade-1 over the most recent 65 years). Evaluation of lapse rates during this period suggest Tmax lapse rates (~0.6°C·100m-1) are decreasing by 0.006°C·100m-1decade-1 due to rapid high elevation warming while Tmin lapse rates (~0.8°C·100m-1) are increasing by 0.002°C·100m-1decade-1 due to the stronger increase in Tmin at sea level versus at high elevation. Over the 110 year period, temperatures tend to vary coherently with the PDO index. Our analysis verifies warming trends and temperature variability identified earlier by analysis of selected index stations. This method also provides temperature time series we propose are more robust to station inhomogeneities.

  5. UO2 surface oxidation by mixtures of water vapor and hydrogen as a function of temperature

    NASA Astrophysics Data System (ADS)

    Espriu-Gascon, A.; Llorca, J.; Domínguez, M.; Giménez, J.; Casas, I.; de Pablo, J.

    2015-12-01

    In the present work, X-Ray Photoelectron Spectroscopy (XPS) was used to study the effect of water vapor on the UO2 surface as a function of temperature. The experiments were performed in situ inside a high pressure chamber attached to the XPS instrument. UO2 samples were put in contact with either hydrogen or argon streams, saturated with water at room temperature, and the sample surface evolution was analyzed by XPS. In the case of the water vapor/argon experiments, one experiment at 350 °C was performed and, in the case of the water vapor/hydrogen experiments, the temperatures used inside the reactor were 60, 120, 200 and 350 °C. On one hand, in presence of argon, the results obtained showed that the water vapor in the argon stream oxidized 93% of the U(IV) in the sample surface. On the other hand, the degree of UO2 surface oxidation showed a different dependence on the temperature in the experiments performed in the presence of hydrogen: the maximum surface oxidation occurred at 120 °C, where 65.4% of U(IV) in the sample surface was oxidized, while at higher temperatures, the surface oxidation decreased. This observation is attributed to the increase of hydrogen reducing effect when temperature increases which prevents part of the oxidation of the UO2 surface by the water vapor.

  6. Temperature and water vapor pressure effects on the friction coefficient of hydrogenated diamondlike carbon films.

    SciTech Connect

    Dickrell, P. L.; Sawyer, W. G.; Eryilmaz, O. L.; Erdemir, A.; Energy Technology; Univ. of Florida

    2009-07-01

    Microtribological measurements of a hydrogenated diamondlike carbon film in controlled gaseous environments show that water vapor plays a significant role in the friction coefficient. These experiments reveal an initial high friction transient behavior that does not reoccur even after extended periods of exposure to low partial pressures of H{sub 2}O and O{sub 2}. Experiments varying both water vapor pressure and sample temperature show trends of a decreasing friction coefficient as a function of both the decreasing water vapor pressure and the increasing substrate temperature. Theses trends are examined with regard to first order gas-surface interactions. Model fits give activation energies on the order of 40 kJ/mol, which is consistent with water vapor desorption.

  7. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  8. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  9. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  10. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  11. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  12. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  13. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  14. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  15. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  16. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  17. Growth behavior of LiMn2O4 particles formed by solid-state reactions in air and water vapor

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Yanagisawa, Kazumichi; Murakami, Takeshi; Naito, Makio

    2016-11-01

    Morphology control of particles formed during conventional solid-state reactions without any additives is a challenging task. Here, we propose a new strategy to control the morphology of LiMn2O4 particles based on water vapor-induced growth of particles during solid-state reactions. We have investigated the synthesis and microstructural evolution of LiMn2O4 particles in air and water vapor atmospheres as model reactions; LiMn2O4 is used as a low-cost cathode material for lithium-ion batteries. By using spherical MnCO3 precursor impregnated with LiOH, LiMn2O4 spheres with a hollow structure were obtained in air, while angulated particles with micrometer sizes were formed in water vapor. The pore structure of the particles synthesized in water vapor was found to be affected at temperatures below 700 °C. We also show that the solid-state reaction in water vapor is a simple and valuable method for the large-scale production of particles, where the shape, size, and microstructure can be controlled.

  18. Tracer study of oxygen and hydrogen uptake by Mg alloys in air with water vapor

    SciTech Connect

    Brady, M. P.; Fayek, M.; Meyer, H. M.; Leonard, D. N.; Elsentriecy, H. H.; Unocic, K. A.; Anovitz, L. M.; Cakmak, E.; Keiser, J. R.; Song, G. L.; Davis, B.

    2015-05-15

    We studied the pure oxidation of Mg, Mg–3Al–1Zn (AZ31B), and Mg–1Zn–0.25Zr–<0.5Nd (ZE10A) at 85 °C in humid air using sequential exposures with H218O and D216O for water vapor. Incorporation of 18O in the hydroxide/oxide films indicated that oxygen from water vapor participated in the reaction. Moreover, penetration of hydrogen into the underlying metal was observed, particularly for the Zr- and Nd-containing ZE10A. Isotopic tracer profiles suggested a complex mixed inward/outward film growth mechanism.

  19. Vapor pressure of ionic liquids at low temperatures from AC-chip-calorimetry.

    PubMed

    Ahrenberg, Mathias; Beck, Martin; Neise, Christin; Keßler, Olaf; Kragl, Udo; Verevkin, Sergey P; Schick, Christoph

    2016-08-01

    The very low vapor pressure of ionic liquids is challenging to measure. At elevated temperatures the liquids might start to decompose, and at relatively low temperatures the vapor pressure becomes too low to be measured by conventional methods. In this work we developed a highly sensitive method for mass loss determination at temperatures starting from 350 K. This technique is based on an alternating current calorimeter equipped with a chip sensor that consists of a free-standing SiNx-membrane (thickness <1 μm) and a measuring area with lateral dimensions of the order of 1 mm. A small droplet (diameter ca. 600 μm) of an ionic liquid is vaporized isothermally from the chip sensor in a vacuum-chamber. The surface-to-volume-ratio of such a droplet is large and the relative mass loss due to evaporation is therefore easy to monitor by the changing heat capacity (J K(-1)) of the remaining liquid. The vapor pressure is determined from the measured mass loss rates using the Langmuir equation. The method was successfully tested for the determination of the vapor pressure and the vaporization enthalpy of an archetypical ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][NTf2]). The data set created in this way in an extremely broad temperature range from 358 K to 780 K has allowed the estimation of the boiling temperature of [EMIm][NTf2]. The value (1120 ± 50) K should be considered as the first reliable boiling point of the archetypical ionic liquid obtained from experimental vapor pressures measured in the most possible close proximity to the normal boiling temperature. PMID:27425628

  20. A photothermal model of selective photothermolysis with dynamically changing vaporization temperature.

    PubMed

    Zhang, Ji Zhuang; Zhang, Xue Xue; Audette, Michel

    2011-09-01

    The theory of selective photothermolysis (SP) is used in many fields of laser surgery and medicine. As several parameters and a number of complicated photothermal interactions are involved in SP, numerical simulations have been providing an important and effective way in SP studies. However, with different photothermal models of SP, simulated results differ considerably. In addition, insufficient attention has been paid to tissue pressure variation during SP in these models, so that vessel rupture and other clinical phenomena cannot be explained. A novel photothermal model of SP was proposed using a Monte Carlo method to simulate the laser transport in the tissue, a heat transfer equation with dynamically changing vaporization temperature to calculate the temperature distribution, and the Arrhenius equation to predict the thermal damage. A factor of trapped vaporized tissue water k was introduced to describe the effects on tissue pressure, temperature, and other related parameters. It was shown that the simulation results are affected significantly by k. Temperature and thermal damage volume are almost identical, respectively, to those obtained with models with vaporization at 100°C and models without vaporization when k = 0 and 1, while thermal damage volume is close to that obtained with models of vaporization at 110°C and 130°C, respectively, when k = 0.022 and k = 0.18. To some extent, the current models without vaporization and models with vaporization at constant temperature can be regarded as special cases at specific situations of this new photothermal model of SP. In addition, more descriptive simulation results, such as temperature, thermal damage, and pressure, are accessible with this model, although the accuracy depends on the value of k, the estimation of which is planned as future work.

  1. Vapor pressure of ionic liquids at low temperatures from AC-chip-calorimetry.

    PubMed

    Ahrenberg, Mathias; Beck, Martin; Neise, Christin; Keßler, Olaf; Kragl, Udo; Verevkin, Sergey P; Schick, Christoph

    2016-08-01

    The very low vapor pressure of ionic liquids is challenging to measure. At elevated temperatures the liquids might start to decompose, and at relatively low temperatures the vapor pressure becomes too low to be measured by conventional methods. In this work we developed a highly sensitive method for mass loss determination at temperatures starting from 350 K. This technique is based on an alternating current calorimeter equipped with a chip sensor that consists of a free-standing SiNx-membrane (thickness <1 μm) and a measuring area with lateral dimensions of the order of 1 mm. A small droplet (diameter ca. 600 μm) of an ionic liquid is vaporized isothermally from the chip sensor in a vacuum-chamber. The surface-to-volume-ratio of such a droplet is large and the relative mass loss due to evaporation is therefore easy to monitor by the changing heat capacity (J K(-1)) of the remaining liquid. The vapor pressure is determined from the measured mass loss rates using the Langmuir equation. The method was successfully tested for the determination of the vapor pressure and the vaporization enthalpy of an archetypical ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][NTf2]). The data set created in this way in an extremely broad temperature range from 358 K to 780 K has allowed the estimation of the boiling temperature of [EMIm][NTf2]. The value (1120 ± 50) K should be considered as the first reliable boiling point of the archetypical ionic liquid obtained from experimental vapor pressures measured in the most possible close proximity to the normal boiling temperature.

  2. Temperature gradient effects on vapor diffusion in partially-saturated porous media

    SciTech Connect

    Webb, S.W.

    1999-07-01

    Vapor diffusion in porous media in the presence of its own liquid may be enhanced due to pore-scale processes, such as condensation and evaporation across isolated liquid islands. Webb and Ho (1997) developed one-and two-dimensional mechanistic pore-scale models of these processes in an ideal porous medium. For isothermal and isobaric boundary conditions with a concentration gradient, the vapor diffusion rate was significantly enhanced by these liquid island processes compared to a dry porous media. The influence of a temperature gradient on the enhanced vapor diffusion rate is considered in this paper. The two-dimensional pore network model which is used in the present study is shown. For partially-saturated conditions, a liquid island is introduced into the top center pore. Boundary conditions on the left and right sides of the model are specified to give the desired concentration and temperature gradients. Vapor condenses on one side of the liquid island and evaporates off the other side due to local vapor pressure lowering caused by the interface curvature, even without a temperature gradient. Rather than acting as an impediment to vapor diffusion, the liquid island actually enhances the vapor diffusion rate. The enhancement of the vapor diffusion rate can be significant depending on the liquid saturation. Vapor diffusion is enhanced by up to 40% for this single liquid island compared to a dry porous medium; enhancement factors of up to an order of magnitude have been calculated for other conditions by Webb and Ho (1997). The dominant effect on the enhancement factor is the concentration gradient; the influence of the temperature gradient is smaller. The significance of these results, which need to be confirmed by experiments, is that the dominant model of enhanced vapor diffusion (EVD) by Philip and deVries (1957) predicts that temperature gradients must exist for EVD to occur. If there is no temperature gradient, there is no enhancement. The present results

  3. High-precision diode-laser-based temperature measurement for air refractive index compensation

    SciTech Connect

    Hieta, Tuomas; Merimaa, Mikko; Vainio, Markku; Seppae, Jeremias; Lassila, Antti

    2011-11-01

    We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements, it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlen equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilizes direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well-matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially nonhomogeneous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using a 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement.

  4. Analysis of Fuel Vaporization, Fuel-Air Mixing, and Combustion in Integrated Mixer-Flame Holders

    NASA Technical Reports Server (NTRS)

    Deur, J. M.; Cline, M. C.

    2004-01-01

    Requirements to limit pollutant emissions from the gas turbine engines for the future High-Speed Civil Transport (HSCT) have led to consideration of various low-emission combustor concepts. One such concept is the Integrated Mixer-Flame Holder (IMFH). This report describes a series of IMFH analyses performed with KIVA-II, a multi-dimensional CFD code for problems involving sprays, turbulence, and combustion. To meet the needs of this study, KIVA-II's boundary condition and chemistry treatments are modified. The study itself examines the relationships between fuel vaporization, fuel-air mixing, and combustion. Parameters being considered include: mixer tube diameter, mixer tube length, mixer tube geometry (converging-diverging versus straight walls), air inlet velocity, air inlet swirl angle, secondary air injection (dilution holes), fuel injection velocity, fuel injection angle, number of fuel injection ports, fuel spray cone angle, and fuel droplet size. Cases are run with and without combustion to examine the variations in fuel-air mixing and potential for flashback due to the above parameters. The degree of fuel-air mixing is judged by comparing average, minimum, and maximum fuel/air ratios at the exit of the mixer tube, while flame stability is monitored by following the location of the flame front as the solution progresses from ignition to steady state. Results indicate that fuel-air mixing can be enhanced by a variety of means, the best being a combination of air inlet swirl and a converging-diverging mixer tube geometry. With the IMFH configuration utilized in the present study, flashback becomes more common as the mixer tube diameter is increased and is instigated by disturbances associated with the dilution hole flow.

  5. Deuterium excess reveals diurnal sources of water vapor in forest air.

    PubMed

    Lai, Chun-Ta; Ehleringer, James R

    2011-01-01

    An understanding of atmospheric water vapor content and its isotopic composition is important if we are to be able to model future water vapor dynamics and their potential feedback on future climate change. Here we present diurnal and vertical patterns of water isotope ratios in forest air (δ(2)H(v) and δ(18)O(v)) not observed previously. Water vapor observed at three heights over 3 consecutive days in a coniferous forest in the Pacific Northwest of the United States, shows a stratified nocturnal structure of δ(2)H(v) and δ(18)O(v), with the most positive values consistently observed above the canopy (60 m). Differences between 0.5 m and 60 m range between 2-6‰ for δ(18)O and 20-40‰ for δ(2)H at night. Using a box model, we simulated H(2)O isotope fluxes and showed that the low to high δ(2)H(v) and δ(18)O(v) profiles can be explained by the vapor flux associated with evaporation from the forest floor and canopy transpiration. We used d-excess as a diagnostic tracer to identify processes that contribute to the diurnal variation in atmospheric moisture. Values of d-excess derived from water vapor measurements showed a repeated diel pattern, with the lowest values occurring in the early morning and the highest values occurring at midday. The isotopic composition of rain water, collected during a light rain event in the first morning of our experiment, suggested that considerable below-cloud secondary evaporation occurred during the descent of raindrops. We conclude that atmospheric entrainment appears to drive the isotopic variation of water vapor in the early morning when the convective boundary layer rapidly develops, while evapotranspiration becomes more important in the mid-afternoon as a primary moisture source of water vapor in this forest. Our results demonstrate the interplay between the effects of vegetation and boundary layer mixing under the influence of rain evaporation, which has implications for larger-scale predictions of precipitation

  6. Deuterium excess reveals diurnal sources of water vapor in forest air.

    PubMed

    Lai, Chun-Ta; Ehleringer, James R

    2011-01-01

    An understanding of atmospheric water vapor content and its isotopic composition is important if we are to be able to model future water vapor dynamics and their potential feedback on future climate change. Here we present diurnal and vertical patterns of water isotope ratios in forest air (δ(2)H(v) and δ(18)O(v)) not observed previously. Water vapor observed at three heights over 3 consecutive days in a coniferous forest in the Pacific Northwest of the United States, shows a stratified nocturnal structure of δ(2)H(v) and δ(18)O(v), with the most positive values consistently observed above the canopy (60 m). Differences between 0.5 m and 60 m range between 2-6‰ for δ(18)O and 20-40‰ for δ(2)H at night. Using a box model, we simulated H(2)O isotope fluxes and showed that the low to high δ(2)H(v) and δ(18)O(v) profiles can be explained by the vapor flux associated with evaporation from the forest floor and canopy transpiration. We used d-excess as a diagnostic tracer to identify processes that contribute to the diurnal variation in atmospheric moisture. Values of d-excess derived from water vapor measurements showed a repeated diel pattern, with the lowest values occurring in the early morning and the highest values occurring at midday. The isotopic composition of rain water, collected during a light rain event in the first morning of our experiment, suggested that considerable below-cloud secondary evaporation occurred during the descent of raindrops. We conclude that atmospheric entrainment appears to drive the isotopic variation of water vapor in the early morning when the convective boundary layer rapidly develops, while evapotranspiration becomes more important in the mid-afternoon as a primary moisture source of water vapor in this forest. Our results demonstrate the interplay between the effects of vegetation and boundary layer mixing under the influence of rain evaporation, which has implications for larger-scale predictions of precipitation

  7. Using continuous measurements of near-surface atmospheric water vapor isotopes to document snow-air interactions

    NASA Astrophysics Data System (ADS)

    Steen-Larsen, Hans Christian; Masson-Delmotte, Valerie; Hirabayashi, Motohiro; Winkler, Renato; Satow, Kazuhide; Prie, Frederic; Bayou, Nicolas; Brun, Eric; Cuffey, Kurt; Dahl-Jensen, Dorthe; Dumont, Marie; Guillevic, Myriam; Kipfstuhl, Sepp; Landais, Amaelle; Popp, Trevor; Risi, Camille; Steffen, Konrad; Stenni, Barbara; Sveinbjornsdottir, Arny

    2014-05-01

    Water stable isotope data from Greenland ice cores provide key paleoclimatic information. However, post-depositional processes linked with snow metamorphism remain poorly documented. For this purpose, a monitoring of the isotopic composition δ18O and δD at several height levels (up to 13 meter) of near-surface water vapor, precipitation and snow in the first 0.5 cm from the surface has been conducted during three summers (2010-2012) at NEEM, NW Greenland. We observe a clear diurnal cycle in both the value and gradient of the isotopic composition of the water vapor above the snow surface. The diurnal amplitude in δD is found to be ~15‰. The diurnal isotopic composition follows the absolute humidity cycle. This indicates a large flux of vapor from the snow surface to the atmosphere during the daily warming and reverse flux during the daily cooling. The isotopic measurements of the flux of water vapor above the snow give new insights into the post depositional processes of the isotopic composition of the snow. During nine 1-5 days periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and near-surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated using the CROCUS snow model that 6 to 20% of the surface snow mass is exchanged with the atmosphere. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or deposition. Comparisons with atmospheric models show that day-to-day variations in near-surface vapor isotopic composition are driven by synoptic variations and changes in air mass trajectories and distillation histories. We suggest that, in-between precipitation events, changes in the surface snow isotopic composition are driven by these changes in near-surface vapor isotopic composition. This is consistent with an estimated 60% mass turnover of surface snow per day driven by snow

  8. Assessing the Temperature Dependence of Narrow-Band Raman Water Vapor Lidar Measurements: A Practical Approach

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Venable, Demetrius D.; Walker, Monique; Cardirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-01-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.

  9. Assessing the temperature dependence of narrow-band Raman water vapor lidar measurements: a practical approach.

    PubMed

    Whiteman, David N; Venable, Demetrius D; Walker, Monique; Cadirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-08-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author. PMID:23913054

  10. Assessing the temperature dependence of narrow-band Raman water vapor lidar measurements: a practical approach.

    PubMed

    Whiteman, David N; Venable, Demetrius D; Walker, Monique; Cadirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-08-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.

  11. Application of multiphase transport models to field remediation by air sparging and soil vapor extraction.

    PubMed

    Rahbeh, M E; Mohtar, R H

    2007-05-01

    The design and operation of air sparging and soil vapor extraction (AS/SVE) remediation systems remains in large an art due to the absence of reliable physically based models that can utilize the limited available field data. In this paper, a numerical model developed for the design and operation of air sparging and soil vapor extractions systems was used to simulate two field case studies. The first-order mass transfer kinetics were incorporated into the model to account for contaminant mass transfer between the water and air (stripping), NAPL and water (dissolution), NAPL and air (volatilization), and water and soil (sorption/desorption), the model also accounted for soil heterogeneity. Benzene, toluene, ethyl benzene and xylenes (BTEX) were the contaminants of concern in both case studies. In the second case study, the model was used to evaluate the effect of pulsed sparging on the removal rate of BTEX compounds. The pulsed sparging operation was approximated assuming uniform contaminant redistribution at the beginning of the shut-off period. The close comparison between the observed and simulated contaminant concentration in the aqueous phase showed that the approximation of the pulsed sparging operation yielded reasonable prediction of the removal process. Field heterogeneity was simulated using Monte Carlo analysis. The model predicted about 80-85% of the contaminant mass was removed by air-water mass transfer, which was similar to the average removal obtained by Monte Carlo analysis. The analysis of the removal/rebound cycles demonstrated that removal rate was controlled by the organic-aqueous distribution coefficient K(oc). Due to the lack of site-specific data, the aerobic first-order biodegradation coefficients (k(bio)) were obtained from a literature survey, therefore, uncertainty analysis of the k(bio) was conducted to evaluate the contribution of the aerobic biodegradation to total contaminant removal. Results of both case studies showed that

  12. Heats of vaporization of room temperature ionic liquids by tunable vacuum ultraviolet photoionization

    SciTech Connect

    Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; To, Albert; Koh, Christine; Strasser, Daniel; Kostko, Oleg; Leone, Stephen R.

    2009-11-25

    The heats of vaporization of the room temperature ionic liquids (RTILs) N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide, N-butyl-N-methylpyrrolidinium dicyanamide, and 1-butyl-3-methylimidazolium dicyanamide are determined using a heated effusive vapor source in conjunction with single photon ionization by a tunable vacuum ultraviolet synchrotron source. The relative gas phase ionic liquid vapor densities in the effusive beam are monitored by clearly distinguished dissociative photoionization processes via a time-of-flight mass spectrometer at a tunable vacuum ultraviolet beamline 9.0.2.3 (Chemical Dynamics Beamline) at the Advanced Light Source synchrotron facility. Resulting in relatively few assumptions, through the analysis of both parent cations and fragment cations, the heat of vaporization of N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide is determined to be Delta Hvap(298.15 K) = 195+-19 kJ mol-1. The observed heats of vaporization of 1-butyl-3-methylimidazolium dicyanamide (Delta Hvap(298.15 K) = 174+-12 kJ mol-1) and N-butyl-N-methylpyrrolidinium dicyanamide (Delta Hvap(298.15 K) = 171+-12 kJ mol-1) are consistent with reported experimental values using electron impact ionization. The tunable vacuum ultraviolet source has enabled accurate measurement of photoion appearance energies. These appearance energies are in good agreement with MP2 calculations for dissociative photoionization of the ion pair. These experimental heats of vaporization, photoion appearance energies, and ab initio calculations corroborate vaporization of these RTILs as intact cation-anion ion pairs.

  13. Conversion of air mixture with ethanol and water vapors in nonequilibrium gas-discharge plasma

    NASA Astrophysics Data System (ADS)

    Shchedrin, A. I.; Levko, D. S.; Chernyak, V. Ya.; Yukhimenko, V. V.; Naumov, V. V.

    2009-05-01

    In search for an alternative fuel for internal combustion engines, we have studied the possibility of obtaining molecular hydrogen via the conversion of air mixture with ethanol and water vapors in a new plasma reactor. It is shown that, in agreement with experimental data, the H2 concentration is a linear function of the discharge current and decreases with increasing gas flow rate in the interelectrode gap. It is established that the proposed approach provides higher molecular hydrogen concentrations as compared to those achieved with other methods.

  14. Silicon epitaxy using tetrasilane at low temperatures in ultra-high vacuum chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hazbun, Ramsey; Hart, John; Hickey, Ryan; Ghosh, Ayana; Fernando, Nalin; Zollner, Stefan; Adam, Thomas N.; Kolodzey, James

    2016-06-01

    The deposition of silicon using tetrasilane as a vapor precursor is described for an ultra-high vacuum chemical vapor deposition tool. The growth rates and morphology of the Si epitaxial layers over a range of temperatures and pressures are presented. The layers were characterized using transmission electron microscopy, x-ray diffraction, spectroscopic ellipsometry, Atomic Force Microscopy, and secondary ion mass spectrometry. Based on this characterization, high quality single crystal silicon epitaxy was observed. Tetrasilane was found to produce higher growth rates relative to lower order silanes, with the ability to deposit crystalline Si at low temperatures (T=400 °C), with significant amorphous growth and reactivity measured as low as 325 °C, indicating the suitability of tetrasilane for low temperature chemical vapor deposition such as for SiGeSn alloys.

  15. Understanding climate with merged water vapor, temperature and cloud observations from the A-Train (Invited)

    NASA Astrophysics Data System (ADS)

    Fetzer, E.; Dang, H. T.; Guillaume, A.; Yue, Q.; Liang, C.; Kahn, B. H.; Wilson, B. D.; Lambrigtsen, B.; Fishbein, E.

    2010-12-01

    Instruments in the A-Train satellite constellation are providing a detailed record of climate. Because observations from different instruments are collocated and essentially simultaneous, they can be combined to provide insights into a number of ‘fast’ processes, especially those involving clouds. However, the different A-Train instruments were not explicitly designed to work together, so interpreting observations between instruments offers several challenges. First, varied data sets must be assembled from several of sources. Next the basic task of spatial co-registration of Level 1 and Level 2 data sets must be completed. Finally, analysts must understand two or more data sets, each typically containing hundreds of named variables, whose processing histories are usually uncoordinated, and derived from source instruments with varied spatial and spectral resolutions. Despite these challenges, multi-sensor data sets are providing insights not available from a single instrument. We describe climatologies, and climate process studies, of temperature, water vapor and cloud phenomena using collocated observations from AIRS, CloudSat, AMSR-E and MODIS in the A-Train satellite constellation.

  16. Remote measurements of ozone, water vapor and liquid water content, and vertical profiles of temperature in the lower troposphere

    NASA Technical Reports Server (NTRS)

    Grant, W. B.; Gary, B. L.; Shumate, M. S.

    1983-01-01

    Several advanced atmospheric remote sensing systems developed at the Jet Propulsion Laboratory were demonstrated under various field conditions to determine how useful they would be for general use by the California Air Resources Board and local air quality districts. One of the instruments reported on is the Laser Absorption Spectrometer (LAS). It has a pair of carbon dioxide lasers with a transmitter and receiver and can be flown in an aircraft to measure the column abundance of such gases as ozone. From an aircraft, it can be used to rapidly survey a large region. The LAS is usually operated from an aircraft, although it can also be used at a fixed location on the ground. Some tests were performed with the LAS to measure ozone over a 2-km horizontal path. Another system reported on is the Microwave Atmospheric Remote Sensing System (MARS). It is tuned to microwave emissions from water vapor, liquid water, and oxygen molecules (for atmospheric temperature). It can measure water vapor and liquid water in the line-of-sight, and can measure the vertical temperature profile.

  17. Ultrafast Room-Temperature Crystallization of TiO2 Nanotubes Exploiting Water-Vapor Treatment

    PubMed Central

    Lamberti, Andrea; Chiodoni, Angelica; Shahzad, Nadia; Bianco, Stefano; Quaglio, Marzia; Pirri, Candido F.

    2015-01-01

    In this manuscript a near-room temperature crystallization process of anodic nanotubes from amorphous TiO2 to anatase phase with a fast 30 minutes treatment is reported for the first time. This method involves the exposure of as-grown TiO2 nanotubes to water vapor flow in ambient atmosphere. The water vapor-crystallized samples are deeply investigated in order to gain a whole understanding of their structural, physical and chemical properties. The photocatalytic activity of the converted material is tested by dye degradation experiment and the obtained performance confirms the highly promising properties of this low-temperature processed material. PMID:25589038

  18. Unencapsulated Air-stable Organic Field Effect Transistor by All Solution Processes for Low Power Vapor Sensing

    NASA Astrophysics Data System (ADS)

    Feng, Linrun; Tang, Wei; Zhao, Jiaqing; Yang, Ruozhang; Hu, Wei; Li, Qiaofeng; Wang, Ruolin; Guo, Xiaojun

    2016-02-01

    With its excellent mechanical flexibility, low-cost and low-temperature processing, the solution processed organic field-effect transistor (OFET) is a promising platform technology for developing ubiquitous sensor applications in digital health, environment monitoring and Internet of Things. However, a contradiction between achieving low voltage operation and having stable performance severely hinder the technology to become commercially viable. This work shows that, by reducing the sub-gap density of states (DOS) at the channel for low operation voltage and using a proper low-k non-polar polymer dielectric layer, such an issue can be addressed. Stable electrical properties after either being placed for weeks or continuously prolonged bias stressing for hours in ambient air are achieved for all solution processed unencapsulated OFETs with the channel being exposed to the ambient air for analyte detection. The fabricated device presents a steep subthreshold swing less than 100 mV/decade, and an ON/OFF ratio of 106 at a voltage swing of 3 V. The low voltage and stable operation allows the sensor made of the OFET to be incorporated into a battery-powered electronic system for continuously reliable sensing of ammonia vapor in ambient air with very small power consumption of about 50 nW.

  19. Unencapsulated Air-stable Organic Field Effect Transistor by All Solution Processes for Low Power Vapor Sensing

    PubMed Central

    Feng, Linrun; Tang, Wei; Zhao, Jiaqing; Yang, Ruozhang; Hu, Wei; Li, Qiaofeng; Wang, Ruolin; Guo, Xiaojun

    2016-01-01

    With its excellent mechanical flexibility, low-cost and low-temperature processing, the solution processed organic field-effect transistor (OFET) is a promising platform technology for developing ubiquitous sensor applications in digital health, environment monitoring and Internet of Things. However, a contradiction between achieving low voltage operation and having stable performance severely hinder the technology to become commercially viable. This work shows that, by reducing the sub-gap density of states (DOS) at the channel for low operation voltage and using a proper low-k non-polar polymer dielectric layer, such an issue can be addressed. Stable electrical properties after either being placed for weeks or continuously prolonged bias stressing for hours in ambient air are achieved for all solution processed unencapsulated OFETs with the channel being exposed to the ambient air for analyte detection. The fabricated device presents a steep subthreshold swing less than 100 mV/decade, and an ON/OFF ratio of 106 at a voltage swing of 3 V. The low voltage and stable operation allows the sensor made of the OFET to be incorporated into a battery-powered electronic system for continuously reliable sensing of ammonia vapor in ambient air with very small power consumption of about 50 nW. PMID:26861412

  20. An efficient new automobile air-conditioning system based on CO{sub 2} vapor compression

    SciTech Connect

    Pettersen, J.

    1994-12-31

    A new, efficient, and environmentally safe automobile air-conditioning system based on carbon dioxide (CO{sub 2}) vapor compression has been developed. Although working pressures and component design are different, the basic principles are similar to those of current chlorofluorocarbon/hydrofluorocarbon (CFC/HFC) units. With the construction and testing of a laboratory prototype, it has been documented that the new system is highly competitive with current CFC-12 and HFC-134a units in terms of efficiency, capacity, cost, weight, and dimensions. The CO{sub 2} concept thus offers a solution to the environmental problem associated with automobile air conditioning and eliminates all uncertainties with respect to possible unforeseen effects from new refrigerant compounds. Further advantages of the natural fluid CO{sub 2} as a refrigerant are: no need for recycling or recovery, low cost of fluid, excellent availability, well-known properties, and more compact machinery and components.

  1. Possible Economies in Air-Conditioning by Accepting Temperature Swings.

    ERIC Educational Resources Information Center

    Loudon, A. G.; Petherbridge, P.

    Public building air conditioning systems, which use constant and varying heat and cooling loads, are compared and investigated. Experiments indicated that constant temperature controls based on outside air temperature alone were inefficient. Ventilating a building with outside air and the methods of doing so are cited as being the most economical…

  2. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  3. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  4. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  5. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  6. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  7. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  8. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  9. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  10. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  11. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  12. Variations of the glacio-marine air mass front in West Greenland through water vapor isotopes

    NASA Astrophysics Data System (ADS)

    Kopec, B. G.; Lauder, A. M.; Posmentier, E. S.; Feng, X.

    2012-12-01

    While the isotopic distribution of precipitation has been widely used for research in hydrology, paleoclimatology, and ecology for decades, intensive isotopic studies of atmospheric water vapor has only recently been made possible by spectral-based technology. New instrumentation based on this technology opens up many opportunities to investigate short-term atmospheric dynamics involving the water cycle and moisture transport. We deployed a Los Gatos Water Vapor Isotope Analyzer (WVIA) at Kangerlussuaq, Greenland from July 21 to August 15, and measured the water vapor concentration and its isotopic ratios continuously at 10s intervals. A Danish Meteorological Institute site is located about 1 km from the site of the deployment, and meteorological data is collected at 30 min intervals. During the observation period, the vapor concentration of the ambient air ranges from 5608.4 to 11189.4 ppm; dD and d18O range from -254.5 to -177.7 ‰ and -34.2 to -23.2 ‰, respectively. The vapor content (dew point) and the isotopic ratios are both strongly controlled by the wind direction. The easterly winds are associated with dry, isotopically depleted air masses formed over the glacier, while westerly winds are associated with moist and isotopically enriched air masses from the marine/fjord surface. This region typically experiences katabatic winds off of the ice sheet to the east. However, during some afternoons, the wind shifts 180 degrees, blowing off the fjord to the west. This wind switch marks the onset of a sea breeze, and significant isotopic enrichment results. Enrichment in deuterium is up to 60 ‰ with a mean of 15‰, and oxygen-18 is enriched by 3‰ on average and up to 8 ‰. Other afternoons have no change in wind, and only small changes in humidity and vapor isotopic ratios. The humidity and isotopic variations suggest the local atmosphere circulation is dominated by relatively high-pressure systems above the cold glaciers and cool sea surface, and diurnal

  13. Validation of MIPAS IMK-IAA Temperature, Water Vapor, and Ozone Profiles with MOHAVE-2009 Campaign Measurements

    NASA Technical Reports Server (NTRS)

    Stiller, Gabrielle; Kiefer, M.; Eckert, E.; von Clarmann, T.; Kellmann, S.; Garcia-Comas, M.; Funke, B.; Leblanc, T.; Fetzer, E.; Froidevaux, L.; Gomez, M.; Hall, E.; Hurst, D.; Jordan, A.; Kampfer, N.; Lambert, A.; McDermid, I. S.; McGee, T.; Miloshevich, L.; Nedoluha, G.; Read, W.; Schneider, M.; Schwartz, M.; Straub, C.; Toon, G.; Twigg, L. W.; Walker, K.; Whiteman, D. N.

    2012-01-01

    MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research (IMK) and CSIC, Instituto de Astrofisica de Andalucia (IAA) and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MIPAS measurements were validated regarding any potential biases of the profiles, and with respect to their precision estimates. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radiosondes, ozonesondes, frost point hygrometers, lidars, microwave radiometers and Fourier transform infrared (FTIR) spectrometers. For MIPAS temperatures (version V4O_T_204), no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. These findings confirm earlier comparisons of MIPAS temperatures to ECMWF data which revealed similar differences. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203) is well within 10% of the data of all correlative instruments. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40% around 10 km (or 5 km below the tropopause), but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202) has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution. No further

  14. Prediction of air temperature for thermal comfort of people in outdoor environments

    NASA Astrophysics Data System (ADS)

    Huang, Jianhua

    2007-05-01

    Current thermal comfort indices do not take into account the effects of wind and body movement on the thermal resistance and vapor resistance of clothing. This may cause public health problem, e.g. cold-related mortality. Based on the energy balance equation and heat exchanges between a clothed body and the outdoor environment, a mathematical model was developed to determine the air temperature at which an average adult, wearing a specific outdoor clothing and engaging in a given activity, attains thermal comfort under outdoor environment condition. The results indicated low clothing insulation, less physical activity and high wind speed lead to high air temperature prediction for thermal comfort. More accurate air temperature prediction is able to prevent wearers from hypothermia under cold conditions.

  15. Time-dependent response of a charcoal bed to radon and water vapor in flowing air

    SciTech Connect

    Henkel, J.A.; Fentiman, A.W.; Blue, T.E.

    1995-12-31

    Extremely high airborne concentrations of radon gas may be encountered during the remediation of uranium mill tailings storage facilities. Radon is also a constituent of the off-gas of mill-tailing vitrification. An effective way to remove radon from either gas is to pass the gas through a packed bed containing activated charcoal. Measurements of radon concentrations in the environment using charcoal canisters were first described by George. Canisters similar to those used by George in his first experiments have become the U.S. Environmental Protection Agency`s (EPA`s) standard for measuring environmental radon and were described in the EPA protocol for environmental radon measurement. The dynamic behavior of EPA charcoal canisters has been previously described with a mathematical model for the kinetics of radon gas adsorption in air in the presence of water vapor. This model for charcoal canisters has been extended to large charcoal beds with flowing air containing radon and water vapor. The mathematical model for large charcoal beds can be used to evaluate proposed bed designs or to model existing beds. Parameters that affect the radon distribution within a charcoal bed that can be studied using the mathematical model include carrier gas relative humidity and flow velocity, and input radon concentration. In addition, the relative performances of several different charcoals can be studied, provided sufficient information about their adsorption, desorption, and diffusion constants is known.

  16. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Ferrare, Richard; Browell, Edward; Kooi, Susan; Notari, Anthony; Butler, Carolyn; Burton, Sharon; Fenn, Marta; Krishnamurti, T. N.; Dunion, Jason; Heymsfield, Gerry; Anderson, Bruce

    2008-01-01

    LASE (Lidar Atmospheric Sensing Experiment) onboard the NASA DC-8 was used to measure high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern Atlantic region during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment, which was conducted from August 15 to September 12, 2006. These measurements were made in conjunction with flights designed to study African Easterly Waves (AEW), Tropical Disturbances (TD), and Saharan Aerosol Layers (SALs) as well as flights performed in clear air and convective regions. As a consequence of their unique radiative properties and dynamics, SAL layers have a significant influence in the development of organized convection associated with TD. Interactions of the SAL with tropical air during early stages of the development of TD were observed. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on TDs and hurricanes. Seven AEWs were studied and four of these evolved into tropical storms and three did not. Three out of the four tropical storms evolved into hurricanes.

  17. Vapor pressure deficit effects on cotton canopy temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop canopy temperature (Tc) is coupled with transpiration, which is a function of soil and atmospheric conditions and plant water status. Thus, Tc has been identified as a real-time, plant-based tool for crop water stress detection. Such plant-based methods theoretically integrate the water status ...

  18. Theoretical study on temperature features of a sealed cesium vapor cell pumped by laser diodes.

    PubMed

    Zhang, Wei; Wang, You; Cai, He; Xue, Liangping; Han, Juhong; Wang, Hongyuan; Liao, Zhiye

    2014-07-01

    The diode-pumped alkali laser (DPAL) is a new type of laser source which has been widely studied in the recent years. The temperature distribution of a sealed vapor cell, which is the crucial component in a DPAL system, produces an important effect on the output performance of a DPAL. In this paper, the strict solution of the heat conduction equation for a cesium vapor cell is obtained by using a finite difference procedure. The temperature distribution of a dummy open cell is first analyzed, and then the temperature distributions of two independent windows, regarded as the boundary conditions of solving a sealed cell, are evaluated in detail. By combining the results of the two steps together, we finally acquire the temperature distribution of a real sealed cesium vapor cell. The results reveal that the temperature gradients on both radial and longitudinal directions change with the pump power, cell radius, and absorption coefficient when the sealed cesium vapor cell is heated or pumped with the laser diodes. The conclusions are helpful for accurately evaluating the output characteristics of a DPAL.

  19. Inactivation of Mold Spores from Moist Carpet Using Steam Vapor: Contact Time and Temperature.

    PubMed

    Ong, Kee-Hean; Emo, Brett; Lewis, Roger D; Kennedy, Jason; Thummalakunta, Laxmi N A; Elliott, Michael

    2015-01-01

    Steam vapor has been shown to reduce viable mold spores in carpet, but the minimal effective temperature and contact time has not been established. This study evaluated the effectiveness of steam vapor in reducing the number of viable mold spores in carpet as a function of temperature and contact time. Seventy carpet samples were inoculated with a liquid suspension of Cladosporium sphaerospermum and incubated over a water-saturated foam carpet pad for 24 hr. Steam was applied to the samples as the temperature was measured from the carpet backing. Contact time was closely monitored over seven time intervals: 0, 2, 4, 8, 12, 16, and 20 sec. Following steam vapor treatment, mold spores were extracted from the carpet samples and the extract was plated on DG-18 plates at 1:1, 1:10, 1:100 dilutions followed by one week of incubation. Raw colony forming units were determined using an automated colony counter and adjusted based on dilution factor, extraction volume, and plated volume. Analysis of variance and linear regression were used to test for statistically significant relationships. Steam contact time exhibited a linear relationship to observed temperature of carpet backing (F = 90.176, R(2) = 0.609). Observed temperature of carpet backing had a positive relationship to percent reduction of mold (F = 76.605, R(2) = 0.569). Twelve seconds of steam vapor contact time was needed to achieve over 90% mold reduction on moist carpet.

  20. Computation of three-dimensional temperature distribution in diode-pumped alkali vapor amplifiers

    NASA Astrophysics Data System (ADS)

    Shen, Binglin; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang

    2016-06-01

    Combining the kinetic and fluid dynamic processes in static and flowing-gas diode-pumped alkali vapor amplifiers, a comprehensive physical model with a cyclic iterative approach for calculating the three-dimensional temperature distribution of the vapor cell is established. Taking into account heat generation, thermal conductivity and convection, the excitation of the alkali atoms to high electronic levels, and their losses due to ionization in the gain medium, the thermal features and output characteristics have been simultaneously obtained. The results are in good agreement with those of the measurement in a static rubidium vapor amplifier. Influences of gas velocity on radial and axial temperature profiles are simulated and analyzed. The results have demonstrated that thermal problems in gaseous gain medium can be significantly reduced by flowing the gain medium with sufficiently high velocity.

  1. Room Temperature Synthesis of Covalent–Organic Framework Films through Vapor-Assisted Conversion

    PubMed Central

    2014-01-01

    We describe the facile synthesis of several two-dimensional covalent–organic frameworks (2D COFs) as films by vapor-assisted conversion at room temperature. High-quality films of benzodithiophene-containing BDT-COF and COF-5 with tunable thickness were synthesized under different conditions on various substrates. BDT-COF films of several micrometer thickness exhibit mesoporosity as well as textural porosity, whereas thinner BDT-COF films materialize as a cohesive dense layer. In addition, we studied the formation of COF-5 films with different solvent mixture compositions serving as vapor source. Room temperature vapor-assisted conversion is an excellent method to form COF films of fragile precursors and on sensitive substrates. PMID:25539131

  2. The Vertical Structure of Water Vapor in Mid-latitude as Seen by AIRS, AMSU and ECMWF

    NASA Astrophysics Data System (ADS)

    Fishbein, E.; Fetzer, E.; Hearty, T.; Kahn, B.

    2006-12-01

    The vertical structure of water vapor in mid-latitudes is controlled by Rossby wave activity, especially vertical transport in frontal systems. We compare the vertical structure of water vapor across frontal systems as measured by the Atmospheric Infrared Sounder (AIRS) and the Microwave Humidity Sounder for Brazil (HSB) with fields predicted by the European Center for Medium Range Forecasting (ECMWF) global system and relate these differences to modeling, vertical resolution and sampling errors.

  3. Analysis of effect of flameholder characteristics on lean, premixed, partially vaporized fuel-air mixtures quality and nitrogen oxides emissions

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.

    1981-01-01

    An analysis was conducted of the effect of flameholding devices on the precombustion fuel-air characteristics and on oxides of nitrogen (NOx) emissions for combustion of premixed partially vaporized mixtures. The analysis includes the interrelationships of flameholder droplet collection efficiency, reatomization efficiency and blockage, and the initial droplet size distribution and accounts for the contribution of droplet combustion in partially vaporized mixtures to NOx emissions. Application of the analytical procedures is illustrated and parametric predictions of NOx emissions are presented.

  4. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  5. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  6. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  7. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  8. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  9. Temperature dependence of local solubility of hydrophobic molecules in the liquid-vapor interface of water.

    PubMed

    Abe, Kiharu; Sumi, Tomonari; Koga, Kenichiro

    2014-11-14

    One important aspect of the hydrophobic effect is that solubility of small, nonpolar molecules in liquid water decreases with increasing temperature. We investigate here how the characteristic temperature dependence in liquid water persists or changes in the vicinity of the liquid-vapor interface. From the molecular dynamics simulation and the test-particle insertion method, the local solubility Σ of methane in the liquid-vapor interface of water as well as Σ of nonpolar solutes in the interface of simple liquids are calculated as a function of the distance z from the interface. We then examine the temperature dependence of Σ under two conditions: variation of Σ at fixed position z and that at fixed local solvent density around the solute molecule. It is found that the temperature dependence of Σ at fixed z depends on the position z and the system, whereas Σ at fixed local density decreases with increasing temperature for all the model solutions at any fixed density between vapor and liquid phases. The monotonic decrease of Σ under the fixed-density condition in the liquid-vapor interface is in accord with what we know for the solubility of nonpolar molecules in bulk liquid water under the fixed-volume condition but it is much robust since the solvent density to be fixed can be anything between the coexisting vapor and liquid phases. A unique feature found in the water interface is that there is a minimum in the local solubility profile Σ(z) on the liquid side of the interface. We find that with decreasing temperature the minimum of Σ grows and at the same time the first peak in the oscillatory density profile of water develops. It is likely that the minimum of Σ is due to the layering structure of the free interface of water.

  10. Personal exposure to JP-8 jet fuel vapors and exhaust at air force bases.

    PubMed

    Pleil, J D; Smith, L B; Zelnick, S D

    2000-03-01

    JP-8 jet fuel (similar to commercial/international jet A-1 fuel) is the standard military fuel for all types of vehicles, including the U.S. Air Force aircraft inventory. As such, JP-8 presents the most common chemical exposure in the Air Force, particularly for flight and ground crew personnel during preflight operations and for maintenance personnel performing routine tasks. Personal exposure at an Air Force base occurs through occupational exposure for personnel involved with fuel and aircraft handling and/or through incidental exposure, primarily through inhalation of ambient fuel vapors. Because JP-8 is less volatile than its predecessor fuel (JP-4), contact with liquid fuel on skin and clothing may result in prolonged exposure. The slowly evaporating JP-8 fuel tends to linger on exposed personnel during their interaction with their previously unexposed colleagues. To begin to assess the relative exposures, we made ambient air measurements and used recently developed methods for collecting exhaled breath in special containers. We then analyzed for certain volatile marker compounds for JP-8, as well as for some aromatic hydrocarbons (especially benzene) that are related to long-term health risks. Ambient samples were collected by using compact, battery-operated, personal whole-air samplers that have recently been developed as commercial products; breath samples were collected using our single-breath canister method that uses 1-L canisters fitted with valves and small disposable breathing tubes. We collected breath samples from various groups of Air Force personnel and found a demonstrable JP-8 exposure for all subjects, ranging from slight elevations as compared to a control cohort to > 100 [mutilpe] the control values. This work suggests that further studies should be performed on specific issues to obtain pertinent exposure data. The data can be applied to assessments of health outcomes and to recommendations for changes in the use of personal protective

  11. Characterization of antirelaxation-coated vapor cells in high-temperature regime

    NASA Astrophysics Data System (ADS)

    Li, Wenhao; Balabas, Mikhail; Pustelny, Szymon; Wickenbrock, Arne; Budker, Dmitry

    2016-05-01

    Antirelaxation-coated vapor cells are widely used in modern atomic physics experiments due to the coating's ability to maintain spin polarization during wall collisions. We characterize the performance of vapor cells with different coating materials by measuring longitudinal spin relaxation and vapor density at temperatures of up to 90° C. The longitudinal spin relaxation time (τrel) is measured with a modified version of ``relaxation in the dark'' technique and the vapor density (n) is obtained by fitting atomic absorption spectrum with linear absorption function. The spin-projection-noise-limited (or atomic shot noise limited) sensitivity for atomic magnetometers is δBSNL 1 /√{ nτrel T } , where T is measurement time. Therefore, by showing the product of the longitudinal spin relaxation time and the vapor density increases with temperature, we demonstrate the potential of antirelaxation-coated cells in applications of future high-sensitivity magnetometers. W.L. would like to acknowledge support from the China Scholarship Council (CSC) enabling his research at the University of California at Berkeley.

  12. Water vapor at a translational temperature of 1 K

    SciTech Connect

    Rieger, T.; Junglen, T.; Rangwala, S. A.; Rempe, G.; Pinkse, P. W. H.; Bulthuis, J.

    2006-06-15

    We report the creation of a confined slow beam of heavy-water (D{sub 2}O) molecules with a translational temperature around 1 K. This is achieved by filtering slow D{sub 2}O from a thermal ensemble with inhomogeneous static electric fields exploiting the quadratic Stark shift of D{sub 2}O. All previous demonstrations of electric-field manipulation of cold dipolar molecules rely on a predominantly linear Stark shift. Further, on the basis of elementary molecular properties and our filtering technique we argue that our D{sub 2}O beam contains molecules in only a few rovibrational states.

  13. The infrared continuum of pure water vapor - Calculations and high-temperature measurements

    NASA Technical Reports Server (NTRS)

    Hartmann, J. M.; Perrin, M. Y.; Ma, Q.; Tippings, R. H.

    1993-01-01

    Results of experimental and theoretical studies of medium infrared absorption by pure water vapor are reported. The experiments were performed in the 1900-2600/cm and 3900-4600/cm regions for temperatures and pressures of 500-900 K and 0-70 atm, respectively. The results are consistent with data in the literature and enable the determination of continuous absorption parameters.

  14. Molecular Weight Determination by an Improved Temperature-Monitored Vapor-Density Method.

    ERIC Educational Resources Information Center

    Grider, Douglas J.; And Others

    1988-01-01

    Recommends determining molecular weights of liquids by use of a thermocouple. Utilizing a mathematical gas equation, the molecular weight can be determined from the measurement of the vapor temperature upon complete evaporation. Lists benefits as reduced time and cost, and improved safety factors. (ML)

  15. The effect of temperature on chromium vaporization and oxide scale growth on interconnect steels for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Falk-Windisch, Hannes; Svensson, Jan Erik; Froitzheim, Jan

    2015-08-01

    Chromium vaporization and oxide scale growth are probably the two most important degradation mechanisms associated with the interconnect in Solid Oxide Fuel Cells (SOFCs) when Cr2O3-forming alloys are used as the interconnect material. This study examines the influence of temperature on both mechanisms. Two commercially available steels; Crofer 22 H and Sanergy HT, were isothermally exposed at 650, 750 and 850 °C in an air-3% H2O atmosphere with a high flow rate. Volatile chromium species were collected using the denuder technique. The microstructure of thermally grown oxide scales was characterized using Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDX) and X-Ray Diffraction (XRD). The findings of this study show that although Cr evaporation is reduced with lower temperature, its relative importance compared to oxide scale growth is greater.

  16. Urban soil moisture affecting local air temperature

    NASA Astrophysics Data System (ADS)

    Wiesner, Sarah; Ament, Felix; Eschenbach, Annette

    2015-04-01

    of urban land use is not found to be definite. Air temperature (Ta) anomalies of the suburban sites from the inner city site are analysed for several periods and seasons. During daytime a significant annual mean deviation is observed above unsealed, vegetated surfaces from a sealed site during selected relevant days. Remarkably, about a fifth of the variance of the diurnal Ta span, i.e. increase of Ta during the day, is found to be explained by normalized Θ for selected meteorological situations. In this contribution this observed relation between topsoil moisture and air temperature increase during daytime at suburban sites will be presented after describing the local conditions and soil hydrological heterogeneities at the observed urban sites.

  17. Noctilucent cloud formation and the effects of water vapor variability on temperatures in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.

    1985-01-01

    To investigate the occurrence of low temperatures and the formation of noctilucent clouds in the summer mesosphere, a one-dimensional time-dependent photochemical-thermal numerical model of the atmosphere between 50 and 120 km has been constructed. The model self-consistently solves the coupled photochemical and thermal equations as perturbation equations from a reference state assumed to be in equilibrium and is used to consider the effect of variability in water vapor in the lower mesosphere on the temperature in the region of noctilucent cloud formation. It is found that change in water vapor from an equilibrium value of 5 ppm at 50 km to a value of 10 ppm, a variation consistent with observations, can produce a roughly 15 K drop in temperature at 82 km. It is suggested that this process may produce weeks of cold temperatures and influence noctilucent cloud formation.

  18. Operation of a breadboard liquid-sorbent/membrane-contactor system for removing carbon dioxide and water vapor from air

    NASA Technical Reports Server (NTRS)

    Mccray, Scott B.; Ray, Rod; Newbold, David D.; Millard, Douglas L.; Friesen, Dwayne T.; Foerg, Sandra

    1992-01-01

    Processes to remove and recover carbon dioxide (CO2) and water vapor from air are essential for successful long-duration space missions. This paper presents results of a developmental program focused on the use of a liquid-sorbent/membrane-contactor (LSMC) system for removal of CO2 and water vapor from air. In this system, air from the spacecraft cabin atmosphere is circulated through one side of a hollow-fiber membrane contactor. On the other side of the membrane contactor is flowed a liquid sorbent, which absorbs the CO2 and water vapor from the feed air. The liquid sorbent is then heated to desorb the CO2 and water vapor. The CO2 is subsequently removed from the system as a concentrated gas stream, whereas the water vapor is condensed, producing a water stream. A breadboard system based on this technology was designed and constructed. Tests showed that the LSMC breadboard system can produce a CO2 stream and a liquid-water stream. Details are presented on the operation of the system, as well as the effects on performance of variations in feed conditions.

  19. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    NASA Technical Reports Server (NTRS)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  20. Volatility of Common Protective Oxides in High-Temperature Water Vapor: Current Understanding and Unanswered Questions

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.

    2004-01-01

    Many structural materials rely on the formation of chromia, silica or alumina as a protective layer when exposed in high temperature oxidizing environments. The presence of these oxide layers provides a protective diffusion barrier which slows down further oxidation. In atmospheres containing water vapor, however, reactions to form volatile hydroxide species occur which remove the surface oxide, thus, lowering the protective capability of the oxide scale. This paper summarizes the current understanding of volatility of chromia, silica and alumina in water vapor containing combustion environments. In addition unanswered questions in each system are discussed. Th current paper represents an update on the considerable information learned in the past five years for these systems.

  1. Short-term, seasonal and interannual variability of the vertical distribution of water vapor observed by AIRS

    NASA Technical Reports Server (NTRS)

    Olsen, E. T.; Granger, S. L.; Fetzer, E. J.

    2005-01-01

    The Atmospheric Infrared Sounder (AIRS) consists of a suite of instruments on board the Aqua spacecraft which retrieve atmospheric parameters over the globe at radiosonde quality on a daily basis in non-precipitating fields of view with less than 80% cloud cover. Although quantitative global measurements of water vapor have been available since the 1980's, the vertical resolution of these measurements was very coarse. AIRS provides global coverage amounting to 324,000 precipitable water vapor profiles with spatial resolution at nadir of 45 km and a vertical resolution in the troposphere of 2 km.

  2. Heat treatment's effects on hydroxyapatite powders in water vapor and air atmosphere

    NASA Astrophysics Data System (ADS)

    Karabulut, A.; Baştan, F. E.; Erdoǧan, G.; Üstel, F.

    2015-03-01

    Hydroxyapatite (HA; Ca10(PO4)6(OH)2) is the main chemical constituent of bone tissue (~70%) as well as HA which is a calcium phosphate based ceramic material forms inorganic tissue of bone and tooth as hard tissues is used in production of prosthesis for synthetic bone, fractured and broken bone restoration, coating of metallic biomaterials and dental applications because of its bio compatibility. It is known that Hydroxyapatite decomposes with high heat energy after heat treatment. Therefore hydroxyapatite powders that heated in water vapor will less decomposed phases and lower amorphous phase content than in air atmosphere. In this study high purity hydroxyapatite powders were heat treated with open atmosphere furnace and water vapor atmosphere with 900, 1000, 1200 °C. Morphology of same powder size used in this process by SEM analyzed. Chemical structures of synthesized coatings have been examined by XRD. The determination of particle size and morphological structure of has been characterized by Particle Sizer, and SEM analysis, respectively. Weight change of sample was recorded by thermogravimetric analysis (TGA) during heating and cooling.

  3. On the critical temperature, normal boiling point, and vapor pressure of ionic liquids.

    PubMed

    Rebelo, Luis P N; Canongia Lopes, José N; Esperança, José M S S; Filipe, Eduardo

    2005-04-01

    One-stage, reduced-pressure distillations at moderate temperature of 1-decyl- and 1-dodecyl-3-methylimidazolium bistriflilamide ([Ntf(2)](-)) ionic liquids (ILs) have been performed. These liquid-vapor equilibria can be understood in light of predictions for normal boiling points of ILs. The predictions are based on experimental surface tension and density data, which are used to estimate the critical points of several ILs and their corresponding normal boiling temperatures. In contrast to the situation found for relatively unstable ILs at high-temperature such as those containing [BF(4)](-) or [PF(6)](-) anions, [Ntf(2)](-)-based ILs constitute a promising class in which reliable, accurate vapor pressure measurements can in principle be performed. This property is paramount for assisting in the development and testing of accurate molecular models.

  4. Temperature Sensitivity of an Atomic Vapor Cell-Based Dispersion-Enhanced Optical Cavity

    NASA Technical Reports Server (NTRS)

    Myneni, K.; Smith, D. D.; Chang, H.; Luckay, H. A.

    2015-01-01

    Enhancement of the response of an optical cavity to a change in optical path length, through the use of an intracavity fast-light medium, has previously been demonstrated experimentally and described theoretically for an atomic vapor cell as the intracavity resonant absorber. This phenomenon may be used to enhance both the scale factor and sensitivity of an optical cavity mode to the change in path length, e.g. in gyroscopic applications. We study the temperature sensitivity of the on-resonant scale factor enhancement, S(sub o), due to the thermal sensitivity of the lower-level atom density in an atomic vapor cell, specifically for the case of the Rb-87 D(sub 2) transition. A semi-empirical model of the temperature-dependence of the absorption profile, characterized by two parameters, a(sub o)(T) and gamma(sub a)(T) allows the temperature-dependence of the cavity response, S(sub o)(T) and dS(sub o)/dT to be predicted over a range of temperature. We compare the predictions to experiment. Our model will be useful in determining the useful range for S(sub o), given the practical constraints on temperature stability for an atomic vapor cell.

  5. Interpolation Correlations for Fluid Properties of Humid Air in the Temperature Range 100 °C to 200 °C

    NASA Astrophysics Data System (ADS)

    Melling, Adrian; Noppenberger, Stefan; Still, Martin; Venzke, Holger

    1997-07-01

    This paper provides simple analytical correlations for selected thermodynamic and fluid transport properties for the mixture dry air and water vapor. These correlations are derived from theory as well as from numerical fitting procedures and give expressions for density ϱ, viscosity μ, thermal conductivity k, specific heat cp, and Prandtl number Pr at a working pressure of p=1 bar and for a temperature range from 100 °C to 200 °C. The main purpose is to present a comparatively simple set of equations, as the correlations do not reflect in every case the underlying physical background. Since experimental data are scarce for the properties under investigation, it was in some cases necessary to extrapolate the available correlations to temperatures or water vapor contents where no experimental data could be found. The derived equations are compared with the pure component values for dry air and water vapor and, as far as possible, also for air-water vapor mixtures.

  6. Model for the Vaporization of Mixed Organometallic Compounds in the Metalorganic Chemical Vapor Deposition of High Temperature Superconducting Films

    NASA Technical Reports Server (NTRS)

    Meng, Guangyao; Zhou, Gang; Schneider, Roger L.; Sarma, Bimal K.; Levy, Moises

    1993-01-01

    A model of the vaporization and mass transport of mixed organometallics from a single source for thin film metalorganic chemical vapor deposition is presented. A stoichiometric gas phase can be obtained from a mixture of the organometallics in the desired mole ratios, in spite of differences in the volatilities of the individual compounds. Proper film composition and growth rates are obtained by controlling the velocity of a carriage containing the organometallics through the heating zone of a vaporizer.

  7. Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Chunlin; Wu, Yi; Chen, Zhexin; Yang, Fei; Feng, Ying; Rong, Mingzhe; Zhang, Hantian

    2016-07-01

    Air plasma has been widely applied in industrial manufacture. In this paper, both dry and humid air plasmas' thermodynamic and transport properties are calculated in temperature 300-100000 K and pressure 0.1-100 atm. To build a more precise model of real air plasma, over 70 species are considered for composition. Two different methods, the Gibbs free energy minimization method and the mass action law method, are used to determinate the composition of the air plasma in a different temperature range. For the transport coefficients, the simplified Chapman-Enskog method developed by Devoto has been applied using the most recent collision integrals. It is found that the presence of CO2 has almost no effect on the properties of air plasma. The influence of H2O can be ignored except in low pressure air plasma, in which the saturated vapor pressure is relatively high. The results will serve as credible inputs for computational simulation of air plasma. supported by the National Key Basic Research Program of China (973 Program)(No. 2015CB251002), National Natural Science Foundation of China (Nos. 51521065, 51577145), the Science and Technology Project Funds of the Grid State Corporation (SGTYHT/13-JS-177), the Fundamental Research Funds for the Central Universities, and State Grid Corporation Project (GY71-14-004)

  8. Measurement of air and VOC vapor fluxes during gas-driven soil remediation: bench-scale experiments.

    PubMed

    Kim, Heonki; Kim, Taeyun; Shin, Seungyeop; Annable, Michael D

    2012-09-01

    In this laboratory study, an experimental method was developed for the quantitative analyses of gas fluxes in soil during advective air flow. One-dimensional column and two- and three-dimensional flow chamber models were used in this study. For the air flux measurement, n-octane vapor was used as a tracer, and it was introduced in the air flow entering the physical models. The tracer (n-octane) in the gas effluent from the models was captured for a finite period of time using a pack of activated carbon, which then was analyzed for the mass of n-octane. The air flux was calculated based on the mass of n-octane captured by the activated carbon and the inflow concentration. The measured air fluxes are in good agreement with the actual values for one- and two-dimensional model experiments. Using both the two- and three-dimensional models, the distribution of the air flux at the soil surface was measured. The distribution of the air flux was found to be affected by the depth of the saturated zone. The flux and flux distribution of a volatile contaminant (perchloroethene) was also measured by using the two-dimensional model. Quantitative information of both air and contaminant flux may be very beneficial for analyzing the performance of gas-driven subsurface remediation processes including soil vapor extraction and air sparging.

  9. 42 CFR 84.159 - Man tests for gases and vapors; supplied-air respirators; general performance requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Man tests for gases and vapors; supplied-air respirators; general performance requirements. 84.159 Section 84.159 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE...

  10. 42 CFR 84.159 - Man tests for gases and vapors; supplied-air respirators; general performance requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Man tests for gases and vapors; supplied-air respirators; general performance requirements. 84.159 Section 84.159 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE...

  11. 42 CFR 84.159 - Man tests for gases and vapors; supplied-air respirators; general performance requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Man tests for gases and vapors; supplied-air respirators; general performance requirements. 84.159 Section 84.159 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE...

  12. 42 CFR 84.159 - Man tests for gases and vapors; supplied-air respirators; general performance requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Man tests for gases and vapors; supplied-air respirators; general performance requirements. 84.159 Section 84.159 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE...

  13. 42 CFR 84.159 - Man tests for gases and vapors; supplied-air respirators; general performance requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Man tests for gases and vapors; supplied-air respirators; general performance requirements. 84.159 Section 84.159 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE...

  14. A correlation to predict the heat flux on the air-side of a vapor chamber with overturn-U flattened tubes

    NASA Astrophysics Data System (ADS)

    Srimuang, Wasan; Limkaisang, Viroj

    2016-08-01

    The heat transfer characteristics of a conventional vapor chamber (CVC) and a loop vapor chamber (LVC) are compared. The vapor chambers consisted of a stainless steel box with different covers. The results indicated that the heat flux and convective heat transfer coefficient of the air-side of LVC is higher than CVC. An empirical correlation was developed to predict the convective heat transfer coefficient of the air-side of the LVC.

  15. Engineering correlations of variable-property effects on laminar forced convection mass transfer for dilute vapor species and small particles in air

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Rosner, D. E.

    1984-01-01

    A simple engineering correlation scheme is developed to predict the variable property effects on dilute species laminar forced convection mass transfer applicable to all vapor molecules or Brownian diffusing small particle, covering the surface to mainstream temperature ratio of 0.25 T sub W/T sub e 4. The accuracy of the correlation is checked against rigorous numerical forced convection laminar boundary layer calculations of flat plate and stagnation point flows of air containing trace species of Na, NaCl, NaOH, Na2SO4, K, KCl, KOH, or K2SO4 vapor species or their clusters. For the cases reported here the correlation had an average absolute error of only 1 percent (maximum 13 percent) as compared to an average absolute error of 18 percent (maximum 54 percent) one would have made by using the constant-property results.

  16. Personal exposure to JP-8 jet fuel vapors and exhaust at air force bases.

    PubMed Central

    Pleil, J D; Smith, L B; Zelnick, S D

    2000-01-01

    JP-8 jet fuel (similar to commercial/international jet A-1 fuel) is the standard military fuel for all types of vehicles, including the U.S. Air Force aircraft inventory. As such, JP-8 presents the most common chemical exposure in the Air Force, particularly for flight and ground crew personnel during preflight operations and for maintenance personnel performing routine tasks. Personal exposure at an Air Force base occurs through occupational exposure for personnel involved with fuel and aircraft handling and/or through incidental exposure, primarily through inhalation of ambient fuel vapors. Because JP-8 is less volatile than its predecessor fuel (JP-4), contact with liquid fuel on skin and clothing may result in prolonged exposure. The slowly evaporating JP-8 fuel tends to linger on exposed personnel during their interaction with their previously unexposed colleagues. To begin to assess the relative exposures, we made ambient air measurements and used recently developed methods for collecting exhaled breath in special containers. We then analyzed for certain volatile marker compounds for JP-8, as well as for some aromatic hydrocarbons (especially benzene) that are related to long-term health risks. Ambient samples were collected by using compact, battery-operated, personal whole-air samplers that have recently been developed as commercial products; breath samples were collected using our single-breath canister method that uses 1-L canisters fitted with valves and small disposable breathing tubes. We collected breath samples from various groups of Air Force personnel and found a demonstrable JP-8 exposure for all subjects, ranging from slight elevations as compared to a control cohort to > 100 [mutilpe] the control values. This work suggests that further studies should be performed on specific issues to obtain pertinent exposure data. The data can be applied to assessments of health outcomes and to recommendations for changes in the use of personal protective

  17. Removal of dissolved VOCs from water with an air stripper/membrane vapor separation system

    SciTech Connect

    Wijmans, J.G.; Kamaruddin, H.D.; Segelke, S.V.; Wessling, M.; Baker, R.W.

    1997-09-01

    Treatment of water contaminated with volatile organic compounds (VOCs) is a major problem for the United States chemical industry. Currently, VOCs are removed from moderately contaminated wastewater streams by processes such as steam stripping and from dilute wastewaters by air stripping combined with a carbon adsorption off-gas treatment system. This paper describes the development and performance of a hybrid process that combines air stripping with membrane organic-vapor separation to recover VOCs from the stripper off-gas. A number of prototype systems have been constructed and evaluated. The optimum system appears to be a tray stripper fitted with a high-pressure compression-condensation membrane separation unit. Such a system can remove 95 to 99% of the VOCs present in contaminated water; the removed VOCs are recovered as a liquid condensate. The economics of the technology are competitive with alternative processes, particularly for streams containing more than 500 ppm VOC and having flow rates less than 10 to 30 gal/min.

  18. The electrolyte challenge for a direct methanol-air polymer electrolyte fuel cell operating at temperatures up to 200 C

    NASA Technical Reports Server (NTRS)

    Savinell, Robert; Yeager, Ernest; Tryk, Donald; Landau, Uziel; Wainright, Jesse; Gervasio, Dominic; Cahan, Boris; Litt, Morton; Rogers, Charles; Scherson, Daniel

    1993-01-01

    Novel polymer electrolytes are being evaluated for use in a direct methanol-air fuel cell operating at temperatures in excess of 100 C. The evaluation includes tests of thermal stability, ionic conductivity, and vapor transport characteristics. The preliminary results obtained to date indicate that a high temperature polymer electrolyte fuel cell is feasible. For example, Nafion 117 when equilibrated with phosphoric acid has a conductivity of at least 0.4 Omega(exp -1)cm(exp -1) at temperatures up to 200 C in the presence of 400 torr of water vapor and methanol vapor cross over equivalent to 1 mA/cm(exp 2) under a one atmosphere methanol pressure differential at 135 C. Novel polymers are also showing similar encouraging results. The flexibility to modify and optimize the properties by custom synthesis of these novel polymers presents an exciting opportunity to develop an efficient and compact methanol fuel cell.

  19. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

  20. The Vapor Pressure of Palladium at Temperatures up to 1973K

    NASA Technical Reports Server (NTRS)

    Gardner, K. G.; Feguson, F. T.; Nuth, J. A.

    2005-01-01

    Understanding high-temperature processes is imperative for modeling the formation of the solar system. It is unfortunate that since the 1950 s little has been done in the area of thermodynamics to continue gaining information on metals such as iron (Fe), nickel (Ni), cobalt (Co), palladium (Pd) and many others. Although the vapor pressures of these metals can be extrapolated to higher temperatures, the data is often limited to temperature ranges too low to be applicable to processes that occur during the formation of the solar system (T approx. 2000K). Experimental techniques inhibited the data in the past by restricting the testing of metals to temperatures below their melting point. Today, higher temperature testing is possible by using a Thermo- Cahn Thermogravimetric system that is able to reach temperatures up to 1973K in vacuo and measure a 10 gram change in a sample with mass of up to 100 grams.

  1. Correcting infrared satellite estimates of sea surface temperature for atmospheric water vapor attenuation

    NASA Technical Reports Server (NTRS)

    Emery, William J.; Yu, Yunyue; Wick, Gary A.; Schluessel, Peter; Reynolds, Richard W.

    1994-01-01

    A new satellite sea surface temperature (SST) algorithm is developed that uses nearly coincident measurements from the microwave special sensor microwave imager (SSM/I) to correct for atmospheric moisture attenuation of the infrared signal from the advanced very high resolution radiometer (AVHRR). This new SST algorithm is applied to AVHRR imagery from the South Pacific and Norwegian seas, which are then compared with simultaneous in situ (ship based) measurements of both skin and bulk SST. In addition, an SST algorithm using a quadratic product of the difference between the two AVHRR thermal infrared channels is compared with the in situ measurements. While the quadratic formulation provides a considerable improvement over the older cross product (CPSST) and multichannel (MCSST) algorithms, the SSM/I corrected SST (called the water vapor or WVSST) shows overall smaller errors when compared to both the skin and bulk in situ SST observations. Applied to individual AVHRR images, the WVSST reveals an SST difference pattern (CPSST-WVSST) similar in shape to the water vapor structure while the CPSST-quadratic SST difference appears unrelated in pattern to the nearly coincident water vapor pattern. An application of the WVSST to week-long composites of global area coverage (GAC) AVHRR data demonstrates again the manner in which the WVSST corrects the AVHRR for atmospheric moisture attenuation. By comparison the quadratic SST method underestimates the SST corrections in the lower latitudes and overestimates the SST in th e higher latitudes. Correlations between the AVHRR thermal channel differences and the SSM/I water vapor demonstrate the inability of the channel difference to represent water vapor in the midlatitude and high latitudes during summer. Compared against drifting buoy data the WVSST and the quadratic SST both exhibit the same general behavior with the relatively small differences with the buoy temperatures.

  2. New Examination of the Traditional Raman Lidar Technique II: Temperature Dependence Aerosol Scattering Ratio and Water Vapor Mixing Ratio Equations

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Abshire, James B. (Technical Monitor)

    2002-01-01

    In a companion paper, the temperature dependence of Raman scattering and its influence on the Raman water vapor signal and the lidar equations was examined. New forms of the lidar equation were developed to account for this temperature sensitivity. Here we use those results to derive the temperature dependent forms of the equations for the aerosol scattering ratio, aerosol backscatter coefficient, extinction to backscatter ratio and water vapor mixing ratio. Pertinent analysis examples are presented to illustrate each calculation.

  3. Characterization of temperature non-uniformity over a premixed CH4-air flame based on line-of-sight TDLAS

    NASA Astrophysics Data System (ADS)

    Zhang, Guangle; Liu, Jianguo; Xu, Zhenyu; He, Yabai; Kan, Ruifeng

    2016-01-01

    A novel technique for characterizing temperature non-uniformity has been investigated based on measurements of line-of-sight tunable diode laser absorption spectroscopy. It utilized two fiber-coupled distributed feedback diode lasers at wavelengths around 1339 and 1392 nm as light sources to probe the field at multiple absorptions lines of water vapor and applied a temperature binning strategy combined with Gauss-Seidel iteration method to explore the temperature non-uniformity of the field in one dimension. The technique has been applied to a McKenna burner, which produced a flat premixed laminar CH4-air flame. The flame and its adjacent area formed an atmospheric field with significant non-uniformity of temperature and water vapor concentration. The effect of the number of temperature bins on column-density and temperature results has also been explored.

  4. Characteristics of low-temperature short heat pipes with a nozzle-shaped vapor channel

    NASA Astrophysics Data System (ADS)

    Seryakov, A. V.

    2016-01-01

    This paper presents the results of experimental and numerical studies of heat transfer and swirling pulsating flows in short low-temperature heat pipes whose vapor channels have the form of a conical nozzle. It has been found that as the evaporator of the heat pipe is heated, pressure pulsations occur in the vapor channel starting at a certain threshold value of the heat power, which is due to the start of boiling in the evaporator. The frequency of the pulsations has been measured, and their dependence on the superheat of the evaporator has been determined. It has been found that in heat pipes with a conical vapor channel, pulsations occur at lower evaporator superheats and the pulsation frequency is greater than in heat pipes of the same size with a standard cylindrical vapor channel. It has been shown that the curve of the heat-transfer coefficient versus thermal load on the evaporator has an inflection corresponding to the start of boiling in the capillary porous evaporator of the heat pipe.

  5. Low temperature magnetothermoelectric effect and magnetoresistance in Te vapor annealed Bi2Te3.

    PubMed

    Hor, Y S; Qu, D; Ong, N P; Cava, R J

    2010-09-22

    The electrical properties of single crystals of p-type Bi(2)Te(3) are shown to be tuned by annealing as-grown crystals in elemental Te vapor at temperatures in the range of 400-420 °C. While as-grown nominally stoichiometric Bi(2)Te(3) has p-type conductivity below room temperature, Te vapor annealed Bi(2)Te(3) shows a cross over from p- to n-type behavior. The temperature dependent resistivity of the Te annealed crystals shows a characteristic broad peak near 100 K. Applied magnetic fields give rise to a large low temperature magnetothermoelectric effect in the Te annealed samples and enhance the low temperature peak in the resistivity. Further, Te annealed Bi(2)Te(3) shows a large positive magnetoresistance, ∼ 200% at 2 K, and ∼ 15% at room temperature. The annealing procedure described can be employed to optimize the properties of Bi(2)Te(3) for study as a topological insulator.

  6. Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Ismail, Syed; Grossmann, Benoist E.

    1991-01-01

    Recently measured properties of water vapor (H2O) absorption lines have been used in calculations to evalute the temperature sensitivity of differential absorption lidar (Dial) H2O measurements. This paper estimates the temperature sensitivity of H2O lines in the 717-733-nm region for both H2O mixing ratio and number density measurements, and discusses the influence of the H2O line ground state energies E-double-prime, the H2O absorption linewidths, the linewidth temperature dependence parameter, and the atmospheric temperature and pressure variations with altitude and location on the temperature sensitivity calculations. Line parameters and temperature sensitivity calculations for 67 H2O lines in the 720-nm band are given which can be directly used in field experiments. Water vapor lines with E-double-prime values in the 100-300/cm range were found to be optimum for Dial measurements of H2O number densities, while E-double-prime values in the 250-500/cm range were found to be optimum for H2O mixing ratio measurements.

  7. Influence of temperature changes on ambient air NOx chemiluminescence measurements.

    PubMed

    Miñarro, Marta Doval; Ferradás, Enrique González; Martínez, Francisco J Marzal

    2012-09-01

    Users of automatic air pollution monitors are largely unaware of how certain parameters, like temperature, can affect readings. The present work examines the influence of temperature changes on chemiluminescence NO(x) measurements made with a Thermo Scientific 42i analyzer, a model widely used in air monitoring networks and air pollution studies. These changes are grouped into two categories according to European Standard EN 14211: (1) changes in the air surrounding the analyzers and (2) changes in the sampled air. First, the sensitivity tests described in Standard EN 14211 were performed to determine whether the analyzer performance was adapted to the requirements of the standard. The analyzer met the performance criteria of both tests; however, some differences were detected in readings with temperature changes even though the temperature compensator was on. Sample temperature changes were studied more deeply as they were the most critical (they cannot be controlled and differences of several tens of degrees can be present in a single day). Significant differences in readings were obtained when changing sample temperature; however, maximum deviations were around 3% for temperature ranges of 15°C. If other possible uncertainty contributions are controlled and temperature variations with respect to the calibration temperature are not higher than 15°C, the effect of temperature changes could be acceptable and no data correction should have to be applied. PMID:21964932

  8. LIMS Instrument Package (LIP) balloon experiment: Nimbus 7 satellite correlative temperature, ozone, water vapor, and nitric acid measurements

    NASA Technical Reports Server (NTRS)

    Lee, R. B., III; Gandrud, B. W.; Robbins, D. E.; Rossi, L. C.; Swann, N. R. W.

    1982-01-01

    The Limb Infrared Monitor of the Stratosphere (LIMS) LIP balloon experiment was used to obtain correlative temperature, ozone, water vapor, and nitric acid data at altitudes between 10 and 36 kilometers. The performance of the LIMS sensor flown on the Nimbus 7 Satellite was assessed. The LIP consists of the modified electrochemical concentration cell ozonesonde, the ultraviolet absorption photometric of ozone, the water vapor infrared radiometer sonde, the chemical absorption filter instrument for nitric acid vapor, and the infrared radiometer for nitric acid vapor. The limb instrument package (LIP), its correlative sensors, and the resulting data obtained from an engineering and four correlative flights are described.

  9. Solar Eclipse Effect on Shelter Air Temperature

    NASA Technical Reports Server (NTRS)

    Segal, M.; Turner, R. W.; Prusa, J.; Bitzer, R. J.; Finley, S. V.

    1996-01-01

    Decreases in shelter temperature during eclipse events were quantified on the basis of observations, numerical model simulations, and complementary conceptual evaluations. Observations for the annular eclipse on 10 May 1994 over the United States are presented, and these provide insights into the temporal and spatial changes in the shelter temperature. The observations indicated near-surface temperature drops of as much as 6 C. Numerical model simulations for this eclipse event, which provide a complementary evaluation of the spatial and temporal patterns of the temperature drops, predict similar decreases. Interrelationships between the temperature drop, degree of solar irradiance reduction, and timing of the peak eclipse are also evaluated for late spring, summer, and winter sun conditions. These simulations suggest that for total eclipses the drops in shelter temperature in midlatitudes can be as high as 7 C for a spring morning eclipse.

  10. Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures.

    PubMed

    Cantoro, Mirco; Hofmann, Stephan; Pisana, Simone; Scardaci, Vittorio; Parvez, Atlus; Ducati, Caterina; Ferrari, Andrea C; Blackburn, Arthur M; Wang, Kai-You; Robertson, John

    2006-06-01

    We report surface-bound growth of single-wall carbon nanotubes (SWNTs) at temperatures as low as 350 degrees C by catalytic chemical vapor deposition from undiluted C2H2. NH3 or H2 exposure critically facilitates the nanostructuring and activation of sub-nanometer Fe and Al/Fe/Al multilayer catalyst films prior to growth, enabling the SWNT nucleation at lower temperatures. We suggest that carbon nanotube growth is governed by the catalyst surface without the necessity of catalyst liquefaction.

  11. Temperature dependent electrical properties of polyaniline film grown on paper through aniline vapor polymerization

    NASA Astrophysics Data System (ADS)

    Deb, K.; Bhowmik, K. L.; Bera, A.; Chattopadhyay, K. K.; Saha, B.

    2016-05-01

    Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline film is well suited for their applications in electronic devices.

  12. Temperature dependent shape transformation of Ge nanostructures by the vapor-liquid-solid method

    NASA Astrophysics Data System (ADS)

    Das, K.; Chakraborty, A. K.; NandaGoswami, M. L.; Shingha, R. K.; Dhar, A.; Coleman, K. S.; Ray, S. K.

    2007-04-01

    A vapor-liquid-solid method has been used to study the temperature dependent growth mechanism of Ge nanostructures on Au-coated Si (100) substrates. The formation of Ge nanodots, nanorods, and nanowires has been observed at different growth temperatures. The diameter of grown nanowires is found to be varying from 40 to 80 nm and that of nanorods from 70 to 90 nm, respectively. A comparative study has been done on three types of samples using x-ray diffraction and Raman spectroscopy. Photoluminescence spectra of grown nanostructures exhibit a broad emission band around 2.6 eV due to oxide related defect states.

  13. Trapping of water vapor from an atmosphere by condensed silicate matter formed by high-temperature pulse vaporization

    NASA Technical Reports Server (NTRS)

    Gerasimov, M. V.; Dikov, Yu. P.; Yakovlev, O. I.; Wlotzka, F.

    1993-01-01

    The origin of planetary atmospheres is thought to be the result of bombardment of a growing planet by massive planetesimals. According to some models, the accumulation of released water vapor and/or carbon dioxide can result in the formation of a dense and hot primordial atmosphere. Among source and sink processes of atmospheric water vapor the formation of hydroxides was considered mainly as rehydration of dehydrated minerals (foresterite and enstatite). From our point of view, the formation of hydroxides is not limited to rehydration. Condensation of small silicate particles in a spreading vapor cloud and their interaction with a wet atmosphere can also result in the origin of hydrated phases which have no genetic connections with initial water bearing minerals. We present results of two experiments of a simulated interaction of condensed silicate matter which originated during vaporization of dry clinopyroxene in a wet helium atmosphere.

  14. Quantification and control of the spatiotemporal gradients of air speed and air temperature in an incubator.

    PubMed

    Van Brecht, A; Aerts, J M; Degraeve, P; Berckmans, D

    2003-11-01

    Around the optimal incubator air temperature only small spatiotemporal deviations are allowed. However, air speed and air temperature are not uniformly distributed in the total volume of the incubator due to obstruction of the eggs and egg trays. The objectives of this research were (1) to quantify the spatiotemporal gradients in temperature and velocity and (2) to develop and validate a control algorithm to increase the uniformity in temperature during the entire incubation process. To improve the uniformity of air temperature, the airflow pattern and the air quality need to be controlled more optimally. These data show that the air temperature between the eggs at a certain position in a large incubator is the result of (1) the mean air temperature of the incubator; (2) the exchange of heat between the egg and its micro-environment, which is affected by the air speed at that certain position; (3) the time-variable heat production of the embryo; and (4) the heat influx or efflux as a result from the movement of hot or cold air in the incubator toward that position, which is affected by the airflow pattern. This implies that the airflow pattern needs to be controlled in a more optimal way. To maximize the uniformity of air temperature, an active and adaptive control of the three-dimensional (3-D) airflow pattern has been developed and tested. It was found to improve the spatiotemporal temperature distribution. The chance of having a temperature reading in the interval from 37.5 to 38.1 degrees C increased by 3% compared to normal operating conditions.

  15. Effect of temperature on oxygen quenching of excited states polycyclic aromatic compounds in the vapor phase

    NASA Astrophysics Data System (ADS)

    Zalesskaya, G. A.; Kuchinskiĭ, A. V.

    2009-01-01

    The temperature dependences of oxygen quenching rate constants of singlet ( k_S^{O_2 } ) and triplet ( k_T^{O_2 } ) states, as well as of the fractions of singlet ( q_S^{O_2 } ) and triplet ( q_T^{O_2 } ) states quenched by oxygen in vapor pahse of polycyclic aromatic hydrocarbons (PAHs), namely, anthracene, 2-aminoanthracene, 9-methylanthracene, 9,10-dibromoanthracene, chrysene, phenanthrene, fluoranthene, and carbazole, are studied. It is found that in the temperature range 433-673 K, the oxygen quenching rate constants of polycyclic aromatic hydrocarbons either do not change or slightly decrease with increasing temperature. The quenching activation energies E a for these cases are determined. The effect of the stored vibrational energy and the free energy of electron transfer from a PAH to oxygen on the temperature dependences of k_S^{O_2 } and k_T^{O_2 } is considered. The role played by charge-transfer complexes in the observed temperature dependences k_S^{O_2 } of and k_T^{O_2 } , as well as the applicability of a model of electron transfer concerted with reorganization of reactants for description of quenching in heated vapors is discussed.

  16. Temperature Dependence and Energetics of Single Ions at the Aqueous Liquid-Vapor Interface

    PubMed Central

    Ou, Shuching; Patel, Sandeep

    2014-01-01

    We investigate temperature-dependence of free energetics with two single halide anions, I− and Cl−, crossing the aqueous liquid-vapor interface through molecular dynamics simulations. The result shows that I− has a modest surface stability of 0.5 kcal/mol at 300 K and the stability decreases as the temperature increases, indicating the surface adsorption process for the anion is entropically disfavored. In contrast, Cl− shows no such surface state at all temperatures. Decomposition of free energetics reveals that water-water interactions provide a favorable enthalpic contribution, while the desolvation of ion induces an increase in free energy. Calculations of surface fluctuations demonstrate that I− generates significantly greater interfacial fluctuations compared to Cl−. The fluctuation is attributed to the malleability of the solvation shells, which allows for more long-ranged perturbations and solvent density redistribution induced by I− as the anion approaches the liquid-vapor interface. The increase in temperature of the solvent enhances the inherent thermally-excited fluctuations and consequently reduces the relative contribution from anion to surface fluctuations, which is consistent with the decrease in surface-stability of I−. Our results indicate a strong correlation with induced interfacial fluctuations and anion surface stability; moreover, resulting temperature dependent behavior of induced fluctuations suggests the possibility of a critical level of induced fluctuations associated with surface stability. PMID:23537166

  17. The influence of temperature on the polymerization of ethyl cyanoacrylate from the vapor phase

    SciTech Connect

    Dadmun, Mark D; Algaier, Dana; Baskaran, Durairaj

    2011-01-01

    The polymerization of ethyl cyanoacrylate fumes from surface bound initiators is an important step in many novel and mature technologies. Understanding the effect of temperature on the rate of poly(ethyl cyanoacrylate) (PECA) growth and its molecular weight during its polymerization from the vapor phase from surface bound initiators provides insight into the important mechanistic aspects that impact the polymerizations success. In these studies, it is shown that the amount of PECA formed during the polymerization of ECA from a latent fingerprint increases with decreasing temperature, while the polymer molecular weight varies little. This is interpreted to be the result of the loosening of the ion pair that initiates the polymer chain growth and resides on the end of the growing polymer chain with decreasing temperature. Comparison of temperature effects and counter-ion studies show that in both cases loosening the ion pair results in the formation of more polymer with similar molecular weight, verifying this interpretation. These results further suggest that lowering the temperature may be an effective method to optimize anionic vapor phase polymerizations, including the improvement of the quality of aged latent prints and preliminary results are presented that substantiate this prediction.

  18. Comparison of MODIS Land Surface Temperature and Air Temperature over the Continental USA Meteorological Stations

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Bounoua, Lahouari; Imhoff, Marc L.; Wolfe, Robert E.; Thome, Kurtis

    2014-01-01

    The National Land Cover Database (NLCD) Impervious Surface Area (ISA) and MODIS Land Surface Temperature (LST) are used in a spatial analysis to assess the surface-temperature-based urban heat island's (UHIS) signature on LST amplitude over the continental USA and to make comparisons to local air temperatures. Air-temperature-based UHIs (UHIA), calculated using the Global Historical Climatology Network (GHCN) daily air temperatures, are compared with UHIS for urban areas in different biomes during different seasons. NLCD ISA is used to define urban and rural temperatures and to stratify the sampling for LST and air temperatures. We find that the MODIS LST agrees well with observed air temperature during the nighttime, but tends to overestimate it during the daytime, especially during summer and in nonforested areas. The minimum air temperature analyses show that UHIs in forests have an average UHIA of 1 C during the summer. The UHIS, calculated from nighttime LST, has similar magnitude of 1-2 C. By contrast, the LSTs show a midday summer UHIS of 3-4 C for cities in forests, whereas the average summer UHIA calculated from maximum air temperature is close to 0 C. In addition, the LSTs and air temperatures difference between 2006 and 2011 are in agreement, albeit with different magnitude.

  19. Decadal variability in PMCs and implications for changing temperature and water vapor in the upper mesosphere

    NASA Astrophysics Data System (ADS)

    Hervig, Mark E.; Berger, Uwe; Siskind, David E.

    2016-03-01

    Observations of polar mesospheric clouds (PMC) from the solar backscatter ultraviolet (SBUV) satellite instruments are used to characterize variability and trends from 1979 to 2014. The SBUV PMC record indicates decadal oscillations during the 1980s and 1990s, which are expected to result from the 11 year solar cycle. This oscillation is absent in the recent decade, however, and we speculate that solar cycle effects at PMC altitudes during the 1980s and 1990s may have been fortuitously amplified by stratospheric warming due to volcanic eruptions which occurred near solar maximum. SBUV trend results are compared with temperature, water vapor, and PMCs from the Mesospheric Ice Microphysics and Transport (MIMAS) model. Both SBUV and the model indicate positive trends in PMC vertically integrated water content (IWC), which increase toward higher latitudes. Using analysis of Solar Occultation for Ice Experiment (SOFIE) observations, the SBUV IWC trends are expressed in terms of the underlying changes in temperature and water vapor in the upper mesosphere. SBUV indicates cooling trends that increase toward higher latitudes (-0.5 ± 0.2 K decade-1 at 77°N), consistent with the MIMAS model and scant observations. SBUV indicates increasing water vapor in the Northern Hemisphere upper mesosphere (0.07 ± 0.03 ppmv decade-1 at 77°N, insignificant in the Southern Hemisphere), with values that are consistent with MIMAS but less than expected due to increasing methane.

  20. High-temperature interactions of alkali vapors with solids during coal combustion and gasification

    SciTech Connect

    Punjak, W.A.

    1988-01-01

    A temperature and concentration programmed reaction method is used to investigate the mechanism by which organically bound alkali is released from carbonaceous substrates. Vaporization of the alkali is preceded by reduction of oxygen-bearing groups during which CO is generated. A residual amount of alkali remains after complete reduction. This residual level is greater for potassium, indicating that potassium has stronger interactions with graphitic substrates that sodium. Other mineral substrates were exposed to high temperature alkali chloride vapors under both nitrogen and simulated flue gas atmospheres to investigate their potential application as sorbents for the removal of alkali from coal conversion flue gases. The compounds containing alumina and silica are found to readily adsorb alkali vapors and the minerals kaolinite, bauxite and emathlite are identified as promising alkali sorbents. The fundamentals of alkali adsorption on kaolinite, bauxite and emathlite are compared and analyzed both experimentally and through theoretical modeling. The experiments were performed in a microgravimetric reactor system; the sorbents were characterized before and after alkali adsorption using scanning Auger microscopy, X-ray diffraction analysis, mercury porosimetry and atomic emission spectrophotometry. The results show that the process is not a simple physical condensation, but a complex combination of several diffusion steps and reactions.

  1. Retrieval of air temperatures from crowd-sourced battery temperatures of cell phones

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James; Leijnse, Hidde; Uijlenhoet, Remko; Steeneveld, Gert-Jan; Horn, Berthold K. P.

    2013-04-01

    Accurate air temperature observations are important for urban meteorology, for example to study the urban heat island and adverse effects of high temperatures on human health. The number of available temperature observations is often relatively limited. A new development is presented to derive temperature information for the urban canopy from an alternative source: cell phones. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. Results are presented for Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree Celsius. This shows that monitoring air temperatures employing an Android application holds great promise. Since 75% of the world's population has a cell phone, 20% of the land surface of the earth has cellular telephone coverage, and 500 million devices use the Android operating system, there is a huge potential for measuring air temperatures employing cell phones. This could eventually lead to real-time world-wide temperature maps.

  2. Associations of endothelial function and air temperature in diabetic subjects

    EPA Science Inventory

    Background and Objective: Epidemiological studies consistently show that air temperature is associated with changes in cardiovascular morbidity and mortality. However, the biological mechanisms underlying the association remain largely unknown. As one index of endothelial functio...

  3. Water vapor and air transport through ponds with floating aquatic plants.

    PubMed

    Kirzhner, F; Zimmels, Y

    2006-08-01

    The purpose of this paper is to estimate the evaporation rate in the purification of wastewater by aquatic plants with aeration. Evaporation of surface water is important in dewatering processes. In particular, this is true in arid climates, where evaporation rates are high. Aeration is known to enhance the wastewater purification process, but it increases concurrently the water evaporation rates. Evaporation and evapotranspiration rates were tested under field and laboratory conditions. Batch experiments were performed to study the levels of evaporation and evapotranspiration in free-water-surface, aquatic-plant systems. The experiments verified that, in these systems, the rate of evaporation increased as a result of aeration in the presence and absence of the aquatic plants. The evaporation rates resulting from aeration were found to be significant in the water balance governing the purification process. A preliminary model for description of the effect of rising air bubbles on the transport of water vapors was formulated. It is shown that aeration may account for a significant part of water losses that include surface evaporation. PMID:17059143

  4. Studies of air, water, and ethanol vapor atmospheric pressure plasmas for antimicrobial applications.

    PubMed

    Ferrell, James R; Bogovich, Erinn R; Lee, Nicholas R; Gray, Robert L; Pappas, Daphne D

    2015-06-25

    The generation of air-based plasmas under atmospheric plasma conditions was studied to assess their antimicrobial efficacy against commonly found pathogenic bacteria. The mixture of initial gases supplied to the plasma was found to be critical for the formation of bactericidal actives. The optimal gas ratio for bactericidal effect was determined to be 99% nitrogen and 1% oxygen, which led to a 99.999% reduction of a pathogenic strain of Escherichia coli on stainless steel surfaces. The experimental substrate, soil load on the substrate, flow rate of the gases, and addition of ethanol vapor all were found to affect antimicrobial efficacy of studied plasmas. Optical emission spectroscopy was used to identify the species that were present in the plasma bulk phase for multiple concentrations of nitrogen and oxygen ratios. The collected spectra indicate a unique series of bands present in the ultraviolet region of the electromagnetic spectrum that can be attributed to nitric oxide species known to be highly antimicrobial. This intense spectral profile dramatically changes as the concentration of nitrogen decreases.

  5. Studies of air, water, and ethanol vapor atmospheric pressure plasmas for antimicrobial applications.

    PubMed

    Ferrell, James R; Bogovich, Erinn R; Lee, Nicholas R; Gray, Robert L; Pappas, Daphne D

    2015-01-01

    The generation of air-based plasmas under atmospheric plasma conditions was studied to assess their antimicrobial efficacy against commonly found pathogenic bacteria. The mixture of initial gases supplied to the plasma was found to be critical for the formation of bactericidal actives. The optimal gas ratio for bactericidal effect was determined to be 99% nitrogen and 1% oxygen, which led to a 99.999% reduction of a pathogenic strain of Escherichia coli on stainless steel surfaces. The experimental substrate, soil load on the substrate, flow rate of the gases, and addition of ethanol vapor all were found to affect antimicrobial efficacy of studied plasmas. Optical emission spectroscopy was used to identify the species that were present in the plasma bulk phase for multiple concentrations of nitrogen and oxygen ratios. The collected spectra indicate a unique series of bands present in the ultraviolet region of the electromagnetic spectrum that can be attributed to nitric oxide species known to be highly antimicrobial. This intense spectral profile dramatically changes as the concentration of nitrogen decreases. PMID:25810273

  6. The stability of Au-chloride complexes in water vapor at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Archibald, S. M.; Migdisov, A. A.; Williams-Jones, A. E.

    2001-12-01

    The solubility of gold in liquid-undersaturated HCl-bearing water vapor was investigated experimentally at temperatures of 300 to 360°C and pressures up to 144 bars. Results of these experiments show that the solubility of gold in the vapor phase is significant and increases with increasing fHCl and fH 2O . This behavior of gold is attributed to formation of hydrated gold-chloride gas species, interpreted to have a gold-chlorine ratio of 1:1 and a hydration number varying from 5 at 300°C to 3 at 360°C. These complexes are proposed to have formed through the following reaction: Ausolid+ m· HClgas+ n· H2Ogas= AuClm·( H2O) ngas+ m/2· H2gas which was determined to have log K values of -17.28 ± 0.36 at 300°C, -18.73 ± 0.66 at 340°C, and -18.74 ± 0.43 at 360°C. Gold solubility in the vapor was retrograde, i.e., it decreased with increasing temperature, possibly as a result of the inferred decrease in hydration number. Calculations based on our data indicate that at 300°C and fO 2-pH conditions, encountered in high sulfidation epithermal systems, the vapor phase can transport up to 6.6 ppb gold, which would be sufficient to form an economic deposit (e.g., Nansatsu, Japan; 36 tonnes) in ˜ 30,000 yr.

  7. Heliotropic leaf movements in common beans controlled by air temperature.

    PubMed

    Fu, Q A; Ehleringer, J R

    1989-11-01

    Heliotropic leaf movements were examined in common beans (Phaseolus vulgaris cv Blue Lake Bush) under outdoor and laboratory conditions. Heliotropic leaf movements in well-watered plants were partly controlled by temperature, and appeared to be independent of atmospheric humidity and CO(2) concentration. When environmental conditions were held constant in the laboratory, increased air temperature caused bean leaves to orient more obliquely to a light source. Ambient CO(2), intercellular CO(2), and net photosynthesis were not correlated with the temperature-induced changes in heliotropic movements, nor did they significantly affect these movements directly. The effect of air temperature on leaf movements need not be mediated through a change in leaf water potential, transpiration, or leaf conductance. Air temperature modified laminar orientation in light through its effect on tissue temperature in the pulvinal region, not that of the lamina or petiole. However, under darkness the temperature effects on leaf movements were not expressed. Active heliotropic movements in response to air temperature allowed lamina temperature to remain close to the thermal optimum of photosynthesis. This temperature effect underlies a commonly observed pattern of leaf movements under well-watered conditions: a tendency for leaves to face the sun more obliquely on hot days than cool days. PMID:16667127

  8. Molecular Orientation in Two Component Vapor-Deposited Glasses: Effect of Substrate Temperature and Molecular Shape

    NASA Astrophysics Data System (ADS)

    Powell, Charles; Jiang, Jing; Walters, Diane; Ediger, Mark

    Vapor-deposited glasses are widely investigated for use in organic electronics including the emitting layers of OLED devices. These materials, while macroscopically homogenous, have anisotropic packing and molecular orientation. By controlling this orientation, outcoupling efficiency can be increased by aligning the transition dipole moment of the light-emitting molecules parallel to the substrate. Light-emitting molecules are typically dispersed in a host matrix, as such, it is imperative to understand molecular orientation in two-component systems. In this study we examine two-component vapor-deposited films and the orientations of the constituent molecules using spectroscopic ellipsometry, UV-vis and IR spectroscopy. The role of temperature, composition and molecular shape as it effects molecular orientation is examined for mixtures of DSA-Ph in Alq3 and in TPD. Deposition temperature relative to the glass transition temperature of the two-component mixture is the primary controlling factor for molecular orientation. In mixtures of DSA-Ph in Alq3, the linear DSA-Ph has a horizontal orientation at low temperatures and slight vertical orientation maximized at 0.96Tg,mixture, analogous to one-component films.

  9. Impact of autumn SST in the Japan Sea on winter rainfall and air temperature in Northeast China

    NASA Astrophysics Data System (ADS)

    Shi, Xiaomeng; Sun, Jilin; Wu, Dexing; Yi, Li; Wei, Dongni

    2015-08-01

    We studied the impact of sea surface temperature anomaly (SSTA) in the Japan Sea and the sea area east of Japan on the winter rainfall and air temperature in Northeast (NE) China using the singular value decomposition (SVD) and empirical orthogonal function (EOF). The monthly-mean rainfall data observed at 160 stations in China, monthly-mean sea surface temperature (SST) of the Hadley Center for Climate Prediction and Research and monthly-mean air temperature from the NCEP reanalysis during 1960-2011 were used. Correlation analysis indicates that the SSTAs in the Japan Sea in September may last for three or four months and are an important index for forecasting the winter rainfall and air temperature in NE China. Positive SSTAs in the central Japan Sea and in the sea area east of Tokyo correspond to positive rainfall anomaly and negative air temperature anomaly in NE China. With the rise of SST in the Japan Sea, a weak cyclone appears over the Japan Sea. The northeasterly wind transports water vapor from the Okhotsk to NE China, resulting in more rainfall and lower air temperature. Negative SSTA years are accompanied by warmer air temperature and less snow in NE China. The 1000 hPa geopotential height anomaly and wind anomaly fields are simulated by IAP-9L model, which supports the analysis results.

  10. The Metastable Persistence of Vapor-Deposited Amorphous Ice at Anomalously High Temperatures

    NASA Technical Reports Server (NTRS)

    Blake, David F.; Jenniskens, Peter; DeVincenzi, Donald L. (Technical Monitor)

    1995-01-01

    Studies of the gas release, vaporization behavior and infrared (IR) spectral properties of amorphous and crystalline water ice have direct application to cometary and planetary outgassing phenomena and contribute to an understanding of the physical properties of astrophysical ices. Several investigators report anomalous phenomena related to the warming of vapor-deposited astrophysical ice analogs. However gas release, ice volatilization and IR spectral features are secondary or tertiary manifestations of ice structure or morphology. These observations are useful in mimicking the bulk physical and chemical phenomena taking place in cometary and other extraterrestrial ices but do not directly reveal the structural changes which are their root cause. The phenomenological interpretation of spectral and gas release data is probably the cause of somewhat contradictory explanations invoked to account for differences in water ice behavior in similar temperature regimes. It is the microstructure, micromorphology and microchemical heterogeneity of astrophysical ices which must be characterized if the mechanisms underlying the observed phenomena are to be understood. We have been using a modified Transmission Electron Microscope to characterize the structure of vapor-deposited astrophysical ice analogs as a function of their deposition, temperature history and composition. For the present experiments, pure water vapor is deposited at high vacuum onto a 15 K amorphous carbon film inside an Hitachi H-500H TEM. The resulting ice film (approx. 0.05 micrometers thick) is warmed at the rate of 1 K per minute and diffraction patterns are collected at 1 K intervals. These patterns are converted into radial intensity distributions which are calibrated using patterns of crystalline gold deposited on a small part of the carbon substrate. The small intensity contributed by the amorphous substrate is removed by background subtraction. The proportions of amorphous and crystalline material

  11. A Well-Mixed Computational Model for Estimating Room Air Levels of Selected Constituents from E-Vapor Product Use

    PubMed Central

    Rostami, Ali A.; Pithawalla, Yezdi B.; Liu, Jianmin; Oldham, Michael J.; Wagner, Karl A.; Frost-Pineda, Kimberly; Sarkar, Mohamadi A.

    2016-01-01

    Concerns have been raised in the literature for the potential of secondhand exposure from e-vapor product (EVP) use. It would be difficult to experimentally determine the impact of various factors on secondhand exposure including, but not limited to, room characteristics (indoor space size, ventilation rate), device specifications (aerosol mass delivery, e-liquid composition), and use behavior (number of users and usage frequency). Therefore, a well-mixed computational model was developed to estimate the indoor levels of constituents from EVPs under a variety of conditions. The model is based on physical and thermodynamic interactions between aerosol, vapor, and air, similar to indoor air models referred to by the Environmental Protection Agency. The model results agree well with measured indoor air levels of nicotine from two sources: smoking machine-generated aerosol and aerosol exhaled from EVP use. Sensitivity analysis indicated that increasing air exchange rate reduces room air level of constituents, as more material is carried away. The effect of the amount of aerosol released into the space due to variability in exhalation was also evaluated. The model can estimate the room air level of constituents as a function of time, which may be used to assess the level of non-user exposure over time. PMID:27537903

  12. A Well-Mixed Computational Model for Estimating Room Air Levels of Selected Constituents from E-Vapor Product Use.

    PubMed

    Rostami, Ali A; Pithawalla, Yezdi B; Liu, Jianmin; Oldham, Michael J; Wagner, Karl A; Frost-Pineda, Kimberly; Sarkar, Mohamadi A

    2016-01-01

    Concerns have been raised in the literature for the potential of secondhand exposure from e-vapor product (EVP) use. It would be difficult to experimentally determine the impact of various factors on secondhand exposure including, but not limited to, room characteristics (indoor space size, ventilation rate), device specifications (aerosol mass delivery, e-liquid composition), and use behavior (number of users and usage frequency). Therefore, a well-mixed computational model was developed to estimate the indoor levels of constituents from EVPs under a variety of conditions. The model is based on physical and thermodynamic interactions between aerosol, vapor, and air, similar to indoor air models referred to by the Environmental Protection Agency. The model results agree well with measured indoor air levels of nicotine from two sources: smoking machine-generated aerosol and aerosol exhaled from EVP use. Sensitivity analysis indicated that increasing air exchange rate reduces room air level of constituents, as more material is carried away. The effect of the amount of aerosol released into the space due to variability in exhalation was also evaluated. The model can estimate the room air level of constituents as a function of time, which may be used to assess the level of non-user exposure over time. PMID:27537903

  13. Trichite growth during oxidation of titanium and TA6V4 alloy by water vapor at high temperatures

    NASA Technical Reports Server (NTRS)

    Coddet, C.; Motte, F.; Sarrazin, P.

    1982-01-01

    Analysis by electron scanning microscope detected the formation of rutile trichites on the surface of specimens of titanium and titanium alloy TA6V4 oxidized in water vapor in the temperature range 650 to 950 C and the water vapor pressure range from 0.5 to 18 torr. In all specimens, two sublayers of rutile were formed: an external layer of basalt-like appearance, and a microcrystalline inner layer. Morphology of the trichites depends on temperature and the material (whether metal or alloy), but not on vapor pressure.

  14. Senstitivity analysis of horizontal heat and vapor transfer coefficients for a cloud-topped marine boundary layer during cold-air outbreaks. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Chang, Y. V.

    1986-01-01

    The effects of external parameters on the surface heat and vapor fluxes into the marine atmospheric boundary layer (MABL) during cold-air outbreaks are investigated using the numerical model of Stage and Businger (1981a). These fluxes are nondimensionalized using the horizontal heat (g1) and vapor (g2) transfer coefficient method first suggested by Chou and Atlas (1982) and further formulated by Stage (1983a). In order to simplify the problem, the boundary layer is assumed to be well mixed and horizontally homogeneous, and to have linear shoreline soundings of equivalent potential temperature and mixing ratio. Modifications of initial surface flux estimates, time step limitation, and termination conditions are made to the MABL model to obtain accurate computations. The dependence of g1 and g2 in the cloud topped boundary layer on the external parameters (wind speed, divergence, sea surface temperature, radiative sky temperature, cloud top radiation cooling, and initial shoreline soundings of temperature, and mixing ratio) is studied by a sensitivity analysis, which shows that the uncertainties of horizontal transfer coefficients caused by changes in the parameters are reasonably small.

  15. Lessons Learned from AIRS: Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2011-01-01

    This slide presentation reviews the use of shortwave channels available to the Atmospheric Infrared Sounder (AIRS) to improve the determination of surface and atmospheric temperatures. The AIRS instrument is compared with the Infrared Atmospheric Sounding Interferometer (IASI) on-board the MetOp-A satellite. The objectives of the AIRS/AMSU were to (1) provide real time observations to improve numerical weather prediction via data assimilation, (2) Provide observations to measure and explain interannual variability and trends and (3) Use of AIRS product error estimates allows for QC optimized for each application. Successive versions in the AIRS retrieval methodology have shown significant improvement.

  16. Effect of Initial Mixture Temperature on Flame Speed of Methane-Air, Propane-Air, and Ethylene-Air Mixtures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L

    1952-01-01

    Flame speeds based on the outer edge of the shadow cast by the laminar Bunsen cone were determined as functions of composition for methane-air mixtures at initial mixture temperatures ranging from -132 degrees to 342 degrees c and for propane-air and ethylene-air mixtures at initial mixture temperatures ranging from -73 degrees to 344 degrees c. The data showed that maximum flame speed increased with temperature at an increasing rate. The percentage change in flame speed with change in initial temperature for the three fuels followed the decreasing order, methane, propane, and ethylene. Empirical equations were determined for maximum flame speed as a function of initial temperature over the temperature range covered for each fuel. The observed effect of temperature on flame speed for each of the fuels was reasonably well predicted by either the thermal theory as presented by Semenov or the square-root law of Tanford and Pease.

  17. Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor and Clouds

    SciTech Connect

    Westwater, Edgeworth

    2011-05-06

    The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement (ARM) Program. At the North Slope of Alaska (NSA), both microwave radiometers (MWR) and the MWRProfiler (MWRP), been used operationally by ARM for passive retrievals of the quantities: Precipitable Water Vapor (PWV) and Liquid Water Path (LWP). However, it has been convincingly shown that these instruments are inadequate to measure low amounts of PWV and LWP. In the case of water vapor, this is especially important during the Arctic winter, when PWV is frequently less than 2 mm. For low amounts of LWP (< 50 g/m{sup 2}), the MWR and MWRP retrievals have an accuracy that is also not acceptable. To address some of these needs, in March-April 2004, NOAA and ARM conducted the NSA Arctic Winter Radiometric Experiment - Water Vapor Intensive Operational Period at the ARM NSA/Adjacent Arctic Ocean (NSA/AAO) site. After this experiment, the radiometer group at NOAA moved to the Center for Environmental Technology (CET) of the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. During this 2004 experiment, a total of 220 radiosondes were launched, and radiometric data from 22.235 to 380 GHz were obtained. Primary instruments included the ARM MWR and MWRP, a Global Positioning System (GPS), as well as the CET Ground-based Scanning Radiometer (GSR). We have analyzed data from these instruments to answer several questions of importance to ARM, including: (a) techniques for improved water vapor measurements; (b) improved calibration techniques during cloudy conditions; (c) the spectral response of radiometers to a variety of conditions: clear, liquid, ice, and mixed phase clouds; and (d) forward modeling of microwave and millimeter wave brightness temperatures from 22 to 380 GHz. Many of these results have been published in the open literature. During the third year of

  18. Nuclear design of the burst power ultrahigh temperature UF4 vapor core reactor system

    NASA Astrophysics Data System (ADS)

    Kahook, Samer D.; Dugan, Edward T.

    1991-01-01

    Static and dynamic neutronic analyses are being performed, as part of an integrated series of studies, on an innovative burst power UF4 Ultrahigh Temperature Vapor Core Reactor (UTVR)/Disk Magnetohydrodynamic (MHD) generator for space nuclear power applications. This novel reactor concept operates on a direct, closed Rankine cycle in the burst power mode (hundreds of MWe for thousands of seconds). The fuel/working fluid is a mixture of UF4 and metal fluoride. Preliminary calculations indicate high overall system efficiencies (≊20%), small radiator size (≊5 m2/MWe), and high specific power (≊5 kWe/kg). Neutronic analysis has revealed a number of attractive features for this novel reactor concept. These include some unique and very effective inherent negative reactivity control mechanisms such as the vapor-fuel density power coefficient of reactivity, the direct neutronic coupling among the multiple fissioning core regions (the central vapor core and the surrounding boiler columns), and the mass flow coupling feedback between the fissioning cores.

  19. 46 CFR 154.1836 - Vapor venting as a means of cargo tank pressure and temperature control.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... temperature control. 154.1836 Section 154.1836 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... LIQUEFIED GASES Operations § 154.1836 Vapor venting as a means of cargo tank pressure and temperature... cargo pressure and temperature control system under §§ 154.701 through 154.709 is operating and...

  20. 46 CFR 154.1836 - Vapor venting as a means of cargo tank pressure and temperature control.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... temperature control. 154.1836 Section 154.1836 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... LIQUEFIED GASES Operations § 154.1836 Vapor venting as a means of cargo tank pressure and temperature... cargo pressure and temperature control system under §§ 154.701 through 154.709 is operating and...

  1. 46 CFR 154.1836 - Vapor venting as a means of cargo tank pressure and temperature control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... temperature control. 154.1836 Section 154.1836 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... LIQUEFIED GASES Operations § 154.1836 Vapor venting as a means of cargo tank pressure and temperature... cargo pressure and temperature control system under §§ 154.701 through 154.709 is operating and...

  2. 46 CFR 154.1836 - Vapor venting as a means of cargo tank pressure and temperature control.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... temperature control. 154.1836 Section 154.1836 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... LIQUEFIED GASES Operations § 154.1836 Vapor venting as a means of cargo tank pressure and temperature... cargo pressure and temperature control system under §§ 154.701 through 154.709 is operating and...

  3. 46 CFR 154.1836 - Vapor venting as a means of cargo tank pressure and temperature control.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... temperature control. 154.1836 Section 154.1836 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... LIQUEFIED GASES Operations § 154.1836 Vapor venting as a means of cargo tank pressure and temperature... cargo pressure and temperature control system under §§ 154.701 through 154.709 is operating and...

  4. Temperature dependence of Raman scattering of ZnSe nanoparticle grown through vapor phase

    NASA Astrophysics Data System (ADS)

    Lu, Guowei; An, Huizi; Chen, Yu; Huang, Jiehui; Zhang, Hongzhou; Xiang, Bin; Zhao, Qing; Yu, Dapeng; Du, Weimin

    2005-02-01

    ZnSe nanoparticles were synthesized through a vapor-phase reaction of zinc and selenium and deposited as random aggregates on a water-cooled copper collector. X-ray diffraction (XRD) and transmission electron microscopy (TEM) demonstrate that the as-grown nanoparticles are polycrystalline ZnSe nanoparticles. Their diameters can be controlled through the deposition temperature. Raman spectra of nanoparticles with different diameter-size distribution and bulk material were measured at various excitation laser power with 632.8 and 532 nm laser. The phonon confinement mode was considered, and three-phonon process were used to explain the Raman spectra variation. The temperature effect of Raman scattering on microcrystalline was more obvious when excited with 532 nm laser than 632.8 nm laser, and small-size particles show a stronger temperature effect than large-size particles.

  5. Helicon wave plasma chemical vapor deposition of nanocrystalline silicon carbide films at low substrate temperature

    NASA Astrophysics Data System (ADS)

    Yu, Wei; Lu, Wanbing; Wang, Baozhu; Han, Li; Fu, Guangsheng

    2005-02-01

    Silicon carbide thin films have been deposited by helicon wave plasma enhanced chemical vapor deposition (HW-PECVD) technique under the conditions of variant deposition temperatures from 300 to 600°C. Silane, methane and hydrogen are used as reactive gas. The structural properties of the deposited films are characterized using Fourier transform infrared (FTIR), scan electron microscopy (SEM), transmission electron microscopy (TEM) and ultraviolet-visible optical absorption techniques. Detailed analysis of the FTIR spectra indicates that the onset of growing nanocrystalline SiC films at low substrate temperature is closed related with the high plasma ionization rate of helicon wave plasma and the condition of low working gas pressure and strong hydrogen dilution in experiment. The SEM and TEM measurements confirm that the structure of the deposited films is nanocrystalline SiC grains embedded in amorphous matrix and the size of the crystalline gains increases with substrate temperature.

  6. Hollow-Cathode Based Electrical Discharge in Atmospheric Pressure Water Vapor at Wide Range of Temperature

    NASA Astrophysics Data System (ADS)

    Koo, Il Gyo; Lee, Woong Moo

    2006-10-01

    Atmospheric pressure water vapor, in the temperature range from 150 to 700 °C, was used as the carrier gas for DC powered electrical discharge in hollow cathode configuration. The electrode assembly was constructed in usual hollow-cathode configuration by sandwiching a dielectric spacer, 200 μm thick, with two thin metal sheets and boring a micro hole of 300 μm diameter. The current-voltage profile of the discharge showed a positive differential resistivity characterizing an abnormal glow discharge. The power consumption for the water discharge at 700 °C was less than 50% the consumption at 150 °C. The reduction of the power for sustaining the discharge with increase of the gas temperature was partly explained by relating the ionic mobility and the distribution of ionic mean free path to the temperature.

  7. A Burst Mode, Ultrahigh Temperature UF4 Vapor Core Reactor Rankine Cycle Space Power System Concept

    NASA Technical Reports Server (NTRS)

    Dugan, E. T.; Kahook, S. D.; Diaz, N. J.

    1996-01-01

    Static and dynamic neutronic analyses have been performed on an innovative burst mode (100's of MW output for a few thousand seconds) Ulvahigh Temperature Vapor Core Reactor (UTVR) space nuclear power system. The NVTR employs multiple, neutronically-coupled fissioning cores and operates on a direct, closed Rankine cycle using a disk Magnetohydrodynamic (MHD) generater for energy conversion. The UTVR includes two types of fissioning core regions: (1) the central Ultrahigh Temperature Vapor Core (UTVC) which contains a vapor mixture of highly enriched UF4 fuel and a metal fluoride working fluid and (2) the UF4 boiler column cores located in the BeO moderator/reflector region. The gaseous nature of the fuel the fact that the fuel is circulating, the multiple coupled fissioning cores, and the use of a two phase fissioning fuel lead to unique static and dynamic neutronic characteristics. Static neutronic analysis was conducted using two-dimensional S sub n, transport theory calculations and three-dimensional Monte Carlo transport theory calculations. Circulating-fuel, coupled-core point reactor kinetics equations were used for analyzing the dynamic behavior of the UTVR. In addition to including reactivity feedback phenomena associated with the individual fissioning cores, the effects of core-to-core neutronic and mass flow coupling between the UTVC and the surrounding boiler cores were also included in the dynamic model The dynamic analysis of the UTVR reveals the existence of some very effectlve inherent reactivity feedback effects that are capable of quickly stabilizing this system, within a few seconds, even when large positive reactivity insertions are imposed. If the UTVC vapor fuel density feedback is suppressed, the UTVR is still inherently stable because of the boiler core liquid-fuel volume feedback; in contrast, suppression of the vapor fuel density feedback in 'conventional" gas core cavity reactors causes them to become inherently unstable. Due to the

  8. Wave number spectra from temperature-humidity infrared radiometer 6.7-micron water vapor data

    NASA Technical Reports Server (NTRS)

    Manney, Gloria L.; Stanford, John L.

    1990-01-01

    Wave number spectra from Nimbus 7 temperature-humidity infrared radiometer 6.7-micron water vapor data are analyzed using series 4800 km long, in regions free of high clouds and frontal zones. In these regions, the brightness temperatures approximate temperatures on a water vapor isosteric (constant density) surface, rather than averages over a broad vertical layer. Power above the noise can be extracted down to wavelengths of about 60 km. Fitting the power spectrum versus horizontal wave number k to a k to the -nth power law for wavelengths from 60 to a few hundred kilometers gives slopes of n = 2.7 to 3.0, depending on the exact wave numbers that are fitted. Thunderstorms and convective cloud systems may constitute an energy source for the reverse energy cascade which produces a -5/3 spectral slope. The results suggest that when these features are not present, the enstrophy-cascading process that gives a -3 slope may govern the motion at scales smaller than it has heretofore been observed.

  9. Validation of the IASI temperature and water vapor profile retrievals by correlative radiosondes

    NASA Astrophysics Data System (ADS)

    Pougatchev, Nikita; August, Thomas; Calbet, Xavier; Hultberg, Tim; Oduleye, Osoji; Schlüssel, Peter; Stiller, Bernd; St. Germain, Karen; Bingham, Gail

    2008-08-01

    The METOP-A satellite Infrared Atmospheric Sounding Interferometer (IASI) Level 2 products comprise retrievals of vertical profiles of temperature and water vapor. The L2 data were validated through assessment of their error covariances and biases using radiosonde data for the reference. The radiosonde data set includes dedicated launches as well as the ones performed at regular synoptic times at Lindenberg station, Germany). For optimal error estimate the linear statistical Validation Assessment Model (VAM) was used. The model establishes relation between the compared satellite and reference measurements based on their relations to the true atmospheric state. The VAM utilizes IASI averaging kernels and statistical characteristics of the ensembles of the reference data to allow for finite vertical resolution of the retrievals and spatial and temporal non-coincidence. For temperature retrievals expected and assessed errors are in good agreement; error variances/rms of a single FOV retrieval are 1K between 800 - 300 mb with an increase to ~1K in tropopause and ~2K at the surface, possibly due to wrong surface parameters and undetected clouds/haze. Bias against radiosondes oscillates within +/-0 5K . between 950 - 100 mb. As for water vapor, its highly variable complex spatial structure does not allow assessment of retrieval errors with the same degree of accuracy as for temperature. Error variances/rms of a single FOV relative humidity retrieval are between 10 - 13% RH in the 800 - 300 mb range.

  10. Hydride vapor phase epitaxy of AlN using a high temperature hot-wall reactor

    NASA Astrophysics Data System (ADS)

    Baker, Troy; Mayo, Ashley; Veisi, Zeinab; Lu, Peng; Schmitt, Jason

    2014-10-01

    Aluminum nitride (AlN) was grown on c-plane sapphire substrates by hydride vapor phase epitaxy (HVPE). The experiments utilized a two zone inductively heated hot-wall reactor. The surface morphology, crystal quality, and growth rate were investigated as a function of growth temperature in the range of 1450-1575 °C. AlN templates grown to a thickness of 1 μm were optimized with double axis X-ray diffraction (XRD) rocking curve full width half maximums (FWHMs) of 135″ for the (002) and 513″ for the (102).

  11. Temperature distribution of air source heat pump barn with different air flow

    NASA Astrophysics Data System (ADS)

    He, X.; Li, J. C.; Zhao, G. Q.

    2016-08-01

    There are two type of airflow form in tobacco barn, one is air rising, the other is air falling. They are different in the structure layout and working principle, which affect the tobacco barn in the distribution of temperature field and velocity distribution. In order to compare the temperature and air distribution of the two, thereby obtain a tobacco barn whose temperature field and velocity distribution are more uniform. Taking the air source heat pump tobacco barn as the investigated subject and establishing relevant mathematical model, the thermodynamics of the two type of curing barn was analysed and compared based on Fluent. Provide a reasonable evidence for chamber arrangement and selection of outlet for air source heat pump tobacco barn.

  12. Correlation among Cirrus Ice Content, Water Vapor and Temperature in the TTL as Observed by CALIPSO and Aura-MLS

    NASA Technical Reports Server (NTRS)

    Flury, T.; Wu, D. L.; Read, W. G.

    2012-01-01

    Water vapor in the tropical tropopause layer (TTL) has a local radiative cooling effect. As a source for ice in cirrus clouds, however, it can also indirectly produce infrared heating. Using NASA A-Train satellite measurements of CALIPSO and Aura/MLS we calculated the correlation of water vapor, ice water content and temperature in the TTL. We find that temperature strongly controls water vapor (correlation r =0.94) and cirrus clouds at 100 hPa (r = -0.91). Moreover we observe that the cirrus seasonal cycle is highly (r =-0.9) anticorrelated with the water vapor variation in the TTL, showing higher cloud occurrence during December-January-February. We further investigate the anticorrelation on a regional scale and find that the strong anticorrelation occurs generally in the ITCZ (Intertropical Convergence Zone). The seasonal cycle of the cirrus ice water content is also highly anticorrelated to water vapor (r = -0.91) and our results support the hypothesis that the total water at 100 hPa is roughly constant. Temperature acts as a main regulator for balancing the partition between water vapor and cirrus clouds. Thus, to a large extent, the depleting water vapor in the TTL during DJF is a manifestation of cirrus formation.

  13. Visual observation of the effect of magnetic field on moving air and vapor bubbles in a magnetic fluid

    NASA Astrophysics Data System (ADS)

    Nakatsuka, K.; Jeyadevan, B.; Akagami, Y.; Torigoe, T.; Asari, S.

    1999-07-01

    Theoretical prediction suggests that magnetic fluid (MF) as working liquid in heat pipe could enhance and control the heat transfer under the application of magnetic field. However, heat pipe experiments using ionic MF showed only marginal gain and demands investigation. As an initial step, visualization of air and vapor bubbles behavior under zero and applied magnetic field has been carried out using X-ray. The observations can be summarized as follows; applied magnetic field (a) reduces the size and deforms the shape of the bubble that secede from the heating surface or air supply tube, and (b) accelerates the movement of the bubble in the liquid.

  14. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes; test... for which approval is granted and at the minimum specified air-supply pressure. The maximum flow shall not exceed 425 liters (15 cubic feet) per minute at the maximum specified air-supply pressure with...

  15. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes; test... for which approval is granted and at the minimum specified air-supply pressure. The maximum flow shall not exceed 425 liters (15 cubic feet) per minute at the maximum specified air-supply pressure with...

  16. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes; test... for which approval is granted and at the minimum specified air-supply pressure. The maximum flow shall not exceed 425 liters (15 cubic feet) per minute at the maximum specified air-supply pressure with...

  17. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes; test... for which approval is granted and at the minimum specified air-supply pressure. The maximum flow shall not exceed 425 liters (15 cubic feet) per minute at the maximum specified air-supply pressure with...

  18. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes; test... for which approval is granted and at the minimum specified air-supply pressure. The maximum flow shall not exceed 425 liters (15 cubic feet) per minute at the maximum specified air-supply pressure with...

  19. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  20. Dependence of Tritium Release from Stainless Steel on Temperature and Water Vapor

    SciTech Connect

    Shmayda, W. T.; Sharpe, M.; Boyce, A. M.; Shea, R.; Petroski, B.; Schroeder, W. U.

    2015-09-15

    The impact of water vapor and temperature on the release of tritium from stainless steel was studied. Degreased stainless steel samples loaded with tritium at room temperature following a 24-h degassing in vacuum at room temperature were subjected to increasing temperatures or humidity. In general, increasing either the sample temperature or the humidity causes an increased quantity of tritium to be removed. Increasing the temperature to 300°C in a dry gas stream results in a significant release of tritium and is therefore an effective means for reducing the tritium inventory in steel. For humid purges at 30°C, a sixfold increase in humidity results in a tenfold increase in the peak outgassing rate. Increasing the humidity from 4 parts per million (ppm) to 1000 ppm when the sample temperature is 100°C causes a significant increase in the tritium outgassing rate. Finally, a simple calculation shows that only 15% of the activity present in the sample was removed in these experiments, suggesting that the surface layer of adsorbed water participates in regulating tritium desorption from the surface.

  1. Dependence of Tritium Release from Stainless Steel on Temperature and Water Vapor

    DOE PAGES

    Shmayda, W. T.; Sharpe, M.; Boyce, A. M.; Shea, R.; Petroski, B.; Schroeder, W. U.

    2015-09-15

    The impact of water vapor and temperature on the release of tritium from stainless steel was studied. Degreased stainless steel samples loaded with tritium at room temperature following a 24-h degassing in vacuum at room temperature were subjected to increasing temperatures or humidity. In general, increasing either the sample temperature or the humidity causes an increased quantity of tritium to be removed. Increasing the temperature to 300°C in a dry gas stream results in a significant release of tritium and is therefore an effective means for reducing the tritium inventory in steel. For humid purges at 30°C, a sixfold increasemore » in humidity results in a tenfold increase in the peak outgassing rate. Increasing the humidity from 4 parts per million (ppm) to 1000 ppm when the sample temperature is 100°C causes a significant increase in the tritium outgassing rate. Finally, a simple calculation shows that only 15% of the activity present in the sample was removed in these experiments, suggesting that the surface layer of adsorbed water participates in regulating tritium desorption from the surface.« less

  2. Improving Forecast Skill by Assimilation of AIRS Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The AIRS Version 5 retrieval algorithm, is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates delta T(p) for retrieved quantities and the use of these error estimates for Quality Control. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 deg. latitude X 0.67 deg longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates delta (p) were used as the uncertainty for each measurement in the data assimilation process. We compared forecasts analyses generated from the analyses done by assimilation of AIRS temperature profiles with three different sets of thresholds; Standard, Medium, and Tight. Assimilation of Quality Controlled AIRS temperature profiles significantly improve 5-7 day forecast skill compared to that obtained without the benefit of AIRS data in all of the cases studied. In addition, assimilation of Quality Controlled AIRS temperature soundings performs better than assimilation of AIRS observed radiances. Based on the experiments shown, Tight Quality Control of AIRS temperature profile performs best

  3. The impact of humidity on evaporative cooling in small desert birds exposed to high air temperatures.

    PubMed

    Gerson, Alexander R; Smith, Eric Krabbe; Smit, Ben; McKechnie, Andrew E; Wolf, Blair O

    2014-01-01

    Environmental temperatures that exceed body temperature (Tb) force endothermic animals to rely solely on evaporative cooling to dissipate heat. However, evaporative heat dissipation can be drastically reduced by environmental humidity, imposing a thermoregulatory challenge. The goal of this study was to investigate the effects of humidity on the thermoregulation of desert birds and to compare the sensitivity of cutaneous and respiratory evaporation to reduced vapor density gradients. Rates of evaporative water loss, metabolic rate, and Tb were measured in birds exposed to humidities ranging from ∼2 to 30 g H2O m(-3) (0%-100% relative humidity at 30°C) at air temperatures between 44° and 56°C. In sociable weavers, a species that dissipates heat primarily through panting, rates of evaporative water loss were inhibited by as much as 36% by high humidity at 48°C, and these birds showed a high degree of hyperthermia. At lower temperatures (40°-44°C), evaporative water loss was largely unaffected by humidity in this species. In Namaqua doves, which primarily use cutaneous evaporation, increasing humidity reduced rates of evaporative water loss, but overall rates of water loss were lower than those observed in sociable weavers. Our data suggest that cutaneous evaporation is more efficient than panting, requiring less water to maintain Tb at a given temperature, but panting appears less sensitive to humidity over the air temperature range investigated here.

  4. Supported ionic liquid membranes for removal of dioxins from high-temperature vapor streams.

    PubMed

    Kulkarni, Prashant S; Neves, Luisa A; Coelhoso, Isabel M; Afonso, Carlos A M; Crespo, João G

    2012-01-01

    Dioxins and dioxin-like chemicals are predominantly produced by thermal processes such as incineration and combustion at concentrations in the range of 10-100 ng of I-TEQ/kg (I-TEQ = international toxic equivalents). In this work, a new approach for the removal of dioxins from high-temperature vapor streams using facilitated supported ionic liquid membranes (SILMs) is proposed. The use of ceramic membranes containing specific ionic liquids, with extremely low volatility, for dioxin removal from incineration sources is proposed owing to their stability at very high temperatures. Supported liquid membranes were prepared by successfully immobilizing the ionic liquids tri-C(8)-C(10)-alkylmethylammonium dicyanamide ([Aliquat][DCA]) and 1-n-octyl-3-methylimidazolium dicyanamide ([Omim][DCA]) inside the porous structure of ceramic membranes. The porous inorganic membranes tested were made of titanium oxide (TiO(2)), with a nominal pore size of 30 nm, and aluminum oxide (Al(2)O(3)), with a nominal pore size of 100 nm. The ionic liquids were characterized, and the membrane performance was assessed for the removal of dioxins. Different materials (membrane pore size, type of ionic liquid, and dioxin) and different operating conditions (temperature and flow rate) were tested to evaluate the efficiency of SILMs for dioxin removal. All membranes prepared were stable at temperatures up to 200 °C. Experiments with model incineration gas were also carried out, and the results obtained validate the potential of using ceramic membranes with immobilized ionic liquids for the removal of dioxins from high-temperature vapor sources.

  5. Temperature and concentration transients in the aluminum-air battery

    SciTech Connect

    Homsy, R.V.

    1981-08-26

    Coupled conservation equations of heat and mass transfer are solved, that predict temperature and concentration of the electrolyte of an aluminum-air battery system upon start-up and shutdown. Results of recent laboratory studies investigating the crystallization kinetics and solubility of the caustic-aluminate electrolyte system are used in the predictions. Temperature and concentration start-up transients are short, while during standby conditions, temperature increases to a maximum and decreases slowly.

  6. The roles of temperature and water vapor at different stages of the polar mesospheric cloud season

    NASA Astrophysics Data System (ADS)

    Rong, P. P.; Russell, J. M., III; Hervig, M. E.; Bailey, S. M.

    2012-02-01

    Temperature, or alternatively, saturation vapor pressure (PSAT), dominantly controls the polar mesospheric cloud (PMC) seasonal onset and termination, characterized by a strong anticorrelated relationship between the Solar Occultation for Ice Experiment (SOFIE)-observed PMC frequency and PSAT on intraseasonal time scales. SOFIE is highly sensitive to weak clouds and can obtain a nearly full spectrum of PMCs. Both the SOFIE PMC frequency and PSAT indicate a rapid onset and termination of the season. Compared to PSAT, the water vapor partial pressure (PH2O) exhibits only a slight increase from before to after the start of the season. We are able to use the PSAT daily minimum and two averaged PH2O levels taken before and after the solstice, respectively, to estimate the start and end days of the PMC season within 1-2 days uncertainty. SOFIE ice mass density and its relationship to PH2O and PSAT are examined on intraseasonal scales and for two extreme conditions, i.e., strong and weak cloud cases. In the strong cloud case, such as those bright clouds that occur during the core of the season, PH2O far exceeds PSAT and dominantly controls the ice mass density variation, while in the weak cloud case, such as those clouds that occur at the start and end of the season, PH2O and PSAThave comparable magnitudes, vary in concert, and have similar effects on the ice mass density variation. These results suggest that the long-term brightness trends reported by DeLand et al. (2007) are primarily driven by changes in water vapor (H2O), not temperature.

  7. Spatiotemporal variability of tetrachloroethylene in residential indoor air due to vapor intrusion: a longitudinal, community-based study.

    PubMed

    Johnston, Jill E; Gibson, Jacqueline MacDonald

    2014-11-01

    The migration of volatile contaminants from groundwater and soil into indoor air is a potential health threat at thousands of contaminated sites across the country. This phenomenon, known as vapor intrusion, is characterized by spatial and temporal heterogeneity. This study examined short-term fluctuations in concentrations of tetrachloroethylene (PCE) in the indoor air of residential homes due to vapor intrusion in a community in San Antonio, Texas, that sits atop an extensive, shallow plume of contaminated groundwater. Using a community-based design, we removed potential indoor sources of PCE and then collected twelve 3-day passive indoor air samples in each of the 20 homes. Results demonstrated a one-order-of-magnitude variability in concentration across both space and time among the study homes, although all measured concentrations were below risk-based screening levels. We found that within any given home, indoor concentrations increase with the magnitude of the barometric pressure drop (P=0.048) and humidity (P<0.001), while concentrations decrease as wind speed increases (P<0.001) and also during winter (P=0.001). In a second analysis to examine sources of spatial variability, we found that indoor air PCE concentrations between homes increase with groundwater concentration (P=0.030) and a slab-on-grade (as compared with a crawl space) foundation (P=0.028), whereas concentrations decrease in homes without air conditioners (P=0.015). This study offers insights into the drivers of temporal and spatial variability in vapor intrusion that can inform decisions regarding monitoring and exposure assessment at affected sites.

  8. Impact of land convection on the water vapor and temperature variability in the TTL with an emphasis over Bauru (Brazil)

    NASA Astrophysics Data System (ADS)

    Carminati, Fabien; Ricaud, Philippe; Pommereau, Jean Pierre; Khaykin, Serguey; Rivière, Emmanuel; Warner, Juying; Attié, Jean-Luc; Saint-Martin, David; Michou, Martine; August, Thomas

    2013-04-01

    A highly debated issue in the troposphere-to-stratosphere transport and processes controlling the water vapor (H2O) balance in the stratosphere is the role of deep overshooting over intense convective regions and interplay between hydration and dehydration processes in the Tropical Tropopause Layer (TTL). TRO-Pico is a 5-year project aiming to monitor the H2O amount during the wet season. The project relies on field campaigns held in Bauru (22.3°S; 49.1°W), Brazil, and involves a combination of balloon-borne measurements, ground-based and space-borne observations and modeling. More specifically, the MetOp-IASI and Aqua-AIRS nadir sounders datasets in the Upper Troposphere (UT) and the Aura-MLS limb sounder datasets in the Lower Stratosphere (LS) are inter-compared over long time ranges and different spatial scales to the Chemistry-Climate Model CNRM-CCM and the ECMWF analysis datasets, together with the balloon-borne sensors: Vaisala RS-92GDP radiosondes, Pico-SDLA and Flash-B hygrometers. In the tropical band (30°S-30°N), during convective seasons, we show in the UT strong negative day-night variations of H2O over Southern continents, consistent with the diurnal cycle of convective events, and, to a lesser extent, also over Northern continents. In the LS, during convective periods, the H2O signal becomes slightly positive over Southern continents and of an opposite sign over the Northern continents. The temperature fields show positive day-night variations over land increasing with altitude, with a maximum amplitude above the Cold Point (CP) around 80 hPa. At the local scale over Bauru, we sampled the different datasets over 24 hours to highlight the shape of the diurnal cycle of H2O. An early afternoon minimum is observed in the UT, consistent with the late afternoon maximum of convection. The diurnal cycle of temperature has a late morning minimum in the UT, shifted to the night at the CP level, also consistent with the injection of cold air by deep

  9. Fuel Vaporization Effects

    NASA Technical Reports Server (NTRS)

    Bosque, M. A.

    1983-01-01

    A study of the effects of fuel-air preparation characteristics on combustor performance and emissions at temperature and pressure ranges representative of actual gas turbine combustors is discussed. The effect of flameholding devices on the vaporization process and NOx formation is discussed. Flameholder blockage and geometry are some of the elements that affect the recirculation zone characteristics and subsequently alter combustion stability, emissions and performance. A water cooled combustor is used as the test rig. Preheated air and Jet A fuel are mixed at the entrance of the apparatus. A vaporization probe is used to determine percentage of vaporization and a gas sample probe to determine concentration of emissions in the exhaust gases. The experimental design is presented and experimental expected results are discussed.

  10. Hydrophobic properties of polytetrafluoroethylene thin films fabricated at various catalyzer temperatures through catalytic chemical vapor deposition using a tungsten catalyzer.

    PubMed

    Cha, Jeong Ok; Yeo, Seung Jun; Pode, Ramchandra; Ahn, Jeung Sun

    2011-07-01

    Using the catalytic chemical vapor deposition (Cat-CVD) method, polytetrafluoroethylene (PTFE) thin films were fabricated on Si(100) substrates at various catalyzer temperatures, using a tungsten catalyzer, and Fourier transform infrared (FTIR) spectroscopy and X-ray photoemission spectroscopy (XPS) were used to confirm the fabrication of the films. An atomic-force microscope (AFM) and a scanning electron microscope (SEM) were employed to study the correlation between the wettability and surface morphology of the samples. It was found that the wettability of the PTFE thin films fabricated via Cat-CVD is strongly correlated with the sizes of the film surfaces' nanoprotrusions, and that superhydrophobic PTFE thin-film surfaces can be easily achieved by controlling the sizes of the nanoprotrusions through the catalyzer temperature. The comparison of the wettability values and surface morphologies of the films confirmed that nanoscale surface roughness enhances the hydrophobic properties of PTFE thin films. Further, the detailed analysis of the films' surface morphologies from their AFM images with the use of the Wenzel and Cassie models confirmed that the nanoscale surface roughness enhanced the hydrophobic property of the PTFE films. Further, the variations of the wettability of the PTFE thin films prepared via Cat-CVD are well explained by the Cassie model. It seems that the increase in the trapping air and the reduction of the liquid-solid contact area are responsible for the superhydrophobicity of the PTFE thin films prepared via Cat-CVD. PMID:22121615

  11. The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation.

    PubMed

    Jacques, S L; McAuliffe, D J

    1991-06-01

    The explosive vaporization of melanosomes in situ in skin during pulsed laser irradiation (pulse duration less than 1 microsecond) is observed as a visible whitening of the superficial epidermal layer due to stratum corneum disruption. In this study, the ruby laser (694 nm) was used to determine the threshold radiant exposure, H0 (J/cm2), required to elicit whitening for in vitro black (Negroid) human skin samples which were pre-equilibrated at an initial temperature, Ti, of 0, 20, or 50 degrees C. A plot of H0 vs Ti yields a straight line whose x-intercept indicates the threshold temperature of explosive vaporization to be 112 +/- 7 degrees C (SD, N = 3). The slope, delta H0/delta Ti, specifies the internal absorption coefficient, mua, within the melanosome: mua = -rho C/(slope(1 + 7.1 Rd)), where rho C is the product of density and specific heat, and Rd is the total diffuse reflectance from the skin. A summary of the absorption spectrum (mua) for the melanosome interior (351-1064 nm) is presented based on H0 data from this study and the literature. The in vivo absorption spectrum (380-820 nm) for human epidermal melanin was measured by an optical fiber spectrophotometer and is compared with the melanosome spectrum. PMID:1886936

  12. RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements.

    PubMed

    Reichardt, Jens; Wandinger, Ulla; Klein, Volker; Mattis, Ina; Hilber, Bernhard; Begbie, Robert

    2012-12-01

    The Raman lidar for atmospheric moisture sensing (RAMSES) for unattended, continuous multiparameter atmospheric profiling is presented. A seeded frequency-tripled Nd:YAG laser serves as the light source. A nine-channel polychromator, nonfiber coupled to the main telescope (790 mm diameter), is used for far-range measurements. Near-range observations are performed with a three-channel polychromator, fiber coupled to a secondary telescope (200 mm diameter). Measurement parameters are water-vapor mixing ratio (MR), temperature, and the optical particle parameters, which are extinction coefficient, backscatter coefficient, lidar ratio, and depolarization ratio at 355 nm. Profiles of water-vapor MR are measured from close to the surface up to 14 km at night and 5 km during the day under favorable atmospheric conditions in 20 min. Temperature profiles of the troposphere and lower stratosphere are determined with the rotational-Raman technique. For the detection of the rotational Raman signals, a new beamsplitter/interference-filter experimental setup is implemented that is compact, robust, and easy to align. Furthermore, the polychromator design allows two independent methods for calibrating measurements of depolarization ratio. RAMSES optical design concept and experimental setup are detailed, and a description of the operational near-real-time data evaluation software is given. A multiday observation is discussed to illustrate the measurement capabilities of RAMSES.

  13. Low Temperature Direct Growth of Graphene Films on Transparent Substrates by Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Antoine, Geoffrey Sandosh Jeffy

    Graphene, two dimensional sheet of carbon atoms has recently gained attention as some of its properties are very useful for electronics, optoelectronics and photovoltaic applications. Its high mobility makes it useful in radio-frequency applications and its transparency makes it useful as transparent electrodes in photovoltaics. It is known that chemical vapor deposition (CVD) is one of the techniques that can be used to synthesize graphene. A lot of work has been done on selecting appropriate substrates and hydrocarbon sources. Nickel, having a high solubility at high temperatures has been in focus lately. Ethylene which has a lower breaking point compared to other hydrocarbons has a good efficiency in the synthesis of graphene. Complexity associated with graphene synthesis and transfers onto transparent substrates constitute the major obstacles to using this material for photovoltaics and optoelectronics applications. Here we show a novel method of obtaining graphene directly on glass via chemical vapor deposition (CVD) using ethylene as the hydrocarbon source and nickel as the catalyst. The low cracking temperature of ethylene which is 542.8 °C permits us to use glass substrates directly in the CVD furnace. To improve the thickness of graphene, a good manipulation of pressure and hydrogen during the growth process will be useful. We introduce a novel catalyst etching technique after the growth results in graphene settling down on the glass substrate in a transfer-free process. Raman spectroscopy indicated good uniformity and high quality before and after the etching process.

  14. The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation.

    PubMed

    Jacques, S L; McAuliffe, D J

    1991-06-01

    The explosive vaporization of melanosomes in situ in skin during pulsed laser irradiation (pulse duration less than 1 microsecond) is observed as a visible whitening of the superficial epidermal layer due to stratum corneum disruption. In this study, the ruby laser (694 nm) was used to determine the threshold radiant exposure, H0 (J/cm2), required to elicit whitening for in vitro black (Negroid) human skin samples which were pre-equilibrated at an initial temperature, Ti, of 0, 20, or 50 degrees C. A plot of H0 vs Ti yields a straight line whose x-intercept indicates the threshold temperature of explosive vaporization to be 112 +/- 7 degrees C (SD, N = 3). The slope, delta H0/delta Ti, specifies the internal absorption coefficient, mua, within the melanosome: mua = -rho C/(slope(1 + 7.1 Rd)), where rho C is the product of density and specific heat, and Rd is the total diffuse reflectance from the skin. A summary of the absorption spectrum (mua) for the melanosome interior (351-1064 nm) is presented based on H0 data from this study and the literature. The in vivo absorption spectrum (380-820 nm) for human epidermal melanin was measured by an optical fiber spectrophotometer and is compared with the melanosome spectrum.

  15. High Temperature Multilayer Environmental Barrier Coatings Deposited Via Plasma Spray-Physical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Harder, Bryan James; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.

    2014-01-01

    Si-based ceramic matrix composites (CMCs) require environmental barrier coatings (EBCs) in combustion environments to avoid rapid material loss. Candidate EBC materials have use temperatures only marginally above current technology, but the addition of a columnar oxide topcoat can substantially increase the durability. Plasma Spray-Physical Vapor Deposition (PS-PVD) allows application of these multilayer EBCs in a single process. The PS-PVD technique is a unique method that combines conventional thermal spray and vapor phase methods, allowing for tailoring of thin, dense layers or columnar microstructures by varying deposition conditions. Multilayer coatings were deposited on CMC specimens and assessed for durability under high heat flux and load. Coated samples with surface temperatures ranging from 2400-2700F and 10 ksi loads using the high heat flux laser rigs at NASA Glenn. Coating morphology was characterized in the as-sprayed condition and after thermomechanical loading using electron microscopy and the phase structure was tracked using X-ray diffraction.

  16. Growth temperature dependence of partially Fe filled MWCNT using chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Sengupta, Joydip; Jacob, Chacko

    2009-12-01

    This investigation deals with the effect of growth temperature on the growth behavior of Fe filled multi-walled carbon nanotubes (MWCNTs). Carbon nanotube (CNT) synthesis was carried out in a thermal chemical vapor deposition (CVD) reactor in the temperature range 650-950 °C using propane as the carbon source, Fe as the catalyst material, and Si as the catalyst support. Atomic force microscopy (AFM) analysis of the catalyst exhibits that at elevated temperature clusters of catalyst coalesce and form macroscopic islands. Field emission scanning electron microscopy (FESEM) results show that with increased growth temperature the average diameter of the nanotubes increases but their density decreases. High-resolution transmission electron microscopy (HRTEM) studies suggest that the nanotubes have multi-walled structure with partial Fe filling for all growth temperatures. The X-ray diffraction (XRD) pattern of the grown materials indicates that they are graphitic in nature. The characterization of nanotubes by Raman spectroscopy reveals that the optimized growth temperature for Fe filled CNTs is 850 °C, in terms of quality. A simple model for the growth of Fe filled carbon nanotubes is proposed.

  17. Application of Chlorine-Assisted Chemical Vapor Deposition of Diamond at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Pan, Chenyu; Altemir, David A.; Margrave, John L.; Hauge, Robert H.

    1994-01-01

    Low temperature deposition of diamond has been achieved by a chlorine-assisted diamond chemical vapor deposition (CA-CVD) process. This method begins with the thermal dissociation of molecular chlorine into atomic chlorine in a resistively heated graphite furnace at temperatures between 1300 and 1500 deg. C. The atomic chlorine, upon mixing, subsequently reacts with molecular hydrogen and hydrocarbons. The rapid exchange reactions between the atomic chlorine, molecular hydrogen, and hydrocarbons give rise to the atomic hydrogen and carbon precursors required for diamond deposition. Homoepitaxial diamond growth on diamond substrates has been studied over the substrate temperature range of 100-950 C. It was found that the diamond growth rates are approximately 0.2 microns/hr in the temperature range between 102 and 300 C and that the growth rates do not decrease significantly with a decrease in substrate temperature. This is unique because the traditional diamond deposition using H2/CH4 systems usually disappears at substrate temperatures below approx. 500 deg. C. This opens up a possible route to the deposition of diamond on low-melting point materials such as aluminum and its alloys.

  18. Research on the fluorescence emission from water vapor induced by femtosecond filamentation in air

    NASA Astrophysics Data System (ADS)

    Li, He; Jiang, Yuanfei; Li, Shuchang; Chen, Anmin; Li, Suyu; Jin, Mingxing

    2016-10-01

    Our experiments show that initial energy and humidity strongly influences the water vapor fluorescence induced by ultrashort intense femtosecond laser pulses. It is found that the fluorescence signal can be enhanced by both increasing the humidity in the case of fixed energy and increasing the pulse energy in the case of fixed humidity. In addition, water vapor fluorescence emission in the linear polarization is stronger than that in the circular polarization due to the higher dissociation efficiency of linearly polarized pulses. The mechanism of water vapor fluorescence emission during femtosecond filamentation is discussed based on the analysis of these phenomena.

  19. Relatively low temperature synthesis of graphene by radio frequency plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Qi, J. L.; Zheng, W. T.; Zheng, X. H.; Wang, X.; Tian, H. W.

    2011-05-01

    We present a simple, low-cost and high-effective method for synthesizing high-quality, large-area graphene using radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) on SiO 2/Si substrate covered with Ni thin film at relatively low temperatures (650 °C). During deposition, the trace amount of carbon (CH 4 gas flow rate of 2 sccm) is introduced into PECVD chamber and the deposition time is only 30 s, in which the carbon atoms diffuse into the Ni film and then segregate on its surface, forming single-layer or few-layer graphene. After deposition, Ni is removed by wet etching, and the obtained single continuous graphene film can easily be transferred to other substrates. This investigation provides a large-area, low temperature and low-cost synthesis method for graphene as a practical electronic material.

  20. Variation of transition temperatures and residual resistivity ratio in vapor-grown FeSe

    DOE PAGES

    Böhmer, A. E.; Taufour, V.; Straszheim, W. E.; Wolf, T.; Canfield, P. C.

    2016-07-29

    The study of the iron-based superconductor FeSe has blossomed with the availability of high-quality single crystals, obtained through flux/vapor-transport growth techniques below the structural transformation temperature of its tetragonal phase, T≈450°C. Here, we report on the variation of sample morphology and properties due to small modifications in the growth conditions. A considerable variation of the superconducting transition temperature Tc, from 8.8 K to 3 K, which cannot be correlated with the sample composition, is observed. Instead, we point out a clear correlation between Tc and disorder, as measured by the residual resistivity ratio. Notably, the tetragonal-to-orthorhombic structural transition is alsomore » found to be quite strongly disorder dependent (Ts≈72–90K) and linearly correlated with Tc.« less

  1. Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay; Zavodsky, Brad; Blackwell, William

    2014-01-01

    Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. This paper will describe the bias correction technique and results from forecasts evaluated by validation against a Total Precipitable Water (TPW) product from CIRA and against Global Forecast System (GFS) analyses.

  2. Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity

    NASA Technical Reports Server (NTRS)

    Blakenship, Clay; Zavodsky, Bradley; Blackwell, William

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. Forecasts are against ERA reanalyses.

  3. Heat tolerance of higher plants cenosis to damaging air temperatures

    NASA Astrophysics Data System (ADS)

    Ushakova, Sofya; Shklavtsova, Ekaterina

    Designing sustained biological-technical life support systems (BTLSS) including higher plants as a part of a photosynthesizing unit, it is important to foresee the multi species cenosis reaction on either stress-factors. Air temperature changing in BTLSS (because of failure of a thermoregulation system) up to the values leading to irreversible damages of photosynthetic processes is one of those factors. However, it is possible to increase, within the certain limits, the plant cenosis tolerance to the unfavorable temperatures’ effect due to the choice of the higher plants possessing resistance both to elevated and to lowered air temperatures. Besides, the plants heat tolerance can be increased when subjecting them during their growing to the hardening off temperatures’ effect. Thus, we have come to the conclusion that it is possible to increase heat tolerance of multi species cenosis under the damaging effect of air temperature of 45 (°) СC.

  4. An experimental study on resonance of oscillating air/vapor bubbles in water using a two-frequency acoustic apparatus

    NASA Astrophysics Data System (ADS)

    Ohsaka, K.

    2003-05-01

    A two-frequency acoustic apparatus is employed to study the growth behavior of vapor-saturated bubbles driven in a volumetric mode. A unique feature of the apparatus is its capability of trapping a bubble by an ultrasonic standing wave while independently driving it into oscillations by a second lower-frequency acoustic wave. It is observed that the growing vapor bubbles exhibit a periodic shape transition between the volumetric and shape modes due to resonant coupling. In order to explain this observation, we performed an experimental investigation on resonant coupling of air bubbles and obtained the following results: First, the induced shape oscillations are actually a mixed mode that contains the volume component, thus, vapor bubbles can grow while they exhibit shape oscillations. Second, the acoustically levitated bubbles are deformed and therefore, degeneracy in resonant frequency is partially removed. As a result, the vapor bubbles exhibit the shape oscillations in both the axisymmetric mode and asymmetric (three-dimensional) modes. Nonlinear effects in addition to the frequency shift and split due to deformation creates overlapping of the coupling ranges for different modes, which leads to the continuous shape oscillations above a certain bubble radius as the bubble grows.

  5. AIRS Sea Surface Temperature and Pacific Decadal Oscillation

    NASA Astrophysics Data System (ADS)

    Chen, L. L.

    2015-12-01

    Atmospheric Infrared Sounder (AIRS) has been providing necessary measurements for long term atmospheric and surface processes aboard NASA' s Aqua polar orbiter since May 2002. Here, we use time series of AIRS sea surface temperature (SST) anomalies to show the time evolution of Pacific Decadal Oscillation (PDO) in the Gulf of Alaska (lon:-144.5, lat:54.5) from 2003 to 2014. PDO is connected to the first mode of North Pacific SST variability and is tele-connected to ENSO in the tropics. Further analysis of AIRS data can provide clarification of Pacific climate variability.

  6. AIRS Water Vapor and Cloud Products Validate and Explain Recent Negative Global and Tropical OLR Trends Observed by CERES

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena

    2010-01-01

    This paper compares spatial and temporal anomalies and trends of OLR as observed by CERES and computed based on AIRS retrieved surface and atmospheric geophysical parameters over the time period September 2002 February 2010. This time period is marked by a substantial decreasing OLR trend on the order of -0.1 W/m2/yr averaged over the globe. There are very large spatial variations of these trends however, with local values ranging from -2.6 W/m2/yr to +3.0 W/m2/yr in the tropics. The spatial patterns of the AIRS and CERES trends are in essentially perfect agreement with each other, as are the anomaly time series averaged over different spatial regions. This essentially perfect agreement of OLR anomalies and trends derived from observations by two different instruments, in totally independent and different manners, implies that both sets of results must be highly accurate. The agreement of anomalies and trends of OLR as observed by CERES and computed from AIRS derived products also indirectly validates the anomalies and trends of the AIRS derived products as well. We used the anomalies and trends of AIRS derived water vapor and cloud products to explain why global OLR has had a large negative trend over the time period September 2002 through February 2010. Tropical OLR began to decrease significantly at the onset of a strong La Nina in mid-2007. AIRS products show that cloudiness and mid-tropospheric water vapor began to increase in the region 5degN - 20degS latitude extending eastward from 150degW - 30 E longitude at that time, with a corresponding very large drop in OLR in this region. Late 2009 is characterized by a strong El-Nino, with a corresponding change in sign of observed anomalies of mid-tropospheric water vapor, cloud cover, and OLR in this region, as we] l as that of OLR anomalies in the tropics and globally. Monthly mean anomalies of OLR, water vapor and cloud cover over this region are all shown to be highly correlated in time with those of an El Nino

  7. The Planck's character and temperature of visible radiation of a pulse-periodic discharge in cesium vapor

    NASA Astrophysics Data System (ADS)

    Baksht, F. G.; Lapshin, V. F.

    2016-02-01

    The radiation spectrum of pulse-periodic discharge in cesium vapor has been simulated in the framework of a two-temperature multifluid radiative gasdynamic model. It is established that, at a broad range of vapor pressures, the discharge spectrum exhibits a Planck character in a significant part of the visible spectral interval, which accounts for the high quality of color rendering in the discharge radiation. The relation between color temperature T c and electron temperature T 0 on the discharge axis is determined by radial optical thickness τ R of the plasma column: T c ≈ T 0 at τ R ≈ 1, T c < T 0 at τ R < 1, and T c > T 0 at τ R > 1. As the vapor pressure increases from 83 to 1087 Torr, color rendering index Ra of the discharge radiation changes from 95 to 98 and the color temperature grows from 3600 to 5200 K.

  8. Passive radiative cooling below ambient air temperature under direct sunlight.

    PubMed

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day.

  9. Passive radiative cooling below ambient air temperature under direct sunlight.

    PubMed

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day. PMID:25428501

  10. Retrieval of Raindrop Size Distribution, Vertical Air Velocity and Water Vapor Attenuation Using Dual-Wavelength Doppler Radar Observations

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; Srivastava, C.

    2005-01-01

    Two techniques for retrieving the slope and intercept parameters of an assumed exponential raindrop size distribution (RSD), vertical air velocity, and attenuation by precipitation and water vapor in light stratiform rain using observations by airborne, nadir looking dual-wavelength (X-band, 3.2 cm and W-band, 3.2 mm) radars are presented. In both techniques, the slope parameter of the RSD and the vertical air velocity are retrieved using only the mean Doppler velocities at the two wavelengths. In the first method, the intercept of the RSD is estimated from the observed reflectivity at the longer wavelength assuming no attenuation at that wavelength. The attenuation of the shorter wavelength radiation by precipitation and water vapor are retrieved using the observed reflectivity at the shorter wavelength. In the second technique, it is assumed that the longer wavelength suffers attenuation only in the melting band. Then, assuming a distribution of water vapor, the melting band attenuation at both wavelengths and the rain attenuation at the shorter wavelength are retrieved. Results of the retrievals are discussed and several physically meaningful results are presented.

  11. Evaluation of an ambient air sampling system for tritium (as tritiated water vapor) using silica gel adsorbent columns

    SciTech Connect

    Patton, G.W.; Cooper, A.T.; Tinker, M.R.

    1995-08-01

    Ambient air samples for tritium analysis (as the tritiated water vapor [HTO] content of atmospheric moisture) are collected for the Hanford Site Surface Environmental Surveillance Project (SESP) using the solid adsorbent silica gel. The silica gel has a moisture sensitive indicator which allows for visual observation of moisture movement through a column. Despite using an established method, some silica gel columns showed a complete change in the color indicator for summertime samples suggesting that breakthrough had occurred; thus a series of tests was conducted on the sampling system in an environmental chamber. The purpose of this study was to determine the maximum practical sampling volume and overall collection efficiency for water vapor collected on silica gel columns. Another purpose was to demonstrate the use of an impinger-based system to load water vapor onto silica gel columns to provide realistic analytical spikes and blanks for the Hanford Site SESP. Breakthrough volumes (V{sub b}) were measured and the chromatographic efficiency (expressed as the number of theoretical plates [N]) was calculated for a range of environmental conditions. Tests involved visual observations of the change in the silica gel`s color indicator as a moist air stream was drawn through the column, measurement of the amount of a tritium tracer retained and then recovered from the silica gel, and gravimetric analysis for silica gel columns exposed in the environmental chamber.

  12. Modeling and imaging land-cover influences on air temperature in and near Baltimore, MD

    NASA Astrophysics Data System (ADS)

    Heisler, Gordon M.; Ellis, Alexis; Nowak, David J.; Yesilonis, Ian

    2016-04-01

    Over the course of 1681 hours between May 5 and September 30, 2006, air temperatures measured at the 1.5-m height at seven sites in and near the city of Baltimore, MD were used to empirically model Δ widehat{T} R-p , the difference in air temperature between a site in downtown Baltimore and the six other sites. Variables in the prediction equation included difference between the downtown reference and each of the other sites in upwind tree cover and impervious cover as obtained from 10-m resolution geographic information system (GIS) data. Other predictor variables included an index of atmospheric stability, topographic indices, wind speed, vapor pressure deficit, and antecedent precipitation. The model was used to map predicted hourly Δ widehat{T} R-p across the Baltimore region based on hourly weather data from the airport. Despite the numerous sources of variability in the regression modeling, the method produced reasonable map patterns of Δ widehat{T} R-p that, except for some areas evidently affected by sea breeze from the Chesapeake, closely matched results of mesoscale modeling. Potential applications include predictions of the effect of changing tree cover on air temperature in the area.

  13. Near-infrared Laser-induced Temperature Elevation in Optically-trapped Aqueous Droplets in Air.

    PubMed

    Ishizaka, Shoji; Ma, Jiang; Fujiwara, Terufumi; Yamauchi, Kunihiro; Kitamura, Noboru

    2016-01-01

    Near-infrared laser-induced temperature elevation in single aqueous ammonium sulfate droplets levitated in air were evaluated by means of laser trapping and Raman spectroscopy. Since the vapor pressure in an aqueous solution droplet should be thermodynamically in equilibrium with that of water in air, the equilibrium size of the droplet varies sensitively through evaporation/condensation of water in accordance with the temperature change of the droplet. In this study, we demonstrated that the changes in the size of an optically levitated aqueous ammonium sulfate droplet were induced by irradiation of a 1064-nm laser beam as a heat source under an optical microscope. Temperature elevation in the droplet was evaluated successfully by means of Raman spectroscopy, and the values determined were shown to be in good agreement with those by the theoretical calculations based on the absorption coefficient of water at 1064-nm and the thermal conductivity of air. To the best of our knowledge, this is the first experimental demonstration showing that the absorption coefficient evaluated from changes in the size of optically-trapped aqueous droplets is consistent with that of pure water. PMID:27063715

  14. Electron beam physical vapor deposition of thin ruby films for remote temperature sensing

    NASA Astrophysics Data System (ADS)

    Li, Wei; Coppens, Zachary J.; Greg Walker, D.; Valentine, Jason G.

    2013-04-01

    Thermographic phosphors (TGPs) possessing temperature-dependent photoluminescence properties have a wide range of uses in thermometry due to their remote access and large temperature sensitivity range. However, in most cases, phosphors are synthesized in powder form, which prevents their use in high resolution micro and nanoscale thermal microscopy. In the present study, we investigate the use of electron beam physical vapor deposition to fabricate thin films of chromium-doped aluminum oxide (Cr-Al2O3, ruby) thermographic phosphors. Although as-deposited films were amorphous and exhibited weak photoluminescence, the films regained the stoichiometry and α-Al2O3 crystal structure of the combustion synthesized source powder after thermal annealing. As a consequence, the annealed films exhibit both strong photoluminescence and a temperature-dependent lifetime that decreases from 2.9 ms at 298 K to 2.1 ms at 370 K. Ruby films were also deposited on multiple substrates. To ensure a continuous film with smooth surface morphology and strong photoluminescence, we use a sapphire substrate, which is thermal expansion coefficient and lattice matched to the film. These thin ruby films can potentially be used as remote temperature sensors for probing the local temperatures of micro and nanoscale structures.

  15. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure

    PubMed Central

    Jang, Jisu; Son, Myungwoo; Chung, Sunki; Kim, Kihyeun; Cho, Chunhum; Lee, Byoung Hun; Ham, Moon-Ho

    2015-01-01

    There is significant interest in synthesizing large-area graphene films at low temperatures by chemical vapor deposition (CVD) for nanoelectronic and flexible device applications. However, to date, low-temperature CVD methods have suffered from lower surface coverage because micro-sized graphene flakes are produced. Here, we demonstrate a modified CVD technique for the production of large-area, continuous monolayer graphene films from benzene on Cu at 100–300 °C at ambient pressure. In this method, we extended the graphene growth step in the absence of residual oxidizing species by introducing pumping and purging cycles prior to growth. This led to continuous monolayer graphene films with full surface coverage and excellent quality, which were comparable to those achieved with high-temperature CVD; for example, the surface coverage, transmittance, and carrier mobilities of the graphene grown at 300 °C were 100%, 97.6%, and 1,900–2,500 cm2 V−1 s−1, respectively. In addition, the growth temperature was substantially reduced to as low as 100 °C, which is the lowest temperature reported to date for pristine graphene produced by CVD. Our modified CVD method is expected to allow the direct growth of graphene in device manufacturing processes for practical applications while keeping underlying devices intact. PMID:26658923

  16. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure

    NASA Astrophysics Data System (ADS)

    Jang, Jisu; Son, Myungwoo; Chung, Sunki; Kim, Kihyeun; Cho, Chunhum; Lee, Byoung Hun; Ham, Moon-Ho

    2015-12-01

    There is significant interest in synthesizing large-area graphene films at low temperatures by chemical vapor deposition (CVD) for nanoelectronic and flexible device applications. However, to date, low-temperature CVD methods have suffered from lower surface coverage because micro-sized graphene flakes are produced. Here, we demonstrate a modified CVD technique for the production of large-area, continuous monolayer graphene films from benzene on Cu at 100-300 °C at ambient pressure. In this method, we extended the graphene growth step in the absence of residual oxidizing species by introducing pumping and purging cycles prior to growth. This led to continuous monolayer graphene films with full surface coverage and excellent quality, which were comparable to those achieved with high-temperature CVD; for example, the surface coverage, transmittance, and carrier mobilities of the graphene grown at 300 °C were 100%, 97.6%, and 1,900-2,500 cm2 V-1 s-1, respectively. In addition, the growth temperature was substantially reduced to as low as 100 °C, which is the lowest temperature reported to date for pristine graphene produced by CVD. Our modified CVD method is expected to allow the direct growth of graphene in device manufacturing processes for practical applications while keeping underlying devices intact.

  17. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure.

    PubMed

    Jang, Jisu; Son, Myungwoo; Chung, Sunki; Kim, Kihyeun; Cho, Chunhum; Lee, Byoung Hun; Ham, Moon-Ho

    2015-01-01

    There is significant interest in synthesizing large-area graphene films at low temperatures by chemical vapor deposition (CVD) for nanoelectronic and flexible device applications. However, to date, low-temperature CVD methods have suffered from lower surface coverage because micro-sized graphene flakes are produced. Here, we demonstrate a modified CVD technique for the production of large-area, continuous monolayer graphene films from benzene on Cu at 100-300 °C at ambient pressure. In this method, we extended the graphene growth step in the absence of residual oxidizing species by introducing pumping and purging cycles prior to growth. This led to continuous monolayer graphene films with full surface coverage and excellent quality, which were comparable to those achieved with high-temperature CVD; for example, the surface coverage, transmittance, and carrier mobilities of the graphene grown at 300 °C were 100%, 97.6%, and 1,900-2,500 cm(2) V(-1) s(-1), respectively. In addition, the growth temperature was substantially reduced to as low as 100 °C, which is the lowest temperature reported to date for pristine graphene produced by CVD. Our modified CVD method is expected to allow the direct growth of graphene in device manufacturing processes for practical applications while keeping underlying devices intact. PMID:26658923

  18. Room temperature ammonia vapor sensing properties of transparent single walled carbon nanotube thin film

    NASA Astrophysics Data System (ADS)

    Shobin, L. R.; Manivannan, S.

    2014-10-01

    Carbon nanotube (CNT) networks are identified as potential substitute and surpass the conventional indium doped tin oxide (ITO) in transparent conducting electrodes, thin-film transistors, solar cells, and chemical sensors. Among them, CNT based gas sensors gained more interest because of its need in environmental monitoring, industrial control, and detection of gases in warfare or for averting security threats. The unique properties of CNT networks such as high surface area, low density, high thermal conductivity and chemical sensitivity making them as a potential candidate for gas sensing applications. Commercial unsorted single walled carbon nanotubes (SWCNT) were purified by thermal oxidation and acid treatment processes and dispersed in organic solvent N-methyl pyrolidone using sonication process in the absence of polymer or surfactant. Optically transparent SWCNT networks are realized on glass substrate by coating the dispersed SWCNT with the help of dynamic spray coating process at 200ºC. The SWCNT random network was characterized by scanning electron microscopy and UV-vis-NIR spectroscopy. Gas sensing property of transparent film towards ammonia vapor is studied at room temperature by measuring the resistance change with respect to the concentration in the range 0-1000 ppm. The sensor response is increased logarithmically in the concentration range 0 to 1000 ppm with the detection limit 0.007 ppm. The random networks are able to detect ammonia vapor selectively because of the high electron donating nature of ammonia molecule to the SWCNT. The sensor is reversible and selective to ammonia vapor with response time 70 seconds and recovery time 423 seconds for 62.5 ppm with 90% optical transparency at 550 nm.

  19. Shielding with Martian snow: suitable temperature and water vapor for possible living organisms

    NASA Astrophysics Data System (ADS)

    Horvath, Andras; Berczi, Szaniszlo; Kereszturi, Akos; Pocs, Tamas; Sik, Andras; Szathmary, Eors

    Periodic favorable conditions on Mars may exist at the Polar Regions during local spring, when elevated temperature and water ice on the surface is present. Based on our previous works, ideal microhabitats could be present at the Dark Dune Spots, where thin H2 O and the topmost mineral layer provide shielding against UV radiation. Here we outline two recently implemented new elements of our model. 1. A heat insulator layer may form inside wintertime H2 O frost, if a fraction of it accumulated as snowflakes, as Phoenix lander observed it. In springtime H2 O molecules sublime away at the "warmest" part of the snow layer: at the bottom where insolation heated grains are present. These vapor molecules diffuse through the snow and freeze at the coldest upper part. This process enlarges vapor filled voids at the bottom, and produces a closed frost layer above, serving as heat insulator and maintaining elevated vapor concentration below. 2. Another new element is to decrease the long-term damage against solar particle events and galactic cosmic rays. This ionizing radiation could sterilize the upper meter of the Martian surface in long term, but organisms with periodic biogenic activity could repair the damage, except if very long inactive phases separate the active periods. Because of the climatic changes on Mars, the distribution of ice coverage at the Polar Region changes, and may result periods when all year long water ice layer exists. During this case phases with photosynthetic activity are missing, but the accumulated ice on the surface lowers the cumulative radiation damage.

  20. Variability of Winter Air Temperature in Mid-Latitude Europe

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Ardizzone, J.; Atlas, R.; Bungato, D.; Cierniewski, J.; Jusem, J. C.; Przybylak, R.; Schubert, S.; Starr, D.; Walczewski, J.

    2002-01-01

    The aim of this paper is to report extreme winter/early-spring air temperature (hereinafter temperature) anomalies in mid-latitude Europe, and to discuss the underlying forcing to these interannual fluctuations. Warm advection from the North Atlantic in late winter controls the surface-air temperature, as indicated by the substantial correlation between the speed of the surface southwesterlies over the eastern North Atlantic (quantified by a specific Index Ina) and the 2-meter level air temperatures (hereinafter Ts) over Europe, 45-60 deg N, in winter. In mid-March and subsequently, the correlation drops drastically (quite often it is negative). This change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature: absorption of insolation replaces the warm advection as the dominant control. This forcing by maritime-air advection in winter was demonstrated in a previous publication, and is re-examined here in conjunction with extreme fluctuations of temperatures in Europe. We analyze here the interannual variability at its extreme by comparing warm-winter/early-spring of 1989/90 with the opposite scenario in 1995/96. For these two December-to-March periods the differences in the monthly mean temperature in Warsaw and Torun, Poland, range above 10 C. Short-term (shorter than a month) fluctuations of the temperature are likewise very strong. We conduct pentad-by-pentad analysis of the surface-maximum air temperature (hereinafter Tmax), in a selected location, examining the dependence on Ina. The increased cloudiness and higher amounts of total precipitable water, corollary effects to the warm low-level advection. in the 1989/90 winter, enhance the positive temperature anomalies. The analysis of the ocean surface winds is based on the Special Sensor Microwave/Imager (SSM/I) dataset; ascent rates, and over land wind data are from the European Centre for Medium-Range Weather Forecasts (ECMWF); maps of 2-m temperature, cloud

  1. Temperature Measurement in Microhollow Cathode Discharges in Atmospheric Air

    NASA Astrophysics Data System (ADS)

    Block, Rolf; Toedter, Olaf; Schoenbach, Karl H.

    1998-10-01

    By reducing the diameter of the cathode opening in hollow cathode discharge geometry to values on the order of one hundred micrometers we were able to operate the discharges in a direct current mode at atmospheric pressure in air. The possibility to operate microhollow cathode discharges (MHCD) in parallel [1] in atmospheric air opens a wide range of applications. At atmospheric pressures, the electric power of a single discharge was measured as 8W. The power density in the microhollow exceeds 1MW/cm^3. This leads to strong thermal loading of the electrodes. In order to study the thermal properties of the discharge we have used a method based on emission spectroscopy. The rotational structure of the emitted lines corresponding to the second positive system of nitrogen contains information on the neutral gas temperature. Taking the apparatus profile into account the temperature of the rotational excited molecules can be estimated by a comparison of simulated and measured data. Measurements on MHCD up to atmospheric pressure show an increase in the neutral gas temperature to values exceeding 1000K. In addition to the gas temperature the electrode temperatures were measured and the thermodynamic behavior of the electrode configuration was calculated. [1] W. Shi, K.H. Schoenbach Parallel Operation of Microhollow Cathode Discharges, ICOPS98, Raleigh, NC, USA, 1998 This work was funded by the Air Force Office of Scientific Research (AFOSR) in cooperation with the DDR&E Air Plasma Ramparts MURI program, and by the Department of Energy, Advanced Energy Division.

  2. Regulation of Silk Material Structure by Temperature-Controlled Water Vapor Annealing

    PubMed Central

    Hu, Xiao; Shmelev, Karen; Sun, Lin; Gil, Eun-Seok; Park, Sang-Hyug; Cebe, Peggy; Kaplan, David L.

    2011-01-01

    We present a simple and effective method to obtain refined control of the molecular structure of silk biomaterials through physical temperature-controlled water vapor annealing (TCWVA). The silk materials can be prepared with control of crystallinity, from a low content using conditions at 4°C (alpha-helix dominated silk I structure), to highest content of ~60% crystallinity at 100°C (beta-sheet dominated silk II structure). This new physical approach covers the range of structures previously reported to govern crystallization during the fabrication of silk materials, yet offers a simpler, green chemistry, approach with tight control of reproducibility. The transition kinetics, thermal, mechanical, and biodegradation properties of the silk films prepared at different temperatures were investigated and compared by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), uniaxial tensile studies, and enzymatic degradation studies. The results revealed that this new physical processing method accurately controls structure, in turn providing control of mechanical properties, thermal stability, enzyme degradation rate, and human mesenchymal stem cell interactions. The mechanistic basis for the control is through the temperature controlled regulation of water vapor, to control crystallization. Control of silk structure via TCWVA represents a significant improvement in the fabrication of silk-based biomaterials, where control of structure-property relationships is key to regulating material properties. This new approach to control crystallization also provides an entirely new green approach, avoiding common methods which use organic solvents (methanol, ethanol) or organic acids. The method described here for silk proteins would also be universal for many other structural proteins (and likely other biopolymers), where water controls chain interactions related to material properties. PMID:21425769

  3. Regulation of silk material structure by temperature-controlled water vapor annealing.

    PubMed

    Hu, Xiao; Shmelev, Karen; Sun, Lin; Gil, Eun-Seok; Park, Sang-Hyug; Cebe, Peggy; Kaplan, David L

    2011-05-01

    We present a simple and effective method to obtain refined control of the molecular structure of silk biomaterials through physical temperature-controlled water vapor annealing (TCWVA). The silk materials can be prepared with control of crystallinity, from a low content using conditions at 4 °C (α helix dominated silk I structure), to highest content of ∼60% crystallinity at 100 °C (β-sheet dominated silk II structure). This new physical approach covers the range of structures previously reported to govern crystallization during the fabrication of silk materials, yet offers a simpler, green chemistry, approach with tight control of reproducibility. The transition kinetics, thermal, mechanical, and biodegradation properties of the silk films prepared at different temperatures were investigated and compared by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), uniaxial tensile studies, and enzymatic degradation studies. The results revealed that this new physical processing method accurately controls structure, in turn providing control of mechanical properties, thermal stability, enzyme degradation rate, and human mesenchymal stem cell interactions. The mechanistic basis for the control is through the temperature-controlled regulation of water vapor to control crystallization. Control of silk structure via TCWVA represents a significant improvement in the fabrication of silk-based biomaterials, where control of structure-property relationships is key to regulating material properties. This new approach to control crystallization also provides an entirely new green approach, avoiding common methods that use organic solvents (methanol, ethanol) or organic acids. The method described here for silk proteins would also be universal for many other structural proteins (and likely other biopolymers), where water controls chain interactions related to material properties.

  4. Pulsed positive streamer discharges in air at high temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Kamakura, Taku

    2016-08-01

    Atmospheric-pressure air pulsed positive streamer discharges are generated in a 13 mm point-plane gap in the temperature range of 293 K–1136 K, and the effect of temperature on the streamer discharges is studied. When the temperature is increased, the product of applied voltage and temperature VT proportional to the reduced electric field can be used as a primary parameter that determines some discharge parameters regardless of temperature. For a given VT, the transferred charge per pulse, streamer diameter, product of discharge energy and temperature, and length of secondary streamer are almost constant regardless of T, whereas the streamer velocity decreases with increasing T and the decay rate of the discharge current is proportional to 1/T. The N2(C) emission intensity is approximately determined by the discharge energy independent of T. These results are useful to predict the streamer discharge and its reactive species production when the ambient temperature is increased.

  5. Pulsed positive streamer discharges in air at high temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Kamakura, Taku

    2016-08-01

    Atmospheric-pressure air pulsed positive streamer discharges are generated in a 13 mm point-plane gap in the temperature range of 293 K-1136 K, and the effect of temperature on the streamer discharges is studied. When the temperature is increased, the product of applied voltage and temperature VT proportional to the reduced electric field can be used as a primary parameter that determines some discharge parameters regardless of temperature. For a given VT, the transferred charge per pulse, streamer diameter, product of discharge energy and temperature, and length of secondary streamer are almost constant regardless of T, whereas the streamer velocity decreases with increasing T and the decay rate of the discharge current is proportional to 1/T. The N2(C) emission intensity is approximately determined by the discharge energy independent of T. These results are useful to predict the streamer discharge and its reactive species production when the ambient temperature is increased.

  6. Air Temperature and Radiation Depressions Associated with a Snow Cover.

    NASA Astrophysics Data System (ADS)

    Baker, Donald G.; Ruschy, David L.; Skaggs, Richard H.; Wall, David B.

    1992-03-01

    An analysis of air temperature and radiation regimes an days with and without a snow cover at the St. Paul, Minnesota, climatological observatory was made based on a 16 December-15 March 23-yr temperature record and a solar and longwave radiation record for 11 of those 23 years. In addition, an overlapping 41-yr temperature record of the Minneapolis-St. Paul National Weather Service Station (MSP) was analyzed for corroboration of the St. Paul temperature results.It was found that both the average maximum and average minimum air temperatures for winter days with a 10-cm or greater snow cover were 8.4°C lower than on the snow-free days. For days with intermediate-depth snow (>0 and <10 cm deep) the depressions of the maximum and minimum temperatures averaged about 2°C less. The temperature depressions at MSP were about 2°C less than at St. Paul for both snow-cover depths, a difference believed to be due to the more urban surroundings at MSP.A difference in the depression of the winter month temperatures was observed at MSP but not at the St. Paul observatory. The St. Paul results were unexpected, since it has been suggested that a greater maximum temperature depression, due to a higher sun, would occur in March than in December.The air temperature depressions compare favorably with the mean 16 December- 15 March radiometrically determined surface temperatures, which indicated that the intermediate snow depth and the 10-cm snow depth were 1O° and 15°C, respectively, colder than the surface free of snow. The mean longwave radiation loss was 3.94 MJ m2 day1 greater from the snow-free surface than from a 10-cm or greater snow cover.

  7. Simulation of the effect of an increase in methane on air temperature

    NASA Astrophysics Data System (ADS)

    Bi, Yun; Chen, Yuejuan; Zhou, Renjun; Yi, Mingjian; Deng, Shumei

    2011-01-01

    The infrared radiative effect of methane was analyzed using the 2D, interactive chemical dynamical radiative SOCRATES model of the National Center for Atmospheric Research. Then, a sensitivity experiment, with the methane volume mixing ratio increased by 10%, was carried out to study the influence of an increase of methane on air temperature. The results showed that methane has a heating effect through the infrared radiative process in the troposphere and a cooling effect in the stratosphere. However, the cooling effect of the methane is much smaller than that of water vapor in the stratosphere and is negligible in the mesosphere. The simulation results also showed that when methane concentration is increased by 10%, the air temperature lowers in the stratosphere and mesosphere and increases in the troposphere. The cooling can reach 0.2 K at the stratopause and can vary from 0.2-0.4 K in the mesosphere, and the temperature rise varies by around 0.001-0.002 K in the troposphere. The cooling results from the increase of the infrared radiative cooling rate caused by increased water vapor and O3 concentration, which are stimulated by the increase in methane in most of the stratosphere. The infrared radiation cooling of methane itself is minor. The depletion of O3 stimulated by the methane increase results indirectly in a decrease in the rate of solar radiation heating, producing cooling in the stratopause and mesosphere. The tropospheric warming is mainly caused by the increase of methane, which produces infrared radiative heating. The increase in H2O and O3 caused by the methane increase also contributes to a rise in temperature in the troposphere.

  8. Temperature regulated-chemical vapor deposition for incorporating NiO nanoparticles into mesoporous media

    NASA Astrophysics Data System (ADS)

    Han, Sang Wook; Kim, Il Hee; Kim, Dae Han; Park, Ki Jung; Park, Eun Ji; Jeong, Myung-Geun; Kim, Young Dok

    2016-11-01

    We have developed a novel strategy for incorporating NiO nanoparticles into mesoporous Al2O3 with a mean pore size of ∼12 nm and particle size of ∼1 mm. Ni-precursor vapor and ambient atmosphere were filled in a closed chamber with mesoporous Al2O3, and the chamber was initially heated at ∼100 °C, at which no chemical reaction between the inorganic precursor, oxygen, water vapor in the atmosphere, and the surface of Al2O3 took place. Next, the temperature of the system was increased to 260 °C for deposition of NiO. We found that NiO nanoparticles were not only deposited on the surface, but were also incorporated in a 50 μm-deep region of the mesoporous Al2O3 gel. We also demonstrated high CO oxidation activity and reusability of the deactivated NiO/Al2O3 catalysts prepared by the aforementioned method. These results suggest that our strategy could be widely applicable to the incorporation of various nanoparticles into mesoporous supports.

  9. Reduced graphene oxide coated optical fiber for methanol and ethanol vapor detection at room temperature

    NASA Astrophysics Data System (ADS)

    Kavinkumar, T.; Sastikumar, D.; Manivannan, S.

    2014-10-01

    Successful isolation of single layer of graphene from graphite by mechanical exfoliation method, attracted a great attention due to its unique structural, optical, mechanical and electronic properties. This makes the graphene as a promising material in many possible applications such as energy-storage, sensing, electronic, optical devices and polymer composite materials. High quality of reduced graphene oxide (rGO) material was prepared by chemical reduction method at 100°C. The structural and optical properties of the rGO sheets were characterized by FT-IR, micro Raman, powder XRD and UV-vis-NIR techniques. FT-IR reveals the absence of oxygen functional groups on rGO due to the reduction process. Powder XRD shows the broad peak at 2θ=24.3° corresponding to interlayer spacing 3.66Å which is smaller than the graphene oxide (GO). UV-vis-NIR of rGO displays the absorption peak at 271 nm indicates the reduction of GO and the restoration of C=C bonds in the rGO sheets. The cladding removed and rGO coated poly-methyl methacrylate (PMMA) optical fiber is used for methanol and ethanol vapors detection in the concentration ranging from 0 to 500 ppm at room temperature. The spectral characteristics along with output intensity modulation of cladding removed and rGO coated fiber optic sensor reveal the potential of methanol and ethanol vapor sensing properties.

  10. Effects of air flow directions on composting process temperature profile

    SciTech Connect

    Kulcu, Recep; Yaldiz, Osman

    2008-07-01

    In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO{sub 2} and O{sub 2} ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperature distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2.

  11. Temperature gradients and clear-air turbulence probabilities

    NASA Technical Reports Server (NTRS)

    Bender, M. A.; Panofsky, H. A.; Peslen, C. A.

    1976-01-01

    In order to forecast clear-air turbulence (CAT) in jet aircraft flights, a study was conducted in which the data from a special-purpose instrument aboard a Boeing 747 jet airliner were compared with satellite-derived radiance gradients, conventional temperature gradients from analyzed maps, and temperature gradients obtained from a total air temperature sensor on the plane. The advantage of making use of satellite-derived data is that they are available worldwide without the need for radiosonde observations, which are scarce in many parts of the world. Major conclusions are that CAT probabilities are significantly higher over mountains than flat terrain, and that satellite radiance gradients appear to discriminate between CAT and no CAT better than conventional temperature gradients over flat lands, whereas the reverse is true over mountains, the differences between the two techniques being not large over mountains.

  12. A Physical Experiment to determine the Impact of Atmospheric Condensation of Water Vapor on Surface Air Movement

    NASA Astrophysics Data System (ADS)

    Bunyard, P. P.; Nechev, P.

    2013-12-01

    A physical experiment, in which atmospheric air is enclosed in two interconnecting 4.8-metre high insulated PVC columns, consistently gives results showing that the condensation of water vapor, precipitated by means of refrigeration coils, gives rise to detectable air movements, with air speeds of up to 0.1 m/s. Once the compressor, sited well away from the two columns, is shut down, heavy drops of precipitated water are obtained which funnel into a flask for collection and measurement. The results in kg.m-2 (mm) from the 20 m3 volume of enclosed air accord well (>90%) with the physical calculations based on water vapor as an ideal gas. Air flow, resulting from the highly localized condensation, is measured through the movement of light-weight gauzes and an anemometer. It has a circulation time of some two minutes, such that both columns show cooling and a significant reduction in specific humidity from 0.01 to 0.005 (kg water vapor to kg dry air, r) with a drop in relative humidity of up to 40 per cent. Air flow is minimal during the control, non-refrigeration period of the experiment but becomes substantial within a minute of the compressor being switched on. The negative partial pressure change peaks at as much as 0.4 Pa/s during the first 30 minutes but reduces to approx. 0.08 Pa/s during the latter part of the 110 minute- long experiment. Airflow displays an inverse relationship to the partial pressure change, initially rising rapidly and then reducing before returning to zero once refrigeration has been switched off. Inverse correlations of up to 0.8 or higher between the partial pressure reduction and the airflow are obtained routinely. Semi-aquatic vegetation from the nearby marshland enhances precipitation, suggesting that evapotranspiration adds significantly to humidity. Without vegetation the condensation rate is 0.06 to 0.07 millimol.m-3.s-1 on average compared with 0.11 when vegetation is present. Cooling, by some 2°C, combined with a reduction in

  13. Suppression of vapor cell temperature error for spin-exchange-relaxation-free magnetometer

    SciTech Connect

    Lu, Jixi Qian, Zheng; Fang, Jiancheng; Quan, Wei

    2015-08-15

    This paper presents a method to reduce the vapor cell temperature error of the spin-exchange-relaxation-free (SERF) magnetometer. The fluctuation of cell temperature can induce variations of the optical rotation angle, resulting in a scale factor error of the SERF magnetometer. In order to suppress this error, we employ the variation of the probe beam absorption to offset the variation of the optical rotation angle. The theoretical discussion of our method indicates that the scale factor error introduced by the fluctuation of the cell temperature could be suppressed by setting the optical depth close to one. In our experiment, we adjust the probe frequency to obtain various optical depths and then measure the variation of scale factor with respect to the corresponding cell temperature changes. Our experimental results show a good agreement with our theoretical analysis. Under our experimental condition, the error has been reduced significantly compared with those when the probe wavelength is adjusted to maximize the probe signal. The cost of this method is the reduction of the scale factor of the magnetometer. However, according to our analysis, it only has minor effect on the sensitivity under proper operating parameters.

  14. Gas temperature measurements inside a hot wall chemical vapor synthesis reactor.

    PubMed

    Notthoff, Christian; Schilling, Carolin; Winterer, Markus

    2012-11-01

    One key but complex parameter in the chemical vapor synthesis (CVS) of nanoparticles is the time temperature profile of the gas phase, which determines particle characteristics such as size (distribution), morphology, microstructure, crystal, and local structure. Relevant for the CVS process and for the corresponding particle characteristics is, however, not the T(t)-profile generated by an external energy source such as a hot wall or microwave reactor but the temperature of the gas carrying reactants and products (particles). Due to a complex feedback of the thermodynamic and chemical processes in the reaction volume with the external energy source, it is very difficult to predict the real gas phase temperature field from the externally applied T(t)-profile. Therefore, a measurement technique capable to determine the temperature distribution of the gas phase under process conditions is needed. In this contribution, we demonstrate with three proof of principle experiments the use of laser induced fluorescence thermometry to investigate the CVS process under realistic conditions.

  15. Suppression of vapor cell temperature error for spin-exchange-relaxation-free magnetometer.

    PubMed

    Lu, Jixi; Qian, Zheng; Fang, Jiancheng; Quan, Wei

    2015-08-01

    This paper presents a method to reduce the vapor cell temperature error of the spin-exchange-relaxation-free (SERF) magnetometer. The fluctuation of cell temperature can induce variations of the optical rotation angle, resulting in a scale factor error of the SERF magnetometer. In order to suppress this error, we employ the variation of the probe beam absorption to offset the variation of the optical rotation angle. The theoretical discussion of our method indicates that the scale factor error introduced by the fluctuation of the cell temperature could be suppressed by setting the optical depth close to one. In our experiment, we adjust the probe frequency to obtain various optical depths and then measure the variation of scale factor with respect to the corresponding cell temperature changes. Our experimental results show a good agreement with our theoretical analysis. Under our experimental condition, the error has been reduced significantly compared with those when the probe wavelength is adjusted to maximize the probe signal. The cost of this method is the reduction of the scale factor of the magnetometer. However, according to our analysis, it only has minor effect on the sensitivity under proper operating parameters.

  16. Temperature variations recorded during interinstitutional air shipments of laboratory mice.

    PubMed

    Syversen, Eric; Pineda, Fernando J; Watson, Julie

    2008-01-01

    Despite extensive guidelines and regulations that govern most aspects of rodent shipping, few data are available on the physical environment experienced by rodents during shipment. To document the thermal environment experienced by mice during air shipments, we recorded temperatures at 1-min intervals throughout 103 routine interinstitutional shipments originating at our institution. We found that 49.5% of shipments were exposed to high temperatures (greater than 29.4 degrees C), 14.6% to low temperatures (less than 7.2 degrees C), and 61% to temperature variations of 11 degrees C or more. International shipments were more likely than domestic shipments to experience temperature extremes and large variations in temperature. Freight forwarders using passenger airlines rather than their own airplanes were more likely to have shipments that experienced temperature extremes or variations. Temperature variations were most common during stopovers. Some airlines were more likely than others to experience inflight temperature extremes or swings. Most domestic shipments lasted at least 24 h, whereas international shipments lasted 48 to 72 h. Despite exposure to high and low temperatures, animals in all but 1 shipment arrived alive. We suggest that simple measures, such as shipping at night during hot weather, provision of nesting material in shipping crates, and specifying aircraft cargo-hold temperatures that are suitable for rodents, could reduce temperature-induced stress. Measures such as additional training for airport ground crews, as previously recommended by the American Veterinary Medical Association, could further reduce exposure of rodents to extreme ambient temperatures during airport stopovers.

  17. Quantitative detection of trace explosive vapors by programmed temperature desorption gas chromatography-electron capture detector.

    PubMed

    Field, Christopher R; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C; Rose-Pehrsson, Susan L

    2014-07-25

    The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples.

  18. Quantitative detection of trace explosive vapors by programmed temperature desorption gas chromatography-electron capture detector.

    PubMed

    Field, Christopher R; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C; Rose-Pehrsson, Susan L

    2014-01-01

    The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples. PMID:25145416

  19. Geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppälä, A.; Randall, C. E.; Clilverd, M. A.; Rozanov, E.; Rodger, C. J.

    2009-10-01

    Here we use the ERA-40 and ECMWF operational surface level air temperature data sets from 1957 to 2006 to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the A p index. Previous modeling work has suggested that NO x produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in surface air temperatures (SATs). We find that during winter months, polar SATs in years with high A p index are different than in years with low A p index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, depending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings (SSWs) are excluded. We take into account solar irradiance variations, unlike previous analyses of geomagnetic effects in ERA-40 and operational data. Although we cannot conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating wintertime surface air temperatures. We tested our SAT results against variation in the Quasi Biennial Oscillation, the El Niño Southern Oscillation and the Southern Annular Mode. The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode, and we cannot robustly exclude a chance linkage between sea surface temperature variability and geomagnetic activity.

  20. Numerical simulation of temperature-driven air circulation and oxygen transport in unsaturated porous media

    SciTech Connect

    Guo, Weixing; Parizek, R.R. . Dept. of Geosciences)

    1992-01-01

    Temperature-driven air circulation within unsaturated porous media is receiving increasing attention in the studies of volatile organic component transport and remediation, safety assessment of radioactive waste repositories, soil moisture redistribution, etc. This coupled physical process also plays an important role in supplying oxygen to coal mine spoil where acid mine drainage is generated. To investigate the availability of oxygen within mine spoil, as the primary oxidant in acid reactions, a transient two-dimensional numerical model (HOT) which incorporates temperature-driven air circulation, dispersion-advection oxygen transport in gas phase, steady-state groundwater flow and chemical reactions, has been created. Energy and mass transfer across liquid and gas phases are included. Shrinking core models are used to simulate the kinetics of acid reactions. The rates of heat generation and oxygen consumption are determined stoichiometrically. The generalized Newton-Raphson method is used to linearize the partial differential equations describing heat and mass transfer in porous media. HOT has been used in studies of acid mine drainage generation within coal mine spoil and successfully compared with in-situ temperature measurements. This model may also be applied for some other research including soil vapor extraction, radon migration in soils and temperature prediction of nuclear waste repositories within unsaturated rocks.

  1. Updating exposure models of indoor air pollution due to vapor intrusion: Bayesian calibration of the Johnson-Ettinger model.

    PubMed

    Johnston, Jill E; Sun, Qiang; Gibson, Jacqueline Macdonald

    2014-02-18

    The migration of chlorinated volatile organic compounds from groundwater to indoor air--known as vapor intrusion--is an important exposure pathway at sites with contaminated groundwater. High-quality screening methods to prioritize homes for monitoring and remediation are needed, because measuring indoor air quality in privately owned buildings is often logistically and financially infeasible. We demonstrate an approach for improving the accuracy of the Johnson-Ettinger model (JEM), which the Environmental Protection Agency (EPA) recommends as a screening tool in assessing vapor intrusion risks. We use Bayesian statistical techniques to update key Johnson-Ettinger input parameters, and we compare the performance of the prior and updated models in predicting indoor air concentrations measured in 20 homes. Overall, the updated model reduces the root mean squared error in the predicted concentration by 66%, in comparison to the prior model. Further, in 18 of the 20 homes, the mean measured concentration is within the 90% confidence interval of the concentration predicted by the updated model. The resulting calibrated model accounts for model uncertainty and variability and decreases the false negatives rate; hence, it may offer an improved screening approach, compared to the current EPA deterministic approach.

  2. Subnatural linewidth in room-temperature Rb vapor using a control laser

    NASA Astrophysics Data System (ADS)

    Rapol, Umakant D.; Wasan, Ajay; Natarajan, Vasant

    2003-05-01

    We demonstrate two ways of obtaining subnatural linewidth for probe absorption through room-temperature Rb vapor. Both techniques use a control laser that drives the transition from a different ground state. The coherent drive splits the excited state into two dressed states (Autler-Townes doublet), which have asymmetric linewidths when the control laser is detuned from resonance. In the first technique, the laser has a large detuning of 1.18 GHz to reduce the linewidth to 5.1 MHz from the Doppler width of 560 MHz. In the second technique, we use a counterpropagating pump beam to eliminate the first-order Doppler effect. The unperturbed probe linewidth is about 13 MHz, which is reduced below 3 MHz (0.5Γ) at a detuning of 11.5 MHz.

  3. Low Working-Temperature Acetone Vapor Sensor Based on Zinc Nitride and Oxide Hybrid Composites.

    PubMed

    Qu, Fengdong; Yuan, Yao; Guarecuco, Rohiverth; Yang, Minghui

    2016-06-01

    Transition-metal nitride and oxide composites are a significant class of emerging materials that have attracted great interest for their potential in combining the advantages of nitrides and oxides. Here, a novel class of gas sensing materials based on hybrid Zn3 N2 and ZnO composites is presented. The Zn3 N2 /ZnO (ZnNO) composites-based sensor exhibits selectivity and high sensitivity toward acetone vapor, and the sensitivity is dependent on the nitrogen content of the composites. The ZnNO-11.7 described herein possesses a low working temperature of 200 °C. The detection limit (0.07 ppm) is below the diabetes diagnosis threshold (1.8 ppm). In addition, the sensor shows high reproducibility and long-term stability.

  4. Temperature Dependences of Mechanisms Responsible for the Water-Vapor Continuum Absorption

    NASA Technical Reports Server (NTRS)

    Ma, Qiancheng

    2014-01-01

    The water-vapor continuum absorption plays an important role in the radiative balance in the Earth's atmosphere. It has been experimentally shown that for ambient atmospheric conditions, the continuum absorption scales quadratically with the H2O number density and has a strong, negative temperature dependence (T dependence). Over the years, there have been three different theoretical mechanisms postulated: far-wings of allowed transition lines, water dimers, and collision-induced absorption. The first mechanism proposed was the accumulation of absorptions from the far-wings of the strong allowed transition lines. Later, absorption by water dimers was proposed, and this mechanism provides a qualitative explanation for the continuum characters mentioned above. Despite the improvements in experimental data, at present there is no consensus on which mechanism is primarily responsible for the continuum absorption.

  5. Control of Photosynthesis and Stomatal Conductance in Ricinus communis L. (Castor Bean) by Leaf to Air Vapor Pressure Deficit.

    PubMed

    Dai, Z; Edwards, G E; Ku, M S

    1992-08-01

    Castor bean (Ricinus communis L.) has a high photosynthetic capacity under high humidity and a pronounced sensitivity of photosynthesis to high water vapor pressure deficit (VPD). The sensitivity of photosynthesis to varying VPD was analyzed by measuring CO(2) assimilation, stomatal conductance (g(s)), quantum yield of photosystem II (phi(II)), and nonphotochemical quenching of chlorophyll fluorescence (q(N)) under different VPD. Under both medium (1000) and high (1800 micromoles quanta per square meter per second) light intensities, CO(2) assimilation decreased as the VPD between the leaf and the air around the leaf increased. The g(s) initially dropped rapidly with increasing VPD and then showed a slower decrease above a VPD of 10 to 20 millibars. Over a temperature range from 20 to 40 degrees C, CO(2) assimilation and g(s) were inhibited by high VPD (20 millibars). However, the rate of transpiration increased with increasing temperature at either low or high VPD due to an increase in g(s). The relative inhibition of photosynthesis under photorespiring (atmospheric levels of CO(2) and O(2)) versus nonphotorespiring (700 microbars CO(2) and 2% O(2)) conditions was greater under high VPD (30 millibars) than under low VPD (3 millibars). Also, with increasing light intensity the relative inhibition of photosynthesis by O(2) increased under high VPD, but decreased under low VPD. The effect of high VPD on photosynthesis under various conditions could not be totally accounted for by the decrease in the intercellular CO(2) in the leaf (C(i)) where C(i) was estimated from gas exchange measurements. However, estimates of C(i) from measurements of phi(II) and q(N) suggest that the decrease in photosynthesis and increase in photorespiration under high VPD can be totally accounted for by stomatal closure and a decrease in C(i). The results also suggest that nonuniform closure of stomata may occur in well-watered plants under high VPD, causing overestimates in the calculation

  6. Dynamic and temperature dependent response of physical vapor deposited Se in freely standing nanometric thin films

    NASA Astrophysics Data System (ADS)

    Yoon, Heedong; McKenna, Gregory B.

    2016-05-01

    Here, we report results from an investigation of nano-scale size or confinement effects on the glass transition and viscoelastic properties of physical vapor deposited selenium films. The viscoelastic response of freely standing Se films was determined using a biaxial membrane inflation or bubble inflation method [P. A. O'Connell and G. B. McKenna, Science 307, 1760-1763 (2005)] on films having thicknesses from 60 to 267 nm and over temperatures ranging from Tg, macroscopic - 15 °C to Tg, macroscopic + 21 °C. Time-temperature superposition and time-thickness superposition were found to hold for the films in the segmental dispersion. The responses are compared with macroscopic creep and recoverable creep compliance data for selenium [K. M. Bernatz et al., J. Non-Cryst. Solids 307, 790-801 (2002)]. The time-temperature shift factors for the thin films show weaker temperature dependence than seen in the macroscopic behavior, being near to Arrhenius-like in their temperature dependence. Furthermore, the Se films exhibit a "rubbery-like" stiffening that increases as film thickness decreases similar to prior observations [P. A. O'Connell et al., Macromolecules 45(5), 2453-2459 (2012)] for organic polymers. In spite of the differences from the macroscopic behavior in the temperature dependence of the viscoelastic response, virtually no change in Tg as determined from the thickness dependence of the retardation time defining Tg was observed in the bubble inflation creep experiments to thicknesses as small as 60 nm. We also find that the observed rubbery stiffening is consistent with the postulate of K. L. Ngai et al. [J. Polym. Sci., Part B: Polym. Phys. 51(3), 214-224 (2013)] that it should correlate with the change of the macroscopic segmental relaxation.

  7. Dynamic and temperature dependent response of physical vapor deposited Se in freely standing nanometric thin films.

    PubMed

    Yoon, Heedong; McKenna, Gregory B

    2016-05-14

    Here, we report results from an investigation of nano-scale size or confinement effects on the glass transition and viscoelastic properties of physical vapor deposited selenium films. The viscoelastic response of freely standing Se films was determined using a biaxial membrane inflation or bubble inflation method [P. A. O'Connell and G. B. McKenna, Science 307, 1760-1763 (2005)] on films having thicknesses from 60 to 267 nm and over temperatures ranging from Tg, macroscopic - 15 °C to Tg, macroscopic + 21 °C. Time-temperature superposition and time-thickness superposition were found to hold for the films in the segmental dispersion. The responses are compared with macroscopic creep and recoverable creep compliance data for selenium [K. M. Bernatz et al., J. Non-Cryst. Solids 307, 790-801 (2002)]. The time-temperature shift factors for the thin films show weaker temperature dependence than seen in the macroscopic behavior, being near to Arrhenius-like in their temperature dependence. Furthermore, the Se films exhibit a "rubbery-like" stiffening that increases as film thickness decreases similar to prior observations [P. A. O'Connell et al., Macromolecules 45(5), 2453-2459 (2012)] for organic polymers. In spite of the differences from the macroscopic behavior in the temperature dependence of the viscoelastic response, virtually no change in Tg as determined from the thickness dependence of the retardation time defining Tg was observed in the bubble inflation creep experiments to thicknesses as small as 60 nm. We also find that the observed rubbery stiffening is consistent with the postulate of K. L. Ngai et al. [J. Polym. Sci., Part B: Polym. Phys. 51(3), 214-224 (2013)] that it should correlate with the change of the macroscopic segmental relaxation. PMID:27179489

  8. Dynamic and temperature dependent response of physical vapor deposited Se in freely standing nanometric thin films.

    PubMed

    Yoon, Heedong; McKenna, Gregory B

    2016-05-14

    Here, we report results from an investigation of nano-scale size or confinement effects on the glass transition and viscoelastic properties of physical vapor deposited selenium films. The viscoelastic response of freely standing Se films was determined using a biaxial membrane inflation or bubble inflation method [P. A. O'Connell and G. B. McKenna, Science 307, 1760-1763 (2005)] on films having thicknesses from 60 to 267 nm and over temperatures ranging from Tg, macroscopic - 15 °C to Tg, macroscopic + 21 °C. Time-temperature superposition and time-thickness superposition were found to hold for the films in the segmental dispersion. The responses are compared with macroscopic creep and recoverable creep compliance data for selenium [K. M. Bernatz et al., J. Non-Cryst. Solids 307, 790-801 (2002)]. The time-temperature shift factors for the thin films show weaker temperature dependence than seen in the macroscopic behavior, being near to Arrhenius-like in their temperature dependence. Furthermore, the Se films exhibit a "rubbery-like" stiffening that increases as film thickness decreases similar to prior observations [P. A. O'Connell et al., Macromolecules 45(5), 2453-2459 (2012)] for organic polymers. In spite of the differences from the macroscopic behavior in the temperature dependence of the viscoelastic response, virtually no change in Tg as determined from the thickness dependence of the retardation time defining Tg was observed in the bubble inflation creep experiments to thicknesses as small as 60 nm. We also find that the observed rubbery stiffening is consistent with the postulate of K. L. Ngai et al. [J. Polym. Sci., Part B: Polym. Phys. 51(3), 214-224 (2013)] that it should correlate with the change of the macroscopic segmental relaxation.

  9. Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions.

    PubMed

    Luo, Paifeng; Liu, Zhaofan; Xia, Wei; Yuan, Chenchen; Cheng, Jigui; Lu, Yingwei

    2015-02-01

    Recently, hybrid perovskite solar cells (PSCs) have attracted extensive attention due to their high efficiency and simple preparing process. Herein, a facile low-pressure chemical vapor deposition (LPCVD) technology is first developed to fabricate PSCs, which can effectively reduce the over-rapid intercalating reaction rate and easily overcome this blocking issue during the solution process. As a result, the prepared uniform perovskite films exhibit good crystallization, strong absorption, and long carrier diffusion length. More strikingly, CH3NH3PbI3 absorbers by LPCVD demonstrate excellent moisture-resistant feature even under laser illumination and high-temperature conditions, which indicates that our proprietary method is very suitable for the future low-cost, nonvacuum production of the new generation photovoltaic devices. Finally, high efficiency of 12.73% is successfully achieved under fully open-air conditions. To the best of our knowledge, this is the first report of efficient PSCs with such a high humidity above 60%.

  10. Carbon tetrachloride replacement compounds for organic vapor air-purifying respirator cartridge and activated carbon testing--a review.

    PubMed

    Moyer, E S; Smith, S J; Wood, G O

    2001-01-01

    This article reviews efforts by researchers and organizations around the world to identify chemicals as substitutes for carbon tetrachloride in measuring activated carbon activity (adsorption capacity) or organic vapor air-purifying respirator cartridge (or other packed carbon bed) breakthrough times. Such measurements usually are done to determine if a minimum performance standard is met. Different criteria have been established, supporting data developed and used, and conclusions reached. This article presents relevant published, unpublished, obscure, and recalculated data which the reader can use to make a choice of replacement chemical and testing conditions. No recommendations for a specific replacement chemical are endorsed or promoted in this review. PMID:11549144

  11. BELINDA: Broadband Emission Lidar with Narrowband Determination of Absorption. A new concept for measuring water vapor and temperature profiles

    NASA Technical Reports Server (NTRS)

    Theopold, F. A.; Weitkamp, C.; Michaelis, W.

    1992-01-01

    We present a new concept for differential absorption lidar measurements of water vapor and temperature profiles. The idea is to use one broadband emission laser and a narrowband filter system for separation of the 'online' and 'offline' return signals. It is shown that BELINDA offers improvements as to laser emission shape and stability requirements, background suppression, and last and most important a significant reduction of the influence of Rayleigh scattering. A suitably designed system based on this concept is presented, capable of measuring water vapor or temperature profiles throughout the planetary boundary layer.

  12. The mass and speed dependence of meteor air plasma temperatures.

    PubMed

    Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  13. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  14. High-temperature mass spectrometry - Vaporization of group 4-B metal carbides. [using Knudsen effusion

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.

    1974-01-01

    The high temperature vaporization of the metal-carbon systems TiC, ZrC, HfC, and ThC was studied by the Knudsen effusion - mass spectrometric method. For each system the metal dicarbide and tetracarbide molecular species were identified in the gas phase. Relative ion currents of the carbides and metals were measured as a function of temperature. Second- and third-law methods were used to determine enthalpies. Maximum values were established for the dissociation energies of the metal monocarbide molecules TiC, ZrC, HfC, and ThC. Thermodynamic functions used in the calculations are discussed in terms of assumed molecular structures and electronic contributions to the partition functions. The trends shown by the dissociation energies of the carbides of Group 4B are compared with those of neighboring groups and discussed in relation to the corresponding oxides and chemical bonding. The high temperature molecular beam inlet system and double focusing mass spectrometer are described.

  15. CARS Temperature and Species Measurements For Air Vehicle Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Gord, James R.; Grisch, Frederic; Klimenko, Dmitry; Clauss, Walter

    2005-01-01

    The coherent anti-Stokes Raman spectroscopy (CARS) method has recently been used in the United States and Europe to probe several different types of propulsion systems for air vehicles. At NASA Langley Research Center in the United States, CARS has been used to simultaneously measure temperature and the mole fractions of N2, O2 and H2 in a supersonic combustor, representative of a scramjet engine. At Wright- Patterson Air Force Base in the United States, CARS has been used to simultaneously measure temperature and mole fractions of N2, O2 and CO2, in the exhaust stream of a liquid-fueled, gas-turbine combustor. At ONERA in France and the DLR in Germany researchers have used CARS to measure temperature and species concentrations in cryogenic LOX-H2 rocket combustion chambers. The primary aim of these measurements has been to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.

  16. Microwave temperature profiler for clear air turbulence prediction

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    1992-01-01

    A method is disclosed for determining Richardson Number, Ri, or its reciprocal, RRi, for clear air prediction using measured potential temperature and determining the vertical gradient of potential temperature, d(theta)/dz. Wind vector from the aircraft instrumentation versus potential temperature, dW/D(theta), is determined and multiplies by d(theta)/dz to obtain dW/dz. Richardson number or its reciprocal is then determined from the relationship Ri = K(d theta)/dz divided by (dW/dz squared) for use in detecting a trend toward a threshold value for the purpose of predicting clear air turbulence. Other equations for this basic relationship are disclosed together with the combination of other atmospheric observables using multiple regression techniques.

  17. The Effects of Air Pollution and Temperature on COPD

    PubMed Central

    Hansel, Nadia N.; McCormack, Meredith C.; Kim, Victor

    2016-01-01

    Chronic Obstructive Pulmonary Disease (COPD) affects 12–16 million people in the United States and is the third-leading cause of death. In developed countries, smoking is the greatest risk factor for the development of COPD, but other exposures also contribute to the development and progression of the disease. Several studies suggest, though are not definitive, that outdoor air pollution exposure is linked to the prevalence and incidence of COPD. Among individuals with COPD, outdoor air pollutants are associated with loss of lung function and increased respiratory symptoms. In addition, outdoor air pollutants are also associated with COPD exacerbations and mortality. There is much less evidence for the impact of indoor air on COPD, especially in developed countries in residences without biomass exposure. The limited existing data suggests that indoor particulate matter and nitrogen dioxide concentrations are linked to increased respiratory symptoms among patients with COPD. In addition, with the projected increases in temperature and extreme weather events in the context of climate change there has been increased attention to the effects of heat exposure. Extremes of temperature—both heat and cold—have been associated with increased respiratory morbidity in COPD. Some studies also suggest that temperature may modify the effect of pollution exposure and though results are not conclusive, understanding factors that may modify susceptibility to air pollution in patients with COPD is of utmost importance. PMID:26683097

  18. Spatial interpolation of monthly mean air temperature data for Latvia

    NASA Astrophysics Data System (ADS)

    Aniskevich, Svetlana

    2016-04-01

    Temperature data with high spatial resolution are essential for appropriate and qualitative local characteristics analysis. Nowadays the surface observation station network in Latvia consists of 22 stations recording daily air temperature, thus in order to analyze very specific and local features in the spatial distribution of temperature values in the whole Latvia, a high quality spatial interpolation method is required. Until now inverse distance weighted interpolation was used for the interpolation of air temperature data at the meteorological and climatological service of the Latvian Environment, Geology and Meteorology Centre, and no additional topographical information was taken into account. This method made it almost impossible to reasonably assess the actual temperature gradient and distribution between the observation points. During this project a new interpolation method was applied and tested, considering auxiliary explanatory parameters. In order to spatially interpolate monthly mean temperature values, kriging with external drift was used over a grid of 1 km resolution, which contains parameters such as 5 km mean elevation, continentality, distance from the Gulf of Riga and the Baltic Sea, biggest lakes and rivers, population density. As the most appropriate of these parameters, based on a complex situation analysis, mean elevation and continentality was chosen. In order to validate interpolation results, several statistical indicators of the differences between predicted values and the values actually observed were used. Overall, the introduced model visually and statistically outperforms the previous interpolation method and provides a meteorologically reasonable result, taking into account factors that influence the spatial distribution of the monthly mean temperature.

  19. 78 FR 79340 - Approval and Promulgation of Air Quality Implementation Plans; Texas; Stage II Vapor Recovery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ... the BPA maintenance plan (78 FR 7672) for 2014 and 2021. For each of the future years 2014, 2017 and... worse. The EPA approved these rules on April 15, 1994 (59 FR 17940). The four areas where Stage II is... Refueling Vapor Recovery and Stage II Waiver, published on July 15, 2011 (76 FR 41731). Each year,...

  20. Air stripping of volatile organic compounds from groundwater: An evaluation of a centrifugal vapor-liquid contractor

    SciTech Connect

    Singh, S.P.

    1989-01-01

    The performance of a centrifugal vapor-liquid contactor equipped with high specific surface area packing (>2,000 m{sup 2}/m{sup 3}) was evaluated for air stripping of jet fuel components from groundwater. Hydraulic test data indicated that the Sherwood flooding correlation which has been proposed for use in designing centrifugal vapor-liquid contactors overestimates the rotational speeds at which flooding occurs. For the mass transfer performance, a concept of area of a transfer unit (ATU) was introduced to account for the change in fluid loading with radius of the packing torus. The ATU was found to be a strong function of the specific surface area of the packing and to a lesser extent a function of rotor speed and liquid flow rate. A correlation based on the specific surface area of the packing is proposed for predicting the ATU. A simple empirical model is also proposed for determining the power consumed in turning the packing torus at various operating conditions. Previous claims in the literature that centrifugal vapor-liquid contactor is resistant to fouling because of high shear force were found not to be valid for groundwater with high iron content.

  1. Interactive response of photosynthetic characteristics in Haloxylon ammodendron and Hedysarum scoparium exposed to soil water and air vapor pressure deficits.

    PubMed

    Gong, Chunmei; Wang, Jiajia; Hu, Congxia; Wang, Junhui; Ning, Pengbo; Bai, Juan

    2015-08-01

    C4 plants possess better drought tolerance than C3 plants. However, Hedysarum scoparium, a C3 species, is dominant and widely distributed in the desert areas of northwestern China due to its strong drought tolerance. This study compared it with Haloxylon ammodendron, a C4 species, regarding the interactive effects of drought stress and different leaf-air vapor pressure deficits. Variables of interest included gas exchange, the activity levels of key C4 photosynthetic enzymes, and cellular anatomy. In both species, gas exchange parameters were more sensitive to high vapor pressure deficit than to strong water stress, and the net CO2 assimilation rate (An) was enhanced as vapor pressure deficits increased. A close relationship between An and stomatal conductance (gs) suggested that the species shared a similar response mechanism. In H. ammodendron, the activity levels of key C4 enzymes were higher, including those of phosphoenolpyruvate carboxylase (PEPC) and nicotinamide adenine dinucleotide phosphate-malate enzyme (NADP-ME), whereas in H. scoparium, the activity level of nicotinamide adenine dinucleotide-malate enzyme (NAD-ME) was higher. Meanwhile, H. scoparium utilized adaptive structural features, including a larger relative vessel area and a shorter distance from vein to stomata, which facilitated the movement of water. These findings implied that some C4 biochemical pathways were present in H. scoparium to respond to environmental challenges. PMID:26257361

  2. Interactive response of photosynthetic characteristics in Haloxylon ammodendron and Hedysarum scoparium exposed to soil water and air vapor pressure deficits.

    PubMed

    Gong, Chunmei; Wang, Jiajia; Hu, Congxia; Wang, Junhui; Ning, Pengbo; Bai, Juan

    2015-08-01

    C4 plants possess better drought tolerance than C3 plants. However, Hedysarum scoparium, a C3 species, is dominant and widely distributed in the desert areas of northwestern China due to its strong drought tolerance. This study compared it with Haloxylon ammodendron, a C4 species, regarding the interactive effects of drought stress and different leaf-air vapor pressure deficits. Variables of interest included gas exchange, the activity levels of key C4 photosynthetic enzymes, and cellular anatomy. In both species, gas exchange parameters were more sensitive to high vapor pressure deficit than to strong water stress, and the net CO2 assimilation rate (An) was enhanced as vapor pressure deficits increased. A close relationship between An and stomatal conductance (gs) suggested that the species shared a similar response mechanism. In H. ammodendron, the activity levels of key C4 enzymes were higher, including those of phosphoenolpyruvate carboxylase (PEPC) and nicotinamide adenine dinucleotide phosphate-malate enzyme (NADP-ME), whereas in H. scoparium, the activity level of nicotinamide adenine dinucleotide-malate enzyme (NAD-ME) was higher. Meanwhile, H. scoparium utilized adaptive structural features, including a larger relative vessel area and a shorter distance from vein to stomata, which facilitated the movement of water. These findings implied that some C4 biochemical pathways were present in H. scoparium to respond to environmental challenges.

  3. Spatially Resolved Temperature and Water Vapor Concentration Distributions in Supersonic Combustion Facilities by TDLAT

    NASA Technical Reports Server (NTRS)

    Busa, K. M.; McDaniel J. C.; Diskin, G. S.; DePiro, M. J.; Capriotti, D. P.; Gaffney, R. L.

    2012-01-01

    Detailed knowledge of the internal structure of high-enthalpy flows can provide valuable insight to the performance of scramjet combustors. Tunable Diode Laser Absorption Spectroscopy (TDLAS) is often employed to measure temperature and species concentration. However, TDLAS is a path-integrated line-of-sight (LOS) measurement, and thus does not produce spatially resolved distributions. Tunable Diode Laser Absorption Tomography (TDLAT) is a non-intrusive measurement technique for determining two-dimensional spatially resolved distributions of temperature and species concentration in high enthalpy flows. TDLAT combines TDLAS with tomographic image reconstruction. More than 2500 separate line-of-sight TDLAS measurements are analyzed in order to produce highly resolved temperature and species concentration distributions. Measurements have been collected at the University of Virginia's Supersonic Combustion Facility (UVaSCF) as well as at the NASA Langley Direct-Connect Supersonic Combustion Test Facility (DCSCTF). Due to the UVaSCF s unique electrical heating and ability for vitiate addition, measurements collected at the UVaSCF are presented as a calibration of the technique. Measurements collected at the DCSCTF required significant modifications to system hardware and software designs due to its larger measurement area and shorter test duration. Tomographic temperature and water vapor concentration distributions are presented from experimentation on the UVaSCF operating at a high temperature non-reacting case for water vitiation level of 12%. Initial LOS measurements from the NASA Langley DCSCTF operating at an equivalence ratio of 0.5 are also presented. Results show the capability of TDLAT to adapt to several experimental setups and test parameters.

  4. Can air temperature be used to project influences of climate change on stream temperature?

    USGS Publications Warehouse

    Arismendi, Ivan; Safeeq, Mohammad; Dunham, Jason B.; Johnson, Sherri L.

    2014-01-01

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To address this knowledge gap, we examined the performance of two widely used linear and nonlinear regression models that predict stream temperatures based on air temperatures. We evaluated model performance and temporal stability of model parameters in a suite of regulated and unregulated streams with 11–44 years of stream temperature data. Although such models may have validity when predicting stream temperatures within the span of time that corresponds to the data used to develop them, model predictions did not transfer well to other time periods. Validation of model predictions of most recent stream temperatures, based on air temperature–stream temperature relationships from previous time periods often showed poor performance when compared with observed stream temperatures. Overall, model predictions were less robust in regulated streams and they frequently failed in detecting the coldest and warmest temperatures within all sites. In many cases, the magnitude of errors in these predictions falls within a range that equals or exceeds the magnitude of future projections of climate-related changes in stream temperatures reported for the region we studied (between 0.5 and 3.0 °C by 2080). The limited ability of regression-based statistical models to accurately project stream temperatures over time likely stems from the fact that underlying processes at play, namely the heat budgets of air and water, are distinctive in each medium and vary among localities and through time.

  5. Polycyclic aromatic hydrocarbons in indoor air and environmental tobacco smoke measured with a new integrated organic vapor-particle sampler

    SciTech Connect

    Gundel, L.A.; Daisey, J.M.; Mahanama, K.R.R.; Lee, V.C. ); Stevens, R.K. . Atmospheric Research and Exposure Assessment Lab.)

    1993-01-01

    To avoid sampling artifacts, an integrated organic vapor-particle sampler (IOVPS) has been developed for polycyclic aromatic hydrocarbons (PAH). The ICIVPS is based on an XAD-4-coated annular denuder which strips gas phase species from the air stream before collection of particles on a filter. A second denuder downstream of the filter collects species desorbed ( blown off'') the particles during sampling. PAH are determined in extracts of both denuders and the filter. For indoor air with no combustion sources, the gas-phase concentrations of several semivolatile PAH measured with the IOVPS averaged about half of those found with a conventional filter-sorbent bed sampler. For envirorunental tobacco smoke the gas-phase concentrations of the same PAH from the IOVPS averaged 70% of those found with the sorbent bed sampler. Particulate-phase concentrations were correspondingly higher with the IOVPS, but measurable blow off' semivolatile PAH occurred.

  6. CdSe quantum dots-poly(3-hexylthiophene) nanocomposite sensors for selective chloroform vapor detection at room temperature

    NASA Astrophysics Data System (ADS)

    Mondal, S. P.; Bera, S.; Narender, G.; Ray, S. K.

    2012-10-01

    Olive oil capped CdSe quantum dots (QDs) of average size ˜6 nm have been grown by a green chemical route synthesis for the fabrication of nanocomposite organic vapor sensing devices. A highly selective, room temperature chloroform vapor sensor has been fabricated using capped CdSe QDs and conducting polymer [poly(3-hexylthiophene)] nanocomposites. The nanocomposite sensor has been tested with the choloroform vapor of concentration varying from 100-1200 ppm at room temperature using different bias voltages. The recovery time of the sensor has been found to be improved on illumination with a monochromatic light of 600 nm, due to the photo-induced enhancement of charge transfer in nanocomposites.

  7. Historical changes in air temperature are evident in temperature fluxes measured in the sub-soil.

    NASA Astrophysics Data System (ADS)

    Fraser, Fiona; McCormick, Benjamin; Hallett, Paul; Wookey, Philip; Hopkins, David

    2013-04-01

    Warming trends in soil temperature have implications for a plethora of soil processes, including exacerbated climate change through the net release of greenhouse gases. Whereas long-term datasets of air temperature changes are abundant, a search of scientific literature reveals a lack of information on soil temperature changes and their specific consequences. We analysed five long-term data series collected in the UK (Dundee and Armagh) and Canada (Charlottetown, Ottawa and Swift Current). They show that the temperatures of soils at 5 - 20 cm depth, and sub-soils at 30 - 150 cm depth, increased in line with air temperature changes over the period 1958 - 2003. Differences were found, however, between soil and air temperatures when data were sub-divided into seasons. In spring, soil temperature warming ranged from 0.19°C at 30 cm in Armagh to 4.30°C at 50 cm in Charlottetown. In summer, however, the difference was smaller and ranged from 0.21°C at 10 cm in Ottawa to 3.70°C at 50 cm in Charlottetown. Winter temperatures were warmer in soil and ranged from 0.45°C at 5 cm in Charlottetown to 3.76°C at 150 cm in Charlottetown. There were significant trends in changes to soil temperature over time, whereas air temperature trends tended only to be significant in winter (changes range from 1.27°C in Armagh to 3.35°C in Swift Current). Differences in the seasonal warming patterns between air and soil temperatures have potential implications for the parameterization of models of biogeochemical cycling.

  8. The relationship between ozone formation and air temperature in the atmospheric surface layer

    NASA Astrophysics Data System (ADS)

    Belan, Boris D.; Savkin, Denis; Tolmachev, Gennadii

    2016-04-01

    Studying the formation and dynamics of ozone in the atmosphere is important due to several reasons. First, the contribution of tropospheric ozone to the global greenhouse effect is only slightly less than that of water vapor, carbon dioxide, and methane. Second, tropospheric ozone acts as a strong poison that has negative effects on human health, animals, and vegetation. Third, being a potent oxidizer, ozone destroys almost all materials, including platinum group metals and compounds. Fourthly, ozone is formed in situ from precursors as a result of photochemical processes, but not emitted into the atmosphere by any industrial enterprises directly. In this work, we present some results of the study aimed at the revealing relationship between ozone formation rate and surface air temperature in the background atmosphere. It has been found that this relationship is nonlinear. Analysis of the possible reasons showed that the nonlinear character of this relationship may be due to a nonlinear increase in the reaction constants versus air temperature and a quadratic increase in the concentration of hydrocarbons with increasing temperature. This work was supported by the Ministry of Education and Science contract no.14.613.21.0013 (ID: RFMEFI61314X0013).

  9. Air Temperature Estimation over the Third Pole Using MODIS LST

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Zhang, F.; Ye, M.; Che, T.

    2015-12-01

    The Third Pole is centered on the Tibetan Plateau (TP), which is the highest large plateau around the world with extremely complex terrain and climate conditions, resulting in very scarce meteorological stations especially in the vast west region. For these unobserved areas, the remotely sensed land surface temperature (LST) can greatly contribute to air temperature estimation. In our research we utilized the MODIS LST production from both TERRA and AQUA to estimate daily mean air temperature over the TP using multiple statistical models. Other variables used in the models include longitudes, latitudes, Julian day, solar zenith, NDVI and elevation. To select a relatively optimal model, we chose six popular and representative statistical models as candidate models including the multiple linear regression (MLR), the partial least squares regression (PLS), back propagate neural network (BPNN), support vector regression (SVR), random forests (RF) and Cubist regression (CR). The performances of the six models were compared for each possible combination of LSTs at four satellite pass times and two quality situations. Eventually a ranking table consisting of optimal models for each LST combination and quality situation was built up based on the validation results. By this means, the final production is generated providing daily mean air temperature with the least cloud blockage and acceptable accuracy. The average RMSEs of cross validation are mostly around 2℃. Stratified validations were also performed to test the expansibility to unobserved and high-altitude areas of the final models selected.

  10. Characterization of particulate and vapor phase polycyclic aromatic hydrocarbons in indoor and outdoor air of primary schools

    NASA Astrophysics Data System (ADS)

    Krugly, Edvinas; Martuzevicius, Dainius; Sidaraviciute, Ruta; Ciuzas, Darius; Prasauskas, Tadas; Kauneliene, Violeta; Stasiulaitiene, Inga; Kliucininkas, Linas

    2014-01-01

    The indoor air of schools is considered as one of the most important factors affecting the health of children. The aim of the presented research was to characterize polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air of schools. The sampling campaign was conducted during the heating season of 2011/2012. Five primary schools from various urban settings in the city of Kaunas, Lithuania. 150 daily samples of particulate and vapor phases were collected during the sampling period. The ultrasonic extractions followed by the gas chromatography and mass spectroscopy (GS/MS) analyses were used for the determination of PAHs. The concentration of total PAHs in the PM2.5 fraction ranged from 20.3 to 131.1 ng m-3, while total suspended particles (TSP) fraction contained from 19.9 to 80.3 ng m-3 of total PAHs. The vapor phase concentration of PAHs ranged from 67.2 to 372.5 ng m-3. The most abundant PAH in both phases was naphthalene. In order to define sources of indoor and outdoor PAHs several source apportionment methods were applied. The analysis revealed that emissions from motor vehicles and fuel burning for heating purposes were the major sources of PAHs in the city of Kaunas.

  11. Control of flow through a vapor generator

    DOEpatents

    Radcliff, Thomas D.

    2005-11-08

    In a Rankine cycle system wherein a vapor generator receives heat from exhaust gases, provision is made to avoid overheating of the refrigerant during ORC system shut down while at the same time preventing condensation of those gases within the vapor generator when its temperature drops below a threshold temperature by diverting the flow of hot gases to ambient and to thereby draw ambient air through the vapor generator in the process. In one embodiment, a bistable ejector is adjustable between one position, in which the hot gases flow through the vapor generator, to another position wherein the gases are diverted away from the vapor generator. Another embodiment provides for a fixed valve ejector with a bias towards discharging to ambient, but with a fan on the downstream side of said vapor generator for overcoming this bias.

  12. Temperature interactions with transpiration response to vapor pressure deficit among cultivated and wild soybean genotypes.

    PubMed

    Seversike, Thomas M; Sermons, Shannon M; Sinclair, Thomas R; Carter, Thomas E; Rufty, Thomas W

    2013-05-01

    A key strategy in soybean drought research is increased stomatal sensitivity to high vapor pressure deficit (VPD), which contributes to the 'slow wilting' trait observed in the field. These experiments examined whether temperature of the growth environment affected the ability of plants to respond to VPD, and thus control transpiration rate (TR). Two soybean [Glycine max (L.) Merr.] and four wild soybean [Glycine soja (Sieb. and Zucc.)] genotypes were studied. The TR was measured over a range of VPD when plants were growing at 25 or 30°C, and again after an abrupt increase of 5°C. In G. max, a restriction of TR became evident as VPD increased above 2.0 kPa when temperature was near its growth optimum of 30°C. 'Slow wilting' genotype plant introduction (PI) 416937 exhibited greater TR control at high VPD compared with Hutcheson, and only PI 416937 restrained TR after the shift to 35°C. Three of the four G. soja genotypes exhibited control over TR with increasing VPD when grown at 25°C, which is near their estimated growth optimum. The TR control became engaged at lower VPD than in G. max and was retained to differing degrees after a shift to 30°C. The TR control systems in G. max and G. soja clearly were temperature-sensitive and kinetically definable, and more restrictive in the 'slow wilting' soybean genotype. For the favorable TR control traits observed in G. soja to be useful for soybean breeding in warmer climates, the regulatory linkage with lower temperatures must be uncoupled.

  13. The effect of production temperature on the retention of tritium in vapor deposited beta silicon carbide

    SciTech Connect

    Causey, R.A.; Wampler, W.R.; Kaae, J.L.

    1993-10-01

    This is the final report in the prematurely terminated research program on the behavior of tritium in the NPR-MHTGR tritium target materials. This report addresses effect of production temperature of the silicon carbide layer on tritium permeation characteristics of the silicon carbide. Equilibrium tritium retention measurements performed using samples vapor deposited at 1400 and 1700C were compared to earlier results for samples deposited at 1550C. The tritium retention characteristics of the samples produced at 1400C were very similar to the earlier 1550C results. Results for tritium retained in the 1700C produced material was lower by approximately a factor of 3. The approach to equilibrium was determined for the different materials by outgassing samples that had been exposed to tritium gas at 1200C for different times. No significant differences in the time required to reach equilibrium were seen for the silicon carbides deposited at the different temperatures. Extensive research performed at General Atomics on the microstructure of the different materials was used to help explain the behavior differences.

  14. Temperature engineered growth of low-threshold quantum well lasers by metalorganic chemical vapor deposition

    SciTech Connect

    Dzurko, K.M.; Menu, E.P.; Beyler, C.A.; Osinski, J.S.; Dapkus, P.D.

    1989-01-09

    A new technique is demonstrated for the formation of narrow active regions in quantum well lasers. In temperature engineered growth (TEG), the substrate temperature is varied during the growth of epitaxial layers by metalorganic chemical vapor deposition (MOCVD) on nonplanar substrates, allowing two-dimensional control of device features. Buried heterostructure designs with submicron active region stripe widths are obtained without the need for fine process control of lateral dimensions. The contact area above the active region is coplanar with the surrounding surface and wide enough to allow easy contacting and heat sinking. Carrier confinement is accomplished by lateral thickness variation of the quantum well active region resulting in a local strip of minimum band gap. Lasers grown in this manner exhibit cw threshold currents as low as 3.8 mA (3.4 mA pulsed), having an as-grown active region width of 0.5 ..mu..m. The near-field optical profile indicates stable, single transverse mode operation and minimal current leakage in these devices.

  15. Effects of air temperature, humidity, and air movement on thermal comfort under hot and humid conditions

    SciTech Connect

    Tanabe, Shinichi; Kimura, Kenichi

    1994-12-31

    The purpose of this paper is to review and summarize the effects of air temperature, humidity, and air movement on thermal comfort under hot and humid conditions with a view toward energy conservation. Recently, ASHRAE published a new comfort envelope in Standard 55-1992. In that standard, the upper limit of relative humidity (RH) was wet at 60%. In hot and humid regions, humidity levels higher than 60% may often be observed. This upper limit of humidity is discussed based on their subjective data. In addition, the results show that under hot and humid conditions, air movement may be one of the least expensive methods of providing thermal comfort. The effect of air movement is also described in this paper.

  16. Temperature influences the ability of tall fescue to control transpiration in response to atmospheric vapor pressure deficit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water availability for turfgrass systems is often limited, and likely to become more so in the future. These experiments examined the ability of tall fescue (Festuca arundinacea Schreb.) to control transpiration with increasing vapor pressure deficit and whether control was influenced by temperature...

  17. High growth rate homoepitaxial diamond film deposition at high temperatures by microwave plasma-assisted chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Vohra, Yogesh K. (Inventor); McCauley, Thomas S. (Inventor)

    1997-01-01

    The deposition of high quality diamond films at high linear growth rates and substrate temperatures for microwave-plasma chemical vapor deposition is disclosed. The linear growth rate achieved for this process is generally greater than 50 .mu.m/hr for high quality films, as compared to rates of less than 5 .mu.m/hr generally reported for MPCVD processes.

  18. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect

    Waye, S.; Musselman, M.; King, C.

    2014-09-01

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  19. An analysis of the dependence of clear-sky top-of-atmosphere outgoing longwave radiation on atmospheric temperature and water vapor

    NASA Astrophysics Data System (ADS)

    Dessler, A. E.; Yang, P.; Lee, J.; Solbrig, J.; Zhang, Z.; Minschwaner, K.

    2008-09-01

    We have analyzed observations of clear-sky top-of-atmosphere outgoing longwave radiation (OLR) measured by the Clouds and the Earth's Radiant Energy System (CERES). These measurements were obtained during March 2005 at night and over the ocean and cover latitudes from 70°N to 70°S. First, we compare the OLR measurements to OLR calculated from two radiative transfer models. The models use as input simultaneous and collocated measurements of atmospheric temperature and atmospheric water vapor made by the Atmospheric Infrared Sounder (AIRS). We find excellent agreement between the models' predictions of OLR and observations, well within the uncertainty of the measurements. We also analyze the sensitivity of OLR to changing surface temperature Ts, atmospheric temperature Ta, and atmospheric water vapor q. We find that OLR is most sensitive to unit changes in Ta when that change occurs in the lower troposphere. For q, the altitude distribution of sensitivity varies between the midlatitudes, subtropics, and the convective region. We also partition the observed variations in OLR into contributions from changing Ts, Ta, and q. In the midlatitudes, changes in Ts and Ta contribute approximately equally, and are partially offset by changes in q. In the subtropics, changes in Ta dominate, with a smaller contribution from changes in Ts and a relatively small offsetting contribution from q. In the tropical convective region, a rapid increase in q in the midtroposphere leads to a dramatic reduction in OLR with increasing Ts, which has been termed the "super greenhouse effect".

  20. A comparison of clear-sky OLR between CERES measurements and model calculations and the dependence of OLR on temperature and water vapor

    NASA Astrophysics Data System (ADS)

    Dessler, A.; Yang, P.; Solbrig, J.; Lee, J.; Minschwaner, K.

    2007-12-01

    We compare nighttime clear-sky outgoing longwave radiation (OLR) from a model calculation against measurements from the Clouds and the Earth's Radiant Energy System (CERES) data set. Our model calculation is driven by profiles of temperature and water vapor from the Atmospheric Infrared Sounder (AIRS). Using several different radiative transfer models, we find an offset between the model and measurements, with the model tending to predict higher OLR by about 5 watts per square meter. Although this can be explained by uncertainties in the data and model, it is also possible that there is some missing process in the model. We also explore how the atmosphere regulates OLR by looking at the gradients between the dry subtropics and the moist convective regions. We see how changes in water and temperature oppose each other, and how changes in water begin to dominate around 299 K, where the so-called supergreenhouse effect occurs.

  1. Pan-Arctic linkages between snow accumulation and growing season air temperature, soil moisture and vegetation

    NASA Astrophysics Data System (ADS)

    Luus, K. A.; Gel, Y.; Lin, J. C.; Kelly, R. E. J.; Duguay, C. R.

    2013-01-01

    Arctic field studies have indicated that the air temperature, soil moisture and vegetation at a site influence the quantity of snow accumulated, and that snow accumulation can alter growing season soil moisture and vegetation. Climate change is predicted to bring about warmer air temperatures, greater snow accumulation and northward movements of the shrub and tree lines. Understanding the response of northern environments to changes in snow and growing season land surface characteristics requires: (1) insights into the present-day linkages between snow and growing season land surface characteristics; and (2) the ability to continue to monitor these associations over time across the vast pan-Arctic. The objective of this study was therefore to examine the pan-Arctic (north of 60° N) linkages between two temporally distinct data products created from AMSR-E satellite passive microwave observations: GlobSnow snow water equivalent, and NTSG (growing season air temperature, soil moisture and vegetation transmissivity). Due to the complex and interconnected nature of processes determining snow and growing season land surface characteristics, these associations were analyzed using the modern non-parametric technique of Alternating Conditional Expectations (ACE), as this approach does not impose a predefined analytic form. Findings indicate that regions with lower vegetation transmissivity (more biomass) at the start and end of the growing season tend to accumulate less snow at the start and end of the snow season, possibly due to interception and shading. Warmer air temperatures at the start and end of the growing season were associated with diminished snow accumulation at the start and end of the snow season. High latitude sites with warmer mean annual growing season temperatures tended to accumulate more snow, probably due to the greater availability of water vapor for snow season precipitation at warmer locations. Regions with drier soils preceding snow onset tended

  2. Low-temperature chemical vapor depostion of ruthenium and manganese nitride thin films

    NASA Astrophysics Data System (ADS)

    Lazarz, Teresa S.

    Materials and thin film processing development has been and remains key to continuing to make ever smaller, or miniaturized, microelectronic devices. In order to continue miniaturization, conformal, low-temperature deposition of new electronic materials is needed. Two techniques capable of conformality have emerged: chemical vapor deposition (CVD) and atomic layer deposition (ALD). Here, two processes for deposition of materials which could be useful in microelectronics, but for which no low-temperature, conformal process has been established as commercializable, are presented. One is ruthenium, intended for use in interconnects and in dynamic random access memory electrodes, a known material for use in microelectronics but for which a more conformal, yet fast process than previously demonstrated is required. The other is manganese nitride, which could be used as active magnetic layers in devices or as a dopant in materials for spintronics, which is not yet established as a desired material in part due to the lack of any previously known CVD or ALD process for deposition. A unique challenge arises in trying to grow impurity-free films of a catalyst. Ruthenium metal activates C-H and C-C bonds, which aids C-H and C-C bond scission. This creates a potential catalytic decomposition path for all metal-organic CVD precursors that is likely to lead to significant carbon incorporation. Metallic ruthenium films can be grown by chemical vapor deposition from the organometallic precursor tricarbonyl(1,3-cyclohexadiene)ruthenium(0). This precursor is a highly volatile liquid, easy to synthesize and handle, and capable of delivering at least 0.26 Torr partial pressure at room temperature without the use of a carrier gas. Because the precursor is a liquid, the vaporization rate is not subject to the problem of diminishing surface area that occurs with solid precursors. CVD proceeds readily for substrate temperatures ≥ 200°C. The growth rates are high, up to 24 nm/min, which

  3. Remediation of nonaqueous phase liquid polluted sites using surfactant-enhanced air sparging and soil vapor extraction.

    PubMed

    Qin, Chuan-Yu; Zhao, Yong-Sheng; Su, Yan; Zheng, Wei

    2013-02-01

    A two-dimensional laboratory sand tank was installed to study the remediation efficiency of surfactant-enhanced air sparging (-SEAS) coupled with soil vapor extraction (SVE) in nonaqueous phase liquid (NAPL) polluted sites. During initial stages of remediation, it was more reasonable to use conventional air sparging coupled with SVE. When most free NAPLs were removed and contaminant removal rate was maintained at a relatively low level, surfactant was added to the groundwater. During enhanced remediation, lower interfacial tension caused residual NAPLs in the porous media to slightly migrate, making the downstream contaminant concentration somewhat higher. The polluted area, however, was not more enlarged than before. The decrease in surface tension resulted in increased air saturation in the groundwater and the extent of the air influence zone. After 310 hours, 78.7% of the initial chlorobenzene mass had volatilized, 3.3% had migrated out of the sand profile, 17.5% was in the vadose zone, and 0.5% remained in the groundwater, thus revealing that SEAS/SVE can effectively improve the remediation of NAPL polluted sites.

  4. A review of reaction rates in high temperature air

    NASA Technical Reports Server (NTRS)

    Park, Chul

    1989-01-01

    The existing experimental data on the rate coefficients for the chemical reactions in nonequilibrium high temperature air are reviewed and collated, and a selected set of such values is recommended for use in hypersonic flow calculations. For the reactions of neutral species, the recommended values are chosen from the experimental data that existed mostly prior to 1970, and are slightly different from those used previously. For the reactions involving ions, the recommended rate coefficients are newly chosen from the experimental data obtained more recently. The reacting environment is assumed to lack thermal equilibrium, and the rate coefficients are expressed as a function of the controlling temperature, incorporating the recent multitemperature reaction concept.

  5. Association Between Air Temperature and Cancer Death Rates in Florida

    PubMed Central

    2015-01-01

    Proponents of global warming predict adverse events due to a slight warming of the planet in the last 100 years. This ecological study tests one of the possible arguments that might support the global warming theory – that it may increase cancer death rates. Thus, average daily air temperature is compared to cancer death rates at the county level in a U.S. state, while controlling for variables of smoking, race, and land elevation. The study revealed that lower cancer death rates were associated with warmer temperatures. Further study is indicated to verify these findings. PMID:26674418

  6. Industrial applications of MHD high temperature air heater technology

    NASA Astrophysics Data System (ADS)

    Saari, D. P.; Fenstermacher, J. E.; White, L. R.; Marksberry, C. L.

    1981-12-01

    The MHD high temperature air heater (HTAH) requires technology beyond the current state-of-the-art of industrial regenerative heaters. Specific aspects of HTAH technology which may find other application include refractory materials and valves resistant to the high temperature, corrosive, slag-bearing gas, materials resistant to cyclic thermal stresses, high temperature support structures for the cored brick bed, regenerative heater operating techniques for preventing accumulation of slag in the heater, and analytical tools for computing regenerative heater size, cost, and performance. Areas where HTAH technology may find application include acetylene/ethylene production processes, flash pyrolysis of coal, high temperature gas reactors, coal gasification processes, various metallurgical processes, waste incineration, and improvements to existing regenerator technology such as blast furnace stoves and glass tank regenerators.

  7. Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I.

    PubMed

    Han, Juhong; Wang, You; Cai, He; Zhang, Wei; Xue, Liangping; Wang, Hongyuan

    2014-06-01

    A diode-pumped alkali laser (DPAL) is one of the most hopeful candidates to achieve high power performances. As the laser medium is in a gas-state, populations of energy-levels of a DPAL are strongly dependent on the vapor temperature. Thus, the temperature distribution directly determines the output characteristics of a DPAL. In this report, we developed a systematic model by combining the procedures of heat transfer and laser kinetics together to explore the radial temperature distribution in the transverse section of a cesium vapor cell. A cyclic iterative approach is adopted to calculate the population densities. The corresponding temperature distributions have been obtained for different beam waists and pump powers. The conclusion is thought to be useful for realizing a DPAL with high output power.

  8. The Influence of Urbanization on Air Temperature in Nagqu County, Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Lin, Yun; Hu, Zeyong

    2016-04-01

    According to meteorological data obtained at Nagqu meteorological station, which is in the Nagqu County (NQ) and at site BJ of Nagqu Station of Plateau Climate and Environment (BJ), which is outside Nagqu County, the differences in air temperature (Ta) variations at NQ and BJ from 2001 to 2014 were compared and analyzed with respect of urbanization. Both the natural processes and human activities that could lead to the differences in Ta between NQ and BJ were studied in this study. Natural processes are characterized by meteorological variables such as wind, precipitation, sunshine hours, vapor pressure and the human activities are characterized by urbanization index. The results show that the annual mean temperature (Ta_mean) and annual mean minimum temperature (Ta_min) at NQ are higher than those at BJ from 2001 to 2014. But the annual mean maximum temperature (Ta_max) at NQ is smaller than that at BJ. The urbanization of Nagqu County has increased in the past fifteen years and reached to 27.24% in 2014. There are good agreements between Ta_max and natural factors including sunshine hours and water vapor pressure at NQ and BJ. And Ta_min has a positive relationship with human activities such as the GDP and population of Nagqu County. But the relationship between Ta_min with human activities at NQ is stronger than that at BJ. This is because BJ is a field site and the strength of human activity is weak. The Natural processes has a stronger influence on the variation of Ta_min at BJ than human activities do.

  9. PERSONAL EXPOSURE TO JP-8 JET FUEL VAPORS AND EXHAUST AT AIR FORCE BASES

    EPA Science Inventory

    JP-8 jet fuel (similar to commercial/international jet A-1 fuel) is the standard military fuel for all types of vehicles, including the U.S. Air Force aircraft inventory. As such, JP-8 presents the most common chemical exposure in the Air Force, particularly for flight and gro...

  10. Antarctic Sea ice variations and seasonal air temperature relationships

    NASA Technical Reports Server (NTRS)

    Weatherly, John W.; Walsh, John E.; Zwally, H. J.

    1991-01-01

    Data through 1987 are used to determine the regional and seasonal dependencies of recent trends of Antarctic temperature and sea ice. Lead-lag relationships involving regional sea ice and air temperature are systematically evaluated, with an eye toward the ice-temperature feedbacks that may influence climatic change. Over the 1958-1087 period the temperature trends are positive in all seasons. For the 15 years (l973-l987) for which ice data are available, the trends are predominantly positive only in winter and summer, and are most strongly positive over the Antarctic Peninsula. The spatially aggregated trend of temperature for this latter period is small but positive, while the corresponding trend of ice coverage is small but negative. Lag correlations between seasonal anomalies of the two variables are generally stronger with ice lagging the summer temperatures and with ice leading the winter temperatures. The implication is that summer temperatures predispose the near-surface waters to above-or below-normal ice coverage in the following fall and winter.

  11. An extended equation for rate coefficients for adsorption of organic vapors and gases on activated carbons in air-purifying respirator cartridges.

    PubMed

    Wood, G O; Lodewyckx, P

    2003-01-01

    Organic vapor adsorption rates in air-purifying respirator cartridges (and other packed beds of activated carbon granules) need to be known for estimating service lives. The correlation of Lodewyckx and Vansant [AIHAJ 61:501-505 (2000)] for mass transfer coefficients for organic vapor adsorption onto activated carbon was tested with additional data from three sources. It was then extended to better describe all the data, including that for gases. The additional parameter that accomplished this was the square root of molar equilibrium capacity of the vapor or gas on the carbon. This change, along with skew corrections when appropriate, resulted in better correlations with all experimental rate coefficients. PMID:14521430

  12. AIRS Water Vapor and Cloud Products Validate and Explain Recent Negative Global and Tropical OLR Trends Observed by CERES

    NASA Astrophysics Data System (ADS)

    Susskind, J.; Molnar, G. I.; Iredell, L. F.; Sounder Research Team

    2010-12-01

    Joel Susskind, Gyula Molnar, and Lena Iredell NASA GSFC Sounder Research Team Abstract This paper compares spatial and temporal anomalies and trends of OLR as observed by CERES and computed based on AIRS retrieved surface and atmospheric geophysical parameters over the time period September 2002 - February 2010. This time period is marked by a substantial decreasing OLR trend on the order of -0.1 W/m2/yr averaged over the globe. There are very large spatial variations of these trends however, with local values ranging from -2.6 W/m2/yr to +3.0 W/m2/yr in the tropics. The spatial patterns of the AIRS and CERES trends are in essentially perfect agreement with each other, as are the anomaly time series averaged over different spatial regions. This essentially perfect agreement of OLR anomalies and trends derived from observations by two different instruments, in totally independent and different manners, implies that both sets of results must be highly accurate. The agreement of anomalies and trends of OLR as observed by CERES and computed from AIRS derived products also indirectly validates the anomalies and trends of the AIRS derived products as well. We used the anomalies and trends of AIRS derived water vapor and cloud products to explain why global OLR has had a large negative trend over the time period September 2002 through February 2010. Tropical OLR began to decrease significantly at the onset of a strong La Niña in mid-2007. AIRS products show that cloudiness and mid-tropospheric water vapor began to increase in the region 5°N - 20°S latitude extending eastward from 150°W - 30°E longitude at that time, with a corresponding very large drop in OLR in this region. Late 2009 is characterized by a strong El-Niño, with a corresponding change in sign of observed anomalies of mid-tropospheric water vapor, cloud cover, and OLR in this region, as well as that of OLR anomalies in the tropics and globally. Monthly mean anomalies of OLR, water vapor and cloud cover

  13. Low-Temperature Chemical Vapor Deposition Synthesis of Pt-Co Alloyed Nanoparticles with Enhanced Oxygen Reduction Reaction Catalysis.

    PubMed

    Choi, Dong Sung; Robertson, Alex W; Warner, Jamie H; Kim, Sang Ouk; Kim, Heeyeon

    2016-09-01

    Novel Pt-Co alloyed nanocatalysts are generated via chemical vapor deposition-assisted facile one-pot synthesis. The method guarantees highly monodisperse Pt-Co alloy nanoparticles with precise control of metallic compositions within 1 at%. A significant features is that a perfectly alloyed single-crystal structure is obtained at temperatures as low as 500 °C, which is much lower than conventional alloying temperatures.

  14. Temperature control and characterization of silicon-germanium growth by rapid thermal chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hwang, Sung-Bo

    Rapid thermal chemical vapor deposition (RTCVD) is an emerging technology to utilize low thermal budgets required to grow silicon-germanium alloys in a coherent way. However, the current state-of-the-art in RTCVD technique lacks some key elements required for acceptance of RTCVD in mainstream IC fabrication. These shortcomings include adequate control of wafer temperature during processing, and sufficient understanding of the growth kinetics. This dissertation describes and discusses the temperature control in RTCVD, the growth, and characterization of silicon-germanium alloys. The RTCVD system provides very reliable temperature-measurements, for a range of 480˜820°C, based on infrared-light (1.3 or 1.55mum) absorption in the silicon wafer during the growth of silicon-germanium alloys. A wafer heat transfer model developed using the view-factor analysis is used to investigate temperature distributions with respect to lamp configurations in RTCVD system. For a precise temperature control, a neural model-based controller in single-input-single-output (SISO) system is proposed, and compared with other controllers. Silicon-germanium alloys, in various semiconductor structures including dots, have been grown by RTCVD where temperature is well-controlled by the model-based controller. The structural and chemical properties of silicon-germanium alloys are characterized by X-ray diffraction, atomic force microscopy (AFM), transmission electron microscopy (TEM), and secondary ion mass spectrometry (SIMS). The different growth characteristics dominated by a silicon-source gas are exploited, and their process models are developed with the experimental data utilizing neural networks employed the Bayesian framework to accurately describe the process behaviors such as growth rate and Ge fraction in alloys with respect to process variables (to capture the process nonlinearity). By controlling growth rate and Ge fraction, a uniform and a grading Ge profile in silicon

  15. The effect of the partial pressure of water vapor on the surface tension of the liquid water-air interface.

    PubMed

    Pérez-Díaz, José L; Álvarez-Valenzuela, Marco A; García-Prada, Juan C

    2012-09-01

    Precise measurements of the surface tension of water in air vs. humidity at 5, 10, 15, and 20 °C are shown. For constant temperature, surface tension decreases linearly for increasing humidity in air. These experimental data are in good agreement with a simple model based on Newton's laws here proposed. It is assumed that evaporating molecules of water are ejected from liquid to gas with a mean normal component of the speed of "ejection" greater than zero. A high humidity in the air reduces the net flow of evaporating water molecules lowering the effective surface tension on the drop. Therefore, just steam in air acts as an effective surfactant for the water-air interface. It can partially substitute chemical surfactants helping to reduce their environmental impact.

  16. Condensation of water vapor in the gravitational field

    SciTech Connect

    Gorshkov, V. G.; Makarieva, A. M.; Nefiodov, A. V.

    2012-10-15

    Physical peculiarities of water vapor condensation under conditions of hydrostatic equilibrium are considered. The power of stationary dynamic air fluxes and the vertical temperature distribution caused by condensation on large horizontal scales are estimated.

  17. Using Machine learning method to estimate Air Temperature from MODIS over Berlin

    NASA Astrophysics Data System (ADS)

    Marzban, F.; Preusker, R.; Sodoudi, S.; Taheri, H.; Allahbakhshi, M.

    2015-12-01

    Land Surface Temperature (LST) is defined as the temperature of the interface between the Earth's surface and its atmosphere and thus it is a critical variable to understand land-atmosphere interactions and a key parameter in meteorological and hydrological studies, which is involved in energy fluxes. Air temperature (Tair) is one of the most important input variables in different spatially distributed hydrological, ecological models. The estimation of near surface air temperature is useful for a wide range of applications. Some applications from traffic or energy management, require Tair data in high spatial and temporal resolution at two meters height above the ground (T2m), sometimes in near-real-time. Thus, a parameterization based on boundary layer physical principles was developed that determines the air temperature from remote sensing data (MODIS). Tair is commonly obtained from synoptic measurements in weather stations. However, the derivation of near surface air temperature from the LST derived from satellite is far from straight forward. T2m is not driven directly by the sun, but indirectly by LST, thus T2m can be parameterized from the LST and other variables such as Albedo, NDVI, Water vapor and etc. Most of the previous studies have focused on estimating T2m based on simple and advanced statistical approaches, Temperature-Vegetation index and energy-balance approaches but the main objective of this research is to explore the relationships between T2m and LST in Berlin by using Artificial intelligence method with the aim of studying key variables to allow us establishing suitable techniques to obtain Tair from satellite Products and ground data. Secondly, an attempt was explored to identify an individual mix of attributes that reveals a particular pattern to better understanding variation of T2m during day and nighttime over the different area of Berlin. For this reason, a three layer Feedforward neural networks is considered with LMA algorithm

  18. Use of Oriented Spray Nozzles to Set the Vapor-Air Flow in Rotary Motion in the Superspray Space of the Evaporative Chimney-Type Tower

    NASA Astrophysics Data System (ADS)

    Dobrego, K. V.; Davydenko, V. F.; Koznacheev, I. A.

    2016-01-01

    The present paper considers the problem of upgrading the thermal efficiency of chimney-type evaporative cooling towers due to the rotary motion of the vapor-air flow in the superspray space. To set the vapor-air flow in rotary motion, we propose to use the momentum of the sprayed water. It has been shown that the existing parameters of spray nozzles permit setting up to 30% of the water flow momentum in translatory motion, which is enough for changing considerably the aerodynamics of the vapor-air flow in the superspray space and improving the operation of the cooling tower. The optimal angle of axial inclination of the spray cone has been estimated. Recommendations are given and problems have been posed for engineering realization of the proposed technologies in a chimney-type cooling tower.

  19. Controls of air temperature variability over an Alpine Glacier

    NASA Astrophysics Data System (ADS)

    Shaw, Thomas; Brock, Ben; Ayala, Álvaro; Rutter, Nick

    2016-04-01

    Near surface air temperature (Ta) is one of the most important controls on energy exchange between a glacier surface and the overlying atmosphere. However, not enough detail is known about the controls on Ta across a glacier due to sparse data availability. Recent work has provided insights into variability of Ta along glacier centre-lines in different parts of the world, yet there is still a limited understanding of off-centreline variability in Ta and how best to estimate it from distant off-glacier locations. We present a new dataset of distributed 2m Ta records for the Tsanteleina Glacier in Northwest Italy from July-September, 2015. Data provide detailed information of lateral (across-glacier) and centre-line variations in Ta, with ~20,000 hourly observations from 17 locations. The suitability of different vertical temperature gradients (VTGs) in estimating air temperature is considered under a range of meteorological conditions and from different forcing locations. A key finding is that local VTGs account for a lot of Ta variability under a broad range of climatic conditions. However, across-glacier variability is found to be significant, particularly for high ambient temperatures and for localised topographic depressions. The relationship of spatial Ta patterns with regional-scale reanalysis data and alternative Ta estimation methodologies are also presented. This work improves the knowledge of local scale Ta variations and their importance to melt modelling.

  20. Induction heating pure vapor source of high temperature melting point materials on electron cyclotron resonance ion source.

    PubMed

    Kutsumi, Osamu; Kato, Yushi; Matsui, Yuuki; Kitagawa, Atsushi; Muramatsu, Masayuki; Uchida, Takashi; Yoshida, Yoshikazu; Sato, Fuminobu; Iida, Toshiyuki

    2010-02-01

    Multicharged ions that are needed are produced from solid pure material with high melting point in an electron cyclotron resonance ion source. We develop an evaporator by using induction heating (IH) with multilayer induction coil, which is made from bare molybdenum or tungsten wire without water cooling and surrounding the pure vaporized material. We optimize the shapes of induction coil and vaporized materials and operation of rf power supply. We conduct experiment to investigate the reproducibility and stability in the operation and heating efficiency. IH evaporator produces pure material vapor because materials directly heated by eddy currents have no contact with insulated materials, which are usually impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10(-4)-10(-3) Pa. We measure the temperature of the vaporized materials with different shapes, and compare them with the result of modeling. We estimate the efficiency of the IH vapor source. We are aiming at the evaporator's higher melting point material than that of iron. PMID:20192343

  1. Induction heating pure vapor source of high temperature melting point materials on electron cyclotron resonance ion source

    SciTech Connect

    Kutsumi, Osamu; Kato, Yushi; Matsui, Yuuki; Sato, Fuminobu; Iida, Toshiyuki; Kitagawa, Atsushi; Muramatsu, Masayuki; Uchida, Takashi; Yoshida, Yoshikazu

    2010-02-15

    Multicharged ions that are needed are produced from solid pure material with high melting point in an electron cyclotron resonance ion source. We develop an evaporator by using induction heating (IH) with multilayer induction coil, which is made from bare molybdenum or tungsten wire without water cooling and surrounding the pure vaporized material. We optimize the shapes of induction coil and vaporized materials and operation of rf power supply. We conduct experiment to investigate the reproducibility and stability in the operation and heating efficiency. IH evaporator produces pure material vapor because materials directly heated by eddy currents have no contact with insulated materials, which are usually impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10{sup -4}-10{sup -3} Pa. We measure the temperature of the vaporized materials with different shapes, and compare them with the result of modeling. We estimate the efficiency of the IH vapor source. We are aiming at the evaporator's higher melting point material than that of iron.

  2. Effect of trace amounts of NaCl vapor on high-temperature oxidation of TiAl

    SciTech Connect

    Hara, M.; Kitagawa, Y.

    1999-08-01

    The effect of trace amounts of NaCl vapor on the high-temperature oxidation of TiAl was examined by thermogravimetry and analysis of the scale formed on TiAl. The mass gain due to oxidation at 1273 K in O{sub 2} with trace amounts of NaCl vapor was far lower than that in pure O{sub 2} without NaCl vapor. This low mass gain in the atmosphere with trace amounts of NaCl vapor resulted from the saturation behavior of mass gain during the initial period of oxidation. It was found from X-ray photoemission spectroscopy (XPS) analyses of the specimen surface that the oxide film formed during the initial period in the atmosphere with trace amounts of NaCl vapor consisted of dense Al{sub 2}O{sub 3}, thus, the low oxidation rate of TiAl was attributed to a protective oxide film of dense Al{sub 2}O{sub 3}.

  3. Sensitivity of New England Stream Temperatures to Air Temperature and Precipitation Under Projected Climate

    NASA Astrophysics Data System (ADS)

    Huang, T.; Samal, N. R.; Wollheim, W. M.; Stewart, R. J.; Zuidema, S.; Prousevitch, A.; Glidden, S.

    2015-12-01

    The thermal response of streams and rivers to changing climate will influence aquatic habitat. This study examines the impact that changing climate has on stream temperatures in the Merrimack River, NH/MA USA using the Framework for Aquatic Modeling in the Earth System (FrAMES), a spatially distributed river network model driven by air temperature, air humidity, wind speed, precipitation, and solar radiation. Streamflow and water temperatures are simulated at a 45-second (latitude x longitude) river grid resolution for 135 years under historical and projected climate variability. Contemporary streamflow (Nash-Sutcliffe Coefficient = 0.77) and river temperatures (Nash-Sutcliffe Coefficient = 0.89) matched at downstream USGS gauge data well. A suite of model runs were made in combination with uniformly increased daily summer air temperatures by 2oC, 4 oC and 6 oC as well as adjusted precipitation by -40%, -30%, -20%, -10% and +10% as a sensitivity analysis to explore a broad range of potential future climates. We analyzed the summer stream temperatures and the percent of river length unsuitable for cold to warm water fish habitats. Impacts are greatest in large rivers due to the accumulation of river temperature warming throughout the entire river network. Cold water fish (i.e. brook trout) are most strongly affected while, warm water fish (i.e. largemouth bass) aren't expected to be impacted. The changes in stream temperatures under various potential climate scenarios will provide a better understanding of the specific impact that air temperature and precipitation have on aquatic thermal regimes and habitat.

  4. Air Temperature estimation from Land Surface temperature and solar Radiation parameters

    NASA Astrophysics Data System (ADS)

    Lazzarini, Michele; Eissa, Yehia; Marpu, Prashanth; Ghedira, Hosni

    2013-04-01

    Air Temperature (AirT) is a fundamental parameter in a wide range of applications such as climate change studies, weather forecast, energy balance modeling, efficiency of Photovoltaic (PV) solar cells, etc. Air temperature data are generally obtained through regular measurements from meteorological stations. The distribution of these stations is normally sparse, so the spatial pattern of this parameter cannot be accurately estimated by interpolation methods. This work investigated the relationship between Air Temperature measured at meteorological stations and spatially contiguous measurements derived from Remote Sensing techniques, such as Land Surface Temperature (LST) maps, emissivity maps and shortwave radiation maps with the aim of creating a continuous map of AirT. For LST and emissivity, MSG-SEVIRI LST product from Land Surface Analysis Satellite Applications Facility (LSA-SAF) has been used. For shortwave radiation maps, an Artificial Neural Networks ensemble model has been developed and previously tested to create continuous maps from Global Horizontal Irradiance (GHI) point measurements, utilizing six thermal channels of MSG-SEVIRI. The testing sites corresponded to three meteorological stations located in the United Arab Emirates (UAE), where in situ measurements of Air Temperature were available. From the starting parameters, energy fluxes and net radiation have been calculated, in order to have information on the incoming and outgoing long-wave radiation and the incoming short-wave radiation. The preliminary analysis (day and Night measurements, cloud free) showed a strong negative correlation (0.92) between Outgoing long-wave radiation - GHI and LST- AirT, with a RMSE of 1.84 K in the AirT estimation from the initial parameters. Regression coefficients have been determined and tested on all the ground stations. The analysis also demonstrated the predominant impact of the incoming short-wave radiation in the AirT hourly variation, while the incoming

  5. Significance of High-Speed Air Temperature Measurements in the Sampling Cell of a Closed-Path Gas Analyzer with a Short Tube

    NASA Astrophysics Data System (ADS)

    Kathilankal, James; Fratini, Gerardo; Burba, George

    2015-04-01

    Eddy covariance gas analyzers measure gas content in a known volume, thus essentially measuring gas density. The fundamental flux equation, however, is based on the dry mole fraction. The relationship between dry mole fraction and density is regulated by the ideal gas law describing the processes of temperature- and pressure-related expansions and contractions, and by the law of partial pressures, describing the process of dilution. As a result, this relationship depends on water vapor content, temperature and pressure of the air sample. If the instrument is able to output precise high-speed dry mole fraction, the flux processing is significantly simplified and WPL density terms accounting for the air density fluctuations are no longer required. This should also lead to the reduction in uncertainties associated with the density terms resulting from the eddy covariance measurements of sensible and latent heat fluxes used in these terms. In this framework, three main measurement approaches may be considered: Open-path approach Outputting correct high-speed dry mole fraction from the open-path instrument is difficult because of complexities with maintaining reliable fast temperature measurements integrated over the entire measuring path, and also because of extraordinary challenges with accurate measurements of fast pressure in the open air flow. Classical long-tube closed-path approach For instruments utilizing traditional long-tube closed-path design, with tube length 1000 or more times the tube diameter, the fast dry mole fraction can be used successfully when instantaneous fluctuations in the air temperature of the sampled air are effectively dampened to negligible levels, instantaneous pressure fluctuations are regulated or negligible, and water vapor is measured simultaneously with gas or the air sample is dried. Short-tube closed-path approach, the enclosed design For instruments with a short-tube enclosed design, most - but not all - of the temperature

  6. Cs vapor microcells with Ne-He buffer gas mixture for high operation-temperature miniature atomic clocks.

    PubMed

    Kroemer, E; Abdel Hafiz, M; Maurice, V; Fouilland, B; Gorecki, C; Boudot, R

    2015-07-13

    We report on the characterization of Cs vapor microfabricated cells filled with a Ne-He buffer gas mixture using coherent population trapping (CPT) spectroscopy. The temperature dependence of the Cs clock frequency is found to be canceled at the first order around a so-called inversion temperature higher than 80°C whose value depends on the buffer gas partial pressure ratio. This buffer gas mixture could be well-adapted for the development of miniature atomic clocks devoted to be used in specific applications such as defense and avionic systems with high operating temperature environment (typically higher than 85°C). This solution suggests an alternative to buffer gas mixtures generally used in optically-pumped vapor cell atomic clocks.

  7. Cs vapor microcells with Ne-He buffer gas mixture for high operation-temperature miniature atomic clocks.

    PubMed

    Kroemer, E; Abdel Hafiz, M; Maurice, V; Fouilland, B; Gorecki, C; Boudot, R

    2015-07-13

    We report on the characterization of Cs vapor microfabricated cells filled with a Ne-He buffer gas mixture using coherent population trapping (CPT) spectroscopy. The temperature dependence of the Cs clock frequency is found to be canceled at the first order around a so-called inversion temperature higher than 80°C whose value depends on the buffer gas partial pressure ratio. This buffer gas mixture could be well-adapted for the development of miniature atomic clocks devoted to be used in specific applications such as defense and avionic systems with high operating temperature environment (typically higher than 85°C). This solution suggests an alternative to buffer gas mixtures generally used in optically-pumped vapor cell atomic clocks. PMID:26191895

  8. Low temperature atmospheric pressure chemical vapor deposition of group 14 oxide films

    SciTech Connect

    Hoffman, D.M.; Atagi, L.M. |; Chu, Wei-Kan; Liu, Jia-Rui; Zheng, Zongshuang; Rubiano, R.R.; Springer, R.W.; Smith, D.C.

    1994-06-01

    Depositions of high quality SiO{sub 2} and SnO{sub 2} films from the reaction of homoleptic amido precursors M(NMe{sub 2})4 (M = Si,Sn) and oxygen were carried out in an atmospheric pressure chemical vapor deposition r. The films were deposited on silicon, glass and quartz substrates at temperatures of 250 to 450C. The silicon dioxide films are stoichiometric (O/Si = 2.0) with less than 0.2 atom % C and 0.3 atom % N and have hydrogen contents of 9 {plus_minus} 5 atom %. They are deposited with growth rates from 380 to 900 {angstrom}/min. The refractive indexes of the SiO{sub 2} films are 1.46, and infrared spectra show a possible Si-OH peak at 950 cm{sup {minus}1}. X-Ray diffraction studies reveal that the SiO{sub 2} film deposited at 350C is amorphous. The tin oxide films are stoichiometric (O/Sn = 2.0) and contain less than 0.8 atom % carbon, and 0.3 atom % N. No hydrogen was detected by elastic recoil spectroscopy. The band gap for the SnO{sub 2} films, as estimated from transmission spectra, is 3.9 eV. The resistivities of the tin oxide films are in the range 10{sup {minus}2} to 10{sup {minus}3} {Omega}cm and do not vary significantly with deposition temperature. The tin oxide film deposited at 350C is cassitterite with some (101) orientation.

  9. On extreme rainfall intensity increases with air temperature

    NASA Astrophysics Data System (ADS)

    Molnar, Peter; Fatichi, Simone; Paschalis, Athanasios; Gaal, Ladislav; Szolgay, Jan; Burlando, Paolo

    2016-04-01

    The water vapour holding capacity of air increases at about 7% per degree C according to the Clausius-Clapeyron (CC) relation. This is one of the arguments why a warmer future atmosphere, being able to hold more moisture, will generate higher extreme precipitation intensities. However, several empirical studies have recently demonstrated an increase in extreme rain intensities with air temperature above CC rates, in the range 7-14% per degree C worldwide (called super-CC rates). This was observed especially for shorter duration rainfall, i.e. in hourly and finer resolution data (e.g. review in Westra et al., 2014). The super-CC rate was attributed to positive feedbacks between water vapour and the updraft dynamics in convective clouds and lateral supply (convergence) of moisture. In addition, mixing of storm types was shown to be potentially responsible for super-CC rates in empirical studies. Assuming that convective events are accompanied by lightning, we will show on a large rainfall dataset in Switzerland (30 year records of 10-min and 1-hr data from 59 stations) that while the average rate of increase in extreme rainfall intensity (95th percentile) is 6-7% in no-lightning events and 8-9% in lightning events, it is 11-13% per degree C when all events are combined (Molnar et al., 2015). These results are relevant for climate change studies which predict shifts in storm types in a warmer climate in some parts of the world. The observation that extreme rain intensity and air temperature are positively correlated has consequences for the stochastic modelling of rainfall. Most current stochastic models do not explicitly include a direct rain intensity-air temperature dependency beyond applying factors of change predicted by climate models to basic statistics of precipitation. Including this dependency explicitly in stochastic models will allow, for example in the nested modelling approach of Paschalis et al. (2014), the random cascade disaggregation routine to be

  10. Development of a Sheath-Flow Supercritical Fluid Expansion Source for Vaporization of Nonvolatiles at Moderate Temperatures

    NASA Astrophysics Data System (ADS)

    Gibson, Bradley M.; Stewart, Jacob T.; McCall, Benjamin J.

    2013-06-01

    Thermal vaporization followed by cooling in a supersonic expansion is an effective method for producing cold vapor for spectroscopic analysis, and can be used even for large molecules such as pyrene. However, for very low volatility molecules such as fullerenes, the extreme temperatures needed can lead to incomplete internal cooling or thermal decomposition. We have developed a supercritical fluid expansion source which allows us to vaporize non-volatile molecues, such as fullerenes and large polycyclic aromatic hydrocarbons, at moderate initial temperatures (˜ 450 K) prior to supersonic cooling. We will discuss the influence of various operating parameters, such as fluid composition, fluid temperature and nozzle temperature, on the final translational and internal temperatures of test molecules volatilized with this source, as well as discussing possible applications. B. E. Brumfield, J. T. Stewart and B. J. McCall J. Chem. Phys. Lett. 3, 1985 (2012). B. M. Gibson, J. T. Stewart, B. E. Brumfield and B. J. McCall, contribution FB05, presented at the 67th International Symposium on Molecular Spectroscopy, Columbus, OH, USA, 2012.

  11. Effusion Cell Measurements of the Vapor Pressure of Cobalt at Temperatures up to 2000K; Comparisons with Iron and Nickel

    NASA Technical Reports Server (NTRS)

    Nuth, J. A.; Ferguson, F. T.; Johnson, N. M.

    2004-01-01

    It has become increasingly clear over the past decade that high temperature processes played important roles in the Primitive Solar Nebula. Unfortunately, basic data, such as the vapor pressures of Fe, Ni, Co or SiO have not been measured over the appropriate temperature range (near T approx. 2000K), but must be extrapolated from lower temperature measurements often made more than 50 years ago. The extrapolation of the available data to higher temperatures can be quite complex (e.g., see [1] for SiO vapor pressures) and can depend on other factors such as the oxygen fugacity or the presence of hydrogen gas not accounted for in the original measurements. Moreover, modern technology has made possible more accurate measurements of such quantities over a wider temperature range. We have acquired a commercial Thermo-Cahn Thermogravimetric system capable of vacuum operation to 1700C and measurement of a 10g change in sample mass using up to a 100g sample, with microgram accuracy. With this new system we have initiated a series of basic vapor pressure measurements on simple metals such as Fe[2] and Ni[3] with the intention to extend such measurements to more complex systems once we gain sufficient experience.

  12. Linking geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppala, Annika

    ERA-40 and ECMWF operational surface level air temperature (SAT) data sets from 1957 to 2006 were used to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the Ap index. Previous modelling work has suggested that NOx produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in polar SATs. We find that during winter months, ERA-40 and ECMWF polar SATs in years with high Ap index are different than in years with low Ap index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, de-pending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings are excluded. Solar irradiance variations were taken into account in the analysis. Although using the re-analysis and operational data sets it was not possible to conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating polar wintertime surface air temperature patterns. The SAT results were tested against variation in the Quasi Biennial Oscillation (QBO), the El Niño Southern Oscillation (ENSO) and the Southern Annular Mode n (SAM). The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode (NAM) and we could not robustly exclude a chance linkage between sea surface temperature (SST) variability and geomagnetic activity. Examining the physical link between geomagnetic activity and polar surface temperature variability patterns using atmospheric models is an ongoing task.

  13. Exchange of Na+ and K+ between water vapor and feldspar phases at high temperature and low vapor pressure

    USGS Publications Warehouse

    Fournier, R.O.

    1976-01-01

    In order to determine whether gas (steam) containing a small amount of dissolved alkali chloride is effective in promoting base exchange of Na+ and K+ among alkali feldspars and coexisting brine or brine plus solid salt, experiments were carried out at 400-700??C and steam densities ranging down to less than 0.05. For bulk compositions rich in potassium, the low pressure results are close to previous high-pressure results in composition of the fluid and coexisting solid phase. However, when the bulk composition is more sodic, alkali feldspars are relatively richer in potassium at low pressure than at high pressure. This behaviour corresponds to enrichment of potassium in the gas phase relative to coexisting brine and precipitation of solid NaCl when the brine plus gas composition becomes moderately sodic. The gas phase is very effective in promoting base exchange between coexisting alkali feldspars at high temperature and low water pressure. This suggests that those igneous rocks which contain coexisting alkali feldspars out of chemical equilibrium either remained very dry during the high-temperature part of their cooling history or that the pore fluid was a gas containing very little potassium relative to sodium. ?? 1976.

  14. Temperature Trends in the Tropical Upper Troposphere and Lower Stratosphere: Connections with Sea Surface Temperatures and Implications for Water Vapor and Ozone

    NASA Technical Reports Server (NTRS)

    Garfinkel, C. I.; Waugh, D. W.; Oman, L. D.; Wang, L.; Hurwitz, M. M.

    2013-01-01

    Satellite observations and chemistry-climate model experiments are used to understand the zonal structure of tropical lower stratospheric temperature, water vapor, and ozone trends. The warming in the tropical upper troposphere over the past 30 years is strongest near the Indo-Pacific warm pool, while the warming trend in the western and central Pacific is much weaker. In the lower stratosphere, these trends are reversed: the historical cooling trend is strongest over the Indo-Pacific warm pool and is weakest in the western and central Pacific. These zonal variations are stronger than the zonal-mean response in boreal winter. Targeted experiments with a chemistry-climate model are used to demonstrate that sea surface temperature (hereafter SST) trends are driving the zonal asymmetry in upper tropospheric and lower stratospheric tropical temperature trends. Warming SSTs in the Indian Ocean and in the warm pool region have led to enhanced moist heating in the upper troposphere, and in turn to a Gill-like response that extends into the lower stratosphere. The anomalous circulation has led to zonal structure in the ozone and water vapor trends near the tropopause, and subsequently to less water vapor entering the stratosphere. The radiative impact of these changes in trace gases is smaller than the direct impact of the moist heating. Projected future SSTs appear to drive a temperature and water vapor response whose zonal structure is similar to the historical response. In the lower stratosphere, the changes in water vapor and temperature due to projected future SSTs are of similar strength to, though slightly weaker than, that due directly to projected future CO2, ozone, and methane.

  15. Temperature trends in the tropical upper troposphere and lower stratosphere: Connections with sea surface temperatures and implications for water vapor and ozone

    NASA Astrophysics Data System (ADS)

    Garfinkel, C. I.; Waugh, D. W.; Oman, L. D.; Wang, L.; Hurwitz, M. M.

    2013-09-01

    Satellite observations and chemistry-climate model experiments are used to understand the zonal structure of tropical lower stratospheric temperature, water vapor, and ozone trends. The warming in the tropical upper troposphere over the past 30 years is strongest near the Indo-Pacific warm pool, while the warming trend in the western and central Pacific is much weaker. In the lower stratosphere, these trends are reversed: the historical cooling trend is strongest over the Indo-Pacific warm pool and is weakest in the western and central Pacific. These zonal variations are stronger than the zonal-mean response in boreal winter. Targeted experiments with a chemistry-climate model are used to demonstrate that sea surface temperature (hereafter SST) trends are driving the zonal asymmetry in upper tropospheric and lower stratospheric tropical temperature trends. Warming SSTs in the Indian Ocean and in the warm pool region have led to enhanced moist heating in the upper troposphere, and in turn to a Gill-like response that extends into the lower stratosphere. The anomalous circulation has led to zonal structure in the ozone and water vapor trends near the tropopause, and subsequently to less water vapor entering the stratosphere. The radiative impact of these changes in trace gases is smaller than the direct impact of the moist heating. Projected future SSTs appear to drive a temperature and water vapor response whose zonal structure is similar to the historical response. In the lower stratosphere, the changes in water vapor and temperature due to projected future SSTs are of similar strength to, though slightly weaker than, that due directly to projected future CO2, ozone, and methane.

  16. Vapor-phase and particulate-associated pesticides and PCB concentrations in eastern North Dakota air samples

    SciTech Connect

    Hawthorne, S.B.; Miller, D.J.; Louie, P.K.K.

    1996-05-01

    Vapor-phase and suspended particulate (<50 {mu}m) samples were collected on polyurethane foam (PUF) and quartz fiber filters in rural North Dakota to determine the air concentrations of pesticides in an area where agriculture is a primary source of semivolatile pollutants. Samples were collected at two sites from 1992 to 1994 that were at least 0.4 km from the nearest farmed fields and known application of pesticides, and analyzed for 22 different organochlorine, triazine, and acid herbicide pesticides. Fourteen pesticides were found above the detection limits (typically <1 pg/m{sup 3}). Concentrations of polychlorinated biphenyl (PCB) congeners were much lower (<50 pg/m{sup 3} in all cases) than many of the pesticides. These results demonstrate that pesticides are among the most prevalent chlorinated semivolatile pollutants present in rural North Dakota, that significant transport of pesticides occurs both in the vapor-phase and on suspended particulate matter, and that blown soil may be a significant mechanism for introducing pesticides into surface and ground waters. 32 refs., 2 figs., 4 tabs.

  17. Generation of low-temperature air plasma for food processing

    NASA Astrophysics Data System (ADS)

    Stepanova, Olga; Demidova, Maria; Astafiev, Alexander; Pinchuk, Mikhail; Balkir, Pinar; Turantas, Fulya

    2015-11-01

    The project is aimed at developing a physical and technical foundation of generating plasma with low gas temperature at atmospheric pressure for food industry needs. As known, plasma has an antimicrobial effect on the numerous types of microorganisms, including those that cause food spoilage. In this work an original experimental setup has been developed for the treatment of different foods. It is based on initiating corona or dielectric-barrier discharge in a chamber filled with ambient air in combination with a certain helium admixture. The experimental setup provides various conditions of discharge generation (including discharge gap geometry, supply voltage, velocity of gas flow, content of helium admixture in air and working pressure) and allows for the measurement of the electrical discharge parameters. Some recommendations on choosing optimal conditions of discharge generation for experiments on plasma food processing are developed.

  18. A Note on the Relationship between Temperature and Water Vapor in Quasi-Equilibrium and Climate States

    NASA Technical Reports Server (NTRS)

    Shie, C.-L.; Shie, C.-L.; Tao, W.-K.; Simpson, J.; Sui, C.-H.

    2005-01-01

    An ideal and simple formulation is successfully derived that well represents a quasi-linear relationship found between the domain-averaged water vapor, q (mm), and temperature, T (K), fields obtained from a series of quasi-equilibrium (long-term) simulations for the Tropics using the two-dimensional Goddard Cumulus Ensemble (GCE) model. Earlier model work showed that the forced maintenance of two different wind profiles in the Tropics leads to two different equilibrium states. Investigating this finding required investigation of the slope of the moisture-temperature relations, which turns out to be linear in the Tropics. The extra-tropical climate equilibriums become more complex, but insight on modeling sensitivity can be obtained by linear stepwise regression of the integrated temperature and humidity. A globally curvilinear moisture-temperature distribution, similar to the famous Clausius-Clapeyron curve (i.e., saturated water vapor pressure versus temperature), is then found in this study. Such a genuine finding clarifies that the dynamics are crucial to the climate (shown in the earlier work) but the thermodynamics adjust. The range of validity of this result is further examined herein. The GCE-modeled tropical domain-averaged q and T fields form a linearly-regressed "q-T" slope that genuinely resides within an ideal range of slopes obtained from the aforementioned formulation. A quantity (denoted as dC2/dC1) representing the derivative between the static energy densities due to temperature (C2) and water vapor (C1) for various quasi-equilibrium states can also be obtained. A dC2/dC1 value near unity obtained for the GCE-modeled tropical simulations implies that the static energy densities due to moisture and temperature only differ by a pure constant for various equilibrium states. An overall q-T relation also including extra-tropical regions is, however, found to have a curvilinear relationship. Accordingly, warm/moist regions favor change in water vapor

  19. TESTING VAPOR SPACE AND LIQUID-AIR INTERFACE CORROSION IN SIMULATED ENVIRONMENTS OF HANFORD DOUBLE-SHELLED TANKS

    SciTech Connect

    Hoffman, E.

    2013-05-30

    Electrochemical coupon testing were performed on 6 Hanford tank solution simulants and corresponding condensate simulants to evaluate the susceptibility of vapor space and liquid/air interface corrosion. Additionally, partial-immersion coupon testing were performed on the 6 tank solution simulants to compliment the accelerated electrochemical testing. Overall, the testing suggests that the SY-102 high nitrate solution is the most aggressive of the six solution simulants evaluated. Alternatively, the most passive solution, based on both electrochemical testing and coupon testing, was AY-102 solution. The presence of ammonium nitrate in the simulants at the lowest concentration tested (0.001 M) had no significant effect. At higher concentrations (0.5 M), ammonium nitrate appears to deter localized corrosion, suggesting a beneficial effect of the presence of the ammonium ion. The results of this research suggest that there is a threshold concentration of ammonium ions leading to inhibition of corrosion, thereby suggesting the need for further experimentation to identify the threshold.

  20. Determination of trace elements in medicinal activated charcoal using slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry with low vaporization temperature.

    PubMed

    Chen, Chien-Chou; Jiang, Shiuh-Jen; Sahayam, A C

    2015-01-01

    The determination of Cd, Sb, Te, Hg, Tl and Pb in medicinal activated charcoal by ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry (USS-ETV-ICP-MS) was described. EDTA was used as the modifier to enhance the volatility of elements studied. The influences of instrument operating conditions and slurry preparation on the ion signals were studied. A relatively low vaporization temperature of 1000°C was used, which separated the analyte from the major matrix components that improved ion signals. The method has been applied to determine Cd, Sb, Te, Hg, Tl and Pb in an NIST SRM 1633b Coal Fly Ash reference material and three brands of medicinal activated charcoal capsules using isotope dilution and standard addition calibration methods. The concentrations that are in ng g(-1) levels were in good agreement between different calibration methods. The precision between sample replicates was better than 7% with USS-ETV-ICP-MS technique. The method detection limit estimated from standard addition curves was 0.4, 0.3, 0.3, 0.3, 0.04 and 0.9 ng g(-1) for Cd, Sb, Te, Hg, Tl and Pb, respectively, in original medicinal activated charcoal.

  1. Identifying Modes of Temperature Variability Using AIRS Data.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Aumann, H. H.; Yung, Y.

    2007-12-01

    We use the Atmospheric Infrared Sounder (AIRS) and Advance Microwave Sounding Unit (AMSU) data obtained on Aqua spacecraft to study mid-tropospheric temperature variability between 2002-2007. The analysis is focused on daily zonal means of the AIRS channel at 2388 1/cm in the CO2 R-branch and the AMSU channel #5 in the 57 GHz Oxygen band, both with weighting function peaking in the mid-troposphere (400 mb) and the matching sea surface temperature from NCEP (Aumann et al., 2007). Taking into account the nonlinear and non- stationary behavior of the temperature we apply the Empirical Mode Decomposition (Huang et al., 1998) to better separate modes of variability. All-sky (cloudy) and clear sky, day and night data are analyzed. In addition to the dominant annual variation, which is nonlinear and latitude dependent, we identified the modes with higher frequency and inter-annual modes. Some trends are visible and we apply stringent criteria to test their statistical significance. References: Aumann, H. H., D. T. Gregorich, S. E. Broberg, and D. A. Elliott, Geophys. Res. Lett., 34, L15813, doi:10.1029/2006GL029191, 2007. Huang, N. E. Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, Proc. R. Soc. Lond., A 454, 903-995, 1998.

  2. Coastal Greenland air temperature extremes 1890-2010

    NASA Astrophysics Data System (ADS)

    Mernild, Sebastian H.; Hanna, Edward; Cappelen, John

    2013-04-01

    We use observed air temperature data series from fourteen meteorological stations in coastal Greenland (located all around the Greenland Ice Sheet (GrIS)) for 1960-2010, where long-term records for five of the stations extend back to 1890, to illustrate the annual and monthly temporal and spatial distribution of temperature extremes. We find that the 2000s (2001-2010) had the highest number of mean annual air temperature (MAAT) warm extremes, and the 1890s (1891-1900) the highest number of cold extremes. For the 2000s the number of warm extremes was significantly higher by around 50% than the number in the 1940s (the Early Twentieth Century Warm Period): the decade with the second highest occurrence of MAAT warm extremes. Since 1960, based on MAAT the number of cold extremes has decreased on the decadal timescale, while warm extremes have increased leading to a higher occurrence of extremes (cold plus warm extremes): an almost similar pattern occurred on mean monthly and on monthly mean daily maximum and minimum scales. Further, a division of Greenland into east and west sectors shows that the occurrence of cold (warm) extremes was more pronounced in the East than in the West in the 1960s and 1970s (mid-1980s to the 2000s).

  3. Major Upgrades to the AIRS Version-6 Water Vapor Profile Methodology

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena; Lee, Jae N.

    2015-01-01

    Additional changes in Version-6.19 include all previous updates made to the q(p) retrieval since Version-6: Modified Neural-Net q0(p) guess above the tropopause Linearly tapers the neural net guess to match climatology at 70 mb, not at the top of the atmosphereChanged the 11 trapezoid q(p) perturbation functions used in Version-6 so as to match the 24 functions used in T(p) retrieval step. These modifications resulted in improved water vapor profiles in Version-6.19 compared to Version-6.Version-6.19 is tested for all of August 2013 and August 2014, as well for select other days. Before finalized and operational in 2016, the V-6.19 can be acquired upon request for limited time intervals.

  4. On the low-temperature growth mechanism of single walled carbon nanotubes in plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Shariat, M.; Shokri, B.; Neyts, E. C.

    2013-12-01

    Despite significant progress in single walled carbon nanotube (SWCNT) production by plasma enhanced chemical vapor deposition (PECVD), the growth mechanism in this method is not clearly understood. We employ reactive molecular dynamics simulations to investigate how plasma-based deposition allows growth at low temperature. We first investigate the SWCNT growth mechanism at low and high temperatures under conditions similar to thermal CVD and PECVD. We then show how ion bombardment during the nucleation stage increases the carbon solubility in the catalyst at low temperature. Finally, we demonstrate how moderate energy ions sputter amorphous carbon allowing for SWCNT growth at 500 K.

  5. Water vapor and temperature inversions near the 0 deg C level over the tropical western Pacific. Master's thesis

    SciTech Connect

    Hart, K.A.

    1994-01-01

    During the Intensive Observation Period (IOP), several periods of water vapor and temperature inversions near the 0 deg C level were observed. Satellite and radiosonde data from TOGA COARE are used to document the large-scale conditions and thermodynamic and kinematic structures present during three extended periods in which moisture and temperature inversions near the freezing level were very pronounced. Observations from each case are synthesized into schematics which represent typical structures of the inversion phenomena. Frequency distributions of the inversion phenomena along with climatological humidity and temperature profiles are calculated for the four-month IOP.

  6. Liquid-vapor partitioning of NaCl(aq) from concentrated brines at temperatures to 350{degrees}C

    SciTech Connect

    Simonson, J.M.; Palmer, Donald A.; Carter, R.W.

    1994-01-20

    Compositions of coexisting liquid and vapor phases have been determined at temperatures from 250 to 350°C for brines containing NaCl and either HCI or NaOH by direct sampling of both phases from a static phase-equilibration apparatus. In these experiments, NaCl concentrations in the liquid phase ranged to 6.5 mol-kg{sup -1}, with corresponding vapor-phase NaCl concentrations varying strongly with temperature and brine composition. Acid or base was added to the brines to suppress unknown contributions of NaCl(aq) hydrolysis products to the observed volatilities. Thermodynamic partitioning constants for NaCl have been determined from the observed compositions of the coexisting phases combined with the known activity coefficients of NaCl(aq) in the liquid phase. An apparent dependence of the values of these partitioning constants on brine concentration is explained by considering the effect of decreasing pressure on the density of the vapor phase. Concentrations of HCI and NaCl in steam produced from various natural brines may be calculated as hnctions of temperature and brine composition based on these new results coupled with our previous determinations of the partitioning constants for HCl(aq). Application of these results to The Geysers will be discussed in terms of the composition of postulated brines which could be in equilibrium with observed steam compositions at various temperatures.

  7. An instrument for environmental control of vapor pressure and temperature for tensile creep and other mechanical property measurements.

    PubMed

    Majsztrik, P W; Bocarsly, A B; Benziger, J B

    2007-10-01

    An instrument for measuring the creep response of a material maintained under a controlled environment of temperature and vapor pressure is described. The temperature range of the instrument is 20-250 degrees C while the range of vapor pressure is 0-1 atm. Data are presented for tests conducted on this instrument with Nafion, a perfluorinated ionomer developed by DuPont and used as a membrane in polymer exchange membrane fuel cells, over a range of temperature and water vapor pressure. The data are useful for predicting long-term creep behavior of the material in the fuel cell environment as well as providing insight to molecular level interactions in the material as a function of temperature and hydration. Measurements including dynamic and equilibrium strain due to water uptake as well as elastic modulus are described. The main features of the instrument are presented along with experimental methodology and analysis of results. The adaptation of the instrument to other mechanical tests is briefly described.

  8. Model reduction and temperature uniformity control for rapid thermal chemical vapor deposition reactors

    NASA Astrophysics Data System (ADS)

    Theodoropoulou, Artemis-Georgia

    The consideration of Rapid Thermal Processing (RTP) in semiconductor manufacturing has recently been increasing. As a result, control of RTP systems has become of great importance since it is expected to help in addressing uniformity problems that, so far, have been obstructing the acceptance of the method. The spatial distribution appearing in RTP models necessitates the use of model reduction in order to obtain models of a size suitable for use in control algorithms. This dissertation addresses model reduction as well as control issues for RTP systems. A model of a three-zone Rapid Thermal Chemical Vapor Deposition (RTCVD) system is developed to study the effects of spatial wafer temperature patterns on polysilicon deposition uniformity. A sequence of simulated runs is performed, varying the lamp power profiles so that different wafer temperature modes are excited. The dominant spatial wafer thermal modes are extracted via Proper Orthogonal Decomposition and subsequently used as a set of trial functions to represent both the wafer temperature and deposition thickness. A collocation formulation of Galerkin's method is used to discretize the original modeling equations, giving a low-order model which loses little of the original, high-order model's fidelity. We make use of the excellent predictive capabilities of the reduced model to optimize power inputs to the lamp banks to achieve a desired polysilicon deposition thickness at the end of a run with minimal deposition spatial nonuniformity. Since the results illustrate that the optimization procedure benefits from the use of the reduced-order model, we further utilize the reduced order model for real time Model Based Control. The feedback controller is designed using the Internal Model Control (IMC) structure especially modified to handle systems described by ordinary differential and algebraic equations. The IMC controller is obtained using optimal control theory on singular arcs extended for multi input systems

  9. Model-based estimation of changes in air temperature seasonality

    NASA Astrophysics Data System (ADS)

    Barbosa, Susana; Trigo, Ricardo

    2010-05-01

    Seasonality is a ubiquitous feature in climate time series. Climate change is expected to involve not only changes in the mean of climate parameters but also changes in the characteristics of the corresponding seasonal cycle. Therefore the identification and quantification of changes in seasonality is a highly relevant topic in climate analysis, particularly in a global warming context. However, the analysis of seasonality is far from a trivial task. A key challenge is the discrimination between long-term changes in the mean and long-term changes in the seasonal pattern itself, which requires the use of appropriate statistical approaches in order to be able to distinguish between overall trends in the mean and trends in the seasons. Model based approaches are particularly suitable for the analysis of seasonality, enabling to assess uncertainties in the amplitude and phase of seasonal patterns within a well defined statistical framework. This work addresses the changes in the seasonality of air temperature over the 20th century. The analysed data are global air temperature values close to surface (2m above ground) and mid-troposphere (500 hPa geopotential height) from the recently developed 20th century reanalysis. This new 3-D Reanalysis dataset is available since 1891, considerably extending all other Reanalyses currently in use (e.g. NCAR, ECWMF), and was obtained with the Ensemble Filter (Compo et al., 2006) by assimilation of pressure observations into a state-of-the-art atmospheric general circulation model that includes the radiative effects of historical time-varying CO2 concentrations, volcanic aerosol emissions and solar output variations. A modeling approach based on autoregression (Barbosa et al, 2008; Barbosa, 2009) is applied within a Bayesian framework for the estimation of a time varying seasonal pattern and further quantification of changes in the amplitude and phase of air temperature over the 20th century. Barbosa, SM, Silva, ME, Fernandes, MJ

  10. Extracting changes in air temperature using acoustic coda phase delays.

    PubMed

    Marcillo, Omar; Arrowsmith, Stephen; Whitaker, Rod; Morton, Emily; Scott Phillips, W

    2014-10-01

    Blast waves produced by 60 high-explosive detonations were recorded at short distances (few hundreds of meters); the corresponding waveforms show charge-configuration independent coda-like features (i.e., similar shapes, amplitudes, and phases) lasting several seconds. These features are modeled as reflected and/or scattered waves by acoustic reflectors/scatters surrounding the explosions. Using explosion pairs, relative coda phase delays are extracted and modeled as changes in sound speed due to changes in air temperature. Measurements from nearby weather towers are used for validation. PMID:25324115

  11. Stream air temperature relations to classify stream ground water interactions in a karst setting, central Pennsylvania, USA

    NASA Astrophysics Data System (ADS)

    O'Driscoll, Michael A.; DeWalle, David R.

    2006-09-01

    SummaryStream-ground water interactions in karst vary from complete losses through swallow holes, to reemergences from springs. Our study objective was to compare stream-air temperature and energy exchange relationships across various stream-ground water relationships in a carbonate watershed. It was hypothesized that ground water-fed stream segments could be distinguished from perched/losing segments using stream-air temperature relationships. Two types of computations were conducted: (1) comparisons of stream-air temperature relationships for the period of October 1999-September 2002 at 12 sites in the Spring Creek drainage and (2) detailed energy budget computations for the same period for ground water-dominated Thompson Run and Lower Buffalo Run, a stream with negligible ground water inputs. Weekly average air temperatures and stream temperatures were highly correlated, but slopes and intercepts of the relationship varied for the 12 sites. Slopes ranged from 0.19 to 0.67 and intercepts ranged from 3.23 to 9.07 °C. A two-component mixing model with end members of ground water and actual stream temperatures indicated that the slope and intercept of the stream-air temperature relationship was controlled by ground water inputs. Streams with large ground water inputs had greater intercepts and lesser slopes than streams that were seasonally losing, perched, and/or distant from ground water inputs. Energy fluxes across the air-water interface were greatest for the ground water-fed stream due to increased longwave, latent, and sensible heat losses from the stream in winter when large temperature and vapor pressure differences existed between the stream and air. Advection of ground water was an important source and sink for heat in the ground water-fed stream, depending on season. In contrast, along the seasonally losing stream reach, advection was of minimal importance and stream temperatures were dominated by energy exchange across the air- water interface. Overall

  12. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  13. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  14. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  15. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  16. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  17. Occupational dimethylformamide exposure. 1. Diffusive sampling of dimethylformamide vapor for determination of time-weighted average concentration in air.

    PubMed

    Yasugi, T; Kawai, T; Mizunuma, K; Horiguchi, S; Iguchi, H; Ikeda, M

    1992-01-01

    A diffusive sampling method with water as absorbent was examined in comparison with 3 conventional methods of diffusive sampling with carbon cloth as absorbent, pumping through National Institute of Occupational Safety and Health (NIOSH) charcoal tubes, and pumping through NIOSH silica gel tubes to measure time-weighted average concentration of dimethylformamide (DMF). DMF vapors of constant concentrations at 3-110 ppm were generated by bubbling air at constant velocities through liquid DMF followed by dilution with fresh air. Both types of diffusive samplers could either absorb or adsorb DMF in proportion to time (0.25-8 h) and concentration (3-58 ppm), except that the DMF adsorbed was below the measurable amount when carbon cloth samplers were exposed at 3 ppm for less than 1 h. When both diffusive samplers were loaded with DMF and kept in fresh air, the DMF in water samplers stayed unchanged for at least for 12 h. The DMF in carbon cloth samplers showed a decay with a half-time of 14.3 h. When the carbon cloth was taken out immediately after termination of DMF exposure, wrapped in aluminum foil, and kept refrigerated, however, there was no measurable decrease in DMF for at least 3 weeks. When the air was drawn at 0.2 l/min, a breakthrough of the silica gel tube took place at about 4,000 ppm.min (as the lower 95% confidence limit), whereas charcoal tubes could tolerate even heavier exposures, suggesting that both tubes are fit to measure the 8-h time-weighted average of DMF at 10 ppm. PMID:1577523

  18. 40 CFR 1066.615 - NOX intake-air humidity correction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... vapor pressure at the ambient dry bulb temperature. RH = relative humidity of ambient air M air = molar mass of air. p atmos = atmospheric pressure. ER28AP14.106 Where: x NOXdexh = measured dilute...

  19. An experimental study of the stability of copper chloride complexes in water vapor at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Archibald, S. M.; Migdisov, A. A.; Williams-Jones, A. E.

    2002-05-01

    The solubility of copper chloride in liquid-undersaturated HCl-bearing water vapor was investigated experimentally at temperatures of 280 to 320°C and pressures up to 103 bars. Results of these experiments show that the solubility of copper in the vapor phase is significant and increases with increasing fH 2O , but is retrograde with respect to temperature. This solubility is attributed to the formation of hydrated copper-chloride gas species, interpreted to have a copper-chlorine ratio of 1:1 (e.g., CuCl, Cu 3Cl 3, etc.) and a hydration number varying from 7.6 at 320°C, to 6.0 at 300°C, and 6.1 at 280°C. Complex formation is proposed to have occurred through the reaction: 3 CuCl solid+nH 2O gas⇋ Cu 3Cl 3·(H 2O) ngas Log K values determined for this reaction are -21.46 ± 0.05 at 280°C (n = 7.6), -19.03 ± 0.10 at 300°C (n = 6.0), and -19.45 ± 0.12 at 320°C (n = 6.1), if it is assumed that the vapor species is the trimer, Cu 3Cl 3(H 2O) 6-8. Calculations based on the above data indicate that at 300°C and HCl fluxes encountered in passively degassing volcanic systems, the vapor phase could transport copper in concentrations as high as 280 ppm. Theoretically, this vapor could form an economic copper deposit (e.g., 50 million tonnes of 0.5% Cu) in as little as ˜20,500 yr.

  20. An empirical technique for estimating near-surface air temperature trends in central Greenland from SSM/I brightness temperatures

    SciTech Connect

    Shuman, C.A.; Alley, R.B.; Anandakrishnan, S.; Stearns, C.R.

    1995-02-01

    In central Greenland, near-surface air temperatures can be estimated from long-term satellite passive microwave brightness temperatures supported by limited air-temperature data from automatic weather stations. In this region, brightness temperature depends on snow emissivity, which varies slowly over time, and on snow temperature, which varies more rapidly and is controlled by air temperature. The air temperature and brightness temperature data define an emissivity trend which can be modeled as an annual sinusoid. An air temperature trend can then be derived from the brightness temperature and modeled emissivity information. The estimated air temperature values represent an integrated near-surface value that defines the overall temperature trend at the Greenland Summit. The modeled emissivity cycle allows daily-average air temperatures to be estimated across significant gaps in weather station records, as well as quality control of their temperature data. The technique also generates annual trends of emissivity which can be used to evaluate radiative transfer models of microwave emissivity from dry firn.

  1. 42 CFR 84.162 - Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES...

  2. 42 CFR 84.162 - Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES...

  3. 42 CFR 84.162 - Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES...

  4. 42 CFR 84.162 - Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES...

  5. 42 CFR 84.162 - Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES...

  6. Feasibility of a simple laboratory approach for determining temperature influence on SPMD-air partition coefficients of selected compounds

    USGS Publications Warehouse

    Cicenaite, A.; Huckins, J.N.; Alvarez, D.A.; Cranor, W.L.; Gale, R.W.; Kauneliene, V.; Bergqvist, P.-A.

    2007-01-01

    Semipermeable membrane devices (SPMDs) are a widely used passive sampling methodology for both waterborne and airborne hydrophobic organic contaminants. The exchange kinetics and partition coefficients of an analyte in a SPMD are mediated by its physicochemical properties and certain environmental conditions. Controlled laboratory experiments are used for determining the SPMD-air (Ksa's) partition coefficients and the exchange kinetics of organic vapors. This study focused on determining a simple approach for measuring equilibrium Ksa's for naphthalene (Naph), o-chlorophenol (o-CPh) and p-dichlorobenzene (p-DCB) over a wide range of temperatures. SPMDs were exposed to test chemical vapors in small, gas-tight chambers at four different temperatures (-16, -4, 22 and 40 ??C). The exposure times ranged from 6 h to 28 d depending on test temperature. Ksa's or non-equilibrium concentrations in SPMDs were determined for all compounds, temperatures and exposure periods with the exception of Naph, which could not be quantified in SPMDs until 4 weeks at the -16 ??C temperature. To perform this study the assumption of constant and saturated atmospheric concentrations in test chambers was made. It could influence the results, which suggest that flow through experimental system and performance reference compounds should be used for SPMD calibration. ?? 2006 Elsevier Ltd. All rights reserved.

  7. Feasibility of a simple laboratory approach for determining temperature influence on SPMD–air partition coefficients of selected compounds

    USGS Publications Warehouse

    Cicenaite, Aurelija; Huckins, James N.; Alvarez, David A.; Cranor, Walter L.; Gale, Robert W.; Kauneliene, Violeta; Bergqvist, Per-Anders

    2007-01-01

    Semipermeable membrane devices (SPMDs) are a widely used passive sampling methodology for both waterborne and airborne hydrophobic organic contaminants. The exchange kinetics and partition coefficients of an analyte in a SPMD are mediated by its physicochemical properties and certain environmental conditions. Controlled laboratory experiments are used for determining the SPMD–air (Ksa's) partition coefficients and the exchange kinetics of organic vapors. This study focused on determining a simple approach for measuring equilibrium Ksa's for naphthalene (Naph), o-chlorophenol (o-CPh) and p-dichlorobenzene (p-DCB) over a wide range of temperatures. SPMDs were exposed to test chemical vapors in small, gas-tight chambers at four different temperatures (−16, −4, 22 and 40 °C). The exposure times ranged from 6 h to 28 d depending on test temperature. Ksa's or non-equilibrium concentrations in SPMDs were determined for all compounds, temperatures and exposure periods with the exception of Naph, which could not be quantified in SPMDs until 4 weeks at the −16 °C temperature. To perform this study the assumption of constant and saturated atmospheric concentrations in test chambers was made. It could influence the results, which suggest that flow through experimental system and performance reference compounds should be used for SPMD calibration.

  8. Effect of Ambient Design Temperature on Air-Cooled Binary Plant Output

    SciTech Connect

    Dan Wendt; Greg Mines

    2011-10-01

    Air-cooled binary plants are designed to provide a specified level of power production at a particular air temperature. Nominally this air temperature is the annual mean or average air temperature for the plant location. This study investigates the effect that changing the design air temperature has on power generation for an air-cooled binary plant producing power from a resource with a declining production fluid temperature and fluctuating ambient temperatures. This analysis was performed for plants operating both with and without a geothermal fluid outlet temperature limit. Aspen Plus process simulation software was used to develop optimal air-cooled binary plant designs for specific ambient temperatures as well as to rate the performance of the plant designs at off-design operating conditions. Results include calculation of annual and plant lifetime power generation as well as evaluation of plant operating characteristics, such as improved power generation capabilities during summer months when electric power prices are at peak levels.

  9. Change point analysis of mean annual air temperature in Iran

    NASA Astrophysics Data System (ADS)

    Shirvani, A.

    2015-06-01

    The existence of change point in the mean of air temperature is an important indicator of climate change. In this study, Student's t parametric and Mann-Whitney nonparametric Change Point Models (CPMs) were applied to test whether a change point has occurred in the mean of annual Air Temperature Anomalies Time Series (ATATS) of 27 synoptic stations in different regions of Iran for the period 1956-2010. The Likelihood Ratio Test (LRT) was also applied to evaluate the detected change points. The ATATS of all stations except Bandar Anzali and Gorgan stations, which were serially correlated, were transformed to produce an uncorrelated pre-whitened time series as an input file for the CPMs and LRT. Both the Student's t and Mann-Whitney CPMs detected the change point in the ATATS of (a) Tehran Mehrabad, Abadan, Kermanshah, Khoramabad and Yazd in 1992, (b) Mashhad and Tabriz in 1993, (c) Bandar Anzali, Babolsar and Ramsar in 1994, (d) Kerman and Zahedan in 1996 at 5% significance level. The likelihood ratio test shows that the ATATS before and after detected change points in these 12 stations are normally distributed with different means. The Student's t and Mann-Whitney CPMs suggested different change points for individual stations in Bushehr, Bam, Shahroud, and Gorgan. However, the LRT confirmed the change points in these four stations as 1997, 1996, 1993, and 1996, respectively. No change points were detected in the remaining 11 stations.

  10. How important are internal temperature gradients in french straws during freezing of bovine sperm in nitrogen vapor?

    PubMed

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    2013-01-01

    The subject of present work was to predict internal temperature gradients developed during freezing of bovine sperm diluted in extender, packaged in 0.5 ml French plastic straws and suspended in static liquid nitrogen vapor at -100 degree C. For this purpose, a mathematical heat transfer model previously developed to predict freezing times (phase change was considered) of semen/extender packaged in straw was extended to predict internal temperature gradients during the cooling/freezing process. Results showed maximum temperature differences between the centre and the periphery of semen/extender "liquid" column was 1.5 degree C for an external heat transfer coefficient, h = 15 W per (m(2) K), and only 0.5 degree C for h = 5 W per (m(2) K). It is concluded that if a thermocouple wire were inserted in a 0.5 ml plastic straw to monitor the freezing process in nitrogen vapor, its radial position would have little importance since expected internal gradients may be safely neglected. This finding facilitates the interpretation of freezing rates in 0.5 ml plastic straws immersed in nitrogen vapor over liquid nitrogen, a widely used method for cryopreservation of bovine spermatozoa.

  11. A simple approach for measuring emission patterns of vapor phase mercury under temperature-controlled conditions from soil.

    PubMed

    Kim, Ki-Hyun; Yoon, Hye-On; Jung, Myung-Chae; Oh, Jong-Min; Brown, Richard J C

    2012-01-01

    In an effort to study the possible effects of climate change on the behavior of atmospheric mercury (Hg), we built a temperature-controlled microchamber system to measure its emission from top soils. To this end, mercury vapour emission rates were investigated in the laboratory using top soil samples collected from an urban area. The emissions of Hg, when measured as a function of soil temperature (from ambient levels up to 70°C at increments of 10°C), showed a positive correlation with rising temperature. According to the continuous analyses of the Hg vapor given off by the identical soil samples, evasion rate diminished noticeably with increasing number of repetitions. The experimental results, if examined in terms of activation energy (Ea), showed highly contrasting patterns between the single and repetitive runs. Although the results of the former exhibited Ea values smaller than the vaporization energy of Hg (i.e., <14 Kcal mol(-1)), those of the latter increased systematically with increasing number of repetitions. As such, it is proposed that changes in the magnitude of Ea values can be used as a highly sensitive criterion to discriminate the important role of vaporization from other diverse (biotic/abiotic) processes occurring in the soil layer.

  12. Assessing surface air temperature variability using quantile regression

    NASA Astrophysics Data System (ADS)

    Timofeev, A. A.; Sterin, A. M.

    2014-12-01

    Many researches in climate change currently involve linear trends, based on measured variables. And many of them only consider trends in mean values, whereas it is clear, that not only means, but also whole shape of distribution changes over time and requires careful assessment. For example extreme values including outliers may get bigger, while median has zero slope.Quantile regression provides a convenient tool, that enables detailed analysis of changes in full range of distribution by producing a vector of quantile trends for any given set of quantiles.We have applied quantile regression to surface air temperature observations made at over 600 weather stations across Russian Federation during last four decades. The results demonstrate well pronounced regions with similar values of significant trends in different parts of temperature value distribution (left tail, middle part, right tail). The uncertainties of quantile trend estimations for several spatial patterns of trends over Russia are estimated and analyzed for each of four seasons.For temperature trend estimation over vast territories, quantile regression is an effort consuming approach, but is more informative than traditional instrument, to assess decadal evolution of temperature values, including evolution of extremes.Partial support of ERA NET RUS ACPCA joint project between EU and RBRF 12-05-91656-ЭРА-А is highly appreciated.

  13. Effects of air temperatures and humidities on efficiencies and lifetimes of air-purifying chemical respirator cartridges tested against methyl iodide.

    PubMed

    Wood, G O

    1985-05-01

    Methyl iodide penetration curves through three types of respirator cartridges and canisters were determined at several temperatures to identify the significance of temperatures of testing and use. Three charcoal types showed similar results: triethylenediamine (5% TEDA-impregnated, (2% TEDA + 5% KI3)-impregnated, and unimpregnated. Penetration curves were shifted at higher temperatures in the range 25-38 degrees C, keeping relative humidity constant in the range 50-70%, but allowing absolute humidities to increase correspondingly. These shifts were such that penetrations were increased and service lives were decreased significantly (4-15% per degrees C). At constant water vapor concentration, service life of the (2% TEDA + 5% KI3)-impregnated charcoal increased with temperature, illustrating the complexity of temperature effects. For one case (5% TEDA) using cartridges at humidity equilibrium, temperature and humidity effects were sorted out. Until these effects are better understood, air-purifying respirator cartridge and canister testing should be done at conditions more representative of possible use and at more closely controlled temperatures. PMID:4003276

  14. Effects of air temperatures and humidities on efficiencies and lifetimes of air-purifying chemical respirator cartridges tested against methyl iodide

    SciTech Connect

    Wood, G.O.

    1985-05-01

    Methyl iodide penetration curves through three types of respirator cartridges and canisters were determined at several temperatures to identify the significance of temperatures of testing and use. Three charcoal types showed similar results: triethylenediamine (5% TEDA-impregnated, (2% TEDA + 5% KI/sub 3/)-impregnated, and unimpregnated. Penetration curves were shifted at higher temperatures in the range 25-38/sup 0/C, keeping relative humidity constant in the range 50-70%, but allowing absolute humidities to increase correspondingly. These shifts were such that penetrations were increased and service lives were decreased significantly (4-15% per /sup 0/C). At constant water vapor concentration, service life of the (2% TEDA + 5% KI/sub 3/)-impregnated charcoal increased with temperature, illustrating the complexity of temperature effects. For one case (5% TEDA) using cartridges at humidity equilibrium, temperature and humidity effects were sorted out. Until these effects are better understood, air-purifying respirator cartridge and canister testing should be done at conditions more representative of possible use and at more closely controlled temperatures.

  15. Enthalpy and high temperature relaxation kinetics of stable vapor-deposited glasses of toluene.

    PubMed

    Bhattacharya, Deepanjan; Sadtchenko, Vlad

    2014-09-01

    Stable non-crystalline toluene films of micrometer and nanometer thicknesses were grown by vapor deposition at distinct rates and probed by fast scanning calorimetry. Fast scanning calorimetry is shown to be extremely sensitive to the structure of the vapor-deposited phase and was used to characterize simultaneously its kinetic stability and its thermodynamic properties. According to our analysis, transformation of vapor-deposited samples of toluene during heating with rates in excess 10(5) K s(-1) follows the zero-order kinetics. The transformation rate correlates strongly with the initial enthalpy of the sample, which increases with the deposition rate according to sub-linear law. Analysis of the transformation kinetics of vapor-deposited toluene films of various thicknesses reveal a sudden increase in the transformation rate for films thinner than 250 nm. The change in kinetics seems to correlate with the surface roughness scale of the substrate. The implications of these findings for the formation mechanism and structure of vapor-deposited stable glasses are discussed.

  16. Enthalpy and high temperature relaxation kinetics of stable vapor-deposited glasses of toluene

    SciTech Connect

    Bhattacharya, Deepanjan; Sadtchenko, Vlad

    2014-09-07

    Stable non-crystalline toluene films of micrometer and nanometer thicknesses were grown by vapor deposition at distinct rates and probed by fast scanning calorimetry. Fast scanning calorimetry is shown to be extremely sensitive to the structure of the vapor-deposited phase and was used to characterize simultaneously its kinetic stability and its thermodynamic properties. According to our analysis, transformation of vapor-deposited samples of toluene during heating with rates in excess 10{sup 5} K s{sup −1} follows the zero-order kinetics. The transformation rate correlates strongly with the initial enthalpy of the sample, which increases with the deposition rate according to sub-linear law. Analysis of the transformation kinetics of vapor-deposited toluene films of various thicknesses reveal a sudden increase in the transformation rate for films thinner than 250 nm. The change in kinetics seems to correlate with the surface roughness scale of the substrate. The implications of these findings for the formation mechanism and structure of vapor-deposited stable glasses are discussed.

  17. Calibrated vapor generator source

    DOEpatents

    Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

    1995-09-26

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

  18. Calibrated vapor generator source

    DOEpatents

    Davies, John P.; Larson, Ronald A.; Goodrich, Lorenzo D.; Hall, Harold J.; Stoddard, Billy D.; Davis, Sean G.; Kaser, Timothy G.; Conrad, Frank J.

    1995-01-01

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

  19. Air Surface Temperature Correlation with Greenhouse Gases by Using Airs Data Over Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Rajab, Jasim Mohammed; MatJafri, M. Z.; Lim, H. S.

    2014-08-01

    The main objective of this study is to develop algorithms for calculating the air surface temperature (AST). This study also aims to analyze and investigate the effects of greenhouse gases (GHGs) on the AST value in Peninsular Malaysia. Multiple linear regression is used to achieve the objectives of the study. Peninsular Malaysia has been selected as the research area because it is among the regions of tropical Southeast Asia with the greatest humidity, pockets of heavy pollution, rapid economic growth, and industrialization. The predicted AST was highly correlated ( R = 0.783) with GHGs for the 6-year data (2003-2008). Comparisons of five stations in 2009 showed close agreement between the predicted AST and the observed AST from AIRS, especially in the wet season (within 1.3 K). The in situ data ranged from 1 to 2 K. Validation results showed that AST ( R = 0.776-0.878) has values nearly the same as the observed AST from AIRS. We found that O3 during the wet season was indicated by a strongly positive beta coefficient (0.264-0.992) with AST. The CO2 yields a reasonable relationship with temperature with low to moderate beta coefficient (-0.065 to 0.238). The O3, CO2, and environmental variables experienced different seasonal fluctuations that depend on weather conditions and topography. The concentration of gases and pollution were the highest over industrial zones and overcrowded cities, and the dry season was more polluted compared with the wet season. These results indicate the advantage of using the satellite AIRS data and a correlation analysis to investigate the effect of atmospheric GHGs on AST over Peninsular Malaysia. An algorithm that is capable of retrieving Peninsular Malaysian AST in all weather conditions with total uncertainties ranging from 1 to 2 K was developed.

  20. Effect of Lemongrass Essential Oil Vapors on Microbial Dynamics and Listeria monocytogenes Survival on Rocket and Melon Stored under Different Packaging Conditions and Temperatures

    PubMed Central

    Hadjilouka, Agni; Polychronopoulou, Melissanthi; Paramithiotis, Spiros; Tzamalis, Periklis; Drosinos, Eleftherios H.

    2015-01-01

    The aim of the present study was to examine the effect of lemongrass essential oil vapors on the dynamics of surface microbiota and L. monocytogenes growth on rocket and melon under different packaging conditions and storage temperature. For that purpose, rocket and melon were placed on Expanded Polystyrene (EPS) trays, sprayed with L. monocytogenes to a population of 4.5–5.0 log CFU·g−1, packaged using microperforated Oriented Polypropylene (OPP) film in either air or Microperforated Active Modified Atmosphere (MAMA) (initial atmosphere 5% O2, 10% CO2) including a Whatman paper containing the essential oil, without contact with the product, and stored at 0, 5, 10, and 15 °C. Application of lemongrass exhibited a bactericidal effect on enterococci and a fungistatic effect on yeast-mould populations but only during air storage of rocket. The former took place at all temperatures and the latter only at 10 and 15 °C. No effect on shelf life of both products was recorded. However, an important effect on the sensorial properties was observed; during the first 4–5 days of storage both products were organoleptically unacceptable. Regarding MAMA packaging, it affected only Pseudomonas spp. population resulting in a reduction of 1–2 log CFU·g−1 in both products.